0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016 #include <kvm/iodev.h>
0017
0018 #include <linux/kvm_host.h>
0019 #include <linux/kvm.h>
0020 #include <linux/module.h>
0021 #include <linux/errno.h>
0022 #include <linux/percpu.h>
0023 #include <linux/mm.h>
0024 #include <linux/miscdevice.h>
0025 #include <linux/vmalloc.h>
0026 #include <linux/reboot.h>
0027 #include <linux/debugfs.h>
0028 #include <linux/highmem.h>
0029 #include <linux/file.h>
0030 #include <linux/syscore_ops.h>
0031 #include <linux/cpu.h>
0032 #include <linux/sched/signal.h>
0033 #include <linux/sched/mm.h>
0034 #include <linux/sched/stat.h>
0035 #include <linux/cpumask.h>
0036 #include <linux/smp.h>
0037 #include <linux/anon_inodes.h>
0038 #include <linux/profile.h>
0039 #include <linux/kvm_para.h>
0040 #include <linux/pagemap.h>
0041 #include <linux/mman.h>
0042 #include <linux/swap.h>
0043 #include <linux/bitops.h>
0044 #include <linux/spinlock.h>
0045 #include <linux/compat.h>
0046 #include <linux/srcu.h>
0047 #include <linux/hugetlb.h>
0048 #include <linux/slab.h>
0049 #include <linux/sort.h>
0050 #include <linux/bsearch.h>
0051 #include <linux/io.h>
0052 #include <linux/lockdep.h>
0053 #include <linux/kthread.h>
0054 #include <linux/suspend.h>
0055
0056 #include <asm/processor.h>
0057 #include <asm/ioctl.h>
0058 #include <linux/uaccess.h>
0059
0060 #include "coalesced_mmio.h"
0061 #include "async_pf.h"
0062 #include "kvm_mm.h"
0063 #include "vfio.h"
0064
0065 #define CREATE_TRACE_POINTS
0066 #include <trace/events/kvm.h>
0067
0068 #include <linux/kvm_dirty_ring.h>
0069
0070
0071 #define ITOA_MAX_LEN 12
0072
0073 MODULE_AUTHOR("Qumranet");
0074 MODULE_LICENSE("GPL");
0075
0076
0077 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
0078 module_param(halt_poll_ns, uint, 0644);
0079 EXPORT_SYMBOL_GPL(halt_poll_ns);
0080
0081
0082 unsigned int halt_poll_ns_grow = 2;
0083 module_param(halt_poll_ns_grow, uint, 0644);
0084 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
0085
0086
0087 unsigned int halt_poll_ns_grow_start = 10000;
0088 module_param(halt_poll_ns_grow_start, uint, 0644);
0089 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
0090
0091
0092 unsigned int halt_poll_ns_shrink;
0093 module_param(halt_poll_ns_shrink, uint, 0644);
0094 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
0095
0096
0097
0098
0099
0100
0101
0102 DEFINE_MUTEX(kvm_lock);
0103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
0104 LIST_HEAD(vm_list);
0105
0106 static cpumask_var_t cpus_hardware_enabled;
0107 static int kvm_usage_count;
0108 static atomic_t hardware_enable_failed;
0109
0110 static struct kmem_cache *kvm_vcpu_cache;
0111
0112 static __read_mostly struct preempt_ops kvm_preempt_ops;
0113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
0114
0115 struct dentry *kvm_debugfs_dir;
0116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
0117
0118 static const struct file_operations stat_fops_per_vm;
0119
0120 static struct file_operations kvm_chardev_ops;
0121
0122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
0123 unsigned long arg);
0124 #ifdef CONFIG_KVM_COMPAT
0125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
0126 unsigned long arg);
0127 #define KVM_COMPAT(c) .compat_ioctl = (c)
0128 #else
0129
0130
0131
0132
0133
0134
0135
0136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
0137 unsigned long arg) { return -EINVAL; }
0138
0139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
0140 {
0141 return is_compat_task() ? -ENODEV : 0;
0142 }
0143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
0144 .open = kvm_no_compat_open
0145 #endif
0146 static int hardware_enable_all(void);
0147 static void hardware_disable_all(void);
0148
0149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
0150
0151 __visible bool kvm_rebooting;
0152 EXPORT_SYMBOL_GPL(kvm_rebooting);
0153
0154 #define KVM_EVENT_CREATE_VM 0
0155 #define KVM_EVENT_DESTROY_VM 1
0156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
0157 static unsigned long long kvm_createvm_count;
0158 static unsigned long long kvm_active_vms;
0159
0160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
0161
0162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
0163 unsigned long start, unsigned long end)
0164 {
0165 }
0166
0167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
0168 {
0169 }
0170
0171 bool kvm_is_zone_device_page(struct page *page)
0172 {
0173
0174
0175
0176
0177
0178
0179 if (WARN_ON_ONCE(!page_count(page)))
0180 return false;
0181
0182 return is_zone_device_page(page);
0183 }
0184
0185
0186
0187
0188
0189
0190
0191 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
0192 {
0193 struct page *page;
0194
0195 if (!pfn_valid(pfn))
0196 return NULL;
0197
0198 page = pfn_to_page(pfn);
0199 if (!PageReserved(page))
0200 return page;
0201
0202
0203 if (is_zero_pfn(pfn))
0204 return page;
0205
0206
0207
0208
0209
0210
0211 if (kvm_is_zone_device_page(page))
0212 return page;
0213
0214 return NULL;
0215 }
0216
0217
0218
0219
0220 void vcpu_load(struct kvm_vcpu *vcpu)
0221 {
0222 int cpu = get_cpu();
0223
0224 __this_cpu_write(kvm_running_vcpu, vcpu);
0225 preempt_notifier_register(&vcpu->preempt_notifier);
0226 kvm_arch_vcpu_load(vcpu, cpu);
0227 put_cpu();
0228 }
0229 EXPORT_SYMBOL_GPL(vcpu_load);
0230
0231 void vcpu_put(struct kvm_vcpu *vcpu)
0232 {
0233 preempt_disable();
0234 kvm_arch_vcpu_put(vcpu);
0235 preempt_notifier_unregister(&vcpu->preempt_notifier);
0236 __this_cpu_write(kvm_running_vcpu, NULL);
0237 preempt_enable();
0238 }
0239 EXPORT_SYMBOL_GPL(vcpu_put);
0240
0241
0242 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
0243 {
0244 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
0245
0246
0247
0248
0249
0250 if (req & KVM_REQUEST_WAIT)
0251 return mode != OUTSIDE_GUEST_MODE;
0252
0253
0254
0255
0256 return mode == IN_GUEST_MODE;
0257 }
0258
0259 static void ack_kick(void *_completed)
0260 {
0261 }
0262
0263 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
0264 {
0265 if (cpumask_empty(cpus))
0266 return false;
0267
0268 smp_call_function_many(cpus, ack_kick, NULL, wait);
0269 return true;
0270 }
0271
0272 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
0273 struct cpumask *tmp, int current_cpu)
0274 {
0275 int cpu;
0276
0277 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
0278 __kvm_make_request(req, vcpu);
0279
0280 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
0281 return;
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293 if (kvm_request_needs_ipi(vcpu, req)) {
0294 cpu = READ_ONCE(vcpu->cpu);
0295 if (cpu != -1 && cpu != current_cpu)
0296 __cpumask_set_cpu(cpu, tmp);
0297 }
0298 }
0299
0300 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
0301 unsigned long *vcpu_bitmap)
0302 {
0303 struct kvm_vcpu *vcpu;
0304 struct cpumask *cpus;
0305 int i, me;
0306 bool called;
0307
0308 me = get_cpu();
0309
0310 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
0311 cpumask_clear(cpus);
0312
0313 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
0314 vcpu = kvm_get_vcpu(kvm, i);
0315 if (!vcpu)
0316 continue;
0317 kvm_make_vcpu_request(vcpu, req, cpus, me);
0318 }
0319
0320 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
0321 put_cpu();
0322
0323 return called;
0324 }
0325
0326 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
0327 struct kvm_vcpu *except)
0328 {
0329 struct kvm_vcpu *vcpu;
0330 struct cpumask *cpus;
0331 unsigned long i;
0332 bool called;
0333 int me;
0334
0335 me = get_cpu();
0336
0337 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
0338 cpumask_clear(cpus);
0339
0340 kvm_for_each_vcpu(i, vcpu, kvm) {
0341 if (vcpu == except)
0342 continue;
0343 kvm_make_vcpu_request(vcpu, req, cpus, me);
0344 }
0345
0346 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
0347 put_cpu();
0348
0349 return called;
0350 }
0351
0352 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
0353 {
0354 return kvm_make_all_cpus_request_except(kvm, req, NULL);
0355 }
0356 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
0357
0358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
0359 void kvm_flush_remote_tlbs(struct kvm *kvm)
0360 {
0361 ++kvm->stat.generic.remote_tlb_flush_requests;
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374 if (!kvm_arch_flush_remote_tlb(kvm)
0375 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
0376 ++kvm->stat.generic.remote_tlb_flush;
0377 }
0378 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
0379 #endif
0380
0381 static void kvm_flush_shadow_all(struct kvm *kvm)
0382 {
0383 kvm_arch_flush_shadow_all(kvm);
0384 kvm_arch_guest_memory_reclaimed(kvm);
0385 }
0386
0387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
0388 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
0389 gfp_t gfp_flags)
0390 {
0391 gfp_flags |= mc->gfp_zero;
0392
0393 if (mc->kmem_cache)
0394 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
0395 else
0396 return (void *)__get_free_page(gfp_flags);
0397 }
0398
0399 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
0400 {
0401 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
0402 void *obj;
0403
0404 if (mc->nobjs >= min)
0405 return 0;
0406
0407 if (unlikely(!mc->objects)) {
0408 if (WARN_ON_ONCE(!capacity))
0409 return -EIO;
0410
0411 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
0412 if (!mc->objects)
0413 return -ENOMEM;
0414
0415 mc->capacity = capacity;
0416 }
0417
0418
0419 if (WARN_ON_ONCE(mc->capacity != capacity))
0420 return -EIO;
0421
0422 while (mc->nobjs < mc->capacity) {
0423 obj = mmu_memory_cache_alloc_obj(mc, gfp);
0424 if (!obj)
0425 return mc->nobjs >= min ? 0 : -ENOMEM;
0426 mc->objects[mc->nobjs++] = obj;
0427 }
0428 return 0;
0429 }
0430
0431 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
0432 {
0433 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
0434 }
0435
0436 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
0437 {
0438 return mc->nobjs;
0439 }
0440
0441 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
0442 {
0443 while (mc->nobjs) {
0444 if (mc->kmem_cache)
0445 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
0446 else
0447 free_page((unsigned long)mc->objects[--mc->nobjs]);
0448 }
0449
0450 kvfree(mc->objects);
0451
0452 mc->objects = NULL;
0453 mc->capacity = 0;
0454 }
0455
0456 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
0457 {
0458 void *p;
0459
0460 if (WARN_ON(!mc->nobjs))
0461 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
0462 else
0463 p = mc->objects[--mc->nobjs];
0464 BUG_ON(!p);
0465 return p;
0466 }
0467 #endif
0468
0469 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
0470 {
0471 mutex_init(&vcpu->mutex);
0472 vcpu->cpu = -1;
0473 vcpu->kvm = kvm;
0474 vcpu->vcpu_id = id;
0475 vcpu->pid = NULL;
0476 #ifndef __KVM_HAVE_ARCH_WQP
0477 rcuwait_init(&vcpu->wait);
0478 #endif
0479 kvm_async_pf_vcpu_init(vcpu);
0480
0481 kvm_vcpu_set_in_spin_loop(vcpu, false);
0482 kvm_vcpu_set_dy_eligible(vcpu, false);
0483 vcpu->preempted = false;
0484 vcpu->ready = false;
0485 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
0486 vcpu->last_used_slot = NULL;
0487
0488
0489 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
0490 task_pid_nr(current), id);
0491 }
0492
0493 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
0494 {
0495 kvm_arch_vcpu_destroy(vcpu);
0496 kvm_dirty_ring_free(&vcpu->dirty_ring);
0497
0498
0499
0500
0501
0502
0503 put_pid(rcu_dereference_protected(vcpu->pid, 1));
0504
0505 free_page((unsigned long)vcpu->run);
0506 kmem_cache_free(kvm_vcpu_cache, vcpu);
0507 }
0508
0509 void kvm_destroy_vcpus(struct kvm *kvm)
0510 {
0511 unsigned long i;
0512 struct kvm_vcpu *vcpu;
0513
0514 kvm_for_each_vcpu(i, vcpu, kvm) {
0515 kvm_vcpu_destroy(vcpu);
0516 xa_erase(&kvm->vcpu_array, i);
0517 }
0518
0519 atomic_set(&kvm->online_vcpus, 0);
0520 }
0521 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
0522
0523 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
0524 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
0525 {
0526 return container_of(mn, struct kvm, mmu_notifier);
0527 }
0528
0529 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
0530 struct mm_struct *mm,
0531 unsigned long start, unsigned long end)
0532 {
0533 struct kvm *kvm = mmu_notifier_to_kvm(mn);
0534 int idx;
0535
0536 idx = srcu_read_lock(&kvm->srcu);
0537 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
0538 srcu_read_unlock(&kvm->srcu, idx);
0539 }
0540
0541 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
0542
0543 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
0544 unsigned long end);
0545
0546 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
0547
0548 struct kvm_hva_range {
0549 unsigned long start;
0550 unsigned long end;
0551 pte_t pte;
0552 hva_handler_t handler;
0553 on_lock_fn_t on_lock;
0554 on_unlock_fn_t on_unlock;
0555 bool flush_on_ret;
0556 bool may_block;
0557 };
0558
0559
0560
0561
0562
0563
0564
0565
0566 static void kvm_null_fn(void)
0567 {
0568
0569 }
0570 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
0571
0572
0573 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
0574 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
0575 node; \
0576 node = interval_tree_iter_next(node, start, last)) \
0577
0578 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
0579 const struct kvm_hva_range *range)
0580 {
0581 bool ret = false, locked = false;
0582 struct kvm_gfn_range gfn_range;
0583 struct kvm_memory_slot *slot;
0584 struct kvm_memslots *slots;
0585 int i, idx;
0586
0587 if (WARN_ON_ONCE(range->end <= range->start))
0588 return 0;
0589
0590
0591 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
0592 IS_KVM_NULL_FN(range->handler)))
0593 return 0;
0594
0595 idx = srcu_read_lock(&kvm->srcu);
0596
0597 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
0598 struct interval_tree_node *node;
0599
0600 slots = __kvm_memslots(kvm, i);
0601 kvm_for_each_memslot_in_hva_range(node, slots,
0602 range->start, range->end - 1) {
0603 unsigned long hva_start, hva_end;
0604
0605 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
0606 hva_start = max(range->start, slot->userspace_addr);
0607 hva_end = min(range->end, slot->userspace_addr +
0608 (slot->npages << PAGE_SHIFT));
0609
0610
0611
0612
0613
0614
0615
0616 gfn_range.pte = range->pte;
0617 gfn_range.may_block = range->may_block;
0618
0619
0620
0621
0622
0623 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
0624 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
0625 gfn_range.slot = slot;
0626
0627 if (!locked) {
0628 locked = true;
0629 KVM_MMU_LOCK(kvm);
0630 if (!IS_KVM_NULL_FN(range->on_lock))
0631 range->on_lock(kvm, range->start, range->end);
0632 if (IS_KVM_NULL_FN(range->handler))
0633 break;
0634 }
0635 ret |= range->handler(kvm, &gfn_range);
0636 }
0637 }
0638
0639 if (range->flush_on_ret && ret)
0640 kvm_flush_remote_tlbs(kvm);
0641
0642 if (locked) {
0643 KVM_MMU_UNLOCK(kvm);
0644 if (!IS_KVM_NULL_FN(range->on_unlock))
0645 range->on_unlock(kvm);
0646 }
0647
0648 srcu_read_unlock(&kvm->srcu, idx);
0649
0650
0651 return (int)ret;
0652 }
0653
0654 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
0655 unsigned long start,
0656 unsigned long end,
0657 pte_t pte,
0658 hva_handler_t handler)
0659 {
0660 struct kvm *kvm = mmu_notifier_to_kvm(mn);
0661 const struct kvm_hva_range range = {
0662 .start = start,
0663 .end = end,
0664 .pte = pte,
0665 .handler = handler,
0666 .on_lock = (void *)kvm_null_fn,
0667 .on_unlock = (void *)kvm_null_fn,
0668 .flush_on_ret = true,
0669 .may_block = false,
0670 };
0671
0672 return __kvm_handle_hva_range(kvm, &range);
0673 }
0674
0675 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
0676 unsigned long start,
0677 unsigned long end,
0678 hva_handler_t handler)
0679 {
0680 struct kvm *kvm = mmu_notifier_to_kvm(mn);
0681 const struct kvm_hva_range range = {
0682 .start = start,
0683 .end = end,
0684 .pte = __pte(0),
0685 .handler = handler,
0686 .on_lock = (void *)kvm_null_fn,
0687 .on_unlock = (void *)kvm_null_fn,
0688 .flush_on_ret = false,
0689 .may_block = false,
0690 };
0691
0692 return __kvm_handle_hva_range(kvm, &range);
0693 }
0694 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
0695 struct mm_struct *mm,
0696 unsigned long address,
0697 pte_t pte)
0698 {
0699 struct kvm *kvm = mmu_notifier_to_kvm(mn);
0700
0701 trace_kvm_set_spte_hva(address);
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
0712 if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
0713 return;
0714
0715 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
0716 }
0717
0718 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
0719 unsigned long end)
0720 {
0721
0722
0723
0724
0725
0726 kvm->mmu_invalidate_in_progress++;
0727 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
0728 kvm->mmu_invalidate_range_start = start;
0729 kvm->mmu_invalidate_range_end = end;
0730 } else {
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740 kvm->mmu_invalidate_range_start =
0741 min(kvm->mmu_invalidate_range_start, start);
0742 kvm->mmu_invalidate_range_end =
0743 max(kvm->mmu_invalidate_range_end, end);
0744 }
0745 }
0746
0747 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
0748 const struct mmu_notifier_range *range)
0749 {
0750 struct kvm *kvm = mmu_notifier_to_kvm(mn);
0751 const struct kvm_hva_range hva_range = {
0752 .start = range->start,
0753 .end = range->end,
0754 .pte = __pte(0),
0755 .handler = kvm_unmap_gfn_range,
0756 .on_lock = kvm_mmu_invalidate_begin,
0757 .on_unlock = kvm_arch_guest_memory_reclaimed,
0758 .flush_on_ret = true,
