Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 #include <errno.h>
0003 #include <inttypes.h>
0004 #include "string2.h"
0005 #include <sys/param.h>
0006 #include <sys/types.h>
0007 #include <byteswap.h>
0008 #include <unistd.h>
0009 #include <stdio.h>
0010 #include <stdlib.h>
0011 #include <linux/compiler.h>
0012 #include <linux/list.h>
0013 #include <linux/kernel.h>
0014 #include <linux/bitops.h>
0015 #include <linux/string.h>
0016 #include <linux/stringify.h>
0017 #include <linux/zalloc.h>
0018 #include <sys/stat.h>
0019 #include <sys/utsname.h>
0020 #include <linux/time64.h>
0021 #include <dirent.h>
0022 #ifdef HAVE_LIBBPF_SUPPORT
0023 #include <bpf/libbpf.h>
0024 #endif
0025 #include <perf/cpumap.h>
0026 
0027 #include "dso.h"
0028 #include "evlist.h"
0029 #include "evsel.h"
0030 #include "util/evsel_fprintf.h"
0031 #include "header.h"
0032 #include "memswap.h"
0033 #include "trace-event.h"
0034 #include "session.h"
0035 #include "symbol.h"
0036 #include "debug.h"
0037 #include "cpumap.h"
0038 #include "pmu.h"
0039 #include "vdso.h"
0040 #include "strbuf.h"
0041 #include "build-id.h"
0042 #include "data.h"
0043 #include <api/fs/fs.h>
0044 #include "asm/bug.h"
0045 #include "tool.h"
0046 #include "time-utils.h"
0047 #include "units.h"
0048 #include "util/util.h" // perf_exe()
0049 #include "cputopo.h"
0050 #include "bpf-event.h"
0051 #include "bpf-utils.h"
0052 #include "clockid.h"
0053 #include "pmu-hybrid.h"
0054 
0055 #include <linux/ctype.h>
0056 #include <internal/lib.h>
0057 
0058 /*
0059  * magic2 = "PERFILE2"
0060  * must be a numerical value to let the endianness
0061  * determine the memory layout. That way we are able
0062  * to detect endianness when reading the perf.data file
0063  * back.
0064  *
0065  * we check for legacy (PERFFILE) format.
0066  */
0067 static const char *__perf_magic1 = "PERFFILE";
0068 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
0069 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
0070 
0071 #define PERF_MAGIC  __perf_magic2
0072 
0073 const char perf_version_string[] = PERF_VERSION;
0074 
0075 struct perf_file_attr {
0076     struct perf_event_attr  attr;
0077     struct perf_file_section    ids;
0078 };
0079 
0080 void perf_header__set_feat(struct perf_header *header, int feat)
0081 {
0082     set_bit(feat, header->adds_features);
0083 }
0084 
0085 void perf_header__clear_feat(struct perf_header *header, int feat)
0086 {
0087     clear_bit(feat, header->adds_features);
0088 }
0089 
0090 bool perf_header__has_feat(const struct perf_header *header, int feat)
0091 {
0092     return test_bit(feat, header->adds_features);
0093 }
0094 
0095 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
0096 {
0097     ssize_t ret = writen(ff->fd, buf, size);
0098 
0099     if (ret != (ssize_t)size)
0100         return ret < 0 ? (int)ret : -1;
0101     return 0;
0102 }
0103 
0104 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
0105 {
0106     /* struct perf_event_header::size is u16 */
0107     const size_t max_size = 0xffff - sizeof(struct perf_event_header);
0108     size_t new_size = ff->size;
0109     void *addr;
0110 
0111     if (size + ff->offset > max_size)
0112         return -E2BIG;
0113 
0114     while (size > (new_size - ff->offset))
0115         new_size <<= 1;
0116     new_size = min(max_size, new_size);
0117 
0118     if (ff->size < new_size) {
0119         addr = realloc(ff->buf, new_size);
0120         if (!addr)
0121             return -ENOMEM;
0122         ff->buf = addr;
0123         ff->size = new_size;
0124     }
0125 
0126     memcpy(ff->buf + ff->offset, buf, size);
0127     ff->offset += size;
0128 
0129     return 0;
0130 }
0131 
0132 /* Return: 0 if succeeded, -ERR if failed. */
0133 int do_write(struct feat_fd *ff, const void *buf, size_t size)
0134 {
0135     if (!ff->buf)
0136         return __do_write_fd(ff, buf, size);
0137     return __do_write_buf(ff, buf, size);
0138 }
0139 
0140 /* Return: 0 if succeeded, -ERR if failed. */
0141 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
0142 {
0143     u64 *p = (u64 *) set;
0144     int i, ret;
0145 
0146     ret = do_write(ff, &size, sizeof(size));
0147     if (ret < 0)
0148         return ret;
0149 
0150     for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
0151         ret = do_write(ff, p + i, sizeof(*p));
0152         if (ret < 0)
0153             return ret;
0154     }
0155 
0156     return 0;
0157 }
0158 
0159 /* Return: 0 if succeeded, -ERR if failed. */
0160 int write_padded(struct feat_fd *ff, const void *bf,
0161          size_t count, size_t count_aligned)
0162 {
0163     static const char zero_buf[NAME_ALIGN];
0164     int err = do_write(ff, bf, count);
0165 
0166     if (!err)
0167         err = do_write(ff, zero_buf, count_aligned - count);
0168 
0169     return err;
0170 }
0171 
0172 #define string_size(str)                        \
0173     (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
0174 
0175 /* Return: 0 if succeeded, -ERR if failed. */
0176 static int do_write_string(struct feat_fd *ff, const char *str)
0177 {
0178     u32 len, olen;
0179     int ret;
0180 
0181     olen = strlen(str) + 1;
0182     len = PERF_ALIGN(olen, NAME_ALIGN);
0183 
0184     /* write len, incl. \0 */
0185     ret = do_write(ff, &len, sizeof(len));
0186     if (ret < 0)
0187         return ret;
0188 
0189     return write_padded(ff, str, olen, len);
0190 }
0191 
0192 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
0193 {
0194     ssize_t ret = readn(ff->fd, addr, size);
0195 
0196     if (ret != size)
0197         return ret < 0 ? (int)ret : -1;
0198     return 0;
0199 }
0200 
0201 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
0202 {
0203     if (size > (ssize_t)ff->size - ff->offset)
0204         return -1;
0205 
0206     memcpy(addr, ff->buf + ff->offset, size);
0207     ff->offset += size;
0208 
0209     return 0;
0210 
0211 }
0212 
0213 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
0214 {
0215     if (!ff->buf)
0216         return __do_read_fd(ff, addr, size);
0217     return __do_read_buf(ff, addr, size);
0218 }
0219 
0220 static int do_read_u32(struct feat_fd *ff, u32 *addr)
0221 {
0222     int ret;
0223 
0224     ret = __do_read(ff, addr, sizeof(*addr));
0225     if (ret)
0226         return ret;
0227 
0228     if (ff->ph->needs_swap)
0229         *addr = bswap_32(*addr);
0230     return 0;
0231 }
0232 
0233 static int do_read_u64(struct feat_fd *ff, u64 *addr)
0234 {
0235     int ret;
0236 
0237     ret = __do_read(ff, addr, sizeof(*addr));
0238     if (ret)
0239         return ret;
0240 
0241     if (ff->ph->needs_swap)
