Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Kernel-based Virtual Machine driver for Linux
0004  *
0005  * This module enables machines with Intel VT-x extensions to run virtual
0006  * machines without emulation or binary translation.
0007  *
0008  * Copyright (C) 2006 Qumranet, Inc.
0009  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
0010  *
0011  * Authors:
0012  *   Avi Kivity   <avi@qumranet.com>
0013  *   Yaniv Kamay  <yaniv@qumranet.com>
0014  */
0015 
0016 #include <kvm/iodev.h>
0017 
0018 #include <linux/kvm_host.h>
0019 #include <linux/kvm.h>
0020 #include <linux/module.h>
0021 #include <linux/errno.h>
0022 #include <linux/percpu.h>
0023 #include <linux/mm.h>
0024 #include <linux/miscdevice.h>
0025 #include <linux/vmalloc.h>
0026 #include <linux/reboot.h>
0027 #include <linux/debugfs.h>
0028 #include <linux/highmem.h>
0029 #include <linux/file.h>
0030 #include <linux/syscore_ops.h>
0031 #include <linux/cpu.h>
0032 #include <linux/sched/signal.h>
0033 #include <linux/sched/mm.h>
0034 #include <linux/sched/stat.h>
0035 #include <linux/cpumask.h>
0036 #include <linux/smp.h>
0037 #include <linux/anon_inodes.h>
0038 #include <linux/profile.h>
0039 #include <linux/kvm_para.h>
0040 #include <linux/pagemap.h>
0041 #include <linux/mman.h>
0042 #include <linux/swap.h>
0043 #include <linux/bitops.h>
0044 #include <linux/spinlock.h>
0045 #include <linux/compat.h>
0046 #include <linux/srcu.h>
0047 #include <linux/hugetlb.h>
0048 #include <linux/slab.h>
0049 #include <linux/sort.h>
0050 #include <linux/bsearch.h>
0051 #include <linux/io.h>
0052 #include <linux/lockdep.h>
0053 #include <linux/kthread.h>
0054 #include <linux/suspend.h>
0055 
0056 #include <asm/processor.h>
0057 #include <asm/ioctl.h>
0058 #include <linux/uaccess.h>
0059 
0060 #include "coalesced_mmio.h"
0061 #include "async_pf.h"
0062 #include "kvm_mm.h"
0063 #include "vfio.h"
0064 
0065 #define CREATE_TRACE_POINTS
0066 #include <trace/events/kvm.h>
0067 
0068 #include <linux/kvm_dirty_ring.h>
0069 
0070 /* Worst case buffer size needed for holding an integer. */
0071 #define ITOA_MAX_LEN 12
0072 
0073 MODULE_AUTHOR("Qumranet");
0074 MODULE_LICENSE("GPL");
0075 
0076 /* Architectures should define their poll value according to the halt latency */
0077 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
0078 module_param(halt_poll_ns, uint, 0644);
0079 EXPORT_SYMBOL_GPL(halt_poll_ns);
0080 
0081 /* Default doubles per-vcpu halt_poll_ns. */
0082 unsigned int halt_poll_ns_grow = 2;
0083 module_param(halt_poll_ns_grow, uint, 0644);
0084 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
0085 
0086 /* The start value to grow halt_poll_ns from */
0087 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
0088 module_param(halt_poll_ns_grow_start, uint, 0644);
0089 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
0090 
0091 /* Default resets per-vcpu halt_poll_ns . */
0092 unsigned int halt_poll_ns_shrink;
0093 module_param(halt_poll_ns_shrink, uint, 0644);
0094 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
0095 
0096 /*
0097  * Ordering of locks:
0098  *
0099  *  kvm->lock --> kvm->slots_lock --> kvm->irq_lock
0100  */
0101 
0102 DEFINE_MUTEX(kvm_lock);
0103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
0104 LIST_HEAD(vm_list);
0105 
0106 static cpumask_var_t cpus_hardware_enabled;
0107 static int kvm_usage_count;
0108 static atomic_t hardware_enable_failed;
0109 
0110 static struct kmem_cache *kvm_vcpu_cache;
0111 
0112 static __read_mostly struct preempt_ops kvm_preempt_ops;
0113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
0114 
0115 struct dentry *kvm_debugfs_dir;
0116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
0117 
0118 static const struct file_operations stat_fops_per_vm;
0119 
0120 static struct file_operations kvm_chardev_ops;
0121 
0122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
0123                unsigned long arg);
0124 #ifdef CONFIG_KVM_COMPAT
0125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
0126                   unsigned long arg);
0127 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
0128 #else
0129 /*
0130  * For architectures that don't implement a compat infrastructure,
0131  * adopt a double line of defense:
0132  * - Prevent a compat task from opening /dev/kvm
0133  * - If the open has been done by a 64bit task, and the KVM fd
0134  *   passed to a compat task, let the ioctls fail.
0135  */
0136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
0137                 unsigned long arg) { return -EINVAL; }
0138 
0139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
0140 {
0141     return is_compat_task() ? -ENODEV : 0;
0142 }
0143 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
0144             .open       = kvm_no_compat_open
0145 #endif
0146 static int hardware_enable_all(void);
0147 static void hardware_disable_all(void);
0148 
0149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
0150 
0151 __visible bool kvm_rebooting;
0152 EXPORT_SYMBOL_GPL(kvm_rebooting);
0153 
0154 #define KVM_EVENT_CREATE_VM 0
0155 #define KVM_EVENT_DESTROY_VM 1
0156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
0157 static unsigned long long kvm_createvm_count;
0158 static unsigned long long kvm_active_vms;
0159 
0160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
0161 
0162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
0163                            unsigned long start, unsigned long end)
0164 {
0165 }
0166 
0167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
0168 {
0169 }
0170 
0171 bool kvm_is_zone_device_page(struct page *page)
0172 {
0173     /*
0174      * The metadata used by is_zone_device_page() to determine whether or
0175      * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
0176      * the device has been pinned, e.g. by get_user_pages().  WARN if the
0177      * page_count() is zero to help detect bad usage of this helper.
0178      */
0179     if (WARN_ON_ONCE(!page_count(page)))
0180         return false;
0181 
0182     return is_zone_device_page(page);
0183 }
0184 
0185 /*
0186  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
0187  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
0188  * is likely incomplete, it has been compiled purely through people wanting to
0189  * back guest with a certain type of memory and encountering issues.
0190  */
0191 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
0192 {
0193     struct page *page;
0194 
0195     if (!pfn_valid(pfn))
0196         return NULL;
0197 
0198     page = pfn_to_page(pfn);
0199     if (!PageReserved(page))
0200         return page;
0201 
0202     /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
0203     if (is_zero_pfn(pfn))
0204         return page;
0205 
0206     /*
0207      * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
0208      * perspective they are "normal" pages, albeit with slightly different
0209      * usage rules.
0210      */
0211     if (kvm_is_zone_device_page(page))
0212         return page;
0213 
0214     return NULL;
0215 }
0216 
0217 /*
0218  * Switches to specified vcpu, until a matching vcpu_put()
0219  */
0220 void vcpu_load(struct kvm_vcpu *vcpu)
0221 {
0222     int cpu = get_cpu();
0223 
0224     __this_cpu_write(kvm_running_vcpu, vcpu);
0225     preempt_notifier_register(&vcpu->preempt_notifier);
0226     kvm_arch_vcpu_load(vcpu, cpu);
0227     put_cpu();
0228 }
0229 EXPORT_SYMBOL_GPL(vcpu_load);
0230 
0231 void vcpu_put(struct kvm_vcpu *vcpu)
0232 {
0233     preempt_disable();
0234     kvm_arch_vcpu_put(vcpu);
0235     preempt_notifier_unregister(&vcpu->preempt_notifier);
0236     __this_cpu_write(kvm_running_vcpu, NULL);
0237     preempt_enable();
0238 }
0239 EXPORT_SYMBOL_GPL(vcpu_put);
0240 
0241 /* TODO: merge with kvm_arch_vcpu_should_kick */
0242 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
0243 {
0244     int mode = kvm_vcpu_exiting_guest_mode(vcpu);
0245 
0246     /*
0247      * We need to wait for the VCPU to reenable interrupts and get out of
0248      * READING_SHADOW_PAGE_TABLES mode.
0249      */
0250     if (req & KVM_REQUEST_WAIT)
0251         return mode != OUTSIDE_GUEST_MODE;
0252 
0253     /*
0254      * Need to kick a running VCPU, but otherwise there is nothing to do.
0255      */
0256     return mode == IN_GUEST_MODE;
0257 }
0258 
0259 static void ack_kick(void *_completed)
0260 {
0261 }
0262 
0263 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
0264 {
0265     if (cpumask_empty(cpus))
0266         return false;
0267 
0268     smp_call_function_many(cpus, ack_kick, NULL, wait);
0269     return true;
0270 }
0271 
0272 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
0273                   struct cpumask *tmp, int current_cpu)
0274 {
0275     int cpu;
0276 
0277     if (likely(!(req & KVM_REQUEST_NO_ACTION)))
0278         __kvm_make_request(req, vcpu);
0279 
0280     if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
0281         return;
0282 
0283     /*
0284      * Note, the vCPU could get migrated to a different pCPU at any point
0285      * after kvm_request_needs_ipi(), which could result in sending an IPI
0286      * to the previous pCPU.  But, that's OK because the purpose of the IPI
0287      * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
0288      * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
0289      * after this point is also OK, as the requirement is only that KVM wait
0290      * for vCPUs that were reading SPTEs _before_ any changes were
0291      * finalized. See kvm_vcpu_kick() for more details on handling requests.
0292      */
0293     if (kvm_request_needs_ipi(vcpu, req)) {
0294         cpu = READ_ONCE(vcpu->cpu);
0295         if (cpu != -1 && cpu != current_cpu)
0296             __cpumask_set_cpu(cpu, tmp);
0297     }
0298 }
0299 
0300 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
0301                  unsigned long *vcpu_bitmap)
0302 {
0303     struct kvm_vcpu *vcpu;
0304     struct cpumask *cpus;
0305     int i, me;
0306     bool called;
0307 
0308     me = get_cpu();
0309 
0310     cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
0311     cpumask_clear(cpus);
0312 
0313     for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
0314         vcpu = kvm_get_vcpu(kvm, i);
0315         if (!vcpu)
0316             continue;
0317         kvm_make_vcpu_request(vcpu, req, cpus, me);
0318     }
0319 
0320     called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
0321     put_cpu();
0322 
0323     return called;
0324 }
0325 
0326 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
0327                       struct kvm_vcpu *except)
0328 {
0329     struct kvm_vcpu *vcpu;
0330     struct cpumask *cpus;
0331     unsigned long i;
0332     bool called;
0333     int me;
0334 
0335     me = get_cpu();
0336 
0337     cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
0338     cpumask_clear(cpus);
0339 
0340     kvm_for_each_vcpu(i, vcpu, kvm) {
0341         if (vcpu == except)
0342             continue;
0343         kvm_make_vcpu_request(vcpu, req, cpus, me);
0344     }
0345 
0346     called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
0347     put_cpu();
0348 
0349     return called;
0350 }
0351 
0352 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
0353 {
0354     return kvm_make_all_cpus_request_except(kvm, req, NULL);
0355 }
0356 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
0357 
0358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
0359 void kvm_flush_remote_tlbs(struct kvm *kvm)
0360 {
0361     ++kvm->stat.generic.remote_tlb_flush_requests;
0362 
0363     /*
0364      * We want to publish modifications to the page tables before reading
0365      * mode. Pairs with a memory barrier in arch-specific code.
0366      * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
0367      * and smp_mb in walk_shadow_page_lockless_begin/end.
0368      * - powerpc: smp_mb in kvmppc_prepare_to_enter.
0369      *
0370      * There is already an smp_mb__after_atomic() before
0371      * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
0372      * barrier here.
0373      */
0374     if (!kvm_arch_flush_remote_tlb(kvm)
0375         || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
0376         ++kvm->stat.generic.remote_tlb_flush;
0377 }
0378 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
0379 #endif
0380 
0381 static void kvm_flush_shadow_all(struct kvm *kvm)
0382 {
0383     kvm_arch_flush_shadow_all(kvm);
0384     kvm_arch_guest_memory_reclaimed(kvm);
0385 }
0386 
0387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
0388 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
0389                            gfp_t gfp_flags)
0390 {
0391     gfp_flags |= mc->gfp_zero;
0392 
0393     if (mc->kmem_cache)
0394         return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
0395     else
0396         return (void *)__get_free_page(gfp_flags);
0397 }
0398 
0399 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
0400 {
0401     gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
0402     void *obj;
0403 
0404     if (mc->nobjs >= min)
0405         return 0;
0406 
0407     if (unlikely(!mc->objects)) {
0408         if (WARN_ON_ONCE(!capacity))
0409             return -EIO;
0410 
0411         mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
0412         if (!mc->objects)
0413             return -ENOMEM;
0414 
0415         mc->capacity = capacity;
0416     }
0417 
0418     /* It is illegal to request a different capacity across topups. */
0419     if (WARN_ON_ONCE(mc->capacity != capacity))
0420         return -EIO;
0421 
0422     while (mc->nobjs < mc->capacity) {
0423         obj = mmu_memory_cache_alloc_obj(mc, gfp);
0424         if (!obj)
0425             return mc->nobjs >= min ? 0 : -ENOMEM;
0426         mc->objects[mc->nobjs++] = obj;
0427     }
0428     return 0;
0429 }
0430 
0431 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
0432 {
0433     return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
0434 }
0435 
0436 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
0437 {
0438     return mc->nobjs;
0439 }
0440 
0441 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
0442 {
0443     while (mc->nobjs) {
0444         if (mc->kmem_cache)
0445             kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
0446         else
0447             free_page((unsigned long)mc->objects[--mc->nobjs]);
0448     }
0449 
0450     kvfree(mc->objects);
0451 
0452     mc->objects = NULL;
0453     mc->capacity = 0;
0454 }
0455 
0456 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
0457 {
0458     void *p;
0459 
0460     if (WARN_ON(!mc->nobjs))
0461         p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
0462     else
0463         p = mc->objects[--mc->nobjs];
0464     BUG_ON(!p);
0465     return p;
0466 }
0467 #endif
0468 
0469 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
0470 {
0471     mutex_init(&vcpu->mutex);
0472     vcpu->cpu = -1;
0473     vcpu->kvm = kvm;
0474     vcpu->vcpu_id = id;
0475     vcpu->pid = NULL;
0476 #ifndef __KVM_HAVE_ARCH_WQP
0477     rcuwait_init(&vcpu->wait);
0478 #endif
0479     kvm_async_pf_vcpu_init(vcpu);
0480 
0481     kvm_vcpu_set_in_spin_loop(vcpu, false);
0482     kvm_vcpu_set_dy_eligible(vcpu, false);
0483     vcpu->preempted = false;
0484     vcpu->ready = false;
0485     preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
0486     vcpu->last_used_slot = NULL;
0487 
0488     /* Fill the stats id string for the vcpu */
0489     snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
0490          task_pid_nr(current), id);
0491 }
0492 
0493 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
0494 {
0495     kvm_arch_vcpu_destroy(vcpu);
0496     kvm_dirty_ring_free(&vcpu->dirty_ring);
0497 
0498     /*
0499      * No need for rcu_read_lock as VCPU_RUN is the only place that changes
0500      * the vcpu->pid pointer, and at destruction time all file descriptors
0501      * are already gone.
0502      */
0503     put_pid(rcu_dereference_protected(vcpu->pid, 1));
0504 
0505     free_page((unsigned long)vcpu->run);
0506     kmem_cache_free(kvm_vcpu_cache, vcpu);
0507 }
0508 
0509 void kvm_destroy_vcpus(struct kvm *kvm)
0510 {
0511     unsigned long i;
0512     struct kvm_vcpu *vcpu;
0513 
0514     kvm_for_each_vcpu(i, vcpu, kvm) {
0515         kvm_vcpu_destroy(vcpu);
0516         xa_erase(&kvm->vcpu_array, i);
0517     }
0518 
0519     atomic_set(&kvm->online_vcpus, 0);
0520 }
0521 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
0522 
0523 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
0524 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
0525 {
0526     return container_of(mn, struct kvm, mmu_notifier);
0527 }
0528 
0529 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
0530                           struct mm_struct *mm,
0531                           unsigned long start, unsigned long end)
0532 {
0533     struct kvm *kvm = mmu_notifier_to_kvm(mn);
0534     int idx;
0535 
0536     idx = srcu_read_lock(&kvm->srcu);
0537     kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
0538     srcu_read_unlock(&kvm->srcu, idx);
0539 }
0540 
0541 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
0542 
0543 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
0544                  unsigned long end);
0545 
0546 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
0547 
0548 struct kvm_hva_range {
0549     unsigned long start;
0550     unsigned long end;
0551     pte_t pte;
0552     hva_handler_t handler;
0553     on_lock_fn_t on_lock;
0554     on_unlock_fn_t on_unlock;
0555     bool flush_on_ret;
0556     bool may_block;
0557 };
0558 
0559 /*
0560  * Use a dedicated stub instead of NULL to indicate that there is no callback
0561  * function/handler.  The compiler technically can't guarantee that a real
0562  * function will have a non-zero address, and so it will generate code to
0563  * check for !NULL, whereas comparing against a stub will be elided at compile
0564  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
0565  */
0566 static void kvm_null_fn(void)
0567 {
0568 
0569 }
0570 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
0571 
0572 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
0573 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)      \
0574     for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
0575          node;                               \
0576          node = interval_tree_iter_next(node, start, last))      \
0577 
0578 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
0579                           const struct kvm_hva_range *range)
0580 {
0581     bool ret = false, locked = false;
0582     struct kvm_gfn_range gfn_range;
0583     struct kvm_memory_slot *slot;
0584     struct kvm_memslots *slots;
0585     int i, idx;
0586 
0587     if (WARN_ON_ONCE(range->end <= range->start))
0588         return 0;
0589 
0590     /* A null handler is allowed if and only if on_lock() is provided. */
0591     if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
0592              IS_KVM_NULL_FN(range->handler)))
0593         return 0;
0594 
0595     idx = srcu_read_lock(&kvm->srcu);
0596 
0597     for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
0598         struct interval_tree_node *node;
0599 
0600         slots = __kvm_memslots(kvm, i);
0601         kvm_for_each_memslot_in_hva_range(node, slots,
0602                           range->start, range->end - 1) {
0603             unsigned long hva_start, hva_end;
0604 
0605             slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
0606             hva_start = max(range->start, slot->userspace_addr);
0607             hva_end = min(range->end, slot->userspace_addr +
0608                           (slot->npages << PAGE_SHIFT));
0609 
0610             /*
0611              * To optimize for the likely case where the address
0612              * range is covered by zero or one memslots, don't
0613              * bother making these conditional (to avoid writes on
0614              * the second or later invocation of the handler).
0615              */
0616             gfn_range.pte = range->pte;
0617             gfn_range.may_block = range->may_block;
0618 
0619             /*
0620              * {gfn(page) | page intersects with [hva_start, hva_end)} =
0621              * {gfn_start, gfn_start+1, ..., gfn_end-1}.
0622              */
0623             gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
0624             gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
0625             gfn_range.slot = slot;
0626 
0627             if (!locked) {
0628                 locked = true;
0629                 KVM_MMU_LOCK(kvm);
0630                 if (!IS_KVM_NULL_FN(range->on_lock))
0631                     range->on_lock(kvm, range->start, range->end);
0632                 if (IS_KVM_NULL_FN(range->handler))
0633                     break;
0634             }
0635             ret |= range->handler(kvm, &gfn_range);
0636         }
0637     }
0638 
0639     if (range->flush_on_ret && ret)
0640         kvm_flush_remote_tlbs(kvm);
0641 
0642     if (locked) {
0643         KVM_MMU_UNLOCK(kvm);
0644         if (!IS_KVM_NULL_FN(range->on_unlock))
0645             range->on_unlock(kvm);
0646     }
0647 
0648     srcu_read_unlock(&kvm->srcu, idx);
0649 
0650     /* The notifiers are averse to booleans. :-( */
0651     return (int)ret;
0652 }
0653 
0654 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
0655                         unsigned long start,
0656                         unsigned long end,
0657                         pte_t pte,
0658                         hva_handler_t handler)
0659 {
0660     struct kvm *kvm = mmu_notifier_to_kvm(mn);
0661     const struct kvm_hva_range range = {
0662         .start      = start,
0663         .end        = end,
0664         .pte        = pte,
0665         .handler    = handler,
0666         .on_lock    = (void *)kvm_null_fn,
0667         .on_unlock  = (void *)kvm_null_fn,
0668         .flush_on_ret   = true,
0669         .may_block  = false,
0670     };
0671 
0672     return __kvm_handle_hva_range(kvm, &range);
0673 }
0674 
0675 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
0676                              unsigned long start,
0677                              unsigned long end,
0678                              hva_handler_t handler)
0679 {
0680     struct kvm *kvm = mmu_notifier_to_kvm(mn);
0681     const struct kvm_hva_range range = {
0682         .start      = start,
0683         .end        = end,
0684         .pte        = __pte(0),
0685         .handler    = handler,
0686         .on_lock    = (void *)kvm_null_fn,
0687         .on_unlock  = (void *)kvm_null_fn,
0688         .flush_on_ret   = false,
0689         .may_block  = false,
0690     };
0691 
0692     return __kvm_handle_hva_range(kvm, &range);
0693 }
0694 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
0695                     struct mm_struct *mm,
0696                     unsigned long address,
0697                     pte_t pte)
0698 {
0699     struct kvm *kvm = mmu_notifier_to_kvm(mn);
0700 
0701     trace_kvm_set_spte_hva(address);
0702 
0703     /*
0704      * .change_pte() must be surrounded by .invalidate_range_{start,end}().
0705      * If mmu_invalidate_in_progress is zero, then no in-progress
0706      * invalidations, including this one, found a relevant memslot at
0707      * start(); rechecking memslots here is unnecessary.  Note, a false
0708      * positive (count elevated by a different invalidation) is sub-optimal
0709      * but functionally ok.
0710      */
0711     WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
0712     if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
0713         return;
0714 
0715     kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
0716 }
0717 
0718 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
0719                   unsigned long end)
0720 {
0721     /*
0722      * The count increase must become visible at unlock time as no
0723      * spte can be established without taking the mmu_lock and
0724      * count is also read inside the mmu_lock critical section.
