Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * tools/testing/selftests/kvm/lib/kvm_util.c
0004  *
0005  * Copyright (C) 2018, Google LLC.
0006  */
0007 
0008 #define _GNU_SOURCE /* for program_invocation_name */
0009 #include "test_util.h"
0010 #include "kvm_util.h"
0011 #include "processor.h"
0012 
0013 #include <assert.h>
0014 #include <sys/mman.h>
0015 #include <sys/types.h>
0016 #include <sys/stat.h>
0017 #include <unistd.h>
0018 #include <linux/kernel.h>
0019 
0020 #define KVM_UTIL_MIN_PFN    2
0021 
0022 static int vcpu_mmap_sz(void);
0023 
0024 int open_path_or_exit(const char *path, int flags)
0025 {
0026     int fd;
0027 
0028     fd = open(path, flags);
0029     __TEST_REQUIRE(fd >= 0, "%s not available (errno: %d)", path, errno);
0030 
0031     return fd;
0032 }
0033 
0034 /*
0035  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
0036  *
0037  * Input Args:
0038  *   flags - The flags to pass when opening KVM_DEV_PATH.
0039  *
0040  * Return:
0041  *   The opened file descriptor of /dev/kvm.
0042  */
0043 static int _open_kvm_dev_path_or_exit(int flags)
0044 {
0045     return open_path_or_exit(KVM_DEV_PATH, flags);
0046 }
0047 
0048 int open_kvm_dev_path_or_exit(void)
0049 {
0050     return _open_kvm_dev_path_or_exit(O_RDONLY);
0051 }
0052 
0053 /*
0054  * Capability
0055  *
0056  * Input Args:
0057  *   cap - Capability
0058  *
0059  * Output Args: None
0060  *
0061  * Return:
0062  *   On success, the Value corresponding to the capability (KVM_CAP_*)
0063  *   specified by the value of cap.  On failure a TEST_ASSERT failure
0064  *   is produced.
0065  *
0066  * Looks up and returns the value corresponding to the capability
0067  * (KVM_CAP_*) given by cap.
0068  */
0069 unsigned int kvm_check_cap(long cap)
0070 {
0071     int ret;
0072     int kvm_fd;
0073 
0074     kvm_fd = open_kvm_dev_path_or_exit();
0075     ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
0076     TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
0077 
0078     close(kvm_fd);
0079 
0080     return (unsigned int)ret;
0081 }
0082 
0083 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
0084 {
0085     vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
0086     vm->dirty_ring_size = ring_size;
0087 }
0088 
0089 static void vm_open(struct kvm_vm *vm)
0090 {
0091     vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
0092 
0093     TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
0094 
0095     vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
0096     TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
0097 }
0098 
0099 const char *vm_guest_mode_string(uint32_t i)
0100 {
0101     static const char * const strings[] = {
0102         [VM_MODE_P52V48_4K] = "PA-bits:52,  VA-bits:48,  4K pages",
0103         [VM_MODE_P52V48_64K]    = "PA-bits:52,  VA-bits:48, 64K pages",
0104         [VM_MODE_P48V48_4K] = "PA-bits:48,  VA-bits:48,  4K pages",
0105         [VM_MODE_P48V48_16K]    = "PA-bits:48,  VA-bits:48, 16K pages",
0106         [VM_MODE_P48V48_64K]    = "PA-bits:48,  VA-bits:48, 64K pages",
0107         [VM_MODE_P40V48_4K] = "PA-bits:40,  VA-bits:48,  4K pages",
0108         [VM_MODE_P40V48_16K]    = "PA-bits:40,  VA-bits:48, 16K pages",
0109         [VM_MODE_P40V48_64K]    = "PA-bits:40,  VA-bits:48, 64K pages",
0110         [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48,  4K pages",
0111         [VM_MODE_P47V64_4K] = "PA-bits:47,  VA-bits:64,  4K pages",
0112         [VM_MODE_P44V64_4K] = "PA-bits:44,  VA-bits:64,  4K pages",
0113         [VM_MODE_P36V48_4K] = "PA-bits:36,  VA-bits:48,  4K pages",
0114         [VM_MODE_P36V48_16K]    = "PA-bits:36,  VA-bits:48, 16K pages",
0115         [VM_MODE_P36V48_64K]    = "PA-bits:36,  VA-bits:48, 64K pages",
0116         [VM_MODE_P36V47_16K]    = "PA-bits:36,  VA-bits:47, 16K pages",
0117     };
0118     _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
0119                "Missing new mode strings?");
0120 
0121     TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
0122 
0123     return strings[i];
0124 }
0125 
0126 const struct vm_guest_mode_params vm_guest_mode_params[] = {
0127     [VM_MODE_P52V48_4K] = { 52, 48,  0x1000, 12 },
0128     [VM_MODE_P52V48_64K]    = { 52, 48, 0x10000, 16 },
0129     [VM_MODE_P48V48_4K] = { 48, 48,  0x1000, 12 },
0130     [VM_MODE_P48V48_16K]    = { 48, 48,  0x4000, 14 },
0131     [VM_MODE_P48V48_64K]    = { 48, 48, 0x10000, 16 },
0132     [VM_MODE_P40V48_4K] = { 40, 48,  0x1000, 12 },
0133     [VM_MODE_P40V48_16K]    = { 40, 48,  0x4000, 14 },
0134     [VM_MODE_P40V48_64K]    = { 40, 48, 0x10000, 16 },
0135     [VM_MODE_PXXV48_4K] = {  0,  0,  0x1000, 12 },
0136     [VM_MODE_P47V64_4K] = { 47, 64,  0x1000, 12 },
0137     [VM_MODE_P44V64_4K] = { 44, 64,  0x1000, 12 },
0138     [VM_MODE_P36V48_4K] = { 36, 48,  0x1000, 12 },
0139     [VM_MODE_P36V48_16K]    = { 36, 48,  0x4000, 14 },
0140     [VM_MODE_P36V48_64K]    = { 36, 48, 0x10000, 16 },
0141     [VM_MODE_P36V47_16K]    = { 36, 47,  0x4000, 14 },
0142 };
0143 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
0144            "Missing new mode params?");
0145 
0146 struct kvm_vm *____vm_create(enum vm_guest_mode mode, uint64_t nr_pages)
0147 {
0148     struct kvm_vm *vm;
0149 
0150     pr_debug("%s: mode='%s' pages='%ld'\n", __func__,
0151          vm_guest_mode_string(mode), nr_pages);
0152 
0153     vm = calloc(1, sizeof(*vm));
0154     TEST_ASSERT(vm != NULL, "Insufficient Memory");
0155 
0156     INIT_LIST_HEAD(&vm->vcpus);
0157     vm->regions.gpa_tree = RB_ROOT;
0158     vm->regions.hva_tree = RB_ROOT;
0159     hash_init(vm->regions.slot_hash);
0160 
0161     vm->mode = mode;
0162     vm->type = 0;
0163 
0164     vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
0165     vm->va_bits = vm_guest_mode_params[mode].va_bits;
0166     vm->page_size = vm_guest_mode_params[mode].page_size;
0167     vm->page_shift = vm_guest_mode_params[mode].page_shift;
0168 
0169     /* Setup mode specific traits. */
0170     switch (vm->mode) {
0171     case VM_MODE_P52V48_4K:
0172         vm->pgtable_levels = 4;
0173         break;
0174     case VM_MODE_P52V48_64K:
0175         vm->pgtable_levels = 3;
0176         break;
0177     case VM_MODE_P48V48_4K:
0178         vm->pgtable_levels = 4;
0179         break;
0180     case VM_MODE_P48V48_64K:
0181         vm->pgtable_levels = 3;
0182         break;
0183     case VM_MODE_P40V48_4K:
0184     case VM_MODE_P36V48_4K:
0185         vm->pgtable_levels = 4;
0186         break;
0187     case VM_MODE_P40V48_64K:
0188     case VM_MODE_P36V48_64K:
0189         vm->pgtable_levels = 3;
0190         break;
0191     case VM_MODE_P48V48_16K:
0192     case VM_MODE_P40V48_16K:
0193     case VM_MODE_P36V48_16K:
0194         vm->pgtable_levels = 4;
0195         break;
0196     case VM_MODE_P36V47_16K:
0197         vm->pgtable_levels = 3;
0198         break;
0199     case VM_MODE_PXXV48_4K:
0200 #ifdef __x86_64__
0201         kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
0202         /*
0203          * Ignore KVM support for 5-level paging (vm->va_bits == 57),
0204          * it doesn't take effect unless a CR4.LA57 is set, which it
0205          * isn't for this VM_MODE.