0242         *addr = bswap_64(*addr);
0243     return 0;
0244 }
0245 
0246 static char *do_read_string(struct feat_fd *ff)
0247 {
0248     u32 len;
0249     char *buf;
0250 
0251     if (do_read_u32(ff, &len))
0252         return NULL;
0253 
0254     buf = malloc(len);
0255     if (!buf)
0256         return NULL;
0257 
0258     if (!__do_read(ff, buf, len)) {
0259         /*
0260          * strings are padded by zeroes
0261          * thus the actual strlen of buf
0262          * may be less than len
0263          */
0264         return buf;
0265     }
0266 
0267     free(buf);
0268     return NULL;
0269 }
0270 
0271 /* Return: 0 if succeeded, -ERR if failed. */
0272 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
0273 {
0274     unsigned long *set;
0275     u64 size, *p;
0276     int i, ret;
0277 
0278     ret = do_read_u64(ff, &size);
0279     if (ret)
0280         return ret;
0281 
0282     set = bitmap_zalloc(size);
0283     if (!set)
0284         return -ENOMEM;
0285 
0286     p = (u64 *) set;
0287 
0288     for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
0289         ret = do_read_u64(ff, p + i);
0290         if (ret < 0) {
0291             free(set);
0292             return ret;
0293         }
0294     }
0295 
0296     *pset  = set;
0297     *psize = size;
0298     return 0;
0299 }
0300 
0301 static int write_tracing_data(struct feat_fd *ff,
0302                   struct evlist *evlist)
0303 {
0304     if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
0305         return -1;
0306 
0307     return read_tracing_data(ff->fd, &evlist->core.entries);
0308 }
0309 
0310 static int write_build_id(struct feat_fd *ff,
0311               struct evlist *evlist __maybe_unused)
0312 {
0313     struct perf_session *session;
0314     int err;
0315 
0316     session = container_of(ff->ph, struct perf_session, header);
0317 
0318     if (!perf_session__read_build_ids(session, true))
0319         return -1;
0320 
0321     if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
0322         return -1;
0323 
0324     err = perf_session__write_buildid_table(session, ff);
0325     if (err < 0) {
0326         pr_debug("failed to write buildid table\n");
0327         return err;
0328     }
0329     perf_session__cache_build_ids(session);
0330 
0331     return 0;
0332 }
0333 
0334 static int write_hostname(struct feat_fd *ff,
0335               struct evlist *evlist __maybe_unused)
0336 {
0337     struct utsname uts;
0338     int ret;
0339 
0340     ret = uname(&uts);
0341     if (ret < 0)
0342         return -1;
0343 
0344     return do_write_string(ff, uts.nodename);
0345 }
0346 
0347 static int write_osrelease(struct feat_fd *ff,
0348                struct evlist *evlist __maybe_unused)
0349 {
0350     struct utsname uts;
0351     int ret;
0352 
0353     ret = uname(&uts);
0354     if (ret < 0)
0355         return -1;
0356 
0357     return do_write_string(ff, uts.release);
0358 }
0359 
0360 static int write_arch(struct feat_fd *ff,
0361               struct evlist *evlist __maybe_unused)
0362 {
0363     struct utsname uts;
0364     int ret;
0365 
0366     ret = uname(&uts);
0367     if (ret < 0)
0368         return -1;
0369 
0370     return do_write_string(ff, uts.machine);
0371 }
0372 
0373 static int write_version(struct feat_fd *ff,
0374              struct evlist *evlist __maybe_unused)
0375 {
0376     return do_write_string(ff, perf_version_string);
0377 }
0378 
0379 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
0380 {
0381     FILE *file;
0382     char *buf = NULL;
0383     char *s, *p;
0384     const char *search = cpuinfo_proc;
0385     size_t len = 0;
0386     int ret = -1;
0387 
0388     if (!search)
0389         return -1;
0390 
0391     file = fopen("/proc/cpuinfo", "r");
0392     if (!file)
0393         return -1;
0394 
0395     while (getline(&buf, &len, file) > 0) {
0396         ret = strncmp(buf, search, strlen(search));
0397         if (!ret)
0398             break;
0399     }
0400 
0401     if (ret) {
0402         ret = -1;
0403         goto done;
0404     }
0405 
0406     s = buf;
0407 
0408     p = strchr(buf, ':');
0409     if (p && *(p+1) == ' ' && *(p+2))
0410         s = p + 2;
0411     p = strchr(s, '\n');
0412     if (p)
0413         *p = '\0';
0414 
0415     /* squash extra space characters (branding string) */
0416     p = s;
0417     while (*p) {
0418         if (isspace(*p)) {
0419             char *r = p + 1;
0420             char *q = skip_spaces(r);
0421             *p = ' ';
0422             if (q != (p+1))
0423                 while ((*r++ = *q++));
0424         }
0425         p++;
0426     }
0427     ret = do_write_string(ff, s);
0428 done:
0429     free(buf);
0430     fclose(file);
0431     return ret;
0432 }
0433 
0434 static int write_cpudesc(struct feat_fd *ff,
0435                struct evlist *evlist __maybe_unused)
0436 {
0437 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
0438 #define CPUINFO_PROC    { "cpu", }
0439 #elif defined(__s390__)
0440 #define CPUINFO_PROC    { "vendor_id", }
0441 #elif defined(__sh__)
0442 #define CPUINFO_PROC    { "cpu type", }
0443 #elif defined(__alpha__) || defined(__mips__)
0444 #define CPUINFO_PROC    { "cpu model", }
0445 #elif defined(__arm__)
0446 #define CPUINFO_PROC    { "model name", "Processor", }
0447 #elif defined(__arc__)
0448 #define CPUINFO_PROC    { "Processor", }
0449 #elif defined(__xtensa__)
0450 #define CPUINFO_PROC    { "core ID", }
0451 #else
0452 #define CPUINFO_PROC    { "model name", }
0453 #endif
0454     const char *cpuinfo_procs[] = CPUINFO_PROC;
0455 #undef CPUINFO_PROC
0456     unsigned int i;
0457 
0458     for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
0459         int ret;
0460         ret = __write_cpudesc(ff, cpuinfo_procs[i]);
0461         if (ret >= 0)
0462             return ret;
0463     }
0464     return -1;
0465 }
0466 
0467 
0468 static int write_nrcpus(struct feat_fd *ff,
0469             struct evlist *evlist __maybe_unused)
0470 {
0471     long nr;
0472     u32 nrc, nra;
0473     int ret;
0474 
0475     nrc = cpu__max_present_cpu().cpu;
0476 
0477     nr = sysconf(_SC_NPROCESSORS_ONLN);
0478     if (nr < 0)
0479         return -1;
0480 
0481     nra = (u32)(nr & UINT_MAX);
0482 
0483     ret = do_write(ff, &nrc, sizeof(nrc));
0484     if (ret < 0)
0485         return ret;
0486 
0487     return do_write(ff, &nra, sizeof(nra));
0488 }
0489 
0490 static int write_event_desc(struct feat_fd *ff,
0491                 struct evlist *evlist)
0492 {
0493     struct evsel *evsel;
0494     u32 nre, nri, sz;
0495     int ret;
0496 
0497     nre = evlist->core.nr_entries;
0498 