0725      */
0726     kvm->mmu_invalidate_in_progress++;
0727     if (likely(kvm->mmu_invalidate_in_progress == 1)) {
0728         kvm->mmu_invalidate_range_start = start;
0729         kvm->mmu_invalidate_range_end = end;
0730     } else {
0731         /*
0732          * Fully tracking multiple concurrent ranges has diminishing
0733          * returns. Keep things simple and just find the minimal range
0734          * which includes the current and new ranges. As there won't be
0735          * enough information to subtract a range after its invalidate
0736          * completes, any ranges invalidated concurrently will
0737          * accumulate and persist until all outstanding invalidates
0738          * complete.
0739          */
0740         kvm->mmu_invalidate_range_start =
0741             min(kvm->mmu_invalidate_range_start, start);
0742         kvm->mmu_invalidate_range_end =
0743             max(kvm->mmu_invalidate_range_end, end);
0744     }
0745 }
0746 
0747 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
0748                     const struct mmu_notifier_range *range)
0749 {
0750     struct kvm *kvm = mmu_notifier_to_kvm(mn);
0751     const struct kvm_hva_range hva_range = {
0752         .start      = range->start,
0753         .end        = range->end,
0754         .pte        = __pte(0),
0755         .handler    = kvm_unmap_gfn_range,
0756         .on_lock    = kvm_mmu_invalidate_begin,
0757         .on_unlock  = kvm_arch_guest_memory_reclaimed,
0758         .flush_on_ret   = true,
0759         .may_block  = mmu_notifier_range_blockable(range),
0760     };
0761 
0762     trace_kvm_unmap_hva_range(range->start, range->end);
0763 
0764     /*
0765      * Prevent memslot modification between range_start() and range_end()
0766      * so that conditionally locking provides the same result in both
0767      * functions.  Without that guarantee, the mmu_invalidate_in_progress
0768      * adjustments will be imbalanced.
0769      *
0770      * Pairs with the decrement in range_end().
0771      */
0772     spin_lock(&kvm->mn_invalidate_lock);
0773     kvm->mn_active_invalidate_count++;
0774     spin_unlock(&kvm->mn_invalidate_lock);
0775 
0776     /*
0777      * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
0778      * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
0779      * each cache's lock.  There are relatively few caches in existence at
0780      * any given time, and the caches themselves can check for hva overlap,
0781      * i.e. don't need to rely on memslot overlap checks for performance.
0782      * Because this runs without holding mmu_lock, the pfn caches must use
0783      * mn_active_invalidate_count (see above) instead of
0784      * mmu_invalidate_in_progress.
0785      */
0786     gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
0787                       hva_range.may_block);
0788 
0789     __kvm_handle_hva_range(kvm, &hva_range);
0790 
0791     return 0;
0792 }
0793 
0794 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
0795                 unsigned long end)
0796 {
0797     /*
0798      * This sequence increase will notify the kvm page fault that
0799      * the page that is going to be mapped in the spte could have
0800      * been freed.
0801      */
0802     kvm->mmu_invalidate_seq++;
0803     smp_wmb();
0804     /*
0805      * The above sequence increase must be visible before the
0806      * below count decrease, which is ensured by the smp_wmb above
0807      * in conjunction with the smp_rmb in mmu_invalidate_retry().
0808      */
0809     kvm->mmu_invalidate_in_progress--;
0810 }
0811 
0812 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
0813                     const struct mmu_notifier_range *range)
0814 {
0815     struct kvm *kvm = mmu_notifier_to_kvm(mn);
0816     const struct kvm_hva_range hva_range = {
0817         .start      = range->start,
0818         .end        = range->end,
0819         .pte        = __pte(0),
0820         .handler    = (void *)kvm_null_fn,
0821         .on_lock    = kvm_mmu_invalidate_end,
0822         .on_unlock  = (void *)kvm_null_fn,
0823         .flush_on_ret   = false,
0824         .may_block  = mmu_notifier_range_blockable(range),
0825     };
0826     bool wake;
0827 
0828     __kvm_handle_hva_range(kvm, &hva_range);
0829 
0830     /* Pairs with the increment in range_start(). */
0831     spin_lock(&kvm->mn_invalidate_lock);
0832     wake = (--kvm->mn_active_invalidate_count == 0);
0833     spin_unlock(&kvm->mn_invalidate_lock);
0834 
0835     /*
0836      * There can only be one waiter, since the wait happens under
0837      * slots_lock.
0838      */
0839     if (wake)
0840         rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
0841 
0842     BUG_ON(kvm->mmu_invalidate_in_progress < 0);
0843 }
0844 
0845 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
0846                           struct mm_struct *mm,
0847                           unsigned long start,
0848                           unsigned long end)
0849 {
0850     trace_kvm_age_hva(start, end);
0851 
0852     return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
0853 }
0854 
0855 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
0856                     struct mm_struct *mm,
0857                     unsigned long start,
0858                     unsigned long end)
0859 {
0860     trace_kvm_age_hva(start, end);
0861 
0862     /*
0863      * Even though we do not flush TLB, this will still adversely
0864      * affect performance on pre-Haswell Intel EPT, where there is
0865      * no EPT Access Bit to clear so that we have to tear down EPT
0866      * tables instead. If we find this unacceptable, we can always
0867      * add a parameter to kvm_age_hva so that it effectively doesn't
0868      * do anything on clear_young.
0869      *
0870      * Also note that currently we never issue secondary TLB flushes
0871      * from clear_young, leaving this job up to the regular system
0872      * cadence. If we find this inaccurate, we might come up with a
0873      * more sophisticated heuristic later.
0874      */
0875     return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
0876 }
0877 
0878 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
0879                        struct mm_struct *mm,
0880                        unsigned long address)
0881 {
0882     trace_kvm_test_age_hva(address);
0883 
0884     return kvm_handle_hva_range_no_flush(mn, address, address + 1,
0885                          kvm_test_age_gfn);
0886 }
0887 
0888 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
0889                      struct mm_struct *mm)
0890 {
0891     struct kvm *kvm = mmu_notifier_to_kvm(mn);
0892     int idx;
0893 
0894     idx = srcu_read_lock(&kvm->srcu);
0895     kvm_flush_shadow_all(kvm);
0896     srcu_read_unlock(&kvm->srcu, idx);
0897 }
0898 
0899 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
0900     .invalidate_range   = kvm_mmu_notifier_invalidate_range,
0901     .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
0902     .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
0903     .clear_flush_young  = kvm_mmu_notifier_clear_flush_young,
0904     .clear_young        = kvm_mmu_notifier_clear_young,
0905     .test_young     = kvm_mmu_notifier_test_young,
0906     .change_pte     = kvm_mmu_notifier_change_pte,
0907     .release        = kvm_mmu_notifier_release,
0908 };
0909 
0910 static int kvm_init_mmu_notifier(struct kvm *kvm)
0911 {
0912     kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
0913     return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
0914 }
0915 
0916 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
0917 
0918 static int kvm_init_mmu_notifier(struct kvm *kvm)
0919 {
0920     return 0;
0921 }
0922 
0923 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
0924 
0925 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
0926 static int kvm_pm_notifier_call(struct notifier_block *bl,
0927                 unsigned long state,
0928                 void *unused)
0929 {
0930     struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
0931 
0932     return kvm_arch_pm_notifier(kvm, state);
0933 }
0934 
0935 static void kvm_init_pm_notifier(struct kvm *kvm)
0936 {
0937     kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
0938     /* Suspend KVM before we suspend ftrace, RCU, etc. */
0939     kvm->pm_notifier.priority = INT_MAX;
0940     register_pm_notifier(&kvm->pm_notifier);
0941 }
0942 
0943 static void kvm_destroy_pm_notifier(struct kvm *kvm)
0944 {
0945     unregister_pm_notifier(&kvm->pm_notifier);
0946 }
0947 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
0948 static void kvm_init_pm_notifier(struct kvm *kvm)
0949 {
0950 }
0951 
0952 static void kvm_destroy_pm_notifier(struct kvm *kvm)
0953 {
0954 }
0955 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
0956 
0957 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
0958 {
0959     if (!memslot->dirty_bitmap)
0960         return;
0961 
0962     kvfree(memslot->dirty_bitmap);
0963     memslot->dirty_bitmap = NULL;
0964 }
0965 
0966 /* This does not remove the slot from struct kvm_memslots data structures */
0967 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
0968 {
0969     kvm_destroy_dirty_bitmap(slot);
0970 
0971     kvm_arch_free_memslot(kvm, slot);
0972 
0973     kfree(slot);
0974 }
0975 
0976 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
0977 {
0978     struct hlist_node *idnode;
0979     struct kvm_memory_slot *memslot;
0980     int bkt;
0981 
0982     /*
0983      * The same memslot objects live in both active and inactive sets,
0984      * arbitrarily free using index '1' so the second invocation of this
0985      * function isn't operating over a structure with dangling pointers
0986      * (even though this function isn't actually touching them).
0987      */
0988     if (!slots->node_idx)
0989         return;
0990 
0991     hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
0992         kvm_free_memslot(kvm, memslot);
0993 }
0994 
0995 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
0996 {
0997     switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
0998     case KVM_STATS_TYPE_INSTANT:
0999         return 0444;
1000     case KVM_STATS_TYPE_CUMULATIVE:
1001     case KVM_STATS_TYPE_PEAK:
1002     default:
1003         return 0644;
1004     }
1005 }
1006 
1007 
1008 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1009 {
1010     int i;
1011     int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1012                       kvm_vcpu_stats_header.num_desc;
1013 
1014     if (IS_ERR(kvm->debugfs_dentry))
1015         return;
1016 
1017     debugfs_remove_recursive(kvm->debugfs_dentry);
1018 
1019     if (kvm->debugfs_stat_data) {
1020         for (i = 0; i < kvm_debugfs_num_entries; i++)
1021             kfree(kvm->debugfs_stat_data[i]);
1022         kfree(kvm->debugfs_stat_data);
1023     }
1024 }
1025 
1026 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1027 {
1028     static DEFINE_MUTEX(kvm_debugfs_lock);
1029     struct dentry *dent;
1030     char dir_name[ITOA_MAX_LEN * 2];
1031     struct kvm_stat_data *stat_data;
1032     const struct _kvm_stats_desc *pdesc;
1033     int i, ret = -ENOMEM;
1034     int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1035                       kvm_vcpu_stats_header.num_desc;
1036 
1037     if (!debugfs_initialized())
1038         return 0;
1039 
1040     snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1041     mutex_lock(&kvm_debugfs_lock);
1042     dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1043     if (dent) {
1044         pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1045         dput(dent);
1046         mutex_unlock(&kvm_debugfs_lock);
1047         return 0;
1048     }
1049     dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1050     mutex_unlock(&kvm_debugfs_lock);
1051     if (IS_ERR(dent))
1052         return 0;
1053 
1054     kvm->debugfs_dentry = dent;
1055     kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1056                      sizeof(*kvm->debugfs_stat_data),
1057                      GFP_KERNEL_ACCOUNT);
1058     if (!kvm->debugfs_stat_data)
1059         goto out_err;
1060 
1061     for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1062         pdesc = &kvm_vm_stats_desc[i];
1063         stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1064         if (!stat_data)
1065             goto out_err;
1066 
1067         stat_data->kvm = kvm;
1068         stat_data->desc = pdesc;
1069         stat_data->kind = KVM_STAT_VM;
1070         kvm->debugfs_stat_data[i] = stat_data;
1071         debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1072                     kvm->debugfs_dentry, stat_data,
1073                     &stat_fops_per_vm);
1074     }
1075 
1076     for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1077         pdesc = &kvm_vcpu_stats_desc[i];
1078         stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1079         if (!stat_data)
1080             goto out_err;
1081 
1082         stat_data->kvm = kvm;
1083         stat_data->desc = pdesc;
1084         stat_data->kind = KVM_STAT_VCPU;
1085         kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1086         debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1087                     kvm->debugfs_dentry, stat_data,
1088                     &stat_fops_per_vm);
1089     }
1090 
1091     ret = kvm_arch_create_vm_debugfs(kvm);
1092     if (ret)
1093         goto out_err;
1094 
1095     return 0;
1096 out_err:
1097     kvm_destroy_vm_debugfs(kvm);
1098     return ret;
1099 }
1100 
1101 /*
1102  * Called after the VM is otherwise initialized, but just before adding it to
1103  * the vm_list.
1104  */
1105 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1106 {
1107     return 0;
1108 }
1109 
1110 /*
1111  * Called just after removing the VM from the vm_list, but before doing any
1112  * other destruction.
1113  */
1114 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1115 {
1116 }
1117 
1118 /*
1119  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1120  * be setup already, so we can create arch-specific debugfs entries under it.
1121  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1122  * a per-arch destroy interface is not needed.
1123  */
1124 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1125 {
1126     return 0;
1127 }
1128 
1129 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1130 {
1131     struct kvm *kvm = kvm_arch_alloc_vm();
1132     struct kvm_memslots *slots;
1133     int r = -ENOMEM;
1134     int i, j;
1135 
1136     if (!kvm)
1137         return ERR_PTR(-ENOMEM);
1138 
1139     /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1140     __module_get(kvm_chardev_ops.owner);
1141 
1142     KVM_MMU_LOCK_INIT(kvm);
1143     mmgrab(current->mm);
1144     kvm->mm = current->mm;
1145     kvm_eventfd_init(kvm);
1146     mutex_init(&kvm->lock);
1147     mutex_init(&kvm->irq_lock);
1148     mutex_init(&kvm->slots_lock);
1149     mutex_init(&kvm->slots_arch_lock);
1150     spin_lock_init(&kvm->mn_invalidate_lock);
1151     rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1152     xa_init(&kvm->vcpu_array);
1153 
1154     INIT_LIST_HEAD(&kvm->gpc_list);
1155     spin_lock_init(&kvm->gpc_lock);
1156 
1157     INIT_LIST_HEAD(&kvm->devices);
1158     kvm->max_vcpus = KVM_MAX_VCPUS;
1159 
1160     BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1161 
1162     /*
1163      * Force subsequent debugfs file creations to fail if the VM directory
1164      * is not created (by kvm_create_vm_debugfs()).
1165      */
1166     kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1167 
1168     snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1169          task_pid_nr(current));
1170 
1171     if (init_srcu_struct(&kvm->srcu))
1172         goto out_err_no_srcu;
1173     if (init_srcu_struct(&kvm->irq_srcu))
1174         goto out_err_no_irq_srcu;
1175 
1176     refcount_set(&kvm->users_count, 1);
1177     for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1178         for (j = 0; j < 2; j++) {
1179             slots = &kvm->__memslots[i][j];
1180 
1181             atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1182             slots->hva_tree = RB_ROOT_CACHED;
1183             slots->gfn_tree = RB_ROOT;
1184             hash_init(slots->id_hash);
1185             slots->node_idx = j;
1186 
1187             /* Generations must be different for each address space. */
1188             slots->generation = i;
1189         }
1190 
1191         rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1192     }
1193 
1194     for (i = 0; i < KVM_NR_BUSES; i++) {
1195         rcu_assign_pointer(kvm->buses[i],
1196             kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1197         if (!kvm->buses[i])
1198             goto out_err_no_arch_destroy_vm;
1199     }
1200 
1201     kvm->max_halt_poll_ns = halt_poll_ns;
1202 
1203     r = kvm_arch_init_vm(kvm, type);
1204     if (r)
1205         goto out_err_no_arch_destroy_vm;
1206 
1207     r = hardware_enable_all();
1208     if (r)
1209         goto out_err_no_disable;
1210 
1211 #ifdef CONFIG_HAVE_KVM_IRQFD
1212     INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1213 #endif
1214 
1215     r = kvm_init_mmu_notifier(kvm);
1216     if (r)
1217         goto out_err_no_mmu_notifier;
1218 
1219     r = kvm_coalesced_mmio_init(kvm);
1220     if (r < 0)
1221         goto out_no_coalesced_mmio;
1222 
1223     r = kvm_create_vm_debugfs(kvm, fdname);
1224     if (r)
1225         goto out_err_no_debugfs;
1226 
1227     r = kvm_arch_post_init_vm(kvm);
1228     if (r)
1229         goto out_err;
1230 
1231     mutex_lock(&kvm_lock);
1232     list_add(&kvm->vm_list, &vm_list);
1233     mutex_unlock(&kvm_lock);
1234 
1235     preempt_notifier_inc();
1236     kvm_init_pm_notifier(kvm);
1237 
1238     return kvm;
1239 
1240 out_err:
1241     kvm_destroy_vm_debugfs(kvm);
1242 out_err_no_debugfs:
1243     kvm_coalesced_mmio_free(kvm);
1244 out_no_coalesced_mmio:
1245 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1246     if (kvm->mmu_notifier.ops)
1247         mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1248 #endif
1249 out_err_no_mmu_notifier:
1250     hardware_disable_all();
1251 out_err_no_disable:
1252     kvm_arch_destroy_vm(kvm);
1253 out_err_no_arch_destroy_vm:
1254     WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1255     for (i = 0; i < KVM_NR_BUSES; i++)
1256         kfree(kvm_get_bus(kvm, i));
1257     cleanup_srcu_struct(&kvm->irq_srcu);
1258 out_err_no_irq_srcu:
1259     cleanup_srcu_struct(&kvm->srcu);
1260 out_err_no_srcu:
1261     kvm_arch_free_vm(kvm);
1262     mmdrop(current->mm);
1263     module_put(kvm_chardev_ops.owner);
1264     return ERR_PTR(r);
1265 }
1266 
1267 static void kvm_destroy_devices(struct kvm *kvm)
1268 {
1269     struct kvm_device *dev, *tmp;
1270 
1271     /*
1272      * We do not need to take the kvm->lock here, because nobody else
1273      * has a reference to the struct kvm at this point and therefore
1274      * cannot access the devices list anyhow.
1275      */
1276     list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1277         list_del(&dev->vm_node);
1278         dev->ops->destroy(dev);
1279     }
1280 }
1281 
1282 static void kvm_destroy_vm(struct kvm *kvm)
1283 {
1284     int i;
1285     struct mm_struct *mm = kvm->mm;
1286 
1287     kvm_destroy_pm_notifier(kvm);
1288     kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1289     kvm_destroy_vm_debugfs(kvm);
1290     kvm_arch_sync_events(kvm);
1291     mutex_lock(&kvm_lock);
1292     list_del(&kvm->vm_list);
1293     mutex_unlock(&kvm_lock);
1294     kvm_arch_pre_destroy_vm(kvm);
1295 
1296     kvm_free_irq_routing(kvm);
1297     for (i = 0; i < KVM_NR_BUSES; i++) {
1298         struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1299 
1300         if (bus)
1301             kvm_io_bus_destroy(bus);
1302         kvm->buses[i] = NULL;
1303     }
1304     kvm_coalesced_mmio_free(kvm);
1305 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1306     mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1307     /*
1308      * At this point, pending calls to invalidate_range_start()
1309      * have completed but no more MMU notifiers will run, so
1310      * mn_active_invalidate_count may remain unbalanced.
1311      * No threads can be waiting in install_new_memslots as the
1312      * last reference on KVM has been dropped, but freeing
1313      * memslots would deadlock without this manual intervention.
1314      */
1315     WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1316     kvm->mn_active_invalidate_count = 0;
1317 #else
1318     kvm_flush_shadow_all(kvm);
1319 #endif
1320     kvm_arch_destroy_vm(kvm);
1321     kvm_destroy_devices(kvm);
1322     for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1323         kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1324         kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1325     }
1326     cleanup_srcu_struct(&kvm->irq_srcu);
1327     cleanup_srcu_struct(&kvm->srcu);
1328     kvm_arch_free_vm(kvm);
1329     preempt_notifier_dec();
1330     hardware_disable_all();
1331     mmdrop(mm);
1332     module_put(kvm_chardev_ops.owner);
1333 }
1334 
1335 void kvm_get_kvm(struct kvm *kvm)
1336 {
1337     refcount_inc(&kvm->users_count);
1338 }
1339 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1340 
1341 /*
1342  * Make sure the vm is not during destruction, which is a safe version of
1343  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1344  */
1345 bool kvm_get_kvm_safe(struct kvm *kvm)
1346 {
1347     return refcount_inc_not_zero(&kvm->users_count);
1348 }
1349 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1350 
1351 void kvm_put_kvm(struct kvm *kvm)
1352 {
1353     if (refcount_dec_and_test(&kvm->users_count))
1354         kvm_destroy_vm(kvm);
1355 }
1356 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1357 
1358 /*
1359  * Used to put a reference that was taken on behalf of an object associated
1360  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1361  * of the new file descriptor fails and the reference cannot be transferred to
1362  * its final owner.  In such cases, the caller is still actively using @kvm and
1363  * will fail miserably if the refcount unexpectedly hits zero.
1364  */
1365 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1366 {
1367     WARN_ON(refcount_dec_and_test(&kvm->users_count));
1368 }
1369 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1370 
1371 static int kvm_vm_release(struct inode *inode, struct file *filp)
1372 {
1373     struct kvm *kvm = filp->private_data;
1374 
1375     kvm_irqfd_release(kvm);
1376 
1377     kvm_put_kvm(kvm);
1378     return 0;
1379 }
1380 
1381 /*
1382  * Allocation size is twice as large as the actual dirty bitmap size.
1383  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1384  */
1385 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1386 {
1387     unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1388 
1389     memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1390     if (!memslot->dirty_bitmap)
1391         return -ENOMEM;
1392 
1393     return 0;
1394 }
1395 
1396 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1397 {
1398     struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1399     int node_idx_inactive = active->node_idx ^ 1;
1400 
1401     return &kvm->__memslots[as_id][node_idx_inactive];
1402 }
1403 
1404 /*
1405  * Helper to get the address space ID when one of memslot pointers may be NULL.
1406  * This also serves as a sanity that at least one of the pointers is non-NULL,
1407  * and that their address space IDs don't diverge.
