0001
0002
0003
0004
0005
0006
0007
0008 #include "test_util.h"
0009 #include "kvm_util.h"
0010 #include "processor.h"
0011
0012 #ifndef NUM_INTERRUPTS
0013 #define NUM_INTERRUPTS 256
0014 #endif
0015
0016 #define DEFAULT_CODE_SELECTOR 0x8
0017 #define DEFAULT_DATA_SELECTOR 0x10
0018
0019 #define MAX_NR_CPUID_ENTRIES 100
0020
0021 vm_vaddr_t exception_handlers;
0022
0023 static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent)
0024 {
0025 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
0026 "rcx: 0x%.16llx rdx: 0x%.16llx\n",
0027 indent, "",
0028 regs->rax, regs->rbx, regs->rcx, regs->rdx);
0029 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
0030 "rsp: 0x%.16llx rbp: 0x%.16llx\n",
0031 indent, "",
0032 regs->rsi, regs->rdi, regs->rsp, regs->rbp);
0033 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx "
0034 "r10: 0x%.16llx r11: 0x%.16llx\n",
0035 indent, "",
0036 regs->r8, regs->r9, regs->r10, regs->r11);
0037 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
0038 "r14: 0x%.16llx r15: 0x%.16llx\n",
0039 indent, "",
0040 regs->r12, regs->r13, regs->r14, regs->r15);
0041 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
0042 indent, "",
0043 regs->rip, regs->rflags);
0044 }
0045
0046 static void segment_dump(FILE *stream, struct kvm_segment *segment,
0047 uint8_t indent)
0048 {
0049 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
0050 "selector: 0x%.4x type: 0x%.2x\n",
0051 indent, "", segment->base, segment->limit,
0052 segment->selector, segment->type);
0053 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
0054 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
0055 indent, "", segment->present, segment->dpl,
0056 segment->db, segment->s, segment->l);
0057 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
0058 "unusable: 0x%.2x padding: 0x%.2x\n",
0059 indent, "", segment->g, segment->avl,
0060 segment->unusable, segment->padding);
0061 }
0062
0063 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
0064 uint8_t indent)
0065 {
0066 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
0067 "padding: 0x%.4x 0x%.4x 0x%.4x\n",
0068 indent, "", dtable->base, dtable->limit,
0069 dtable->padding[0], dtable->padding[1], dtable->padding[2]);
0070 }
0071
0072 static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent)
0073 {
0074 unsigned int i;
0075
0076 fprintf(stream, "%*scs:\n", indent, "");
0077 segment_dump(stream, &sregs->cs, indent + 2);
0078 fprintf(stream, "%*sds:\n", indent, "");
0079 segment_dump(stream, &sregs->ds, indent + 2);
0080 fprintf(stream, "%*ses:\n", indent, "");
0081 segment_dump(stream, &sregs->es, indent + 2);
0082 fprintf(stream, "%*sfs:\n", indent, "");
0083 segment_dump(stream, &sregs->fs, indent + 2);
0084 fprintf(stream, "%*sgs:\n", indent, "");
0085 segment_dump(stream, &sregs->gs, indent + 2);
0086 fprintf(stream, "%*sss:\n", indent, "");
0087 segment_dump(stream, &sregs->ss, indent + 2);
0088 fprintf(stream, "%*str:\n", indent, "");
0089 segment_dump(stream, &sregs->tr, indent + 2);
0090 fprintf(stream, "%*sldt:\n", indent, "");
0091 segment_dump(stream, &sregs->ldt, indent + 2);
0092
0093 fprintf(stream, "%*sgdt:\n", indent, "");
0094 dtable_dump(stream, &sregs->gdt, indent + 2);
0095 fprintf(stream, "%*sidt:\n", indent, "");
0096 dtable_dump(stream, &sregs->idt, indent + 2);
0097
0098 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
0099 "cr3: 0x%.16llx cr4: 0x%.16llx\n",
0100 indent, "",
0101 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
0102 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
0103 "apic_base: 0x%.16llx\n",
0104 indent, "",
0105 sregs->cr8, sregs->efer, sregs->apic_base);
0106
0107 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
0108 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
0109 fprintf(stream, "%*s%.16llx\n", indent + 2, "",
0110 sregs->interrupt_bitmap[i]);
0111 }
0112 }
0113
0114 void virt_arch_pgd_alloc(struct kvm_vm *vm)
0115 {
0116 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
0117 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
0118
0119
0120 if (!vm->pgd_created) {
0121 vm->pgd = vm_alloc_page_table(vm);
0122 vm->pgd_created = true;
0123 }
0124 }
0125
0126 static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr,
0127 int level)
0128 {
0129 uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift);
0130 int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
0131
0132 return &page_table[index];