0499     /*
0500      * write number of events
0501      */
0502     ret = do_write(ff, &nre, sizeof(nre));
0503     if (ret < 0)
0504         return ret;
0505 
0506     /*
0507      * size of perf_event_attr struct
0508      */
0509     sz = (u32)sizeof(evsel->core.attr);
0510     ret = do_write(ff, &sz, sizeof(sz));
0511     if (ret < 0)
0512         return ret;
0513 
0514     evlist__for_each_entry(evlist, evsel) {
0515         ret = do_write(ff, &evsel->core.attr, sz);
0516         if (ret < 0)
0517             return ret;
0518         /*
0519          * write number of unique id per event
0520          * there is one id per instance of an event
0521          *
0522          * copy into an nri to be independent of the
0523          * type of ids,
0524          */
0525         nri = evsel->core.ids;
0526         ret = do_write(ff, &nri, sizeof(nri));
0527         if (ret < 0)
0528             return ret;
0529 
0530         /*
0531          * write event string as passed on cmdline
0532          */
0533         ret = do_write_string(ff, evsel__name(evsel));
0534         if (ret < 0)
0535             return ret;
0536         /*
0537          * write unique ids for this event
0538          */
0539         ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
0540         if (ret < 0)
0541             return ret;
0542     }
0543     return 0;
0544 }
0545 
0546 static int write_cmdline(struct feat_fd *ff,
0547              struct evlist *evlist __maybe_unused)
0548 {
0549     char pbuf[MAXPATHLEN], *buf;
0550     int i, ret, n;
0551 
0552     /* actual path to perf binary */
0553     buf = perf_exe(pbuf, MAXPATHLEN);
0554 
0555     /* account for binary path */
0556     n = perf_env.nr_cmdline + 1;
0557 
0558     ret = do_write(ff, &n, sizeof(n));
0559     if (ret < 0)
0560         return ret;
0561 
0562     ret = do_write_string(ff, buf);
0563     if (ret < 0)
0564         return ret;
0565 
0566     for (i = 0 ; i < perf_env.nr_cmdline; i++) {
0567         ret = do_write_string(ff, perf_env.cmdline_argv[i]);
0568         if (ret < 0)
0569             return ret;
0570     }
0571     return 0;
0572 }
0573 
0574 
0575 static int write_cpu_topology(struct feat_fd *ff,
0576                   struct evlist *evlist __maybe_unused)
0577 {
0578     struct cpu_topology *tp;
0579     u32 i;
0580     int ret, j;
0581 
0582     tp = cpu_topology__new();
0583     if (!tp)
0584         return -1;
0585 
0586     ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
0587     if (ret < 0)
0588         goto done;
0589 
0590     for (i = 0; i < tp->package_cpus_lists; i++) {
0591         ret = do_write_string(ff, tp->package_cpus_list[i]);
0592         if (ret < 0)
0593             goto done;
0594     }
0595     ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
0596     if (ret < 0)
0597         goto done;
0598 
0599     for (i = 0; i < tp->core_cpus_lists; i++) {
0600         ret = do_write_string(ff, tp->core_cpus_list[i]);
0601         if (ret < 0)
0602             break;
0603     }
0604 
0605     ret = perf_env__read_cpu_topology_map(&perf_env);
0606     if (ret < 0)
0607         goto done;
0608 
0609     for (j = 0; j < perf_env.nr_cpus_avail; j++) {
0610         ret = do_write(ff, &perf_env.cpu[j].core_id,
0611                    sizeof(perf_env.cpu[j].core_id));
0612         if (ret < 0)
0613             return ret;
0614         ret = do_write(ff, &perf_env.cpu[j].socket_id,
0615                    sizeof(perf_env.cpu[j].socket_id));
0616         if (ret < 0)
0617             return ret;
0618     }
0619 
0620     if (!tp->die_cpus_lists)
0621         goto done;
0622 
0623     ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
0624     if (ret < 0)
0625         goto done;
0626 
0627     for (i = 0; i < tp->die_cpus_lists; i++) {
0628         ret = do_write_string(ff, tp->die_cpus_list[i]);
0629         if (ret < 0)
0630             goto done;
0631     }
0632 
0633     for (j = 0; j < perf_env.nr_cpus_avail; j++) {
0634         ret = do_write(ff, &perf_env.cpu[j].die_id,
0635                    sizeof(perf_env.cpu[j].die_id));
0636         if (ret < 0)
0637             return ret;
0638     }
0639 
0640 done:
0641     cpu_topology__delete(tp);
0642     return ret;
0643 }
0644 
0645 
0646 
0647 static int write_total_mem(struct feat_fd *ff,
0648                struct evlist *evlist __maybe_unused)
0649 {
0650     char *buf = NULL;
0651     FILE *fp;
0652     size_t len = 0;
0653     int ret = -1, n;
0654     uint64_t mem;
0655 
0656     fp = fopen("/proc/meminfo", "r");
0657     if (!fp)
0658         return -1;
0659 
0660     while (getline(&buf, &len, fp) > 0) {
0661         ret = strncmp(buf, "MemTotal:", 9);
0662         if (!ret)
0663             break;
0664     }
0665     if (!ret) {
0666         n = sscanf(buf, "%*s %"PRIu64, &mem);
0667         if (n == 1)
0668             ret = do_write(ff, &mem, sizeof(mem));
0669     } else
0670         ret = -1;
0671     free(buf);
0672     fclose(fp);
0673     return ret;
0674 }
0675 
0676 static int write_numa_topology(struct feat_fd *ff,
0677                    struct evlist *evlist __maybe_unused)
0678 {
0679     struct numa_topology *tp;
0680     int ret = -1;
0681     u32 i;
0682 
0683     tp = numa_topology__new();
0684     if (!tp)
0685         return -ENOMEM;
0686 
0687     ret = do_write(ff, &tp->nr, sizeof(u32));
0688     if (ret < 0)
0689         goto err;
0690 
0691     for (i = 0; i < tp->nr; i++) {
0692         struct numa_topology_node *n = &tp->nodes[i];
0693 
0694         ret = do_write(ff, &n->node, sizeof(u32));
0695         if (ret < 0)
0696             goto err;
0697 
0698         ret = do_write(ff, &n->mem_total, sizeof(u64));
0699         if (ret)
0700             goto err;
0701 
0702         ret = do_write(ff, &n->mem_free, sizeof(u64));
0703         if (ret)
0704             goto err;
0705 
0706         ret = do_write_string(ff, n->cpus);
0707         if (ret < 0)
0708             goto err;
0709     }
0710 
0711     ret = 0;
0712 
0713 err:
0714     numa_topology__delete(tp);
0715     return ret;
0716 }
0717 
0718 /*
0719  * File format:
0720  *
0721  * struct pmu_mappings {
0722  *  u32 pmu_num;
0723  *  struct pmu_map {
0724  *      u32 type;
0725  *      char    name[];
0726  *  }[pmu_num];
0727  * };
0728  */
0729 
0730 static int write_pmu_mappings(struct feat_fd *ff,
0731                   struct evlist *evlist __maybe_unused)
0732 {
0733     struct perf_pmu *pmu = NULL;
0734     u32 pmu_num = 0;
0735     int ret;
0736 
0737     /*
0738      * Do a first pass to count number of pmu to avoid lseek so this
0739      * works in pipe mode as well.