1408  */
1409 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1410                   struct kvm_memory_slot *b)
1411 {
1412     if (WARN_ON_ONCE(!a && !b))
1413         return 0;
1414 
1415     if (!a)
1416         return b->as_id;
1417     if (!b)
1418         return a->as_id;
1419 
1420     WARN_ON_ONCE(a->as_id != b->as_id);
1421     return a->as_id;
1422 }
1423 
1424 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1425                 struct kvm_memory_slot *slot)
1426 {
1427     struct rb_root *gfn_tree = &slots->gfn_tree;
1428     struct rb_node **node, *parent;
1429     int idx = slots->node_idx;
1430 
1431     parent = NULL;
1432     for (node = &gfn_tree->rb_node; *node; ) {
1433         struct kvm_memory_slot *tmp;
1434 
1435         tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1436         parent = *node;
1437         if (slot->base_gfn < tmp->base_gfn)
1438             node = &(*node)->rb_left;
1439         else if (slot->base_gfn > tmp->base_gfn)
1440             node = &(*node)->rb_right;
1441         else
1442             BUG();
1443     }
1444 
1445     rb_link_node(&slot->gfn_node[idx], parent, node);
1446     rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1447 }
1448 
1449 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1450                    struct kvm_memory_slot *slot)
1451 {
1452     rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1453 }
1454 
1455 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1456                  struct kvm_memory_slot *old,
1457                  struct kvm_memory_slot *new)
1458 {
1459     int idx = slots->node_idx;
1460 
1461     WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1462 
1463     rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1464             &slots->gfn_tree);
1465 }
1466 
1467 /*
1468  * Replace @old with @new in the inactive memslots.
1469  *
1470  * With NULL @old this simply adds @new.
1471  * With NULL @new this simply removes @old.
1472  *
1473  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1474  * appropriately.
1475  */
1476 static void kvm_replace_memslot(struct kvm *kvm,
1477                 struct kvm_memory_slot *old,
1478                 struct kvm_memory_slot *new)
1479 {
1480     int as_id = kvm_memslots_get_as_id(old, new);
1481     struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1482     int idx = slots->node_idx;
1483 
1484     if (old) {
1485         hash_del(&old->id_node[idx]);
1486         interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1487 
1488         if ((long)old == atomic_long_read(&slots->last_used_slot))
1489             atomic_long_set(&slots->last_used_slot, (long)new);
1490 
1491         if (!new) {
1492             kvm_erase_gfn_node(slots, old);
1493             return;
1494         }
1495     }
1496 
1497     /*
1498      * Initialize @new's hva range.  Do this even when replacing an @old
1499      * slot, kvm_copy_memslot() deliberately does not touch node data.
1500      */
1501     new->hva_node[idx].start = new->userspace_addr;
1502     new->hva_node[idx].last = new->userspace_addr +
1503                   (new->npages << PAGE_SHIFT) - 1;
1504 
1505     /*
1506      * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1507      * hva_node needs to be swapped with remove+insert even though hva can't
1508      * change when replacing an existing slot.
1509      */
1510     hash_add(slots->id_hash, &new->id_node[idx], new->id);
1511     interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1512 
1513     /*
1514      * If the memslot gfn is unchanged, rb_replace_node() can be used to
1515      * switch the node in the gfn tree instead of removing the old and
1516      * inserting the new as two separate operations. Replacement is a
1517      * single O(1) operation versus two O(log(n)) operations for
1518      * remove+insert.
1519      */
1520     if (old && old->base_gfn == new->base_gfn) {
1521         kvm_replace_gfn_node(slots, old, new);
1522     } else {
1523         if (old)
1524             kvm_erase_gfn_node(slots, old);
1525         kvm_insert_gfn_node(slots, new);
1526     }
1527 }
1528 
1529 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1530 {
1531     u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1532 
1533 #ifdef __KVM_HAVE_READONLY_MEM
1534     valid_flags |= KVM_MEM_READONLY;
1535 #endif
1536 
1537     if (mem->flags & ~valid_flags)
1538         return -EINVAL;
1539 
1540     return 0;
1541 }
1542 
1543 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1544 {
1545     struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1546 
1547     /* Grab the generation from the activate memslots. */
1548     u64 gen = __kvm_memslots(kvm, as_id)->generation;
1549 
1550     WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1551     slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1552 
1553     /*
1554      * Do not store the new memslots while there are invalidations in
1555      * progress, otherwise the locking in invalidate_range_start and
1556      * invalidate_range_end will be unbalanced.
1557      */
1558     spin_lock(&kvm->mn_invalidate_lock);
1559     prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1560     while (kvm->mn_active_invalidate_count) {
1561         set_current_state(TASK_UNINTERRUPTIBLE);
1562         spin_unlock(&kvm->mn_invalidate_lock);
1563         schedule();
1564         spin_lock(&kvm->mn_invalidate_lock);
1565     }
1566     finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1567     rcu_assign_pointer(kvm->memslots[as_id], slots);
1568     spin_unlock(&kvm->mn_invalidate_lock);
1569 
1570     /*
1571      * Acquired in kvm_set_memslot. Must be released before synchronize
1572      * SRCU below in order to avoid deadlock with another thread
1573      * acquiring the slots_arch_lock in an srcu critical section.
1574      */
1575     mutex_unlock(&kvm->slots_arch_lock);
1576 
1577     synchronize_srcu_expedited(&kvm->srcu);
1578 
1579     /*
1580      * Increment the new memslot generation a second time, dropping the
1581      * update in-progress flag and incrementing the generation based on
1582      * the number of address spaces.  This provides a unique and easily
1583      * identifiable generation number while the memslots are in flux.
1584      */
1585     gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1586 
1587     /*
1588      * Generations must be unique even across address spaces.  We do not need
1589      * a global counter for that, instead the generation space is evenly split
1590      * across address spaces.  For example, with two address spaces, address
1591      * space 0 will use generations 0, 2, 4, ... while address space 1 will
1592      * use generations 1, 3, 5, ...
1593      */
1594     gen += KVM_ADDRESS_SPACE_NUM;
1595 
1596     kvm_arch_memslots_updated(kvm, gen);
1597 
1598     slots->generation = gen;
1599 }
1600 
1601 static int kvm_prepare_memory_region(struct kvm *kvm,
1602                      const struct kvm_memory_slot *old,
1603                      struct kvm_memory_slot *new,
1604                      enum kvm_mr_change change)
1605 {
1606     int r;
1607 
1608     /*
1609      * If dirty logging is disabled, nullify the bitmap; the old bitmap
1610      * will be freed on "commit".  If logging is enabled in both old and
1611      * new, reuse the existing bitmap.  If logging is enabled only in the
1612      * new and KVM isn't using a ring buffer, allocate and initialize a
1613      * new bitmap.
1614      */
1615     if (change != KVM_MR_DELETE) {
1616         if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1617             new->dirty_bitmap = NULL;
1618         else if (old && old->dirty_bitmap)
1619             new->dirty_bitmap = old->dirty_bitmap;
1620         else if (!kvm->dirty_ring_size) {
1621             r = kvm_alloc_dirty_bitmap(new);
1622             if (r)
1623                 return r;
1624 
1625             if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1626                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1627         }
1628     }
1629 
1630     r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1631 
1632     /* Free the bitmap on failure if it was allocated above. */
1633     if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1634         kvm_destroy_dirty_bitmap(new);
1635 
1636     return r;
1637 }
1638 
1639 static void kvm_commit_memory_region(struct kvm *kvm,
1640                      struct kvm_memory_slot *old,
1641                      const struct kvm_memory_slot *new,
1642                      enum kvm_mr_change change)
1643 {
1644     /*
1645      * Update the total number of memslot pages before calling the arch
1646      * hook so that architectures can consume the result directly.
1647      */
1648     if (change == KVM_MR_DELETE)
1649         kvm->nr_memslot_pages -= old->npages;
1650     else if (change == KVM_MR_CREATE)
1651         kvm->nr_memslot_pages += new->npages;
1652 
1653     kvm_arch_commit_memory_region(kvm, old, new, change);
1654 
1655     switch (change) {
1656     case KVM_MR_CREATE:
1657         /* Nothing more to do. */
1658         break;
1659     case KVM_MR_DELETE:
1660         /* Free the old memslot and all its metadata. */
1661         kvm_free_memslot(kvm, old);
1662         break;
1663     case KVM_MR_MOVE:
1664     case KVM_MR_FLAGS_ONLY:
1665         /*
1666          * Free the dirty bitmap as needed; the below check encompasses
1667          * both the flags and whether a ring buffer is being used)
1668          */
1669         if (old->dirty_bitmap && !new->dirty_bitmap)
1670             kvm_destroy_dirty_bitmap(old);
1671 
1672         /*
1673          * The final quirk.  Free the detached, old slot, but only its
1674          * memory, not any metadata.  Metadata, including arch specific
1675          * data, may be reused by @new.
1676          */
1677         kfree(old);
1678         break;
1679     default:
1680         BUG();
1681     }
1682 }
1683 
1684 /*
1685  * Activate @new, which must be installed in the inactive slots by the caller,
1686  * by swapping the active slots and then propagating @new to @old once @old is
1687  * unreachable and can be safely modified.
1688  *
1689  * With NULL @old this simply adds @new to @active (while swapping the sets).
1690  * With NULL @new this simply removes @old from @active and frees it
1691  * (while also swapping the sets).
1692  */
1693 static void kvm_activate_memslot(struct kvm *kvm,
1694                  struct kvm_memory_slot *old,
1695                  struct kvm_memory_slot *new)
1696 {
1697     int as_id = kvm_memslots_get_as_id(old, new);
1698 
1699     kvm_swap_active_memslots(kvm, as_id);
1700 
1701     /* Propagate the new memslot to the now inactive memslots. */
1702     kvm_replace_memslot(kvm, old, new);
1703 }
1704 
1705 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1706                  const struct kvm_memory_slot *src)
1707 {
1708     dest->base_gfn = src->base_gfn;
1709     dest->npages = src->npages;
1710     dest->dirty_bitmap = src->dirty_bitmap;
1711     dest->arch = src->arch;
1712     dest->userspace_addr = src->userspace_addr;
1713     dest->flags = src->flags;
1714     dest->id = src->id;
1715     dest->as_id = src->as_id;
1716 }
1717 
1718 static void kvm_invalidate_memslot(struct kvm *kvm,
1719                    struct kvm_memory_slot *old,
1720                    struct kvm_memory_slot *invalid_slot)
1721 {
1722     /*
1723      * Mark the current slot INVALID.  As with all memslot modifications,
1724      * this must be done on an unreachable slot to avoid modifying the
1725      * current slot in the active tree.
1726      */
1727     kvm_copy_memslot(invalid_slot, old);
1728     invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1729     kvm_replace_memslot(kvm, old, invalid_slot);
1730 
1731     /*
1732      * Activate the slot that is now marked INVALID, but don't propagate
1733      * the slot to the now inactive slots. The slot is either going to be
1734      * deleted or recreated as a new slot.
1735      */
1736     kvm_swap_active_memslots(kvm, old->as_id);
1737 
1738     /*
1739      * From this point no new shadow pages pointing to a deleted, or moved,
1740      * memslot will be created.  Validation of sp->gfn happens in:
1741      *  - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1742      *  - kvm_is_visible_gfn (mmu_check_root)
1743      */
1744     kvm_arch_flush_shadow_memslot(kvm, old);
1745     kvm_arch_guest_memory_reclaimed(kvm);
1746 
1747     /* Was released by kvm_swap_active_memslots, reacquire. */
1748     mutex_lock(&kvm->slots_arch_lock);
1749 
1750     /*
1751      * Copy the arch-specific field of the newly-installed slot back to the
1752      * old slot as the arch data could have changed between releasing
1753      * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1754      * above.  Writers are required to retrieve memslots *after* acquiring
1755      * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1756      */
1757     old->arch = invalid_slot->arch;
1758 }
1759 
1760 static void kvm_create_memslot(struct kvm *kvm,
1761                    struct kvm_memory_slot *new)
1762 {
1763     /* Add the new memslot to the inactive set and activate. */
1764     kvm_replace_memslot(kvm, NULL, new);
1765     kvm_activate_memslot(kvm, NULL, new);
1766 }
1767 
1768 static void kvm_delete_memslot(struct kvm *kvm,
1769                    struct kvm_memory_slot *old,
1770                    struct kvm_memory_slot *invalid_slot)
1771 {
1772     /*
1773      * Remove the old memslot (in the inactive memslots) by passing NULL as
1774      * the "new" slot, and for the invalid version in the active slots.
1775      */
1776     kvm_replace_memslot(kvm, old, NULL);
1777     kvm_activate_memslot(kvm, invalid_slot, NULL);
1778 }
1779 
1780 static void kvm_move_memslot(struct kvm *kvm,
1781                  struct kvm_memory_slot *old,
1782                  struct kvm_memory_slot *new,
1783                  struct kvm_memory_slot *invalid_slot)
1784 {
1785     /*
1786      * Replace the old memslot in the inactive slots, and then swap slots
1787      * and replace the current INVALID with the new as well.
1788      */
1789     kvm_replace_memslot(kvm, old, new);
1790     kvm_activate_memslot(kvm, invalid_slot, new);
1791 }
1792 
1793 static void kvm_update_flags_memslot(struct kvm *kvm,
1794                      struct kvm_memory_slot *old,
1795                      struct kvm_memory_slot *new)
1796 {
1797     /*
1798      * Similar to the MOVE case, but the slot doesn't need to be zapped as
1799      * an intermediate step. Instead, the old memslot is simply replaced
1800      * with a new, updated copy in both memslot sets.
1801      */
1802     kvm_replace_memslot(kvm, old, new);
1803     kvm_activate_memslot(kvm, old, new);
1804 }
1805 
1806 static int kvm_set_memslot(struct kvm *kvm,
1807                struct kvm_memory_slot *old,
1808                struct kvm_memory_slot *new,
1809                enum kvm_mr_change change)
1810 {
1811     struct kvm_memory_slot *invalid_slot;
1812     int r;
1813 
1814     /*
1815      * Released in kvm_swap_active_memslots.
1816      *
1817      * Must be held from before the current memslots are copied until
1818      * after the new memslots are installed with rcu_assign_pointer,
1819      * then released before the synchronize srcu in kvm_swap_active_memslots.
1820      *
1821      * When modifying memslots outside of the slots_lock, must be held
1822      * before reading the pointer to the current memslots until after all
1823      * changes to those memslots are complete.
1824      *
1825      * These rules ensure that installing new memslots does not lose
1826      * changes made to the previous memslots.
1827      */
1828     mutex_lock(&kvm->slots_arch_lock);
1829 
1830     /*
1831      * Invalidate the old slot if it's being deleted or moved.  This is
1832      * done prior to actually deleting/moving the memslot to allow vCPUs to
1833      * continue running by ensuring there are no mappings or shadow pages
1834      * for the memslot when it is deleted/moved.  Without pre-invalidation
1835      * (and without a lock), a window would exist between effecting the
1836      * delete/move and committing the changes in arch code where KVM or a
1837      * guest could access a non-existent memslot.
1838      *
1839      * Modifications are done on a temporary, unreachable slot.  The old
1840      * slot needs to be preserved in case a later step fails and the
1841      * invalidation needs to be reverted.
1842      */
1843     if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1844         invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1845         if (!invalid_slot) {
1846             mutex_unlock(&kvm->slots_arch_lock);
1847             return -ENOMEM;
1848         }
1849         kvm_invalidate_memslot(kvm, old, invalid_slot);
1850     }
1851 
1852     r = kvm_prepare_memory_region(kvm, old, new, change);
1853     if (r) {
1854         /*
1855          * For DELETE/MOVE, revert the above INVALID change.  No
1856          * modifications required since the original slot was preserved
1857          * in the inactive slots.  Changing the active memslots also
1858          * release slots_arch_lock.
1859          */
1860         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1861             kvm_activate_memslot(kvm, invalid_slot, old);
1862             kfree(invalid_slot);
1863         } else {
1864             mutex_unlock(&kvm->slots_arch_lock);
1865         }
1866         return r;
1867     }
1868 
1869     /*
1870      * For DELETE and MOVE, the working slot is now active as the INVALID
1871      * version of the old slot.  MOVE is particularly special as it reuses
1872      * the old slot and returns a copy of the old slot (in working_slot).
1873      * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1874      * old slot is detached but otherwise preserved.
1875      */
1876     if (change == KVM_MR_CREATE)
1877         kvm_create_memslot(kvm, new);
1878     else if (change == KVM_MR_DELETE)
1879         kvm_delete_memslot(kvm, old, invalid_slot);
1880     else if (change == KVM_MR_MOVE)
1881         kvm_move_memslot(kvm, old, new, invalid_slot);
1882     else if (change == KVM_MR_FLAGS_ONLY)
1883         kvm_update_flags_memslot(kvm, old, new);
1884     else
1885         BUG();
1886 
1887     /* Free the temporary INVALID slot used for DELETE and MOVE. */
1888     if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1889         kfree(invalid_slot);
1890 
1891     /*
1892      * No need to refresh new->arch, changes after dropping slots_arch_lock
1893      * will directly hit the final, active memslot.  Architectures are
1894      * responsible for knowing that new->arch may be stale.
1895      */
1896     kvm_commit_memory_region(kvm, old, new, change);
1897 
1898     return 0;
1899 }
1900 
1901 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1902                       gfn_t start, gfn_t end)
1903 {
1904     struct kvm_memslot_iter iter;
1905 
1906     kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1907         if (iter.slot->id != id)
1908             return true;
1909     }
1910 
1911     return false;
1912 }
1913 
1914 /*
1915  * Allocate some memory and give it an address in the guest physical address
1916  * space.
1917  *
1918  * Discontiguous memory is allowed, mostly for framebuffers.
1919  *
1920  * Must be called holding kvm->slots_lock for write.
1921  */
1922 int __kvm_set_memory_region(struct kvm *kvm,
1923                 const struct kvm_userspace_memory_region *mem)
1924 {
1925     struct kvm_memory_slot *old, *new;
1926     struct kvm_memslots *slots;
1927     enum kvm_mr_change change;
1928     unsigned long npages;
1929     gfn_t base_gfn;
1930     int as_id, id;
1931     int r;
1932 
1933     r = check_memory_region_flags(mem);
1934     if (r)
1935         return r;
1936 
1937     as_id = mem->slot >> 16;
1938     id = (u16)mem->slot;
1939 
1940     /* General sanity checks */
1941     if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1942         (mem->memory_size != (unsigned long)mem->memory_size))
1943         return -EINVAL;
1944     if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1945         return -EINVAL;
1946     /* We can read the guest memory with __xxx_user() later on. */
1947     if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1948         (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1949          !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1950             mem->memory_size))
1951         return -EINVAL;
1952     if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1953         return -EINVAL;
1954     if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1955         return -EINVAL;
1956     if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1957         return -EINVAL;
1958 
1959     slots = __kvm_memslots(kvm, as_id);
1960 
1961     /*
1962      * Note, the old memslot (and the pointer itself!) may be invalidated
1963      * and/or destroyed by kvm_set_memslot().
1964      */
1965     old = id_to_memslot(slots, id);
1966 
1967     if (!mem->memory_size) {
1968         if (!old || !old->npages)
1969             return -EINVAL;
1970 
1971         if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1972             return -EIO;
1973 
1974         return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1975     }
1976 
1977     base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1978     npages = (mem->memory_size >> PAGE_SHIFT);
1979 
1980     if (!old || !old->npages) {
1981         change = KVM_MR_CREATE;
1982 
1983         /*
1984          * To simplify KVM internals, the total number of pages across
1985          * all memslots must fit in an unsigned long.
1986          */
1987         if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1988             return -EINVAL;
1989     } else { /* Modify an existing slot. */
1990         if ((mem->userspace_addr != old->userspace_addr) ||
1991             (npages != old->npages) ||
1992             ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1993             return -EINVAL;
1994 
1995         if (base_gfn != old->base_gfn)
1996             change = KVM_MR_MOVE;
1997         else if (mem->flags != old->flags)
1998             change = KVM_MR_FLAGS_ONLY;
1999         else /* Nothing to change. */
2000             return 0;
2001     }
2002 
2003     if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2004         kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2005         return -EEXIST;
2006 
2007     /* Allocate a slot that will persist in the memslot. */
2008     new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2009     if (!new)
2010         return -ENOMEM;
2011 
2012     new->as_id = as_id;
2013     new->id = id;
2014     new->base_gfn = base_gfn;
2015     new->npages = npages;
2016     new->flags = mem->flags;
2017     new->userspace_addr = mem->userspace_addr;
2018 
2019     r = kvm_set_memslot(kvm, old, new, change);
2020     if (r)
2021         kfree(new);
2022     return r;
2023 }
2024 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2025 
2026 int kvm_set_memory_region(struct kvm *kvm,
2027               const struct kvm_userspace_memory_region *mem)
2028 {
2029     int r;
2030 
2031     mutex_lock(&kvm->slots_lock);
2032     r = __kvm_set_memory_region(kvm, mem);
2033     mutex_unlock(&kvm->slots_lock);
2034     return r;
2035 }
2036 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2037 
2038 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2039                       struct kvm_userspace_memory_region *mem)
2040 {
2041     if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2042         return -EINVAL;
2043 
2044     return kvm_set_memory_region(kvm, mem);
2045 }
2046 
2047 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2048 /**
2049  * kvm_get_dirty_log - get a snapshot of dirty pages
2050  * @kvm:    pointer to kvm instance
2051  * @log:    slot id and address to which we copy the log
2052  * @is_dirty:   set to '1' if any dirty pages were found
2053  * @memslot:    set to the associated memslot, always valid on success
2054  */
2055 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2056               int *is_dirty, struct kvm_memory_slot **memslot)
2057 {
2058     struct kvm_memslots *slots;
2059     int i, as_id, id;
2060     unsigned long n;
2061     unsigned long any = 0;
2062 
2063     /* Dirty ring tracking is exclusive to dirty log tracking */
2064     if (kvm->dirty_ring_size)
2065         return -ENXIO;
2066 
2067     *memslot = NULL;
2068     *is_dirty = 0;
2069 
2070     as_id = log->slot >> 16;
2071     id = (u16)log->slot;
2072     if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2073         return -EINVAL;
2074 
2075     slots = __kvm_memslots(kvm, as_id);
2076     *memslot = id_to_memslot(slots, id);
2077     if (!(*memslot) || !(*memslot)->dirty_bitmap)
2078         return -ENOENT;
2079 
2080     kvm_arch_sync_dirty_log(kvm, *memslot);
2081 
2082     n = kvm_dirty_bitmap_bytes(*memslot);
2083 
2084     for (i = 0; !any && i < n/sizeof(long); ++i)
2085         any = (*memslot)->dirty_bitmap[i];
2086 
2087     if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2088         return -EFAULT;
2089 
2090     if (any)
2091         *is_dirty = 1;
2092     return 0;
2093 }
2094 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2095 
2096 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2097 /**
2098  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2099  *  and reenable dirty page tracking for the corresponding pages.
