Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 #include <fcntl.h>
0003 #include <stdio.h>
0004 #include <errno.h>
0005 #include <stdlib.h>
0006 #include <string.h>
0007 #include <unistd.h>
0008 #include <inttypes.h>
0009 
0010 #include "dso.h"
0011 #include "map.h"
0012 #include "maps.h"
0013 #include "symbol.h"
0014 #include "symsrc.h"
0015 #include "demangle-ocaml.h"
0016 #include "demangle-java.h"
0017 #include "demangle-rust.h"
0018 #include "machine.h"
0019 #include "vdso.h"
0020 #include "debug.h"
0021 #include "util/copyfile.h"
0022 #include <linux/ctype.h>
0023 #include <linux/kernel.h>
0024 #include <linux/zalloc.h>
0025 #include <symbol/kallsyms.h>
0026 #include <internal/lib.h>
0027 
0028 #ifndef EM_AARCH64
0029 #define EM_AARCH64  183  /* ARM 64 bit */
0030 #endif
0031 
0032 #ifndef ELF32_ST_VISIBILITY
0033 #define ELF32_ST_VISIBILITY(o)  ((o) & 0x03)
0034 #endif
0035 
0036 /* For ELF64 the definitions are the same.  */
0037 #ifndef ELF64_ST_VISIBILITY
0038 #define ELF64_ST_VISIBILITY(o)  ELF32_ST_VISIBILITY (o)
0039 #endif
0040 
0041 /* How to extract information held in the st_other field.  */
0042 #ifndef GELF_ST_VISIBILITY
0043 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val)
0044 #endif
0045 
0046 typedef Elf64_Nhdr GElf_Nhdr;
0047 
0048 #ifndef DMGL_PARAMS
0049 #define DMGL_NO_OPTS     0              /* For readability... */
0050 #define DMGL_PARAMS      (1 << 0)       /* Include function args */
0051 #define DMGL_ANSI        (1 << 1)       /* Include const, volatile, etc */
0052 #endif
0053 
0054 #ifdef HAVE_LIBBFD_SUPPORT
0055 #define PACKAGE 'perf'
0056 #include <bfd.h>
0057 #else
0058 #ifdef HAVE_CPLUS_DEMANGLE_SUPPORT
0059 extern char *cplus_demangle(const char *, int);
0060 
0061 static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i)
0062 {
0063     return cplus_demangle(c, i);
0064 }
0065 #else
0066 #ifdef NO_DEMANGLE
0067 static inline char *bfd_demangle(void __maybe_unused *v,
0068                  const char __maybe_unused *c,
0069                  int __maybe_unused i)
0070 {
0071     return NULL;
0072 }
0073 #endif
0074 #endif
0075 #endif
0076 
0077 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
0078 static int elf_getphdrnum(Elf *elf, size_t *dst)
0079 {
0080     GElf_Ehdr gehdr;
0081     GElf_Ehdr *ehdr;
0082 
0083     ehdr = gelf_getehdr(elf, &gehdr);
0084     if (!ehdr)
0085         return -1;
0086 
0087     *dst = ehdr->e_phnum;
0088 
0089     return 0;
0090 }
0091 #endif
0092 
0093 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
0094 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
0095 {
0096     pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
0097     return -1;
0098 }
0099 #endif
0100 
0101 #ifndef NT_GNU_BUILD_ID
0102 #define NT_GNU_BUILD_ID 3
0103 #endif
0104 
0105 /**
0106  * elf_symtab__for_each_symbol - iterate thru all the symbols
0107  *
0108  * @syms: struct elf_symtab instance to iterate
0109  * @idx: uint32_t idx
0110  * @sym: GElf_Sym iterator
0111  */
0112 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
0113     for (idx = 0, gelf_getsym(syms, idx, &sym);\
0114          idx < nr_syms; \
0115          idx++, gelf_getsym(syms, idx, &sym))
0116 
0117 static inline uint8_t elf_sym__type(const GElf_Sym *sym)
0118 {
0119     return GELF_ST_TYPE(sym->st_info);
0120 }
0121 
0122 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
0123 {
0124     return GELF_ST_VISIBILITY(sym->st_other);
0125 }
0126 
0127 #ifndef STT_GNU_IFUNC
0128 #define STT_GNU_IFUNC 10
0129 #endif
0130 
0131 static inline int elf_sym__is_function(const GElf_Sym *sym)
0132 {
0133     return (elf_sym__type(sym) == STT_FUNC ||
0134         elf_sym__type(sym) == STT_GNU_IFUNC) &&
0135            sym->st_name != 0 &&
0136            sym->st_shndx != SHN_UNDEF;
0137 }
0138 
0139 static inline bool elf_sym__is_object(const GElf_Sym *sym)
0140 {
0141     return elf_sym__type(sym) == STT_OBJECT &&
0142         sym->st_name != 0 &&
0143         sym->st_shndx != SHN_UNDEF;
0144 }
0145 
0146 static inline int elf_sym__is_label(const GElf_Sym *sym)
0147 {
0148     return elf_sym__type(sym) == STT_NOTYPE &&
0149         sym->st_name != 0 &&
0150         sym->st_shndx != SHN_UNDEF &&
0151         sym->st_shndx != SHN_ABS &&
0152         elf_sym__visibility(sym) != STV_HIDDEN &&
0153         elf_sym__visibility(sym) != STV_INTERNAL;
0154 }
0155 
0156 static bool elf_sym__filter(GElf_Sym *sym)
0157 {
0158     return elf_sym__is_function(sym) || elf_sym__is_object(sym);
0159 }
0160 
0161 static inline const char *elf_sym__name(const GElf_Sym *sym,
0162                     const Elf_Data *symstrs)
0163 {
0164     return symstrs->d_buf + sym->st_name;
0165 }
0166 
0167 static inline const char *elf_sec__name(const GElf_Shdr *shdr,
0168                     const Elf_Data *secstrs)
0169 {
0170     return secstrs->d_buf + shdr->sh_name;
0171 }
0172 
0173 static inline int elf_sec__is_text(const GElf_Shdr *shdr,
0174                     const Elf_Data *secstrs)
0175 {
0176     return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
0177 }
0178 
0179 static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
0180                     const Elf_Data *secstrs)
0181 {
0182     return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
0183 }
0184 
0185 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
0186 {
0187     return elf_sec__is_text(shdr, secstrs) || 
0188            elf_sec__is_data(shdr, secstrs);
0189 }
0190 
0191 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
0192 {
0193     Elf_Scn *sec = NULL;
0194     GElf_Shdr shdr;
0195     size_t cnt = 1;
0196 
0197     while ((sec = elf_nextscn(elf, sec)) != NULL) {
0198         gelf_getshdr(sec, &shdr);
0199 
0200         if ((addr >= shdr.sh_addr) &&
0201             (addr < (shdr.sh_addr + shdr.sh_size)))
0202             return cnt;
0203 
0204         ++cnt;
0205     }
0206 
0207     return -1;
0208 }
0209 
0210 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
0211                  GElf_Shdr *shp, const char *name, size_t *idx)
0212 {
0213     Elf_Scn *sec = NULL;
0214     size_t cnt = 1;
0215 
0216     /* Elf is corrupted/truncated, avoid calling elf_strptr. */
0217     if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
0218         return NULL;
0219 
0220     while ((sec = elf_nextscn(elf, sec)) != NULL) {
0221         char *str;
0222 
0223         gelf_getshdr(sec, shp);
0224         str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
0225         if (str && !strcmp(name, str)) {
0226             if (idx)
0227                 *idx = cnt;
0228             return sec;
0229         }
0230         ++cnt;
0231     }
0232 
0233     return NULL;
0234 }
0235 
0236 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr)
0237 {
0238     size_t i, phdrnum;
0239     u64 sz;
0240 
0241     if (elf_getphdrnum(elf, &phdrnum))
0242         return -1;
0243 
0244     for (i = 0; i < phdrnum; i++) {
0245         if (gelf_getphdr(elf, i, phdr) == NULL)
0246             return -1;
0247 
0248         if (phdr->p_type != PT_LOAD)
0249             continue;
0250 
0251         sz = max(phdr->p_memsz, phdr->p_filesz);
0252         if (!sz)
0253             continue;
0254 
0255         if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz))
0256             return 0;
0257     }
0258 
0259     /* Not found any valid program header */
0260     return -1;
0261 }
0262 
0263 static bool want_demangle(bool is_kernel_sym)
0264 {
0265     return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
0266 }
0267 
0268 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
0269 {
0270     int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS;
0271     char *demangled = NULL;
0272 
0273     /*
0274      * We need to figure out if the object was created from C++ sources
0275      * DWARF DW_compile_unit has this, but we don't always have access
0276      * to it...
0277      */
0278     if (!want_demangle(dso->kernel || kmodule))
0279         return demangled;
0280 
0281     demangled = bfd_demangle(NULL, elf_name, demangle_flags);
0282     if (demangled == NULL) {
0283         demangled = ocaml_demangle_sym(elf_name);
0284         if (demangled == NULL) {
0285             demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
0286         }
0287     }
0288     else if (rust_is_mangled(demangled))
0289         /*
0290             * Input to Rust demangling is the BFD-demangled
0291             * name which it Rust-demangles in place.
0292             */
0293         rust_demangle_sym(demangled);
0294 
0295     return demangled;
0296 }
0297 
0298 #define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \
0299     for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \
0300          idx < nr_entries; \
0301          ++idx, pos = gelf_getrel(reldata, idx, &pos_mem))
0302 
0303 #define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \
0304     for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \
0305          idx < nr_entries; \
0306          ++idx, pos = gelf_getrela(reldata, idx, &pos_mem))
0307 
0308 /*
0309  * We need to check if we have a .dynsym, so that we can handle the
0310  * .plt, synthesizing its symbols, that aren't on the symtabs (be it
0311  * .dynsym or .symtab).