0759 .may_block = mmu_notifier_range_blockable(range),
0760 };
0761
0762 trace_kvm_unmap_hva_range(range->start, range->end);
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772 spin_lock(&kvm->mn_invalidate_lock);
0773 kvm->mn_active_invalidate_count++;
0774 spin_unlock(&kvm->mn_invalidate_lock);
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
0787 hva_range.may_block);
0788
0789 __kvm_handle_hva_range(kvm, &hva_range);
0790
0791 return 0;
0792 }
0793
0794 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
0795 unsigned long end)
0796 {
0797
0798
0799
0800
0801
0802 kvm->mmu_invalidate_seq++;
0803 smp_wmb();
0804
0805
0806
0807
0808
0809 kvm->mmu_invalidate_in_progress--;
0810 }
0811
0812 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
0813 const struct mmu_notifier_range *range)
0814 {
0815 struct kvm *kvm = mmu_notifier_to_kvm(mn);
0816 const struct kvm_hva_range hva_range = {
0817 .start = range->start,
0818 .end = range->end,
0819 .pte = __pte(0),
0820 .handler = (void *)kvm_null_fn,
0821 .on_lock = kvm_mmu_invalidate_end,
0822 .on_unlock = (void *)kvm_null_fn,
0823 .flush_on_ret = false,
0824 .may_block = mmu_notifier_range_blockable(range),
0825 };
0826 bool wake;
0827
0828 __kvm_handle_hva_range(kvm, &hva_range);
0829
0830
0831 spin_lock(&kvm->mn_invalidate_lock);
0832 wake = (--kvm->mn_active_invalidate_count == 0);
0833 spin_unlock(&kvm->mn_invalidate_lock);
0834
0835
0836
0837
0838
0839 if (wake)
0840 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
0841
0842 BUG_ON(kvm->mmu_invalidate_in_progress < 0);
0843 }
0844
0845 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
0846 struct mm_struct *mm,
0847 unsigned long start,
0848 unsigned long end)
0849 {
0850 trace_kvm_age_hva(start, end);
0851
0852 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
0853 }
0854
0855 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
0856 struct mm_struct *mm,
0857 unsigned long start,
0858 unsigned long end)
0859 {
0860 trace_kvm_age_hva(start, end);
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
0876 }
0877
0878 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
0879 struct mm_struct *mm,
0880 unsigned long address)
0881 {
0882 trace_kvm_test_age_hva(address);
0883
0884 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
0885 kvm_test_age_gfn);
0886 }
0887
0888 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
0889 struct mm_struct *mm)
0890 {
0891 struct kvm *kvm = mmu_notifier_to_kvm(mn);
0892 int idx;
0893
0894 idx = srcu_read_lock(&kvm->srcu);
0895 kvm_flush_shadow_all(kvm);
0896 srcu_read_unlock(&kvm->srcu, idx);
0897 }
0898
0899 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
0900 .invalidate_range = kvm_mmu_notifier_invalidate_range,
0901 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
0902 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
0903 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
0904 .clear_young = kvm_mmu_notifier_clear_young,
0905 .test_young = kvm_mmu_notifier_test_young,
0906 .change_pte = kvm_mmu_notifier_change_pte,
0907 .release = kvm_mmu_notifier_release,
0908 };
0909
0910 static int kvm_init_mmu_notifier(struct kvm *kvm)
0911 {
0912 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
0913 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
0914 }
0915
0916 #else
0917
0918 static int kvm_init_mmu_notifier(struct kvm *kvm)
0919 {
0920 return 0;
0921 }
0922
0923 #endif
0924
0925 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
0926 static int kvm_pm_notifier_call(struct notifier_block *bl,
0927 unsigned long state,
0928 void *unused)
0929 {
0930 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
0931
0932 return kvm_arch_pm_notifier(kvm, state);
0933 }
0934
0935 static void kvm_init_pm_notifier(struct kvm *kvm)
0936 {
0937 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
0938
0939 kvm->pm_notifier.priority = INT_MAX;
0940 register_pm_notifier(&kvm->pm_notifier);
0941 }
0942
0943 static void kvm_destroy_pm_notifier(struct kvm *kvm)
0944 {
0945 unregister_pm_notifier(&kvm->pm_notifier);
0946 }
0947 #else
0948 static void kvm_init_pm_notifier(struct kvm *kvm)
0949 {
0950 }
0951
0952 static void kvm_destroy_pm_notifier(struct kvm *kvm)
0953 {
0954 }
0955 #endif
0956
0957 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
0958 {
0959 if (!memslot->dirty_bitmap)
0960 return;
0961
0962 kvfree(memslot->dirty_bitmap);
0963 memslot->dirty_bitmap = NULL;
0964 }
0965
0966
0967 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
0968 {
0969 kvm_destroy_dirty_bitmap(slot);
0970
0971 kvm_arch_free_memslot(kvm, slot);
0972
0973 kfree(slot);
0974 }
0975
0976 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
0977 {
0978 struct hlist_node *idnode;
0979 struct kvm_memory_slot *memslot;
0980 int bkt;
0981
0982
0983
0984
0985
0986
0987
0988 if (!slots->node_idx)
0989 return;
0990
0991 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
0992 kvm_free_memslot(kvm, memslot);
0993 }
0994
0995 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
0996 {
0997 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
0998 case KVM_STATS_TYPE_INSTANT:
0999 return 0444;
1000 case KVM_STATS_TYPE_CUMULATIVE:
1001 case KVM_STATS_TYPE_PEAK:
1002 default:
1003 return 0644;
1004 }
1005 }
1006
1007
1008 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1009 {
1010 int i;
1011 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1012 kvm_vcpu_stats_header.num_desc;
1013
1014 if (IS_ERR(kvm->debugfs_dentry))
1015 return;
1016
1017 debugfs_remove_recursive(kvm->debugfs_dentry);
1018
1019 if (kvm->debugfs_stat_data) {
1020 for (i = 0; i < kvm_debugfs_num_entries; i++)
1021 kfree(kvm->debugfs_stat_data[i]);
1022 kfree(kvm->debugfs_stat_data);
1023 }
1024 }
1025
1026 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1027 {
1028 static DEFINE_MUTEX(kvm_debugfs_lock);
1029 struct dentry *dent;
1030 char dir_name[ITOA_MAX_LEN * 2];
1031 struct kvm_stat_data *stat_data;
1032 const struct _kvm_stats_desc *pdesc;
1033 int i, ret = -ENOMEM;
1034 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1035 kvm_vcpu_stats_header.num_desc;
1036
1037 if (!debugfs_initialized())
1038 return 0;
1039
1040 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1041 mutex_lock(&kvm_debugfs_lock);
1042 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1043 if (dent) {
1044 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1045 dput(dent);
1046 mutex_unlock(&kvm_debugfs_lock);
1047 return 0;
1048 }
1049 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1050 mutex_unlock(&kvm_debugfs_lock);
1051 if (IS_ERR(dent))
1052 return 0;
1053
1054 kvm->debugfs_dentry = dent;
1055 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1056 sizeof(*kvm->debugfs_stat_data),
1057 GFP_KERNEL_ACCOUNT);
1058 if (!kvm->debugfs_stat_data)
1059 goto out_err;
1060
1061 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1062 pdesc = &kvm_vm_stats_desc[i];
1063 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1064 if (!stat_data)
1065 goto out_err;
1066
1067 stat_data->kvm = kvm;
1068 stat_data->desc = pdesc;
1069 stat_data->kind = KVM_STAT_VM;
1070 kvm->debugfs_stat_data[i] = stat_data;
1071 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1072 kvm->debugfs_dentry, stat_data,
1073 &stat_fops_per_vm);
1074 }
1075
1076 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1077 pdesc = &kvm_vcpu_stats_desc[i];
1078 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1079 if (!stat_data)
1080 goto out_err;
1081
1082 stat_data->kvm = kvm;
1083 stat_data->desc = pdesc;
1084 stat_data->kind = KVM_STAT_VCPU;
1085 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1086 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1087 kvm->debugfs_dentry, stat_data,
1088 &stat_fops_per_vm);
1089 }
1090
1091 ret = kvm_arch_create_vm_debugfs(kvm);
1092 if (ret)
1093 goto out_err;
1094
1095 return 0;
1096 out_err:
1097 kvm_destroy_vm_debugfs(kvm);
1098 return ret;
1099 }
1100
1101
1102
1103
1104
1105 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1106 {
1107 return 0;
1108 }
1109
1110
1111
1112
1113
1114 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1115 {
1116 }
1117
1118
1119
1120
1121
1122
1123
1124 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1125 {
1126 return 0;
1127 }
1128
1129 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1130 {
1131 struct kvm *kvm = kvm_arch_alloc_vm();
1132 struct kvm_memslots *slots;
1133 int r = -ENOMEM;
1134 int i, j;
1135
1136 if (!kvm)
1137 return ERR_PTR(-ENOMEM);
1138
1139
1140 __module_get(kvm_chardev_ops.owner);
1141
1142 KVM_MMU_LOCK_INIT(kvm);
1143 mmgrab(current->mm);
1144 kvm->mm = current->mm;
1145 kvm_eventfd_init(kvm);
1146 mutex_init(&kvm->lock);
1147 mutex_init(&kvm->irq_lock);
1148 mutex_init(&kvm->slots_lock);
1149 mutex_init(&kvm->slots_arch_lock);
1150 spin_lock_init(&kvm->mn_invalidate_lock);
1151 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1152 xa_init(&kvm->vcpu_array);
1153
1154 INIT_LIST_HEAD(&kvm->gpc_list);
1155 spin_lock_init(&kvm->gpc_lock);
1156
1157 INIT_LIST_HEAD(&kvm->devices);
1158 kvm->max_vcpus = KVM_MAX_VCPUS;
1159
1160 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1161
1162
1163
1164
1165
1166 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1167
1168 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1169 task_pid_nr(current));
1170
1171 if (init_srcu_struct(&kvm->srcu))
1172 goto out_err_no_srcu;
1173 if (init_srcu_struct(&kvm->irq_srcu))
1174 goto out_err_no_irq_srcu;
1175
1176 refcount_set(&kvm->users_count, 1);
1177 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1178 for (j = 0; j < 2; j++) {
1179 slots = &kvm->__memslots[i][j];
1180
1181 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1182 slots->hva_tree = RB_ROOT_CACHED;
1183 slots->gfn_tree = RB_ROOT;
1184 hash_init(slots->id_hash);
1185 slots->node_idx = j;
1186
1187
1188 slots->generation = i;
1189 }
1190
1191 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1192 }
1193
1194 for (i = 0; i < KVM_NR_BUSES; i++) {
1195 rcu_assign_pointer(kvm->buses[i],
1196 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1197 if (!kvm->buses[i])
1198 goto out_err_no_arch_destroy_vm;
1199 }
1200
1201 kvm->max_halt_poll_ns = halt_poll_ns;
1202
1203 r = kvm_arch_init_vm(kvm, type);
1204 if (r)
1205 goto out_err_no_arch_destroy_vm;
1206
1207 r = hardware_enable_all();
1208 if (r)
1209 goto out_err_no_disable;
1210
1211 #ifdef CONFIG_HAVE_KVM_IRQFD
1212 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1213 #endif
1214
1215 r = kvm_init_mmu_notifier(kvm);
1216 if (r)
1217 goto out_err_no_mmu_notifier;
1218
1219 r = kvm_coalesced_mmio_init(kvm);
1220 if (r < 0)
1221 goto out_no_coalesced_mmio;
1222
1223 r = kvm_create_vm_debugfs(kvm, fdname);
1224 if (r)
1225 goto out_err_no_debugfs;
1226
1227 r = kvm_arch_post_init_vm(kvm);
1228 if (r)
1229 goto out_err;
1230
1231 mutex_lock(&kvm_lock);
1232 list_add(&kvm->vm_list, &vm_list);
1233 mutex_unlock(&kvm_lock);
1234
1235 preempt_notifier_inc();
1236 kvm_init_pm_notifier(kvm);
1237
1238 return kvm;
1239
1240 out_err:
1241 kvm_destroy_vm_debugfs(kvm);
1242 out_err_no_debugfs:
1243 kvm_coalesced_mmio_free(kvm);
1244 out_no_coalesced_mmio:
1245 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1246 if (kvm->mmu_notifier.ops)
1247 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1248 #endif
1249 out_err_no_mmu_notifier:
1250 hardware_disable_all();
1251 out_err_no_disable:
1252 kvm_arch_destroy_vm(kvm);
1253 out_err_no_arch_destroy_vm:
1254 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1255 for (i = 0; i < KVM_NR_BUSES; i++)
1256 kfree(kvm_get_bus(kvm, i));
1257 cleanup_srcu_struct(&kvm->irq_srcu);
1258 out_err_no_irq_srcu:
1259 cleanup_srcu_struct(&kvm->srcu);
1260 out_err_no_srcu:
1261 kvm_arch_free_vm(kvm);
1262 mmdrop(current->mm);
1263 module_put(kvm_chardev_ops.owner);
1264 return ERR_PTR(r);
1265 }
1266
1267 static void kvm_destroy_devices(struct kvm *kvm)
1268 {
1269 struct kvm_device *dev, *tmp;
1270
1271
1272
1273
1274
1275
1276 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1277 list_del(&dev->vm_node);
1278 dev->ops->destroy(dev);
1279 }
1280 }
1281
1282 static void kvm_destroy_vm(struct kvm *kvm)
1283 {
1284 int i;
1285 struct mm_struct *mm = kvm->mm;
1286
1287 kvm_destroy_pm_notifier(kvm);
1288 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1289 kvm_destroy_vm_debugfs(kvm);
1290 kvm_arch_sync_events(kvm);
1291 mutex_lock(&kvm_lock);
1292 list_del(&kvm->vm_list);
1293 mutex_unlock(&kvm_lock);
1294 kvm_arch_pre_destroy_vm(kvm);
1295
1296 kvm_free_irq_routing(kvm);
1297 for (i = 0; i < KVM_NR_BUSES; i++) {
1298 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1299
1300 if (bus)
1301 kvm_io_bus_destroy(bus);
1302 kvm->buses[i] = NULL;
1303 }
1304 kvm_coalesced_mmio_free(kvm);
1305 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1306 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1307
1308
1309
1310
1311
1312
1313
1314
1315 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1316 kvm->mn_active_invalidate_count = 0;
1317 #else
1318 kvm_flush_shadow_all(kvm);
1319 #endif
1320 kvm_arch_destroy_vm(kvm);
1321 kvm_destroy_devices(kvm);
1322 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1323 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1324 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1325 }
1326 cleanup_srcu_struct(&kvm->irq_srcu);
1327 cleanup_srcu_struct(&kvm->srcu);
1328 kvm_arch_free_vm(kvm);
1329 preempt_notifier_dec();
1330 hardware_disable_all();
1331 mmdrop(mm);
1332 module_put(kvm_chardev_ops.owner);
1333 }
1334
1335 void kvm_get_kvm(struct kvm *kvm)
1336 {
1337 refcount_inc(&kvm->users_count);
1338 }
1339 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1340
1341
1342
1343
1344
1345 bool kvm_get_kvm_safe(struct kvm *kvm)
1346 {
1347 return refcount_inc_not_zero(&kvm->users_count);
1348 }
1349 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1350
1351 void kvm_put_kvm(struct kvm *kvm)
1352 {
1353 if (refcount_dec_and_test(&kvm->users_count))
1354 kvm_destroy_vm(kvm);
1355 }
1356 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1357
1358
1359
1360
1361
1362
1363
1364
1365 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1366 {
1367 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1368 }
1369 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1370
1371 static int kvm_vm_release(struct inode *inode, struct file *filp)
1372 {
1373 struct kvm *kvm = filp->private_data;
1374
1375 kvm_irqfd_release(kvm);
1376
1377 kvm_put_kvm(kvm);
1378 return 0;
1379 }
1380
1381
1382
1383
1384
1385 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1386 {
1387 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1388
1389 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1390 if (!memslot->dirty_bitmap)
1391 return -ENOMEM;
1392
1393 return 0;
1394 }
1395
1396 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1397 {
1398 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1399 int node_idx_inactive = active->node_idx ^ 1;
1400
1401 return &kvm->__memslots[as_id][node_idx_inactive];
1402 }
1403
1404
1405
1406
1407
1408
1409 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1410 struct kvm_memory_slot *b)
1411 {
1412 if (WARN_ON_ONCE(!a && !b))
1413 return 0;
1414
1415 if (!a)
1416 return b->as_id;
1417 if (!b)
1418 return a->as_id;
1419
1420 WARN_ON_ONCE(a->as_id != b->as_id);
1421 return a->as_id;
1422 }
1423
1424 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1425 struct kvm_memory_slot *slot)
1426 {
1427 struct rb_root *gfn_tree = &slots->gfn_tree;
1428 struct rb_node **node, *parent;
1429 int idx = slots->node_idx;
1430
1431 parent = NULL;
1432 for (node = &gfn_tree->rb_node; *node; ) {
1433 struct kvm_memory_slot *tmp;
1434
1435 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1436 parent = *node;
1437 if (slot->base_gfn < tmp->base_gfn)
1438 node = &(*node)->rb_left;
1439 else if (slot->base_gfn > tmp->base_gfn)
1440 node = &(*node)->rb_right;
1441 else
1442 BUG();
1443 }
1444
1445 rb_link_node(&slot->gfn_node[idx], parent, node);
1446 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1447 }
1448
1449 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1450 struct kvm_memory_slot *slot)
1451 {
1452 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1453 }
1454
1455 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1456 struct kvm_memory_slot *old,
1457 struct kvm_memory_slot *new)
1458 {
1459 int idx = slots->node_idx;
1460
1461 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1462
1463 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1464 &slots->gfn_tree);
1465 }
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476 static void kvm_replace_memslot(struct kvm *kvm,
1477 struct kvm_memory_slot *old,
1478 struct kvm_memory_slot *new)
1479 {
1480 int as_id = kvm_memslots_get_as_id(old, new);
1481 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1482 int idx = slots->node_idx;
1483
1484 if (old) {
1485 hash_del(&old->id_node[idx]);
1486 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1487
1488 if ((long)old == atomic_long_read(&slots->last_used_slot))
1489 atomic_long_set(&slots->last_used_slot, (long)new);
1490
1491 if (!new) {
1492 kvm_erase_gfn_node(slots, old);
1493 return;
1494 }
1495 }
1496
1497
1498
1499
1500
1501 new->hva_node[idx].start = new->userspace_addr;
1502 new->hva_node[idx].last = new->userspace_addr +
1503 (new->npages << PAGE_SHIFT) - 1;
1504
1505
1506
1507
1508
1509