2100  * @kvm:    pointer to kvm instance
2101  * @log:    slot id and address to which we copy the log
2102  *
2103  * We need to keep it in mind that VCPU threads can write to the bitmap
2104  * concurrently. So, to avoid losing track of dirty pages we keep the
2105  * following order:
2106  *
2107  *    1. Take a snapshot of the bit and clear it if needed.
2108  *    2. Write protect the corresponding page.
2109  *    3. Copy the snapshot to the userspace.
2110  *    4. Upon return caller flushes TLB's if needed.
2111  *
2112  * Between 2 and 4, the guest may write to the page using the remaining TLB
2113  * entry.  This is not a problem because the page is reported dirty using
2114  * the snapshot taken before and step 4 ensures that writes done after
2115  * exiting to userspace will be logged for the next call.
2116  *
2117  */
2118 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2119 {
2120     struct kvm_memslots *slots;
2121     struct kvm_memory_slot *memslot;
2122     int i, as_id, id;
2123     unsigned long n;
2124     unsigned long *dirty_bitmap;
2125     unsigned long *dirty_bitmap_buffer;
2126     bool flush;
2127 
2128     /* Dirty ring tracking is exclusive to dirty log tracking */
2129     if (kvm->dirty_ring_size)
2130         return -ENXIO;
2131 
2132     as_id = log->slot >> 16;
2133     id = (u16)log->slot;
2134     if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2135         return -EINVAL;
2136 
2137     slots = __kvm_memslots(kvm, as_id);
2138     memslot = id_to_memslot(slots, id);
2139     if (!memslot || !memslot->dirty_bitmap)
2140         return -ENOENT;
2141 
2142     dirty_bitmap = memslot->dirty_bitmap;
2143 
2144     kvm_arch_sync_dirty_log(kvm, memslot);
2145 
2146     n = kvm_dirty_bitmap_bytes(memslot);
2147     flush = false;
2148     if (kvm->manual_dirty_log_protect) {
2149         /*
2150          * Unlike kvm_get_dirty_log, we always return false in *flush,
2151          * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2152          * is some code duplication between this function and
2153          * kvm_get_dirty_log, but hopefully all architecture
2154          * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2155          * can be eliminated.
2156          */
2157         dirty_bitmap_buffer = dirty_bitmap;
2158     } else {
2159         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2160         memset(dirty_bitmap_buffer, 0, n);
2161 
2162         KVM_MMU_LOCK(kvm);
2163         for (i = 0; i < n / sizeof(long); i++) {
2164             unsigned long mask;
2165             gfn_t offset;
2166 
2167             if (!dirty_bitmap[i])
2168                 continue;
2169 
2170             flush = true;
2171             mask = xchg(&dirty_bitmap[i], 0);
2172             dirty_bitmap_buffer[i] = mask;
2173 
2174             offset = i * BITS_PER_LONG;
2175             kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2176                                 offset, mask);
2177         }
2178         KVM_MMU_UNLOCK(kvm);
2179     }
2180 
2181     if (flush)
2182         kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2183 
2184     if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2185         return -EFAULT;
2186     return 0;
2187 }
2188 
2189 
2190 /**
2191  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2192  * @kvm: kvm instance
2193  * @log: slot id and address to which we copy the log
2194  *
2195  * Steps 1-4 below provide general overview of dirty page logging. See
2196  * kvm_get_dirty_log_protect() function description for additional details.
2197  *
2198  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2199  * always flush the TLB (step 4) even if previous step failed  and the dirty
2200  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2201  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2202  * writes will be marked dirty for next log read.
2203  *
2204  *   1. Take a snapshot of the bit and clear it if needed.
2205  *   2. Write protect the corresponding page.
2206  *   3. Copy the snapshot to the userspace.
2207  *   4. Flush TLB's if needed.
2208  */
2209 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2210                       struct kvm_dirty_log *log)
2211 {
2212     int r;
2213 
2214     mutex_lock(&kvm->slots_lock);
2215 
2216     r = kvm_get_dirty_log_protect(kvm, log);
2217 
2218     mutex_unlock(&kvm->slots_lock);
2219     return r;
2220 }
2221 
2222 /**
2223  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2224  *  and reenable dirty page tracking for the corresponding pages.
2225  * @kvm:    pointer to kvm instance
2226  * @log:    slot id and address from which to fetch the bitmap of dirty pages
2227  */
2228 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2229                        struct kvm_clear_dirty_log *log)
2230 {
2231     struct kvm_memslots *slots;
2232     struct kvm_memory_slot *memslot;
2233     int as_id, id;
2234     gfn_t offset;
2235     unsigned long i, n;
2236     unsigned long *dirty_bitmap;
2237     unsigned long *dirty_bitmap_buffer;
2238     bool flush;
2239 
2240     /* Dirty ring tracking is exclusive to dirty log tracking */
2241     if (kvm->dirty_ring_size)
2242         return -ENXIO;
2243 
2244     as_id = log->slot >> 16;
2245     id = (u16)log->slot;
2246     if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2247         return -EINVAL;
2248 
2249     if (log->first_page & 63)
2250         return -EINVAL;
2251 
2252     slots = __kvm_memslots(kvm, as_id);
2253     memslot = id_to_memslot(slots, id);
2254     if (!memslot || !memslot->dirty_bitmap)
2255         return -ENOENT;
2256 
2257     dirty_bitmap = memslot->dirty_bitmap;
2258 
2259     n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2260 
2261     if (log->first_page > memslot->npages ||
2262         log->num_pages > memslot->npages - log->first_page ||
2263         (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2264         return -EINVAL;
2265 
2266     kvm_arch_sync_dirty_log(kvm, memslot);
2267 
2268     flush = false;
2269     dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2270     if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2271         return -EFAULT;
2272 
2273     KVM_MMU_LOCK(kvm);
2274     for (offset = log->first_page, i = offset / BITS_PER_LONG,
2275          n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2276          i++, offset += BITS_PER_LONG) {
2277         unsigned long mask = *dirty_bitmap_buffer++;
2278         atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2279         if (!mask)
2280             continue;
2281 
2282         mask &= atomic_long_fetch_andnot(mask, p);
2283 
2284         /*
2285          * mask contains the bits that really have been cleared.  This
2286          * never includes any bits beyond the length of the memslot (if
2287          * the length is not aligned to 64 pages), therefore it is not
2288          * a problem if userspace sets them in log->dirty_bitmap.
2289         */
2290         if (mask) {
2291             flush = true;
2292             kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2293                                 offset, mask);
2294         }
2295     }
2296     KVM_MMU_UNLOCK(kvm);
2297 
2298     if (flush)
2299         kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2300 
2301     return 0;
2302 }
2303 
2304 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2305                     struct kvm_clear_dirty_log *log)
2306 {
2307     int r;
2308 
2309     mutex_lock(&kvm->slots_lock);
2310 
2311     r = kvm_clear_dirty_log_protect(kvm, log);
2312 
2313     mutex_unlock(&kvm->slots_lock);
2314     return r;
2315 }
2316 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2317 
2318 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2319 {
2320     return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2321 }
2322 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2323 
2324 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2325 {
2326     struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2327     u64 gen = slots->generation;
2328     struct kvm_memory_slot *slot;
2329 
2330     /*
2331      * This also protects against using a memslot from a different address space,
2332      * since different address spaces have different generation numbers.
2333      */
2334     if (unlikely(gen != vcpu->last_used_slot_gen)) {
2335         vcpu->last_used_slot = NULL;
2336         vcpu->last_used_slot_gen = gen;
2337     }
2338 
2339     slot = try_get_memslot(vcpu->last_used_slot, gfn);
2340     if (slot)
2341         return slot;
2342 
2343     /*
2344      * Fall back to searching all memslots. We purposely use
2345      * search_memslots() instead of __gfn_to_memslot() to avoid
2346      * thrashing the VM-wide last_used_slot in kvm_memslots.
2347      */
2348     slot = search_memslots(slots, gfn, false);
2349     if (slot) {
2350         vcpu->last_used_slot = slot;
2351         return slot;
2352     }
2353 
2354     return NULL;
2355 }
2356 
2357 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2358 {
2359     struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2360 
2361     return kvm_is_visible_memslot(memslot);
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2364 
2365 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2366 {
2367     struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2368 
2369     return kvm_is_visible_memslot(memslot);
2370 }
2371 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2372 
2373 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2374 {
2375     struct vm_area_struct *vma;
2376     unsigned long addr, size;
2377 
2378     size = PAGE_SIZE;
2379 
2380     addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2381     if (kvm_is_error_hva(addr))
2382         return PAGE_SIZE;
2383 
2384     mmap_read_lock(current->mm);
2385     vma = find_vma(current->mm, addr);
2386     if (!vma)
2387         goto out;
2388 
2389     size = vma_kernel_pagesize(vma);
2390 
2391 out:
2392     mmap_read_unlock(current->mm);
2393 
2394     return size;
2395 }
2396 
2397 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2398 {
2399     return slot->flags & KVM_MEM_READONLY;
2400 }
2401 
2402 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2403                        gfn_t *nr_pages, bool write)
2404 {
2405     if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2406         return KVM_HVA_ERR_BAD;
2407 
2408     if (memslot_is_readonly(slot) && write)
2409         return KVM_HVA_ERR_RO_BAD;
2410 
2411     if (nr_pages)
2412         *nr_pages = slot->npages - (gfn - slot->base_gfn);
2413 
2414     return __gfn_to_hva_memslot(slot, gfn);
2415 }
2416 
2417 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2418                      gfn_t *nr_pages)
2419 {
2420     return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2421 }
2422 
2423 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2424                     gfn_t gfn)
2425 {
2426     return gfn_to_hva_many(slot, gfn, NULL);
2427 }
2428 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2429 
2430 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2431 {
2432     return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2433 }
2434 EXPORT_SYMBOL_GPL(gfn_to_hva);
2435 
2436 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2437 {
2438     return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2439 }
2440 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2441 
2442 /*
2443  * Return the hva of a @gfn and the R/W attribute if possible.
2444  *
2445  * @slot: the kvm_memory_slot which contains @gfn
2446  * @gfn: the gfn to be translated
2447  * @writable: used to return the read/write attribute of the @slot if the hva
2448  * is valid and @writable is not NULL
2449  */
2450 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2451                       gfn_t gfn, bool *writable)
2452 {
2453     unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2454 
2455     if (!kvm_is_error_hva(hva) && writable)
2456         *writable = !memslot_is_readonly(slot);
2457 
2458     return hva;
2459 }
2460 
2461 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2462 {
2463     struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2464 
2465     return gfn_to_hva_memslot_prot(slot, gfn, writable);
2466 }
2467 
2468 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2469 {
2470     struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2471 
2472     return gfn_to_hva_memslot_prot(slot, gfn, writable);
2473 }
2474 
2475 static inline int check_user_page_hwpoison(unsigned long addr)
2476 {
2477     int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2478 
2479     rc = get_user_pages(addr, 1, flags, NULL, NULL);
2480     return rc == -EHWPOISON;
2481 }
2482 
2483 /*
2484  * The fast path to get the writable pfn which will be stored in @pfn,
2485  * true indicates success, otherwise false is returned.  It's also the
2486  * only part that runs if we can in atomic context.
2487  */
2488 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2489                 bool *writable, kvm_pfn_t *pfn)
2490 {
2491     struct page *page[1];
2492 
2493     /*
2494      * Fast pin a writable pfn only if it is a write fault request
2495      * or the caller allows to map a writable pfn for a read fault
2496      * request.
2497      */
2498     if (!(write_fault || writable))
2499         return false;
2500 
2501     if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2502         *pfn = page_to_pfn(page[0]);
2503 
2504         if (writable)
2505             *writable = true;
2506         return true;
2507     }
2508 
2509     return false;
2510 }
2511 
2512 /*
2513  * The slow path to get the pfn of the specified host virtual address,
2514  * 1 indicates success, -errno is returned if error is detected.
2515  */
2516 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2517                bool *writable, kvm_pfn_t *pfn)
2518 {
2519     unsigned int flags = FOLL_HWPOISON;
2520     struct page *page;
2521     int npages;
2522 
2523     might_sleep();
2524 
2525     if (writable)
2526         *writable = write_fault;
2527 
2528     if (write_fault)
2529         flags |= FOLL_WRITE;
2530     if (async)
2531         flags |= FOLL_NOWAIT;
2532 
2533     npages = get_user_pages_unlocked(addr, 1, &page, flags);
2534     if (npages != 1)
2535         return npages;
2536 
2537     /* map read fault as writable if possible */
2538     if (unlikely(!write_fault) && writable) {
2539         struct page *wpage;
2540 
2541         if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2542             *writable = true;
2543             put_page(page);
2544             page = wpage;
2545         }
2546     }
2547     *pfn = page_to_pfn(page);
2548     return npages;
2549 }
2550 
2551 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2552 {
2553     if (unlikely(!(vma->vm_flags & VM_READ)))
2554         return false;
2555 
2556     if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2557         return false;
2558 
2559     return true;
2560 }
2561 
2562 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2563 {
2564     struct page *page = kvm_pfn_to_refcounted_page(pfn);
2565 
2566     if (!page)
2567         return 1;
2568 
2569     return get_page_unless_zero(page);
2570 }
2571 
2572 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2573                    unsigned long addr, bool write_fault,
2574                    bool *writable, kvm_pfn_t *p_pfn)
2575 {
2576     kvm_pfn_t pfn;
2577     pte_t *ptep;
2578     spinlock_t *ptl;
2579     int r;
2580 
2581     r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2582     if (r) {
2583         /*
2584          * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2585          * not call the fault handler, so do it here.
2586          */
2587         bool unlocked = false;
2588         r = fixup_user_fault(current->mm, addr,
2589                      (write_fault ? FAULT_FLAG_WRITE : 0),
2590                      &unlocked);
2591         if (unlocked)
2592             return -EAGAIN;
2593         if (r)
2594             return r;
2595 
2596         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2597         if (r)
2598             return r;
2599     }
2600 
2601     if (write_fault && !pte_write(*ptep)) {
2602         pfn = KVM_PFN_ERR_RO_FAULT;
2603         goto out;
2604     }
2605 
2606     if (writable)
2607         *writable = pte_write(*ptep);
2608     pfn = pte_pfn(*ptep);
2609 
2610     /*
2611      * Get a reference here because callers of *hva_to_pfn* and
2612      * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2613      * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2614      * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2615      * simply do nothing for reserved pfns.
2616      *
2617      * Whoever called remap_pfn_range is also going to call e.g.
2618      * unmap_mapping_range before the underlying pages are freed,
2619      * causing a call to our MMU notifier.
2620      *
2621      * Certain IO or PFNMAP mappings can be backed with valid
2622      * struct pages, but be allocated without refcounting e.g.,
2623      * tail pages of non-compound higher order allocations, which
2624      * would then underflow the refcount when the caller does the
2625      * required put_page. Don't allow those pages here.
2626      */ 
2627     if (!kvm_try_get_pfn(pfn))
2628         r = -EFAULT;
2629 
2630 out:
2631     pte_unmap_unlock(ptep, ptl);
2632     *p_pfn = pfn;
2633 
2634     return r;
2635 }
2636 
2637 /*
2638  * Pin guest page in memory and return its pfn.
2639  * @addr: host virtual address which maps memory to the guest
2640  * @atomic: whether this function can sleep
2641  * @async: whether this function need to wait IO complete if the
2642  *         host page is not in the memory
2643  * @write_fault: whether we should get a writable host page
2644  * @writable: whether it allows to map a writable host page for !@write_fault
2645  *
2646  * The function will map a writable host page for these two cases:
2647  * 1): @write_fault = true
2648  * 2): @write_fault = false && @writable, @writable will tell the caller
2649  *     whether the mapping is writable.
2650  */
2651 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2652              bool write_fault, bool *writable)
2653 {
2654     struct vm_area_struct *vma;
2655     kvm_pfn_t pfn;
2656     int npages, r;
2657 
2658     /* we can do it either atomically or asynchronously, not both */
2659     BUG_ON(atomic && async);
2660 
2661     if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2662         return pfn;
2663 
2664     if (atomic)
2665         return KVM_PFN_ERR_FAULT;
2666 
2667     npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2668     if (npages == 1)
2669         return pfn;
2670 
2671     mmap_read_lock(current->mm);
2672     if (npages == -EHWPOISON ||
2673           (!async && check_user_page_hwpoison(addr))) {
2674         pfn = KVM_PFN_ERR_HWPOISON;
2675         goto exit;
2676     }
2677 
2678 retry:
2679     vma = vma_lookup(current->mm, addr);
2680 
2681     if (vma == NULL)
2682         pfn = KVM_PFN_ERR_FAULT;
2683     else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2684         r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2685         if (r == -EAGAIN)
2686             goto retry;
2687         if (r < 0)
2688             pfn = KVM_PFN_ERR_FAULT;
2689     } else {
2690         if (async && vma_is_valid(vma, write_fault))
2691             *async = true;
2692         pfn = KVM_PFN_ERR_FAULT;
2693     }
2694 exit:
2695     mmap_read_unlock(current->mm);
2696     return pfn;
2697 }
2698 
2699 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2700                    bool atomic, bool *async, bool write_fault,
2701                    bool *writable, hva_t *hva)
2702 {
2703     unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2704 
2705     if (hva)
2706         *hva = addr;
2707 
2708     if (addr == KVM_HVA_ERR_RO_BAD) {
2709         if (writable)
2710             *writable = false;
2711         return KVM_PFN_ERR_RO_FAULT;
2712     }
2713 
2714     if (kvm_is_error_hva(addr)) {
2715         if (writable)
2716             *writable = false;
2717         return KVM_PFN_NOSLOT;
2718     }
2719 
2720     /* Do not map writable pfn in the readonly memslot. */
2721     if (writable && memslot_is_readonly(slot)) {
2722         *writable = false;
2723         writable = NULL;
2724     }
2725 
2726     return hva_to_pfn(addr, atomic, async, write_fault,
2727               writable);
2728 }
2729 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2730 
2731 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2732               bool *writable)
2733 {
2734     return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2735                     write_fault, writable, NULL);
2736 }
2737 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2738 
2739 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2740 {
2741     return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2742 }
2743 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2744 
2745 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2746 {
2747     return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2748 }
2749 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2750 
2751 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2752 {
2753     return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2754 }
2755 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2756 
2757 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2758 {
2759     return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2760 }
2761 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2762 
2763 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2764 {
2765     return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2766 }
2767 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2768 
2769 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2770                 struct page **pages, int nr_pages)
2771 {
2772     unsigned long addr;
2773     gfn_t entry = 0;
2774 
2775     addr = gfn_to_hva_many(slot, gfn, &entry);
2776     if (kvm_is_error_hva(addr))
2777         return -1;
2778 
2779     if (entry < nr_pages)
2780         return 0;
2781 
2782     return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2783 }
2784 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2785 
2786 /*
2787  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2788  * backed by 'struct page'.  A valid example is if the backing memslot is
2789  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2790  * been elevated by gfn_to_pfn().
2791  */
2792 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2793 {
2794     struct page *page;
2795     kvm_pfn_t pfn;
2796 
2797     pfn = gfn_to_pfn(kvm, gfn);
2798 
2799     if (is_error_noslot_pfn(pfn))
2800         return KVM_ERR_PTR_BAD_PAGE;
2801 
2802     page = kvm_pfn_to_refcounted_page(pfn);
2803     if (!page)
2804         return KVM_ERR_PTR_BAD_PAGE;
2805 
2806     return page;
2807 }
2808 EXPORT_SYMBOL_GPL(gfn_to_page);
2809 
2810 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2811 {
2812     if (dirty)
2813         kvm_release_pfn_dirty(pfn);
2814     else
2815         kvm_release_pfn_clean(pfn);
2816 }
2817 
2818 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2819 {
2820     kvm_pfn_t pfn;
2821     void *hva = NULL;
2822     struct page *page = KVM_UNMAPPED_PAGE;
2823 
2824     if (!map)
2825         return -EINVAL;
2826 
2827     pfn = gfn_to_pfn(vcpu->kvm, gfn);
2828     if (is_error_noslot_pfn(pfn))
2829         return -EINVAL;
2830 
2831     if (pfn_valid(pfn)) {
2832         page = pfn_to_page(pfn);
2833         hva = kmap(page);
2834 #ifdef CONFIG_HAS_IOMEM
2835     } else {
2836         hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2837 #endif
2838     }
2839 
2840     if (!hva)
2841         return -EFAULT;
2842 
2843     map->page = page;
2844     map->hva = hva;
2845     map->pfn = pfn;
2846     map->gfn = gfn;
2847 
2848     return 0;
2849 }
2850 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2851 
2852 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2853 {
2854     if (!map)
2855         return;
2856 
2857     if (!map->hva)
2858         return;
2859 
2860     if (map->page != KVM_UNMAPPED_PAGE)
2861         kunmap(map->page);
2862 #ifdef CONFIG_HAS_IOMEM
2863     else
2864         memunmap(map->hva);
2865 #endif
2866 
2867     if (dirty)
2868         kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2869 
2870     kvm_release_pfn(map->pfn, dirty);
2871 
2872     map->hva = NULL;
2873     map->page = NULL;
2874 }
2875 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2876 
2877 static bool kvm_is_ad_tracked_page(struct page *page)
2878 {
2879     /*
2880      * Per page-flags.h, pages tagged PG_reserved "should in general not be
2881      * touched (e.g. set dirty) except by its owner".
2882      */
2883     return !PageReserved(page);
2884 }
2885 
2886 static void kvm_set_page_dirty(struct page *page)
2887 {
2888     if (kvm_is_ad_tracked_page(page))
2889         SetPageDirty(page);
2890 }
2891 
2892 static void kvm_set_page_accessed(struct page *page)
2893 {
2894     if (kvm_is_ad_tracked_page(page))
2895         mark_page_accessed(page);
2896 }
2897 
2898 void kvm_release_page_clean(struct page *page)
2899 {
2900     WARN_ON(is_error_page(page));
2901 
2902     kvm_set_page_accessed(page);
2903     put_page(page);
2904 }
2905 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2906 
2907 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2908 {
2909     struct page *page;
2910 
2911     if (is_error_noslot_pfn(pfn))
2912         return;
2913 
2914     page = kvm_pfn_to_refcounted_page(pfn);
2915     if (!page)
2916         return;
2917 
2918     kvm_release_page_clean(page);
2919 }
2920 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2921 
2922 void kvm_release_page_dirty(struct page *page)
2923 {
2924     WARN_ON(is_error_page(page));
2925 
2926     kvm_set_page_dirty(page);
2927     kvm_release_page_clean(page);
2928 }
2929 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2930 
2931 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2932 {
2933     struct page *page;
2934 
2935     if (is_error_noslot_pfn(pfn))
2936         return;
2937 
2938     page = kvm_pfn_to_refcounted_page(pfn);
2939     if (!page)
2940         return;
2941 
2942     kvm_release_page_dirty(page);
2943 }
2944 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2945 
2946 /*
2947  * Note, checking for an error/noslot pfn is the caller's responsibility when
2948  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2949  * "set" helpers are not to be used when the pfn might point at garbage.