0740      */
0741     while ((pmu = perf_pmu__scan(pmu))) {
0742         if (!pmu->name)
0743             continue;
0744         pmu_num++;
0745     }
0746 
0747     ret = do_write(ff, &pmu_num, sizeof(pmu_num));
0748     if (ret < 0)
0749         return ret;
0750 
0751     while ((pmu = perf_pmu__scan(pmu))) {
0752         if (!pmu->name)
0753             continue;
0754 
0755         ret = do_write(ff, &pmu->type, sizeof(pmu->type));
0756         if (ret < 0)
0757             return ret;
0758 
0759         ret = do_write_string(ff, pmu->name);
0760         if (ret < 0)
0761             return ret;
0762     }
0763 
0764     return 0;
0765 }
0766 
0767 /*
0768  * File format:
0769  *
0770  * struct group_descs {
0771  *  u32 nr_groups;
0772  *  struct group_desc {
0773  *      char    name[];
0774  *      u32 leader_idx;
0775  *      u32 nr_members;
0776  *  }[nr_groups];
0777  * };
0778  */
0779 static int write_group_desc(struct feat_fd *ff,
0780                 struct evlist *evlist)
0781 {
0782     u32 nr_groups = evlist->core.nr_groups;
0783     struct evsel *evsel;
0784     int ret;
0785 
0786     ret = do_write(ff, &nr_groups, sizeof(nr_groups));
0787     if (ret < 0)
0788         return ret;
0789 
0790     evlist__for_each_entry(evlist, evsel) {
0791         if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
0792             const char *name = evsel->group_name ?: "{anon_group}";
0793             u32 leader_idx = evsel->core.idx;
0794             u32 nr_members = evsel->core.nr_members;
0795 
0796             ret = do_write_string(ff, name);
0797             if (ret < 0)
0798                 return ret;
0799 
0800             ret = do_write(ff, &leader_idx, sizeof(leader_idx));
0801             if (ret < 0)
0802                 return ret;
0803 
0804             ret = do_write(ff, &nr_members, sizeof(nr_members));
0805             if (ret < 0)
0806                 return ret;
0807         }
0808     }
0809     return 0;
0810 }
0811 
0812 /*
0813  * Return the CPU id as a raw string.
0814  *
0815  * Each architecture should provide a more precise id string that
0816  * can be use to match the architecture's "mapfile".
0817  */
0818 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
0819 {
0820     return NULL;
0821 }
0822 
0823 /* Return zero when the cpuid from the mapfile.csv matches the
0824  * cpuid string generated on this platform.
0825  * Otherwise return non-zero.
0826  */
0827 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
0828 {
0829     regex_t re;
0830     regmatch_t pmatch[1];
0831     int match;
0832 
0833     if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
0834         /* Warn unable to generate match particular string. */
0835         pr_info("Invalid regular expression %s\n", mapcpuid);
0836         return 1;
0837     }
0838 
0839     match = !regexec(&re, cpuid, 1, pmatch, 0);
0840     regfree(&re);
0841     if (match) {
0842         size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
0843 
0844         /* Verify the entire string matched. */
0845         if (match_len == strlen(cpuid))
0846             return 0;
0847     }
0848     return 1;
0849 }
0850 
0851 /*
0852  * default get_cpuid(): nothing gets recorded
0853  * actual implementation must be in arch/$(SRCARCH)/util/header.c
0854  */
0855 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
0856 {
0857     return ENOSYS; /* Not implemented */
0858 }
0859 
0860 static int write_cpuid(struct feat_fd *ff,
0861                struct evlist *evlist __maybe_unused)
0862 {
0863     char buffer[64];
0864     int ret;
0865 
0866     ret = get_cpuid(buffer, sizeof(buffer));
0867     if (ret)
0868         return -1;
0869 
0870     return do_write_string(ff, buffer);
0871 }
0872 
0873 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
0874                   struct evlist *evlist __maybe_unused)
0875 {
0876     return 0;
0877 }
0878 
0879 static int write_auxtrace(struct feat_fd *ff,
0880               struct evlist *evlist __maybe_unused)
0881 {
0882     struct perf_session *session;
0883     int err;
0884 
0885     if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
0886         return -1;
0887 
0888     session = container_of(ff->ph, struct perf_session, header);
0889 
0890     err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
0891     if (err < 0)
0892         pr_err("Failed to write auxtrace index\n");
0893     return err;
0894 }
0895 
0896 static int write_clockid(struct feat_fd *ff,
0897              struct evlist *evlist __maybe_unused)
0898 {
0899     return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
0900             sizeof(ff->ph->env.clock.clockid_res_ns));
0901 }
0902 
0903 static int write_clock_data(struct feat_fd *ff,
0904                 struct evlist *evlist __maybe_unused)
0905 {
0906     u64 *data64;
0907     u32 data32;
0908     int ret;
0909 
0910     /* version */
0911     data32 = 1;
0912 
0913     ret = do_write(ff, &data32, sizeof(data32));
0914     if (ret < 0)
0915         return ret;
0916 
0917     /* clockid */
0918     data32 = ff->ph->env.clock.clockid;
0919 
0920     ret = do_write(ff, &data32, sizeof(data32));
0921     if (ret < 0)
0922         return ret;
0923 
0924     /* TOD ref time */
0925     data64 = &ff->ph->env.clock.tod_ns;
0926 
0927     ret = do_write(ff, data64, sizeof(*data64));
0928     if (ret < 0)
0929         return ret;
0930 
0931     /* clockid ref time */
0932     data64 = &ff->ph->env.clock.clockid_ns;
0933 
0934     return do_write(ff, data64, sizeof(*data64));
0935 }
0936 
0937 static int write_hybrid_topology(struct feat_fd *ff,
0938                  struct evlist *evlist __maybe_unused)
0939 {
0940     struct hybrid_topology *tp;
0941     int ret;
0942     u32 i;
0943 
0944     tp = hybrid_topology__new();
0945     if (!tp)
0946         return -ENOENT;
0947 
0948     ret = do_write(ff, &tp->nr, sizeof(u32));
0949     if (ret < 0)
0950         goto err;
0951 
0952     for (i = 0; i < tp->nr; i++) {
0953         struct hybrid_topology_node *n = &tp->nodes[i];
0954 
0955         ret = do_write_string(ff, n->pmu_name);
0956         if (ret < 0)
0957             goto err;
0958 
0959         ret = do_write_string(ff, n->cpus);
0960         if (ret < 0)
0961             goto err;
0962     }
0963 
0964     ret = 0;
0965 
0966 err:
0967     hybrid_topology__delete(tp);
0968     return ret;
0969 }
0970 
0971 static int write_dir_format(struct feat_fd *ff,
0972                 struct evlist *evlist __maybe_unused)
0973 {
0974     struct perf_session *session;
0975     struct perf_data *data;
0976 
0977     session = container_of(ff->ph, struct perf_session, header);
0978     data = session->data;
0979 
0980     if (WARN_ON(!perf_data__is_dir(data)))
0981         return -1;
0982 
0983     return do_write(ff, &data->dir.version, sizeof(data->dir.version));
0984 }
0985 
0986 /*
0987  * Check whether a CPU is online
0988  *
0989  * Returns:
0990  *     1 -> if CPU is online
0991  *     0 -> if CPU is offline
0992  *    -1 -> error case
0993  */
0994 int is_cpu_online(unsigned int cpu)
0995 {
0996     char *str;
0997     size_t strlen;
0998     char buf[256];
0999     int status = -1;
1000     struct stat statbuf;
1001 
1002     snprintf(buf, sizeof(buf),
1003         "/sys/devices/system/cpu/cpu%d", cpu);
1004     if (stat(buf, &statbuf) != 0)
1005         return 0;
1006 
1007     /*
1008      * Check if /sys/devices/system/cpu/cpux/online file
1009      * exists. Some cases cpu0 won't have online file since
1010      * it is not expected to be turned off generally.