0133 }
0134
0135 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
0136 uint64_t pt_pfn,
0137 uint64_t vaddr,
0138 uint64_t paddr,
0139 int current_level,
0140 int target_level)
0141 {
0142 uint64_t *pte = virt_get_pte(vm, pt_pfn, vaddr, current_level);
0143
0144 if (!(*pte & PTE_PRESENT_MASK)) {
0145 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
0146 if (current_level == target_level)
0147 *pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
0148 else
0149 *pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
0150 } else {
0151
0152
0153
0154
0155
0156 TEST_ASSERT(current_level != target_level,
0157 "Cannot create hugepage at level: %u, vaddr: 0x%lx\n",
0158 current_level, vaddr);
0159 TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
0160 "Cannot create page table at level: %u, vaddr: 0x%lx\n",
0161 current_level, vaddr);
0162 }
0163 return pte;
0164 }
0165
0166 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level)
0167 {
0168 const uint64_t pg_size = PG_LEVEL_SIZE(level);
0169 uint64_t *pml4e, *pdpe, *pde;
0170 uint64_t *pte;
0171
0172 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
0173 "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
0174
0175 TEST_ASSERT((vaddr % pg_size) == 0,
0176 "Virtual address not aligned,\n"
0177 "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
0178 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
0179 "Invalid virtual address, vaddr: 0x%lx", vaddr);
0180 TEST_ASSERT((paddr % pg_size) == 0,
0181 "Physical address not aligned,\n"
0182 " paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
0183 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
0184 "Physical address beyond maximum supported,\n"
0185 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
0186 paddr, vm->max_gfn, vm->page_size);
0187
0188
0189
0190
0191
0192 pml4e = virt_create_upper_pte(vm, vm->pgd >> vm->page_shift,
0193 vaddr, paddr, PG_LEVEL_512G, level);
0194 if (*pml4e & PTE_LARGE_MASK)
0195 return;
0196
0197 pdpe = virt_create_upper_pte(vm, PTE_GET_PFN(*pml4e), vaddr, paddr, PG_LEVEL_1G, level);
0198 if (*pdpe & PTE_LARGE_MASK)
0199 return;
0200
0201 pde = virt_create_upper_pte(vm, PTE_GET_PFN(*pdpe), vaddr, paddr, PG_LEVEL_2M, level);
0202 if (*pde & PTE_LARGE_MASK)
0203 return;
0204
0205
0206 pte = virt_get_pte(vm, PTE_GET_PFN(*pde), vaddr, PG_LEVEL_4K);
0207 TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
0208 "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr);
0209 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
0210 }
0211
0212 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
0213 {
0214 __virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K);
0215 }
0216
0217 static uint64_t *_vm_get_page_table_entry(struct kvm_vm *vm,
0218 struct kvm_vcpu *vcpu,
0219 uint64_t vaddr)
0220 {
0221 uint16_t index[4];
0222 uint64_t *pml4e, *pdpe, *pde;
0223 uint64_t *pte;
0224 struct kvm_sregs sregs;
0225 uint64_t rsvd_mask = 0;
0226
0227
0228 if (vm->pa_bits < 52)
0229 rsvd_mask = GENMASK_ULL(51, vm->pa_bits);
0230
0231
0232
0233
0234
0235
0236
0237 vcpu_sregs_get(vcpu, &sregs);
0238 if ((sregs.efer & EFER_NX) == 0) {
0239 rsvd_mask |= PTE_NX_MASK;
0240 }
0241
0242 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
0243 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
0244 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
0245 (vaddr >> vm->page_shift)),
0246 "Invalid virtual address, vaddr: 0x%lx",
0247 vaddr);
0248
0249
0250
0251
0252 TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
0253 "Canonical check failed. The virtual address is invalid.");
0254
0255 index[0] = (vaddr >> 12) & 0x1ffu;
0256 index[1] = (vaddr >> 21) & 0x1ffu;
0257 index[2] = (vaddr >> 30) & 0x1ffu;
0258 index[3] = (vaddr >> 39) & 0x1ffu;
0259
0260 pml4e = addr_gpa2hva(vm, vm->pgd);
0261 TEST_ASSERT(pml4e[index[3]] & PTE_PRESENT_MASK,
0262 "Expected pml4e to be present for gva: 0x%08lx", vaddr);
0263 TEST_ASSERT((pml4e[index[3]] & (rsvd_mask | PTE_LARGE_MASK)) == 0,
0264 "Unexpected reserved bits set.");
0265
0266 pdpe = addr_gpa2hva(vm, PTE_GET_PFN(pml4e[index[3]]) * vm->page_size);
0267 TEST_ASSERT(pdpe[index[2]] & PTE_PRESENT_MASK,
0268 "Expected pdpe to be present for gva: 0x%08lx", vaddr);
0269 TEST_ASSERT(!(pdpe[index[2]] & PTE_LARGE_MASK),
0270 "Expected pdpe to map a pde not a 1-GByte page.");
0271 TEST_ASSERT((pdpe[index[2]] & rsvd_mask) == 0,
0272 "Unexpected reserved bits set.");
0273