2950  */
2951 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2952 {
2953     if (WARN_ON(is_error_noslot_pfn(pfn)))
2954         return;
2955 
2956     if (pfn_valid(pfn))
2957         kvm_set_page_dirty(pfn_to_page(pfn));
2958 }
2959 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2960 
2961 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2962 {
2963     if (WARN_ON(is_error_noslot_pfn(pfn)))
2964         return;
2965 
2966     if (pfn_valid(pfn))
2967         kvm_set_page_accessed(pfn_to_page(pfn));
2968 }
2969 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2970 
2971 static int next_segment(unsigned long len, int offset)
2972 {
2973     if (len > PAGE_SIZE - offset)
2974         return PAGE_SIZE - offset;
2975     else
2976         return len;
2977 }
2978 
2979 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2980                  void *data, int offset, int len)
2981 {
2982     int r;
2983     unsigned long addr;
2984 
2985     addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2986     if (kvm_is_error_hva(addr))
2987         return -EFAULT;
2988     r = __copy_from_user(data, (void __user *)addr + offset, len);
2989     if (r)
2990         return -EFAULT;
2991     return 0;
2992 }
2993 
2994 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2995             int len)
2996 {
2997     struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2998 
2999     return __kvm_read_guest_page(slot, gfn, data, offset, len);
3000 }
3001 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3002 
3003 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3004                  int offset, int len)
3005 {
3006     struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3007 
3008     return __kvm_read_guest_page(slot, gfn, data, offset, len);
3009 }
3010 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3011 
3012 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3013 {
3014     gfn_t gfn = gpa >> PAGE_SHIFT;
3015     int seg;
3016     int offset = offset_in_page(gpa);
3017     int ret;
3018 
3019     while ((seg = next_segment(len, offset)) != 0) {
3020         ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3021         if (ret < 0)
3022             return ret;
3023         offset = 0;
3024         len -= seg;
3025         data += seg;
3026         ++gfn;
3027     }
3028     return 0;
3029 }
3030 EXPORT_SYMBOL_GPL(kvm_read_guest);
3031 
3032 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3033 {
3034     gfn_t gfn = gpa >> PAGE_SHIFT;
3035     int seg;
3036     int offset = offset_in_page(gpa);
3037     int ret;
3038 
3039     while ((seg = next_segment(len, offset)) != 0) {
3040         ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3041         if (ret < 0)
3042             return ret;
3043         offset = 0;
3044         len -= seg;
3045         data += seg;
3046         ++gfn;
3047     }
3048     return 0;
3049 }
3050 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3051 
3052 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3053                        void *data, int offset, unsigned long len)
3054 {
3055     int r;
3056     unsigned long addr;
3057 
3058     addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3059     if (kvm_is_error_hva(addr))
3060         return -EFAULT;
3061     pagefault_disable();
3062     r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3063     pagefault_enable();
3064     if (r)
3065         return -EFAULT;
3066     return 0;
3067 }
3068 
3069 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3070                    void *data, unsigned long len)
3071 {
3072     gfn_t gfn = gpa >> PAGE_SHIFT;
3073     struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3074     int offset = offset_in_page(gpa);
3075 
3076     return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3077 }
3078 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3079 
3080 static int __kvm_write_guest_page(struct kvm *kvm,
3081                   struct kvm_memory_slot *memslot, gfn_t gfn,
3082                       const void *data, int offset, int len)
3083 {
3084     int r;
3085     unsigned long addr;
3086 
3087     addr = gfn_to_hva_memslot(memslot, gfn);
3088     if (kvm_is_error_hva(addr))
3089         return -EFAULT;
3090     r = __copy_to_user((void __user *)addr + offset, data, len);
3091     if (r)
3092         return -EFAULT;
3093     mark_page_dirty_in_slot(kvm, memslot, gfn);
3094     return 0;
3095 }
3096 
3097 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3098              const void *data, int offset, int len)
3099 {
3100     struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3101 
3102     return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3103 }
3104 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3105 
3106 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3107                   const void *data, int offset, int len)
3108 {
3109     struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3110 
3111     return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3112 }
3113 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3114 
3115 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3116             unsigned long len)
3117 {
3118     gfn_t gfn = gpa >> PAGE_SHIFT;
3119     int seg;
3120     int offset = offset_in_page(gpa);
3121     int ret;
3122 
3123     while ((seg = next_segment(len, offset)) != 0) {
3124         ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3125         if (ret < 0)
3126             return ret;
3127         offset = 0;
3128         len -= seg;
3129         data += seg;
3130         ++gfn;
3131     }
3132     return 0;
3133 }
3134 EXPORT_SYMBOL_GPL(kvm_write_guest);
3135 
3136 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3137                  unsigned long len)
3138 {
3139     gfn_t gfn = gpa >> PAGE_SHIFT;
3140     int seg;
3141     int offset = offset_in_page(gpa);
3142     int ret;
3143 
3144     while ((seg = next_segment(len, offset)) != 0) {
3145         ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3146         if (ret < 0)
3147             return ret;
3148         offset = 0;
3149         len -= seg;
3150         data += seg;
3151         ++gfn;
3152     }
3153     return 0;
3154 }
3155 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3156 
3157 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3158                        struct gfn_to_hva_cache *ghc,
3159                        gpa_t gpa, unsigned long len)
3160 {
3161     int offset = offset_in_page(gpa);
3162     gfn_t start_gfn = gpa >> PAGE_SHIFT;
3163     gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3164     gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3165     gfn_t nr_pages_avail;
3166 
3167     /* Update ghc->generation before performing any error checks. */
3168     ghc->generation = slots->generation;
3169 
3170     if (start_gfn > end_gfn) {
3171         ghc->hva = KVM_HVA_ERR_BAD;
3172         return -EINVAL;
3173     }
3174 
3175     /*
3176      * If the requested region crosses two memslots, we still
3177      * verify that the entire region is valid here.
3178      */
3179     for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3180         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3181         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3182                        &nr_pages_avail);
3183         if (kvm_is_error_hva(ghc->hva))
3184             return -EFAULT;
3185     }
3186 
3187     /* Use the slow path for cross page reads and writes. */
3188     if (nr_pages_needed == 1)
3189         ghc->hva += offset;
3190     else
3191         ghc->memslot = NULL;
3192 
3193     ghc->gpa = gpa;
3194     ghc->len = len;
3195     return 0;
3196 }
3197 
3198 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3199                   gpa_t gpa, unsigned long len)
3200 {
3201     struct kvm_memslots *slots = kvm_memslots(kvm);
3202     return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3203 }
3204 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3205 
3206 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3207                   void *data, unsigned int offset,
3208                   unsigned long len)
3209 {
3210     struct kvm_memslots *slots = kvm_memslots(kvm);
3211     int r;
3212     gpa_t gpa = ghc->gpa + offset;
3213 
3214     if (WARN_ON_ONCE(len + offset > ghc->len))
3215         return -EINVAL;
3216 
3217     if (slots->generation != ghc->generation) {
3218         if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3219             return -EFAULT;
3220     }
3221 
3222     if (kvm_is_error_hva(ghc->hva))
3223         return -EFAULT;
3224 
3225     if (unlikely(!ghc->memslot))
3226         return kvm_write_guest(kvm, gpa, data, len);
3227 
3228     r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3229     if (r)
3230         return -EFAULT;
3231     mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3232 
3233     return 0;
3234 }
3235 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3236 
3237 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3238                void *data, unsigned long len)
3239 {
3240     return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3241 }
3242 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3243 
3244 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3245                  void *data, unsigned int offset,
3246                  unsigned long len)
3247 {
3248     struct kvm_memslots *slots = kvm_memslots(kvm);
3249     int r;
3250     gpa_t gpa = ghc->gpa + offset;
3251 
3252     if (WARN_ON_ONCE(len + offset > ghc->len))
3253         return -EINVAL;
3254 
3255     if (slots->generation != ghc->generation) {
3256         if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3257             return -EFAULT;
3258     }
3259 
3260     if (kvm_is_error_hva(ghc->hva))
3261         return -EFAULT;
3262 
3263     if (unlikely(!ghc->memslot))
3264         return kvm_read_guest(kvm, gpa, data, len);
3265 
3266     r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3267     if (r)
3268         return -EFAULT;
3269 
3270     return 0;
3271 }
3272 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3273 
3274 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3275               void *data, unsigned long len)
3276 {
3277     return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3278 }
3279 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3280 
3281 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3282 {
3283     const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3284     gfn_t gfn = gpa >> PAGE_SHIFT;
3285     int seg;
3286     int offset = offset_in_page(gpa);
3287     int ret;
3288 
3289     while ((seg = next_segment(len, offset)) != 0) {
3290         ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3291         if (ret < 0)
3292             return ret;
3293         offset = 0;
3294         len -= seg;
3295         ++gfn;
3296     }
3297     return 0;
3298 }
3299 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3300 
3301 void mark_page_dirty_in_slot(struct kvm *kvm,
3302                  const struct kvm_memory_slot *memslot,
3303                  gfn_t gfn)
3304 {
3305     struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3306 
3307 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3308     if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3309         return;
3310 #endif
3311 
3312     if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3313         unsigned long rel_gfn = gfn - memslot->base_gfn;
3314         u32 slot = (memslot->as_id << 16) | memslot->id;
3315 
3316         if (kvm->dirty_ring_size)
3317             kvm_dirty_ring_push(&vcpu->dirty_ring,
3318                         slot, rel_gfn);
3319         else
3320             set_bit_le(rel_gfn, memslot->dirty_bitmap);
3321     }
3322 }
3323 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3324 
3325 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3326 {
3327     struct kvm_memory_slot *memslot;
3328 
3329     memslot = gfn_to_memslot(kvm, gfn);
3330     mark_page_dirty_in_slot(kvm, memslot, gfn);
3331 }
3332 EXPORT_SYMBOL_GPL(mark_page_dirty);
3333 
3334 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3335 {
3336     struct kvm_memory_slot *memslot;
3337 
3338     memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3339     mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3340 }
3341 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3342 
3343 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3344 {
3345     if (!vcpu->sigset_active)
3346         return;
3347 
3348     /*
3349      * This does a lockless modification of ->real_blocked, which is fine
3350      * because, only current can change ->real_blocked and all readers of
3351      * ->real_blocked don't care as long ->real_blocked is always a subset
3352      * of ->blocked.
3353      */
3354     sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3355 }
3356 
3357 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3358 {
3359     if (!vcpu->sigset_active)
3360         return;
3361 
3362     sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3363     sigemptyset(&current->real_blocked);
3364 }
3365 
3366 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3367 {
3368     unsigned int old, val, grow, grow_start;
3369 
3370     old = val = vcpu->halt_poll_ns;
3371     grow_start = READ_ONCE(halt_poll_ns_grow_start);
3372     grow = READ_ONCE(halt_poll_ns_grow);
3373     if (!grow)
3374         goto out;
3375 
3376     val *= grow;
3377     if (val < grow_start)
3378         val = grow_start;
3379 
3380     if (val > vcpu->kvm->max_halt_poll_ns)
3381         val = vcpu->kvm->max_halt_poll_ns;
3382 
3383     vcpu->halt_poll_ns = val;
3384 out:
3385     trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3386 }
3387 
3388 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3389 {
3390     unsigned int old, val, shrink, grow_start;
3391 
3392     old = val = vcpu->halt_poll_ns;
3393     shrink = READ_ONCE(halt_poll_ns_shrink);
3394     grow_start = READ_ONCE(halt_poll_ns_grow_start);
3395     if (shrink == 0)
3396         val = 0;
3397     else
3398         val /= shrink;
3399 
3400     if (val < grow_start)
3401         val = 0;
3402 
3403     vcpu->halt_poll_ns = val;
3404     trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3405 }
3406 
3407 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3408 {
3409     int ret = -EINTR;
3410     int idx = srcu_read_lock(&vcpu->kvm->srcu);
3411 
3412     if (kvm_arch_vcpu_runnable(vcpu)) {
3413         kvm_make_request(KVM_REQ_UNHALT, vcpu);
3414         goto out;
3415     }
3416     if (kvm_cpu_has_pending_timer(vcpu))
3417         goto out;
3418     if (signal_pending(current))
3419         goto out;
3420     if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3421         goto out;
3422 
3423     ret = 0;
3424 out:
3425     srcu_read_unlock(&vcpu->kvm->srcu, idx);
3426     return ret;
3427 }
3428 
3429 /*
3430  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3431  * pending.  This is mostly used when halting a vCPU, but may also be used
3432  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3433  */
3434 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3435 {
3436     struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3437     bool waited = false;
3438 
3439     vcpu->stat.generic.blocking = 1;
3440 
3441     preempt_disable();
3442     kvm_arch_vcpu_blocking(vcpu);
3443     prepare_to_rcuwait(wait);
3444     preempt_enable();
3445 
3446     for (;;) {
3447         set_current_state(TASK_INTERRUPTIBLE);
3448 
3449         if (kvm_vcpu_check_block(vcpu) < 0)
3450             break;
3451 
3452         waited = true;
3453         schedule();
3454     }
3455 
3456     preempt_disable();
3457     finish_rcuwait(wait);
3458     kvm_arch_vcpu_unblocking(vcpu);
3459     preempt_enable();
3460 
3461     vcpu->stat.generic.blocking = 0;
3462 
3463     return waited;
3464 }
3465 
3466 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3467                       ktime_t end, bool success)
3468 {
3469     struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3470     u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3471 
3472     ++vcpu->stat.generic.halt_attempted_poll;
3473 
3474     if (success) {
3475         ++vcpu->stat.generic.halt_successful_poll;
3476 
3477         if (!vcpu_valid_wakeup(vcpu))
3478             ++vcpu->stat.generic.halt_poll_invalid;
3479 
3480         stats->halt_poll_success_ns += poll_ns;
3481         KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3482     } else {
3483         stats->halt_poll_fail_ns += poll_ns;
3484         KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3485     }
3486 }
3487 
3488 /*
3489  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3490  * polling is enabled, busy wait for a short time before blocking to avoid the
3491  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3492  * is halted.
3493  */
3494 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3495 {
3496     bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3497     bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3498     ktime_t start, cur, poll_end;
3499     bool waited = false;
3500     u64 halt_ns;
3501 
3502     start = cur = poll_end = ktime_get();
3503     if (do_halt_poll) {
3504         ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3505 
3506         do {
3507             /*
3508              * This sets KVM_REQ_UNHALT if an interrupt
3509              * arrives.
3510              */
3511             if (kvm_vcpu_check_block(vcpu) < 0)
3512                 goto out;
3513             cpu_relax();
3514             poll_end = cur = ktime_get();
3515         } while (kvm_vcpu_can_poll(cur, stop));
3516     }
3517 
3518     waited = kvm_vcpu_block(vcpu);
3519 
3520     cur = ktime_get();
3521     if (waited) {
3522         vcpu->stat.generic.halt_wait_ns +=
3523             ktime_to_ns(cur) - ktime_to_ns(poll_end);
3524         KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3525                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3526     }
3527 out:
3528     /* The total time the vCPU was "halted", including polling time. */
3529     halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3530 
3531     /*
3532      * Note, halt-polling is considered successful so long as the vCPU was
3533      * never actually scheduled out, i.e. even if the wake event arrived
3534      * after of the halt-polling loop itself, but before the full wait.
3535      */
3536     if (do_halt_poll)
3537         update_halt_poll_stats(vcpu, start, poll_end, !waited);
3538 
3539     if (halt_poll_allowed) {
3540         if (!vcpu_valid_wakeup(vcpu)) {
3541             shrink_halt_poll_ns(vcpu);
3542         } else if (vcpu->kvm->max_halt_poll_ns) {
3543             if (halt_ns <= vcpu->halt_poll_ns)
3544                 ;
3545             /* we had a long block, shrink polling */
3546             else if (vcpu->halt_poll_ns &&
3547                  halt_ns > vcpu->kvm->max_halt_poll_ns)
3548                 shrink_halt_poll_ns(vcpu);
3549             /* we had a short halt and our poll time is too small */
3550             else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3551                  halt_ns < vcpu->kvm->max_halt_poll_ns)
3552                 grow_halt_poll_ns(vcpu);
3553         } else {
3554             vcpu->halt_poll_ns = 0;
3555         }
3556     }
3557 
3558     trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3559 }
3560 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3561 
3562 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3563 {
3564     if (__kvm_vcpu_wake_up(vcpu)) {
3565         WRITE_ONCE(vcpu->ready, true);
3566         ++vcpu->stat.generic.halt_wakeup;
3567         return true;
3568     }
3569 
3570     return false;
3571 }
3572 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3573 
3574 #ifndef CONFIG_S390
3575 /*
3576  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3577  */
3578 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3579 {
3580     int me, cpu;
3581 
3582     if (kvm_vcpu_wake_up(vcpu))
3583         return;
3584 
3585     me = get_cpu();
3586     /*
3587      * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3588      * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3589      * kick" check does not need atomic operations if kvm_vcpu_kick is used
3590      * within the vCPU thread itself.
3591      */
3592     if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3593         if (vcpu->mode == IN_GUEST_MODE)
3594             WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3595         goto out;
3596     }
3597 
3598     /*
3599      * Note, the vCPU could get migrated to a different pCPU at any point
3600      * after kvm_arch_vcpu_should_kick(), which could result in sending an
3601      * IPI to the previous pCPU.  But, that's ok because the purpose of the
3602      * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3603      * vCPU also requires it to leave IN_GUEST_MODE.
3604      */
3605     if (kvm_arch_vcpu_should_kick(vcpu)) {
3606         cpu = READ_ONCE(vcpu->cpu);
3607         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3608             smp_send_reschedule(cpu);
3609     }
3610 out:
3611     put_cpu();
3612 }
3613 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3614 #endif /* !CONFIG_S390 */
3615 
3616 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3617 {
3618     struct pid *pid;
3619     struct task_struct *task = NULL;
3620     int ret = 0;
3621 
3622     rcu_read_lock();
3623     pid = rcu_dereference(target->pid);
3624     if (pid)
3625         task = get_pid_task(pid, PIDTYPE_PID);
3626     rcu_read_unlock();
3627     if (!task)
3628         return ret;
3629     ret = yield_to(task, 1);
3630     put_task_struct(task);
3631 
3632     return ret;
3633 }
3634 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3635 
3636 /*
3637  * Helper that checks whether a VCPU is eligible for directed yield.
3638  * Most eligible candidate to yield is decided by following heuristics:
3639  *
3640  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3641  *  (preempted lock holder), indicated by @in_spin_loop.
3642  *  Set at the beginning and cleared at the end of interception/PLE handler.
3643  *
3644  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3645  *  chance last time (mostly it has become eligible now since we have probably
3646  *  yielded to lockholder in last iteration. This is done by toggling
3647  *  @dy_eligible each time a VCPU checked for eligibility.)
3648  *
3649  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3650  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3651  *  burning. Giving priority for a potential lock-holder increases lock
3652  *  progress.
3653  *
3654  *  Since algorithm is based on heuristics, accessing another VCPU data without
3655  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3656  *  and continue with next VCPU and so on.
3657  */
3658 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3659 {
3660 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3661     bool eligible;
3662 
3663     eligible = !vcpu->spin_loop.in_spin_loop ||
3664             vcpu->spin_loop.dy_eligible;
3665 
3666     if (vcpu->spin_loop.in_spin_loop)
3667         kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3668 
3669     return eligible;
3670 #else
3671     return true;
3672 #endif
3673 }
3674 
3675 /*
3676  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3677  * a vcpu_load/vcpu_put pair.  However, for most architectures
3678  * kvm_arch_vcpu_runnable does not require vcpu_load.
3679  */
3680 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3681 {
3682     return kvm_arch_vcpu_runnable(vcpu);
3683 }
3684 
3685 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3686 {
3687     if (kvm_arch_dy_runnable(vcpu))
3688         return true;
3689 
3690 #ifdef CONFIG_KVM_ASYNC_PF
3691     if (!list_empty_careful(&vcpu->async_pf.done))
3692         return true;
3693 #endif
3694 
3695     return false;
3696 }
3697 
3698 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3699 {
3700     return false;
3701 }
3702 
3703 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3704 {
3705     struct kvm *kvm = me->kvm;
3706     struct kvm_vcpu *vcpu;
3707     int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3708     unsigned long i;
3709     int yielded = 0;
3710     int try = 3;
3711     int pass;
3712 
3713     kvm_vcpu_set_in_spin_loop(me, true);
3714     /*
3715      * We boost the priority of a VCPU that is runnable but not
3716      * currently running, because it got preempted by something
3717      * else and called schedule in __vcpu_run.  Hopefully that
3718      * VCPU is holding the lock that we need and will release it.
3719      * We approximate round-robin by starting at the last boosted VCPU.