0312  * And always look at the original dso, not at debuginfo packages, that
0313  * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
0314  */
0315 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
0316 {
0317     uint32_t nr_rel_entries, idx;
0318     GElf_Sym sym;
0319     u64 plt_offset, plt_header_size, plt_entry_size;
0320     GElf_Shdr shdr_plt;
0321     struct symbol *f;
0322     GElf_Shdr shdr_rel_plt, shdr_dynsym;
0323     Elf_Data *reldata, *syms, *symstrs;
0324     Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
0325     size_t dynsym_idx;
0326     GElf_Ehdr ehdr;
0327     char sympltname[1024];
0328     Elf *elf;
0329     int nr = 0, symidx, err = 0;
0330 
0331     if (!ss->dynsym)
0332         return 0;
0333 
0334     elf = ss->elf;
0335     ehdr = ss->ehdr;
0336 
0337     scn_dynsym = ss->dynsym;
0338     shdr_dynsym = ss->dynshdr;
0339     dynsym_idx = ss->dynsym_idx;
0340 
0341     if (scn_dynsym == NULL)
0342         goto out_elf_end;
0343 
0344     scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
0345                       ".rela.plt", NULL);
0346     if (scn_plt_rel == NULL) {
0347         scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
0348                           ".rel.plt", NULL);
0349         if (scn_plt_rel == NULL)
0350             goto out_elf_end;
0351     }
0352 
0353     err = -1;
0354 
0355     if (shdr_rel_plt.sh_link != dynsym_idx)
0356         goto out_elf_end;
0357 
0358     if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL)
0359         goto out_elf_end;
0360 
0361     /*
0362      * Fetch the relocation section to find the idxes to the GOT
0363      * and the symbols in the .dynsym they refer to.
0364      */
0365     reldata = elf_getdata(scn_plt_rel, NULL);
0366     if (reldata == NULL)
0367         goto out_elf_end;
0368 
0369     syms = elf_getdata(scn_dynsym, NULL);
0370     if (syms == NULL)
0371         goto out_elf_end;
0372 
0373     scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
0374     if (scn_symstrs == NULL)
0375         goto out_elf_end;
0376 
0377     symstrs = elf_getdata(scn_symstrs, NULL);
0378     if (symstrs == NULL)
0379         goto out_elf_end;
0380 
0381     if (symstrs->d_size == 0)
0382         goto out_elf_end;
0383 
0384     nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
0385     plt_offset = shdr_plt.sh_offset;
0386     switch (ehdr.e_machine) {
0387         case EM_ARM:
0388             plt_header_size = 20;
0389             plt_entry_size = 12;
0390             break;
0391 
0392         case EM_AARCH64:
0393             plt_header_size = 32;
0394             plt_entry_size = 16;
0395             break;
0396 
0397         case EM_SPARC:
0398             plt_header_size = 48;
0399             plt_entry_size = 12;
0400             break;
0401 
0402         case EM_SPARCV9:
0403             plt_header_size = 128;
0404             plt_entry_size = 32;
0405             break;
0406 
0407         default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
0408             plt_header_size = shdr_plt.sh_entsize;
0409             plt_entry_size = shdr_plt.sh_entsize;
0410             break;
0411     }
0412     plt_offset += plt_header_size;
0413 
0414     if (shdr_rel_plt.sh_type == SHT_RELA) {
0415         GElf_Rela pos_mem, *pos;
0416 
0417         elf_section__for_each_rela(reldata, pos, pos_mem, idx,
0418                        nr_rel_entries) {
0419             const char *elf_name = NULL;
0420             char *demangled = NULL;
0421             symidx = GELF_R_SYM(pos->r_info);
0422             gelf_getsym(syms, symidx, &sym);
0423 
0424             elf_name = elf_sym__name(&sym, symstrs);
0425             demangled = demangle_sym(dso, 0, elf_name);
0426             if (demangled != NULL)
0427                 elf_name = demangled;
0428             snprintf(sympltname, sizeof(sympltname),
0429                  "%s@plt", elf_name);
0430             free(demangled);
0431 
0432             f = symbol__new(plt_offset, plt_entry_size,
0433                     STB_GLOBAL, STT_FUNC, sympltname);
0434             if (!f)
0435                 goto out_elf_end;
0436 
0437             plt_offset += plt_entry_size;
0438             symbols__insert(&dso->symbols, f);
0439             ++nr;
0440         }
0441     } else if (shdr_rel_plt.sh_type == SHT_REL) {
0442         GElf_Rel pos_mem, *pos;
0443         elf_section__for_each_rel(reldata, pos, pos_mem, idx,
0444                       nr_rel_entries) {
0445             const char *elf_name = NULL;
0446             char *demangled = NULL;
0447             symidx = GELF_R_SYM(pos->r_info);
0448             gelf_getsym(syms, symidx, &sym);
0449 
0450             elf_name = elf_sym__name(&sym, symstrs);
0451             demangled = demangle_sym(dso, 0, elf_name);
0452             if (demangled != NULL)
0453                 elf_name = demangled;
0454             snprintf(sympltname, sizeof(sympltname),
0455                  "%s@plt", elf_name);
0456             free(demangled);
0457 
0458             f = symbol__new(plt_offset, plt_entry_size,
0459                     STB_GLOBAL, STT_FUNC, sympltname);
0460             if (!f)
0461                 goto out_elf_end;
0462 
0463             plt_offset += plt_entry_size;
0464             symbols__insert(&dso->symbols, f);
0465             ++nr;
0466         }
0467     }
0468 
0469     err = 0;
0470 out_elf_end:
0471     if (err == 0)
0472         return nr;
0473     pr_debug("%s: problems reading %s PLT info.\n",
0474          __func__, dso->long_name);
0475     return 0;
0476 }
0477 
0478 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
0479 {
0480     return demangle_sym(dso, kmodule, elf_name);
0481 }
0482 
0483 /*
0484  * Align offset to 4 bytes as needed for note name and descriptor data.
0485  */
0486 #define NOTE_ALIGN(n) (((n) + 3) & -4U)
0487 
0488 static int elf_read_build_id(Elf *elf, void *bf, size_t size)
0489 {
0490     int err = -1;
0491     GElf_Ehdr ehdr;
0492     GElf_Shdr shdr;
0493     Elf_Data *data;
0494     Elf_Scn *sec;
0495     Elf_Kind ek;
0496     void *ptr;
0497 
0498     if (size < BUILD_ID_SIZE)
0499         goto out;
0500 
0501     ek = elf_kind(elf);
0502     if (ek != ELF_K_ELF)
0503         goto out;
0504 
0505     if (gelf_getehdr(elf, &ehdr) == NULL) {
0506         pr_err("%s: cannot get elf header.\n", __func__);
0507         goto out;
0508     }
0509 
0510     /*
0511      * Check following sections for notes:
0512      *   '.note.gnu.build-id'
0513      *   '.notes'
0514      *   '.note' (VDSO specific)
0515      */
0516     do {
0517         sec = elf_section_by_name(elf, &ehdr, &shdr,
0518                       ".note.gnu.build-id", NULL);
0519         if (sec)
0520             break;
0521 
0522         sec = elf_section_by_name(elf, &ehdr, &shdr,
0523                       ".notes", NULL);
0524         if (sec)
0525             break;
0526 
0527         sec = elf_section_by_name(elf, &ehdr, &shdr,
0528                       ".note", NULL);
0529         if (sec)
0530             break;
0531 
0532         return err;
0533 
0534     } while (0);
0535 
0536     data = elf_getdata(sec, NULL);
0537     if (data == NULL)
0538         goto out;
0539 
0540     ptr = data->d_buf;
0541     while (ptr < (data->d_buf + data->d_size)) {
0542         GElf_Nhdr *nhdr = ptr;
0543         size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
0544                descsz = NOTE_ALIGN(nhdr->n_descsz);
0545         const char *name;
0546 
0547         ptr += sizeof(*nhdr);
0548         name = ptr;
0549         ptr += namesz;
0550         if (nhdr->n_type == NT_GNU_BUILD_ID &&
0551             nhdr->n_namesz == sizeof("GNU")) {
0552             if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
0553                 size_t sz = min(size, descsz);
0554                 memcpy(bf, ptr, sz);
0555                 memset(bf + sz, 0, size - sz);
0556                 err = descsz;
0557                 break;
0558             }
0559         }
0560         ptr += descsz;
0561     }
0562 
0563 out:
0564     return err;
0565 }
0566 
0567 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT
0568 
0569 static int read_build_id(const char *filename, struct build_id *bid)
0570 {
0571     size_t size = sizeof(bid->data);
0572     int err = -1;
0573     bfd *abfd;
0574 
0575     abfd = bfd_openr(filename, NULL);
0576     if (!abfd)
0577         return -1;
0578 
0579     if (!bfd_check_format(abfd, bfd_object)) {
0580         pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
0581         goto out_close;
0582     }
0583 
0584     if (!abfd->build_id || abfd->build_id->size > size)
0585         goto out_close;
0586 
0587     memcpy(bid->data, abfd->build_id->data, abfd->build_id->size);
0588     memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size);
0589     err = bid->size = abfd->build_id->size;
0590 
0591 out_close:
0592     bfd_close(abfd);
0593     return err;
0594 }
0595 
0596 #else // HAVE_LIBBFD_BUILDID_SUPPORT
0597 
0598 static int read_build_id(const char *filename, struct build_id *bid)
0599 {
0600     size_t size = sizeof(bid->data);
0601     int fd, err = -1;
0602     Elf *elf;
0603 
0604     if (size < BUILD_ID_SIZE)
0605         goto out;
0606 
0607     fd = open(filename, O_RDONLY);
0608     if (fd < 0)
0609         goto out;
0610 
0611     elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
0612     if (elf == NULL) {
0613         pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
0614         goto out_close;
0615     }
0616 
0617     err = elf_read_build_id(elf, bid->data, size);
0618     if (err > 0)
0619         bid->size = err;
0620 
0621     elf_end(elf);
0622 out_close:
0623     close(fd);
0624 out:
0625     return err;
0626 }
0627 
0628 #endif // HAVE_LIBBFD_BUILDID_SUPPORT
0629 