1510 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1511 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1512
1513
1514
1515
1516
1517
1518
1519
1520 if (old && old->base_gfn == new->base_gfn) {
1521 kvm_replace_gfn_node(slots, old, new);
1522 } else {
1523 if (old)
1524 kvm_erase_gfn_node(slots, old);
1525 kvm_insert_gfn_node(slots, new);
1526 }
1527 }
1528
1529 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1530 {
1531 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1532
1533 #ifdef __KVM_HAVE_READONLY_MEM
1534 valid_flags |= KVM_MEM_READONLY;
1535 #endif
1536
1537 if (mem->flags & ~valid_flags)
1538 return -EINVAL;
1539
1540 return 0;
1541 }
1542
1543 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1544 {
1545 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1546
1547
1548 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1549
1550 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1551 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1552
1553
1554
1555
1556
1557
1558 spin_lock(&kvm->mn_invalidate_lock);
1559 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1560 while (kvm->mn_active_invalidate_count) {
1561 set_current_state(TASK_UNINTERRUPTIBLE);
1562 spin_unlock(&kvm->mn_invalidate_lock);
1563 schedule();
1564 spin_lock(&kvm->mn_invalidate_lock);
1565 }
1566 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1567 rcu_assign_pointer(kvm->memslots[as_id], slots);
1568 spin_unlock(&kvm->mn_invalidate_lock);
1569
1570
1571
1572
1573
1574
1575 mutex_unlock(&kvm->slots_arch_lock);
1576
1577 synchronize_srcu_expedited(&kvm->srcu);
1578
1579
1580
1581
1582
1583
1584
1585 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1586
1587
1588
1589
1590
1591
1592
1593
1594 gen += KVM_ADDRESS_SPACE_NUM;
1595
1596 kvm_arch_memslots_updated(kvm, gen);
1597
1598 slots->generation = gen;
1599 }
1600
1601 static int kvm_prepare_memory_region(struct kvm *kvm,
1602 const struct kvm_memory_slot *old,
1603 struct kvm_memory_slot *new,
1604 enum kvm_mr_change change)
1605 {
1606 int r;
1607
1608
1609
1610
1611
1612
1613
1614
1615 if (change != KVM_MR_DELETE) {
1616 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1617 new->dirty_bitmap = NULL;
1618 else if (old && old->dirty_bitmap)
1619 new->dirty_bitmap = old->dirty_bitmap;
1620 else if (!kvm->dirty_ring_size) {
1621 r = kvm_alloc_dirty_bitmap(new);
1622 if (r)
1623 return r;
1624
1625 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1626 bitmap_set(new->dirty_bitmap, 0, new->npages);
1627 }
1628 }
1629
1630 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1631
1632
1633 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1634 kvm_destroy_dirty_bitmap(new);
1635
1636 return r;
1637 }
1638
1639 static void kvm_commit_memory_region(struct kvm *kvm,
1640 struct kvm_memory_slot *old,
1641 const struct kvm_memory_slot *new,
1642 enum kvm_mr_change change)
1643 {
1644
1645
1646
1647
1648 if (change == KVM_MR_DELETE)
1649 kvm->nr_memslot_pages -= old->npages;
1650 else if (change == KVM_MR_CREATE)
1651 kvm->nr_memslot_pages += new->npages;
1652
1653 kvm_arch_commit_memory_region(kvm, old, new, change);
1654
1655 switch (change) {
1656 case KVM_MR_CREATE:
1657
1658 break;
1659 case KVM_MR_DELETE:
1660
1661 kvm_free_memslot(kvm, old);
1662 break;
1663 case KVM_MR_MOVE:
1664 case KVM_MR_FLAGS_ONLY:
1665
1666
1667
1668
1669 if (old->dirty_bitmap && !new->dirty_bitmap)
1670 kvm_destroy_dirty_bitmap(old);
1671
1672
1673
1674
1675
1676
1677 kfree(old);
1678 break;
1679 default:
1680 BUG();
1681 }
1682 }
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693 static void kvm_activate_memslot(struct kvm *kvm,
1694 struct kvm_memory_slot *old,
1695 struct kvm_memory_slot *new)
1696 {
1697 int as_id = kvm_memslots_get_as_id(old, new);
1698
1699 kvm_swap_active_memslots(kvm, as_id);
1700
1701
1702 kvm_replace_memslot(kvm, old, new);
1703 }
1704
1705 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1706 const struct kvm_memory_slot *src)
1707 {
1708 dest->base_gfn = src->base_gfn;
1709 dest->npages = src->npages;
1710 dest->dirty_bitmap = src->dirty_bitmap;
1711 dest->arch = src->arch;
1712 dest->userspace_addr = src->userspace_addr;
1713 dest->flags = src->flags;
1714 dest->id = src->id;
1715 dest->as_id = src->as_id;
1716 }
1717
1718 static void kvm_invalidate_memslot(struct kvm *kvm,
1719 struct kvm_memory_slot *old,
1720 struct kvm_memory_slot *invalid_slot)
1721 {
1722
1723
1724
1725
1726
1727 kvm_copy_memslot(invalid_slot, old);
1728 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1729 kvm_replace_memslot(kvm, old, invalid_slot);
1730
1731
1732
1733
1734
1735
1736 kvm_swap_active_memslots(kvm, old->as_id);
1737
1738
1739
1740
1741
1742
1743
1744 kvm_arch_flush_shadow_memslot(kvm, old);
1745 kvm_arch_guest_memory_reclaimed(kvm);
1746
1747
1748 mutex_lock(&kvm->slots_arch_lock);
1749
1750
1751
1752
1753
1754
1755
1756
1757 old->arch = invalid_slot->arch;
1758 }
1759
1760 static void kvm_create_memslot(struct kvm *kvm,
1761 struct kvm_memory_slot *new)
1762 {
1763
1764 kvm_replace_memslot(kvm, NULL, new);
1765 kvm_activate_memslot(kvm, NULL, new);
1766 }
1767
1768 static void kvm_delete_memslot(struct kvm *kvm,
1769 struct kvm_memory_slot *old,
1770 struct kvm_memory_slot *invalid_slot)
1771 {
1772
1773
1774
1775
1776 kvm_replace_memslot(kvm, old, NULL);
1777 kvm_activate_memslot(kvm, invalid_slot, NULL);
1778 }
1779
1780 static void kvm_move_memslot(struct kvm *kvm,
1781 struct kvm_memory_slot *old,
1782 struct kvm_memory_slot *new,
1783 struct kvm_memory_slot *invalid_slot)
1784 {
1785
1786
1787
1788
1789 kvm_replace_memslot(kvm, old, new);
1790 kvm_activate_memslot(kvm, invalid_slot, new);
1791 }
1792
1793 static void kvm_update_flags_memslot(struct kvm *kvm,
1794 struct kvm_memory_slot *old,
1795 struct kvm_memory_slot *new)
1796 {
1797
1798
1799
1800
1801
1802 kvm_replace_memslot(kvm, old, new);
1803 kvm_activate_memslot(kvm, old, new);
1804 }
1805
1806 static int kvm_set_memslot(struct kvm *kvm,
1807 struct kvm_memory_slot *old,
1808 struct kvm_memory_slot *new,
1809 enum kvm_mr_change change)
1810 {
1811 struct kvm_memory_slot *invalid_slot;
1812 int r;
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828 mutex_lock(&kvm->slots_arch_lock);
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1844 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1845 if (!invalid_slot) {
1846 mutex_unlock(&kvm->slots_arch_lock);
1847 return -ENOMEM;
1848 }
1849 kvm_invalidate_memslot(kvm, old, invalid_slot);
1850 }
1851
1852 r = kvm_prepare_memory_region(kvm, old, new, change);
1853 if (r) {
1854
1855
1856
1857
1858
1859
1860 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1861 kvm_activate_memslot(kvm, invalid_slot, old);
1862 kfree(invalid_slot);
1863 } else {
1864 mutex_unlock(&kvm->slots_arch_lock);
1865 }
1866 return r;
1867 }
1868
1869
1870
1871
1872
1873
1874
1875
1876 if (change == KVM_MR_CREATE)
1877 kvm_create_memslot(kvm, new);
1878 else if (change == KVM_MR_DELETE)
1879 kvm_delete_memslot(kvm, old, invalid_slot);
1880 else if (change == KVM_MR_MOVE)
1881 kvm_move_memslot(kvm, old, new, invalid_slot);
1882 else if (change == KVM_MR_FLAGS_ONLY)
1883 kvm_update_flags_memslot(kvm, old, new);
1884 else
1885 BUG();
1886
1887
1888 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1889 kfree(invalid_slot);
1890
1891
1892
1893
1894
1895
1896 kvm_commit_memory_region(kvm, old, new, change);
1897
1898 return 0;
1899 }
1900
1901 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1902 gfn_t start, gfn_t end)
1903 {
1904 struct kvm_memslot_iter iter;
1905
1906 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1907 if (iter.slot->id != id)
1908 return true;
1909 }
1910
1911 return false;
1912 }
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922 int __kvm_set_memory_region(struct kvm *kvm,
1923 const struct kvm_userspace_memory_region *mem)
1924 {
1925 struct kvm_memory_slot *old, *new;
1926 struct kvm_memslots *slots;
1927 enum kvm_mr_change change;
1928 unsigned long npages;
1929 gfn_t base_gfn;
1930 int as_id, id;
1931 int r;
1932
1933 r = check_memory_region_flags(mem);
1934 if (r)
1935 return r;
1936
1937 as_id = mem->slot >> 16;
1938 id = (u16)mem->slot;
1939
1940
1941 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1942 (mem->memory_size != (unsigned long)mem->memory_size))
1943 return -EINVAL;
1944 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1945 return -EINVAL;
1946
1947 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1948 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1949 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1950 mem->memory_size))
1951 return -EINVAL;
1952 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1953 return -EINVAL;
1954 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1955 return -EINVAL;
1956 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1957 return -EINVAL;
1958
1959 slots = __kvm_memslots(kvm, as_id);
1960
1961
1962
1963
1964
1965 old = id_to_memslot(slots, id);
1966
1967 if (!mem->memory_size) {
1968 if (!old || !old->npages)
1969 return -EINVAL;
1970
1971 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1972 return -EIO;
1973
1974 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1975 }
1976
1977 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1978 npages = (mem->memory_size >> PAGE_SHIFT);
1979
1980 if (!old || !old->npages) {
1981 change = KVM_MR_CREATE;
1982
1983
1984
1985
1986
1987 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1988 return -EINVAL;
1989 } else {
1990 if ((mem->userspace_addr != old->userspace_addr) ||
1991 (npages != old->npages) ||
1992 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1993 return -EINVAL;
1994
1995 if (base_gfn != old->base_gfn)
1996 change = KVM_MR_MOVE;
1997 else if (mem->flags != old->flags)
1998 change = KVM_MR_FLAGS_ONLY;
1999 else
2000 return 0;
2001 }
2002
2003 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2004 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2005 return -EEXIST;
2006
2007
2008 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2009 if (!new)
2010 return -ENOMEM;
2011
2012 new->as_id = as_id;
2013 new->id = id;
2014 new->base_gfn = base_gfn;
2015 new->npages = npages;
2016 new->flags = mem->flags;
2017 new->userspace_addr = mem->userspace_addr;
2018
2019 r = kvm_set_memslot(kvm, old, new, change);
2020 if (r)
2021 kfree(new);
2022 return r;
2023 }
2024 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2025
2026 int kvm_set_memory_region(struct kvm *kvm,
2027 const struct kvm_userspace_memory_region *mem)
2028 {
2029 int r;
2030
2031 mutex_lock(&kvm->slots_lock);
2032 r = __kvm_set_memory_region(kvm, mem);
2033 mutex_unlock(&kvm->slots_lock);
2034 return r;
2035 }
2036 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2037
2038 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2039 struct kvm_userspace_memory_region *mem)
2040 {
2041 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2042 return -EINVAL;
2043
2044 return kvm_set_memory_region(kvm, mem);
2045 }
2046
2047 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2048
2049
2050
2051
2052
2053
2054
2055 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2056 int *is_dirty, struct kvm_memory_slot **memslot)
2057 {
2058 struct kvm_memslots *slots;
2059 int i, as_id, id;
2060 unsigned long n;
2061 unsigned long any = 0;
2062
2063
2064 if (kvm->dirty_ring_size)
2065 return -ENXIO;
2066
2067 *memslot = NULL;
2068 *is_dirty = 0;
2069
2070 as_id = log->slot >> 16;
2071 id = (u16)log->slot;
2072 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2073 return -EINVAL;
2074
2075 slots = __kvm_memslots(kvm, as_id);
2076 *memslot = id_to_memslot(slots, id);
2077 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2078 return -ENOENT;
2079
2080 kvm_arch_sync_dirty_log(kvm, *memslot);
2081
2082 n = kvm_dirty_bitmap_bytes(*memslot);
2083
2084 for (i = 0; !any && i < n/sizeof(long); ++i)
2085 any = (*memslot)->dirty_bitmap[i];
2086
2087 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2088 return -EFAULT;
2089
2090 if (any)
2091 *is_dirty = 1;
2092 return 0;
2093 }
2094 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2095
2096 #else
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2119 {
2120 struct kvm_memslots *slots;
2121 struct kvm_memory_slot *memslot;
2122 int i, as_id, id;
2123 unsigned long n;
2124 unsigned long *dirty_bitmap;
2125 unsigned long *dirty_bitmap_buffer;
2126 bool flush;
2127
2128
2129 if (kvm->dirty_ring_size)
2130 return -ENXIO;
2131
2132 as_id = log->slot >> 16;
2133 id = (u16)log->slot;
2134 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2135 return -EINVAL;
2136
2137 slots = __kvm_memslots(kvm, as_id);
2138 memslot = id_to_memslot(slots, id);
2139 if (!memslot || !memslot->dirty_bitmap)
2140 return -ENOENT;
2141
2142 dirty_bitmap = memslot->dirty_bitmap;
2143
2144 kvm_arch_sync_dirty_log(kvm, memslot);
2145
2146 n = kvm_dirty_bitmap_bytes(memslot);
2147 flush = false;
2148 if (kvm->manual_dirty_log_protect) {
2149
2150
2151
2152
2153
2154
2155
2156
2157 dirty_bitmap_buffer = dirty_bitmap;
2158 } else {
2159 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2160 memset(dirty_bitmap_buffer, 0, n);
2161
2162 KVM_MMU_LOCK(kvm);
2163 for (i = 0; i < n / sizeof(long); i++) {
2164 unsigned long mask;
2165 gfn_t offset;
2166
2167 if (!dirty_bitmap[i])
2168 continue;
2169
2170 flush = true;
2171 mask = xchg(&dirty_bitmap[i], 0);
2172 dirty_bitmap_buffer[i] = mask;
2173
2174 offset = i * BITS_PER_LONG;
2175 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2176 offset, mask);
2177 }
2178 KVM_MMU_UNLOCK(kvm);
2179 }
2180
2181 if (flush)
2182 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2183
2184 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2185 return -EFAULT;
2186 return 0;
2187 }
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2210 struct kvm_dirty_log *log)
2211 {
2212 int r;
2213
2214 mutex_lock(&kvm->slots_lock);
2215
2216 r = kvm_get_dirty_log_protect(kvm, log);
2217
2218 mutex_unlock(&kvm->slots_lock);
2219 return r;
2220 }
2221
2222
2223
2224
2225
2226
2227
2228 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2229 struct kvm_clear_dirty_log *log)
2230 {
2231 struct kvm_memslots *slots;
2232 struct kvm_memory_slot *memslot;
2233 int as_id, id;
2234 gfn_t offset;
2235 unsigned long i, n;
2236 unsigned long *dirty_bitmap;
2237 unsigned long *dirty_bitmap_buffer;
2238 bool flush;
2239
2240
2241 if (kvm->dirty_ring_size)
2242 return -ENXIO;
2243
2244 as_id = log->slot >> 16;
2245 id = (u16)log->slot;
2246 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2247 return -EINVAL;
2248
2249 if (log->first_page & 63)
2250 return -EINVAL;
2251
2252 slots = __kvm_memslots(kvm, as_id);
2253 memslot = id_to_memslot(slots, id);
2254 if (!memslot || !memslot->dirty_bitmap)
2255 return -ENOENT;
2256
2257 dirty_bitmap = memslot->dirty_bitmap;
2258
2259 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2260
2261 if (log->first_page > memslot->npages ||
2262 log->num_pages > memslot->npages - log->first_page ||
2263 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2264 return -EINVAL;
2265
2266 kvm_arch_sync_dirty_log(kvm, memslot);
2267
2268 flush = false;
2269 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2270 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2271 return -EFAULT;
2272
2273 KVM_MMU_LOCK(kvm);
2274 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2275 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2276 i++, offset += BITS_PER_LONG) {
2277 unsigned long mask = *dirty_bitmap_buffer++;
2278 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2279 if (!mask)
2280 continue;
2281
2282 mask &= atomic_long_fetch_andnot(mask, p);
2283
2284
2285
2286
2287
2288
2289
2290 if (mask) {
2291 flush = true;
2292 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2293 offset, mask);
2294 }
2295 }
2296 KVM_MMU_UNLOCK(kvm);
2297
2298 if (flush)
2299 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2300
2301 return 0;
2302 }
2303
2304 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2305 struct kvm_clear_dirty_log *log)
2306 {
2307 int r;
2308
2309 mutex_lock(&kvm->slots_lock);
2310
2311 r = kvm_clear_dirty_log_protect(kvm, log);
2312
2313 mutex_unlock(&kvm->slots_lock);
2314 return r;
2315 }
2316 #endif
2317
2318 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2319 {
2320 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2321 }
2322 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2323
2324 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2325 {
2326 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2327 u64 gen = slots->generation;
2328 struct kvm_memory_slot *slot;
2329
2330
2331
2332
2333
2334 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2335 vcpu->last_used_slot = NULL;
2336 vcpu->last_used_slot_gen = gen;
2337 }
2338
2339 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2340 if (slot)
2341 return slot;
2342
2343
2344
2345
2346
2347
2348 slot = search_memslots(slots, gfn, false);
2349 if (slot) {
2350 vcpu->last_used_slot = slot;
2351 return slot;
2352 }
2353
2354 return NULL;
2355 }
2356
2357 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2358 {
2359 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2360
2361 return kvm_is_visible_memslot(memslot);
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2364
2365 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2366 {
2367 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2368
2369 return kvm_is_visible_memslot(memslot);
2370 }