0274 pde = addr_gpa2hva(vm, PTE_GET_PFN(pdpe[index[2]]) * vm->page_size);
0275 TEST_ASSERT(pde[index[1]] & PTE_PRESENT_MASK,
0276 "Expected pde to be present for gva: 0x%08lx", vaddr);
0277 TEST_ASSERT(!(pde[index[1]] & PTE_LARGE_MASK),
0278 "Expected pde to map a pte not a 2-MByte page.");
0279 TEST_ASSERT((pde[index[1]] & rsvd_mask) == 0,
0280 "Unexpected reserved bits set.");
0281
0282 pte = addr_gpa2hva(vm, PTE_GET_PFN(pde[index[1]]) * vm->page_size);
0283 TEST_ASSERT(pte[index[0]] & PTE_PRESENT_MASK,
0284 "Expected pte to be present for gva: 0x%08lx", vaddr);
0285
0286 return &pte[index[0]];
0287 }
0288
0289 uint64_t vm_get_page_table_entry(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
0290 uint64_t vaddr)
0291 {
0292 uint64_t *pte = _vm_get_page_table_entry(vm, vcpu, vaddr);
0293
0294 return *(uint64_t *)pte;
0295 }
0296
0297 void vm_set_page_table_entry(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
0298 uint64_t vaddr, uint64_t pte)
0299 {
0300 uint64_t *new_pte = _vm_get_page_table_entry(vm, vcpu, vaddr);
0301
0302 *(uint64_t *)new_pte = pte;
0303 }
0304
0305 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
0306 {
0307 uint64_t *pml4e, *pml4e_start;
0308 uint64_t *pdpe, *pdpe_start;
0309 uint64_t *pde, *pde_start;
0310 uint64_t *pte, *pte_start;
0311
0312 if (!vm->pgd_created)
0313 return;
0314
0315 fprintf(stream, "%*s "
0316 " no\n", indent, "");
0317 fprintf(stream, "%*s index hvaddr gpaddr "
0318 "addr w exec dirty\n",
0319 indent, "");
0320 pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
0321 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
0322 pml4e = &pml4e_start[n1];
0323 if (!(*pml4e & PTE_PRESENT_MASK))
0324 continue;
0325 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
0326 " %u\n",
0327 indent, "",
0328 pml4e - pml4e_start, pml4e,
0329 addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
0330 !!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
0331
0332 pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
0333 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
0334 pdpe = &pdpe_start[n2];
0335 if (!(*pdpe & PTE_PRESENT_MASK))
0336 continue;
0337 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10llx "
0338 "%u %u\n",
0339 indent, "",
0340 pdpe - pdpe_start, pdpe,
0341 addr_hva2gpa(vm, pdpe),
0342 PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
0343 !!(*pdpe & PTE_NX_MASK));
0344
0345 pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
0346 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
0347 pde = &pde_start[n3];
0348 if (!(*pde & PTE_PRESENT_MASK))
0349 continue;
0350 fprintf(stream, "%*spde 0x%-3zx %p "
0351 "0x%-12lx 0x%-10llx %u %u\n",
0352 indent, "", pde - pde_start, pde,
0353 addr_hva2gpa(vm, pde),
0354 PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
0355 !!(*pde & PTE_NX_MASK));
0356
0357 pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
0358 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
0359 pte = &pte_start[n4];
0360 if (!(*pte & PTE_PRESENT_MASK))
0361 continue;
0362 fprintf(stream, "%*spte 0x%-3zx %p "
0363 "0x%-12lx 0x%-10llx %u %u "
0364 " %u 0x%-10lx\n",
0365 indent, "",
0366 pte - pte_start, pte,
0367 addr_hva2gpa(vm, pte),
0368 PTE_GET_PFN(*pte),
0369 !!(*pte & PTE_WRITABLE_MASK),
0370 !!(*pte & PTE_NX_MASK),
0371 !!(*pte & PTE_DIRTY_MASK),
0372 ((uint64_t) n1 << 27)
0373 | ((uint64_t) n2 << 18)
0374 | ((uint64_t) n3 << 9)
0375 | ((uint64_t) n4));
0376 }
0377 }
0378 }
0379 }
0380 }
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394 static void kvm_seg_set_unusable(struct kvm_segment *segp)
0395 {
0396 memset(segp, 0, sizeof(*segp));
0397 segp->unusable = true;
0398 }
0399
0400 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
0401 {
0402 void *gdt = addr_gva2hva(vm, vm->gdt);
0403 struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
0404
0405 desc->limit0 = segp->limit & 0xFFFF;
0406 desc->base0 = segp->base & 0xFFFF;
0407 desc->base1 = segp->base >> 16;
0408 desc->type = segp->type;
0409 desc->s = segp->s;
0410 desc->dpl = segp->dpl;
0411 desc->p = segp->present;
0412 desc->limit1 = segp->limit >> 16;
0413 desc->avl = segp->avl;
0414 desc->l = segp->l;
0415 desc->db = segp->db;
0416 desc->g = segp->g;
0417 desc->base2 = segp->base >> 24;
0418 if (!segp->s)
0419 desc->base3 = segp->base >> 32;
0420 }
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
0439 struct kvm_segment *segp)
0440 {
0441 memset(segp, 0, sizeof(*segp));