1011      * In kernels without CONFIG_HOTPLUG_CPU, this
1012      * file won't exist
1013      */
1014     snprintf(buf, sizeof(buf),
1015         "/sys/devices/system/cpu/cpu%d/online", cpu);
1016     if (stat(buf, &statbuf) != 0)
1017         return 1;
1018 
1019     /*
1020      * Read online file using sysfs__read_str.
1021      * If read or open fails, return -1.
1022      * If read succeeds, return value from file
1023      * which gets stored in "str"
1024      */
1025     snprintf(buf, sizeof(buf),
1026         "devices/system/cpu/cpu%d/online", cpu);
1027 
1028     if (sysfs__read_str(buf, &str, &strlen) < 0)
1029         return status;
1030 
1031     status = atoi(str);
1032 
1033     free(str);
1034     return status;
1035 }
1036 
1037 #ifdef HAVE_LIBBPF_SUPPORT
1038 static int write_bpf_prog_info(struct feat_fd *ff,
1039                    struct evlist *evlist __maybe_unused)
1040 {
1041     struct perf_env *env = &ff->ph->env;
1042     struct rb_root *root;
1043     struct rb_node *next;
1044     int ret;
1045 
1046     down_read(&env->bpf_progs.lock);
1047 
1048     ret = do_write(ff, &env->bpf_progs.infos_cnt,
1049                sizeof(env->bpf_progs.infos_cnt));
1050     if (ret < 0)
1051         goto out;
1052 
1053     root = &env->bpf_progs.infos;
1054     next = rb_first(root);
1055     while (next) {
1056         struct bpf_prog_info_node *node;
1057         size_t len;
1058 
1059         node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1060         next = rb_next(&node->rb_node);
1061         len = sizeof(struct perf_bpil) +
1062             node->info_linear->data_len;
1063 
1064         /* before writing to file, translate address to offset */
1065         bpil_addr_to_offs(node->info_linear);
1066         ret = do_write(ff, node->info_linear, len);
1067         /*
1068          * translate back to address even when do_write() fails,
1069          * so that this function never changes the data.
1070          */
1071         bpil_offs_to_addr(node->info_linear);
1072         if (ret < 0)
1073             goto out;
1074     }
1075 out:
1076     up_read(&env->bpf_progs.lock);
1077     return ret;
1078 }
1079 
1080 static int write_bpf_btf(struct feat_fd *ff,
1081              struct evlist *evlist __maybe_unused)
1082 {
1083     struct perf_env *env = &ff->ph->env;
1084     struct rb_root *root;
1085     struct rb_node *next;
1086     int ret;
1087 
1088     down_read(&env->bpf_progs.lock);
1089 
1090     ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1091                sizeof(env->bpf_progs.btfs_cnt));
1092 
1093     if (ret < 0)
1094         goto out;
1095 
1096     root = &env->bpf_progs.btfs;
1097     next = rb_first(root);
1098     while (next) {
1099         struct btf_node *node;
1100 
1101         node = rb_entry(next, struct btf_node, rb_node);
1102         next = rb_next(&node->rb_node);
1103         ret = do_write(ff, &node->id,
1104                    sizeof(u32) * 2 + node->data_size);
1105         if (ret < 0)
1106             goto out;
1107     }
1108 out:
1109     up_read(&env->bpf_progs.lock);
1110     return ret;
1111 }
1112 #endif // HAVE_LIBBPF_SUPPORT
1113 
1114 static int cpu_cache_level__sort(const void *a, const void *b)
1115 {
1116     struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1117     struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1118 
1119     return cache_a->level - cache_b->level;
1120 }
1121 
1122 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1123 {
1124     if (a->level != b->level)
1125         return false;
1126 
1127     if (a->line_size != b->line_size)
1128         return false;
1129 
1130     if (a->sets != b->sets)
1131         return false;
1132 
1133     if (a->ways != b->ways)
1134         return false;
1135 
1136     if (strcmp(a->type, b->type))
1137         return false;
1138 
1139     if (strcmp(a->size, b->size))
1140         return false;
1141 
1142     if (strcmp(a->map, b->map))
1143         return false;
1144 
1145     return true;
1146 }
1147 
1148 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1149 {
1150     char path[PATH_MAX], file[PATH_MAX];
1151     struct stat st;
1152     size_t len;
1153 
1154     scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1155     scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1156 
1157     if (stat(file, &st))
1158         return 1;
1159 
1160     scnprintf(file, PATH_MAX, "%s/level", path);
1161     if (sysfs__read_int(file, (int *) &cache->level))
1162         return -1;
1163 
1164     scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1165     if (sysfs__read_int(file, (int *) &cache->line_size))
1166         return -1;
1167 
1168     scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1169     if (sysfs__read_int(file, (int *) &cache->sets))
1170         return -1;
1171 
1172     scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1173     if (sysfs__read_int(file, (int *) &cache->ways))
1174         return -1;
1175 
1176     scnprintf(file, PATH_MAX, "%s/type", path);
1177     if (sysfs__read_str(file, &cache->type, &len))
1178         return -1;
1179 
1180     cache->type[len] = 0;
1181     cache->type = strim(cache->type);
1182 
1183     scnprintf(file, PATH_MAX, "%s/size", path);
1184     if (sysfs__read_str(file, &cache->size, &len)) {
1185         zfree(&cache->type);
1186         return -1;
1187     }
1188 
1189     cache->size[len] = 0;
1190     cache->size = strim(cache->size);
1191 
1192     scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1193     if (sysfs__read_str(file, &cache->map, &len)) {
1194         zfree(&cache->size);
1195         zfree(&cache->type);
1196         return -1;
1197     }
1198 
1199     cache->map[len] = 0;
1200     cache->map = strim(cache->map);
1201     return 0;
1202 }
1203 
1204 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1205 {
1206     fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1207 }
1208 
1209 #define MAX_CACHE_LVL 4
1210 
1211 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1212 {
1213     u32 i, cnt = 0;
1214     u32 nr, cpu;
1215     u16 level;
1216 
1217     nr = cpu__max_cpu().cpu;
1218 
1219     for (cpu = 0; cpu < nr; cpu++) {
1220         for (level = 0; level < MAX_CACHE_LVL; level++) {
1221             struct cpu_cache_level c;
1222             int err;
1223 
1224             err = cpu_cache_level__read(&c, cpu, level);
1225             if (err < 0)
1226                 return err;
1227 
1228             if (err == 1)
1229                 break;
1230 
1231             for (i = 0; i < cnt; i++) {
1232                 if (cpu_cache_level__cmp(&c, &caches[i]))
1233                     break;
1234             }
1235 
1236             if (i == cnt)
1237                 caches[cnt++] = c;
1238             else
1239                 cpu_cache_level__free(&c);
1240         }
1241     }
1242     *cntp = cnt;
1243     return 0;
1244 }
1245 
1246 static int write_cache(struct feat_fd *ff,
1247                struct evlist *evlist __maybe_unused)
1248 {
1249     u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1250     struct cpu_cache_level caches[max_caches];
1251     u32 cnt = 0, i, version = 1;
1252     int ret;
1253 
1254     ret = build_caches(caches, &cnt);
1255     if (ret)
1256         goto out;
1257 
1258     qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1259 
1260     ret = do_write(ff, &version, sizeof(u32));
1261     if (ret < 0)
1262         goto out;
1263 
1264     ret = do_write(ff, &cnt, sizeof(u32));
1265     if (ret < 0)
1266         goto out;
1267 
1268     for (i = 0; i < cnt; i++) {
1269         struct cpu_cache_level *c = &caches[i];
1270 
1271         #define _W(v)                   \
1272             ret = do_write(ff, &c->v, sizeof(u32)); \
1273             if (ret < 0)                \
1274                 goto out;
1275 
1276         _W(level)
1277         _W(line_size)
1278         _W(sets)
1279         _W(ways)
1280         #undef _W
1281 
1282         #define _W(v)                       \
1283             ret = do_write_string(ff, (const char *) c->v); \
1284             if (ret < 0)                    \