2371 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2372
2373 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2374 {
2375 struct vm_area_struct *vma;
2376 unsigned long addr, size;
2377
2378 size = PAGE_SIZE;
2379
2380 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2381 if (kvm_is_error_hva(addr))
2382 return PAGE_SIZE;
2383
2384 mmap_read_lock(current->mm);
2385 vma = find_vma(current->mm, addr);
2386 if (!vma)
2387 goto out;
2388
2389 size = vma_kernel_pagesize(vma);
2390
2391 out:
2392 mmap_read_unlock(current->mm);
2393
2394 return size;
2395 }
2396
2397 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2398 {
2399 return slot->flags & KVM_MEM_READONLY;
2400 }
2401
2402 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2403 gfn_t *nr_pages, bool write)
2404 {
2405 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2406 return KVM_HVA_ERR_BAD;
2407
2408 if (memslot_is_readonly(slot) && write)
2409 return KVM_HVA_ERR_RO_BAD;
2410
2411 if (nr_pages)
2412 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2413
2414 return __gfn_to_hva_memslot(slot, gfn);
2415 }
2416
2417 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2418 gfn_t *nr_pages)
2419 {
2420 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2421 }
2422
2423 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2424 gfn_t gfn)
2425 {
2426 return gfn_to_hva_many(slot, gfn, NULL);
2427 }
2428 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2429
2430 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2431 {
2432 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2433 }
2434 EXPORT_SYMBOL_GPL(gfn_to_hva);
2435
2436 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2437 {
2438 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2439 }
2440 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2451 gfn_t gfn, bool *writable)
2452 {
2453 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2454
2455 if (!kvm_is_error_hva(hva) && writable)
2456 *writable = !memslot_is_readonly(slot);
2457
2458 return hva;
2459 }
2460
2461 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2462 {
2463 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2464
2465 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2466 }
2467
2468 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2469 {
2470 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2471
2472 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2473 }
2474
2475 static inline int check_user_page_hwpoison(unsigned long addr)
2476 {
2477 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2478
2479 rc = get_user_pages(addr, 1, flags, NULL, NULL);
2480 return rc == -EHWPOISON;
2481 }
2482
2483
2484
2485
2486
2487
2488 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2489 bool *writable, kvm_pfn_t *pfn)
2490 {
2491 struct page *page[1];
2492
2493
2494
2495
2496
2497
2498 if (!(write_fault || writable))
2499 return false;
2500
2501 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2502 *pfn = page_to_pfn(page[0]);
2503
2504 if (writable)
2505 *writable = true;
2506 return true;
2507 }
2508
2509 return false;
2510 }
2511
2512
2513
2514
2515
2516 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2517 bool *writable, kvm_pfn_t *pfn)
2518 {
2519 unsigned int flags = FOLL_HWPOISON;
2520 struct page *page;
2521 int npages;
2522
2523 might_sleep();
2524
2525 if (writable)
2526 *writable = write_fault;
2527
2528 if (write_fault)
2529 flags |= FOLL_WRITE;
2530 if (async)
2531 flags |= FOLL_NOWAIT;
2532
2533 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2534 if (npages != 1)
2535 return npages;
2536
2537
2538 if (unlikely(!write_fault) && writable) {
2539 struct page *wpage;
2540
2541 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2542 *writable = true;
2543 put_page(page);
2544 page = wpage;
2545 }
2546 }
2547 *pfn = page_to_pfn(page);
2548 return npages;
2549 }
2550
2551 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2552 {
2553 if (unlikely(!(vma->vm_flags & VM_READ)))
2554 return false;
2555
2556 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2557 return false;
2558
2559 return true;
2560 }
2561
2562 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2563 {
2564 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2565
2566 if (!page)
2567 return 1;
2568
2569 return get_page_unless_zero(page);
2570 }
2571
2572 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2573 unsigned long addr, bool write_fault,
2574 bool *writable, kvm_pfn_t *p_pfn)
2575 {
2576 kvm_pfn_t pfn;
2577 pte_t *ptep;
2578 spinlock_t *ptl;
2579 int r;
2580
2581 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2582 if (r) {
2583
2584
2585
2586
2587 bool unlocked = false;
2588 r = fixup_user_fault(current->mm, addr,
2589 (write_fault ? FAULT_FLAG_WRITE : 0),
2590 &unlocked);
2591 if (unlocked)
2592 return -EAGAIN;
2593 if (r)
2594 return r;
2595
2596 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2597 if (r)
2598 return r;
2599 }
2600
2601 if (write_fault && !pte_write(*ptep)) {
2602 pfn = KVM_PFN_ERR_RO_FAULT;
2603 goto out;
2604 }
2605
2606 if (writable)
2607 *writable = pte_write(*ptep);
2608 pfn = pte_pfn(*ptep);
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627 if (!kvm_try_get_pfn(pfn))
2628 r = -EFAULT;
2629
2630 out:
2631 pte_unmap_unlock(ptep, ptl);
2632 *p_pfn = pfn;
2633
2634 return r;
2635 }
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2652 bool write_fault, bool *writable)
2653 {
2654 struct vm_area_struct *vma;
2655 kvm_pfn_t pfn;
2656 int npages, r;
2657
2658
2659 BUG_ON(atomic && async);
2660
2661 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2662 return pfn;
2663
2664 if (atomic)
2665 return KVM_PFN_ERR_FAULT;
2666
2667 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2668 if (npages == 1)
2669 return pfn;
2670
2671 mmap_read_lock(current->mm);
2672 if (npages == -EHWPOISON ||
2673 (!async && check_user_page_hwpoison(addr))) {
2674 pfn = KVM_PFN_ERR_HWPOISON;
2675 goto exit;
2676 }
2677
2678 retry:
2679 vma = vma_lookup(current->mm, addr);
2680
2681 if (vma == NULL)
2682 pfn = KVM_PFN_ERR_FAULT;
2683 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2684 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2685 if (r == -EAGAIN)
2686 goto retry;
2687 if (r < 0)
2688 pfn = KVM_PFN_ERR_FAULT;
2689 } else {
2690 if (async && vma_is_valid(vma, write_fault))
2691 *async = true;
2692 pfn = KVM_PFN_ERR_FAULT;
2693 }
2694 exit:
2695 mmap_read_unlock(current->mm);
2696 return pfn;
2697 }
2698
2699 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2700 bool atomic, bool *async, bool write_fault,
2701 bool *writable, hva_t *hva)
2702 {
2703 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2704
2705 if (hva)
2706 *hva = addr;
2707
2708 if (addr == KVM_HVA_ERR_RO_BAD) {
2709 if (writable)
2710 *writable = false;
2711 return KVM_PFN_ERR_RO_FAULT;
2712 }
2713
2714 if (kvm_is_error_hva(addr)) {
2715 if (writable)
2716 *writable = false;
2717 return KVM_PFN_NOSLOT;
2718 }
2719
2720
2721 if (writable && memslot_is_readonly(slot)) {
2722 *writable = false;
2723 writable = NULL;
2724 }
2725
2726 return hva_to_pfn(addr, atomic, async, write_fault,
2727 writable);
2728 }
2729 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2730
2731 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2732 bool *writable)
2733 {
2734 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2735 write_fault, writable, NULL);
2736 }
2737 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2738
2739 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2740 {
2741 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2742 }
2743 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2744
2745 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2746 {
2747 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2748 }
2749 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2750
2751 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2752 {
2753 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2754 }
2755 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2756
2757 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2758 {
2759 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2760 }
2761 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2762
2763 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2764 {
2765 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2766 }
2767 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2768
2769 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2770 struct page **pages, int nr_pages)
2771 {
2772 unsigned long addr;
2773 gfn_t entry = 0;
2774
2775 addr = gfn_to_hva_many(slot, gfn, &entry);
2776 if (kvm_is_error_hva(addr))
2777 return -1;
2778
2779 if (entry < nr_pages)
2780 return 0;
2781
2782 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2783 }
2784 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2785
2786
2787
2788
2789
2790
2791
2792 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2793 {
2794 struct page *page;
2795 kvm_pfn_t pfn;
2796
2797 pfn = gfn_to_pfn(kvm, gfn);
2798
2799 if (is_error_noslot_pfn(pfn))
2800 return KVM_ERR_PTR_BAD_PAGE;
2801
2802 page = kvm_pfn_to_refcounted_page(pfn);
2803 if (!page)
2804 return KVM_ERR_PTR_BAD_PAGE;
2805
2806 return page;
2807 }
2808 EXPORT_SYMBOL_GPL(gfn_to_page);
2809
2810 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2811 {
2812 if (dirty)
2813 kvm_release_pfn_dirty(pfn);
2814 else
2815 kvm_release_pfn_clean(pfn);
2816 }
2817
2818 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2819 {
2820 kvm_pfn_t pfn;
2821 void *hva = NULL;
2822 struct page *page = KVM_UNMAPPED_PAGE;
2823
2824 if (!map)
2825 return -EINVAL;
2826
2827 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2828 if (is_error_noslot_pfn(pfn))
2829 return -EINVAL;
2830
2831 if (pfn_valid(pfn)) {
2832 page = pfn_to_page(pfn);
2833 hva = kmap(page);
2834 #ifdef CONFIG_HAS_IOMEM
2835 } else {
2836 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2837 #endif
2838 }
2839
2840 if (!hva)
2841 return -EFAULT;
2842
2843 map->page = page;
2844 map->hva = hva;
2845 map->pfn = pfn;
2846 map->gfn = gfn;
2847
2848 return 0;
2849 }
2850 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2851
2852 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2853 {
2854 if (!map)
2855 return;
2856
2857 if (!map->hva)
2858 return;
2859
2860 if (map->page != KVM_UNMAPPED_PAGE)
2861 kunmap(map->page);
2862 #ifdef CONFIG_HAS_IOMEM
2863 else
2864 memunmap(map->hva);
2865 #endif
2866
2867 if (dirty)
2868 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2869
2870 kvm_release_pfn(map->pfn, dirty);
2871
2872 map->hva = NULL;
2873 map->page = NULL;
2874 }
2875 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2876
2877 static bool kvm_is_ad_tracked_page(struct page *page)
2878 {
2879
2880
2881
2882
2883 return !PageReserved(page);
2884 }
2885
2886 static void kvm_set_page_dirty(struct page *page)
2887 {
2888 if (kvm_is_ad_tracked_page(page))
2889 SetPageDirty(page);
2890 }
2891
2892 static void kvm_set_page_accessed(struct page *page)
2893 {
2894 if (kvm_is_ad_tracked_page(page))
2895 mark_page_accessed(page);
2896 }
2897
2898 void kvm_release_page_clean(struct page *page)
2899 {
2900 WARN_ON(is_error_page(page));
2901
2902 kvm_set_page_accessed(page);
2903 put_page(page);
2904 }
2905 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2906
2907 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2908 {
2909 struct page *page;
2910
2911 if (is_error_noslot_pfn(pfn))
2912 return;
2913
2914 page = kvm_pfn_to_refcounted_page(pfn);
2915 if (!page)
2916 return;
2917
2918 kvm_release_page_clean(page);
2919 }
2920 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2921
2922 void kvm_release_page_dirty(struct page *page)
2923 {
2924 WARN_ON(is_error_page(page));
2925
2926 kvm_set_page_dirty(page);
2927 kvm_release_page_clean(page);
2928 }
2929 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2930
2931 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2932 {
2933 struct page *page;
2934
2935 if (is_error_noslot_pfn(pfn))
2936 return;
2937
2938 page = kvm_pfn_to_refcounted_page(pfn);
2939 if (!page)
2940 return;
2941
2942 kvm_release_page_dirty(page);
2943 }
2944 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2945
2946
2947
2948
2949
2950
2951 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2952 {
2953 if (WARN_ON(is_error_noslot_pfn(pfn)))
2954 return;
2955
2956 if (pfn_valid(pfn))
2957 kvm_set_page_dirty(pfn_to_page(pfn));
2958 }
2959 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2960
2961 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2962 {
2963 if (WARN_ON(is_error_noslot_pfn(pfn)))
2964 return;
2965
2966 if (pfn_valid(pfn))
2967 kvm_set_page_accessed(pfn_to_page(pfn));
2968 }
2969 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2970
2971 static int next_segment(unsigned long len, int offset)
2972 {
2973 if (len > PAGE_SIZE - offset)
2974 return PAGE_SIZE - offset;
2975 else
2976 return len;
2977 }
2978
2979 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2980 void *data, int offset, int len)
2981 {
2982 int r;
2983 unsigned long addr;
2984
2985 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2986 if (kvm_is_error_hva(addr))
2987 return -EFAULT;
2988 r = __copy_from_user(data, (void __user *)addr + offset, len);
2989 if (r)
2990 return -EFAULT;
2991 return 0;
2992 }
2993
2994 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2995 int len)
2996 {
2997 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2998
2999 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3000 }
3001 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3002
3003 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3004 int offset, int len)
3005 {
3006 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3007
3008 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3009 }
3010 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3011
3012 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3013 {
3014 gfn_t gfn = gpa >> PAGE_SHIFT;
3015 int seg;
3016 int offset = offset_in_page(gpa);
3017 int ret;
3018
3019 while ((seg = next_segment(len, offset)) != 0) {
3020 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3021 if (ret < 0)
3022 return ret;
3023 offset = 0;
3024 len -= seg;
3025 data += seg;
3026 ++gfn;
3027 }
3028 return 0;
3029 }
3030 EXPORT_SYMBOL_GPL(kvm_read_guest);
3031
3032 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3033 {
3034 gfn_t gfn = gpa >> PAGE_SHIFT;
3035 int seg;
3036 int offset = offset_in_page(gpa);
3037 int ret;
3038
3039 while ((seg = next_segment(len, offset)) != 0) {
3040 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3041 if (ret < 0)
3042 return ret;
3043 offset = 0;
3044 len -= seg;
3045 data += seg;
3046 ++gfn;
3047 }
3048 return 0;
3049 }
3050 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3051
3052 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3053 void *data, int offset, unsigned long len)
3054 {
3055 int r;
3056 unsigned long addr;
3057
3058 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3059 if (kvm_is_error_hva(addr))
3060 return -EFAULT;
3061 pagefault_disable();
3062 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3063 pagefault_enable();
3064 if (r)
3065 return -EFAULT;
3066 return 0;
3067 }
3068
3069 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3070 void *data, unsigned long len)
3071 {
3072 gfn_t gfn = gpa >> PAGE_SHIFT;
3073 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3074 int offset = offset_in_page(gpa);
3075
3076 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3077 }
3078 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3079
3080 static int __kvm_write_guest_page(struct kvm *kvm,
3081 struct kvm_memory_slot *memslot, gfn_t gfn,
3082 const void *data, int offset, int len)
3083 {
3084 int r;
3085 unsigned long addr;
3086
3087 addr = gfn_to_hva_memslot(memslot, gfn);
3088 if (kvm_is_error_hva(addr))
3089 return -EFAULT;
3090 r = __copy_to_user((void __user *)addr + offset, data, len);
3091 if (r)
3092 return -EFAULT;
3093 mark_page_dirty_in_slot(kvm, memslot, gfn);
3094 return 0;
3095 }
3096
3097 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3098 const void *data, int offset, int len)
3099 {
3100 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3101
3102 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3103 }
3104 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3105
3106 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3107 const void *data, int offset, int len)
3108 {
3109 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3110
3111 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3112 }
3113 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3114
3115 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3116 unsigned long len)
3117 {
3118 gfn_t gfn = gpa >> PAGE_SHIFT;
3119 int seg;
3120 int offset = offset_in_page(gpa);
3121 int ret;
3122
3123 while ((seg = next_segment(len, offset)) != 0) {
3124 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3125 if (ret < 0)
3126 return ret;
3127 offset = 0;
3128 len -= seg;
3129 data += seg;
3130 ++gfn;
3131 }
3132 return 0;
3133 }
3134 EXPORT_SYMBOL_GPL(kvm_write_guest);
3135
3136 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3137 unsigned long len)
3138 {
3139 gfn_t gfn = gpa >> PAGE_SHIFT;
3140 int seg;
3141 int offset = offset_in_page(gpa);
3142 int ret;
3143
3144 while ((seg = next_segment(len, offset)) != 0) {
3145 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3146 if (ret < 0)
