0001
0002
0003
0004
0005
0006
0007
0008 #include <asm/msr-index.h>
0009
0010 #include "test_util.h"
0011 #include "kvm_util.h"
0012 #include "processor.h"
0013 #include "vmx.h"
0014
0015 #define PAGE_SHIFT_4K 12
0016
0017 #define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000
0018
0019 bool enable_evmcs;
0020
0021 struct hv_enlightened_vmcs *current_evmcs;
0022 struct hv_vp_assist_page *current_vp_assist;
0023
0024 struct eptPageTableEntry {
0025 uint64_t readable:1;
0026 uint64_t writable:1;
0027 uint64_t executable:1;
0028 uint64_t memory_type:3;
0029 uint64_t ignore_pat:1;
0030 uint64_t page_size:1;
0031 uint64_t accessed:1;
0032 uint64_t dirty:1;
0033 uint64_t ignored_11_10:2;
0034 uint64_t address:40;
0035 uint64_t ignored_62_52:11;
0036 uint64_t suppress_ve:1;
0037 };
0038
0039 struct eptPageTablePointer {
0040 uint64_t memory_type:3;
0041 uint64_t page_walk_length:3;
0042 uint64_t ad_enabled:1;
0043 uint64_t reserved_11_07:5;
0044 uint64_t address:40;
0045 uint64_t reserved_63_52:12;
0046 };
0047 int vcpu_enable_evmcs(struct kvm_vcpu *vcpu)
0048 {
0049 uint16_t evmcs_ver;
0050
0051 vcpu_enable_cap(vcpu, KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
0052 (unsigned long)&evmcs_ver);
0053
0054
0055 TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
0056 (evmcs_ver & 0xff) > 0,
0057 "Incorrect EVMCS version range: %x:%x\n",
0058 evmcs_ver & 0xff, evmcs_ver >> 8);
0059
0060 return evmcs_ver;
0061 }
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074 struct vmx_pages *
0075 vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
0076 {
0077 vm_vaddr_t vmx_gva = vm_vaddr_alloc_page(vm);
0078 struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
0079
0080
0081 vmx->vmxon = (void *)vm_vaddr_alloc_page(vm);
0082 vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
0083 vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
0084
0085
0086 vmx->vmcs = (void *)vm_vaddr_alloc_page(vm);
0087 vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
0088 vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
0089
0090
0091 vmx->msr = (void *)vm_vaddr_alloc_page(vm);
0092 vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
0093 vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
0094 memset(vmx->msr_hva, 0, getpagesize());
0095
0096
0097 vmx->shadow_vmcs = (void *)vm_vaddr_alloc_page(vm);
0098 vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
0099 vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
0100
0101
0102 vmx->vmread = (void *)vm_vaddr_alloc_page(vm);
0103 vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
0104 vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
0105 memset(vmx->vmread_hva, 0, getpagesize());
0106
0107 vmx->vmwrite = (void *)vm_vaddr_alloc_page(vm);
0108 vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
0109 vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
0110 memset(vmx->vmwrite_hva, 0, getpagesize());
0111
0112
0113 vmx->vp_assist = (void *)vm_vaddr_alloc_page(vm);
0114 vmx->vp_assist_hva = addr_gva2hva(vm, (uintptr_t)vmx->vp_assist);
0115 vmx->vp_assist_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vp_assist);
0116
0117
0118 vmx->enlightened_vmcs = (void *)vm_vaddr_alloc_page(vm);
0119 vmx->enlightened_vmcs_hva =
0120 addr_gva2hva(vm, (uintptr_t)vmx->enlightened_vmcs);
0121 vmx->enlightened_vmcs_gpa =
0122 addr_gva2gpa(vm, (uintptr_t)vmx->enlightened_vmcs);
0123
0124 *p_vmx_gva = vmx_gva;
0125 return vmx;
0126 }
0127
0128 bool prepare_for_vmx_operation(struct vmx_pages *vmx)
0129 {
0130 uint64_t feature_control;
0131 uint64_t required;
0132 unsigned long cr0;
0133 unsigned long cr4;
0134
0135
0136
0137
0138
0139
0140 __asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
0141 cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
0142 cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
0143 __asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
0144
0145 __asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
0146 cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
0147 cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
0148
0149 cr4 |= X86_CR4_VMXE;
0150 __asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
0151
0152
0153
0154
0155
0156
0157
0158 required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
0159 required |= FEAT_CTL_LOCKED;
0160 feature_control = rdmsr(MSR_IA32_FEAT_CTL);
0161 if ((feature_control & required) != required)
0162 wrmsr(MSR_IA32_FEAT_CTL, feature_control | required);