0630 int filename__read_build_id(const char *filename, struct build_id *bid)
0631 {
0632     struct kmod_path m = { .name = NULL, };
0633     char path[PATH_MAX];
0634     int err;
0635 
0636     if (!filename)
0637         return -EFAULT;
0638 
0639     err = kmod_path__parse(&m, filename);
0640     if (err)
0641         return -1;
0642 
0643     if (m.comp) {
0644         int error = 0, fd;
0645 
0646         fd = filename__decompress(filename, path, sizeof(path), m.comp, &error);
0647         if (fd < 0) {
0648             pr_debug("Failed to decompress (error %d) %s\n",
0649                  error, filename);
0650             return -1;
0651         }
0652         close(fd);
0653         filename = path;
0654     }
0655 
0656     err = read_build_id(filename, bid);
0657 
0658     if (m.comp)
0659         unlink(filename);
0660     return err;
0661 }
0662 
0663 int sysfs__read_build_id(const char *filename, struct build_id *bid)
0664 {
0665     size_t size = sizeof(bid->data);
0666     int fd, err = -1;
0667 
0668     fd = open(filename, O_RDONLY);
0669     if (fd < 0)
0670         goto out;
0671 
0672     while (1) {
0673         char bf[BUFSIZ];
0674         GElf_Nhdr nhdr;
0675         size_t namesz, descsz;
0676 
0677         if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
0678             break;
0679 
0680         namesz = NOTE_ALIGN(nhdr.n_namesz);
0681         descsz = NOTE_ALIGN(nhdr.n_descsz);
0682         if (nhdr.n_type == NT_GNU_BUILD_ID &&
0683             nhdr.n_namesz == sizeof("GNU")) {
0684             if (read(fd, bf, namesz) != (ssize_t)namesz)
0685                 break;
0686             if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
0687                 size_t sz = min(descsz, size);
0688                 if (read(fd, bid->data, sz) == (ssize_t)sz) {
0689                     memset(bid->data + sz, 0, size - sz);
0690                     bid->size = sz;
0691                     err = 0;
0692                     break;
0693                 }
0694             } else if (read(fd, bf, descsz) != (ssize_t)descsz)
0695                 break;
0696         } else {
0697             int n = namesz + descsz;
0698 
0699             if (n > (int)sizeof(bf)) {
0700                 n = sizeof(bf);
0701                 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
0702                      __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
0703             }
0704             if (read(fd, bf, n) != n)
0705                 break;
0706         }
0707     }
0708     close(fd);
0709 out:
0710     return err;
0711 }
0712 
0713 #ifdef HAVE_LIBBFD_SUPPORT
0714 
0715 int filename__read_debuglink(const char *filename, char *debuglink,
0716                  size_t size)
0717 {
0718     int err = -1;
0719     asection *section;
0720     bfd *abfd;
0721 
0722     abfd = bfd_openr(filename, NULL);
0723     if (!abfd)
0724         return -1;
0725 
0726     if (!bfd_check_format(abfd, bfd_object)) {
0727         pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
0728         goto out_close;
0729     }
0730 
0731     section = bfd_get_section_by_name(abfd, ".gnu_debuglink");
0732     if (!section)
0733         goto out_close;
0734 
0735     if (section->size > size)
0736         goto out_close;
0737 
0738     if (!bfd_get_section_contents(abfd, section, debuglink, 0,
0739                       section->size))
0740         goto out_close;
0741 
0742     err = 0;
0743 
0744 out_close:
0745     bfd_close(abfd);
0746     return err;
0747 }
0748 
0749 #else
0750 
0751 int filename__read_debuglink(const char *filename, char *debuglink,
0752                  size_t size)
0753 {
0754     int fd, err = -1;
0755     Elf *elf;
0756     GElf_Ehdr ehdr;
0757     GElf_Shdr shdr;
0758     Elf_Data *data;
0759     Elf_Scn *sec;
0760     Elf_Kind ek;
0761 
0762     fd = open(filename, O_RDONLY);
0763     if (fd < 0)
0764         goto out;
0765 
0766     elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
0767     if (elf == NULL) {
0768         pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
0769         goto out_close;
0770     }
0771 
0772     ek = elf_kind(elf);
0773     if (ek != ELF_K_ELF)
0774         goto out_elf_end;
0775 
0776     if (gelf_getehdr(elf, &ehdr) == NULL) {
0777         pr_err("%s: cannot get elf header.\n", __func__);
0778         goto out_elf_end;
0779     }
0780 
0781     sec = elf_section_by_name(elf, &ehdr, &shdr,
0782                   ".gnu_debuglink", NULL);
0783     if (sec == NULL)
0784         goto out_elf_end;
0785 
0786     data = elf_getdata(sec, NULL);
0787     if (data == NULL)
0788         goto out_elf_end;
0789 
0790     /* the start of this section is a zero-terminated string */
0791     strncpy(debuglink, data->d_buf, size);
0792 
0793     err = 0;
0794 
0795 out_elf_end:
0796     elf_end(elf);
0797 out_close:
0798     close(fd);
0799 out:
0800     return err;
0801 }
0802 
0803 #endif
0804 
0805 static int dso__swap_init(struct dso *dso, unsigned char eidata)
0806 {
0807     static unsigned int const endian = 1;
0808 
0809     dso->needs_swap = DSO_SWAP__NO;
0810 
0811     switch (eidata) {
0812     case ELFDATA2LSB:
0813         /* We are big endian, DSO is little endian. */
0814         if (*(unsigned char const *)&endian != 1)
0815             dso->needs_swap = DSO_SWAP__YES;
0816         break;
0817 
0818     case ELFDATA2MSB:
0819         /* We are little endian, DSO is big endian. */
0820         if (*(unsigned char const *)&endian != 0)
0821             dso->needs_swap = DSO_SWAP__YES;
0822         break;
0823 
0824     default:
0825         pr_err("unrecognized DSO data encoding %d\n", eidata);
0826         return -EINVAL;
0827     }
0828 
0829     return 0;
0830 }
0831 
0832 bool symsrc__possibly_runtime(struct symsrc *ss)
0833 {
0834     return ss->dynsym || ss->opdsec;
0835 }
0836 
0837 bool symsrc__has_symtab(struct symsrc *ss)
0838 {
0839     return ss->symtab != NULL;
0840 }
0841 
0842 void symsrc__destroy(struct symsrc *ss)
0843 {
0844     zfree(&ss->name);
0845     elf_end(ss->elf);
0846     close(ss->fd);
0847 }
0848 
0849 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr)
0850 {
0851     /*
0852      * Usually vmlinux is an ELF file with type ET_EXEC for most
0853      * architectures; except Arm64 kernel is linked with option
0854      * '-share', so need to check type ET_DYN.
0855      */
0856     return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL ||
0857            ehdr.e_type == ET_DYN;
0858 }
0859 
0860 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
0861          enum dso_binary_type type)
0862 {
0863     GElf_Ehdr ehdr;
0864     Elf *elf;
0865     int fd;
0866 
0867     if (dso__needs_decompress(dso)) {
0868         fd = dso__decompress_kmodule_fd(dso, name);
0869         if (fd < 0)
0870             return -1;
0871 
0872         type = dso->symtab_type;
0873     } else {
0874         fd = open(name, O_RDONLY);
0875         if (fd < 0) {
0876             dso->load_errno = errno;
0877             return -1;
0878         }
0879     }
0880 
0881     elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
0882     if (elf == NULL) {
0883         pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
0884         dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
0885         goto out_close;
0886     }
0887 
0888     if (gelf_getehdr(elf, &ehdr) == NULL) {
0889         dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
0890         pr_debug("%s: cannot get elf header.\n", __func__);
0891         goto out_elf_end;
0892     }
0893 
0894     if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
0895         dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR;
0896         goto out_elf_end;
0897     }
0898 
0899     /* Always reject images with a mismatched build-id: */
0900     if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) {
0901         u8 build_id[BUILD_ID_SIZE];
0902         struct build_id bid;
0903         int size;
0904 
0905         size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE);
0906         if (size <= 0) {
0907             dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
0908             goto out_elf_end;
0909         }
0910 
0911         build_id__init(&bid, build_id, size);
0912         if (!dso__build_id_equal(dso, &bid)) {
0913             pr_debug("%s: build id mismatch for %s.\n", __func__, name);
0914             dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
0915             goto out_elf_end;
0916         }
0917     }
0918 
0919     ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
0920 
0921     ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
0922             NULL);
0923     if (ss->symshdr.sh_type != SHT_SYMTAB)
0924         ss->symtab = NULL;
0925 
0926     ss->dynsym_idx = 0;
0927     ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
0928             &ss->dynsym_idx);
0929     if (ss->dynshdr.sh_type != SHT_DYNSYM)
0930         ss->dynsym = NULL;
0931 
0932     ss->opdidx = 0;
0933     ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
0934             &ss->opdidx);
0935     if (ss->opdshdr.sh_type != SHT_PROGBITS)
0936         ss->opdsec = NULL;
0937 
0938     if (dso->kernel == DSO_SPACE__USER)
0939         ss->adjust_symbols = true;
0940     else
0941         ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
0942 
0943     ss->name   = strdup(name);
0944     if (!ss->name) {
0945         dso->load_errno = errno;
0946         goto out_elf_end;
0947     }
0948 
0949     ss->elf    = elf;
0950     ss->fd     = fd;
0951     ss->ehdr   = ehdr;
0952     ss->type   = type;
0953 
0954     return 0;
0955 
0956 out_elf_end:
0957     elf_end(elf);
0958 out_close:
0959     close(fd);
0960     return -1;
0961 }
0962 
0963 /**
0964  * ref_reloc_sym_not_found - has kernel relocation symbol been found.