0442 segp->selector = selector;
0443 segp->limit = 0xFFFFFFFFu;
0444 segp->s = 0x1;
0445 segp->type = 0x08 | 0x01 | 0x02;
0446
0447
0448 segp->g = true;
0449 segp->l = true;
0450 segp->present = 1;
0451 if (vm)
0452 kvm_seg_fill_gdt_64bit(vm, segp);
0453 }
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
0471 struct kvm_segment *segp)
0472 {
0473 memset(segp, 0, sizeof(*segp));
0474 segp->selector = selector;
0475 segp->limit = 0xFFFFFFFFu;
0476 segp->s = 0x1;
0477 segp->type = 0x00 | 0x01 | 0x02;
0478
0479
0480 segp->g = true;
0481 segp->present = true;
0482 if (vm)
0483 kvm_seg_fill_gdt_64bit(vm, segp);
0484 }
0485
0486 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
0487 {
0488 uint16_t index[4];
0489 uint64_t *pml4e, *pdpe, *pde;
0490 uint64_t *pte;
0491
0492 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
0493 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
0494
0495 index[0] = (gva >> 12) & 0x1ffu;
0496 index[1] = (gva >> 21) & 0x1ffu;
0497 index[2] = (gva >> 30) & 0x1ffu;
0498 index[3] = (gva >> 39) & 0x1ffu;
0499
0500 if (!vm->pgd_created)
0501 goto unmapped_gva;
0502 pml4e = addr_gpa2hva(vm, vm->pgd);
0503 if (!(pml4e[index[3]] & PTE_PRESENT_MASK))
0504 goto unmapped_gva;
0505
0506 pdpe = addr_gpa2hva(vm, PTE_GET_PFN(pml4e[index[3]]) * vm->page_size);
0507 if (!(pdpe[index[2]] & PTE_PRESENT_MASK))
0508 goto unmapped_gva;
0509
0510 pde = addr_gpa2hva(vm, PTE_GET_PFN(pdpe[index[2]]) * vm->page_size);
0511 if (!(pde[index[1]] & PTE_PRESENT_MASK))
0512 goto unmapped_gva;
0513
0514 pte = addr_gpa2hva(vm, PTE_GET_PFN(pde[index[1]]) * vm->page_size);
0515 if (!(pte[index[0]] & PTE_PRESENT_MASK))
0516 goto unmapped_gva;
0517
0518 return (PTE_GET_PFN(pte[index[0]]) * vm->page_size) + (gva & ~PAGE_MASK);
0519
0520 unmapped_gva:
0521 TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
0522 exit(EXIT_FAILURE);
0523 }
0524
0525 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
0526 {
0527 if (!vm->gdt)
0528 vm->gdt = vm_vaddr_alloc_page(vm);
0529
0530 dt->base = vm->gdt;
0531 dt->limit = getpagesize();
0532 }
0533
0534 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
0535 int selector)
0536 {
0537 if (!vm->tss)
0538 vm->tss = vm_vaddr_alloc_page(vm);
0539
0540 memset(segp, 0, sizeof(*segp));
0541 segp->base = vm->tss;
0542 segp->limit = 0x67;
0543 segp->selector = selector;
0544 segp->type = 0xb;
0545 segp->present = 1;
0546 kvm_seg_fill_gdt_64bit(vm, segp);
0547 }
0548
0549 static void vcpu_setup(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
0550 {
0551 struct kvm_sregs sregs;
0552
0553
0554 vcpu_sregs_get(vcpu, &sregs);
0555
0556 sregs.idt.limit = 0;
0557
0558 kvm_setup_gdt(vm, &sregs.gdt);
0559
0560 switch (vm->mode) {
0561 case VM_MODE_PXXV48_4K:
0562 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
0563 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
0564 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
0565
0566 kvm_seg_set_unusable(&sregs.ldt);
0567 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
0568 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
0569 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
0570 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
0571 break;
0572
0573 default:
0574 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
0575 }
0576
0577 sregs.cr3 = vm->pgd;
0578 vcpu_sregs_set(vcpu, &sregs);
0579 }
0580
0581 void __vm_xsave_require_permission(int bit, const char *name)
0582 {
0583 int kvm_fd;
0584 u64 bitmask;
0585 long rc;
0586 struct kvm_device_attr attr = {
0587 .group = 0,
0588 .attr = KVM_X86_XCOMP_GUEST_SUPP,
0589 .addr = (unsigned long) &bitmask
0590 };
0591
0592 TEST_REQUIRE(kvm_cpu_has(X86_FEATURE_XFD));
0593
0594 kvm_fd = open_kvm_dev_path_or_exit();
0595 rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
0596 close(kvm_fd);
0597
0598 if (rc == -1 && (errno == ENXIO || errno == EINVAL))
0599 __TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported");
0600
0601 TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
0602
0603 __TEST_REQUIRE(bitmask & (1ULL << bit),
0604 "Required XSAVE feature '%s' not supported", name);
0605
0606 TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit));
0607
0608 rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
0609 TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
0610 TEST_ASSERT(bitmask & (1ULL << bit),
0611 "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx",