0206          */
0207         TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
0208                 "Linear address width (%d bits) not supported",
0209                 vm->va_bits);
0210         pr_debug("Guest physical address width detected: %d\n",
0211              vm->pa_bits);
0212         vm->pgtable_levels = 4;
0213         vm->va_bits = 48;
0214 #else
0215         TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
0216 #endif
0217         break;
0218     case VM_MODE_P47V64_4K:
0219         vm->pgtable_levels = 5;
0220         break;
0221     case VM_MODE_P44V64_4K:
0222         vm->pgtable_levels = 5;
0223         break;
0224     default:
0225         TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
0226     }
0227 
0228 #ifdef __aarch64__
0229     if (vm->pa_bits != 40)
0230         vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
0231 #endif
0232 
0233     vm_open(vm);
0234 
0235     /* Limit to VA-bit canonical virtual addresses. */
0236     vm->vpages_valid = sparsebit_alloc();
0237     sparsebit_set_num(vm->vpages_valid,
0238         0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
0239     sparsebit_set_num(vm->vpages_valid,
0240         (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
0241         (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
0242 
0243     /* Limit physical addresses to PA-bits. */
0244     vm->max_gfn = vm_compute_max_gfn(vm);
0245 
0246     /* Allocate and setup memory for guest. */
0247     vm->vpages_mapped = sparsebit_alloc();
0248     if (nr_pages != 0)
0249         vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
0250                         0, 0, nr_pages, 0);
0251 
0252     return vm;
0253 }
0254 
0255 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
0256                      uint32_t nr_runnable_vcpus,
0257                      uint64_t extra_mem_pages)
0258 {
0259     uint64_t nr_pages;
0260 
0261     TEST_ASSERT(nr_runnable_vcpus,
0262             "Use vm_create_barebones() for VMs that _never_ have vCPUs\n");
0263 
0264     TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
0265             "nr_vcpus = %d too large for host, max-vcpus = %d",
0266             nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
0267 
0268     /*
0269      * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
0270      * test code and other per-VM assets that will be loaded into memslot0.
0271      */
0272     nr_pages = 512;
0273 
0274     /* Account for the per-vCPU stacks on behalf of the test. */
0275     nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
0276 
0277     /*
0278      * Account for the number of pages needed for the page tables.  The
0279      * maximum page table size for a memory region will be when the
0280      * smallest page size is used. Considering each page contains x page
0281      * table descriptors, the total extra size for page tables (for extra
0282      * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
0283      * than N/x*2.
0284      */
0285     nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
0286 
0287     return vm_adjust_num_guest_pages(mode, nr_pages);
0288 }
0289 
0290 struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus,
0291                uint64_t nr_extra_pages)
0292 {
0293     uint64_t nr_pages = vm_nr_pages_required(mode, nr_runnable_vcpus,
0294                          nr_extra_pages);
0295     struct kvm_vm *vm;
0296 
0297     vm = ____vm_create(mode, nr_pages);
0298 
0299     kvm_vm_elf_load(vm, program_invocation_name);
0300 
0301 #ifdef __x86_64__
0302     vm_create_irqchip(vm);
0303 #endif
0304     return vm;
0305 }
0306 
0307 /*
0308  * VM Create with customized parameters
0309  *
0310  * Input Args:
0311  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
0312  *   nr_vcpus - VCPU count
0313  *   extra_mem_pages - Non-slot0 physical memory total size
0314  *   guest_code - Guest entry point
0315  *   vcpuids - VCPU IDs
0316  *
0317  * Output Args: None
0318  *
0319  * Return:
0320  *   Pointer to opaque structure that describes the created VM.
0321  *
0322  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
0323  * extra_mem_pages is only used to calculate the maximum page table size,
0324  * no real memory allocation for non-slot0 memory in this function.
0325  */
0326 struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
0327                       uint64_t extra_mem_pages,
0328                       void *guest_code, struct kvm_vcpu *vcpus[])
0329 {
0330     struct kvm_vm *vm;
0331     int i;
0332 
0333     TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
0334 
0335     vm = __vm_create(mode, nr_vcpus, extra_mem_pages);
0336 
0337     for (i = 0; i < nr_vcpus; ++i)
0338         vcpus[i] = vm_vcpu_add(vm, i, guest_code);
0339 
0340     return vm;
0341 }
0342 
0343 struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
0344                      uint64_t extra_mem_pages,
0345                      void *guest_code)
0346 {
0347     struct kvm_vcpu *vcpus[1];
0348     struct kvm_vm *vm;
0349 
0350     vm = __vm_create_with_vcpus(VM_MODE_DEFAULT, 1, extra_mem_pages,
0351                     guest_code, vcpus);
0352 
0353     *vcpu = vcpus[0];
0354     return vm;
0355 }
0356 
0357 /*
0358  * VM Restart
0359  *
0360  * Input Args:
0361  *   vm - VM that has been released before
0362  *
0363  * Output Args: None
0364  *
0365  * Reopens the file descriptors associated to the VM and reinstates the
0366  * global state, such as the irqchip and the memory regions that are mapped
0367  * into the guest.
0368  */
0369 void kvm_vm_restart(struct kvm_vm *vmp)
0370 {
0371     int ctr;
0372     struct userspace_mem_region *region;
0373 
0374     vm_open(vmp);
0375     if (vmp->has_irqchip)
0376         vm_create_irqchip(vmp);
0377 
0378     hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
0379         int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
0380         TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
0381                 "  rc: %i errno: %i\n"
0382                 "  slot: %u flags: 0x%x\n"
0383                 "  guest_phys_addr: 0x%llx size: 0x%llx",
0384                 ret, errno, region->region.slot,
0385                 region->region.flags,
0386                 region->region.guest_phys_addr,
0387                 region->region.memory_size);
0388     }
0389 }
0390 
0391 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
0392                           uint32_t vcpu_id)
0393 {
0394     return __vm_vcpu_add(vm, vcpu_id);
0395 }
0396 
0397 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
0398 {
0399     kvm_vm_restart(vm);
0400 
0401     return vm_vcpu_recreate(vm, 0);
0402 }
0403 
0404 /*
0405  * Userspace Memory Region Find
0406  *
0407  * Input Args:
0408  *   vm - Virtual Machine
0409  *   start - Starting VM physical address
0410  *   end - Ending VM physical address, inclusive.
0411  *
0412  * Output Args: None
0413  *
0414  * Return:
0415  *   Pointer to overlapping region, NULL if no such region.
