0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/compiler.h>
0009 #include <assert.h>
0010
0011 #include "kvm_util.h"
0012 #include "processor.h"
0013
0014 #define DEFAULT_RISCV_GUEST_STACK_VADDR_MIN 0xac0000
0015
0016 static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
0017 {
0018 return (v + vm->page_size) & ~(vm->page_size - 1);
0019 }
0020
0021 static uint64_t pte_addr(struct kvm_vm *vm, uint64_t entry)
0022 {
0023 return ((entry & PGTBL_PTE_ADDR_MASK) >> PGTBL_PTE_ADDR_SHIFT) <<
0024 PGTBL_PAGE_SIZE_SHIFT;
0025 }
0026
0027 static uint64_t ptrs_per_pte(struct kvm_vm *vm)
0028 {
0029 return PGTBL_PAGE_SIZE / sizeof(uint64_t);
0030 }
0031
0032 static uint64_t pte_index_mask[] = {
0033 PGTBL_L0_INDEX_MASK,
0034 PGTBL_L1_INDEX_MASK,
0035 PGTBL_L2_INDEX_MASK,
0036 PGTBL_L3_INDEX_MASK,
0037 };
0038
0039 static uint32_t pte_index_shift[] = {
0040 PGTBL_L0_INDEX_SHIFT,
0041 PGTBL_L1_INDEX_SHIFT,
0042 PGTBL_L2_INDEX_SHIFT,
0043 PGTBL_L3_INDEX_SHIFT,
0044 };
0045
0046 static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva, int level)
0047 {
0048 TEST_ASSERT(level > -1,
0049 "Negative page table level (%d) not possible", level);
0050 TEST_ASSERT(level < vm->pgtable_levels,
0051 "Invalid page table level (%d)", level);
0052
0053 return (gva & pte_index_mask[level]) >> pte_index_shift[level];
0054 }
0055
0056 void virt_arch_pgd_alloc(struct kvm_vm *vm)
0057 {
0058 if (!vm->pgd_created) {
0059 vm_paddr_t paddr = vm_phy_pages_alloc(vm,
0060 page_align(vm, ptrs_per_pte(vm) * 8) / vm->page_size,
0061 KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
0062 vm->pgd = paddr;
0063 vm->pgd_created = true;
0064 }
0065 }
0066
0067 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
0068 {
0069 uint64_t *ptep, next_ppn;
0070 int level = vm->pgtable_levels - 1;
0071
0072 TEST_ASSERT((vaddr % vm->page_size) == 0,
0073 "Virtual address not on page boundary,\n"
0074 " vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
0075 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
0076 (vaddr >> vm->page_shift)),
0077 "Invalid virtual address, vaddr: 0x%lx", vaddr);
0078 TEST_ASSERT((paddr % vm->page_size) == 0,
0079 "Physical address not on page boundary,\n"
0080 " paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
0081 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
0082 "Physical address beyond maximum supported,\n"
0083 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
0084 paddr, vm->max_gfn, vm->page_size);
0085
0086 ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, vaddr, level) * 8;
0087 if (!*ptep) {
0088 next_ppn = vm_alloc_page_table(vm) >> PGTBL_PAGE_SIZE_SHIFT;
0089 *ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
0090 PGTBL_PTE_VALID_MASK;
0091 }
0092 level--;
0093
0094 while (level > -1) {
0095 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
0096 pte_index(vm, vaddr, level) * 8;
0097 if (!*ptep && level > 0) {
0098 next_ppn = vm_alloc_page_table(vm) >>
0099 PGTBL_PAGE_SIZE_SHIFT;
0100 *ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
0101 PGTBL_PTE_VALID_MASK;
0102 }
0103 level--;
0104 }
0105
0106 paddr = paddr >> PGTBL_PAGE_SIZE_SHIFT;
0107 *ptep = (paddr << PGTBL_PTE_ADDR_SHIFT) |
0108 PGTBL_PTE_PERM_MASK | PGTBL_PTE_VALID_MASK;
0109 }
0110
0111 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
0112 {
0113 uint64_t *ptep;
0114 int level = vm->pgtable_levels - 1;
0115
0116 if (!vm->pgd_created)
0117 goto unmapped_gva;
0118
0119 ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, gva, level) * 8;
0120 if (!ptep)
0121 goto unmapped_gva;
0122 level--;
0123
0124 while (level > -1) {
0125 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
0126 pte_index(vm, gva, level) * 8;
0127 if (!ptep)
0128 goto unmapped_gva;
0129 level--;
0130 }
0131
0132 return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
0133
0134 unmapped_gva:
0135 TEST_FAIL("No mapping for vm virtual address gva: 0x%lx level: %d",
0136 gva, level);