3147 return ret;
3148 offset = 0;
3149 len -= seg;
3150 data += seg;
3151 ++gfn;
3152 }
3153 return 0;
3154 }
3155 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3156
3157 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3158 struct gfn_to_hva_cache *ghc,
3159 gpa_t gpa, unsigned long len)
3160 {
3161 int offset = offset_in_page(gpa);
3162 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3163 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3164 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3165 gfn_t nr_pages_avail;
3166
3167
3168 ghc->generation = slots->generation;
3169
3170 if (start_gfn > end_gfn) {
3171 ghc->hva = KVM_HVA_ERR_BAD;
3172 return -EINVAL;
3173 }
3174
3175
3176
3177
3178
3179 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3180 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3181 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3182 &nr_pages_avail);
3183 if (kvm_is_error_hva(ghc->hva))
3184 return -EFAULT;
3185 }
3186
3187
3188 if (nr_pages_needed == 1)
3189 ghc->hva += offset;
3190 else
3191 ghc->memslot = NULL;
3192
3193 ghc->gpa = gpa;
3194 ghc->len = len;
3195 return 0;
3196 }
3197
3198 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3199 gpa_t gpa, unsigned long len)
3200 {
3201 struct kvm_memslots *slots = kvm_memslots(kvm);
3202 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3203 }
3204 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3205
3206 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3207 void *data, unsigned int offset,
3208 unsigned long len)
3209 {
3210 struct kvm_memslots *slots = kvm_memslots(kvm);
3211 int r;
3212 gpa_t gpa = ghc->gpa + offset;
3213
3214 if (WARN_ON_ONCE(len + offset > ghc->len))
3215 return -EINVAL;
3216
3217 if (slots->generation != ghc->generation) {
3218 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3219 return -EFAULT;
3220 }
3221
3222 if (kvm_is_error_hva(ghc->hva))
3223 return -EFAULT;
3224
3225 if (unlikely(!ghc->memslot))
3226 return kvm_write_guest(kvm, gpa, data, len);
3227
3228 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3229 if (r)
3230 return -EFAULT;
3231 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3232
3233 return 0;
3234 }
3235 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3236
3237 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3238 void *data, unsigned long len)
3239 {
3240 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3241 }
3242 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3243
3244 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3245 void *data, unsigned int offset,
3246 unsigned long len)
3247 {
3248 struct kvm_memslots *slots = kvm_memslots(kvm);
3249 int r;
3250 gpa_t gpa = ghc->gpa + offset;
3251
3252 if (WARN_ON_ONCE(len + offset > ghc->len))
3253 return -EINVAL;
3254
3255 if (slots->generation != ghc->generation) {
3256 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3257 return -EFAULT;
3258 }
3259
3260 if (kvm_is_error_hva(ghc->hva))
3261 return -EFAULT;
3262
3263 if (unlikely(!ghc->memslot))
3264 return kvm_read_guest(kvm, gpa, data, len);
3265
3266 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3267 if (r)
3268 return -EFAULT;
3269
3270 return 0;
3271 }
3272 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3273
3274 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3275 void *data, unsigned long len)
3276 {
3277 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3278 }
3279 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3280
3281 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3282 {
3283 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3284 gfn_t gfn = gpa >> PAGE_SHIFT;
3285 int seg;
3286 int offset = offset_in_page(gpa);
3287 int ret;
3288
3289 while ((seg = next_segment(len, offset)) != 0) {
3290 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3291 if (ret < 0)
3292 return ret;
3293 offset = 0;
3294 len -= seg;
3295 ++gfn;
3296 }
3297 return 0;
3298 }
3299 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3300
3301 void mark_page_dirty_in_slot(struct kvm *kvm,
3302 const struct kvm_memory_slot *memslot,
3303 gfn_t gfn)
3304 {
3305 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3306
3307 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3308 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3309 return;
3310 #endif
3311
3312 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3313 unsigned long rel_gfn = gfn - memslot->base_gfn;
3314 u32 slot = (memslot->as_id << 16) | memslot->id;
3315
3316 if (kvm->dirty_ring_size)
3317 kvm_dirty_ring_push(&vcpu->dirty_ring,
3318 slot, rel_gfn);
3319 else
3320 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3321 }
3322 }
3323 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3324
3325 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3326 {
3327 struct kvm_memory_slot *memslot;
3328
3329 memslot = gfn_to_memslot(kvm, gfn);
3330 mark_page_dirty_in_slot(kvm, memslot, gfn);
3331 }
3332 EXPORT_SYMBOL_GPL(mark_page_dirty);
3333
3334 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3335 {
3336 struct kvm_memory_slot *memslot;
3337
3338 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3339 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3340 }
3341 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3342
3343 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3344 {
3345 if (!vcpu->sigset_active)
3346 return;
3347
3348
3349
3350
3351
3352
3353
3354 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3355 }
3356
3357 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3358 {
3359 if (!vcpu->sigset_active)
3360 return;
3361
3362 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3363 sigemptyset(¤t->real_blocked);
3364 }
3365
3366 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3367 {
3368 unsigned int old, val, grow, grow_start;
3369
3370 old = val = vcpu->halt_poll_ns;
3371 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3372 grow = READ_ONCE(halt_poll_ns_grow);
3373 if (!grow)
3374 goto out;
3375
3376 val *= grow;
3377 if (val < grow_start)
3378 val = grow_start;
3379
3380 if (val > vcpu->kvm->max_halt_poll_ns)
3381 val = vcpu->kvm->max_halt_poll_ns;
3382
3383 vcpu->halt_poll_ns = val;
3384 out:
3385 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3386 }
3387
3388 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3389 {
3390 unsigned int old, val, shrink, grow_start;
3391
3392 old = val = vcpu->halt_poll_ns;
3393 shrink = READ_ONCE(halt_poll_ns_shrink);
3394 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3395 if (shrink == 0)
3396 val = 0;
3397 else
3398 val /= shrink;
3399
3400 if (val < grow_start)
3401 val = 0;
3402
3403 vcpu->halt_poll_ns = val;
3404 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3405 }
3406
3407 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3408 {
3409 int ret = -EINTR;
3410 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3411
3412 if (kvm_arch_vcpu_runnable(vcpu)) {
3413 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3414 goto out;
3415 }
3416 if (kvm_cpu_has_pending_timer(vcpu))
3417 goto out;
3418 if (signal_pending(current))
3419 goto out;
3420 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3421 goto out;
3422
3423 ret = 0;
3424 out:
3425 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3426 return ret;
3427 }
3428
3429
3430
3431
3432
3433
3434 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3435 {
3436 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3437 bool waited = false;
3438
3439 vcpu->stat.generic.blocking = 1;
3440
3441 preempt_disable();
3442 kvm_arch_vcpu_blocking(vcpu);
3443 prepare_to_rcuwait(wait);
3444 preempt_enable();
3445
3446 for (;;) {
3447 set_current_state(TASK_INTERRUPTIBLE);
3448
3449 if (kvm_vcpu_check_block(vcpu) < 0)
3450 break;
3451
3452 waited = true;
3453 schedule();
3454 }
3455
3456 preempt_disable();
3457 finish_rcuwait(wait);
3458 kvm_arch_vcpu_unblocking(vcpu);
3459 preempt_enable();
3460
3461 vcpu->stat.generic.blocking = 0;
3462
3463 return waited;
3464 }
3465
3466 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3467 ktime_t end, bool success)
3468 {
3469 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3470 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3471
3472 ++vcpu->stat.generic.halt_attempted_poll;
3473
3474 if (success) {
3475 ++vcpu->stat.generic.halt_successful_poll;
3476
3477 if (!vcpu_valid_wakeup(vcpu))
3478 ++vcpu->stat.generic.halt_poll_invalid;
3479
3480 stats->halt_poll_success_ns += poll_ns;
3481 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3482 } else {
3483 stats->halt_poll_fail_ns += poll_ns;
3484 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3485 }
3486 }
3487
3488
3489
3490
3491
3492
3493
3494 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3495 {
3496 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3497 bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3498 ktime_t start, cur, poll_end;
3499 bool waited = false;
3500 u64 halt_ns;
3501
3502 start = cur = poll_end = ktime_get();
3503 if (do_halt_poll) {
3504 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3505
3506 do {
3507
3508
3509
3510
3511 if (kvm_vcpu_check_block(vcpu) < 0)
3512 goto out;
3513 cpu_relax();
3514 poll_end = cur = ktime_get();
3515 } while (kvm_vcpu_can_poll(cur, stop));
3516 }
3517
3518 waited = kvm_vcpu_block(vcpu);
3519
3520 cur = ktime_get();
3521 if (waited) {
3522 vcpu->stat.generic.halt_wait_ns +=
3523 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3524 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3525 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3526 }
3527 out:
3528
3529 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3530
3531
3532
3533
3534
3535
3536 if (do_halt_poll)
3537 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3538
3539 if (halt_poll_allowed) {
3540 if (!vcpu_valid_wakeup(vcpu)) {
3541 shrink_halt_poll_ns(vcpu);
3542 } else if (vcpu->kvm->max_halt_poll_ns) {
3543 if (halt_ns <= vcpu->halt_poll_ns)
3544 ;
3545
3546 else if (vcpu->halt_poll_ns &&
3547 halt_ns > vcpu->kvm->max_halt_poll_ns)
3548 shrink_halt_poll_ns(vcpu);
3549
3550 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3551 halt_ns < vcpu->kvm->max_halt_poll_ns)
3552 grow_halt_poll_ns(vcpu);
3553 } else {
3554 vcpu->halt_poll_ns = 0;
3555 }
3556 }
3557
3558 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3559 }
3560 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3561
3562 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3563 {
3564 if (__kvm_vcpu_wake_up(vcpu)) {
3565 WRITE_ONCE(vcpu->ready, true);
3566 ++vcpu->stat.generic.halt_wakeup;
3567 return true;
3568 }
3569
3570 return false;
3571 }
3572 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3573
3574 #ifndef CONFIG_S390
3575
3576
3577
3578 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3579 {
3580 int me, cpu;
3581
3582 if (kvm_vcpu_wake_up(vcpu))
3583 return;
3584
3585 me = get_cpu();
3586
3587
3588
3589
3590
3591
3592 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3593 if (vcpu->mode == IN_GUEST_MODE)
3594 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3595 goto out;
3596 }
3597
3598
3599
3600
3601
3602
3603
3604
3605 if (kvm_arch_vcpu_should_kick(vcpu)) {
3606 cpu = READ_ONCE(vcpu->cpu);
3607 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3608 smp_send_reschedule(cpu);
3609 }
3610 out:
3611 put_cpu();
3612 }
3613 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3614 #endif
3615
3616 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3617 {
3618 struct pid *pid;
3619 struct task_struct *task = NULL;
3620 int ret = 0;
3621
3622 rcu_read_lock();
3623 pid = rcu_dereference(target->pid);
3624 if (pid)
3625 task = get_pid_task(pid, PIDTYPE_PID);
3626 rcu_read_unlock();
3627 if (!task)
3628 return ret;
3629 ret = yield_to(task, 1);
3630 put_task_struct(task);
3631
3632 return ret;
3633 }
3634 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3659 {
3660 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3661 bool eligible;
3662
3663 eligible = !vcpu->spin_loop.in_spin_loop ||
3664 vcpu->spin_loop.dy_eligible;
3665
3666 if (vcpu->spin_loop.in_spin_loop)
3667 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3668
3669 return eligible;
3670 #else
3671 return true;
3672 #endif
3673 }
3674
3675
3676
3677
3678
3679
3680 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3681 {
3682 return kvm_arch_vcpu_runnable(vcpu);
3683 }
3684
3685 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3686 {
3687 if (kvm_arch_dy_runnable(vcpu))
3688 return true;
3689
3690 #ifdef CONFIG_KVM_ASYNC_PF
3691 if (!list_empty_careful(&vcpu->async_pf.done))
3692 return true;
3693 #endif
3694
3695 return false;
3696 }
3697
3698 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3699 {
3700 return false;
3701 }
3702
3703 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3704 {
3705 struct kvm *kvm = me->kvm;
3706 struct kvm_vcpu *vcpu;
3707 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3708 unsigned long i;
3709 int yielded = 0;
3710 int try = 3;
3711 int pass;
3712
3713 kvm_vcpu_set_in_spin_loop(me, true);
3714
3715
3716
3717
3718
3719
3720
3721 for (pass = 0; pass < 2 && !yielded && try; pass++) {
3722 kvm_for_each_vcpu(i, vcpu, kvm) {
3723 if (!pass && i <= last_boosted_vcpu) {
3724 i = last_boosted_vcpu;
3725 continue;
3726 } else if (pass && i > last_boosted_vcpu)
3727 break;
3728 if (!READ_ONCE(vcpu->ready))
3729 continue;
3730 if (vcpu == me)
3731 continue;
3732 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3733 continue;
3734 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3735 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3736 !kvm_arch_vcpu_in_kernel(vcpu))
3737 continue;
3738 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3739 continue;
3740
3741 yielded = kvm_vcpu_yield_to(vcpu);
3742 if (yielded > 0) {
3743 kvm->last_boosted_vcpu = i;
3744 break;
3745 } else if (yielded < 0) {
3746 try--;
3747 if (!try)
3748 break;
3749 }
3750 }
3751 }
3752 kvm_vcpu_set_in_spin_loop(me, false);
3753
3754
3755 kvm_vcpu_set_dy_eligible(me, false);
3756 }
3757 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3758
3759 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3760 {
3761 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3762 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3763 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3764 kvm->dirty_ring_size / PAGE_SIZE);
3765 #else
3766 return false;
3767 #endif
3768 }
3769
3770 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3771 {
3772 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3773 struct page *page;
3774
3775 if (vmf->pgoff == 0)
3776 page = virt_to_page(vcpu->run);
3777 #ifdef CONFIG_X86
3778 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3779 page = virt_to_page(vcpu->arch.pio_data);
3780 #endif
3781 #ifdef CONFIG_KVM_MMIO
3782 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3783 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3784 #endif
3785 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3786 page = kvm_dirty_ring_get_page(
3787 &vcpu->dirty_ring,
3788 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3789 else
3790 return kvm_arch_vcpu_fault(vcpu, vmf);
3791 get_page(page);
3792 vmf->page = page;
3793 return 0;
3794 }
3795
3796 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3797 .fault = kvm_vcpu_fault,
3798 };
3799
3800 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3801 {
3802 struct kvm_vcpu *vcpu = file->private_data;
3803 unsigned long pages = vma_pages(vma);
3804
3805 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3806 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3807 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3808 return -EINVAL;
3809
3810 vma->vm_ops = &kvm_vcpu_vm_ops;
3811 return 0;
3812 }
3813
3814 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3815 {
3816 struct kvm_vcpu *vcpu = filp->private_data;
3817
3818 kvm_put_kvm(vcpu->kvm);
3819 return 0;
3820 }
3821
3822 static const struct file_operations kvm_vcpu_fops = {
3823 .release = kvm_vcpu_release,
3824 .unlocked_ioctl = kvm_vcpu_ioctl,
3825 .mmap = kvm_vcpu_mmap,
3826 .llseek = noop_llseek,
3827 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3828 };
3829
3830
3831
3832
3833 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3834 {
3835 char name[8 + 1 + ITOA_MAX_LEN + 1];
3836
3837 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3838 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3839 }
3840
3841 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3842 static int vcpu_get_pid(void *data, u64 *val)
3843 {
3844 struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data;
3845 *val = pid_nr(rcu_access_pointer(vcpu->pid));
3846 return 0;
3847 }
3848
3849 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3850
3851 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3852 {
3853 struct dentry *debugfs_dentry;
3854 char dir_name[ITOA_MAX_LEN * 2];
3855
3856 if (!debugfs_initialized())
3857 return;
3858
3859 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3860 debugfs_dentry = debugfs_create_dir(dir_name,
3861 vcpu->kvm->debugfs_dentry);
3862 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3863 &vcpu_get_pid_fops);
3864
3865 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3866 }
3867 #endif
3868
3869
3870
3871
3872 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3873 {
3874 int r;
3875 struct kvm_vcpu *vcpu;