0612 bitmask);
0613 }
0614
0615 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
0616 void *guest_code)
0617 {
0618 struct kvm_mp_state mp_state;
0619 struct kvm_regs regs;
0620 vm_vaddr_t stack_vaddr;
0621 struct kvm_vcpu *vcpu;
0622
0623 stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
0624 DEFAULT_GUEST_STACK_VADDR_MIN);
0625
0626 vcpu = __vm_vcpu_add(vm, vcpu_id);
0627 vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
0628 vcpu_setup(vm, vcpu);
0629
0630
0631 vcpu_regs_get(vcpu, ®s);
0632 regs.rflags = regs.rflags | 0x2;
0633 regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
0634 regs.rip = (unsigned long) guest_code;
0635 vcpu_regs_set(vcpu, ®s);
0636
0637
0638 mp_state.mp_state = 0;
0639 vcpu_mp_state_set(vcpu, &mp_state);
0640
0641 return vcpu;
0642 }
0643
0644 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id)
0645 {
0646 struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
0647
0648 vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
0649
0650 return vcpu;
0651 }
0652
0653 void vcpu_arch_free(struct kvm_vcpu *vcpu)
0654 {
0655 if (vcpu->cpuid)
0656 free(vcpu->cpuid);
0657 }
0658
0659 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
0660 {
0661 static struct kvm_cpuid2 *cpuid;
0662 int kvm_fd;
0663
0664 if (cpuid)
0665 return cpuid;
0666
0667 cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
0668 kvm_fd = open_kvm_dev_path_or_exit();
0669
0670 kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
0671
0672 close(kvm_fd);
0673 return cpuid;
0674 }
0675
0676 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
0677 struct kvm_x86_cpu_feature feature)
0678 {
0679 const struct kvm_cpuid_entry2 *entry;
0680 int i;
0681
0682 for (i = 0; i < cpuid->nent; i++) {
0683 entry = &cpuid->entries[i];
0684
0685
0686
0687
0688
0689
0690 if (entry->function == feature.function &&
0691 entry->index == feature.index)
0692 return (&entry->eax)[feature.reg] & BIT(feature.bit);
0693 }
0694
0695 return false;
0696 }
0697
0698 uint64_t kvm_get_feature_msr(uint64_t msr_index)
0699 {
0700 struct {
0701 struct kvm_msrs header;
0702 struct kvm_msr_entry entry;
0703 } buffer = {};
0704 int r, kvm_fd;
0705
0706 buffer.header.nmsrs = 1;
0707 buffer.entry.index = msr_index;
0708 kvm_fd = open_kvm_dev_path_or_exit();
0709
0710 r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
0711 TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r));
0712
0713 close(kvm_fd);
0714 return buffer.entry.data;
0715 }
0716
0717 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid)
0718 {
0719 TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID");
0720
0721
0722 if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) {
0723 free(vcpu->cpuid);
0724 vcpu->cpuid = NULL;
0725 }
0726
0727 if (!vcpu->cpuid)
0728 vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent);
0729
0730 memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent));
0731 vcpu_set_cpuid(vcpu);
0732 }
0733
0734 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr)
0735 {
0736 struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, 0x80000008);
0737
0738 entry->eax = (entry->eax & ~0xff) | maxphyaddr;
0739 vcpu_set_cpuid(vcpu);
0740 }
0741
0742 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function)
0743 {
0744 struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function);
0745
0746 entry->eax = 0;
0747 entry->ebx = 0;
0748 entry->ecx = 0;
0749 entry->edx = 0;
0750 vcpu_set_cpuid(vcpu);
0751 }
0752
0753 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
0754 struct kvm_x86_cpu_feature feature,
0755 bool set)
0756 {
0757 struct kvm_cpuid_entry2 *entry;
0758 u32 *reg;
0759
0760 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
0761 reg = (&entry->eax) + feature.reg;
0762
0763 if (set)
0764 *reg |= BIT(feature.bit);
0765 else
0766 *reg &= ~BIT(feature.bit);
0767
0768 vcpu_set_cpuid(vcpu);
0769 }
0770
0771 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index)
0772 {
0773 struct {
0774 struct kvm_msrs header;
0775 struct kvm_msr_entry entry;
0776 } buffer = {};
0777
0778 buffer.header.nmsrs = 1;
0779 buffer.entry.index = msr_index;
0780
0781 vcpu_msrs_get(vcpu, &buffer.header);
0782
0783 return buffer.entry.data;
0784 }
0785
0786 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value)
0787 {
0788 struct {
0789 struct kvm_msrs header;
0790 struct kvm_msr_entry entry;
0791 } buffer = {};
0792
0793 memset(&buffer, 0, sizeof(buffer));