0965  * @kmap: kernel maps and relocation reference symbol
0966  *
0967  * This function returns %true if we are dealing with the kernel maps and the
0968  * relocation reference symbol has not yet been found.  Otherwise %false is
0969  * returned.
0970  */
0971 static bool ref_reloc_sym_not_found(struct kmap *kmap)
0972 {
0973     return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
0974            !kmap->ref_reloc_sym->unrelocated_addr;
0975 }
0976 
0977 /**
0978  * ref_reloc - kernel relocation offset.
0979  * @kmap: kernel maps and relocation reference symbol
0980  *
0981  * This function returns the offset of kernel addresses as determined by using
0982  * the relocation reference symbol i.e. if the kernel has not been relocated
0983  * then the return value is zero.
0984  */
0985 static u64 ref_reloc(struct kmap *kmap)
0986 {
0987     if (kmap && kmap->ref_reloc_sym &&
0988         kmap->ref_reloc_sym->unrelocated_addr)
0989         return kmap->ref_reloc_sym->addr -
0990                kmap->ref_reloc_sym->unrelocated_addr;
0991     return 0;
0992 }
0993 
0994 void __weak arch__sym_update(struct symbol *s __maybe_unused,
0995         GElf_Sym *sym __maybe_unused) { }
0996 
0997 static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
0998                       GElf_Sym *sym, GElf_Shdr *shdr,
0999                       struct maps *kmaps, struct kmap *kmap,
1000                       struct dso **curr_dsop, struct map **curr_mapp,
1001                       const char *section_name,
1002                       bool adjust_kernel_syms, bool kmodule, bool *remap_kernel)
1003 {
1004     struct dso *curr_dso = *curr_dsop;
1005     struct map *curr_map;
1006     char dso_name[PATH_MAX];
1007 
1008     /* Adjust symbol to map to file offset */
1009     if (adjust_kernel_syms)
1010         sym->st_value -= shdr->sh_addr - shdr->sh_offset;
1011 
1012     if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0)
1013         return 0;
1014 
1015     if (strcmp(section_name, ".text") == 0) {
1016         /*
1017          * The initial kernel mapping is based on
1018          * kallsyms and identity maps.  Overwrite it to
1019          * map to the kernel dso.
1020          */
1021         if (*remap_kernel && dso->kernel && !kmodule) {
1022             *remap_kernel = false;
1023             map->start = shdr->sh_addr + ref_reloc(kmap);
1024             map->end = map->start + shdr->sh_size;
1025             map->pgoff = shdr->sh_offset;
1026             map->map_ip = map__map_ip;
1027             map->unmap_ip = map__unmap_ip;
1028             /* Ensure maps are correctly ordered */
1029             if (kmaps) {
1030                 map__get(map);
1031                 maps__remove(kmaps, map);
1032                 maps__insert(kmaps, map);
1033                 map__put(map);
1034             }
1035         }
1036 
1037         /*
1038          * The initial module mapping is based on
1039          * /proc/modules mapped to offset zero.
1040          * Overwrite it to map to the module dso.
1041          */
1042         if (*remap_kernel && kmodule) {
1043             *remap_kernel = false;
1044             map->pgoff = shdr->sh_offset;
1045         }
1046 
1047         *curr_mapp = map;
1048         *curr_dsop = dso;
1049         return 0;
1050     }
1051 
1052     if (!kmap)
1053         return 0;
1054 
1055     snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name);
1056 
1057     curr_map = maps__find_by_name(kmaps, dso_name);
1058     if (curr_map == NULL) {
1059         u64 start = sym->st_value;
1060 
1061         if (kmodule)
1062             start += map->start + shdr->sh_offset;
1063 
1064         curr_dso = dso__new(dso_name);
1065         if (curr_dso == NULL)
1066             return -1;
1067         curr_dso->kernel = dso->kernel;
1068         curr_dso->long_name = dso->long_name;
1069         curr_dso->long_name_len = dso->long_name_len;
1070         curr_map = map__new2(start, curr_dso);
1071         dso__put(curr_dso);
1072         if (curr_map == NULL)
1073             return -1;
1074 
1075         if (curr_dso->kernel)
1076             map__kmap(curr_map)->kmaps = kmaps;
1077 
1078         if (adjust_kernel_syms) {
1079             curr_map->start  = shdr->sh_addr + ref_reloc(kmap);
1080             curr_map->end    = curr_map->start + shdr->sh_size;
1081             curr_map->pgoff  = shdr->sh_offset;
1082         } else {
1083             curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
1084         }
1085         curr_dso->symtab_type = dso->symtab_type;
1086         maps__insert(kmaps, curr_map);
1087         /*
1088          * Add it before we drop the reference to curr_map, i.e. while
1089          * we still are sure to have a reference to this DSO via
1090          * *curr_map->dso.
1091          */
1092         dsos__add(&kmaps->machine->dsos, curr_dso);
1093         /* kmaps already got it */
1094         map__put(curr_map);
1095         dso__set_loaded(curr_dso);
1096         *curr_mapp = curr_map;
1097         *curr_dsop = curr_dso;
1098     } else
1099         *curr_dsop = curr_map->dso;
1100 
1101     return 0;
1102 }
1103 
1104 static int
1105 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1106                struct symsrc *runtime_ss, int kmodule, int dynsym)
1107 {
1108     struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL;
1109     struct maps *kmaps = kmap ? map__kmaps(map) : NULL;
1110     struct map *curr_map = map;
1111     struct dso *curr_dso = dso;
1112     Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym;
1113     uint32_t nr_syms;
1114     int err = -1;
1115     uint32_t idx;
1116     GElf_Ehdr ehdr;
1117     GElf_Shdr shdr;
1118     GElf_Shdr tshdr;
1119     Elf_Data *syms, *opddata = NULL;
1120     GElf_Sym sym;
1121     Elf_Scn *sec, *sec_strndx;
1122     Elf *elf;
1123     int nr = 0;
1124     bool remap_kernel = false, adjust_kernel_syms = false;
1125 
1126     if (kmap && !kmaps)
1127         return -1;
1128 
1129     elf = syms_ss->elf;
1130     ehdr = syms_ss->ehdr;
1131     if (dynsym) {
1132         sec  = syms_ss->dynsym;
1133         shdr = syms_ss->dynshdr;
1134     } else {
1135         sec =  syms_ss->symtab;
1136         shdr = syms_ss->symshdr;
1137     }
1138 
1139     if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1140                 ".text", NULL))
1141         dso->text_offset = tshdr.sh_addr - tshdr.sh_offset;
1142 
1143     if (runtime_ss->opdsec)
1144         opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1145 
1146     syms = elf_getdata(sec, NULL);
1147     if (syms == NULL)
1148         goto out_elf_end;
1149 
1150     sec = elf_getscn(elf, shdr.sh_link);
1151     if (sec == NULL)
1152         goto out_elf_end;
1153 
1154     symstrs = elf_getdata(sec, NULL);
1155     if (symstrs == NULL)
1156         goto out_elf_end;
1157 
1158     sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1159     if (sec_strndx == NULL)
1160         goto out_elf_end;
1161 
1162     secstrs_run = elf_getdata(sec_strndx, NULL);
1163     if (secstrs_run == NULL)
1164         goto out_elf_end;
1165 
1166     sec_strndx = elf_getscn(elf, ehdr.e_shstrndx);
1167     if (sec_strndx == NULL)
1168         goto out_elf_end;
1169 
1170     secstrs_sym = elf_getdata(sec_strndx, NULL);
1171     if (secstrs_sym == NULL)
1172         goto out_elf_end;
1173 
1174     nr_syms = shdr.sh_size / shdr.sh_entsize;
1175 
1176     memset(&sym, 0, sizeof(sym));
1177 
1178     /*
1179      * The kernel relocation symbol is needed in advance in order to adjust
1180      * kernel maps correctly.
1181      */
1182     if (ref_reloc_sym_not_found(kmap)) {
1183         elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1184             const char *elf_name = elf_sym__name(&sym, symstrs);
1185 
1186             if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1187                 continue;
1188             kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1189             map->reloc = kmap->ref_reloc_sym->addr -
1190                      kmap->ref_reloc_sym->unrelocated_addr;
1191             break;
1192         }
1193     }
1194 
1195     /*
1196      * Handle any relocation of vdso necessary because older kernels
1197      * attempted to prelink vdso to its virtual address.
1198      */
1199     if (dso__is_vdso(dso))
1200         map->reloc = map->start - dso->text_offset;
1201 
1202     dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap);
1203     /*
1204      * Initial kernel and module mappings do not map to the dso.
1205      * Flag the fixups.