0416  *
0417  * Searches for a region with any physical memory that overlaps with
0418  * any portion of the guest physical addresses from start to end
0419  * inclusive.  If multiple overlapping regions exist, a pointer to any
0420  * of the regions is returned.  Null is returned only when no overlapping
0421  * region exists.
0422  */
0423 static struct userspace_mem_region *
0424 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
0425 {
0426     struct rb_node *node;
0427 
0428     for (node = vm->regions.gpa_tree.rb_node; node; ) {
0429         struct userspace_mem_region *region =
0430             container_of(node, struct userspace_mem_region, gpa_node);
0431         uint64_t existing_start = region->region.guest_phys_addr;
0432         uint64_t existing_end = region->region.guest_phys_addr
0433             + region->region.memory_size - 1;
0434         if (start <= existing_end && end >= existing_start)
0435             return region;
0436 
0437         if (start < existing_start)
0438             node = node->rb_left;
0439         else
0440             node = node->rb_right;
0441     }
0442 
0443     return NULL;
0444 }
0445 
0446 /*
0447  * KVM Userspace Memory Region Find
0448  *
0449  * Input Args:
0450  *   vm - Virtual Machine
0451  *   start - Starting VM physical address
0452  *   end - Ending VM physical address, inclusive.
0453  *
0454  * Output Args: None
0455  *
0456  * Return:
0457  *   Pointer to overlapping region, NULL if no such region.
0458  *
0459  * Public interface to userspace_mem_region_find. Allows tests to look up
0460  * the memslot datastructure for a given range of guest physical memory.
0461  */
0462 struct kvm_userspace_memory_region *
0463 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
0464                  uint64_t end)
0465 {
0466     struct userspace_mem_region *region;
0467 
0468     region = userspace_mem_region_find(vm, start, end);
0469     if (!region)
0470         return NULL;
0471 
0472     return &region->region;
0473 }
0474 
0475 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
0476 {
0477 
0478 }
0479 
0480 /*
0481  * VM VCPU Remove
0482  *
0483  * Input Args:
0484  *   vcpu - VCPU to remove
0485  *
0486  * Output Args: None
0487  *
0488  * Return: None, TEST_ASSERT failures for all error conditions
0489  *
0490  * Removes a vCPU from a VM and frees its resources.
0491  */
0492 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
0493 {
0494     int ret;
0495 
0496     if (vcpu->dirty_gfns) {
0497         ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
0498         TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
0499         vcpu->dirty_gfns = NULL;
0500     }
0501 
0502     ret = munmap(vcpu->run, vcpu_mmap_sz());
0503     TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
0504 
0505     ret = close(vcpu->fd);
0506     TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
0507 
0508     list_del(&vcpu->list);
0509 
0510     vcpu_arch_free(vcpu);
0511     free(vcpu);
0512 }
0513 
0514 void kvm_vm_release(struct kvm_vm *vmp)
0515 {
0516     struct kvm_vcpu *vcpu, *tmp;
0517     int ret;
0518 
0519     list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
0520         vm_vcpu_rm(vmp, vcpu);
0521 
0522     ret = close(vmp->fd);
0523     TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
0524 
0525     ret = close(vmp->kvm_fd);
0526     TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
0527 }
0528 
0529 static void __vm_mem_region_delete(struct kvm_vm *vm,
0530                    struct userspace_mem_region *region,
0531                    bool unlink)
0532 {
0533     int ret;
0534 
0535     if (unlink) {
0536         rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
0537         rb_erase(&region->hva_node, &vm->regions.hva_tree);
0538         hash_del(&region->slot_node);
0539     }
0540 
0541     region->region.memory_size = 0;
0542     vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
0543 
0544     sparsebit_free(&region->unused_phy_pages);
0545     ret = munmap(region->mmap_start, region->mmap_size);
0546     TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
0547 
0548     free(region);
0549 }
0550 
0551 /*
0552  * Destroys and frees the VM pointed to by vmp.
0553  */
0554 void kvm_vm_free(struct kvm_vm *vmp)
0555 {
0556     int ctr;
0557     struct hlist_node *node;
0558     struct userspace_mem_region *region;
0559 
0560     if (vmp == NULL)
0561         return;
0562 
0563     /* Free cached stats metadata and close FD */
0564     if (vmp->stats_fd) {
0565         free(vmp->stats_desc);
0566         close(vmp->stats_fd);
0567     }
0568 
0569     /* Free userspace_mem_regions. */
0570     hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
0571         __vm_mem_region_delete(vmp, region, false);
0572 
0573     /* Free sparsebit arrays. */
0574     sparsebit_free(&vmp->vpages_valid);
0575     sparsebit_free(&vmp->vpages_mapped);
0576 
0577     kvm_vm_release(vmp);
0578 
0579     /* Free the structure describing the VM. */
0580     free(vmp);
0581 }
0582 
0583 int kvm_memfd_alloc(size_t size, bool hugepages)
0584 {
0585     int memfd_flags = MFD_CLOEXEC;
0586     int fd, r;
0587 
0588     if (hugepages)
0589         memfd_flags |= MFD_HUGETLB;
0590 
0591     fd = memfd_create("kvm_selftest", memfd_flags);
0592     TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
0593 
0594     r = ftruncate(fd, size);
0595     TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
0596 
0597     r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
0598     TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
0599 
0600     return fd;
0601 }
0602 
0603 /*
0604  * Memory Compare, host virtual to guest virtual
0605  *
0606  * Input Args:
0607  *   hva - Starting host virtual address
0608  *   vm - Virtual Machine
0609  *   gva - Starting guest virtual address
0610  *   len - number of bytes to compare
0611  *
0612  * Output Args: None
0613  *
0614  * Input/Output Args: None
0615  *
0616  * Return:
0617  *   Returns 0 if the bytes starting at hva for a length of len
0618  *   are equal the guest virtual bytes starting at gva.  Returns
0619  *   a value < 0, if bytes at hva are less than those at gva.
0620  *   Otherwise a value > 0 is returned.
0621  *
0622  * Compares the bytes starting at the host virtual address hva, for
0623  * a length of len, to the guest bytes starting at the guest virtual
0624  * address given by gva.
0625  */
0626 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
0627 {
0628     size_t amt;
0629 
0630     /*
0631      * Compare a batch of bytes until either a match is found
0632      * or all the bytes have been compared.
0633      */
0634     for (uintptr_t offset = 0; offset < len; offset += amt) {
0635         uintptr_t ptr1 = (uintptr_t)hva + offset;
0636 
0637         /*
0638          * Determine host address for guest virtual address
0639          * at offset.
0640          */
0641         uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
0642 
0643         /*
0644          * Determine amount to compare on this pass.
0645          * Don't allow the comparsion to cross a page boundary.
0646          */
0647         amt = len - offset;
0648         if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
0649             amt = vm->page_size - (ptr1 % vm->page_size);
0650         if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
0651             amt = vm->page_size - (ptr2 % vm->page_size);
0652 
0653         assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
0654         assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
0655 
0656         /*
0657          * Perform the comparison.  If there is a difference
0658          * return that result to the caller, otherwise need
0659          * to continue on looking for a mismatch.
0660          */
0661         int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
0662         if (ret != 0)
0663             return ret;
0664     }
0665 
0666     /*
0667      * No mismatch found.  Let the caller know the two memory
0668      * areas are equal.