3720      */
3721     for (pass = 0; pass < 2 && !yielded && try; pass++) {
3722         kvm_for_each_vcpu(i, vcpu, kvm) {
3723             if (!pass && i <= last_boosted_vcpu) {
3724                 i = last_boosted_vcpu;
3725                 continue;
3726             } else if (pass && i > last_boosted_vcpu)
3727                 break;
3728             if (!READ_ONCE(vcpu->ready))
3729                 continue;
3730             if (vcpu == me)
3731                 continue;
3732             if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3733                 continue;
3734             if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3735                 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3736                 !kvm_arch_vcpu_in_kernel(vcpu))
3737                 continue;
3738             if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3739                 continue;
3740 
3741             yielded = kvm_vcpu_yield_to(vcpu);
3742             if (yielded > 0) {
3743                 kvm->last_boosted_vcpu = i;
3744                 break;
3745             } else if (yielded < 0) {
3746                 try--;
3747                 if (!try)
3748                     break;
3749             }
3750         }
3751     }
3752     kvm_vcpu_set_in_spin_loop(me, false);
3753 
3754     /* Ensure vcpu is not eligible during next spinloop */
3755     kvm_vcpu_set_dy_eligible(me, false);
3756 }
3757 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3758 
3759 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3760 {
3761 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3762     return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3763         (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3764          kvm->dirty_ring_size / PAGE_SIZE);
3765 #else
3766     return false;
3767 #endif
3768 }
3769 
3770 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3771 {
3772     struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3773     struct page *page;
3774 
3775     if (vmf->pgoff == 0)
3776         page = virt_to_page(vcpu->run);
3777 #ifdef CONFIG_X86
3778     else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3779         page = virt_to_page(vcpu->arch.pio_data);
3780 #endif
3781 #ifdef CONFIG_KVM_MMIO
3782     else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3783         page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3784 #endif
3785     else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3786         page = kvm_dirty_ring_get_page(
3787             &vcpu->dirty_ring,
3788             vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3789     else
3790         return kvm_arch_vcpu_fault(vcpu, vmf);
3791     get_page(page);
3792     vmf->page = page;
3793     return 0;
3794 }
3795 
3796 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3797     .fault = kvm_vcpu_fault,
3798 };
3799 
3800 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3801 {
3802     struct kvm_vcpu *vcpu = file->private_data;
3803     unsigned long pages = vma_pages(vma);
3804 
3805     if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3806          kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3807         ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3808         return -EINVAL;
3809 
3810     vma->vm_ops = &kvm_vcpu_vm_ops;
3811     return 0;
3812 }
3813 
3814 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3815 {
3816     struct kvm_vcpu *vcpu = filp->private_data;
3817 
3818     kvm_put_kvm(vcpu->kvm);
3819     return 0;
3820 }
3821 
3822 static const struct file_operations kvm_vcpu_fops = {
3823     .release        = kvm_vcpu_release,
3824     .unlocked_ioctl = kvm_vcpu_ioctl,
3825     .mmap           = kvm_vcpu_mmap,
3826     .llseek     = noop_llseek,
3827     KVM_COMPAT(kvm_vcpu_compat_ioctl),
3828 };
3829 
3830 /*
3831  * Allocates an inode for the vcpu.
3832  */
3833 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3834 {
3835     char name[8 + 1 + ITOA_MAX_LEN + 1];
3836 
3837     snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3838     return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3839 }
3840 
3841 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3842 static int vcpu_get_pid(void *data, u64 *val)
3843 {
3844     struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data;
3845     *val = pid_nr(rcu_access_pointer(vcpu->pid));
3846     return 0;
3847 }
3848 
3849 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3850 
3851 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3852 {
3853     struct dentry *debugfs_dentry;
3854     char dir_name[ITOA_MAX_LEN * 2];
3855 
3856     if (!debugfs_initialized())
3857         return;
3858 
3859     snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3860     debugfs_dentry = debugfs_create_dir(dir_name,
3861                         vcpu->kvm->debugfs_dentry);
3862     debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3863                 &vcpu_get_pid_fops);
3864 
3865     kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3866 }
3867 #endif
3868 
3869 /*
3870  * Creates some virtual cpus.  Good luck creating more than one.
3871  */
3872 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3873 {
3874     int r;
3875     struct kvm_vcpu *vcpu;
3876     struct page *page;
3877 
3878     if (id >= KVM_MAX_VCPU_IDS)
3879         return -EINVAL;
3880 
3881     mutex_lock(&kvm->lock);
3882     if (kvm->created_vcpus >= kvm->max_vcpus) {
3883         mutex_unlock(&kvm->lock);
3884         return -EINVAL;
3885     }
3886 
3887     r = kvm_arch_vcpu_precreate(kvm, id);
3888     if (r) {
3889         mutex_unlock(&kvm->lock);
3890         return r;
3891     }
3892 
3893     kvm->created_vcpus++;
3894     mutex_unlock(&kvm->lock);
3895 
3896     vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3897     if (!vcpu) {
3898         r = -ENOMEM;
3899         goto vcpu_decrement;
3900     }
3901 
3902     BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3903     page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3904     if (!page) {
3905         r = -ENOMEM;
3906         goto vcpu_free;
3907     }
3908     vcpu->run = page_address(page);
3909 
3910     kvm_vcpu_init(vcpu, kvm, id);
3911 
3912     r = kvm_arch_vcpu_create(vcpu);
3913     if (r)
3914         goto vcpu_free_run_page;
3915 
3916     if (kvm->dirty_ring_size) {
3917         r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3918                      id, kvm->dirty_ring_size);
3919         if (r)
3920             goto arch_vcpu_destroy;
3921     }
3922 
3923     mutex_lock(&kvm->lock);
3924     if (kvm_get_vcpu_by_id(kvm, id)) {
3925         r = -EEXIST;
3926         goto unlock_vcpu_destroy;
3927     }
3928 
3929     vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3930     r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3931     BUG_ON(r == -EBUSY);
3932     if (r)
3933         goto unlock_vcpu_destroy;
3934 
3935     /* Now it's all set up, let userspace reach it */
3936     kvm_get_kvm(kvm);
3937     r = create_vcpu_fd(vcpu);
3938     if (r < 0) {
3939         xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3940         kvm_put_kvm_no_destroy(kvm);
3941         goto unlock_vcpu_destroy;
3942     }
3943 
3944     /*
3945      * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3946      * pointer before kvm->online_vcpu's incremented value.
3947      */
3948     smp_wmb();
3949     atomic_inc(&kvm->online_vcpus);
3950 
3951     mutex_unlock(&kvm->lock);
3952     kvm_arch_vcpu_postcreate(vcpu);
3953     kvm_create_vcpu_debugfs(vcpu);
3954     return r;
3955 
3956 unlock_vcpu_destroy:
3957     mutex_unlock(&kvm->lock);
3958     kvm_dirty_ring_free(&vcpu->dirty_ring);
3959 arch_vcpu_destroy:
3960     kvm_arch_vcpu_destroy(vcpu);
3961 vcpu_free_run_page:
3962     free_page((unsigned long)vcpu->run);
3963 vcpu_free:
3964     kmem_cache_free(kvm_vcpu_cache, vcpu);
3965 vcpu_decrement:
3966     mutex_lock(&kvm->lock);
3967     kvm->created_vcpus--;
3968     mutex_unlock(&kvm->lock);
3969     return r;
3970 }
3971 
3972 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3973 {
3974     if (sigset) {
3975         sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3976         vcpu->sigset_active = 1;
3977         vcpu->sigset = *sigset;
3978     } else
3979         vcpu->sigset_active = 0;
3980     return 0;
3981 }
3982 
3983 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3984                   size_t size, loff_t *offset)
3985 {
3986     struct kvm_vcpu *vcpu = file->private_data;
3987 
3988     return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3989             &kvm_vcpu_stats_desc[0], &vcpu->stat,
3990             sizeof(vcpu->stat), user_buffer, size, offset);
3991 }
3992 
3993 static const struct file_operations kvm_vcpu_stats_fops = {
3994     .read = kvm_vcpu_stats_read,
3995     .llseek = noop_llseek,
3996 };
3997 
3998 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3999 {
4000     int fd;
4001     struct file *file;
4002     char name[15 + ITOA_MAX_LEN + 1];
4003 
4004     snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4005 
4006     fd = get_unused_fd_flags(O_CLOEXEC);
4007     if (fd < 0)
4008         return fd;
4009 
4010     file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4011     if (IS_ERR(file)) {
4012         put_unused_fd(fd);
4013         return PTR_ERR(file);
4014     }
4015     file->f_mode |= FMODE_PREAD;
4016     fd_install(fd, file);
4017 
4018     return fd;
4019 }
4020 
4021 static long kvm_vcpu_ioctl(struct file *filp,
4022                unsigned int ioctl, unsigned long arg)
4023 {
4024     struct kvm_vcpu *vcpu = filp->private_data;
4025     void __user *argp = (void __user *)arg;
4026     int r;
4027     struct kvm_fpu *fpu = NULL;
4028     struct kvm_sregs *kvm_sregs = NULL;
4029 
4030     if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4031         return -EIO;
4032 
4033     if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4034         return -EINVAL;
4035 
4036     /*
4037      * Some architectures have vcpu ioctls that are asynchronous to vcpu
4038      * execution; mutex_lock() would break them.
4039      */
4040     r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4041     if (r != -ENOIOCTLCMD)
4042         return r;
4043 
4044     if (mutex_lock_killable(&vcpu->mutex))
4045         return -EINTR;
4046     switch (ioctl) {
4047     case KVM_RUN: {
4048         struct pid *oldpid;
4049         r = -EINVAL;
4050         if (arg)
4051             goto out;
4052         oldpid = rcu_access_pointer(vcpu->pid);
4053         if (unlikely(oldpid != task_pid(current))) {
4054             /* The thread running this VCPU changed. */
4055             struct pid *newpid;
4056 
4057             r = kvm_arch_vcpu_run_pid_change(vcpu);
4058             if (r)
4059                 break;
4060 
4061             newpid = get_task_pid(current, PIDTYPE_PID);
4062             rcu_assign_pointer(vcpu->pid, newpid);
4063             if (oldpid)
4064                 synchronize_rcu();
4065             put_pid(oldpid);
4066         }
4067         r = kvm_arch_vcpu_ioctl_run(vcpu);
4068         trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4069         break;
4070     }
4071     case KVM_GET_REGS: {
4072         struct kvm_regs *kvm_regs;
4073 
4074         r = -ENOMEM;
4075         kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4076         if (!kvm_regs)
4077             goto out;
4078         r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4079         if (r)
4080             goto out_free1;
4081         r = -EFAULT;
4082         if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4083             goto out_free1;
4084         r = 0;
4085 out_free1:
4086         kfree(kvm_regs);
4087         break;
4088     }
4089     case KVM_SET_REGS: {
4090         struct kvm_regs *kvm_regs;
4091 
4092         kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4093         if (IS_ERR(kvm_regs)) {
4094             r = PTR_ERR(kvm_regs);
4095             goto out;
4096         }
4097         r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4098         kfree(kvm_regs);
4099         break;
4100     }
4101     case KVM_GET_SREGS: {
4102         kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4103                     GFP_KERNEL_ACCOUNT);
4104         r = -ENOMEM;
4105         if (!kvm_sregs)
4106             goto out;
4107         r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4108         if (r)
4109             goto out;
4110         r = -EFAULT;
4111         if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4112             goto out;
4113         r = 0;
4114         break;
4115     }
4116     case KVM_SET_SREGS: {
4117         kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4118         if (IS_ERR(kvm_sregs)) {
4119             r = PTR_ERR(kvm_sregs);
4120             kvm_sregs = NULL;
4121             goto out;
4122         }
4123         r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4124         break;
4125     }
4126     case KVM_GET_MP_STATE: {
4127         struct kvm_mp_state mp_state;
4128 
4129         r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4130         if (r)
4131             goto out;
4132         r = -EFAULT;
4133         if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4134             goto out;
4135         r = 0;
4136         break;
4137     }
4138     case KVM_SET_MP_STATE: {
4139         struct kvm_mp_state mp_state;
4140 
4141         r = -EFAULT;
4142         if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4143             goto out;
4144         r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4145         break;
4146     }
4147     case KVM_TRANSLATE: {
4148         struct kvm_translation tr;
4149 
4150         r = -EFAULT;
4151         if (copy_from_user(&tr, argp, sizeof(tr)))
4152             goto out;
4153         r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4154         if (r)
4155             goto out;
4156         r = -EFAULT;
4157         if (copy_to_user(argp, &tr, sizeof(tr)))
4158             goto out;
4159         r = 0;
4160         break;
4161     }
4162     case KVM_SET_GUEST_DEBUG: {
4163         struct kvm_guest_debug dbg;
4164 
4165         r = -EFAULT;
4166         if (copy_from_user(&dbg, argp, sizeof(dbg)))
4167             goto out;
4168         r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4169         break;
4170     }
4171     case KVM_SET_SIGNAL_MASK: {
4172         struct kvm_signal_mask __user *sigmask_arg = argp;
4173         struct kvm_signal_mask kvm_sigmask;
4174         sigset_t sigset, *p;
4175 
4176         p = NULL;
4177         if (argp) {
4178             r = -EFAULT;
4179             if (copy_from_user(&kvm_sigmask, argp,
4180                        sizeof(kvm_sigmask)))
4181                 goto out;
4182             r = -EINVAL;
4183             if (kvm_sigmask.len != sizeof(sigset))
4184                 goto out;
4185             r = -EFAULT;
4186             if (copy_from_user(&sigset, sigmask_arg->sigset,
4187                        sizeof(sigset)))
4188                 goto out;
4189             p = &sigset;
4190         }
4191         r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4192         break;
4193     }
4194     case KVM_GET_FPU: {
4195         fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4196         r = -ENOMEM;
4197         if (!fpu)
4198             goto out;
4199         r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4200         if (r)
4201             goto out;
4202         r = -EFAULT;
4203         if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4204             goto out;
4205         r = 0;
4206         break;
4207     }
4208     case KVM_SET_FPU: {
4209         fpu = memdup_user(argp, sizeof(*fpu));
4210         if (IS_ERR(fpu)) {
4211             r = PTR_ERR(fpu);
4212             fpu = NULL;
4213             goto out;
4214         }
4215         r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4216         break;
4217     }
4218     case KVM_GET_STATS_FD: {
4219         r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4220         break;
4221     }
4222     default:
4223         r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4224     }
4225 out:
4226     mutex_unlock(&vcpu->mutex);
4227     kfree(fpu);
4228     kfree(kvm_sregs);
4229     return r;
4230 }
4231 
4232 #ifdef CONFIG_KVM_COMPAT
4233 static long kvm_vcpu_compat_ioctl(struct file *filp,
4234                   unsigned int ioctl, unsigned long arg)
4235 {
4236     struct kvm_vcpu *vcpu = filp->private_data;
4237     void __user *argp = compat_ptr(arg);
4238     int r;
4239 
4240     if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4241         return -EIO;
4242 
4243     switch (ioctl) {
4244     case KVM_SET_SIGNAL_MASK: {
4245         struct kvm_signal_mask __user *sigmask_arg = argp;
4246         struct kvm_signal_mask kvm_sigmask;
4247         sigset_t sigset;
4248 
4249         if (argp) {
4250             r = -EFAULT;
4251             if (copy_from_user(&kvm_sigmask, argp,
4252                        sizeof(kvm_sigmask)))
4253                 goto out;
4254             r = -EINVAL;
4255             if (kvm_sigmask.len != sizeof(compat_sigset_t))
4256                 goto out;
4257             r = -EFAULT;
4258             if (get_compat_sigset(&sigset,
4259                           (compat_sigset_t __user *)sigmask_arg->sigset))
4260                 goto out;
4261             r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4262         } else
4263             r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4264         break;
4265     }
4266     default:
4267         r = kvm_vcpu_ioctl(filp, ioctl, arg);
4268     }
4269 
4270 out:
4271     return r;
4272 }
4273 #endif
4274 
4275 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4276 {
4277     struct kvm_device *dev = filp->private_data;
4278 
4279     if (dev->ops->mmap)
4280         return dev->ops->mmap(dev, vma);
4281 
4282     return -ENODEV;
4283 }
4284 
4285 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4286                  int (*accessor)(struct kvm_device *dev,
4287                          struct kvm_device_attr *attr),
4288                  unsigned long arg)
4289 {
4290     struct kvm_device_attr attr;
4291 
4292     if (!accessor)
4293         return -EPERM;
4294 
4295     if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4296         return -EFAULT;
4297 
4298     return accessor(dev, &attr);
4299 }
4300 
4301 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4302                  unsigned long arg)
4303 {
4304     struct kvm_device *dev = filp->private_data;
4305 
4306     if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4307         return -EIO;
4308 
4309     switch (ioctl) {
4310     case KVM_SET_DEVICE_ATTR:
4311         return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4312     case KVM_GET_DEVICE_ATTR:
4313         return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4314     case KVM_HAS_DEVICE_ATTR:
4315         return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4316     default:
4317         if (dev->ops->ioctl)
4318             return dev->ops->ioctl(dev, ioctl, arg);
4319 
4320         return -ENOTTY;
4321     }
4322 }
4323 
4324 static int kvm_device_release(struct inode *inode, struct file *filp)
4325 {
4326     struct kvm_device *dev = filp->private_data;
4327     struct kvm *kvm = dev->kvm;
4328 
4329     if (dev->ops->release) {
4330         mutex_lock(&kvm->lock);
4331         list_del(&dev->vm_node);
4332         dev->ops->release(dev);
4333         mutex_unlock(&kvm->lock);
4334     }
4335 
4336     kvm_put_kvm(kvm);
4337     return 0;
4338 }
4339 
4340 static const struct file_operations kvm_device_fops = {
4341     .unlocked_ioctl = kvm_device_ioctl,
4342     .release = kvm_device_release,
4343     KVM_COMPAT(kvm_device_ioctl),
4344     .mmap = kvm_device_mmap,
4345 };
4346 
4347 struct kvm_device *kvm_device_from_filp(struct file *filp)
4348 {
4349     if (filp->f_op != &kvm_device_fops)
4350         return NULL;
4351 
4352     return filp->private_data;
4353 }
4354 
4355 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4356 #ifdef CONFIG_KVM_MPIC
4357     [KVM_DEV_TYPE_FSL_MPIC_20]  = &kvm_mpic_ops,
4358     [KVM_DEV_TYPE_FSL_MPIC_42]  = &kvm_mpic_ops,
4359 #endif
4360 };
4361 
4362 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4363 {
4364     if (type >= ARRAY_SIZE(kvm_device_ops_table))
4365         return -ENOSPC;
4366 
4367     if (kvm_device_ops_table[type] != NULL)
4368         return -EEXIST;
4369 
4370     kvm_device_ops_table[type] = ops;
4371     return 0;
4372 }
4373 
4374 void kvm_unregister_device_ops(u32 type)
4375 {
4376     if (kvm_device_ops_table[type] != NULL)
4377         kvm_device_ops_table[type] = NULL;
4378 }
4379 
4380 static int kvm_ioctl_create_device(struct kvm *kvm,
4381                    struct kvm_create_device *cd)
4382 {
4383     const struct kvm_device_ops *ops;
4384     struct kvm_device *dev;
4385     bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4386     int type;
4387     int ret;
4388 
4389     if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4390         return -ENODEV;
4391 
4392     type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4393     ops = kvm_device_ops_table[type];
4394     if (ops == NULL)
4395         return -ENODEV;
4396 
4397     if (test)
4398         return 0;
4399 
4400     dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4401     if (!dev)
4402         return -ENOMEM;
4403 
4404     dev->ops = ops;
4405     dev->kvm = kvm;
4406 
4407     mutex_lock(&kvm->lock);
4408     ret = ops->create(dev, type);
4409     if (ret < 0) {
4410         mutex_unlock(&kvm->lock);
4411         kfree(dev);
4412         return ret;
4413     }
4414     list_add(&dev->vm_node, &kvm->devices);
4415     mutex_unlock(&kvm->lock);
4416 
4417     if (ops->init)
4418         ops->init(dev);
4419 
4420     kvm_get_kvm(kvm);
4421     ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4422     if (ret < 0) {
4423         kvm_put_kvm_no_destroy(kvm);
4424         mutex_lock(&kvm->lock);
4425         list_del(&dev->vm_node);
4426         if (ops->release)
4427             ops->release(dev);
4428         mutex_unlock(&kvm->lock);
4429         if (ops->destroy)
4430             ops->destroy(dev);
4431         return ret;
4432     }
4433 
4434     cd->fd = ret;
4435     return 0;
4436 }
4437 
4438 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4439 {
4440     switch (arg) {
4441     case KVM_CAP_USER_MEMORY:
4442     case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4443     case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4444     case KVM_CAP_INTERNAL_ERROR_DATA:
4445 #ifdef CONFIG_HAVE_KVM_MSI
4446     case KVM_CAP_SIGNAL_MSI:
4447 #endif
4448 #ifdef CONFIG_HAVE_KVM_IRQFD
4449     case KVM_CAP_IRQFD:
4450     case KVM_CAP_IRQFD_RESAMPLE:
4451 #endif
4452     case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4453     case KVM_CAP_CHECK_EXTENSION_VM:
4454     case KVM_CAP_ENABLE_CAP_VM:
4455     case KVM_CAP_HALT_POLL:
4456         return 1;
4457 #ifdef CONFIG_KVM_MMIO
4458     case KVM_CAP_COALESCED_MMIO:
4459         return KVM_COALESCED_MMIO_PAGE_OFFSET;
4460     case KVM_CAP_COALESCED_PIO:
4461         return 1;
4462 #endif
4463 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4464     case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4465         return KVM_DIRTY_LOG_MANUAL_CAPS;
4466 #endif
4467 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4468     case KVM_CAP_IRQ_ROUTING:
4469         return KVM_MAX_IRQ_ROUTES;
4470 #endif
4471 #if KVM_ADDRESS_SPACE_NUM > 1
4472     case KVM_CAP_MULTI_ADDRESS_SPACE:
4473         return KVM_ADDRESS_SPACE_NUM;
4474 #endif
4475     case KVM_CAP_NR_MEMSLOTS:
4476         return KVM_USER_MEM_SLOTS;
4477     case KVM_CAP_DIRTY_LOG_RING:
4478 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4479         return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4480 #else
4481         return 0;
4482 #endif
4483     case KVM_CAP_BINARY_STATS_FD:
4484     case KVM_CAP_SYSTEM_EVENT_DATA:
4485         return 1;
4486     default:
4487         break;
4488     }
4489     return kvm_vm_ioctl_check_extension(kvm, arg);
4490 }
4491 
4492 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4493 {
4494     int r;
4495 
4496     if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4497         return -EINVAL;
4498 
4499     /* the size should be power of 2 */
4500     if (!size || (size & (size - 1)))
4501         return -EINVAL;
4502 
4503     /* Should be bigger to keep the reserved entries, or a page */
4504     if (size < kvm_dirty_ring_get_rsvd_entries() *
4505         sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4506         return -EINVAL;
4507 
4508     if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4509         sizeof(struct kvm_dirty_gfn))
4510         return -E2BIG;
4511 
4512     /* We only allow it to set once */
4513     if (kvm->dirty_ring_size)
4514         return -EINVAL;
4515 
4516     mutex_lock(&kvm->lock);
4517 
4518     if (kvm->created_vcpus) {
4519         /* We don't allow to change this value after vcpu created */
4520         r = -EINVAL;
4521     } else {
4522         kvm->dirty_ring_size = size;
4523         r = 0;
4524     }
4525 
4526     mutex_unlock(&kvm->lock);
4527     return r;
4528 }
4529 
4530 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4531 {
4532     unsigned long i;
4533     struct kvm_vcpu *vcpu;
4534     int cleared = 0;
4535 
4536     if (!kvm->dirty_ring_size)
4537         return -EINVAL;
4538 
4539     mutex_lock(&kvm->slots_lock);
4540 
4541     kvm_for_each_vcpu(i, vcpu, kvm)
4542         cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4543 
4544     mutex_unlock(&kvm->slots_lock);
4545 
4546     if (cleared)
4547         kvm_flush_remote_tlbs(kvm);
4548 
4549     return cleared;
4550 }
4551 
4552 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4553                           struct kvm_enable_cap *cap)
4554 {
4555     return -EINVAL;
4556 }
4557 
4558 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4559                        struct kvm_enable_cap *cap)
4560 {
4561     switch (cap->cap) {
4562 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4563     case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4564         u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4565 
4566         if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4567             allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4568 
4569         if (cap->flags || (cap->args[0] & ~allowed_options))
4570             return -EINVAL;
4571         kvm->manual_dirty_log_protect = cap->args[0];
4572         return 0;
4573     }
4574 #endif
4575     case KVM_CAP_HALT_POLL: {
4576         if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4577             return -EINVAL;
4578 
4579         kvm->max_halt_poll_ns = cap->args[0];
4580         return 0;
4581     }
4582     case KVM_CAP_DIRTY_LOG_RING:
4583         return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4584     default:
4585         return kvm_vm_ioctl_enable_cap(kvm, cap);
4586     }
4587 }
4588 
4589 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4590                   size_t size, loff_t *offset)
4591 {
4592     struct kvm *kvm = file->private_data;
4593 
4594     return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4595                 &kvm_vm_stats_desc[0], &kvm->stat,
4596                 sizeof(kvm->stat), user_buffer, size, offset);
4597 }
4598 
4599 static const struct file_operations kvm_vm_stats_fops = {
4600     .read = kvm_vm_stats_read,
4601     .llseek = noop_llseek,
4602 };
4603 
4604 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4605 {
4606     int fd;
4607     struct file *file;
4608 
4609     fd = get_unused_fd_flags(O_CLOEXEC);
4610     if (fd < 0)
4611         return fd;
4612 
4613     file = anon_inode_getfile("kvm-vm-stats",
4614             &kvm_vm_stats_fops, kvm, O_RDONLY);
4615     if (IS_ERR(file)) {
4616         put_unused_fd(fd);
4617         return PTR_ERR(file);
4618     }
4619     file->f_mode |= FMODE_PREAD;
4620     fd_install(fd, file);
4621 
4622     return fd;
4623 }
4624 
4625 static long kvm_vm_ioctl(struct file *filp,
4626                unsigned int ioctl, unsigned long arg)
4627 {
4628     struct kvm *kvm = filp->private_data;
4629     void __user *argp = (void __user *)arg;
4630     int r;
4631 
4632     if (kvm->mm != current->mm || kvm->vm_dead)
4633         return -EIO;
4634     switch (ioctl) {
4635     case KVM_CREATE_VCPU:
4636         r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4637         break;
4638     case KVM_ENABLE_CAP: {
4639         struct kvm_enable_cap cap;
4640 
4641         r = -EFAULT;
4642         if (copy_from_user(&cap, argp, sizeof(cap)))
4643             goto out;
4644         r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4645         break;
4646     }
4647     case KVM_SET_USER_MEMORY_REGION: {
4648         struct kvm_userspace_memory_region kvm_userspace_mem;
4649 
4650         r = -EFAULT;
4651         if (copy_from_user(&kvm_userspace_mem, argp,
4652                         sizeof(kvm_userspace_mem)))
4653             goto out;
4654 
4655         r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4656         break;
4657     }
4658     case KVM_GET_DIRTY_LOG: {
4659         struct kvm_dirty_log log;
4660 
4661         r = -EFAULT;
4662         if (copy_from_user(&log, argp, sizeof(log)))
4663             goto out;
4664         r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4665         break;
4666     }
4667 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4668     case KVM_CLEAR_DIRTY_LOG: {
4669         struct kvm_clear_dirty_log log;
4670 
4671         r = -EFAULT;
4672         if (copy_from_user(&log, argp, sizeof(log)))
4673             goto out;
4674         r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4675         break;
4676     }
4677 #endif
4678 #ifdef CONFIG_KVM_MMIO
4679     case KVM_REGISTER_COALESCED_MMIO: {
4680         struct kvm_coalesced_mmio_zone zone;
4681 
4682         r = -EFAULT;
4683         if (copy_from_user(&zone, argp, sizeof(zone)))
4684             goto out;
4685         r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4686         break;
4687     }
4688     case KVM_UNREGISTER_COALESCED_MMIO: {
4689         struct kvm_coalesced_mmio_zone zone;
4690 
4691         r = -EFAULT;
4692         if (copy_from_user(&zone, argp, sizeof(zone)))
4693             goto out;
4694         r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4695         break;
4696     }
4697 #endif
4698     case KVM_IRQFD: {
4699         struct kvm_irqfd data;
4700 
4701         r = -EFAULT;
4702         if (copy_from_user(&data, argp, sizeof(data)))
4703             goto out;
4704         r = kvm_irqfd(kvm, &data);
4705         break;
4706     }
4707     case KVM_IOEVENTFD: {
4708         struct kvm_ioeventfd data;
4709 
4710         r = -EFAULT;
4711         if (copy_from_user(&data, argp, sizeof(data)))
4712             goto out;
4713         r = kvm_ioeventfd(kvm, &data);
4714         break;
4715     }
4716 #ifdef CONFIG_HAVE_KVM_MSI
4717     case KVM_SIGNAL_MSI: {
4718         struct kvm_msi msi;
4719 
4720         r = -EFAULT;
4721         if (copy_from_user(&msi, argp, sizeof(msi)))
4722             goto out;
4723         r = kvm_send_userspace_msi(kvm, &msi);
4724         break;
4725     }
4726 #endif
4727 #ifdef __KVM_HAVE_IRQ_LINE
4728     case KVM_IRQ_LINE_STATUS:
4729     case KVM_IRQ_LINE: {
4730         struct kvm_irq_level irq_event;
4731 
4732         r = -EFAULT;
4733         if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4734             goto out;
4735 
4736         r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4737                     ioctl == KVM_IRQ_LINE_STATUS);
4738         if (r)
4739             goto out;
4740 
4741         r = -EFAULT;
4742         if (ioctl == KVM_IRQ_LINE_STATUS) {
4743             if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4744                 goto out;
4745         }
4746 
4747         r = 0;
4748         break;
4749     }
4750 #endif
4751 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4752     case KVM_SET_GSI_ROUTING: {
4753         struct kvm_irq_routing routing;
4754         struct kvm_irq_routing __user *urouting;
4755         struct kvm_irq_routing_entry *entries = NULL;
4756 
4757         r = -EFAULT;
4758         if (copy_from_user(&routing, argp, sizeof(routing)))
4759             goto out;
4760         r = -EINVAL;
4761         if (!kvm_arch_can_set_irq_routing(kvm))
4762             goto out;
4763         if (routing.nr > KVM_MAX_IRQ_ROUTES)
4764             goto out;
4765         if (routing.flags)
4766             goto out;
4767         if (routing.nr) {
4768             urouting = argp;
4769             entries = vmemdup_user(urouting->entries,
4770                            array_size(sizeof(*entries),
4771                               routing.nr));
4772             if (IS_ERR(entries)) {
4773                 r = PTR_ERR(entries);
4774                 goto out;
4775             }
4776         }
4777         r = kvm_set_irq_routing(kvm, entries, routing.nr,
4778                     routing.flags);
4779         kvfree(entries);
4780         break;
4781     }
4782 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4783     case KVM_CREATE_DEVICE: {
4784         struct kvm_create_device cd;
4785 
4786         r = -EFAULT;
4787         if (copy_from_user(&cd, argp, sizeof(cd)))
4788             goto out;
4789 
4790         r = kvm_ioctl_create_device(kvm, &cd);
4791         if (r)
4792             goto out;
4793 
4794         r = -EFAULT;
4795         if (copy_to_user(argp, &cd, sizeof(cd)))
4796             goto out;
4797 
4798         r = 0;
4799         break;
4800     }
4801     case KVM_CHECK_EXTENSION:
4802         r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4803         break;
4804     case KVM_RESET_DIRTY_RINGS:
4805         r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4806         break;
4807     case KVM_GET_STATS_FD:
4808         r = kvm_vm_ioctl_get_stats_fd(kvm);
4809         break;
4810     default:
4811         r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4812     }
4813 out:
4814     return r;
4815 }
4816 
4817 #ifdef CONFIG_KVM_COMPAT
4818 struct compat_kvm_dirty_log {
4819     __u32 slot;
4820     __u32 padding1;
4821     union {
4822         compat_uptr_t dirty_bitmap; /* one bit per page */
4823         __u64 padding2;
4824     };
4825 };
4826 
4827 struct compat_kvm_clear_dirty_log {
4828     __u32 slot;
4829     __u32 num_pages;
4830     __u64 first_page;
4831     union {
4832         compat_uptr_t dirty_bitmap; /* one bit per page */
4833         __u64 padding2;
4834     };
4835 };
4836 
4837 static long kvm_vm_compat_ioctl(struct file *filp,
4838                unsigned int ioctl, unsigned long arg)
4839 {
4840     struct kvm *kvm = filp->private_data;
4841     int r;
4842 
4843     if (kvm->mm != current->mm || kvm->vm_dead)
4844         return -EIO;
4845     switch (ioctl) {
4846 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4847     case KVM_CLEAR_DIRTY_LOG: {
4848         struct compat_kvm_clear_dirty_log compat_log;
4849         struct kvm_clear_dirty_log log;
4850 
4851         if (copy_from_user(&compat_log, (void __user *)arg,
4852                    sizeof(compat_log)))
4853             return -EFAULT;
4854         log.slot     = compat_log.slot;
4855         log.num_pages    = compat_log.num_pages;
4856         log.first_page   = compat_log.first_page;
4857         log.padding2     = compat_log.padding2;
4858         log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4859 
4860         r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4861         break;
4862     }
4863 #endif
4864     case KVM_GET_DIRTY_LOG: {
4865         struct compat_kvm_dirty_log compat_log;
4866         struct kvm_dirty_log log;
4867 
4868         if (copy_from_user(&compat_log, (void __user *)arg,
4869                    sizeof(compat_log)))
4870             return -EFAULT;
4871         log.slot     = compat_log.slot;
4872         log.padding1     = compat_log.padding1;
4873         log.padding2     = compat_log.padding2;
4874         log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4875 
4876         r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4877         break;
4878     }
4879     default:
4880         r = kvm_vm_ioctl(filp, ioctl, arg);
4881     }
4882     return r;
4883 }
4884 #endif
4885 
4886 static const struct file_operations kvm_vm_fops = {
4887     .release        = kvm_vm_release,
4888     .unlocked_ioctl = kvm_vm_ioctl,
4889     .llseek     = noop_llseek,
4890     KVM_COMPAT(kvm_vm_compat_ioctl),
4891 };
4892 
4893 bool file_is_kvm(struct file *file)
4894 {
4895     return file && file->f_op == &kvm_vm_fops;
4896 }
4897 EXPORT_SYMBOL_GPL(file_is_kvm);
4898 
4899 static int kvm_dev_ioctl_create_vm(unsigned long type)
4900 {
4901     char fdname[ITOA_MAX_LEN + 1];
4902     int r, fd;
4903     struct kvm *kvm;
4904     struct file *file;
4905 
4906     fd = get_unused_fd_flags(O_CLOEXEC);
4907     if (fd < 0)
4908         return fd;
4909 
4910     snprintf(fdname, sizeof(fdname), "%d", fd);
4911 
4912     kvm = kvm_create_vm(type, fdname);
4913     if (IS_ERR(kvm)) {
4914         r = PTR_ERR(kvm);
4915         goto put_fd;
4916     }
4917 
4918     file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4919     if (IS_ERR(file)) {
4920         r = PTR_ERR(file);
4921         goto put_kvm;
4922     }
4923 
4924     /*
4925      * Don't call kvm_put_kvm anymore at this point; file->f_op is
4926      * already set, with ->release() being kvm_vm_release().  In error
4927      * cases it will be called by the final fput(file) and will take
4928      * care of doing kvm_put_kvm(kvm).
4929      */
4930     kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4931 
4932     fd_install(fd, file);
4933     return fd;
4934 
4935 put_kvm:
4936     kvm_put_kvm(kvm);
4937 put_fd:
4938     put_unused_fd(fd);
4939     return r;
4940 }
4941 
4942 static long kvm_dev_ioctl(struct file *filp,
4943               unsigned int ioctl, unsigned long arg)
4944 {
4945     long r = -EINVAL;
4946 
4947     switch (ioctl) {
4948     case KVM_GET_API_VERSION:
4949         if (arg)
4950             goto out;
4951         r = KVM_API_VERSION;
4952         break;
4953     case KVM_CREATE_VM:
4954         r = kvm_dev_ioctl_create_vm(arg);
4955         break;
4956     case KVM_CHECK_EXTENSION:
4957         r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4958         break;
4959     case KVM_GET_VCPU_MMAP_SIZE:
4960         if (arg)
4961             goto out;
4962         r = PAGE_SIZE;     /* struct kvm_run */
4963 #ifdef CONFIG_X86
4964         r += PAGE_SIZE;    /* pio data page */
4965 #endif
4966 #ifdef CONFIG_KVM_MMIO
4967         r += PAGE_SIZE;    /* coalesced mmio ring page */
4968 #endif
4969         break;
4970     case KVM_TRACE_ENABLE:
4971     case KVM_TRACE_PAUSE:
4972     case KVM_TRACE_DISABLE:
4973         r = -EOPNOTSUPP;
4974         break;
4975     default:
4976         return kvm_arch_dev_ioctl(filp, ioctl, arg);
4977     }
4978 out:
4979     return r;
4980 }
4981 
4982 static struct file_operations kvm_chardev_ops = {
4983     .unlocked_ioctl = kvm_dev_ioctl,
4984     .llseek     = noop_llseek,
4985     KVM_COMPAT(kvm_dev_ioctl),
4986 };
4987 
4988 static struct miscdevice kvm_dev = {
4989     KVM_MINOR,
4990     "kvm",
4991     &kvm_chardev_ops,
4992 };
4993 
4994 static void hardware_enable_nolock(void *junk)
4995 {
4996     int cpu = raw_smp_processor_id();
4997     int r;
4998 
4999     if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
5000         return;
5001 
5002     cpumask_set_cpu(cpu, cpus_hardware_enabled);
5003 
5004     r = kvm_arch_hardware_enable();
5005 
5006     if (r) {
5007         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5008         atomic_inc(&hardware_enable_failed);
5009         pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
5010     }
5011 }
5012 
5013 static int kvm_starting_cpu(unsigned int cpu)
5014 {
5015     raw_spin_lock(&kvm_count_lock);
5016     if (kvm_usage_count)
5017         hardware_enable_nolock(NULL);
5018     raw_spin_unlock(&kvm_count_lock);
5019     return 0;
5020 }
5021 
5022 static void hardware_disable_nolock(void *junk)
5023 {
5024     int cpu = raw_smp_processor_id();
5025 
5026     if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
5027         return;
5028     cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5029     kvm_arch_hardware_disable();
5030 }
5031 
5032 static int kvm_dying_cpu(unsigned int cpu)
5033 {
5034     raw_spin_lock(&kvm_count_lock);
5035     if (kvm_usage_count)
5036         hardware_disable_nolock(NULL);
5037     raw_spin_unlock(&kvm_count_lock);
5038     return 0;
5039 }
5040 
5041 static void hardware_disable_all_nolock(void)
5042 {
5043     BUG_ON(!kvm_usage_count);
5044 
5045     kvm_usage_count--;
5046     if (!kvm_usage_count)
5047         on_each_cpu(hardware_disable_nolock, NULL, 1);
5048 }
5049 
5050 static void hardware_disable_all(void)
5051 {
5052     raw_spin_lock(&kvm_count_lock);
5053     hardware_disable_all_nolock();
5054     raw_spin_unlock(&kvm_count_lock);
5055 }
5056 
5057 static int hardware_enable_all(void)
5058 {
5059     int r = 0;
5060 
5061     raw_spin_lock(&kvm_count_lock);
5062 
5063     kvm_usage_count++;
5064     if (kvm_usage_count == 1) {
5065         atomic_set(&hardware_enable_failed, 0);
5066         on_each_cpu(hardware_enable_nolock, NULL, 1);
5067 
5068         if (atomic_read(&hardware_enable_failed)) {
5069             hardware_disable_all_nolock();
5070             r = -EBUSY;
5071         }
5072     }
5073 
5074     raw_spin_unlock(&kvm_count_lock);
5075 
5076     return r;
5077 }
5078 
5079 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
5080               void *v)
5081 {
5082     /*
5083      * Some (well, at least mine) BIOSes hang on reboot if
5084      * in vmx root mode.
5085      *
5086      * And Intel TXT required VMX off for all cpu when system shutdown.
5087      */
5088     pr_info("kvm: exiting hardware virtualization\n");
5089     kvm_rebooting = true;
5090     on_each_cpu(hardware_disable_nolock, NULL, 1);
5091     return NOTIFY_OK;
5092 }
5093 
5094 static struct notifier_block kvm_reboot_notifier = {
5095     .notifier_call = kvm_reboot,
5096     .priority = 0,
5097 };
5098 
5099 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5100 {
5101     int i;
5102 
5103     for (i = 0; i < bus->dev_count; i++) {
5104         struct kvm_io_device *pos = bus->range[i].dev;
5105 
5106         kvm_iodevice_destructor(pos);
5107     }
5108     kfree(bus);
5109 }
5110 
5111 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5112                  const struct kvm_io_range *r2)
5113 {
5114     gpa_t addr1 = r1->addr;
5115     gpa_t addr2 = r2->addr;
5116 
5117     if (addr1 < addr2)
5118         return -1;
5119 
5120     /* If r2->len == 0, match the exact address.  If r2->len != 0,
5121      * accept any overlapping write.  Any order is acceptable for
5122      * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5123      * we process all of them.
5124      */
5125     if (r2->len) {
5126         addr1 += r1->len;
5127         addr2 += r2->len;
5128     }
5129 
5130     if (addr1 > addr2)
5131         return 1;
5132 
5133     return 0;
5134 }
5135 
5136 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5137 {
5138     return kvm_io_bus_cmp(p1, p2);
5139 }
5140 
5141 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5142                  gpa_t addr, int len)
5143 {
5144     struct kvm_io_range *range, key;
5145     int off;
5146 
5147     key = (struct kvm_io_range) {
5148         .addr = addr,
5149         .len = len,
5150     };
5151 
5152     range = bsearch(&key, bus->range, bus->dev_count,
5153             sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5154     if (range == NULL)
5155         return -ENOENT;
5156 
5157     off = range - bus->range;
5158 
5159     while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5160         off--;
5161 
5162     return off;
5163 }
5164 
5165 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5166                   struct kvm_io_range *range, const void *val)
5167 {
5168     int idx;
5169 
5170     idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5171     if (idx < 0)
5172         return -EOPNOTSUPP;
5173 
5174     while (idx < bus->dev_count &&
5175         kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5176         if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5177                     range->len, val))
5178             return idx;
5179         idx++;
5180     }
5181 
5182     return -EOPNOTSUPP;
5183 }
5184 
5185 /* kvm_io_bus_write - called under kvm->slots_lock */
5186 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5187              int len, const void *val)
5188 {
5189     struct kvm_io_bus *bus;
5190     struct kvm_io_range range;
5191     int r;
5192 
5193     range = (struct kvm_io_range) {
5194         .addr = addr,
5195         .len = len,
5196     };
5197 
5198     bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5199     if (!bus)
5200         return -ENOMEM;
5201     r = __kvm_io_bus_write(vcpu, bus, &range, val);
5202     return r < 0 ? r : 0;
5203 }
5204 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5205 
5206 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5207 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5208                 gpa_t addr, int len, const void *val, long cookie)
5209 {
5210     struct kvm_io_bus *bus;
5211     struct kvm_io_range range;
5212 
5213     range = (struct kvm_io_range) {
5214         .addr = addr,
5215         .len = len,
5216     };
5217 
5218     bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5219     if (!bus)
5220         return -ENOMEM;
5221 
5222     /* First try the device referenced by cookie. */
5223     if ((cookie >= 0) && (cookie < bus->dev_count) &&
5224         (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5225         if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5226                     val))
5227             return cookie;
5228 
5229     /*
5230      * cookie contained garbage; fall back to search and return the
5231      * correct cookie value.