1206      */
1207     if (dso->kernel) {
1208         remap_kernel = true;
1209         adjust_kernel_syms = dso->adjust_symbols;
1210     }
1211     elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1212         struct symbol *f;
1213         const char *elf_name = elf_sym__name(&sym, symstrs);
1214         char *demangled = NULL;
1215         int is_label = elf_sym__is_label(&sym);
1216         const char *section_name;
1217         bool used_opd = false;
1218 
1219         if (!is_label && !elf_sym__filter(&sym))
1220             continue;
1221 
1222         /* Reject ARM ELF "mapping symbols": these aren't unique and
1223          * don't identify functions, so will confuse the profile
1224          * output: */
1225         if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1226             if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1227                 && (elf_name[2] == '\0' || elf_name[2] == '.'))
1228                 continue;
1229         }
1230 
1231         if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1232             u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1233             u64 *opd = opddata->d_buf + offset;
1234             sym.st_value = DSO__SWAP(dso, u64, *opd);
1235             sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1236                     sym.st_value);
1237             used_opd = true;
1238         }
1239 
1240         /*
1241          * When loading symbols in a data mapping, ABS symbols (which
1242          * has a value of SHN_ABS in its st_shndx) failed at
1243          * elf_getscn().  And it marks the loading as a failure so
1244          * already loaded symbols cannot be fixed up.
1245          *
1246          * I'm not sure what should be done. Just ignore them for now.
1247          * - Namhyung Kim
1248          */
1249         if (sym.st_shndx == SHN_ABS)
1250             continue;
1251 
1252         sec = elf_getscn(syms_ss->elf, sym.st_shndx);
1253         if (!sec)
1254             goto out_elf_end;
1255 
1256         gelf_getshdr(sec, &shdr);
1257 
1258         /*
1259          * If the attribute bit SHF_ALLOC is not set, the section
1260          * doesn't occupy memory during process execution.
1261          * E.g. ".gnu.warning.*" section is used by linker to generate
1262          * warnings when calling deprecated functions, the symbols in
1263          * the section aren't loaded to memory during process execution,
1264          * so skip them.
1265          */
1266         if (!(shdr.sh_flags & SHF_ALLOC))
1267             continue;
1268 
1269         secstrs = secstrs_sym;
1270 
1271         /*
1272          * We have to fallback to runtime when syms' section header has
1273          * NOBITS set. NOBITS results in file offset (sh_offset) not
1274          * being incremented. So sh_offset used below has different
1275          * values for syms (invalid) and runtime (valid).
1276          */
1277         if (shdr.sh_type == SHT_NOBITS) {
1278             sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1279             if (!sec)
1280                 goto out_elf_end;
1281 
1282             gelf_getshdr(sec, &shdr);
1283             secstrs = secstrs_run;
1284         }
1285 
1286         if (is_label && !elf_sec__filter(&shdr, secstrs))
1287             continue;
1288 
1289         section_name = elf_sec__name(&shdr, secstrs);
1290 
1291         /* On ARM, symbols for thumb functions have 1 added to
1292          * the symbol address as a flag - remove it */
1293         if ((ehdr.e_machine == EM_ARM) &&
1294             (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1295             (sym.st_value & 1))
1296             --sym.st_value;
1297 
1298         if (dso->kernel) {
1299             if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map,
1300                                section_name, adjust_kernel_syms, kmodule, &remap_kernel))
1301                 goto out_elf_end;
1302         } else if ((used_opd && runtime_ss->adjust_symbols) ||
1303                (!used_opd && syms_ss->adjust_symbols)) {
1304             GElf_Phdr phdr;
1305 
1306             if (elf_read_program_header(syms_ss->elf,
1307                             (u64)sym.st_value, &phdr)) {
1308                 pr_debug4("%s: failed to find program header for "
1309                        "symbol: %s st_value: %#" PRIx64 "\n",
1310                        __func__, elf_name, (u64)sym.st_value);
1311                 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1312                     "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n",
1313                     __func__, (u64)sym.st_value, (u64)shdr.sh_addr,
1314                     (u64)shdr.sh_offset);
1315                 /*
1316                  * Fail to find program header, let's rollback
1317                  * to use shdr.sh_addr and shdr.sh_offset to
1318                  * calibrate symbol's file address, though this
1319                  * is not necessary for normal C ELF file, we
1320                  * still need to handle java JIT symbols in this
1321                  * case.
1322                  */
1323                 sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1324             } else {
1325                 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1326                     "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n",
1327                     __func__, (u64)sym.st_value, (u64)phdr.p_vaddr,
1328                     (u64)phdr.p_offset);
1329                 sym.st_value -= phdr.p_vaddr - phdr.p_offset;
1330             }
1331         }
1332 
1333         demangled = demangle_sym(dso, kmodule, elf_name);
1334         if (demangled != NULL)
1335             elf_name = demangled;
1336 
1337         f = symbol__new(sym.st_value, sym.st_size,
1338                 GELF_ST_BIND(sym.st_info),
1339                 GELF_ST_TYPE(sym.st_info), elf_name);
1340         free(demangled);
1341         if (!f)
1342             goto out_elf_end;
1343 
1344         arch__sym_update(f, &sym);
1345 
1346         __symbols__insert(&curr_dso->symbols, f, dso->kernel);
1347         nr++;
1348     }
1349 
1350     /*
1351      * For misannotated, zeroed, ASM function sizes.
1352      */
1353     if (nr > 0) {
1354         symbols__fixup_end(&dso->symbols, false);
1355         symbols__fixup_duplicate(&dso->symbols);
1356         if (kmap) {
1357             /*
1358              * We need to fixup this here too because we create new
1359              * maps here, for things like vsyscall sections.
1360              */
1361             maps__fixup_end(kmaps);
1362         }
1363     }
1364     err = nr;
1365 out_elf_end:
1366     return err;
1367 }
1368 
1369 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1370           struct symsrc *runtime_ss, int kmodule)
1371 {
1372     int nr = 0;
1373     int err = -1;
1374 
1375     dso->symtab_type = syms_ss->type;
1376     dso->is_64_bit = syms_ss->is_64_bit;
1377     dso->rel = syms_ss->ehdr.e_type == ET_REL;
1378 
1379     /*
1380      * Modules may already have symbols from kallsyms, but those symbols
1381      * have the wrong values for the dso maps, so remove them.
1382      */
1383     if (kmodule && syms_ss->symtab)
1384         symbols__delete(&dso->symbols);
1385 
1386     if (!syms_ss->symtab) {
1387         /*
1388          * If the vmlinux is stripped, fail so we will fall back
1389          * to using kallsyms. The vmlinux runtime symbols aren't
1390          * of much use.
1391          */
1392         if (dso->kernel)
1393             return err;
1394     } else  {
1395         err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1396                          kmodule, 0);
1397         if (err < 0)
1398             return err;
1399         nr = err;
1400     }
1401 
1402     if (syms_ss->dynsym) {
1403         err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1404                          kmodule, 1);
1405         if (err < 0)
1406             return err;
1407         err += nr;
1408     }
1409 
1410     return err;
1411 }
1412 
1413 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1414 {
1415     GElf_Phdr phdr;
1416     size_t i, phdrnum;
1417     int err;
1418     u64 sz;
1419 
1420     if (elf_getphdrnum(elf, &phdrnum))
1421         return -1;
1422 
1423     for (i = 0; i < phdrnum; i++) {
1424         if (gelf_getphdr(elf, i, &phdr) == NULL)
1425             return -1;
1426         if (phdr.p_type != PT_LOAD)
1427             continue;
1428         if (exe) {
1429             if (!(phdr.p_flags & PF_X))
1430                 continue;
1431         } else {
1432             if (!(phdr.p_flags & PF_R))
1433                 continue;
1434         }
1435         sz = min(phdr.p_memsz, phdr.p_filesz);
1436         if (!sz)
1437             continue;
1438         err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1439         if (err)
1440             return err;
1441     }
1442     return 0;
1443 }
1444 
1445 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1446             bool *is_64_bit)
1447 {
1448     int err;
1449     Elf *elf;
1450 
1451     elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1452     if (elf == NULL)
1453         return -1;
1454 
1455     if (is_64_bit)
1456         *is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1457 
1458     err = elf_read_maps(elf, exe, mapfn, data);
1459 
1460     elf_end(elf);
1461     return err;
1462 }
1463 
1464 enum dso_type dso__type_fd(int fd)
1465 {
1466     enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1467     GElf_Ehdr ehdr;
1468     Elf_Kind ek;
1469     Elf *elf;
1470 
1471     elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1472     if (elf == NULL)
1473         goto out;
1474 
1475     ek = elf_kind(elf);
1476     if (ek != ELF_K_ELF)
1477         goto out_end;
1478 
1479     if (gelf_getclass(elf) == ELFCLASS64) {
1480         dso_type = DSO__TYPE_64BIT;
1481         goto out_end;
1482     }
1483 
1484     if (gelf_getehdr(elf, &ehdr) == NULL)
1485         goto out_end;
1486 
1487     if (ehdr.e_machine == EM_X86_64)
1488         dso_type = DSO__TYPE_X32BIT;
1489     else
1490         dso_type = DSO__TYPE_32BIT;
1491 out_end:
1492     elf_end(elf);
1493 out:
1494     return dso_type;
1495 }
1496 
1497 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1498 {
1499     ssize_t r;
1500     size_t n;
1501     int err = -1;
1502     char *buf = malloc(page_size);
1503 
1504     if (buf == NULL)
1505         return -1;
1506 
1507     if (lseek(to, to_offs, SEEK_SET) != to_offs)
1508         goto out;
1509 
1510     if (lseek(from, from_offs, SEEK_SET) != from_offs)
1511         goto out;
1512 
1513     while (len) {
1514         n = page_size;
1515         if (len < n)
1516             n = len;
1517         /* Use read because mmap won't work on proc files */
1518         r = read(from, buf, n);
1519         if (r < 0)
1520             goto out;
1521         if (!r)
1522             break;