0669      */
0670     return 0;
0671 }
0672 
0673 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
0674                            struct userspace_mem_region *region)
0675 {
0676     struct rb_node **cur, *parent;
0677 
0678     for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
0679         struct userspace_mem_region *cregion;
0680 
0681         cregion = container_of(*cur, typeof(*cregion), gpa_node);
0682         parent = *cur;
0683         if (region->region.guest_phys_addr <
0684             cregion->region.guest_phys_addr)
0685             cur = &(*cur)->rb_left;
0686         else {
0687             TEST_ASSERT(region->region.guest_phys_addr !=
0688                     cregion->region.guest_phys_addr,
0689                     "Duplicate GPA in region tree");
0690 
0691             cur = &(*cur)->rb_right;
0692         }
0693     }
0694 
0695     rb_link_node(&region->gpa_node, parent, cur);
0696     rb_insert_color(&region->gpa_node, gpa_tree);
0697 }
0698 
0699 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
0700                            struct userspace_mem_region *region)
0701 {
0702     struct rb_node **cur, *parent;
0703 
0704     for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
0705         struct userspace_mem_region *cregion;
0706 
0707         cregion = container_of(*cur, typeof(*cregion), hva_node);
0708         parent = *cur;
0709         if (region->host_mem < cregion->host_mem)
0710             cur = &(*cur)->rb_left;
0711         else {
0712             TEST_ASSERT(region->host_mem !=
0713                     cregion->host_mem,
0714                     "Duplicate HVA in region tree");
0715 
0716             cur = &(*cur)->rb_right;
0717         }
0718     }
0719 
0720     rb_link_node(&region->hva_node, parent, cur);
0721     rb_insert_color(&region->hva_node, hva_tree);
0722 }
0723 
0724 
0725 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
0726                 uint64_t gpa, uint64_t size, void *hva)
0727 {
0728     struct kvm_userspace_memory_region region = {
0729         .slot = slot,
0730         .flags = flags,
0731         .guest_phys_addr = gpa,
0732         .memory_size = size,
0733         .userspace_addr = (uintptr_t)hva,
0734     };
0735 
0736     return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
0737 }
0738 
0739 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
0740                    uint64_t gpa, uint64_t size, void *hva)
0741 {
0742     int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
0743 
0744     TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
0745             errno, strerror(errno));
0746 }
0747 
0748 /*
0749  * VM Userspace Memory Region Add
0750  *
0751  * Input Args:
0752  *   vm - Virtual Machine
0753  *   src_type - Storage source for this region.
0754  *              NULL to use anonymous memory.
0755  *   guest_paddr - Starting guest physical address
0756  *   slot - KVM region slot
0757  *   npages - Number of physical pages
0758  *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
0759  *
0760  * Output Args: None
0761  *
0762  * Return: None
0763  *
0764  * Allocates a memory area of the number of pages specified by npages
0765  * and maps it to the VM specified by vm, at a starting physical address
0766  * given by guest_paddr.  The region is created with a KVM region slot
0767  * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
0768  * region is created with the flags given by flags.
0769  */
0770 void vm_userspace_mem_region_add(struct kvm_vm *vm,
0771     enum vm_mem_backing_src_type src_type,
0772     uint64_t guest_paddr, uint32_t slot, uint64_t npages,
0773     uint32_t flags)
0774 {
0775     int ret;
0776     struct userspace_mem_region *region;
0777     size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
0778     size_t alignment;
0779 
0780     TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
0781         "Number of guest pages is not compatible with the host. "
0782         "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
0783 
0784     TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
0785         "address not on a page boundary.\n"
0786         "  guest_paddr: 0x%lx vm->page_size: 0x%x",
0787         guest_paddr, vm->page_size);
0788     TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
0789         <= vm->max_gfn, "Physical range beyond maximum "
0790         "supported physical address,\n"
0791         "  guest_paddr: 0x%lx npages: 0x%lx\n"
0792         "  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
0793         guest_paddr, npages, vm->max_gfn, vm->page_size);
0794 
0795     /*
0796      * Confirm a mem region with an overlapping address doesn't
0797      * already exist.
0798      */
0799     region = (struct userspace_mem_region *) userspace_mem_region_find(
0800         vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
0801     if (region != NULL)
0802         TEST_FAIL("overlapping userspace_mem_region already "
0803             "exists\n"
0804             "  requested guest_paddr: 0x%lx npages: 0x%lx "
0805             "page_size: 0x%x\n"
0806             "  existing guest_paddr: 0x%lx size: 0x%lx",
0807             guest_paddr, npages, vm->page_size,
0808             (uint64_t) region->region.guest_phys_addr,
0809             (uint64_t) region->region.memory_size);
0810 
0811     /* Confirm no region with the requested slot already exists. */
0812     hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
0813                    slot) {
0814         if (region->region.slot != slot)
0815             continue;
0816 
0817         TEST_FAIL("A mem region with the requested slot "
0818             "already exists.\n"
0819             "  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
0820             "  existing slot: %u paddr: 0x%lx size: 0x%lx",
0821             slot, guest_paddr, npages,
0822             region->region.slot,
0823             (uint64_t) region->region.guest_phys_addr,
0824             (uint64_t) region->region.memory_size);
0825     }
0826 
0827     /* Allocate and initialize new mem region structure. */
0828     region = calloc(1, sizeof(*region));
0829     TEST_ASSERT(region != NULL, "Insufficient Memory");
0830     region->mmap_size = npages * vm->page_size;
0831 
0832 #ifdef __s390x__
0833     /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
0834     alignment = 0x100000;
0835 #else
0836     alignment = 1;
0837 #endif
0838 
0839     /*
0840      * When using THP mmap is not guaranteed to returned a hugepage aligned
0841      * address so we have to pad the mmap. Padding is not needed for HugeTLB
0842      * because mmap will always return an address aligned to the HugeTLB
0843      * page size.
0844      */
0845     if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
0846         alignment = max(backing_src_pagesz, alignment);
0847 
0848     ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
0849 
0850     /* Add enough memory to align up if necessary */
0851     if (alignment > 1)
0852         region->mmap_size += alignment;
0853 
0854     region->fd = -1;
0855     if (backing_src_is_shared(src_type))
0856         region->fd = kvm_memfd_alloc(region->mmap_size,
0857                          src_type == VM_MEM_SRC_SHARED_HUGETLB);
0858 
0859     region->mmap_start = mmap(NULL, region->mmap_size,
0860                   PROT_READ | PROT_WRITE,
0861                   vm_mem_backing_src_alias(src_type)->flag,
0862                   region->fd, 0);
0863     TEST_ASSERT(region->mmap_start != MAP_FAILED,
0864             __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
0865 
0866     TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
0867             region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
0868             "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
0869             region->mmap_start, backing_src_pagesz);
0870 
0871     /* Align host address */
0872     region->host_mem = align_ptr_up(region->mmap_start, alignment);
0873 
0874     /* As needed perform madvise */
0875     if ((src_type == VM_MEM_SRC_ANONYMOUS ||
0876          src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
0877         ret = madvise(region->host_mem, npages * vm->page_size,
0878                   src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
0879         TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
0880                 region->host_mem, npages * vm->page_size,
0881                 vm_mem_backing_src_alias(src_type)->name);
0882     }
0883 
0884     region->unused_phy_pages = sparsebit_alloc();
0885     sparsebit_set_num(region->unused_phy_pages,
0886         guest_paddr >> vm->page_shift, npages);
0887     region->region.slot = slot;
0888     region->region.flags = flags;
0889     region->region.guest_phys_addr = guest_paddr;
0890     region->region.memory_size = npages * vm->page_size;
0891     region->region.userspace_addr = (uintptr_t) region->host_mem;
0892     ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
0893     TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
0894         "  rc: %i errno: %i\n"
0895         "  slot: %u flags: 0x%x\n"
0896         "  guest_phys_addr: 0x%lx size: 0x%lx",
0897         ret, errno, slot, flags,
0898         guest_paddr, (uint64_t) region->region.memory_size);
0899 
0900     /* Add to quick lookup data structures */
0901     vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
0902     vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
0903     hash_add(vm->regions.slot_hash, &region->slot_node, slot);
0904 
0905     /* If shared memory, create an alias. */
0906     if (region->fd >= 0) {
0907         region->mmap_alias = mmap(NULL, region->mmap_size,
0908                       PROT_READ | PROT_WRITE,
0909                       vm_mem_backing_src_alias(src_type)->flag,
0910                       region->fd, 0);
0911         TEST_ASSERT(region->mmap_alias != MAP_FAILED,
0912                 __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
0913 
0914         /* Align host alias address */
0915         region->host_alias = align_ptr_up(region->mmap_alias, alignment);
0916     }
0917 }
0918 
0919 /*
0920  * Memslot to region
0921  *
0922  * Input Args:
0923  *   vm - Virtual Machine
0924  *   memslot - KVM memory slot ID
0925  *
0926  * Output Args: None
0927  *
0928  * Return:
0929  *   Pointer to memory region structure that describe memory region
0930  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
0931  *   on error (e.g. currently no memory region using memslot as a KVM
0932  *   memory slot ID).