1285                 goto out;
1286 
1287         _W(type)
1288         _W(size)
1289         _W(map)
1290         #undef _W
1291     }
1292 
1293 out:
1294     for (i = 0; i < cnt; i++)
1295         cpu_cache_level__free(&caches[i]);
1296     return ret;
1297 }
1298 
1299 static int write_stat(struct feat_fd *ff __maybe_unused,
1300               struct evlist *evlist __maybe_unused)
1301 {
1302     return 0;
1303 }
1304 
1305 static int write_sample_time(struct feat_fd *ff,
1306                  struct evlist *evlist)
1307 {
1308     int ret;
1309 
1310     ret = do_write(ff, &evlist->first_sample_time,
1311                sizeof(evlist->first_sample_time));
1312     if (ret < 0)
1313         return ret;
1314 
1315     return do_write(ff, &evlist->last_sample_time,
1316             sizeof(evlist->last_sample_time));
1317 }
1318 
1319 
1320 static int memory_node__read(struct memory_node *n, unsigned long idx)
1321 {
1322     unsigned int phys, size = 0;
1323     char path[PATH_MAX];
1324     struct dirent *ent;
1325     DIR *dir;
1326 
1327 #define for_each_memory(mem, dir)                   \
1328     while ((ent = readdir(dir)))                    \
1329         if (strcmp(ent->d_name, ".") &&             \
1330             strcmp(ent->d_name, "..") &&            \
1331             sscanf(ent->d_name, "memory%u", &mem) == 1)
1332 
1333     scnprintf(path, PATH_MAX,
1334           "%s/devices/system/node/node%lu",
1335           sysfs__mountpoint(), idx);
1336 
1337     dir = opendir(path);
1338     if (!dir) {
1339         pr_warning("failed: can't open memory sysfs data\n");
1340         return -1;
1341     }
1342 
1343     for_each_memory(phys, dir) {
1344         size = max(phys, size);
1345     }
1346 
1347     size++;
1348 
1349     n->set = bitmap_zalloc(size);
1350     if (!n->set) {
1351         closedir(dir);
1352         return -ENOMEM;
1353     }
1354 
1355     n->node = idx;
1356     n->size = size;
1357 
1358     rewinddir(dir);
1359 
1360     for_each_memory(phys, dir) {
1361         set_bit(phys, n->set);
1362     }
1363 
1364     closedir(dir);
1365     return 0;
1366 }
1367 
1368 static int memory_node__sort(const void *a, const void *b)
1369 {
1370     const struct memory_node *na = a;
1371     const struct memory_node *nb = b;
1372 
1373     return na->node - nb->node;
1374 }
1375 
1376 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1377 {
1378     char path[PATH_MAX];
1379     struct dirent *ent;
1380     DIR *dir;
1381     u64 cnt = 0;
1382     int ret = 0;
1383 
1384     scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1385           sysfs__mountpoint());
1386 
1387     dir = opendir(path);
1388     if (!dir) {
1389         pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1390               __func__, path);
1391         return -1;
1392     }
1393 
1394     while (!ret && (ent = readdir(dir))) {
1395         unsigned int idx;
1396         int r;
1397 
1398         if (!strcmp(ent->d_name, ".") ||
1399             !strcmp(ent->d_name, ".."))
1400             continue;
1401 
1402         r = sscanf(ent->d_name, "node%u", &idx);
1403         if (r != 1)
1404             continue;
1405 
1406         if (WARN_ONCE(cnt >= size,
1407             "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1408             closedir(dir);
1409             return -1;
1410         }
1411 
1412         ret = memory_node__read(&nodes[cnt++], idx);
1413     }
1414 
1415     *cntp = cnt;
1416     closedir(dir);
1417 
1418     if (!ret)
1419         qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1420 
1421     return ret;
1422 }
1423 
1424 #define MAX_MEMORY_NODES 2000
1425 
1426 /*
1427  * The MEM_TOPOLOGY holds physical memory map for every
1428  * node in system. The format of data is as follows:
1429  *
1430  *  0 - version          | for future changes
1431  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1432  * 16 - count            | number of nodes
1433  *
1434  * For each node we store map of physical indexes for
1435  * each node:
1436  *
1437  * 32 - node id          | node index
1438  * 40 - size             | size of bitmap
1439  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1440  */
1441 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1442                   struct evlist *evlist __maybe_unused)
1443 {
1444     static struct memory_node nodes[MAX_MEMORY_NODES];
1445     u64 bsize, version = 1, i, nr;
1446     int ret;
1447 
1448     ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1449                   (unsigned long long *) &bsize);
1450     if (ret)
1451         return ret;
1452 
1453     ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1454     if (ret)
1455         return ret;
1456 
1457     ret = do_write(ff, &version, sizeof(version));
1458     if (ret < 0)
1459         goto out;
1460 
1461     ret = do_write(ff, &bsize, sizeof(bsize));
1462     if (ret < 0)
1463         goto out;
1464 
1465     ret = do_write(ff, &nr, sizeof(nr));
1466     if (ret < 0)
1467         goto out;
1468 
1469     for (i = 0; i < nr; i++) {
1470         struct memory_node *n = &nodes[i];
1471 
1472         #define _W(v)                       \
1473             ret = do_write(ff, &n->v, sizeof(n->v));    \
1474             if (ret < 0)                    \
1475                 goto out;
1476 
1477         _W(node)
1478         _W(size)
1479 
1480         #undef _W
1481 
1482         ret = do_write_bitmap(ff, n->set, n->size);
1483         if (ret < 0)
1484             goto out;
1485     }
1486 
1487 out:
1488     return ret;
1489 }
1490 
1491 static int write_compressed(struct feat_fd *ff __maybe_unused,
1492                 struct evlist *evlist __maybe_unused)
1493 {
1494     int ret;
1495 
1496     ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1497     if (ret)
1498         return ret;
1499 
1500     ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1501     if (ret)
1502         return ret;
1503 
1504     ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1505     if (ret)
1506         return ret;
1507 
1508     ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1509     if (ret)
1510         return ret;
1511 
1512     return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1513 }
1514 
1515 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1516                 bool write_pmu)
1517 {
1518     struct perf_pmu_caps *caps = NULL;
1519     int ret;
1520 
1521     ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1522     if (ret < 0)
1523         return ret;
1524 
1525     list_for_each_entry(caps, &pmu->caps, list) {
1526         ret = do_write_string(ff, caps->name);
1527         if (ret < 0)
1528             return ret;
1529 
1530         ret = do_write_string(ff, caps->value);
1531         if (ret < 0)
1532             return ret;
1533     }
1534 
1535     if (write_pmu) {
1536         ret = do_write_string(ff, pmu->name);
1537         if (ret < 0)
1538             return ret;
1539     }
1540 
1541     return ret;
1542 }
1543 
1544 static int write_cpu_pmu_caps(struct feat_fd *ff,
1545                   struct evlist *evlist __maybe_unused)
1546 {
1547     struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1548     int ret;
1549 
1550     if (!cpu_pmu)
1551         return -ENOENT;
1552 
1553     ret = perf_pmu__caps_parse(cpu_pmu);
1554     if (ret < 0)
1555         return ret;
1556 
1557     return __write_pmu_caps(ff, cpu_pmu, false);
1558 }
1559 
1560 static int write_pmu_caps(struct feat_fd *ff,
1561               struct evlist *evlist __maybe_unused)
1562 {
1563     struct perf_pmu *pmu = NULL;
1564     int nr_pmu = 0;
1565     int ret;
1566 
1567     while ((pmu = perf_pmu__scan(pmu))) {
1568         if (!pmu->name || !strcmp(pmu->name, "cpu") ||
1569             perf_pmu__caps_parse(pmu) <= 0)
1570             continue;
1571         nr_pmu++;
1572     }
1573 
1574     ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1575     if (ret < 0)
1576         return ret;
1577 
1578     if (!nr_pmu)
1579         return 0;
1580 
1581     /*
1582      * Write hybrid pmu caps first to maintain compatibility with
1583      * older perf tool.