1523         n = r;
1524         r = write(to, buf, n);
1525         if (r < 0)
1526             goto out;
1527         if ((size_t)r != n)
1528             goto out;
1529         len -= n;
1530     }
1531 
1532     err = 0;
1533 out:
1534     free(buf);
1535     return err;
1536 }
1537 
1538 struct kcore {
1539     int fd;
1540     int elfclass;
1541     Elf *elf;
1542     GElf_Ehdr ehdr;
1543 };
1544 
1545 static int kcore__open(struct kcore *kcore, const char *filename)
1546 {
1547     GElf_Ehdr *ehdr;
1548 
1549     kcore->fd = open(filename, O_RDONLY);
1550     if (kcore->fd == -1)
1551         return -1;
1552 
1553     kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1554     if (!kcore->elf)
1555         goto out_close;
1556 
1557     kcore->elfclass = gelf_getclass(kcore->elf);
1558     if (kcore->elfclass == ELFCLASSNONE)
1559         goto out_end;
1560 
1561     ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1562     if (!ehdr)
1563         goto out_end;
1564 
1565     return 0;
1566 
1567 out_end:
1568     elf_end(kcore->elf);
1569 out_close:
1570     close(kcore->fd);
1571     return -1;
1572 }
1573 
1574 static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1575                bool temp)
1576 {
1577     kcore->elfclass = elfclass;
1578 
1579     if (temp)
1580         kcore->fd = mkstemp(filename);
1581     else
1582         kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1583     if (kcore->fd == -1)
1584         return -1;
1585 
1586     kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1587     if (!kcore->elf)
1588         goto out_close;
1589 
1590     if (!gelf_newehdr(kcore->elf, elfclass))
1591         goto out_end;
1592 
1593     memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1594 
1595     return 0;
1596 
1597 out_end:
1598     elf_end(kcore->elf);
1599 out_close:
1600     close(kcore->fd);
1601     unlink(filename);
1602     return -1;
1603 }
1604 
1605 static void kcore__close(struct kcore *kcore)
1606 {
1607     elf_end(kcore->elf);
1608     close(kcore->fd);
1609 }
1610 
1611 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
1612 {
1613     GElf_Ehdr *ehdr = &to->ehdr;
1614     GElf_Ehdr *kehdr = &from->ehdr;
1615 
1616     memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
1617     ehdr->e_type      = kehdr->e_type;
1618     ehdr->e_machine   = kehdr->e_machine;
1619     ehdr->e_version   = kehdr->e_version;
1620     ehdr->e_entry     = 0;
1621     ehdr->e_shoff     = 0;
1622     ehdr->e_flags     = kehdr->e_flags;
1623     ehdr->e_phnum     = count;
1624     ehdr->e_shentsize = 0;
1625     ehdr->e_shnum     = 0;
1626     ehdr->e_shstrndx  = 0;
1627 
1628     if (from->elfclass == ELFCLASS32) {
1629         ehdr->e_phoff     = sizeof(Elf32_Ehdr);
1630         ehdr->e_ehsize    = sizeof(Elf32_Ehdr);
1631         ehdr->e_phentsize = sizeof(Elf32_Phdr);
1632     } else {
1633         ehdr->e_phoff     = sizeof(Elf64_Ehdr);
1634         ehdr->e_ehsize    = sizeof(Elf64_Ehdr);
1635         ehdr->e_phentsize = sizeof(Elf64_Phdr);
1636     }
1637 
1638     if (!gelf_update_ehdr(to->elf, ehdr))
1639         return -1;
1640 
1641     if (!gelf_newphdr(to->elf, count))
1642         return -1;
1643 
1644     return 0;
1645 }
1646 
1647 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
1648                u64 addr, u64 len)
1649 {
1650     GElf_Phdr phdr = {
1651         .p_type     = PT_LOAD,
1652         .p_flags    = PF_R | PF_W | PF_X,
1653         .p_offset   = offset,
1654         .p_vaddr    = addr,
1655         .p_paddr    = 0,
1656         .p_filesz   = len,
1657         .p_memsz    = len,
1658         .p_align    = page_size,
1659     };
1660 
1661     if (!gelf_update_phdr(kcore->elf, idx, &phdr))
1662         return -1;
1663 
1664     return 0;
1665 }
1666 
1667 static off_t kcore__write(struct kcore *kcore)
1668 {
1669     return elf_update(kcore->elf, ELF_C_WRITE);
1670 }
1671 
1672 struct phdr_data {
1673     off_t offset;
1674     off_t rel;
1675     u64 addr;
1676     u64 len;
1677     struct list_head node;
1678     struct phdr_data *remaps;
1679 };
1680 
1681 struct sym_data {
1682     u64 addr;
1683     struct list_head node;
1684 };
1685 
1686 struct kcore_copy_info {
1687     u64 stext;
1688     u64 etext;
1689     u64 first_symbol;
1690     u64 last_symbol;
1691     u64 first_module;
1692     u64 first_module_symbol;
1693     u64 last_module_symbol;
1694     size_t phnum;
1695     struct list_head phdrs;
1696     struct list_head syms;
1697 };
1698 
1699 #define kcore_copy__for_each_phdr(k, p) \
1700     list_for_each_entry((p), &(k)->phdrs, node)
1701 
1702 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
1703 {
1704     struct phdr_data *p = zalloc(sizeof(*p));
1705 
1706     if (p) {
1707         p->addr   = addr;
1708         p->len    = len;
1709         p->offset = offset;
1710     }
1711 
1712     return p;
1713 }
1714 
1715 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
1716                          u64 addr, u64 len,
1717                          off_t offset)
1718 {
1719     struct phdr_data *p = phdr_data__new(addr, len, offset);
1720 
1721     if (p)
1722         list_add_tail(&p->node, &kci->phdrs);
1723 
1724     return p;
1725 }
1726 
1727 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
1728 {
1729     struct phdr_data *p, *tmp;
1730 
1731     list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
1732         list_del_init(&p->node);
1733         free(p);
1734     }
1735 }
1736 
1737 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
1738                         u64 addr)
1739 {
1740     struct sym_data *s = zalloc(sizeof(*s));
1741 
1742     if (s) {
1743         s->addr = addr;
1744         list_add_tail(&s->node, &kci->syms);
1745     }
1746 
1747     return s;
1748 }
1749 
1750 static void kcore_copy__free_syms(struct kcore_copy_info *kci)
1751 {
1752     struct sym_data *s, *tmp;
1753 
1754     list_for_each_entry_safe(s, tmp, &kci->syms, node) {
1755         list_del_init(&s->node);
1756         free(s);
1757     }
1758 }
1759 
1760 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
1761                     u64 start)
1762 {
1763     struct kcore_copy_info *kci = arg;
1764 
1765     if (!kallsyms__is_function(type))
1766         return 0;
1767 
1768     if (strchr(name, '[')) {
1769         if (!kci->first_module_symbol || start < kci->first_module_symbol)
1770             kci->first_module_symbol = start;
1771         if (start > kci->last_module_symbol)
1772             kci->last_module_symbol = start;
1773         return 0;
1774     }
1775 
1776     if (!kci->first_symbol || start < kci->first_symbol)
1777         kci->first_symbol = start;
1778 
1779     if (!kci->last_symbol || start > kci->last_symbol)
1780         kci->last_symbol = start;
1781 
1782     if (!strcmp(name, "_stext")) {
1783         kci->stext = start;
1784         return 0;
1785     }
1786 
1787     if (!strcmp(name, "_etext")) {
1788         kci->etext = start;
1789         return 0;
1790     }
1791 
1792     if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
1793         return -1;
1794 
1795     return 0;
1796 }
1797 
1798 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
1799                       const char *dir)
1800 {
1801     char kallsyms_filename[PATH_MAX];
1802 
1803     scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
1804 
1805     if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
1806         return -1;
1807 
1808     if (kallsyms__parse(kallsyms_filename, kci,
1809                 kcore_copy__process_kallsyms) < 0)
1810         return -1;
1811 
1812     return 0;
1813 }
1814 
1815 static int kcore_copy__process_modules(void *arg,
1816                        const char *name __maybe_unused,
1817                        u64 start, u64 size __maybe_unused)
1818 {
1819     struct kcore_copy_info *kci = arg;
1820 
1821     if (!kci->first_module || start < kci->first_module)
1822         kci->first_module = start;
1823 
1824     return 0;
1825 }
1826 
1827 static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
1828                      const char *dir)
1829 {
1830     char modules_filename[PATH_MAX];
1831 
1832     scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
1833 
1834     if (symbol__restricted_filename(modules_filename, "/proc/modules"))
1835         return -1;
1836 
1837     if (modules__parse(modules_filename, kci,
1838                kcore_copy__process_modules) < 0)
1839         return -1;
1840 
1841     return 0;
1842 }
1843 
1844 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
1845                u64 pgoff, u64 s, u64 e)
1846 {
1847     u64 len, offset;
1848 
1849     if (s < start || s >= end)
1850         return 0;
1851 
1852     offset = (s - start) + pgoff;
1853     len = e < end ? e - s : end - s;
1854 
1855     return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
1856 }
1857 
1858 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
1859 {
1860     struct kcore_copy_info *kci = data;
1861     u64 end = start + len;
1862     struct sym_data *sdat;
1863 
1864     if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
1865         return -1;
1866 
1867     if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
1868                 kci->last_module_symbol))
1869         return -1;
1870 
1871     list_for_each_entry(sdat, &kci->syms, node) {
1872         u64 s = round_down(sdat->addr, page_size);
1873 
1874         if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
1875             return -1;
1876     }
1877 
1878     return 0;
1879 }
1880 
1881 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
1882 {
1883     if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
1884         return -1;
1885 
1886     return 0;
1887 }
1888 
1889 static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
1890 {
1891     struct phdr_data *p, *k = NULL;
1892     u64 kend;
1893 
1894     if (!kci->stext)
1895         return;
1896 
1897     /* Find phdr that corresponds to the kernel map (contains stext) */
1898     kcore_copy__for_each_phdr(kci, p) {
1899         u64 pend = p->addr + p->len - 1;
1900 
1901         if (p->addr <= kci->stext && pend >= kci->stext) {
1902             k = p;
1903             break;
1904         }
1905     }
1906 
1907     if (!k)
1908         return;
1909 
1910     kend = k->offset + k->len;
1911 
1912     /* Find phdrs that remap the kernel */
1913     kcore_copy__for_each_phdr(kci, p) {
1914         u64 pend = p->offset + p->len;
1915 
1916         if (p == k)
1917             continue;
1918 
1919         if (p->offset >= k->offset && pend <= kend)
1920             p->remaps = k;
1921     }
1922 }
1923 
1924 static void kcore_copy__layout(struct kcore_copy_info *kci)
1925 {
1926     struct phdr_data *p;
1927     off_t rel = 0;
1928 
1929     kcore_copy__find_remaps(kci);
1930 
1931     kcore_copy__for_each_phdr(kci, p) {
1932         if (!p->remaps) {
1933             p->rel = rel;
1934             rel += p->len;
1935         }
1936         kci->phnum += 1;