0933  */
0934 struct userspace_mem_region *
0935 memslot2region(struct kvm_vm *vm, uint32_t memslot)
0936 {
0937     struct userspace_mem_region *region;
0938 
0939     hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
0940                    memslot)
0941         if (region->region.slot == memslot)
0942             return region;
0943 
0944     fprintf(stderr, "No mem region with the requested slot found,\n"
0945         "  requested slot: %u\n", memslot);
0946     fputs("---- vm dump ----\n", stderr);
0947     vm_dump(stderr, vm, 2);
0948     TEST_FAIL("Mem region not found");
0949     return NULL;
0950 }
0951 
0952 /*
0953  * VM Memory Region Flags Set
0954  *
0955  * Input Args:
0956  *   vm - Virtual Machine
0957  *   flags - Starting guest physical address
0958  *
0959  * Output Args: None
0960  *
0961  * Return: None
0962  *
0963  * Sets the flags of the memory region specified by the value of slot,
0964  * to the values given by flags.
0965  */
0966 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
0967 {
0968     int ret;
0969     struct userspace_mem_region *region;
0970 
0971     region = memslot2region(vm, slot);
0972 
0973     region->region.flags = flags;
0974 
0975     ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
0976 
0977     TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
0978         "  rc: %i errno: %i slot: %u flags: 0x%x",
0979         ret, errno, slot, flags);
0980 }
0981 
0982 /*
0983  * VM Memory Region Move
0984  *
0985  * Input Args:
0986  *   vm - Virtual Machine
0987  *   slot - Slot of the memory region to move
0988  *   new_gpa - Starting guest physical address
0989  *
0990  * Output Args: None
0991  *
0992  * Return: None
0993  *
0994  * Change the gpa of a memory region.
0995  */
0996 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
0997 {
0998     struct userspace_mem_region *region;
0999     int ret;
1000 
1001     region = memslot2region(vm, slot);
1002 
1003     region->region.guest_phys_addr = new_gpa;
1004 
1005     ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1006 
1007     TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1008             "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1009             ret, errno, slot, new_gpa);
1010 }
1011 
1012 /*
1013  * VM Memory Region Delete
1014  *
1015  * Input Args:
1016  *   vm - Virtual Machine
1017  *   slot - Slot of the memory region to delete
1018  *
1019  * Output Args: None
1020  *
1021  * Return: None
1022  *
1023  * Delete a memory region.
1024  */
1025 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1026 {
1027     __vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1028 }
1029 
1030 /* Returns the size of a vCPU's kvm_run structure. */
1031 static int vcpu_mmap_sz(void)
1032 {
1033     int dev_fd, ret;
1034 
1035     dev_fd = open_kvm_dev_path_or_exit();
1036 
1037     ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1038     TEST_ASSERT(ret >= sizeof(struct kvm_run),
1039             KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1040 
1041     close(dev_fd);
1042 
1043     return ret;
1044 }
1045 
1046 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1047 {
1048     struct kvm_vcpu *vcpu;
1049 
1050     list_for_each_entry(vcpu, &vm->vcpus, list) {
1051         if (vcpu->id == vcpu_id)
1052             return true;
1053     }
1054 
1055     return false;
1056 }
1057 
1058 /*
1059  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1060  * No additional vCPU setup is done.  Returns the vCPU.
1061  */
1062 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1063 {
1064     struct kvm_vcpu *vcpu;
1065 
1066     /* Confirm a vcpu with the specified id doesn't already exist. */
1067     TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists\n", vcpu_id);
1068 
1069     /* Allocate and initialize new vcpu structure. */
1070     vcpu = calloc(1, sizeof(*vcpu));
1071     TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1072 
1073     vcpu->vm = vm;
1074     vcpu->id = vcpu_id;
1075     vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1076     TEST_ASSERT(vcpu->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu->fd));
1077 
1078     TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1079         "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1080         vcpu_mmap_sz(), sizeof(*vcpu->run));
1081     vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1082         PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1083     TEST_ASSERT(vcpu->run != MAP_FAILED,
1084             __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1085 
1086     /* Add to linked-list of VCPUs. */
1087     list_add(&vcpu->list, &vm->vcpus);
1088 
1089     return vcpu;
1090 }
1091 
1092 /*
1093  * VM Virtual Address Unused Gap
1094  *
1095  * Input Args:
1096  *   vm - Virtual Machine
1097  *   sz - Size (bytes)
1098  *   vaddr_min - Minimum Virtual Address
1099  *
1100  * Output Args: None
1101  *
1102  * Return:
1103  *   Lowest virtual address at or below vaddr_min, with at least
1104  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1105  *   size sz is available.
1106  *
1107  * Within the VM specified by vm, locates the lowest starting virtual
1108  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1109  * TEST_ASSERT failure occurs for invalid input or no area of at least
1110  * sz unallocated bytes >= vaddr_min is available.
1111  */
1112 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1113                       vm_vaddr_t vaddr_min)
1114 {
1115     uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1116 
1117     /* Determine lowest permitted virtual page index. */
1118     uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1119     if ((pgidx_start * vm->page_size) < vaddr_min)
1120         goto no_va_found;
1121 
1122     /* Loop over section with enough valid virtual page indexes. */
1123     if (!sparsebit_is_set_num(vm->vpages_valid,
1124         pgidx_start, pages))
1125         pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1126             pgidx_start, pages);
1127     do {
1128         /*
1129          * Are there enough unused virtual pages available at
1130          * the currently proposed starting virtual page index.
1131          * If not, adjust proposed starting index to next
1132          * possible.
1133          */
1134         if (sparsebit_is_clear_num(vm->vpages_mapped,
1135             pgidx_start, pages))
1136             goto va_found;
1137         pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1138             pgidx_start, pages);
1139         if (pgidx_start == 0)
1140             goto no_va_found;
1141 
1142         /*
1143          * If needed, adjust proposed starting virtual address,
1144          * to next range of valid virtual addresses.