0137 exit(1);
0138 }
0139
0140 static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent,
0141 uint64_t page, int level)
0142 {
0143 #ifdef DEBUG
0144 static const char *const type[] = { "pte", "pmd", "pud", "p4d"};
0145 uint64_t pte, *ptep;
0146
0147 if (level < 0)
0148 return;
0149
0150 for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
0151 ptep = addr_gpa2hva(vm, pte);
0152 if (!*ptep)
0153 continue;
0154 fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "",
0155 type[level], pte, *ptep, ptep);
0156 pte_dump(stream, vm, indent + 1,
0157 pte_addr(vm, *ptep), level - 1);
0158 }
0159 #endif
0160 }
0161
0162 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
0163 {
0164 int level = vm->pgtable_levels - 1;
0165 uint64_t pgd, *ptep;
0166
0167 if (!vm->pgd_created)
0168 return;
0169
0170 for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pte(vm) * 8; pgd += 8) {
0171 ptep = addr_gpa2hva(vm, pgd);
0172 if (!*ptep)
0173 continue;
0174 fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "",
0175 pgd, *ptep, ptep);
0176 pte_dump(stream, vm, indent + 1,
0177 pte_addr(vm, *ptep), level - 1);
0178 }
0179 }
0180
0181 void riscv_vcpu_mmu_setup(struct kvm_vcpu *vcpu)
0182 {
0183 struct kvm_vm *vm = vcpu->vm;
0184 unsigned long satp;
0185
0186
0187
0188
0189
0190 switch (vm->mode) {
0191 case VM_MODE_P52V48_4K:
0192 case VM_MODE_P48V48_4K:
0193 case VM_MODE_P40V48_4K:
0194 break;
0195 default:
0196 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
0197 }
0198
0199 satp = (vm->pgd >> PGTBL_PAGE_SIZE_SHIFT) & SATP_PPN;
0200 satp |= SATP_MODE_48;
0201
0202 vcpu_set_reg(vcpu, RISCV_CSR_REG(satp), satp);
0203 }
0204
0205 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
0206 {
0207 struct kvm_riscv_core core;
0208
0209 vcpu_get_reg(vcpu, RISCV_CORE_REG(mode), &core.mode);
0210 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.pc), &core.regs.pc);
0211 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.ra), &core.regs.ra);
0212 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.sp), &core.regs.sp);
0213 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.gp), &core.regs.gp);
0214 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.tp), &core.regs.tp);
0215 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t0), &core.regs.t0);
0216 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t1), &core.regs.t1);
0217 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t2), &core.regs.t2);
0218 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s0), &core.regs.s0);
0219 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s1), &core.regs.s1);
0220 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a0), &core.regs.a0);
0221 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a1), &core.regs.a1);
0222 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a2), &core.regs.a2);
0223 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a3), &core.regs.a3);
0224 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a4), &core.regs.a4);
0225 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a5), &core.regs.a5);
0226 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a6), &core.regs.a6);
0227 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a7), &core.regs.a7);
0228 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s2), &core.regs.s2);
0229 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s3), &core.regs.s3);
0230 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s4), &core.regs.s4);
0231 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s5), &core.regs.s5);
0232 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s6), &core.regs.s6);
0233 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s7), &core.regs.s7);
0234 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s8), &core.regs.s8);
0235 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s9), &core.regs.s9);
0236 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s10), &core.regs.s10);