5232      */
5233     return __kvm_io_bus_write(vcpu, bus, &range, val);
5234 }
5235 
5236 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5237                  struct kvm_io_range *range, void *val)
5238 {
5239     int idx;
5240 
5241     idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5242     if (idx < 0)
5243         return -EOPNOTSUPP;
5244 
5245     while (idx < bus->dev_count &&
5246         kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5247         if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5248                        range->len, val))
5249             return idx;
5250         idx++;
5251     }
5252 
5253     return -EOPNOTSUPP;
5254 }
5255 
5256 /* kvm_io_bus_read - called under kvm->slots_lock */
5257 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5258             int len, void *val)
5259 {
5260     struct kvm_io_bus *bus;
5261     struct kvm_io_range range;
5262     int r;
5263 
5264     range = (struct kvm_io_range) {
5265         .addr = addr,
5266         .len = len,
5267     };
5268 
5269     bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5270     if (!bus)
5271         return -ENOMEM;
5272     r = __kvm_io_bus_read(vcpu, bus, &range, val);
5273     return r < 0 ? r : 0;
5274 }
5275 
5276 /* Caller must hold slots_lock. */
5277 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5278                 int len, struct kvm_io_device *dev)
5279 {
5280     int i;
5281     struct kvm_io_bus *new_bus, *bus;
5282     struct kvm_io_range range;
5283 
5284     bus = kvm_get_bus(kvm, bus_idx);
5285     if (!bus)
5286         return -ENOMEM;
5287 
5288     /* exclude ioeventfd which is limited by maximum fd */
5289     if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5290         return -ENOSPC;
5291 
5292     new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5293               GFP_KERNEL_ACCOUNT);
5294     if (!new_bus)
5295         return -ENOMEM;
5296 
5297     range = (struct kvm_io_range) {
5298         .addr = addr,
5299         .len = len,
5300         .dev = dev,
5301     };
5302 
5303     for (i = 0; i < bus->dev_count; i++)
5304         if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5305             break;
5306 
5307     memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5308     new_bus->dev_count++;
5309     new_bus->range[i] = range;
5310     memcpy(new_bus->range + i + 1, bus->range + i,
5311         (bus->dev_count - i) * sizeof(struct kvm_io_range));
5312     rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5313     synchronize_srcu_expedited(&kvm->srcu);
5314     kfree(bus);
5315 
5316     return 0;
5317 }
5318 
5319 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5320                   struct kvm_io_device *dev)
5321 {
5322     int i, j;
5323     struct kvm_io_bus *new_bus, *bus;
5324 
5325     lockdep_assert_held(&kvm->slots_lock);
5326 
5327     bus = kvm_get_bus(kvm, bus_idx);
5328     if (!bus)
5329         return 0;
5330 
5331     for (i = 0; i < bus->dev_count; i++) {
5332         if (bus->range[i].dev == dev) {
5333             break;
5334         }
5335     }
5336 
5337     if (i == bus->dev_count)
5338         return 0;
5339 
5340     new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5341               GFP_KERNEL_ACCOUNT);
5342     if (new_bus) {
5343         memcpy(new_bus, bus, struct_size(bus, range, i));
5344         new_bus->dev_count--;
5345         memcpy(new_bus->range + i, bus->range + i + 1,
5346                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5347     }
5348 
5349     rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5350     synchronize_srcu_expedited(&kvm->srcu);
5351 
5352     /* Destroy the old bus _after_ installing the (null) bus. */
5353     if (!new_bus) {
5354         pr_err("kvm: failed to shrink bus, removing it completely\n");
5355         for (j = 0; j < bus->dev_count; j++) {
5356             if (j == i)
5357                 continue;
5358             kvm_iodevice_destructor(bus->range[j].dev);
5359         }
5360     }
5361 
5362     kfree(bus);
5363     return new_bus ? 0 : -ENOMEM;
5364 }
5365 
5366 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5367                      gpa_t addr)
5368 {
5369     struct kvm_io_bus *bus;
5370     int dev_idx, srcu_idx;
5371     struct kvm_io_device *iodev = NULL;
5372 
5373     srcu_idx = srcu_read_lock(&kvm->srcu);
5374 
5375     bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5376     if (!bus)
5377         goto out_unlock;
5378 
5379     dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5380     if (dev_idx < 0)
5381         goto out_unlock;
5382 
5383     iodev = bus->range[dev_idx].dev;
5384 
5385 out_unlock:
5386     srcu_read_unlock(&kvm->srcu, srcu_idx);
5387 
5388     return iodev;
5389 }
5390 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5391 
5392 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5393                int (*get)(void *, u64 *), int (*set)(void *, u64),
5394                const char *fmt)
5395 {
5396     struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5397                       inode->i_private;
5398 
5399     /*
5400      * The debugfs files are a reference to the kvm struct which
5401         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5402         * avoids the race between open and the removal of the debugfs directory.
5403      */
5404     if (!kvm_get_kvm_safe(stat_data->kvm))
5405         return -ENOENT;
5406 
5407     if (simple_attr_open(inode, file, get,
5408             kvm_stats_debugfs_mode(stat_data->desc) & 0222
5409             ? set : NULL,
5410             fmt)) {
5411         kvm_put_kvm(stat_data->kvm);
5412         return -ENOMEM;
5413     }
5414 
5415     return 0;
5416 }
5417 
5418 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5419 {
5420     struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5421                       inode->i_private;
5422 
5423     simple_attr_release(inode, file);
5424     kvm_put_kvm(stat_data->kvm);
5425 
5426     return 0;
5427 }
5428 
5429 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5430 {
5431     *val = *(u64 *)((void *)(&kvm->stat) + offset);
5432 
5433     return 0;
5434 }
5435 
5436 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5437 {
5438     *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5439 
5440     return 0;
5441 }
5442 
5443 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5444 {
5445     unsigned long i;
5446     struct kvm_vcpu *vcpu;
5447 
5448     *val = 0;
5449 
5450     kvm_for_each_vcpu(i, vcpu, kvm)
5451         *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5452 
5453     return 0;
5454 }
5455 
5456 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5457 {
5458     unsigned long i;
5459     struct kvm_vcpu *vcpu;
5460 
5461     kvm_for_each_vcpu(i, vcpu, kvm)
5462         *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5463 
5464     return 0;
5465 }
5466 
5467 static int kvm_stat_data_get(void *data, u64 *val)
5468 {
5469     int r = -EFAULT;
5470     struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5471 
5472     switch (stat_data->kind) {
5473     case KVM_STAT_VM:
5474         r = kvm_get_stat_per_vm(stat_data->kvm,
5475                     stat_data->desc->desc.offset, val);
5476         break;
5477     case KVM_STAT_VCPU:
5478         r = kvm_get_stat_per_vcpu(stat_data->kvm,
5479                       stat_data->desc->desc.offset, val);
5480         break;
5481     }
5482 
5483     return r;
5484 }
5485 
5486 static int kvm_stat_data_clear(void *data, u64 val)
5487 {
5488     int r = -EFAULT;
5489     struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5490 
5491     if (val)
5492         return -EINVAL;
5493 
5494     switch (stat_data->kind) {
5495     case KVM_STAT_VM:
5496         r = kvm_clear_stat_per_vm(stat_data->kvm,
5497                       stat_data->desc->desc.offset);
5498         break;
5499     case KVM_STAT_VCPU:
5500         r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5501                         stat_data->desc->desc.offset);
5502         break;
5503     }
5504 
5505     return r;
5506 }
5507 
5508 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5509 {
5510     __simple_attr_check_format("%llu\n", 0ull);
5511     return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5512                 kvm_stat_data_clear, "%llu\n");
5513 }
5514 
5515 static const struct file_operations stat_fops_per_vm = {
5516     .owner = THIS_MODULE,
5517     .open = kvm_stat_data_open,
5518     .release = kvm_debugfs_release,
5519     .read = simple_attr_read,
5520     .write = simple_attr_write,
5521     .llseek = no_llseek,
5522 };
5523 
5524 static int vm_stat_get(void *_offset, u64 *val)
5525 {
5526     unsigned offset = (long)_offset;
5527     struct kvm *kvm;
5528     u64 tmp_val;
5529 
5530     *val = 0;
5531     mutex_lock(&kvm_lock);
5532     list_for_each_entry(kvm, &vm_list, vm_list) {
5533         kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5534         *val += tmp_val;
5535     }
5536     mutex_unlock(&kvm_lock);
5537     return 0;
5538 }
5539 
5540 static int vm_stat_clear(void *_offset, u64 val)
5541 {
5542     unsigned offset = (long)_offset;
5543     struct kvm *kvm;
5544 
5545     if (val)
5546         return -EINVAL;
5547 
5548     mutex_lock(&kvm_lock);
5549     list_for_each_entry(kvm, &vm_list, vm_list) {
5550         kvm_clear_stat_per_vm(kvm, offset);
5551     }
5552     mutex_unlock(&kvm_lock);
5553 
5554     return 0;
5555 }
5556 
5557 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5558 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5559 
5560 static int vcpu_stat_get(void *_offset, u64 *val)
5561 {
5562     unsigned offset = (long)_offset;
5563     struct kvm *kvm;
5564     u64 tmp_val;
5565 
5566     *val = 0;
5567     mutex_lock(&kvm_lock);
5568     list_for_each_entry(kvm, &vm_list, vm_list) {
5569         kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5570         *val += tmp_val;
5571     }
5572     mutex_unlock(&kvm_lock);
5573     return 0;
5574 }
5575 
5576 static int vcpu_stat_clear(void *_offset, u64 val)
5577 {
5578     unsigned offset = (long)_offset;
5579     struct kvm *kvm;
5580 
5581     if (val)
5582         return -EINVAL;
5583 
5584     mutex_lock(&kvm_lock);
5585     list_for_each_entry(kvm, &vm_list, vm_list) {
5586         kvm_clear_stat_per_vcpu(kvm, offset);
5587     }
5588     mutex_unlock(&kvm_lock);
5589 
5590     return 0;
5591 }
5592 
5593 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5594             "%llu\n");
5595 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5596 
5597 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5598 {
5599     struct kobj_uevent_env *env;
5600     unsigned long long created, active;
5601 
5602     if (!kvm_dev.this_device || !kvm)
5603         return;
5604 
5605     mutex_lock(&kvm_lock);
5606     if (type == KVM_EVENT_CREATE_VM) {
5607         kvm_createvm_count++;
5608         kvm_active_vms++;
5609     } else if (type == KVM_EVENT_DESTROY_VM) {
5610         kvm_active_vms--;
5611     }
5612     created = kvm_createvm_count;
5613     active = kvm_active_vms;
5614     mutex_unlock(&kvm_lock);
5615 
5616     env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5617     if (!env)
5618         return;
5619 
5620     add_uevent_var(env, "CREATED=%llu", created);
5621     add_uevent_var(env, "COUNT=%llu", active);
5622 
5623     if (type == KVM_EVENT_CREATE_VM) {
5624         add_uevent_var(env, "EVENT=create");
5625         kvm->userspace_pid = task_pid_nr(current);
5626     } else if (type == KVM_EVENT_DESTROY_VM) {
5627         add_uevent_var(env, "EVENT=destroy");
5628     }
5629     add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5630 
5631     if (!IS_ERR(kvm->debugfs_dentry)) {
5632         char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5633 
5634         if (p) {
5635             tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5636             if (!IS_ERR(tmp))
5637                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5638             kfree(p);
5639         }
5640     }
5641     /* no need for checks, since we are adding at most only 5 keys */
5642     env->envp[env->envp_idx++] = NULL;
5643     kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5644     kfree(env);
5645 }
5646 
5647 static void kvm_init_debug(void)
5648 {
5649     const struct file_operations *fops;
5650     const struct _kvm_stats_desc *pdesc;
5651     int i;
5652 
5653     kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5654 
5655     for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5656         pdesc = &kvm_vm_stats_desc[i];
5657         if (kvm_stats_debugfs_mode(pdesc) & 0222)
5658             fops = &vm_stat_fops;
5659         else
5660             fops = &vm_stat_readonly_fops;
5661         debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5662                 kvm_debugfs_dir,
5663                 (void *)(long)pdesc->desc.offset, fops);
5664     }
5665 
5666     for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5667         pdesc = &kvm_vcpu_stats_desc[i];
5668         if (kvm_stats_debugfs_mode(pdesc) & 0222)
5669             fops = &vcpu_stat_fops;
5670         else
5671             fops = &vcpu_stat_readonly_fops;
5672         debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5673                 kvm_debugfs_dir,
5674                 (void *)(long)pdesc->desc.offset, fops);
5675     }
5676 }
5677 
5678 static int kvm_suspend(void)
5679 {
5680     if (kvm_usage_count)
5681         hardware_disable_nolock(NULL);
5682     return 0;
5683 }
5684 
5685 static void kvm_resume(void)
5686 {
5687     if (kvm_usage_count) {
5688         lockdep_assert_not_held(&kvm_count_lock);
5689         hardware_enable_nolock(NULL);
5690     }
5691 }
5692 
5693 static struct syscore_ops kvm_syscore_ops = {
5694     .suspend = kvm_suspend,
5695     .resume = kvm_resume,
5696 };
5697 
5698 static inline
5699 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5700 {
5701     return container_of(pn, struct kvm_vcpu, preempt_notifier);
5702 }
5703 
5704 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5705 {
5706     struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5707 
5708     WRITE_ONCE(vcpu->preempted, false);
5709     WRITE_ONCE(vcpu->ready, false);
5710 
5711     __this_cpu_write(kvm_running_vcpu, vcpu);
5712     kvm_arch_sched_in(vcpu, cpu);
5713     kvm_arch_vcpu_load(vcpu, cpu);
5714 }
5715 
5716 static void kvm_sched_out(struct preempt_notifier *pn,
5717               struct task_struct *next)
5718 {
5719     struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5720 
5721     if (current->on_rq) {
5722         WRITE_ONCE(vcpu->preempted, true);
5723         WRITE_ONCE(vcpu->ready, true);
5724     }
5725     kvm_arch_vcpu_put(vcpu);
5726     __this_cpu_write(kvm_running_vcpu, NULL);
5727 }
5728 
5729 /**
5730  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5731  *
5732  * We can disable preemption locally around accessing the per-CPU variable,
5733  * and use the resolved vcpu pointer after enabling preemption again,
5734  * because even if the current thread is migrated to another CPU, reading
5735  * the per-CPU value later will give us the same value as we update the
5736  * per-CPU variable in the preempt notifier handlers.
5737  */
5738 struct kvm_vcpu *kvm_get_running_vcpu(void)
5739 {
5740     struct kvm_vcpu *vcpu;
5741 
5742     preempt_disable();
5743     vcpu = __this_cpu_read(kvm_running_vcpu);
5744     preempt_enable();
5745 
5746     return vcpu;
5747 }
5748 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5749 
5750 /**
5751  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5752  */
5753 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5754 {
5755         return &kvm_running_vcpu;
5756 }
5757 
5758 #ifdef CONFIG_GUEST_PERF_EVENTS
5759 static unsigned int kvm_guest_state(void)
5760 {
5761     struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5762     unsigned int state;
5763 
5764     if (!kvm_arch_pmi_in_guest(vcpu))
5765         return 0;
5766 
5767     state = PERF_GUEST_ACTIVE;
5768     if (!kvm_arch_vcpu_in_kernel(vcpu))
5769         state |= PERF_GUEST_USER;
5770 
5771     return state;
5772 }
5773 
5774 static unsigned long kvm_guest_get_ip(void)
5775 {
5776     struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5777 
5778     /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5779     if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5780         return 0;
5781 
5782     return kvm_arch_vcpu_get_ip(vcpu);
5783 }
5784 
5785 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5786     .state          = kvm_guest_state,
5787     .get_ip         = kvm_guest_get_ip,
5788     .handle_intel_pt_intr   = NULL,
5789 };
5790 
5791 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5792 {
5793     kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5794     perf_register_guest_info_callbacks(&kvm_guest_cbs);
5795 }
5796 void kvm_unregister_perf_callbacks(void)
5797 {
5798     perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5799 }
5800 #endif
5801 
5802 struct kvm_cpu_compat_check {
5803     void *opaque;
5804     int *ret;
5805 };
5806 
5807 static void check_processor_compat(void *data)
5808 {
5809     struct kvm_cpu_compat_check *c = data;
5810 
5811     *c->ret = kvm_arch_check_processor_compat(c->opaque);
5812 }
5813 
5814 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5815           struct module *module)
5816 {
5817     struct kvm_cpu_compat_check c;
5818     int r;
5819     int cpu;
5820 
5821     r = kvm_arch_init(opaque);
5822     if (r)
5823         goto out_fail;
5824 
5825     /*
5826      * kvm_arch_init makes sure there's at most one caller
5827      * for architectures that support multiple implementations,
5828      * like intel and amd on x86.
5829      * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5830      * conflicts in case kvm is already setup for another implementation.
5831      */
5832     r = kvm_irqfd_init();
5833     if (r)
5834         goto out_irqfd;
5835 
5836     if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5837         r = -ENOMEM;
5838         goto out_free_0;
5839     }
5840 
5841     r = kvm_arch_hardware_setup(opaque);
5842     if (r < 0)
5843         goto out_free_1;
5844 
5845     c.ret = &r;
5846     c.opaque = opaque;
5847     for_each_online_cpu(cpu) {
5848         smp_call_function_single(cpu, check_processor_compat, &c, 1);
5849         if (r < 0)
5850             goto out_free_2;
5851     }
5852 
5853     r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5854                       kvm_starting_cpu, kvm_dying_cpu);
5855     if (r)
5856         goto out_free_2;
5857     register_reboot_notifier(&kvm_reboot_notifier);
5858 
5859     /* A kmem cache lets us meet the alignment requirements of fx_save. */
5860     if (!vcpu_align)
5861         vcpu_align = __alignof__(struct kvm_vcpu);
5862     kvm_vcpu_cache =
5863         kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5864                        SLAB_ACCOUNT,
5865                        offsetof(struct kvm_vcpu, arch),
5866                        offsetofend(struct kvm_vcpu, stats_id)
5867                        - offsetof(struct kvm_vcpu, arch),
5868                        NULL);
5869     if (!kvm_vcpu_cache) {
5870         r = -ENOMEM;
5871         goto out_free_3;
5872     }
5873 
5874     for_each_possible_cpu(cpu) {
5875         if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5876                         GFP_KERNEL, cpu_to_node(cpu))) {
5877             r = -ENOMEM;
5878             goto out_free_4;
5879         }
5880     }
5881 
5882     r = kvm_async_pf_init();
5883     if (r)
5884         goto out_free_5;
5885 
5886     kvm_chardev_ops.owner = module;
5887 
5888     r = misc_register(&kvm_dev);
5889     if (r) {
5890         pr_err("kvm: misc device register failed\n");
5891         goto out_unreg;
5892     }
5893 
5894     register_syscore_ops(&kvm_syscore_ops);
5895 
5896     kvm_preempt_ops.sched_in = kvm_sched_in;
5897     kvm_preempt_ops.sched_out = kvm_sched_out;
5898 
5899     kvm_init_debug();
5900 
5901     r = kvm_vfio_ops_init();
5902     WARN_ON(r);
5903 
5904     return 0;
5905 
5906 out_unreg:
5907     kvm_async_pf_deinit();
5908 out_free_5:
5909     for_each_possible_cpu(cpu)
5910         free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5911 out_free_4:
5912     kmem_cache_destroy(kvm_vcpu_cache);
5913 out_free_3:
5914     unregister_reboot_notifier(&kvm_reboot_notifier);
5915     cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5916 out_free_2:
5917     kvm_arch_hardware_unsetup();
5918 out_free_1:
5919     free_cpumask_var(cpus_hardware_enabled);
5920 out_free_0:
5921     kvm_irqfd_exit();
5922 out_irqfd:
5923     kvm_arch_exit();
5924 out_fail:
5925     return r;
5926 }
5927 EXPORT_SYMBOL_GPL(kvm_init);
5928 
5929 void kvm_exit(void)
5930 {
5931     int cpu;
5932 
5933     debugfs_remove_recursive(kvm_debugfs_dir);
5934     misc_deregister(&kvm_dev);
5935     for_each_possible_cpu(cpu)
5936         free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5937     kmem_cache_destroy(kvm_vcpu_cache);
5938     kvm_async_pf_deinit();
5939     unregister_syscore_ops(&kvm_syscore_ops);
5940     unregister_reboot_notifier(&kvm_reboot_notifier);
5941     cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5942     on_each_cpu(hardware_disable_nolock, NULL, 1);
5943     kvm_arch_hardware_unsetup();
5944     kvm_arch_exit();
5945     kvm_irqfd_exit();
5946     free_cpumask_var(cpus_hardware_enabled);
5947     kvm_vfio_ops_exit();
5948 }
5949 EXPORT_SYMBOL_GPL(kvm_exit);
5950 
5951 struct kvm_vm_worker_thread_context {
5952     struct kvm *kvm;
5953     struct task_struct *parent;
5954     struct completion init_done;
5955     kvm_vm_thread_fn_t thread_fn;
5956     uintptr_t data;
5957     int err;
5958 };
5959 
5960 static int kvm_vm_worker_thread(void *context)
5961 {
5962     /*
5963      * The init_context is allocated on the stack of the parent thread, so
5964      * we have to locally copy anything that is needed beyond initialization
5965      */
5966     struct kvm_vm_worker_thread_context *init_context = context;
5967     struct task_struct *parent;
5968     struct kvm *kvm = init_context->kvm;
5969     kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5970     uintptr_t data = init_context->data;
5971     int err;
5972 
5973     err = kthread_park(current);
5974     /* kthread_park(current) is never supposed to return an error */
5975     WARN_ON(err != 0);
5976     if (err)
5977         goto init_complete;
5978 
5979     err = cgroup_attach_task_all(init_context->parent, current);
5980     if (err) {
5981         kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5982             __func__, err);
5983         goto init_complete;
5984     }
5985 
5986     set_user_nice(current, task_nice(init_context->parent));
5987 
5988 init_complete:
5989     init_context->err = err;
5990     complete(&init_context->init_done);
5991     init_context = NULL;
5992 
5993     if (err)
5994         goto out;
5995 
5996     /* Wait to be woken up by the spawner before proceeding. */
5997     kthread_parkme();
5998 
5999     if (!kthread_should_stop())
6000         err = thread_fn(kvm, data);
6001 
6002 out:
6003     /*
6004      * Move kthread back to its original cgroup to prevent it lingering in
6005      * the cgroup of the VM process, after the latter finishes its
6006      * execution.
6007      *
6008      * kthread_stop() waits on the 'exited' completion condition which is
6009      * set in exit_mm(), via mm_release(), in do_exit(). However, the
6010      * kthread is removed from the cgroup in the cgroup_exit() which is
6011      * called after the exit_mm(). This causes the kthread_stop() to return
6012      * before the kthread actually quits the cgroup.
6013      */
6014     rcu_read_lock();
6015     parent = rcu_dereference(current->real_parent);
6016     get_task_struct(parent);
6017     rcu_read_unlock();
6018     cgroup_attach_task_all(parent, current);
6019     put_task_struct(parent);
6020 
6021     return err;
6022 }
6023 
6024 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6025                 uintptr_t data, const char *name,
6026                 struct task_struct **thread_ptr)
6027 {
6028     struct kvm_vm_worker_thread_context init_context = {};
6029     struct task_struct *thread;
6030 
6031     *thread_ptr = NULL;
6032     init_context.kvm = kvm;
6033     init_context.parent = current;
6034     init_context.thread_fn = thread_fn;
6035     init_context.data = data;
6036     init_completion(&init_context.init_done);
6037 
6038     thread = kthread_run(kvm_vm_worker_thread, &init_context,
6039                  "%s-%d", name, task_pid_nr(current));
6040     if (IS_ERR(thread))
6041         return PTR_ERR(thread);
6042 
6043     /* kthread_run is never supposed to return NULL */
6044     WARN_ON(thread == NULL);
6045 
6046     wait_for_completion(&init_context.init_done);
6047 
6048     if (!init_context.err)
6049         *thread_ptr = thread;
6050 
6051     return init_context.err;
6052 }