1145          */
1146         if (!sparsebit_is_set_num(vm->vpages_valid,
1147             pgidx_start, pages)) {
1148             pgidx_start = sparsebit_next_set_num(
1149                 vm->vpages_valid, pgidx_start, pages);
1150             if (pgidx_start == 0)
1151                 goto no_va_found;
1152         }
1153     } while (pgidx_start != 0);
1154 
1155 no_va_found:
1156     TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1157 
1158     /* NOT REACHED */
1159     return -1;
1160 
1161 va_found:
1162     TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1163         pgidx_start, pages),
1164         "Unexpected, invalid virtual page index range,\n"
1165         "  pgidx_start: 0x%lx\n"
1166         "  pages: 0x%lx",
1167         pgidx_start, pages);
1168     TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1169         pgidx_start, pages),
1170         "Unexpected, pages already mapped,\n"
1171         "  pgidx_start: 0x%lx\n"
1172         "  pages: 0x%lx",
1173         pgidx_start, pages);
1174 
1175     return pgidx_start * vm->page_size;
1176 }
1177 
1178 /*
1179  * VM Virtual Address Allocate
1180  *
1181  * Input Args:
1182  *   vm - Virtual Machine
1183  *   sz - Size in bytes
1184  *   vaddr_min - Minimum starting virtual address
1185  *
1186  * Output Args: None
1187  *
1188  * Return:
1189  *   Starting guest virtual address
1190  *
1191  * Allocates at least sz bytes within the virtual address space of the vm
1192  * given by vm.  The allocated bytes are mapped to a virtual address >=
1193  * the address given by vaddr_min.  Note that each allocation uses a
1194  * a unique set of pages, with the minimum real allocation being at least
1195  * a page.
1196  */
1197 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1198 {
1199     uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1200 
1201     virt_pgd_alloc(vm);
1202     vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1203                           KVM_UTIL_MIN_PFN * vm->page_size, 0);
1204 
1205     /*
1206      * Find an unused range of virtual page addresses of at least
1207      * pages in length.
1208      */
1209     vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1210 
1211     /* Map the virtual pages. */
1212     for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1213         pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1214 
1215         virt_pg_map(vm, vaddr, paddr);
1216 
1217         sparsebit_set(vm->vpages_mapped,
1218             vaddr >> vm->page_shift);
1219     }
1220 
1221     return vaddr_start;
1222 }
1223 
1224 /*
1225  * VM Virtual Address Allocate Pages
1226  *
1227  * Input Args:
1228  *   vm - Virtual Machine
1229  *
1230  * Output Args: None
1231  *
1232  * Return:
1233  *   Starting guest virtual address
1234  *
1235  * Allocates at least N system pages worth of bytes within the virtual address
1236  * space of the vm.
1237  */
1238 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1239 {
1240     return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1241 }
1242 
1243 /*
1244  * VM Virtual Address Allocate Page
1245  *
1246  * Input Args:
1247  *   vm - Virtual Machine
1248  *
1249  * Output Args: None
1250  *
1251  * Return:
1252  *   Starting guest virtual address
1253  *
1254  * Allocates at least one system page worth of bytes within the virtual address
1255  * space of the vm.
1256  */
1257 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1258 {
1259     return vm_vaddr_alloc_pages(vm, 1);
1260 }
1261 
1262 /*
1263  * Map a range of VM virtual address to the VM's physical address
1264  *
1265  * Input Args:
1266  *   vm - Virtual Machine
1267  *   vaddr - Virtuall address to map
1268  *   paddr - VM Physical Address
1269  *   npages - The number of pages to map
1270  *
1271  * Output Args: None
1272  *
1273  * Return: None
1274  *
1275  * Within the VM given by @vm, creates a virtual translation for
1276  * @npages starting at @vaddr to the page range starting at @paddr.
1277  */
1278 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1279           unsigned int npages)
1280 {
1281     size_t page_size = vm->page_size;
1282     size_t size = npages * page_size;
1283 
1284     TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1285     TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1286 
1287     while (npages--) {
1288         virt_pg_map(vm, vaddr, paddr);
1289         vaddr += page_size;
1290         paddr += page_size;
1291     }
1292 }
1293 
1294 /*
1295  * Address VM Physical to Host Virtual
1296  *
1297  * Input Args:
1298  *   vm - Virtual Machine
1299  *   gpa - VM physical address
1300  *
1301  * Output Args: None
1302  *
1303  * Return:
1304  *   Equivalent host virtual address
1305  *
1306  * Locates the memory region containing the VM physical address given
1307  * by gpa, within the VM given by vm.  When found, the host virtual
1308  * address providing the memory to the vm physical address is returned.
1309  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1310  */
1311 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1312 {
1313     struct userspace_mem_region *region;
1314 
1315     region = userspace_mem_region_find(vm, gpa, gpa);
1316     if (!region) {
1317         TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1318         return NULL;
1319     }
1320 
1321     return (void *)((uintptr_t)region->host_mem
1322         + (gpa - region->region.guest_phys_addr));
1323 }
1324 
1325 /*
1326  * Address Host Virtual to VM Physical
1327  *
1328  * Input Args:
1329  *   vm - Virtual Machine
1330  *   hva - Host virtual address
1331  *
1332  * Output Args: None
1333  *
1334  * Return:
1335  *   Equivalent VM physical address
1336  *
1337  * Locates the memory region containing the host virtual address given
1338  * by hva, within the VM given by vm.  When found, the equivalent
1339  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1340  * region containing hva exists.
1341  */
1342 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1343 {
1344     struct rb_node *node;
1345 
1346     for (node = vm->regions.hva_tree.rb_node; node; ) {
1347         struct userspace_mem_region *region =
1348             container_of(node, struct userspace_mem_region, hva_node);
1349 
1350         if (hva >= region->host_mem) {
1351             if (hva <= (region->host_mem
1352                 + region->region.memory_size - 1))
1353                 return (vm_paddr_t)((uintptr_t)
1354                     region->region.guest_phys_addr
1355                     + (hva - (uintptr_t)region->host_mem));
1356 
1357             node = node->rb_right;
1358         } else
1359             node = node->rb_left;
1360     }
1361 
1362     TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1363     return -1;
1364 }
1365 
1366 /*
1367  * Address VM physical to Host Virtual *alias*.
1368  *
1369  * Input Args:
1370  *   vm - Virtual Machine
1371  *   gpa - VM physical address
1372  *
1373  * Output Args: None
1374  *
1375  * Return:
1376  *   Equivalent address within the host virtual *alias* area, or NULL
1377  *   (without failing the test) if the guest memory is not shared (so
1378  *   no alias exists).
1379  *
1380  * Create a writable, shared virtual=>physical alias for the specific GPA.
1381  * The primary use case is to allow the host selftest to manipulate guest
1382  * memory without mapping said memory in the guest's address space. And, for
1383  * userfaultfd-based demand paging, to do so without triggering userfaults.
1384  */
1385 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1386 {
1387     struct userspace_mem_region *region;
1388     uintptr_t offset;
1389 
1390     region = userspace_mem_region_find(vm, gpa, gpa);
1391     if (!region)
1392         return NULL;
1393 
1394     if (!region->host_alias)
1395         return NULL;
1396 
1397     offset = gpa - region->region.guest_phys_addr;
1398     return (void *) ((uintptr_t) region->host_alias + offset);
1399 }
1400 
1401 /* Create an interrupt controller chip for the specified VM. */
1402 void vm_create_irqchip(struct kvm_vm *vm)
1403 {
1404     vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1405 
1406     vm->has_irqchip = true;
1407 }
1408 
1409 int _vcpu_run(struct kvm_vcpu *vcpu)
1410 {
1411     int rc;
1412 
1413     do {
1414         rc = __vcpu_run(vcpu);
1415     } while (rc == -1 && errno == EINTR);
1416 
1417     assert_on_unhandled_exception(vcpu);
1418 
1419     return rc;
1420 }
1421 
1422 /*
1423  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1424  * Assert if the KVM returns an error (other than -EINTR).