1584      */
1585     pmu = NULL;
1586     perf_pmu__for_each_hybrid_pmu(pmu) {
1587         ret = __write_pmu_caps(ff, pmu, true);
1588         if (ret < 0)
1589             return ret;
1590     }
1591 
1592     pmu = NULL;
1593     while ((pmu = perf_pmu__scan(pmu))) {
1594         if (!pmu->name || !strcmp(pmu->name, "cpu") ||
1595             !pmu->nr_caps || perf_pmu__is_hybrid(pmu->name))
1596             continue;
1597 
1598         ret = __write_pmu_caps(ff, pmu, true);
1599         if (ret < 0)
1600             return ret;
1601     }
1602     return 0;
1603 }
1604 
1605 static void print_hostname(struct feat_fd *ff, FILE *fp)
1606 {
1607     fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1608 }
1609 
1610 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1611 {
1612     fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1613 }
1614 
1615 static void print_arch(struct feat_fd *ff, FILE *fp)
1616 {
1617     fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1618 }
1619 
1620 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1621 {
1622     fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1623 }
1624 
1625 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1626 {
1627     fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1628     fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1629 }
1630 
1631 static void print_version(struct feat_fd *ff, FILE *fp)
1632 {
1633     fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1634 }
1635 
1636 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1637 {
1638     int nr, i;
1639 
1640     nr = ff->ph->env.nr_cmdline;
1641 
1642     fprintf(fp, "# cmdline : ");
1643 
1644     for (i = 0; i < nr; i++) {
1645         char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1646         if (!argv_i) {
1647             fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1648         } else {
1649             char *mem = argv_i;
1650             do {
1651                 char *quote = strchr(argv_i, '\'');
1652                 if (!quote)
1653                     break;
1654                 *quote++ = '\0';
1655                 fprintf(fp, "%s\\\'", argv_i);
1656                 argv_i = quote;
1657             } while (1);
1658             fprintf(fp, "%s ", argv_i);
1659             free(mem);
1660         }
1661     }
1662     fputc('\n', fp);
1663 }
1664 
1665 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1666 {
1667     struct perf_header *ph = ff->ph;
1668     int cpu_nr = ph->env.nr_cpus_avail;
1669     int nr, i;
1670     char *str;
1671 
1672     nr = ph->env.nr_sibling_cores;
1673     str = ph->env.sibling_cores;
1674 
1675     for (i = 0; i < nr; i++) {
1676         fprintf(fp, "# sibling sockets : %s\n", str);
1677         str += strlen(str) + 1;
1678     }
1679 
1680     if (ph->env.nr_sibling_dies) {
1681         nr = ph->env.nr_sibling_dies;
1682         str = ph->env.sibling_dies;
1683 
1684         for (i = 0; i < nr; i++) {
1685             fprintf(fp, "# sibling dies    : %s\n", str);
1686             str += strlen(str) + 1;
1687         }
1688     }
1689 
1690     nr = ph->env.nr_sibling_threads;
1691     str = ph->env.sibling_threads;
1692 
1693     for (i = 0; i < nr; i++) {
1694         fprintf(fp, "# sibling threads : %s\n", str);
1695         str += strlen(str) + 1;
1696     }
1697 
1698     if (ph->env.nr_sibling_dies) {
1699         if (ph->env.cpu != NULL) {
1700             for (i = 0; i < cpu_nr; i++)
1701                 fprintf(fp, "# CPU %d: Core ID %d, "
1702                         "Die ID %d, Socket ID %d\n",
1703                         i, ph->env.cpu[i].core_id,
1704                         ph->env.cpu[i].die_id,
1705                         ph->env.cpu[i].socket_id);
1706         } else
1707             fprintf(fp, "# Core ID, Die ID and Socket ID "
1708                     "information is not available\n");
1709     } else {
1710         if (ph->env.cpu != NULL) {
1711             for (i = 0; i < cpu_nr; i++)
1712                 fprintf(fp, "# CPU %d: Core ID %d, "
1713                         "Socket ID %d\n",
1714                         i, ph->env.cpu[i].core_id,
1715                         ph->env.cpu[i].socket_id);
1716         } else
1717             fprintf(fp, "# Core ID and Socket ID "
1718                     "information is not available\n");
1719     }
1720 }
1721 
1722 static void print_clockid(struct feat_fd *ff, FILE *fp)
1723 {
1724     fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1725         ff->ph->env.clock.clockid_res_ns * 1000);
1726 }
1727 
1728 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1729 {
1730     struct timespec clockid_ns;
1731     char tstr[64], date[64];
1732     struct timeval tod_ns;
1733     clockid_t clockid;
1734     struct tm ltime;
1735     u64 ref;
1736 
1737     if (!ff->ph->env.clock.enabled) {
1738         fprintf(fp, "# reference time disabled\n");
1739         return;
1740     }
1741 
1742     /* Compute TOD time. */
1743     ref = ff->ph->env.clock.tod_ns;
1744     tod_ns.tv_sec = ref / NSEC_PER_SEC;
1745     ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1746     tod_ns.tv_usec = ref / NSEC_PER_USEC;
1747 
1748     /* Compute clockid time. */
1749     ref = ff->ph->env.clock.clockid_ns;
1750     clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1751     ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1752     clockid_ns.tv_nsec = ref;
1753 
1754     clockid = ff->ph->env.clock.clockid;
1755 
1756     if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1757         snprintf(tstr, sizeof(tstr), "<error>");
1758     else {
1759         strftime(date, sizeof(date), "%F %T", &ltime);
1760         scnprintf(tstr, sizeof(tstr), "%s.%06d",
1761               date, (int) tod_ns.tv_usec);
1762     }
1763 
1764     fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1765     fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1766             tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1767             (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1768             clockid_name(clockid));
1769 }
1770 
1771 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1772 {
1773     int i;
1774     struct hybrid_node *n;
1775 
1776     fprintf(fp, "# hybrid cpu system:\n");
1777     for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1778         n = &ff->ph->env.hybrid_nodes[i];
1779         fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1780     }
1781 }
1782 
1783 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1784 {
1785     struct perf_session *session;
1786     struct perf_data *data;
1787 
1788     session = container_of(ff->ph, struct perf_session, header);
1789     data = session->data;
1790 
1791     fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1792 }
1793 
1794 #ifdef HAVE_LIBBPF_SUPPORT
1795 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1796 {
1797     struct perf_env *env = &ff->ph->env;
1798     struct rb_root *root;
1799     struct rb_node *next;
1800 
1801     down_read(&env->bpf_progs.lock);
1802 
1803     root = &env->bpf_progs.infos;
1804     next = rb_first(root);
1805 
1806     while (next) {
1807         struct bpf_prog_info_node *node;
1808 
1809         node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1810         next = rb_next(&node->rb_node);
1811 
1812         bpf_event__print_bpf_prog_info(&node->info_linear->info,
1813                            env, fp);
1814     }
1815 
1816     up_read(&env->bpf_progs.lock);
1817 }
1818 
1819 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1820 {
1821     struct perf_env *env = &ff->ph->env;