0794 buffer.header.nmsrs = 1;
0795 buffer.entry.index = msr_index;
0796 buffer.entry.data = msr_value;
0797
0798 return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header);
0799 }
0800
0801 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
0802 {
0803 va_list ap;
0804 struct kvm_regs regs;
0805
0806 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
0807 " num: %u\n",
0808 num);
0809
0810 va_start(ap, num);
0811 vcpu_regs_get(vcpu, ®s);
0812
0813 if (num >= 1)
0814 regs.rdi = va_arg(ap, uint64_t);
0815
0816 if (num >= 2)
0817 regs.rsi = va_arg(ap, uint64_t);
0818
0819 if (num >= 3)
0820 regs.rdx = va_arg(ap, uint64_t);
0821
0822 if (num >= 4)
0823 regs.rcx = va_arg(ap, uint64_t);
0824
0825 if (num >= 5)
0826 regs.r8 = va_arg(ap, uint64_t);
0827
0828 if (num >= 6)
0829 regs.r9 = va_arg(ap, uint64_t);
0830
0831 vcpu_regs_set(vcpu, ®s);
0832 va_end(ap);
0833 }
0834
0835 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
0836 {
0837 struct kvm_regs regs;
0838 struct kvm_sregs sregs;
0839
0840 fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id);
0841
0842 fprintf(stream, "%*sregs:\n", indent + 2, "");
0843 vcpu_regs_get(vcpu, ®s);
0844 regs_dump(stream, ®s, indent + 4);
0845
0846 fprintf(stream, "%*ssregs:\n", indent + 2, "");
0847 vcpu_sregs_get(vcpu, &sregs);
0848 sregs_dump(stream, &sregs, indent + 4);
0849 }
0850
0851 static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs)
0852 {
0853 struct kvm_msr_list *list;
0854 struct kvm_msr_list nmsrs;
0855 int kvm_fd, r;
0856
0857 kvm_fd = open_kvm_dev_path_or_exit();
0858
0859 nmsrs.nmsrs = 0;
0860 if (!feature_msrs)
0861 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
0862 else
0863 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs);
0864
0865 TEST_ASSERT(r == -1 && errno == E2BIG,
0866 "Expected -E2BIG, got rc: %i errno: %i (%s)",
0867 r, errno, strerror(errno));
0868
0869 list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0]));
0870 TEST_ASSERT(list, "-ENOMEM when allocating MSR index list");
0871 list->nmsrs = nmsrs.nmsrs;
0872
0873 if (!feature_msrs)
0874 kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
0875 else
0876 kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
0877 close(kvm_fd);
0878
0879 TEST_ASSERT(list->nmsrs == nmsrs.nmsrs,
0880 "Number of MSRs in list changed, was %d, now %d",
0881 nmsrs.nmsrs, list->nmsrs);
0882 return list;
0883 }
0884
0885 const struct kvm_msr_list *kvm_get_msr_index_list(void)
0886 {
0887 static const struct kvm_msr_list *list;
0888
0889 if (!list)
0890 list = __kvm_get_msr_index_list(false);
0891 return list;
0892 }
0893
0894
0895 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void)
0896 {
0897 static const struct kvm_msr_list *list;
0898
0899 if (!list)
0900 list = __kvm_get_msr_index_list(true);
0901 return list;
0902 }
0903
0904 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index)
0905 {
0906 const struct kvm_msr_list *list = kvm_get_msr_index_list();
0907 int i;
0908
0909 for (i = 0; i < list->nmsrs; ++i) {
0910 if (list->indices[i] == msr_index)
0911 return true;
0912 }
0913
0914 return false;
0915 }
0916
0917 static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu,
0918 struct kvm_x86_state *state)
0919 {
0920 int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2);
0921
0922 if (size) {
0923 state->xsave = malloc(size);
0924 vcpu_xsave2_get(vcpu, state->xsave);
0925 } else {
0926 state->xsave = malloc(sizeof(struct kvm_xsave));
0927 vcpu_xsave_get(vcpu, state->xsave);
0928 }
0929 }
0930
0931 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu)
0932 {
0933 const struct kvm_msr_list *msr_list = kvm_get_msr_index_list();
0934 struct kvm_x86_state *state;
0935 int i;
0936
0937 static int nested_size = -1;
0938
0939 if (nested_size == -1) {
0940 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
0941 TEST_ASSERT(nested_size <= sizeof(state->nested_),
0942 "Nested state size too big, %i > %zi",
0943 nested_size, sizeof(state->nested_));
0944 }
0945
0946
0947
0948
0949
0950
0951
0952 vcpu_run_complete_io(vcpu);
0953
0954 state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0]));
0955
0956 vcpu_events_get(vcpu, &state->events);
0957 vcpu_mp_state_get(vcpu, &state->mp_state);
0958 vcpu_regs_get(vcpu, &state->regs);
0959 vcpu_save_xsave_state(vcpu, state);
0960
0961 if (kvm_has_cap(KVM_CAP_XCRS))
0962 vcpu_xcrs_get(vcpu, &state->xcrs);
0963
0964 vcpu_sregs_get(vcpu, &state->sregs);
0965
0966 if (nested_size) {