0163
0164
0165 *(uint32_t *)(vmx->vmxon) = vmcs_revision();
0166 if (vmxon(vmx->vmxon_gpa))
0167 return false;
0168
0169 return true;
0170 }
0171
0172 bool load_vmcs(struct vmx_pages *vmx)
0173 {
0174 if (!enable_evmcs) {
0175
0176 *(uint32_t *)(vmx->vmcs) = vmcs_revision();
0177 if (vmclear(vmx->vmcs_gpa))
0178 return false;
0179
0180 if (vmptrld(vmx->vmcs_gpa))
0181 return false;
0182
0183
0184 *(uint32_t *)(vmx->shadow_vmcs) =
0185 vmcs_revision() | 0x80000000ul;
0186 if (vmclear(vmx->shadow_vmcs_gpa))
0187 return false;
0188 } else {
0189 if (evmcs_vmptrld(vmx->enlightened_vmcs_gpa,
0190 vmx->enlightened_vmcs))
0191 return false;
0192 current_evmcs->revision_id = EVMCS_VERSION;
0193 }
0194
0195 return true;
0196 }
0197
0198 static bool ept_vpid_cap_supported(uint64_t mask)
0199 {
0200 return rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & mask;
0201 }
0202
0203 bool ept_1g_pages_supported(void)
0204 {
0205 return ept_vpid_cap_supported(VMX_EPT_VPID_CAP_1G_PAGES);
0206 }
0207
0208
0209
0210
0211 static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
0212 {
0213 uint32_t sec_exec_ctl = 0;
0214
0215 vmwrite(VIRTUAL_PROCESSOR_ID, 0);
0216 vmwrite(POSTED_INTR_NV, 0);
0217
0218 vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
0219
0220 if (vmx->eptp_gpa) {
0221 uint64_t ept_paddr;
0222 struct eptPageTablePointer eptp = {
0223 .memory_type = VMX_BASIC_MEM_TYPE_WB,
0224 .page_walk_length = 3,
0225 .ad_enabled = ept_vpid_cap_supported(VMX_EPT_VPID_CAP_AD_BITS),
0226 .address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
0227 };
0228
0229 memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
0230 vmwrite(EPT_POINTER, ept_paddr);
0231 sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
0232 }
0233
0234 if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
0235 vmwrite(CPU_BASED_VM_EXEC_CONTROL,
0236 rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
0237 else {
0238 vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
0239 GUEST_ASSERT(!sec_exec_ctl);
0240 }
0241
0242 vmwrite(EXCEPTION_BITMAP, 0);
0243 vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
0244 vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1);
0245 vmwrite(CR3_TARGET_COUNT, 0);
0246 vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
0247 VM_EXIT_HOST_ADDR_SPACE_SIZE);
0248 vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
0249 vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
0250 vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
0251 VM_ENTRY_IA32E_MODE);
0252 vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
0253 vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
0254 vmwrite(TPR_THRESHOLD, 0);
0255
0256 vmwrite(CR0_GUEST_HOST_MASK, 0);
0257 vmwrite(CR4_GUEST_HOST_MASK, 0);
0258 vmwrite(CR0_READ_SHADOW, get_cr0());
0259 vmwrite(CR4_READ_SHADOW, get_cr4());
0260
0261 vmwrite(MSR_BITMAP, vmx->msr_gpa);
0262 vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
0263 vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
0264 }
0265
0266
0267
0268
0269
0270
0271 static inline void init_vmcs_host_state(void)
0272 {
0273 uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
0274
0275 vmwrite(HOST_ES_SELECTOR, get_es());
0276 vmwrite(HOST_CS_SELECTOR, get_cs());
0277 vmwrite(HOST_SS_SELECTOR, get_ss());
0278 vmwrite(HOST_DS_SELECTOR, get_ds());
0279 vmwrite(HOST_FS_SELECTOR, get_fs());
0280 vmwrite(HOST_GS_SELECTOR, get_gs());
0281 vmwrite(HOST_TR_SELECTOR, get_tr());
0282
0283 if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
0284 vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
0285 if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
0286 vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
0287 if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
0288 vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
0289 rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
0290
0291 vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
0292
0293 vmwrite(HOST_CR0, get_cr0());
0294 vmwrite(HOST_CR3, get_cr3());
0295 vmwrite(HOST_CR4, get_cr4());
0296 vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
0297 vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
0298 vmwrite(HOST_TR_BASE,
0299 get_desc64_base((struct desc64 *)(get_gdt().address + get_tr())));
0300 vmwrite(HOST_GDTR_BASE, get_gdt().address);
0301 vmwrite(HOST_IDTR_BASE, get_idt().address);
0302 vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