1937     }
1938 
1939     kcore_copy__for_each_phdr(kci, p) {
1940         struct phdr_data *k = p->remaps;
1941 
1942         if (k)
1943             p->rel = p->offset - k->offset + k->rel;
1944     }
1945 }
1946 
1947 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
1948                  Elf *elf)
1949 {
1950     if (kcore_copy__parse_kallsyms(kci, dir))
1951         return -1;
1952 
1953     if (kcore_copy__parse_modules(kci, dir))
1954         return -1;
1955 
1956     if (kci->stext)
1957         kci->stext = round_down(kci->stext, page_size);
1958     else
1959         kci->stext = round_down(kci->first_symbol, page_size);
1960 
1961     if (kci->etext) {
1962         kci->etext = round_up(kci->etext, page_size);
1963     } else if (kci->last_symbol) {
1964         kci->etext = round_up(kci->last_symbol, page_size);
1965         kci->etext += page_size;
1966     }
1967 
1968     if (kci->first_module_symbol &&
1969         (!kci->first_module || kci->first_module_symbol < kci->first_module))
1970         kci->first_module = kci->first_module_symbol;
1971 
1972     kci->first_module = round_down(kci->first_module, page_size);
1973 
1974     if (kci->last_module_symbol) {
1975         kci->last_module_symbol = round_up(kci->last_module_symbol,
1976                            page_size);
1977         kci->last_module_symbol += page_size;
1978     }
1979 
1980     if (!kci->stext || !kci->etext)
1981         return -1;
1982 
1983     if (kci->first_module && !kci->last_module_symbol)
1984         return -1;
1985 
1986     if (kcore_copy__read_maps(kci, elf))
1987         return -1;
1988 
1989     kcore_copy__layout(kci);
1990 
1991     return 0;
1992 }
1993 
1994 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
1995                  const char *name)
1996 {
1997     char from_filename[PATH_MAX];
1998     char to_filename[PATH_MAX];
1999 
2000     scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2001     scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2002 
2003     return copyfile_mode(from_filename, to_filename, 0400);
2004 }
2005 
2006 static int kcore_copy__unlink(const char *dir, const char *name)
2007 {
2008     char filename[PATH_MAX];
2009 
2010     scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
2011 
2012     return unlink(filename);
2013 }
2014 
2015 static int kcore_copy__compare_fds(int from, int to)
2016 {
2017     char *buf_from;
2018     char *buf_to;
2019     ssize_t ret;
2020     size_t len;
2021     int err = -1;
2022 
2023     buf_from = malloc(page_size);
2024     buf_to = malloc(page_size);
2025     if (!buf_from || !buf_to)
2026         goto out;
2027 
2028     while (1) {
2029         /* Use read because mmap won't work on proc files */
2030         ret = read(from, buf_from, page_size);
2031         if (ret < 0)
2032             goto out;
2033 
2034         if (!ret)
2035             break;
2036 
2037         len = ret;
2038 
2039         if (readn(to, buf_to, len) != (int)len)
2040             goto out;
2041 
2042         if (memcmp(buf_from, buf_to, len))
2043             goto out;
2044     }
2045 
2046     err = 0;
2047 out:
2048     free(buf_to);
2049     free(buf_from);
2050     return err;
2051 }
2052 
2053 static int kcore_copy__compare_files(const char *from_filename,
2054                      const char *to_filename)
2055 {
2056     int from, to, err = -1;
2057 
2058     from = open(from_filename, O_RDONLY);
2059     if (from < 0)
2060         return -1;
2061 
2062     to = open(to_filename, O_RDONLY);
2063     if (to < 0)
2064         goto out_close_from;
2065 
2066     err = kcore_copy__compare_fds(from, to);
2067 
2068     close(to);
2069 out_close_from:
2070     close(from);
2071     return err;
2072 }
2073 
2074 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
2075                     const char *name)
2076 {
2077     char from_filename[PATH_MAX];
2078     char to_filename[PATH_MAX];
2079 
2080     scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2081     scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2082 
2083     return kcore_copy__compare_files(from_filename, to_filename);
2084 }
2085 
2086 /**
2087  * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
2088  * @from_dir: from directory
2089  * @to_dir: to directory
2090  *
2091  * This function copies kallsyms, modules and kcore files from one directory to
2092  * another.  kallsyms and modules are copied entirely.  Only code segments are
2093  * copied from kcore.  It is assumed that two segments suffice: one for the
2094  * kernel proper and one for all the modules.  The code segments are determined
2095  * from kallsyms and modules files.  The kernel map starts at _stext or the
2096  * lowest function symbol, and ends at _etext or the highest function symbol.
2097  * The module map starts at the lowest module address and ends at the highest
2098  * module symbol.  Start addresses are rounded down to the nearest page.  End
2099  * addresses are rounded up to the nearest page.  An extra page is added to the
2100  * highest kernel symbol and highest module symbol to, hopefully, encompass that
2101  * symbol too.  Because it contains only code sections, the resulting kcore is
2102  * unusual.  One significant peculiarity is that the mapping (start -> pgoff)
2103  * is not the same for the kernel map and the modules map.  That happens because
2104  * the data is copied adjacently whereas the original kcore has gaps.  Finally,
2105  * kallsyms file is compared with its copy to check that modules have not been
2106  * loaded or unloaded while the copies were taking place.
2107  *
2108  * Return: %0 on success, %-1 on failure.
2109  */
2110 int kcore_copy(const char *from_dir, const char *to_dir)
2111 {
2112     struct kcore kcore;
2113     struct kcore extract;
2114     int idx = 0, err = -1;
2115     off_t offset, sz;
2116     struct kcore_copy_info kci = { .stext = 0, };
2117     char kcore_filename[PATH_MAX];
2118     char extract_filename[PATH_MAX];
2119     struct phdr_data *p;
2120 
2121     INIT_LIST_HEAD(&kci.phdrs);
2122     INIT_LIST_HEAD(&kci.syms);
2123 
2124     if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
2125         return -1;
2126 
2127     if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
2128         goto out_unlink_kallsyms;
2129 
2130     scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
2131     scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
2132 
2133     if (kcore__open(&kcore, kcore_filename))
2134         goto out_unlink_modules;
2135 
2136     if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
2137         goto out_kcore_close;
2138 
2139     if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
2140         goto out_kcore_close;
2141 
2142     if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
2143         goto out_extract_close;
2144 
2145     offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
2146          gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
2147     offset = round_up(offset, page_size);
2148 
2149     kcore_copy__for_each_phdr(&kci, p) {
2150         off_t offs = p->rel + offset;
2151 
2152         if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
2153             goto out_extract_close;
2154     }
2155 
2156     sz = kcore__write(&extract);
2157     if (sz < 0 || sz > offset)
2158         goto out_extract_close;
2159 
2160     kcore_copy__for_each_phdr(&kci, p) {
2161         off_t offs = p->rel + offset;
2162 
2163         if (p->remaps)
2164             continue;
2165         if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
2166             goto out_extract_close;
2167     }
2168 
2169     if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
2170         goto out_extract_close;
2171 
2172     err = 0;
2173 
2174 out_extract_close:
2175     kcore__close(&extract);
2176     if (err)
2177         unlink(extract_filename);
2178 out_kcore_close:
2179     kcore__close(&kcore);
2180 out_unlink_modules:
2181     if (err)
2182         kcore_copy__unlink(to_dir, "modules");
2183 out_unlink_kallsyms:
2184     if (err)
2185         kcore_copy__unlink(to_dir, "kallsyms");
2186 
2187     kcore_copy__free_phdrs(&kci);
2188     kcore_copy__free_syms(&kci);
2189 
2190     return err;
2191 }
2192 
2193 int kcore_extract__create(struct kcore_extract *kce)
2194 {
2195     struct kcore kcore;
2196     struct kcore extract;
2197     size_t count = 1;
2198     int idx = 0, err = -1;
2199     off_t offset = page_size, sz;
2200 
2201     if (kcore__open(&kcore, kce->kcore_filename))
2202         return -1;
2203 
2204     strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
2205     if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
2206         goto out_kcore_close;
2207 
2208     if (kcore__copy_hdr(&kcore, &extract, count))
2209         goto out_extract_close;
2210 
2211     if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
2212         goto out_extract_close;
2213 
2214     sz = kcore__write(&extract);
2215     if (sz < 0 || sz > offset)
2216         goto out_extract_close;
2217 
2218     if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
2219         goto out_extract_close;
2220 
2221     err = 0;
2222 
2223 out_extract_close:
2224     kcore__close(&extract);
2225     if (err)
2226         unlink(kce->extract_filename);
2227 out_kcore_close:
2228     kcore__close(&kcore);
2229 
2230     return err;
2231 }
2232 
2233 void kcore_extract__delete(struct kcore_extract *kce)
2234 {
2235     unlink(kce->extract_filename);
2236 }
2237 
2238 #ifdef HAVE_GELF_GETNOTE_SUPPORT
2239 
2240 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
2241 {
2242     if (!base_off)
2243         return;
2244 
2245     if (tmp->bit32)
2246         tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2247             tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2248             tmp->addr.a32[SDT_NOTE_IDX_BASE];
2249     else
2250         tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2251             tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2252             tmp->addr.a64[SDT_NOTE_IDX_BASE];
2253 }
2254 
2255 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2256                   GElf_Addr base_off)
2257 {
2258     if (!base_off)
2259         return;
2260 
2261     if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2262         tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2263     else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2264         tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2265 }
2266 
2267 /**
2268  * populate_sdt_note : Parse raw data and identify SDT note
2269  * @elf: elf of the opened file
2270  * @data: raw data of a section with description offset applied
2271  * @len: note description size
2272  * @type: type of the note
2273  * @sdt_notes: List to add the SDT note
2274  *
2275  * Responsible for parsing the @data in section .note.stapsdt in @elf and
2276  * if its an SDT note, it appends to @sdt_notes list.