0967 state->nested.size = sizeof(state->nested_);
0968
0969 vcpu_nested_state_get(vcpu, &state->nested);
0970 TEST_ASSERT(state->nested.size <= nested_size,
0971 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
0972 state->nested.size, nested_size);
0973 } else {
0974 state->nested.size = 0;
0975 }
0976
0977 state->msrs.nmsrs = msr_list->nmsrs;
0978 for (i = 0; i < msr_list->nmsrs; i++)
0979 state->msrs.entries[i].index = msr_list->indices[i];
0980 vcpu_msrs_get(vcpu, &state->msrs);
0981
0982 vcpu_debugregs_get(vcpu, &state->debugregs);
0983
0984 return state;
0985 }
0986
0987 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state)
0988 {
0989 vcpu_sregs_set(vcpu, &state->sregs);
0990 vcpu_msrs_set(vcpu, &state->msrs);
0991
0992 if (kvm_has_cap(KVM_CAP_XCRS))
0993 vcpu_xcrs_set(vcpu, &state->xcrs);
0994
0995 vcpu_xsave_set(vcpu, state->xsave);
0996 vcpu_events_set(vcpu, &state->events);
0997 vcpu_mp_state_set(vcpu, &state->mp_state);
0998 vcpu_debugregs_set(vcpu, &state->debugregs);
0999 vcpu_regs_set(vcpu, &state->regs);
1000
1001 if (state->nested.size)
1002 vcpu_nested_state_set(vcpu, &state->nested);
1003 }
1004
1005 void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1006 {
1007 free(state->xsave);
1008 free(state);
1009 }
1010
1011 static bool cpu_vendor_string_is(const char *vendor)
1012 {
1013 const uint32_t *chunk = (const uint32_t *)vendor;
1014 uint32_t eax, ebx, ecx, edx;
1015
1016 cpuid(0, &eax, &ebx, &ecx, &edx);
1017 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
1018 }
1019
1020 bool is_intel_cpu(void)
1021 {
1022 return cpu_vendor_string_is("GenuineIntel");
1023 }
1024
1025
1026
1027
1028 bool is_amd_cpu(void)
1029 {
1030 return cpu_vendor_string_is("AuthenticAMD");
1031 }
1032
1033 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1034 {
1035 const struct kvm_cpuid_entry2 *entry;
1036 bool pae;
1037
1038
1039 if (kvm_get_cpuid_max_extended() < 0x80000008) {
1040 pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6);
1041 *pa_bits = pae ? 36 : 32;
1042 *va_bits = 32;
1043 } else {
1044 entry = kvm_get_supported_cpuid_entry(0x80000008);
1045 *pa_bits = entry->eax & 0xff;
1046 *va_bits = (entry->eax >> 8) & 0xff;
1047 }
1048 }
1049
1050 struct idt_entry {
1051 uint16_t offset0;
1052 uint16_t selector;
1053 uint16_t ist : 3;
1054 uint16_t : 5;
1055 uint16_t type : 4;
1056 uint16_t : 1;
1057 uint16_t dpl : 2;
1058 uint16_t p : 1;
1059 uint16_t offset1;
1060 uint32_t offset2; uint32_t reserved;
1061 };
1062
1063 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1064 int dpl, unsigned short selector)
1065 {
1066 struct idt_entry *base =
1067 (struct idt_entry *)addr_gva2hva(vm, vm->idt);
1068 struct idt_entry *e = &base[vector];
1069
1070 memset(e, 0, sizeof(*e));
1071 e->offset0 = addr;
1072 e->selector = selector;
1073 e->ist = 0;
1074 e->type = 14;
1075 e->dpl = dpl;
1076 e->p = 1;
1077 e->offset1 = addr >> 16;
1078 e->offset2 = addr >> 32;
1079 }
1080
1081
1082 static bool kvm_fixup_exception(struct ex_regs *regs)
1083 {
1084 if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10)
1085 return false;
1086
1087 if (regs->vector == DE_VECTOR)
1088 return false;
1089
1090 regs->rip = regs->r11;
1091 regs->r9 = regs->vector;
1092 return true;
1093 }
1094
1095 void kvm_exit_unexpected_vector(uint32_t value)
1096 {
1097 ucall(UCALL_UNHANDLED, 1, value);
1098 }
1099
1100 void route_exception(struct ex_regs *regs)
1101 {
1102 typedef void(*handler)(struct ex_regs *);
1103 handler *handlers = (handler *)exception_handlers;
1104
1105 if (handlers && handlers[regs->vector]) {
1106 handlers[regs->vector](regs);
1107 return;
1108 }
1109
1110 if (kvm_fixup_exception(regs))
1111 return;
1112
1113 kvm_exit_unexpected_vector(regs->vector);
1114 }
1115
1116 void vm_init_descriptor_tables(struct kvm_vm *vm)
1117 {
1118 extern void *idt_handlers;
1119 int i;
1120
1121 vm->idt = vm_vaddr_alloc_page(vm);
1122 vm->handlers = vm_vaddr_alloc_page(vm);
1123
1124 for (i = 0; i < NUM_INTERRUPTS; i++)
1125 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1126 DEFAULT_CODE_SELECTOR);
1127 }
1128
1129 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu)
1130 {
1131 struct kvm_vm *vm = vcpu->vm;
1132 struct kvm_sregs sregs;
1133
1134 vcpu_sregs_get(vcpu, &sregs);
1135 sregs.idt.base = vm->idt;
1136 sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1137 sregs.gdt.base = vm->gdt;
1138 sregs.gdt.limit = getpagesize() - 1;