0303 vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
0304 }
0305
0306
0307
0308
0309
0310
0311 static inline void init_vmcs_guest_state(void *rip, void *rsp)
0312 {
0313 vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
0314 vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
0315 vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
0316 vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
0317 vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
0318 vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
0319 vmwrite(GUEST_LDTR_SELECTOR, 0);
0320 vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
0321 vmwrite(GUEST_INTR_STATUS, 0);
0322 vmwrite(GUEST_PML_INDEX, 0);
0323
0324 vmwrite(VMCS_LINK_POINTER, -1ll);
0325 vmwrite(GUEST_IA32_DEBUGCTL, 0);
0326 vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
0327 vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
0328 vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
0329 vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
0330
0331 vmwrite(GUEST_ES_LIMIT, -1);
0332 vmwrite(GUEST_CS_LIMIT, -1);
0333 vmwrite(GUEST_SS_LIMIT, -1);
0334 vmwrite(GUEST_DS_LIMIT, -1);
0335 vmwrite(GUEST_FS_LIMIT, -1);
0336 vmwrite(GUEST_GS_LIMIT, -1);
0337 vmwrite(GUEST_LDTR_LIMIT, -1);
0338 vmwrite(GUEST_TR_LIMIT, 0x67);
0339 vmwrite(GUEST_GDTR_LIMIT, 0xffff);
0340 vmwrite(GUEST_IDTR_LIMIT, 0xffff);
0341 vmwrite(GUEST_ES_AR_BYTES,
0342 vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
0343 vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
0344 vmwrite(GUEST_SS_AR_BYTES, 0xc093);
0345 vmwrite(GUEST_DS_AR_BYTES,
0346 vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
0347 vmwrite(GUEST_FS_AR_BYTES,
0348 vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
0349 vmwrite(GUEST_GS_AR_BYTES,
0350 vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
0351 vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
0352 vmwrite(GUEST_TR_AR_BYTES, 0x8b);
0353 vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
0354 vmwrite(GUEST_ACTIVITY_STATE, 0);
0355 vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
0356 vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
0357
0358 vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
0359 vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
0360 vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
0361 vmwrite(GUEST_ES_BASE, 0);
0362 vmwrite(GUEST_CS_BASE, 0);
0363 vmwrite(GUEST_SS_BASE, 0);
0364 vmwrite(GUEST_DS_BASE, 0);
0365 vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
0366 vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
0367 vmwrite(GUEST_LDTR_BASE, 0);
0368 vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
0369 vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
0370 vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
0371 vmwrite(GUEST_DR7, 0x400);
0372 vmwrite(GUEST_RSP, (uint64_t)rsp);
0373 vmwrite(GUEST_RIP, (uint64_t)rip);
0374 vmwrite(GUEST_RFLAGS, 2);
0375 vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
0376 vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
0377 vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
0378 }
0379
0380 void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
0381 {
0382 init_vmcs_control_fields(vmx);
0383 init_vmcs_host_state();
0384 init_vmcs_guest_state(guest_rip, guest_rsp);
0385 }
0386
0387 static void nested_create_pte(struct kvm_vm *vm,
0388 struct eptPageTableEntry *pte,
0389 uint64_t nested_paddr,
0390 uint64_t paddr,
0391 int current_level,
0392 int target_level)
0393 {
0394 if (!pte->readable) {
0395 pte->writable = true;
0396 pte->readable = true;
0397 pte->executable = true;
0398 pte->page_size = (current_level == target_level);
0399 if (pte->page_size)
0400 pte->address = paddr >> vm->page_shift;
0401 else
0402 pte->address = vm_alloc_page_table(vm) >> vm->page_shift;
0403 } else {
0404
0405
0406
0407
0408
0409 TEST_ASSERT(current_level != target_level,
0410 "Cannot create hugepage at level: %u, nested_paddr: 0x%lx\n",
0411 current_level, nested_paddr);
0412 TEST_ASSERT(!pte->page_size,
0413 "Cannot create page table at level: %u, nested_paddr: 0x%lx\n",
0414 current_level, nested_paddr);
0415 }
0416 }
0417
0418
0419 void __nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
0420 uint64_t nested_paddr, uint64_t paddr, int target_level)
0421 {
0422 const uint64_t page_size = PG_LEVEL_SIZE(target_level);
0423 struct eptPageTableEntry *pt = vmx->eptp_hva, *pte;
0424 uint16_t index;