2277  */
2278 static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2279                  struct list_head *sdt_notes)
2280 {
2281     const char *provider, *name, *args;
2282     struct sdt_note *tmp = NULL;
2283     GElf_Ehdr ehdr;
2284     GElf_Shdr shdr;
2285     int ret = -EINVAL;
2286 
2287     union {
2288         Elf64_Addr a64[NR_ADDR];
2289         Elf32_Addr a32[NR_ADDR];
2290     } buf;
2291 
2292     Elf_Data dst = {
2293         .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2294         .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2295         .d_off = 0, .d_align = 0
2296     };
2297     Elf_Data src = {
2298         .d_buf = (void *) data, .d_type = ELF_T_ADDR,
2299         .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2300         .d_align = 0
2301     };
2302 
2303     tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2304     if (!tmp) {
2305         ret = -ENOMEM;
2306         goto out_err;
2307     }
2308 
2309     INIT_LIST_HEAD(&tmp->note_list);
2310 
2311     if (len < dst.d_size + 3)
2312         goto out_free_note;
2313 
2314     /* Translation from file representation to memory representation */
2315     if (gelf_xlatetom(*elf, &dst, &src,
2316               elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2317         pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2318         goto out_free_note;
2319     }
2320 
2321     /* Populate the fields of sdt_note */
2322     provider = data + dst.d_size;
2323 
2324     name = (const char *)memchr(provider, '\0', data + len - provider);
2325     if (name++ == NULL)
2326         goto out_free_note;
2327 
2328     tmp->provider = strdup(provider);
2329     if (!tmp->provider) {
2330         ret = -ENOMEM;
2331         goto out_free_note;
2332     }
2333     tmp->name = strdup(name);
2334     if (!tmp->name) {
2335         ret = -ENOMEM;
2336         goto out_free_prov;
2337     }
2338 
2339     args = memchr(name, '\0', data + len - name);
2340 
2341     /*
2342      * There is no argument if:
2343      * - We reached the end of the note;
2344      * - There is not enough room to hold a potential string;
2345      * - The argument string is empty or just contains ':'.
2346      */
2347     if (args == NULL || data + len - args < 2 ||
2348         args[1] == ':' || args[1] == '\0')
2349         tmp->args = NULL;
2350     else {
2351         tmp->args = strdup(++args);
2352         if (!tmp->args) {
2353             ret = -ENOMEM;
2354             goto out_free_name;
2355         }
2356     }
2357 
2358     if (gelf_getclass(*elf) == ELFCLASS32) {
2359         memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2360         tmp->bit32 = true;
2361     } else {
2362         memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2363         tmp->bit32 = false;
2364     }
2365 
2366     if (!gelf_getehdr(*elf, &ehdr)) {
2367         pr_debug("%s : cannot get elf header.\n", __func__);
2368         ret = -EBADF;
2369         goto out_free_args;
2370     }
2371 
2372     /* Adjust the prelink effect :
2373      * Find out the .stapsdt.base section.
2374      * This scn will help us to handle prelinking (if present).
2375      * Compare the retrieved file offset of the base section with the
2376      * base address in the description of the SDT note. If its different,
2377      * then accordingly, adjust the note location.
2378      */
2379     if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2380         sdt_adjust_loc(tmp, shdr.sh_offset);
2381 
2382     /* Adjust reference counter offset */
2383     if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2384         sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2385 
2386     list_add_tail(&tmp->note_list, sdt_notes);
2387     return 0;
2388 
2389 out_free_args:
2390     zfree(&tmp->args);
2391 out_free_name:
2392     zfree(&tmp->name);
2393 out_free_prov:
2394     zfree(&tmp->provider);
2395 out_free_note:
2396     free(tmp);
2397 out_err:
2398     return ret;
2399 }
2400 
2401 /**
2402  * construct_sdt_notes_list : constructs a list of SDT notes
2403  * @elf : elf to look into
2404  * @sdt_notes : empty list_head
2405  *
2406  * Scans the sections in 'elf' for the section
2407  * .note.stapsdt. It, then calls populate_sdt_note to find
2408  * out the SDT events and populates the 'sdt_notes'.
2409  */
2410 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2411 {
2412     GElf_Ehdr ehdr;
2413     Elf_Scn *scn = NULL;
2414     Elf_Data *data;
2415     GElf_Shdr shdr;
2416     size_t shstrndx, next;
2417     GElf_Nhdr nhdr;
2418     size_t name_off, desc_off, offset;
2419     int ret = 0;
2420 
2421     if (gelf_getehdr(elf, &ehdr) == NULL) {
2422         ret = -EBADF;
2423         goto out_ret;
2424     }
2425     if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2426         ret = -EBADF;
2427         goto out_ret;
2428     }
2429 
2430     /* Look for the required section */
2431     scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2432     if (!scn) {
2433         ret = -ENOENT;
2434         goto out_ret;
2435     }
2436 
2437     if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2438         ret = -ENOENT;
2439         goto out_ret;
2440     }
2441 
2442     data = elf_getdata(scn, NULL);
2443 
2444     /* Get the SDT notes */
2445     for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2446                           &desc_off)) > 0; offset = next) {
2447         if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2448             !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2449                 sizeof(SDT_NOTE_NAME))) {
2450             /* Check the type of the note */
2451             if (nhdr.n_type != SDT_NOTE_TYPE)
2452                 goto out_ret;
2453 
2454             ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2455                         nhdr.n_descsz, sdt_notes);
2456             if (ret < 0)
2457                 goto out_ret;
2458         }
2459     }
2460     if (list_empty(sdt_notes))
2461         ret = -ENOENT;
2462 
2463 out_ret:
2464     return ret;
2465 }
2466 
2467 /**
2468  * get_sdt_note_list : Wrapper to construct a list of sdt notes
2469  * @head : empty list_head
2470  * @target : file to find SDT notes from
2471  *
2472  * This opens the file, initializes
2473  * the ELF and then calls construct_sdt_notes_list.
2474  */
2475 int get_sdt_note_list(struct list_head *head, const char *target)
2476 {
2477     Elf *elf;
2478     int fd, ret;
2479 
2480     fd = open(target, O_RDONLY);
2481     if (fd < 0)
2482         return -EBADF;
2483 
2484     elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2485     if (!elf) {
2486         ret = -EBADF;
2487         goto out_close;
2488     }
2489     ret = construct_sdt_notes_list(elf, head);
2490     elf_end(elf);
2491 out_close:
2492     close(fd);
2493     return ret;
2494 }
2495 
2496 /**
2497  * cleanup_sdt_note_list : free the sdt notes' list
2498  * @sdt_notes: sdt notes' list
2499  *
2500  * Free up the SDT notes in @sdt_notes.
2501  * Returns the number of SDT notes free'd.
2502  */
2503 int cleanup_sdt_note_list(struct list_head *sdt_notes)
2504 {
2505     struct sdt_note *tmp, *pos;
2506     int nr_free = 0;
2507 
2508     list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2509         list_del_init(&pos->note_list);
2510         zfree(&pos->args);
2511         zfree(&pos->name);
2512         zfree(&pos->provider);
2513         free(pos);
2514         nr_free++;
2515     }
2516     return nr_free;
2517 }
2518 
2519 /**
2520  * sdt_notes__get_count: Counts the number of sdt events
2521  * @start: list_head to sdt_notes list
2522  *
2523  * Returns the number of SDT notes in a list
2524  */
2525 int sdt_notes__get_count(struct list_head *start)
2526 {
2527     struct sdt_note *sdt_ptr;
2528     int count = 0;
2529 
2530     list_for_each_entry(sdt_ptr, start, note_list)
2531         count++;
2532     return count;
2533 }
2534 #endif
2535 
2536 void symbol__elf_init(void)
2537 {
2538     elf_version(EV_CURRENT);
2539 }