3876 struct page *page;
3877
3878 if (id >= KVM_MAX_VCPU_IDS)
3879 return -EINVAL;
3880
3881 mutex_lock(&kvm->lock);
3882 if (kvm->created_vcpus >= kvm->max_vcpus) {
3883 mutex_unlock(&kvm->lock);
3884 return -EINVAL;
3885 }
3886
3887 r = kvm_arch_vcpu_precreate(kvm, id);
3888 if (r) {
3889 mutex_unlock(&kvm->lock);
3890 return r;
3891 }
3892
3893 kvm->created_vcpus++;
3894 mutex_unlock(&kvm->lock);
3895
3896 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3897 if (!vcpu) {
3898 r = -ENOMEM;
3899 goto vcpu_decrement;
3900 }
3901
3902 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3903 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3904 if (!page) {
3905 r = -ENOMEM;
3906 goto vcpu_free;
3907 }
3908 vcpu->run = page_address(page);
3909
3910 kvm_vcpu_init(vcpu, kvm, id);
3911
3912 r = kvm_arch_vcpu_create(vcpu);
3913 if (r)
3914 goto vcpu_free_run_page;
3915
3916 if (kvm->dirty_ring_size) {
3917 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3918 id, kvm->dirty_ring_size);
3919 if (r)
3920 goto arch_vcpu_destroy;
3921 }
3922
3923 mutex_lock(&kvm->lock);
3924 if (kvm_get_vcpu_by_id(kvm, id)) {
3925 r = -EEXIST;
3926 goto unlock_vcpu_destroy;
3927 }
3928
3929 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3930 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3931 BUG_ON(r == -EBUSY);
3932 if (r)
3933 goto unlock_vcpu_destroy;
3934
3935
3936 kvm_get_kvm(kvm);
3937 r = create_vcpu_fd(vcpu);
3938 if (r < 0) {
3939 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3940 kvm_put_kvm_no_destroy(kvm);
3941 goto unlock_vcpu_destroy;
3942 }
3943
3944
3945
3946
3947
3948 smp_wmb();
3949 atomic_inc(&kvm->online_vcpus);
3950
3951 mutex_unlock(&kvm->lock);
3952 kvm_arch_vcpu_postcreate(vcpu);
3953 kvm_create_vcpu_debugfs(vcpu);
3954 return r;
3955
3956 unlock_vcpu_destroy:
3957 mutex_unlock(&kvm->lock);
3958 kvm_dirty_ring_free(&vcpu->dirty_ring);
3959 arch_vcpu_destroy:
3960 kvm_arch_vcpu_destroy(vcpu);
3961 vcpu_free_run_page:
3962 free_page((unsigned long)vcpu->run);
3963 vcpu_free:
3964 kmem_cache_free(kvm_vcpu_cache, vcpu);
3965 vcpu_decrement:
3966 mutex_lock(&kvm->lock);
3967 kvm->created_vcpus--;
3968 mutex_unlock(&kvm->lock);
3969 return r;
3970 }
3971
3972 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3973 {
3974 if (sigset) {
3975 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3976 vcpu->sigset_active = 1;
3977 vcpu->sigset = *sigset;
3978 } else
3979 vcpu->sigset_active = 0;
3980 return 0;
3981 }
3982
3983 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3984 size_t size, loff_t *offset)
3985 {
3986 struct kvm_vcpu *vcpu = file->private_data;
3987
3988 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3989 &kvm_vcpu_stats_desc[0], &vcpu->stat,
3990 sizeof(vcpu->stat), user_buffer, size, offset);
3991 }
3992
3993 static const struct file_operations kvm_vcpu_stats_fops = {
3994 .read = kvm_vcpu_stats_read,
3995 .llseek = noop_llseek,
3996 };
3997
3998 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3999 {
4000 int fd;
4001 struct file *file;
4002 char name[15 + ITOA_MAX_LEN + 1];
4003
4004 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4005
4006 fd = get_unused_fd_flags(O_CLOEXEC);
4007 if (fd < 0)
4008 return fd;
4009
4010 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4011 if (IS_ERR(file)) {
4012 put_unused_fd(fd);
4013 return PTR_ERR(file);
4014 }
4015 file->f_mode |= FMODE_PREAD;
4016 fd_install(fd, file);
4017
4018 return fd;
4019 }
4020
4021 static long kvm_vcpu_ioctl(struct file *filp,
4022 unsigned int ioctl, unsigned long arg)
4023 {
4024 struct kvm_vcpu *vcpu = filp->private_data;
4025 void __user *argp = (void __user *)arg;
4026 int r;
4027 struct kvm_fpu *fpu = NULL;
4028 struct kvm_sregs *kvm_sregs = NULL;
4029
4030 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4031 return -EIO;
4032
4033 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4034 return -EINVAL;
4035
4036
4037
4038
4039
4040 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4041 if (r != -ENOIOCTLCMD)
4042 return r;
4043
4044 if (mutex_lock_killable(&vcpu->mutex))
4045 return -EINTR;
4046 switch (ioctl) {
4047 case KVM_RUN: {
4048 struct pid *oldpid;
4049 r = -EINVAL;
4050 if (arg)
4051 goto out;
4052 oldpid = rcu_access_pointer(vcpu->pid);
4053 if (unlikely(oldpid != task_pid(current))) {
4054
4055 struct pid *newpid;
4056
4057 r = kvm_arch_vcpu_run_pid_change(vcpu);
4058 if (r)
4059 break;
4060
4061 newpid = get_task_pid(current, PIDTYPE_PID);
4062 rcu_assign_pointer(vcpu->pid, newpid);
4063 if (oldpid)
4064 synchronize_rcu();
4065 put_pid(oldpid);
4066 }
4067 r = kvm_arch_vcpu_ioctl_run(vcpu);
4068 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4069 break;
4070 }
4071 case KVM_GET_REGS: {
4072 struct kvm_regs *kvm_regs;
4073
4074 r = -ENOMEM;
4075 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4076 if (!kvm_regs)
4077 goto out;
4078 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4079 if (r)
4080 goto out_free1;
4081 r = -EFAULT;
4082 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4083 goto out_free1;
4084 r = 0;
4085 out_free1:
4086 kfree(kvm_regs);
4087 break;
4088 }
4089 case KVM_SET_REGS: {
4090 struct kvm_regs *kvm_regs;
4091
4092 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4093 if (IS_ERR(kvm_regs)) {
4094 r = PTR_ERR(kvm_regs);
4095 goto out;
4096 }
4097 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4098 kfree(kvm_regs);
4099 break;
4100 }
4101 case KVM_GET_SREGS: {
4102 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4103 GFP_KERNEL_ACCOUNT);
4104 r = -ENOMEM;
4105 if (!kvm_sregs)
4106 goto out;
4107 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4108 if (r)
4109 goto out;
4110 r = -EFAULT;
4111 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4112 goto out;
4113 r = 0;
4114 break;
4115 }
4116 case KVM_SET_SREGS: {
4117 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4118 if (IS_ERR(kvm_sregs)) {
4119 r = PTR_ERR(kvm_sregs);
4120 kvm_sregs = NULL;
4121 goto out;
4122 }
4123 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4124 break;
4125 }
4126 case KVM_GET_MP_STATE: {
4127 struct kvm_mp_state mp_state;
4128
4129 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4130 if (r)
4131 goto out;
4132 r = -EFAULT;
4133 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4134 goto out;
4135 r = 0;
4136 break;
4137 }
4138 case KVM_SET_MP_STATE: {
4139 struct kvm_mp_state mp_state;
4140
4141 r = -EFAULT;
4142 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4143 goto out;
4144 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4145 break;
4146 }
4147 case KVM_TRANSLATE: {
4148 struct kvm_translation tr;
4149
4150 r = -EFAULT;
4151 if (copy_from_user(&tr, argp, sizeof(tr)))
4152 goto out;
4153 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4154 if (r)
4155 goto out;
4156 r = -EFAULT;
4157 if (copy_to_user(argp, &tr, sizeof(tr)))
4158 goto out;
4159 r = 0;
4160 break;
4161 }
4162 case KVM_SET_GUEST_DEBUG: {
4163 struct kvm_guest_debug dbg;
4164
4165 r = -EFAULT;
4166 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4167 goto out;
4168 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4169 break;
4170 }
4171 case KVM_SET_SIGNAL_MASK: {
4172 struct kvm_signal_mask __user *sigmask_arg = argp;
4173 struct kvm_signal_mask kvm_sigmask;
4174 sigset_t sigset, *p;
4175
4176 p = NULL;
4177 if (argp) {
4178 r = -EFAULT;
4179 if (copy_from_user(&kvm_sigmask, argp,
4180 sizeof(kvm_sigmask)))
4181 goto out;
4182 r = -EINVAL;
4183 if (kvm_sigmask.len != sizeof(sigset))
4184 goto out;
4185 r = -EFAULT;
4186 if (copy_from_user(&sigset, sigmask_arg->sigset,
4187 sizeof(sigset)))
4188 goto out;
4189 p = &sigset;
4190 }
4191 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4192 break;
4193 }
4194 case KVM_GET_FPU: {
4195 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4196 r = -ENOMEM;
4197 if (!fpu)
4198 goto out;
4199 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4200 if (r)
4201 goto out;
4202 r = -EFAULT;
4203 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4204 goto out;
4205 r = 0;
4206 break;
4207 }
4208 case KVM_SET_FPU: {
4209 fpu = memdup_user(argp, sizeof(*fpu));
4210 if (IS_ERR(fpu)) {
4211 r = PTR_ERR(fpu);
4212 fpu = NULL;
4213 goto out;
4214 }
4215 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4216 break;
4217 }
4218 case KVM_GET_STATS_FD: {
4219 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4220 break;
4221 }
4222 default:
4223 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4224 }
4225 out:
4226 mutex_unlock(&vcpu->mutex);
4227 kfree(fpu);
4228 kfree(kvm_sregs);
4229 return r;
4230 }
4231
4232 #ifdef CONFIG_KVM_COMPAT
4233 static long kvm_vcpu_compat_ioctl(struct file *filp,
4234 unsigned int ioctl, unsigned long arg)
4235 {
4236 struct kvm_vcpu *vcpu = filp->private_data;
4237 void __user *argp = compat_ptr(arg);
4238 int r;
4239
4240 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4241 return -EIO;
4242
4243 switch (ioctl) {
4244 case KVM_SET_SIGNAL_MASK: {
4245 struct kvm_signal_mask __user *sigmask_arg = argp;
4246 struct kvm_signal_mask kvm_sigmask;
4247 sigset_t sigset;
4248
4249 if (argp) {
4250 r = -EFAULT;
4251 if (copy_from_user(&kvm_sigmask, argp,
4252 sizeof(kvm_sigmask)))
4253 goto out;
4254 r = -EINVAL;
4255 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4256 goto out;
4257 r = -EFAULT;
4258 if (get_compat_sigset(&sigset,
4259 (compat_sigset_t __user *)sigmask_arg->sigset))
4260 goto out;
4261 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4262 } else
4263 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4264 break;
4265 }
4266 default:
4267 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4268 }
4269
4270 out:
4271 return r;
4272 }
4273 #endif
4274
4275 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4276 {
4277 struct kvm_device *dev = filp->private_data;
4278
4279 if (dev->ops->mmap)
4280 return dev->ops->mmap(dev, vma);
4281
4282 return -ENODEV;
4283 }
4284
4285 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4286 int (*accessor)(struct kvm_device *dev,
4287 struct kvm_device_attr *attr),
4288 unsigned long arg)
4289 {
4290 struct kvm_device_attr attr;
4291
4292 if (!accessor)
4293 return -EPERM;
4294
4295 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4296 return -EFAULT;
4297
4298 return accessor(dev, &attr);
4299 }
4300
4301 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4302 unsigned long arg)
4303 {
4304 struct kvm_device *dev = filp->private_data;
4305
4306 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4307 return -EIO;
4308
4309 switch (ioctl) {
4310 case KVM_SET_DEVICE_ATTR:
4311 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4312 case KVM_GET_DEVICE_ATTR:
4313 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4314 case KVM_HAS_DEVICE_ATTR:
4315 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4316 default:
4317 if (dev->ops->ioctl)
4318 return dev->ops->ioctl(dev, ioctl, arg);
4319
4320 return -ENOTTY;
4321 }
4322 }
4323
4324 static int kvm_device_release(struct inode *inode, struct file *filp)
4325 {
4326 struct kvm_device *dev = filp->private_data;
4327 struct kvm *kvm = dev->kvm;
4328
4329 if (dev->ops->release) {
4330 mutex_lock(&kvm->lock);
4331 list_del(&dev->vm_node);
4332 dev->ops->release(dev);
4333 mutex_unlock(&kvm->lock);
4334 }
4335
4336 kvm_put_kvm(kvm);
4337 return 0;
4338 }
4339
4340 static const struct file_operations kvm_device_fops = {
4341 .unlocked_ioctl = kvm_device_ioctl,
4342 .release = kvm_device_release,
4343 KVM_COMPAT(kvm_device_ioctl),
4344 .mmap = kvm_device_mmap,
4345 };
4346
4347 struct kvm_device *kvm_device_from_filp(struct file *filp)
4348 {
4349 if (filp->f_op != &kvm_device_fops)
4350 return NULL;
4351
4352 return filp->private_data;
4353 }
4354
4355 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4356 #ifdef CONFIG_KVM_MPIC
4357 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4358 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4359 #endif
4360 };
4361
4362 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4363 {
4364 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4365 return -ENOSPC;
4366
4367 if (kvm_device_ops_table[type] != NULL)
4368 return -EEXIST;
4369
4370 kvm_device_ops_table[type] = ops;
4371 return 0;
4372 }
4373
4374 void kvm_unregister_device_ops(u32 type)
4375 {
4376 if (kvm_device_ops_table[type] != NULL)
4377 kvm_device_ops_table[type] = NULL;
4378 }
4379
4380 static int kvm_ioctl_create_device(struct kvm *kvm,
4381 struct kvm_create_device *cd)
4382 {
4383 const struct kvm_device_ops *ops;
4384 struct kvm_device *dev;
4385 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4386 int type;
4387 int ret;
4388
4389 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4390 return -ENODEV;
4391
4392 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4393 ops = kvm_device_ops_table[type];
4394 if (ops == NULL)
4395 return -ENODEV;
4396
4397 if (test)
4398 return 0;
4399
4400 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4401 if (!dev)
4402 return -ENOMEM;
4403
4404 dev->ops = ops;
4405 dev->kvm = kvm;
4406
4407 mutex_lock(&kvm->lock);
4408 ret = ops->create(dev, type);
4409 if (ret < 0) {
4410 mutex_unlock(&kvm->lock);
4411 kfree(dev);
4412 return ret;
4413 }
4414 list_add(&dev->vm_node, &kvm->devices);
4415 mutex_unlock(&kvm->lock);
4416
4417 if (ops->init)
4418 ops->init(dev);
4419
4420 kvm_get_kvm(kvm);
4421 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4422 if (ret < 0) {
4423 kvm_put_kvm_no_destroy(kvm);
4424 mutex_lock(&kvm->lock);
4425 list_del(&dev->vm_node);
4426 if (ops->release)
4427 ops->release(dev);
4428 mutex_unlock(&kvm->lock);
4429 if (ops->destroy)
4430 ops->destroy(dev);
4431 return ret;
4432 }
4433
4434 cd->fd = ret;
4435 return 0;
4436 }
4437
4438 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4439 {
4440 switch (arg) {
4441 case KVM_CAP_USER_MEMORY:
4442 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4443 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4444 case KVM_CAP_INTERNAL_ERROR_DATA:
4445 #ifdef CONFIG_HAVE_KVM_MSI
4446 case KVM_CAP_SIGNAL_MSI:
4447 #endif
4448 #ifdef CONFIG_HAVE_KVM_IRQFD
4449 case KVM_CAP_IRQFD:
4450 case KVM_CAP_IRQFD_RESAMPLE:
4451 #endif
4452 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4453 case KVM_CAP_CHECK_EXTENSION_VM:
4454 case KVM_CAP_ENABLE_CAP_VM:
4455 case KVM_CAP_HALT_POLL:
4456 return 1;
4457 #ifdef CONFIG_KVM_MMIO
4458 case KVM_CAP_COALESCED_MMIO:
4459 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4460 case KVM_CAP_COALESCED_PIO:
4461 return 1;
4462 #endif
4463 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4464 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4465 return KVM_DIRTY_LOG_MANUAL_CAPS;
4466 #endif
4467 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4468 case KVM_CAP_IRQ_ROUTING:
4469 return KVM_MAX_IRQ_ROUTES;
4470 #endif
4471 #if KVM_ADDRESS_SPACE_NUM > 1
4472 case KVM_CAP_MULTI_ADDRESS_SPACE:
4473 return KVM_ADDRESS_SPACE_NUM;
4474 #endif
4475 case KVM_CAP_NR_MEMSLOTS:
4476 return KVM_USER_MEM_SLOTS;
4477 case KVM_CAP_DIRTY_LOG_RING:
4478 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4479 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4480 #else
4481 return 0;
4482 #endif
4483 case KVM_CAP_BINARY_STATS_FD:
4484 case KVM_CAP_SYSTEM_EVENT_DATA:
4485 return 1;
4486 default:
4487 break;
4488 }
4489 return kvm_vm_ioctl_check_extension(kvm, arg);
4490 }
4491
4492 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4493 {
4494 int r;
4495
4496 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4497 return -EINVAL;
4498
4499
4500 if (!size || (size & (size - 1)))
4501 return -EINVAL;
4502
4503
4504 if (size < kvm_dirty_ring_get_rsvd_entries() *
4505 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4506 return -EINVAL;
4507
4508 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4509 sizeof(struct kvm_dirty_gfn))
4510 return -E2BIG;
4511
4512
4513 if (kvm->dirty_ring_size)
4514 return -EINVAL;
4515
4516 mutex_lock(&kvm->lock);
4517
4518 if (kvm->created_vcpus) {
4519
4520 r = -EINVAL;
4521 } else {
4522 kvm->dirty_ring_size = size;
4523 r = 0;
4524 }
4525
4526 mutex_unlock(&kvm->lock);
4527 return r;
4528 }
4529
4530 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4531 {
4532 unsigned long i;
4533 struct kvm_vcpu *vcpu;
4534 int cleared = 0;
4535
4536 if (!kvm->dirty_ring_size)
4537 return -EINVAL;
4538
4539 mutex_lock(&kvm->slots_lock);
4540
4541 kvm_for_each_vcpu(i, vcpu, kvm)
4542 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4543
4544 mutex_unlock(&kvm->slots_lock);
4545
4546 if (cleared)
4547 kvm_flush_remote_tlbs(kvm);
4548
4549 return cleared;
4550 }
4551
4552 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4553 struct kvm_enable_cap *cap)
4554 {
4555 return -EINVAL;
4556 }
4557
4558 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4559 struct kvm_enable_cap *cap)
4560 {
4561 switch (cap->cap) {
4562 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4563 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4564 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4565
4566 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4567 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4568
4569 if (cap->flags || (cap->args[0] & ~allowed_options))
4570 return -EINVAL;
4571 kvm->manual_dirty_log_protect = cap->args[0];
4572 return 0;
4573 }
4574 #endif
4575 case KVM_CAP_HALT_POLL: {
4576 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4577 return -EINVAL;
4578
4579 kvm->max_halt_poll_ns = cap->args[0];