1425  */
1426 void vcpu_run(struct kvm_vcpu *vcpu)
1427 {
1428     int ret = _vcpu_run(vcpu);
1429 
1430     TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1431 }
1432 
1433 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1434 {
1435     int ret;
1436 
1437     vcpu->run->immediate_exit = 1;
1438     ret = __vcpu_run(vcpu);
1439     vcpu->run->immediate_exit = 0;
1440 
1441     TEST_ASSERT(ret == -1 && errno == EINTR,
1442             "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1443             ret, errno);
1444 }
1445 
1446 /*
1447  * Get the list of guest registers which are supported for
1448  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1449  * it is the caller's responsibility to free the list.
1450  */
1451 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1452 {
1453     struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1454     int ret;
1455 
1456     ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1457     TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1458 
1459     reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1460     reg_list->n = reg_list_n.n;
1461     vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1462     return reg_list;
1463 }
1464 
1465 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1466 {
1467     uint32_t page_size = vcpu->vm->page_size;
1468     uint32_t size = vcpu->vm->dirty_ring_size;
1469 
1470     TEST_ASSERT(size > 0, "Should enable dirty ring first");
1471 
1472     if (!vcpu->dirty_gfns) {
1473         void *addr;
1474 
1475         addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1476                 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1477         TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1478 
1479         addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1480                 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1481         TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1482 
1483         addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1484                 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1485         TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1486 
1487         vcpu->dirty_gfns = addr;
1488         vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1489     }
1490 
1491     return vcpu->dirty_gfns;
1492 }
1493 
1494 /*
1495  * Device Ioctl
1496  */
1497 
1498 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1499 {
1500     struct kvm_device_attr attribute = {
1501         .group = group,
1502         .attr = attr,
1503         .flags = 0,
1504     };
1505 
1506     return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1507 }
1508 
1509 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1510 {
1511     struct kvm_create_device create_dev = {
1512         .type = type,
1513         .flags = KVM_CREATE_DEVICE_TEST,
1514     };
1515 
1516     return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1517 }
1518 
1519 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1520 {
1521     struct kvm_create_device create_dev = {
1522         .type = type,
1523         .fd = -1,
1524         .flags = 0,
1525     };
1526     int err;
1527 
1528     err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1529     TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1530     return err ? : create_dev.fd;
1531 }
1532 
1533 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1534 {
1535     struct kvm_device_attr kvmattr = {
1536         .group = group,
1537         .attr = attr,
1538         .flags = 0,
1539         .addr = (uintptr_t)val,
1540     };
1541 
1542     return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1543 }
1544 
1545 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1546 {
1547     struct kvm_device_attr kvmattr = {
1548         .group = group,
1549         .attr = attr,
1550         .flags = 0,
1551         .addr = (uintptr_t)val,
1552     };
1553 
1554     return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1555 }
1556 
1557 /*
1558  * IRQ related functions.
1559  */
1560 
1561 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1562 {
1563     struct kvm_irq_level irq_level = {
1564         .irq    = irq,
1565         .level  = level,
1566     };
1567 
1568     return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1569 }
1570 
1571 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1572 {
1573     int ret = _kvm_irq_line(vm, irq, level);
1574 
1575     TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1576 }
1577 
1578 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1579 {
1580     struct kvm_irq_routing *routing;
1581     size_t size;
1582 
1583     size = sizeof(struct kvm_irq_routing);
1584     /* Allocate space for the max number of entries: this wastes 196 KBs. */
1585     size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1586     routing = calloc(1, size);
1587     assert(routing);
1588 
1589     return routing;
1590 }
1591 
1592 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1593         uint32_t gsi, uint32_t pin)
1594 {
1595     int i;
1596 
1597     assert(routing);
1598     assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1599 
1600     i = routing->nr;
1601     routing->entries[i].gsi = gsi;
1602     routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1603     routing->entries[i].flags = 0;
1604     routing->entries[i].u.irqchip.irqchip = 0;
1605     routing->entries[i].u.irqchip.pin = pin;
1606     routing->nr++;
1607 }
1608 
1609 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1610 {
1611     int ret;
1612 
1613     assert(routing);
1614     ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1615     free(routing);
1616 
1617     return ret;
1618 }
1619 
1620 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1621 {
1622     int ret;
1623 
1624     ret = _kvm_gsi_routing_write(vm, routing);
1625     TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1626 }
1627 
1628 /*
1629  * VM Dump
1630  *
1631  * Input Args:
1632  *   vm - Virtual Machine
1633  *   indent - Left margin indent amount
1634  *
1635  * Output Args:
1636  *   stream - Output FILE stream
1637  *
1638  * Return: None
1639  *
1640  * Dumps the current state of the VM given by vm, to the FILE stream
1641  * given by stream.
1642  */
1643 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1644 {
1645     int ctr;
1646     struct userspace_mem_region *region;
1647     struct kvm_vcpu *vcpu;
1648 
1649     fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1650     fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1651     fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1652     fprintf(stream, "%*sMem Regions:\n", indent, "");
1653     hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1654         fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1655             "host_virt: %p\n", indent + 2, "",
1656             (uint64_t) region->region.guest_phys_addr,
1657             (uint64_t) region->region.memory_size,
1658             region->host_mem);
1659         fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1660         sparsebit_dump(stream, region->unused_phy_pages, 0);
1661     }
1662     fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1663     sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1664     fprintf(stream, "%*spgd_created: %u\n", indent, "",
1665         vm->pgd_created);
1666     if (vm->pgd_created) {
1667         fprintf(stream, "%*sVirtual Translation Tables:\n",
1668             indent + 2, "");
1669         virt_dump(stream, vm, indent + 4);
1670     }
1671     fprintf(stream, "%*sVCPUs:\n", indent, "");
1672 
1673     list_for_each_entry(vcpu, &vm->vcpus, list)
1674         vcpu_dump(stream, vcpu, indent + 2);
1675 }
1676 
1677 /* Known KVM exit reasons */
1678 static struct exit_reason {
1679     unsigned int reason;
1680     const char *name;
1681 } exit_reasons_known[] = {
1682     {KVM_EXIT_UNKNOWN, "UNKNOWN"},
1683     {KVM_EXIT_EXCEPTION, "EXCEPTION"},
1684     {KVM_EXIT_IO, "IO"},
1685     {KVM_EXIT_HYPERCALL, "HYPERCALL"},
1686     {KVM_EXIT_DEBUG, "DEBUG"},
1687     {KVM_EXIT_HLT, "HLT"},
1688     {KVM_EXIT_MMIO, "MMIO"},
1689     {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1690     {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1691     {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1692     {KVM_EXIT_INTR, "INTR"},
1693     {KVM_EXIT_SET_TPR, "SET_TPR"},
1694     {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1695     {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1696     {KVM_EXIT_S390_RESET, "S390_RESET"},
1697     {KVM_EXIT_DCR, "DCR"},
1698     {KVM_EXIT_NMI, "NMI"},
1699     {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1700     {KVM_EXIT_OSI, "OSI"},
1701     {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1702     {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
1703     {KVM_EXIT_X86_RDMSR, "RDMSR"},
1704     {KVM_EXIT_X86_WRMSR, "WRMSR"},
1705     {KVM_EXIT_XEN, "XEN"},
1706 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1707     {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1708 #endif
1709 };
1710 
1711 /*
1712  * Exit Reason String
1713  *
1714  * Input Args:
1715  *   exit_reason - Exit reason
1716  *
1717  * Output Args: None
1718  *
1719  * Return:
1720  *   Constant string pointer describing the exit reason.
1721  *
1722  * Locates and returns a constant string that describes the KVM exit
1723  * reason given by exit_reason.  If no such string is found, a constant
1724  * string of "Unknown" is returned.