0425
0426 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
0427 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
0428
0429 TEST_ASSERT((nested_paddr >> 48) == 0,
0430 "Nested physical address 0x%lx requires 5-level paging",
0431 nested_paddr);
0432 TEST_ASSERT((nested_paddr % page_size) == 0,
0433 "Nested physical address not on page boundary,\n"
0434 " nested_paddr: 0x%lx page_size: 0x%lx",
0435 nested_paddr, page_size);
0436 TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
0437 "Physical address beyond beyond maximum supported,\n"
0438 " nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
0439 paddr, vm->max_gfn, vm->page_size);
0440 TEST_ASSERT((paddr % page_size) == 0,
0441 "Physical address not on page boundary,\n"
0442 " paddr: 0x%lx page_size: 0x%lx",
0443 paddr, page_size);
0444 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
0445 "Physical address beyond beyond maximum supported,\n"
0446 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
0447 paddr, vm->max_gfn, vm->page_size);
0448
0449 for (int level = PG_LEVEL_512G; level >= PG_LEVEL_4K; level--) {
0450 index = (nested_paddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
0451 pte = &pt[index];
0452
0453 nested_create_pte(vm, pte, nested_paddr, paddr, level, target_level);
0454
0455 if (pte->page_size)
0456 break;
0457
0458 pt = addr_gpa2hva(vm, pte->address * vm->page_size);
0459 }
0460
0461
0462
0463
0464
0465 pte->accessed = true;
0466 pte->dirty = true;
0467
0468 }
0469
0470 void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
0471 uint64_t nested_paddr, uint64_t paddr)
0472 {
0473 __nested_pg_map(vmx, vm, nested_paddr, paddr, PG_LEVEL_4K);
0474 }
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493 void __nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
0494 uint64_t nested_paddr, uint64_t paddr, uint64_t size,
0495 int level)
0496 {
0497 size_t page_size = PG_LEVEL_SIZE(level);
0498 size_t npages = size / page_size;
0499
0500 TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
0501 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
0502
0503 while (npages--) {
0504 __nested_pg_map(vmx, vm, nested_paddr, paddr, level);
0505 nested_paddr += page_size;
0506 paddr += page_size;
0507 }
0508 }
0509
0510 void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
0511 uint64_t nested_paddr, uint64_t paddr, uint64_t size)
0512 {
0513 __nested_map(vmx, vm, nested_paddr, paddr, size, PG_LEVEL_4K);
0514 }
0515
0516
0517
0518
0519 void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
0520 uint32_t memslot)
0521 {
0522 sparsebit_idx_t i, last;
0523 struct userspace_mem_region *region =
0524 memslot2region(vm, memslot);
0525
0526 i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
0527 last = i + (region->region.memory_size >> vm->page_shift);
0528 for (;;) {
0529 i = sparsebit_next_clear(region->unused_phy_pages, i);
0530 if (i > last)
0531 break;
0532
0533 nested_map(vmx, vm,
0534 (uint64_t)i << vm->page_shift,
0535 (uint64_t)i << vm->page_shift,
0536 1 << vm->page_shift);
0537 }
0538 }
0539
0540
0541 void nested_identity_map_1g(struct vmx_pages *vmx, struct kvm_vm *vm,
0542 uint64_t addr, uint64_t size)
0543 {
0544 __nested_map(vmx, vm, addr, addr, size, PG_LEVEL_1G);
0545 }
0546
0547 bool kvm_vm_has_ept(struct kvm_vm *vm)
0548 {
0549 struct kvm_vcpu *vcpu;
0550 uint64_t ctrl;
0551
0552 vcpu = list_first_entry(&vm->vcpus, struct kvm_vcpu, list);
0553 TEST_ASSERT(vcpu, "Cannot determine EPT support without vCPUs.\n");
0554
0555 ctrl = vcpu_get_msr(vcpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS) >> 32;
0556 if (!(ctrl & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
0557 return false;
0558
0559 ctrl = vcpu_get_msr(vcpu, MSR_IA32_VMX_PROCBASED_CTLS2) >> 32;
0560 return ctrl & SECONDARY_EXEC_ENABLE_EPT;
0561 }
0562
0563 void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm,
0564 uint32_t eptp_memslot)
0565 {
0566 TEST_REQUIRE(kvm_vm_has_ept(vm));
0567
0568 vmx->eptp = (void *)vm_vaddr_alloc_page(vm);
0569 vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
0570 vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
0571 }
0572
0573 void prepare_virtualize_apic_accesses(struct vmx_pages *vmx, struct kvm_vm *vm)
0574 {
0575 vmx->apic_access = (void *)vm_vaddr_alloc_page(vm);
0576 vmx->apic_access_hva = addr_gva2hva(vm, (uintptr_t)vmx->apic_access);
0577 vmx->apic_access_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->apic_access);
0578 }