4580 return 0;
4581 }
4582 case KVM_CAP_DIRTY_LOG_RING:
4583 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4584 default:
4585 return kvm_vm_ioctl_enable_cap(kvm, cap);
4586 }
4587 }
4588
4589 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4590 size_t size, loff_t *offset)
4591 {
4592 struct kvm *kvm = file->private_data;
4593
4594 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4595 &kvm_vm_stats_desc[0], &kvm->stat,
4596 sizeof(kvm->stat), user_buffer, size, offset);
4597 }
4598
4599 static const struct file_operations kvm_vm_stats_fops = {
4600 .read = kvm_vm_stats_read,
4601 .llseek = noop_llseek,
4602 };
4603
4604 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4605 {
4606 int fd;
4607 struct file *file;
4608
4609 fd = get_unused_fd_flags(O_CLOEXEC);
4610 if (fd < 0)
4611 return fd;
4612
4613 file = anon_inode_getfile("kvm-vm-stats",
4614 &kvm_vm_stats_fops, kvm, O_RDONLY);
4615 if (IS_ERR(file)) {
4616 put_unused_fd(fd);
4617 return PTR_ERR(file);
4618 }
4619 file->f_mode |= FMODE_PREAD;
4620 fd_install(fd, file);
4621
4622 return fd;
4623 }
4624
4625 static long kvm_vm_ioctl(struct file *filp,
4626 unsigned int ioctl, unsigned long arg)
4627 {
4628 struct kvm *kvm = filp->private_data;
4629 void __user *argp = (void __user *)arg;
4630 int r;
4631
4632 if (kvm->mm != current->mm || kvm->vm_dead)
4633 return -EIO;
4634 switch (ioctl) {
4635 case KVM_CREATE_VCPU:
4636 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4637 break;
4638 case KVM_ENABLE_CAP: {
4639 struct kvm_enable_cap cap;
4640
4641 r = -EFAULT;
4642 if (copy_from_user(&cap, argp, sizeof(cap)))
4643 goto out;
4644 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4645 break;
4646 }
4647 case KVM_SET_USER_MEMORY_REGION: {
4648 struct kvm_userspace_memory_region kvm_userspace_mem;
4649
4650 r = -EFAULT;
4651 if (copy_from_user(&kvm_userspace_mem, argp,
4652 sizeof(kvm_userspace_mem)))
4653 goto out;
4654
4655 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4656 break;
4657 }
4658 case KVM_GET_DIRTY_LOG: {
4659 struct kvm_dirty_log log;
4660
4661 r = -EFAULT;
4662 if (copy_from_user(&log, argp, sizeof(log)))
4663 goto out;
4664 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4665 break;
4666 }
4667 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4668 case KVM_CLEAR_DIRTY_LOG: {
4669 struct kvm_clear_dirty_log log;
4670
4671 r = -EFAULT;
4672 if (copy_from_user(&log, argp, sizeof(log)))
4673 goto out;
4674 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4675 break;
4676 }
4677 #endif
4678 #ifdef CONFIG_KVM_MMIO
4679 case KVM_REGISTER_COALESCED_MMIO: {
4680 struct kvm_coalesced_mmio_zone zone;
4681
4682 r = -EFAULT;
4683 if (copy_from_user(&zone, argp, sizeof(zone)))
4684 goto out;
4685 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4686 break;
4687 }
4688 case KVM_UNREGISTER_COALESCED_MMIO: {
4689 struct kvm_coalesced_mmio_zone zone;
4690
4691 r = -EFAULT;
4692 if (copy_from_user(&zone, argp, sizeof(zone)))
4693 goto out;
4694 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4695 break;
4696 }
4697 #endif
4698 case KVM_IRQFD: {
4699 struct kvm_irqfd data;
4700
4701 r = -EFAULT;
4702 if (copy_from_user(&data, argp, sizeof(data)))
4703 goto out;
4704 r = kvm_irqfd(kvm, &data);
4705 break;
4706 }
4707 case KVM_IOEVENTFD: {
4708 struct kvm_ioeventfd data;
4709
4710 r = -EFAULT;
4711 if (copy_from_user(&data, argp, sizeof(data)))
4712 goto out;
4713 r = kvm_ioeventfd(kvm, &data);
4714 break;
4715 }
4716 #ifdef CONFIG_HAVE_KVM_MSI
4717 case KVM_SIGNAL_MSI: {
4718 struct kvm_msi msi;
4719
4720 r = -EFAULT;
4721 if (copy_from_user(&msi, argp, sizeof(msi)))
4722 goto out;
4723 r = kvm_send_userspace_msi(kvm, &msi);
4724 break;
4725 }
4726 #endif
4727 #ifdef __KVM_HAVE_IRQ_LINE
4728 case KVM_IRQ_LINE_STATUS:
4729 case KVM_IRQ_LINE: {
4730 struct kvm_irq_level irq_event;
4731
4732 r = -EFAULT;
4733 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4734 goto out;
4735
4736 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4737 ioctl == KVM_IRQ_LINE_STATUS);
4738 if (r)
4739 goto out;
4740
4741 r = -EFAULT;
4742 if (ioctl == KVM_IRQ_LINE_STATUS) {
4743 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4744 goto out;
4745 }
4746
4747 r = 0;
4748 break;
4749 }
4750 #endif
4751 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4752 case KVM_SET_GSI_ROUTING: {
4753 struct kvm_irq_routing routing;
4754 struct kvm_irq_routing __user *urouting;
4755 struct kvm_irq_routing_entry *entries = NULL;
4756
4757 r = -EFAULT;
4758 if (copy_from_user(&routing, argp, sizeof(routing)))
4759 goto out;
4760 r = -EINVAL;
4761 if (!kvm_arch_can_set_irq_routing(kvm))
4762 goto out;
4763 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4764 goto out;
4765 if (routing.flags)
4766 goto out;
4767 if (routing.nr) {
4768 urouting = argp;
4769 entries = vmemdup_user(urouting->entries,
4770 array_size(sizeof(*entries),
4771 routing.nr));
4772 if (IS_ERR(entries)) {
4773 r = PTR_ERR(entries);
4774 goto out;
4775 }
4776 }
4777 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4778 routing.flags);
4779 kvfree(entries);
4780 break;
4781 }
4782 #endif
4783 case KVM_CREATE_DEVICE: {
4784 struct kvm_create_device cd;
4785
4786 r = -EFAULT;
4787 if (copy_from_user(&cd, argp, sizeof(cd)))
4788 goto out;
4789
4790 r = kvm_ioctl_create_device(kvm, &cd);
4791 if (r)
4792 goto out;
4793
4794 r = -EFAULT;
4795 if (copy_to_user(argp, &cd, sizeof(cd)))
4796 goto out;
4797
4798 r = 0;
4799 break;
4800 }
4801 case KVM_CHECK_EXTENSION:
4802 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4803 break;
4804 case KVM_RESET_DIRTY_RINGS:
4805 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4806 break;
4807 case KVM_GET_STATS_FD:
4808 r = kvm_vm_ioctl_get_stats_fd(kvm);
4809 break;
4810 default:
4811 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4812 }
4813 out:
4814 return r;
4815 }
4816
4817 #ifdef CONFIG_KVM_COMPAT
4818 struct compat_kvm_dirty_log {
4819 __u32 slot;
4820 __u32 padding1;
4821 union {
4822 compat_uptr_t dirty_bitmap;
4823 __u64 padding2;
4824 };
4825 };
4826
4827 struct compat_kvm_clear_dirty_log {
4828 __u32 slot;
4829 __u32 num_pages;
4830 __u64 first_page;
4831 union {
4832 compat_uptr_t dirty_bitmap;
4833 __u64 padding2;
4834 };
4835 };
4836
4837 static long kvm_vm_compat_ioctl(struct file *filp,
4838 unsigned int ioctl, unsigned long arg)
4839 {
4840 struct kvm *kvm = filp->private_data;
4841 int r;
4842
4843 if (kvm->mm != current->mm || kvm->vm_dead)
4844 return -EIO;
4845 switch (ioctl) {
4846 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4847 case KVM_CLEAR_DIRTY_LOG: {
4848 struct compat_kvm_clear_dirty_log compat_log;
4849 struct kvm_clear_dirty_log log;
4850
4851 if (copy_from_user(&compat_log, (void __user *)arg,
4852 sizeof(compat_log)))
4853 return -EFAULT;
4854 log.slot = compat_log.slot;
4855 log.num_pages = compat_log.num_pages;
4856 log.first_page = compat_log.first_page;
4857 log.padding2 = compat_log.padding2;
4858 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4859
4860 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4861 break;
4862 }
4863 #endif
4864 case KVM_GET_DIRTY_LOG: {
4865 struct compat_kvm_dirty_log compat_log;
4866 struct kvm_dirty_log log;
4867
4868 if (copy_from_user(&compat_log, (void __user *)arg,
4869 sizeof(compat_log)))
4870 return -EFAULT;
4871 log.slot = compat_log.slot;
4872 log.padding1 = compat_log.padding1;
4873 log.padding2 = compat_log.padding2;
4874 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4875
4876 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4877 break;
4878 }
4879 default:
4880 r = kvm_vm_ioctl(filp, ioctl, arg);
4881 }
4882 return r;
4883 }
4884 #endif
4885
4886 static const struct file_operations kvm_vm_fops = {
4887 .release = kvm_vm_release,
4888 .unlocked_ioctl = kvm_vm_ioctl,
4889 .llseek = noop_llseek,
4890 KVM_COMPAT(kvm_vm_compat_ioctl),
4891 };
4892
4893 bool file_is_kvm(struct file *file)
4894 {
4895 return file && file->f_op == &kvm_vm_fops;
4896 }
4897 EXPORT_SYMBOL_GPL(file_is_kvm);
4898
4899 static int kvm_dev_ioctl_create_vm(unsigned long type)
4900 {
4901 char fdname[ITOA_MAX_LEN + 1];
4902 int r, fd;
4903 struct kvm *kvm;
4904 struct file *file;
4905
4906 fd = get_unused_fd_flags(O_CLOEXEC);
4907 if (fd < 0)
4908 return fd;
4909
4910 snprintf(fdname, sizeof(fdname), "%d", fd);
4911
4912 kvm = kvm_create_vm(type, fdname);
4913 if (IS_ERR(kvm)) {
4914 r = PTR_ERR(kvm);
4915 goto put_fd;
4916 }
4917
4918 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4919 if (IS_ERR(file)) {
4920 r = PTR_ERR(file);
4921 goto put_kvm;
4922 }
4923
4924
4925
4926
4927
4928
4929
4930 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4931
4932 fd_install(fd, file);
4933 return fd;
4934
4935 put_kvm:
4936 kvm_put_kvm(kvm);
4937 put_fd:
4938 put_unused_fd(fd);
4939 return r;
4940 }
4941
4942 static long kvm_dev_ioctl(struct file *filp,
4943 unsigned int ioctl, unsigned long arg)
4944 {
4945 long r = -EINVAL;
4946
4947 switch (ioctl) {
4948 case KVM_GET_API_VERSION:
4949 if (arg)
4950 goto out;
4951 r = KVM_API_VERSION;
4952 break;
4953 case KVM_CREATE_VM:
4954 r = kvm_dev_ioctl_create_vm(arg);
4955 break;
4956 case KVM_CHECK_EXTENSION:
4957 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4958 break;
4959 case KVM_GET_VCPU_MMAP_SIZE:
4960 if (arg)
4961 goto out;
4962 r = PAGE_SIZE;
4963 #ifdef CONFIG_X86
4964 r += PAGE_SIZE;
4965 #endif
4966 #ifdef CONFIG_KVM_MMIO
4967 r += PAGE_SIZE;
4968 #endif
4969 break;
4970 case KVM_TRACE_ENABLE:
4971 case KVM_TRACE_PAUSE:
4972 case KVM_TRACE_DISABLE:
4973 r = -EOPNOTSUPP;
4974 break;
4975 default:
4976 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4977 }
4978 out:
4979 return r;
4980 }
4981
4982 static struct file_operations kvm_chardev_ops = {
4983 .unlocked_ioctl = kvm_dev_ioctl,
4984 .llseek = noop_llseek,
4985 KVM_COMPAT(kvm_dev_ioctl),
4986 };
4987
4988 static struct miscdevice kvm_dev = {
4989 KVM_MINOR,
4990 "kvm",
4991 &kvm_chardev_ops,
4992 };
4993
4994 static void hardware_enable_nolock(void *junk)
4995 {
4996 int cpu = raw_smp_processor_id();
4997 int r;
4998
4999 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
5000 return;
5001
5002 cpumask_set_cpu(cpu, cpus_hardware_enabled);
5003
5004 r = kvm_arch_hardware_enable();
5005
5006 if (r) {
5007 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5008 atomic_inc(&hardware_enable_failed);
5009 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
5010 }
5011 }
5012
5013 static int kvm_starting_cpu(unsigned int cpu)
5014 {
5015 raw_spin_lock(&kvm_count_lock);
5016 if (kvm_usage_count)
5017 hardware_enable_nolock(NULL);
5018 raw_spin_unlock(&kvm_count_lock);
5019 return 0;
5020 }
5021
5022 static void hardware_disable_nolock(void *junk)
5023 {
5024 int cpu = raw_smp_processor_id();
5025
5026 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
5027 return;
5028 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5029 kvm_arch_hardware_disable();
5030 }
5031
5032 static int kvm_dying_cpu(unsigned int cpu)
5033 {
5034 raw_spin_lock(&kvm_count_lock);
5035 if (kvm_usage_count)
5036 hardware_disable_nolock(NULL);
5037 raw_spin_unlock(&kvm_count_lock);
5038 return 0;
5039 }
5040
5041 static void hardware_disable_all_nolock(void)
5042 {
5043 BUG_ON(!kvm_usage_count);
5044
5045 kvm_usage_count--;
5046 if (!kvm_usage_count)
5047 on_each_cpu(hardware_disable_nolock, NULL, 1);
5048 }
5049
5050 static void hardware_disable_all(void)
5051 {
5052 raw_spin_lock(&kvm_count_lock);
5053 hardware_disable_all_nolock();
5054 raw_spin_unlock(&kvm_count_lock);
5055 }
5056
5057 static int hardware_enable_all(void)
5058 {
5059 int r = 0;
5060
5061 raw_spin_lock(&kvm_count_lock);
5062
5063 kvm_usage_count++;
5064 if (kvm_usage_count == 1) {
5065 atomic_set(&hardware_enable_failed, 0);
5066 on_each_cpu(hardware_enable_nolock, NULL, 1);
5067
5068 if (atomic_read(&hardware_enable_failed)) {
5069 hardware_disable_all_nolock();
5070 r = -EBUSY;
5071 }
5072 }
5073
5074 raw_spin_unlock(&kvm_count_lock);
5075
5076 return r;
5077 }
5078
5079 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
5080 void *v)
5081 {
5082
5083
5084
5085
5086
5087
5088 pr_info("kvm: exiting hardware virtualization\n");
5089 kvm_rebooting = true;
5090 on_each_cpu(hardware_disable_nolock, NULL, 1);
5091 return NOTIFY_OK;
5092 }
5093
5094 static struct notifier_block kvm_reboot_notifier = {
5095 .notifier_call = kvm_reboot,
5096 .priority = 0,
5097 };
5098
5099 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5100 {
5101 int i;
5102
5103 for (i = 0; i < bus->dev_count; i++) {
5104 struct kvm_io_device *pos = bus->range[i].dev;
5105
5106 kvm_iodevice_destructor(pos);
5107 }
5108 kfree(bus);
5109 }
5110
5111 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5112 const struct kvm_io_range *r2)
5113 {
5114 gpa_t addr1 = r1->addr;
5115 gpa_t addr2 = r2->addr;
5116
5117 if (addr1 < addr2)
5118 return -1;
5119
5120
5121
5122
5123
5124
5125 if (r2->len) {
5126 addr1 += r1->len;
5127 addr2 += r2->len;
5128 }
5129
5130 if (addr1 > addr2)
5131 return 1;
5132
5133 return 0;
5134 }
5135
5136 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5137 {
5138 return kvm_io_bus_cmp(p1, p2);
5139 }
5140
5141 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5142 gpa_t addr, int len)
5143 {
5144 struct kvm_io_range *range, key;
5145 int off;
5146
5147 key = (struct kvm_io_range) {
5148 .addr = addr,
5149 .len = len,
5150 };
5151
5152 range = bsearch(&key, bus->range, bus->dev_count,
5153 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5154 if (range == NULL)
5155 return -ENOENT;
5156
5157 off = range - bus->range;
5158
5159 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5160 off--;
5161
5162 return off;
5163 }
5164
5165 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5166 struct kvm_io_range *range, const void *val)
5167 {
5168 int idx;
5169
5170 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5171 if (idx < 0)
5172 return -EOPNOTSUPP;
5173
5174 while (idx < bus->dev_count &&
5175 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5176 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5177 range->len, val))
5178 return idx;
5179 idx++;
5180 }
5181
5182 return -EOPNOTSUPP;
5183 }
5184
5185
5186 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5187 int len, const void *val)
5188 {
5189 struct kvm_io_bus *bus;
5190 struct kvm_io_range range;
5191 int r;
5192
5193 range = (struct kvm_io_range) {
5194 .addr = addr,
5195 .len = len,
5196 };
5197
5198 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5199 if (!bus)
5200 return -ENOMEM;
5201 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5202 return r < 0 ? r : 0;
5203 }
5204 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5205
5206
5207 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5208 gpa_t addr, int len, const void *val, long cookie)
5209 {
5210 struct kvm_io_bus *bus;
5211 struct kvm_io_range range;
5212
5213 range = (struct kvm_io_range) {
5214 .addr = addr,
5215 .len = len,
5216 };
5217
5218 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5219 if (!bus)
5220 return -ENOMEM;
5221
5222
5223 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5224 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5225 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5226 val))
5227 return cookie;
5228
5229
5230
5231
5232
5233 return __kvm_io_bus_write(vcpu, bus, &range, val);
5234 }
5235
5236 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5237 struct kvm_io_range *range, void *val)
5238 {
5239 int idx;
5240
5241 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5242 if (idx < 0)
5243 return -EOPNOTSUPP;
5244
5245 while (idx < bus->dev_count &&
5246 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5247 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5248 range->len, val))
5249 return idx;
5250 idx++;
5251 }
5252
5253 return -EOPNOTSUPP;
5254 }
5255
5256
5257 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5258 int len, void *val)
5259 {
5260 struct kvm_io_bus *bus;
5261 struct kvm_io_range range;
5262 int r;
5263
5264 range = (struct kvm_io_range) {
5265 .addr = addr,
5266 .len = len,
5267 };
5268
5269 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5270 if (!bus)
5271 return -ENOMEM;
5272 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5273 return r < 0 ? r : 0;
5274 }
5275
5276
5277 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5278 int len, struct kvm_io_device *dev)
5279 {
5280 int i;
5281 struct kvm_io_bus *new_bus, *bus;
5282 struct kvm_io_range range;
5283
5284 bus = kvm_get_bus(kvm, bus_idx);
5285 if (!bus)
5286 return -ENOMEM;
5287
5288
5289 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5290 return -ENOSPC;
5291
5292 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5293 GFP_KERNEL_ACCOUNT);
5294 if (!new_bus)
5295 return -ENOMEM;
5296
5297 range = (struct kvm_io_range) {
5298 .addr = addr,
5299 .len = len,
5300 .dev = dev,
5301 };
5302
5303 for (i = 0; i < bus->dev_count; i++)
5304 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5305 break;
5306
5307 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5308 new_bus->dev_count++;
5309 new_bus->range[i] = range;
5310 memcpy(new_bus->range + i + 1, bus->range + i,
5311 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5312 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5313 synchronize_srcu_expedited(&kvm->srcu);
5314 kfree(bus);
5315
5316 return 0;
5317 }
5318
5319 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5320 struct kvm_io_device *dev)