1725  */
1726 const char *exit_reason_str(unsigned int exit_reason)
1727 {
1728     unsigned int n1;
1729 
1730     for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1731         if (exit_reason == exit_reasons_known[n1].reason)
1732             return exit_reasons_known[n1].name;
1733     }
1734 
1735     return "Unknown";
1736 }
1737 
1738 /*
1739  * Physical Contiguous Page Allocator
1740  *
1741  * Input Args:
1742  *   vm - Virtual Machine
1743  *   num - number of pages
1744  *   paddr_min - Physical address minimum
1745  *   memslot - Memory region to allocate page from
1746  *
1747  * Output Args: None
1748  *
1749  * Return:
1750  *   Starting physical address
1751  *
1752  * Within the VM specified by vm, locates a range of available physical
1753  * pages at or above paddr_min. If found, the pages are marked as in use
1754  * and their base address is returned. A TEST_ASSERT failure occurs if
1755  * not enough pages are available at or above paddr_min.
1756  */
1757 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1758                   vm_paddr_t paddr_min, uint32_t memslot)
1759 {
1760     struct userspace_mem_region *region;
1761     sparsebit_idx_t pg, base;
1762 
1763     TEST_ASSERT(num > 0, "Must allocate at least one page");
1764 
1765     TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1766         "not divisible by page size.\n"
1767         "  paddr_min: 0x%lx page_size: 0x%x",
1768         paddr_min, vm->page_size);
1769 
1770     region = memslot2region(vm, memslot);
1771     base = pg = paddr_min >> vm->page_shift;
1772 
1773     do {
1774         for (; pg < base + num; ++pg) {
1775             if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1776                 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1777                 break;
1778             }
1779         }
1780     } while (pg && pg != base + num);
1781 
1782     if (pg == 0) {
1783         fprintf(stderr, "No guest physical page available, "
1784             "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1785             paddr_min, vm->page_size, memslot);
1786         fputs("---- vm dump ----\n", stderr);
1787         vm_dump(stderr, vm, 2);
1788         abort();
1789     }
1790 
1791     for (pg = base; pg < base + num; ++pg)
1792         sparsebit_clear(region->unused_phy_pages, pg);
1793 
1794     return base * vm->page_size;
1795 }
1796 
1797 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1798                  uint32_t memslot)
1799 {
1800     return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1801 }
1802 
1803 /* Arbitrary minimum physical address used for virtual translation tables. */
1804 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
1805 
1806 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
1807 {
1808     return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
1809 }
1810 
1811 /*
1812  * Address Guest Virtual to Host Virtual
1813  *
1814  * Input Args:
1815  *   vm - Virtual Machine
1816  *   gva - VM virtual address
1817  *
1818  * Output Args: None
1819  *
1820  * Return:
1821  *   Equivalent host virtual address
1822  */
1823 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1824 {
1825     return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1826 }
1827 
1828 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
1829 {
1830     return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
1831 }
1832 
1833 static unsigned int vm_calc_num_pages(unsigned int num_pages,
1834                       unsigned int page_shift,
1835                       unsigned int new_page_shift,
1836                       bool ceil)
1837 {
1838     unsigned int n = 1 << (new_page_shift - page_shift);
1839 
1840     if (page_shift >= new_page_shift)
1841         return num_pages * (1 << (page_shift - new_page_shift));
1842 
1843     return num_pages / n + !!(ceil && num_pages % n);
1844 }
1845 
1846 static inline int getpageshift(void)
1847 {
1848     return __builtin_ffs(getpagesize()) - 1;
1849 }
1850 
1851 unsigned int
1852 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1853 {
1854     return vm_calc_num_pages(num_guest_pages,
1855                  vm_guest_mode_params[mode].page_shift,
1856                  getpageshift(), true);
1857 }
1858 
1859 unsigned int
1860 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
1861 {
1862     return vm_calc_num_pages(num_host_pages, getpageshift(),
1863                  vm_guest_mode_params[mode].page_shift, false);
1864 }
1865 
1866 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
1867 {
1868     unsigned int n;
1869     n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
1870     return vm_adjust_num_guest_pages(mode, n);
1871 }
1872 
1873 /*
1874  * Read binary stats descriptors
1875  *
1876  * Input Args:
1877  *   stats_fd - the file descriptor for the binary stats file from which to read
1878  *   header - the binary stats metadata header corresponding to the given FD
1879  *
1880  * Output Args: None
1881  *
1882  * Return:
1883  *   A pointer to a newly allocated series of stat descriptors.
1884  *   Caller is responsible for freeing the returned kvm_stats_desc.
1885  *
1886  * Read the stats descriptors from the binary stats interface.
1887  */
1888 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
1889                           struct kvm_stats_header *header)
1890 {
1891     struct kvm_stats_desc *stats_desc;
1892     ssize_t desc_size, total_size, ret;
1893 
1894     desc_size = get_stats_descriptor_size(header);
1895     total_size = header->num_desc * desc_size;
1896 
1897     stats_desc = calloc(header->num_desc, desc_size);
1898     TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
1899 
1900     ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
1901     TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
1902 
1903     return stats_desc;
1904 }
1905 
1906 /*
1907  * Read stat data for a particular stat
1908  *
1909  * Input Args:
1910  *   stats_fd - the file descriptor for the binary stats file from which to read
1911  *   header - the binary stats metadata header corresponding to the given FD
1912  *   desc - the binary stat metadata for the particular stat to be read
1913  *   max_elements - the maximum number of 8-byte values to read into data
1914  *
1915  * Output Args:
1916  *   data - the buffer into which stat data should be read
1917  *
1918  * Read the data values of a specified stat from the binary stats interface.
1919  */
1920 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
1921             struct kvm_stats_desc *desc, uint64_t *data,
1922             size_t max_elements)
1923 {
1924     size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
1925     size_t size = nr_elements * sizeof(*data);
1926     ssize_t ret;
1927 
1928     TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
1929     TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
1930 
1931     ret = pread(stats_fd, data, size,
1932             header->data_offset + desc->offset);
1933 
1934     TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
1935             desc->name, errno, strerror(errno));
1936     TEST_ASSERT(ret == size,
1937             "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
1938             desc->name, size, ret);
1939 }
1940 
1941 /*
1942  * Read the data of the named stat
1943  *
1944  * Input Args:
1945  *   vm - the VM for which the stat should be read
1946  *   stat_name - the name of the stat to read
1947  *   max_elements - the maximum number of 8-byte values to read into data
1948  *
1949  * Output Args:
1950  *   data - the buffer into which stat data should be read
1951  *
1952  * Read the data values of a specified stat from the binary stats interface.
1953  */
1954 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
1955            size_t max_elements)
1956 {
1957     struct kvm_stats_desc *desc;
1958     size_t size_desc;
1959     int i;
1960 
1961     if (!vm->stats_fd) {
1962         vm->stats_fd = vm_get_stats_fd(vm);
1963         read_stats_header(vm->stats_fd, &vm->stats_header);
1964         vm->stats_desc = read_stats_descriptors(vm->stats_fd,
1965                             &vm->stats_header);
1966     }
1967 
1968     size_desc = get_stats_descriptor_size(&vm->stats_header);
1969 
1970     for (i = 0; i < vm->stats_header.num_desc; ++i) {
1971         desc = (void *)vm->stats_desc + (i * size_desc);
1972 
1973         if (strcmp(desc->name, stat_name))
1974             continue;
1975 
1976         read_stat_data(vm->stats_fd, &vm->stats_header, desc,
1977                    data, max_elements);
1978 
1979         break;
1980     }
1981 }