0237 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s11), &core.regs.s11);
0238 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t3), &core.regs.t3);
0239 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t4), &core.regs.t4);
0240 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t5), &core.regs.t5);
0241 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t6), &core.regs.t6);
0242
0243 fprintf(stream,
0244 " MODE: 0x%lx\n", core.mode);
0245 fprintf(stream,
0246 " PC: 0x%016lx RA: 0x%016lx SP: 0x%016lx GP: 0x%016lx\n",
0247 core.regs.pc, core.regs.ra, core.regs.sp, core.regs.gp);
0248 fprintf(stream,
0249 " TP: 0x%016lx T0: 0x%016lx T1: 0x%016lx T2: 0x%016lx\n",
0250 core.regs.tp, core.regs.t0, core.regs.t1, core.regs.t2);
0251 fprintf(stream,
0252 " S0: 0x%016lx S1: 0x%016lx A0: 0x%016lx A1: 0x%016lx\n",
0253 core.regs.s0, core.regs.s1, core.regs.a0, core.regs.a1);
0254 fprintf(stream,
0255 " A2: 0x%016lx A3: 0x%016lx A4: 0x%016lx A5: 0x%016lx\n",
0256 core.regs.a2, core.regs.a3, core.regs.a4, core.regs.a5);
0257 fprintf(stream,
0258 " A6: 0x%016lx A7: 0x%016lx S2: 0x%016lx S3: 0x%016lx\n",
0259 core.regs.a6, core.regs.a7, core.regs.s2, core.regs.s3);
0260 fprintf(stream,
0261 " S4: 0x%016lx S5: 0x%016lx S6: 0x%016lx S7: 0x%016lx\n",
0262 core.regs.s4, core.regs.s5, core.regs.s6, core.regs.s7);
0263 fprintf(stream,
0264 " S8: 0x%016lx S9: 0x%016lx S10: 0x%016lx S11: 0x%016lx\n",
0265 core.regs.s8, core.regs.s9, core.regs.s10, core.regs.s11);
0266 fprintf(stream,
0267 " T3: 0x%016lx T4: 0x%016lx T5: 0x%016lx T6: 0x%016lx\n",
0268 core.regs.t3, core.regs.t4, core.regs.t5, core.regs.t6);
0269 }
0270
0271 static void __aligned(16) guest_unexp_trap(void)
0272 {
0273 sbi_ecall(KVM_RISCV_SELFTESTS_SBI_EXT,
0274 KVM_RISCV_SELFTESTS_SBI_UNEXP,
0275 0, 0, 0, 0, 0, 0);
0276 }
0277
0278 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
0279 void *guest_code)
0280 {
0281 int r;
0282 size_t stack_size = vm->page_size == 4096 ?
0283 DEFAULT_STACK_PGS * vm->page_size :
0284 vm->page_size;
0285 unsigned long stack_vaddr = vm_vaddr_alloc(vm, stack_size,
0286 DEFAULT_RISCV_GUEST_STACK_VADDR_MIN);
0287 unsigned long current_gp = 0;
0288 struct kvm_mp_state mps;
0289 struct kvm_vcpu *vcpu;
0290
0291 vcpu = __vm_vcpu_add(vm, vcpu_id);
0292 riscv_vcpu_mmu_setup(vcpu);
0293
0294
0295
0296
0297
0298
0299 mps.mp_state = KVM_MP_STATE_RUNNABLE;
0300 r = __vcpu_ioctl(vcpu, KVM_SET_MP_STATE, &mps);
0301 TEST_ASSERT(!r, "IOCTL KVM_SET_MP_STATE failed (error %d)", r);
0302
0303
0304 asm volatile (
0305 "add %0, gp, zero" : "=r" (current_gp) : : "memory");
0306 vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.gp), current_gp);
0307
0308
0309 vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.sp), stack_vaddr + stack_size);
0310 vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.pc), (unsigned long)guest_code);
0311
0312
0313 vcpu_set_reg(vcpu, RISCV_CSR_REG(stvec), (unsigned long)guest_unexp_trap);
0314
0315 return vcpu;
0316 }
0317
0318 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
0319 {
0320 va_list ap;
0321 uint64_t id = RISCV_CORE_REG(regs.a0);
0322 int i;
0323
0324 TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
0325 " num: %u\n", num);
0326
0327 va_start(ap, num);
0328
0329 for (i = 0; i < num; i++) {
0330 switch (i) {
0331 case 0:
0332 id = RISCV_CORE_REG(regs.a0);
0333 break;
0334 case 1:
0335 id = RISCV_CORE_REG(regs.a1);
0336 break;
0337 case 2:
0338 id = RISCV_CORE_REG(regs.a2);
0339 break;
0340 case 3:
0341 id = RISCV_CORE_REG(regs.a3);
0342 break;
0343 case 4:
0344 id = RISCV_CORE_REG(regs.a4);
0345 break;
0346 case 5:
0347 id = RISCV_CORE_REG(regs.a5);
0348 break;
0349 case 6:
0350 id = RISCV_CORE_REG(regs.a6);
0351 break;
0352 case 7:
0353 id = RISCV_CORE_REG(regs.a7);
0354 break;
0355 }
0356 vcpu_set_reg(vcpu, id, va_arg(ap, uint64_t));
0357 }
0358
0359 va_end(ap);
0360 }
0361
0362 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
0363 {
0364 }