5321 {
5322 int i, j;
5323 struct kvm_io_bus *new_bus, *bus;
5324
5325 lockdep_assert_held(&kvm->slots_lock);
5326
5327 bus = kvm_get_bus(kvm, bus_idx);
5328 if (!bus)
5329 return 0;
5330
5331 for (i = 0; i < bus->dev_count; i++) {
5332 if (bus->range[i].dev == dev) {
5333 break;
5334 }
5335 }
5336
5337 if (i == bus->dev_count)
5338 return 0;
5339
5340 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5341 GFP_KERNEL_ACCOUNT);
5342 if (new_bus) {
5343 memcpy(new_bus, bus, struct_size(bus, range, i));
5344 new_bus->dev_count--;
5345 memcpy(new_bus->range + i, bus->range + i + 1,
5346 flex_array_size(new_bus, range, new_bus->dev_count - i));
5347 }
5348
5349 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5350 synchronize_srcu_expedited(&kvm->srcu);
5351
5352
5353 if (!new_bus) {
5354 pr_err("kvm: failed to shrink bus, removing it completely\n");
5355 for (j = 0; j < bus->dev_count; j++) {
5356 if (j == i)
5357 continue;
5358 kvm_iodevice_destructor(bus->range[j].dev);
5359 }
5360 }
5361
5362 kfree(bus);
5363 return new_bus ? 0 : -ENOMEM;
5364 }
5365
5366 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5367 gpa_t addr)
5368 {
5369 struct kvm_io_bus *bus;
5370 int dev_idx, srcu_idx;
5371 struct kvm_io_device *iodev = NULL;
5372
5373 srcu_idx = srcu_read_lock(&kvm->srcu);
5374
5375 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5376 if (!bus)
5377 goto out_unlock;
5378
5379 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5380 if (dev_idx < 0)
5381 goto out_unlock;
5382
5383 iodev = bus->range[dev_idx].dev;
5384
5385 out_unlock:
5386 srcu_read_unlock(&kvm->srcu, srcu_idx);
5387
5388 return iodev;
5389 }
5390 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5391
5392 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5393 int (*get)(void *, u64 *), int (*set)(void *, u64),
5394 const char *fmt)
5395 {
5396 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5397 inode->i_private;
5398
5399
5400
5401
5402
5403
5404 if (!kvm_get_kvm_safe(stat_data->kvm))
5405 return -ENOENT;
5406
5407 if (simple_attr_open(inode, file, get,
5408 kvm_stats_debugfs_mode(stat_data->desc) & 0222
5409 ? set : NULL,
5410 fmt)) {
5411 kvm_put_kvm(stat_data->kvm);
5412 return -ENOMEM;
5413 }
5414
5415 return 0;
5416 }
5417
5418 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5419 {
5420 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5421 inode->i_private;
5422
5423 simple_attr_release(inode, file);
5424 kvm_put_kvm(stat_data->kvm);
5425
5426 return 0;
5427 }
5428
5429 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5430 {
5431 *val = *(u64 *)((void *)(&kvm->stat) + offset);
5432
5433 return 0;
5434 }
5435
5436 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5437 {
5438 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5439
5440 return 0;
5441 }
5442
5443 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5444 {
5445 unsigned long i;
5446 struct kvm_vcpu *vcpu;
5447
5448 *val = 0;
5449
5450 kvm_for_each_vcpu(i, vcpu, kvm)
5451 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5452
5453 return 0;
5454 }
5455
5456 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5457 {
5458 unsigned long i;
5459 struct kvm_vcpu *vcpu;
5460
5461 kvm_for_each_vcpu(i, vcpu, kvm)
5462 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5463
5464 return 0;
5465 }
5466
5467 static int kvm_stat_data_get(void *data, u64 *val)
5468 {
5469 int r = -EFAULT;
5470 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5471
5472 switch (stat_data->kind) {
5473 case KVM_STAT_VM:
5474 r = kvm_get_stat_per_vm(stat_data->kvm,
5475 stat_data->desc->desc.offset, val);
5476 break;
5477 case KVM_STAT_VCPU:
5478 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5479 stat_data->desc->desc.offset, val);
5480 break;
5481 }
5482
5483 return r;
5484 }
5485
5486 static int kvm_stat_data_clear(void *data, u64 val)
5487 {
5488 int r = -EFAULT;
5489 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5490
5491 if (val)
5492 return -EINVAL;
5493
5494 switch (stat_data->kind) {
5495 case KVM_STAT_VM:
5496 r = kvm_clear_stat_per_vm(stat_data->kvm,
5497 stat_data->desc->desc.offset);
5498 break;
5499 case KVM_STAT_VCPU:
5500 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5501 stat_data->desc->desc.offset);
5502 break;
5503 }
5504
5505 return r;
5506 }
5507
5508 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5509 {
5510 __simple_attr_check_format("%llu\n", 0ull);
5511 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5512 kvm_stat_data_clear, "%llu\n");
5513 }
5514
5515 static const struct file_operations stat_fops_per_vm = {
5516 .owner = THIS_MODULE,
5517 .open = kvm_stat_data_open,
5518 .release = kvm_debugfs_release,
5519 .read = simple_attr_read,
5520 .write = simple_attr_write,
5521 .llseek = no_llseek,
5522 };
5523
5524 static int vm_stat_get(void *_offset, u64 *val)
5525 {
5526 unsigned offset = (long)_offset;
5527 struct kvm *kvm;
5528 u64 tmp_val;
5529
5530 *val = 0;
5531 mutex_lock(&kvm_lock);
5532 list_for_each_entry(kvm, &vm_list, vm_list) {
5533 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5534 *val += tmp_val;
5535 }
5536 mutex_unlock(&kvm_lock);
5537 return 0;
5538 }
5539
5540 static int vm_stat_clear(void *_offset, u64 val)
5541 {
5542 unsigned offset = (long)_offset;
5543 struct kvm *kvm;
5544
5545 if (val)
5546 return -EINVAL;
5547
5548 mutex_lock(&kvm_lock);
5549 list_for_each_entry(kvm, &vm_list, vm_list) {
5550 kvm_clear_stat_per_vm(kvm, offset);
5551 }
5552 mutex_unlock(&kvm_lock);
5553
5554 return 0;
5555 }
5556
5557 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5558 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5559
5560 static int vcpu_stat_get(void *_offset, u64 *val)
5561 {
5562 unsigned offset = (long)_offset;
5563 struct kvm *kvm;
5564 u64 tmp_val;
5565
5566 *val = 0;
5567 mutex_lock(&kvm_lock);
5568 list_for_each_entry(kvm, &vm_list, vm_list) {
5569 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5570 *val += tmp_val;
5571 }
5572 mutex_unlock(&kvm_lock);
5573 return 0;
5574 }
5575
5576 static int vcpu_stat_clear(void *_offset, u64 val)
5577 {
5578 unsigned offset = (long)_offset;
5579 struct kvm *kvm;
5580
5581 if (val)
5582 return -EINVAL;
5583
5584 mutex_lock(&kvm_lock);
5585 list_for_each_entry(kvm, &vm_list, vm_list) {
5586 kvm_clear_stat_per_vcpu(kvm, offset);
5587 }
5588 mutex_unlock(&kvm_lock);
5589
5590 return 0;
5591 }
5592
5593 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5594 "%llu\n");
5595 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5596
5597 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5598 {
5599 struct kobj_uevent_env *env;
5600 unsigned long long created, active;
5601
5602 if (!kvm_dev.this_device || !kvm)
5603 return;
5604
5605 mutex_lock(&kvm_lock);
5606 if (type == KVM_EVENT_CREATE_VM) {
5607 kvm_createvm_count++;
5608 kvm_active_vms++;
5609 } else if (type == KVM_EVENT_DESTROY_VM) {
5610 kvm_active_vms--;
5611 }
5612 created = kvm_createvm_count;
5613 active = kvm_active_vms;
5614 mutex_unlock(&kvm_lock);
5615
5616 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5617 if (!env)
5618 return;
5619
5620 add_uevent_var(env, "CREATED=%llu", created);
5621 add_uevent_var(env, "COUNT=%llu", active);
5622
5623 if (type == KVM_EVENT_CREATE_VM) {
5624 add_uevent_var(env, "EVENT=create");
5625 kvm->userspace_pid = task_pid_nr(current);
5626 } else if (type == KVM_EVENT_DESTROY_VM) {
5627 add_uevent_var(env, "EVENT=destroy");
5628 }
5629 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5630
5631 if (!IS_ERR(kvm->debugfs_dentry)) {
5632 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5633
5634 if (p) {
5635 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5636 if (!IS_ERR(tmp))
5637 add_uevent_var(env, "STATS_PATH=%s", tmp);
5638 kfree(p);
5639 }
5640 }
5641
5642 env->envp[env->envp_idx++] = NULL;
5643 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5644 kfree(env);
5645 }
5646
5647 static void kvm_init_debug(void)
5648 {
5649 const struct file_operations *fops;
5650 const struct _kvm_stats_desc *pdesc;
5651 int i;
5652
5653 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5654
5655 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5656 pdesc = &kvm_vm_stats_desc[i];
5657 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5658 fops = &vm_stat_fops;
5659 else
5660 fops = &vm_stat_readonly_fops;
5661 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5662 kvm_debugfs_dir,
5663 (void *)(long)pdesc->desc.offset, fops);
5664 }
5665
5666 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5667 pdesc = &kvm_vcpu_stats_desc[i];
5668 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5669 fops = &vcpu_stat_fops;
5670 else
5671 fops = &vcpu_stat_readonly_fops;
5672 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5673 kvm_debugfs_dir,
5674 (void *)(long)pdesc->desc.offset, fops);
5675 }
5676 }
5677
5678 static int kvm_suspend(void)
5679 {
5680 if (kvm_usage_count)
5681 hardware_disable_nolock(NULL);
5682 return 0;
5683 }
5684
5685 static void kvm_resume(void)
5686 {
5687 if (kvm_usage_count) {
5688 lockdep_assert_not_held(&kvm_count_lock);
5689 hardware_enable_nolock(NULL);
5690 }
5691 }
5692
5693 static struct syscore_ops kvm_syscore_ops = {
5694 .suspend = kvm_suspend,
5695 .resume = kvm_resume,
5696 };
5697
5698 static inline
5699 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5700 {
5701 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5702 }
5703
5704 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5705 {
5706 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5707
5708 WRITE_ONCE(vcpu->preempted, false);
5709 WRITE_ONCE(vcpu->ready, false);
5710
5711 __this_cpu_write(kvm_running_vcpu, vcpu);
5712 kvm_arch_sched_in(vcpu, cpu);
5713 kvm_arch_vcpu_load(vcpu, cpu);
5714 }
5715
5716 static void kvm_sched_out(struct preempt_notifier *pn,
5717 struct task_struct *next)
5718 {
5719 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5720
5721 if (current->on_rq) {
5722 WRITE_ONCE(vcpu->preempted, true);
5723 WRITE_ONCE(vcpu->ready, true);
5724 }
5725 kvm_arch_vcpu_put(vcpu);
5726 __this_cpu_write(kvm_running_vcpu, NULL);
5727 }
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738 struct kvm_vcpu *kvm_get_running_vcpu(void)
5739 {
5740 struct kvm_vcpu *vcpu;
5741
5742 preempt_disable();
5743 vcpu = __this_cpu_read(kvm_running_vcpu);
5744 preempt_enable();
5745
5746 return vcpu;
5747 }
5748 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5749
5750
5751
5752
5753 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5754 {
5755 return &kvm_running_vcpu;
5756 }
5757
5758 #ifdef CONFIG_GUEST_PERF_EVENTS
5759 static unsigned int kvm_guest_state(void)
5760 {
5761 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5762 unsigned int state;
5763
5764 if (!kvm_arch_pmi_in_guest(vcpu))
5765 return 0;
5766
5767 state = PERF_GUEST_ACTIVE;
5768 if (!kvm_arch_vcpu_in_kernel(vcpu))
5769 state |= PERF_GUEST_USER;
5770
5771 return state;
5772 }
5773
5774 static unsigned long kvm_guest_get_ip(void)
5775 {
5776 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5777
5778
5779 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5780 return 0;
5781
5782 return kvm_arch_vcpu_get_ip(vcpu);
5783 }
5784
5785 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5786 .state = kvm_guest_state,
5787 .get_ip = kvm_guest_get_ip,
5788 .handle_intel_pt_intr = NULL,
5789 };
5790
5791 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5792 {
5793 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5794 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5795 }
5796 void kvm_unregister_perf_callbacks(void)
5797 {
5798 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5799 }
5800 #endif
5801
5802 struct kvm_cpu_compat_check {
5803 void *opaque;
5804 int *ret;
5805 };
5806
5807 static void check_processor_compat(void *data)
5808 {
5809 struct kvm_cpu_compat_check *c = data;
5810
5811 *c->ret = kvm_arch_check_processor_compat(c->opaque);
5812 }
5813
5814 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5815 struct module *module)
5816 {
5817 struct kvm_cpu_compat_check c;
5818 int r;
5819 int cpu;
5820
5821 r = kvm_arch_init(opaque);
5822 if (r)
5823 goto out_fail;
5824
5825
5826
5827
5828
5829
5830
5831
5832 r = kvm_irqfd_init();
5833 if (r)
5834 goto out_irqfd;
5835
5836 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5837 r = -ENOMEM;
5838 goto out_free_0;
5839 }
5840
5841 r = kvm_arch_hardware_setup(opaque);
5842 if (r < 0)
5843 goto out_free_1;
5844
5845 c.ret = &r;
5846 c.opaque = opaque;
5847 for_each_online_cpu(cpu) {
5848 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5849 if (r < 0)
5850 goto out_free_2;
5851 }
5852
5853 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5854 kvm_starting_cpu, kvm_dying_cpu);
5855 if (r)
5856 goto out_free_2;
5857 register_reboot_notifier(&kvm_reboot_notifier);
5858
5859
5860 if (!vcpu_align)
5861 vcpu_align = __alignof__(struct kvm_vcpu);
5862 kvm_vcpu_cache =
5863 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5864 SLAB_ACCOUNT,
5865 offsetof(struct kvm_vcpu, arch),
5866 offsetofend(struct kvm_vcpu, stats_id)
5867 - offsetof(struct kvm_vcpu, arch),
5868 NULL);
5869 if (!kvm_vcpu_cache) {
5870 r = -ENOMEM;
5871 goto out_free_3;
5872 }
5873
5874 for_each_possible_cpu(cpu) {
5875 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5876 GFP_KERNEL, cpu_to_node(cpu))) {
5877 r = -ENOMEM;
5878 goto out_free_4;
5879 }
5880 }
5881
5882 r = kvm_async_pf_init();
5883 if (r)
5884 goto out_free_5;
5885
5886 kvm_chardev_ops.owner = module;
5887
5888 r = misc_register(&kvm_dev);
5889 if (r) {
5890 pr_err("kvm: misc device register failed\n");
5891 goto out_unreg;
5892 }
5893
5894 register_syscore_ops(&kvm_syscore_ops);
5895
5896 kvm_preempt_ops.sched_in = kvm_sched_in;
5897 kvm_preempt_ops.sched_out = kvm_sched_out;
5898
5899 kvm_init_debug();
5900
5901 r = kvm_vfio_ops_init();
5902 WARN_ON(r);
5903
5904 return 0;
5905
5906 out_unreg:
5907 kvm_async_pf_deinit();
5908 out_free_5:
5909 for_each_possible_cpu(cpu)
5910 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5911 out_free_4:
5912 kmem_cache_destroy(kvm_vcpu_cache);
5913 out_free_3:
5914 unregister_reboot_notifier(&kvm_reboot_notifier);
5915 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5916 out_free_2:
5917 kvm_arch_hardware_unsetup();
5918 out_free_1:
5919 free_cpumask_var(cpus_hardware_enabled);
5920 out_free_0:
5921 kvm_irqfd_exit();
5922 out_irqfd:
5923 kvm_arch_exit();
5924 out_fail:
5925 return r;
5926 }
5927 EXPORT_SYMBOL_GPL(kvm_init);
5928
5929 void kvm_exit(void)
5930 {
5931 int cpu;
5932
5933 debugfs_remove_recursive(kvm_debugfs_dir);
5934 misc_deregister(&kvm_dev);
5935 for_each_possible_cpu(cpu)
5936 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5937 kmem_cache_destroy(kvm_vcpu_cache);
5938 kvm_async_pf_deinit();
5939 unregister_syscore_ops(&kvm_syscore_ops);
5940 unregister_reboot_notifier(&kvm_reboot_notifier);
5941 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5942 on_each_cpu(hardware_disable_nolock, NULL, 1);
5943 kvm_arch_hardware_unsetup();
5944 kvm_arch_exit();
5945 kvm_irqfd_exit();
5946 free_cpumask_var(cpus_hardware_enabled);
5947 kvm_vfio_ops_exit();
5948 }
5949 EXPORT_SYMBOL_GPL(kvm_exit);
5950
5951 struct kvm_vm_worker_thread_context {
5952 struct kvm *kvm;
5953 struct task_struct *parent;
5954 struct completion init_done;
5955 kvm_vm_thread_fn_t thread_fn;
5956 uintptr_t data;
5957 int err;
5958 };
5959
5960 static int kvm_vm_worker_thread(void *context)
5961 {
5962
5963
5964
5965
5966 struct kvm_vm_worker_thread_context *init_context = context;
5967 struct task_struct *parent;
5968 struct kvm *kvm = init_context->kvm;
5969 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5970 uintptr_t data = init_context->data;
5971 int err;
5972
5973 err = kthread_park(current);
5974
5975 WARN_ON(err != 0);
5976 if (err)
5977 goto init_complete;
5978
5979 err = cgroup_attach_task_all(init_context->parent, current);
5980 if (err) {
5981 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5982 __func__, err);
5983 goto init_complete;
5984 }
5985
5986 set_user_nice(current, task_nice(init_context->parent));
5987
5988 init_complete:
5989 init_context->err = err;
5990 complete(&init_context->init_done);
5991 init_context = NULL;
5992
5993 if (err)
5994 goto out;
5995
5996
5997 kthread_parkme();
5998
5999 if (!kthread_should_stop())
6000 err = thread_fn(kvm, data);
6001
6002 out:
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014 rcu_read_lock();
6015 parent = rcu_dereference(current->real_parent);
6016 get_task_struct(parent);
6017 rcu_read_unlock();
6018 cgroup_attach_task_all(parent, current);
6019 put_task_struct(parent);
6020
6021 return err;
6022 }
6023
6024 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6025 uintptr_t data, const char *name,
6026 struct task_struct **thread_ptr)
6027 {
6028 struct kvm_vm_worker_thread_context init_context = {};
6029 struct task_struct *thread;
6030
6031 *thread_ptr = NULL;
6032 init_context.kvm = kvm;
6033 init_context.parent = current;
6034 init_context.thread_fn = thread_fn;
6035 init_context.data = data;
6036 init_completion(&init_context.init_done);
6037
6038 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6039 "%s-%d", name, task_pid_nr(current));
6040 if (IS_ERR(thread))
6041 return PTR_ERR(thread);
6042
6043
6044 WARN_ON(thread == NULL);
6045
6046 wait_for_completion(&init_context.init_done);
6047
6048 if (!init_context.err)
6049 *thread_ptr = thread;
6050
6051 return init_context.err;
6052 }