1139 kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1140 vcpu_sregs_set(vcpu, &sregs);
1141 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1142 }
1143
1144 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1145 void (*handler)(struct ex_regs *))
1146 {
1147 vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1148
1149 handlers[vector] = (vm_vaddr_t)handler;
1150 }
1151
1152 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
1153 {
1154 struct ucall uc;
1155
1156 if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) {
1157 uint64_t vector = uc.args[0];
1158
1159 TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)",
1160 vector);
1161 }
1162 }
1163
1164 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
1165 uint32_t function, uint32_t index)
1166 {
1167 int i;
1168
1169 for (i = 0; i < cpuid->nent; i++) {
1170 if (cpuid->entries[i].function == function &&
1171 cpuid->entries[i].index == index)
1172 return &cpuid->entries[i];
1173 }
1174
1175 TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1176
1177 return NULL;
1178 }
1179
1180 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1181 uint64_t a3)
1182 {
1183 uint64_t r;
1184
1185 asm volatile("vmcall"
1186 : "=a"(r)
1187 : "a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1188 return r;
1189 }
1190
1191 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1192 {
1193 static struct kvm_cpuid2 *cpuid;
1194 int kvm_fd;
1195
1196 if (cpuid)
1197 return cpuid;
1198
1199 cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
1200 kvm_fd = open_kvm_dev_path_or_exit();
1201
1202 kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1203
1204 close(kvm_fd);
1205 return cpuid;
1206 }
1207
1208 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu)
1209 {
1210 static struct kvm_cpuid2 *cpuid_full;
1211 const struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1212 int i, nent = 0;
1213
1214 if (!cpuid_full) {
1215 cpuid_sys = kvm_get_supported_cpuid();
1216 cpuid_hv = kvm_get_supported_hv_cpuid();
1217
1218 cpuid_full = allocate_kvm_cpuid2(cpuid_sys->nent + cpuid_hv->nent);
1219 if (!cpuid_full) {
1220 perror("malloc");
1221 abort();
1222 }
1223
1224
1225 for (i = 0; i < cpuid_sys->nent; i++) {
1226 if (cpuid_sys->entries[i].function >= 0x40000000 &&
1227 cpuid_sys->entries[i].function < 0x40000100)
1228 continue;
1229 cpuid_full->entries[nent] = cpuid_sys->entries[i];
1230 nent++;
1231 }
1232
1233 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1234 cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1235 cpuid_full->nent = nent + cpuid_hv->nent;
1236 }
1237
1238 vcpu_init_cpuid(vcpu, cpuid_full);
1239 }
1240
1241 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu)
1242 {
1243 struct kvm_cpuid2 *cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
1244
1245 vcpu_ioctl(vcpu, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1246
1247 return cpuid;
1248 }
1249
1250 unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1251 {
1252 const unsigned long num_ht_pages = 12 << (30 - vm->page_shift);
1253 unsigned long ht_gfn, max_gfn, max_pfn;
1254 uint32_t eax, ebx, ecx, edx, max_ext_leaf;
1255
1256 max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;
1257
1258
1259 if (!is_amd_cpu())
1260 return max_gfn;
1261
1262
1263 if (vm->pa_bits < 40)
1264 return max_gfn;
1265
1266
1267 ht_gfn = (1 << 28) - num_ht_pages;
1268 cpuid(1, &eax, &ebx, &ecx, &edx);
1269 if (x86_family(eax) < 0x17)
1270 goto done;
1271
1272
1273
1274
1275
1276
1277 cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
1278 max_ext_leaf = eax;
1279 if (max_ext_leaf < 0x80000008)
1280 goto done;
1281
1282 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1283 max_pfn = (1ULL << ((eax & 0xff) - vm->page_shift)) - 1;
1284 if (max_ext_leaf >= 0x8000001f) {
1285 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
1286 max_pfn >>= (ebx >> 6) & 0x3f;
1287 }
1288
1289 ht_gfn = max_pfn - num_ht_pages;
1290 done:
1291 return min(max_gfn, ht_gfn - 1);
1292 }
1293
1294
1295 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1296 {
1297 char val = 'N';
1298 size_t count;
1299 FILE *f;
1300
1301
1302 if (vm == NULL)
1303 close(open_kvm_dev_path_or_exit());
1304
1305 f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
1306 if (f) {
1307 count = fread(&val, sizeof(char), 1, f);
1308 TEST_ASSERT(count == 1, "Unable to read from param file.");
1309 fclose(f);
1310 }
1311
1312 return val == 'Y';
1313 }