1822     struct rb_root *root;
1823     struct rb_node *next;
1824 
1825     down_read(&env->bpf_progs.lock);
1826 
1827     root = &env->bpf_progs.btfs;
1828     next = rb_first(root);
1829 
1830     while (next) {
1831         struct btf_node *node;
1832 
1833         node = rb_entry(next, struct btf_node, rb_node);
1834         next = rb_next(&node->rb_node);
1835         fprintf(fp, "# btf info of id %u\n", node->id);
1836     }
1837 
1838     up_read(&env->bpf_progs.lock);
1839 }
1840 #endif // HAVE_LIBBPF_SUPPORT
1841 
1842 static void free_event_desc(struct evsel *events)
1843 {
1844     struct evsel *evsel;
1845 
1846     if (!events)
1847         return;
1848 
1849     for (evsel = events; evsel->core.attr.size; evsel++) {
1850         zfree(&evsel->name);
1851         zfree(&evsel->core.id);
1852     }
1853 
1854     free(events);
1855 }
1856 
1857 static bool perf_attr_check(struct perf_event_attr *attr)
1858 {
1859     if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1860         pr_warning("Reserved bits are set unexpectedly. "
1861                "Please update perf tool.\n");
1862         return false;
1863     }
1864 
1865     if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1866         pr_warning("Unknown sample type (0x%llx) is detected. "
1867                "Please update perf tool.\n",
1868                attr->sample_type);
1869         return false;
1870     }
1871 
1872     if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1873         pr_warning("Unknown read format (0x%llx) is detected. "
1874                "Please update perf tool.\n",
1875                attr->read_format);
1876         return false;
1877     }
1878 
1879     if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1880         (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1881         pr_warning("Unknown branch sample type (0x%llx) is detected. "
1882                "Please update perf tool.\n",
1883                attr->branch_sample_type);
1884 
1885         return false;
1886     }
1887 
1888     return true;
1889 }
1890 
1891 static struct evsel *read_event_desc(struct feat_fd *ff)
1892 {
1893     struct evsel *evsel, *events = NULL;
1894     u64 *id;
1895     void *buf = NULL;
1896     u32 nre, sz, nr, i, j;
1897     size_t msz;
1898 
1899     /* number of events */
1900     if (do_read_u32(ff, &nre))
1901         goto error;
1902 
1903     if (do_read_u32(ff, &sz))
1904         goto error;
1905 
1906     /* buffer to hold on file attr struct */
1907     buf = malloc(sz);
1908     if (!buf)
1909         goto error;
1910 
1911     /* the last event terminates with evsel->core.attr.size == 0: */
1912     events = calloc(nre + 1, sizeof(*events));
1913     if (!events)
1914         goto error;
1915 
1916     msz = sizeof(evsel->core.attr);
1917     if (sz < msz)
1918         msz = sz;
1919 
1920     for (i = 0, evsel = events; i < nre; evsel++, i++) {
1921         evsel->core.idx = i;
1922 
1923         /*
1924          * must read entire on-file attr struct to
1925          * sync up with layout.
1926          */
1927         if (__do_read(ff, buf, sz))
1928             goto error;
1929 
1930         if (ff->ph->needs_swap)
1931             perf_event__attr_swap(buf);
1932 
1933         memcpy(&evsel->core.attr, buf, msz);
1934 
1935         if (!perf_attr_check(&evsel->core.attr))
1936             goto error;
1937 
1938         if (do_read_u32(ff, &nr))
1939             goto error;
1940 
1941         if (ff->ph->needs_swap)
1942             evsel->needs_swap = true;
1943 
1944         evsel->name = do_read_string(ff);
1945         if (!evsel->name)
1946             goto error;
1947 
1948         if (!nr)
1949             continue;
1950 
1951         id = calloc(nr, sizeof(*id));
1952         if (!id)
1953             goto error;
1954         evsel->core.ids = nr;
1955         evsel->core.id = id;
1956 
1957         for (j = 0 ; j < nr; j++) {
1958             if (do_read_u64(ff, id))
1959                 goto error;
1960             id++;
1961         }
1962     }
1963 out:
1964     free(buf);
1965     return events;
1966 error:
1967     free_event_desc(events);
1968     events = NULL;
1969     goto out;
1970 }
1971 
1972 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1973                 void *priv __maybe_unused)
1974 {
1975     return fprintf(fp, ", %s = %s", name, val);
1976 }
1977 
1978 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1979 {
1980     struct evsel *evsel, *events;
1981     u32 j;
1982     u64 *id;
1983 
1984     if (ff->events)
1985         events = ff->events;
1986     else
1987         events = read_event_desc(ff);
1988 
1989     if (!events) {
1990         fprintf(fp, "# event desc: not available or unable to read\n");
1991         return;
1992     }
1993 
1994     for (evsel = events; evsel->core.attr.size; evsel++) {
1995         fprintf(fp, "# event : name = %s, ", evsel->name);
1996 
1997         if (evsel->core.ids) {
1998             fprintf(fp, ", id = {");
1999             for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2000                 if (j)
2001                     fputc(',', fp);
2002                 fprintf(fp, " %"PRIu64, *id);
2003             }
2004             fprintf(fp, " }");
2005         }
2006 
2007         perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2008 
2009         fputc('\n', fp);
2010     }
2011 
2012     free_event_desc(events);
2013     ff->events = NULL;
2014 }
2015 
2016 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2017 {
2018     fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2019 }
2020 
2021 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2022 {
2023     int i;
2024     struct numa_node *n;
2025 
2026     for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2027         n = &ff->ph->env.numa_nodes[i];
2028 
2029         fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2030                 " free = %"PRIu64" kB\n",
2031             n->node, n->mem_total, n->mem_free);
2032 
2033         fprintf(fp, "# node%u cpu list : ", n->node);
2034         cpu_map__fprintf(n->map, fp);
2035     }
2036 }
2037 
2038 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2039 {
2040     fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2041 }
2042 
2043 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2044 {
2045     fprintf(fp, "# contains samples with branch stack\n");
2046 }
2047 
2048 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2049 {
2050     fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2051 }
2052 
2053 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2054 {
2055     fprintf(fp, "# contains stat data\n");
2056 }
2057 
2058 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2059 {
2060     int i;
2061 
2062     fprintf(fp, "# CPU cache info:\n");
2063     for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2064         fprintf(fp, "#  ");
2065         cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2066     }
2067 }
2068 
2069 static void print_compressed(struct feat_fd *ff, FILE *fp)
2070 {
2071     fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2072         ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2073         ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2074 }
2075 
2076 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2077 {
2078     const char *delimiter = "";
2079     int i;
2080 
2081     if (!nr_caps) {
2082         fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2083         return;
2084     }
2085 
2086     fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2087     for (i = 0; i < nr_caps; i++) {
2088         fprintf(fp, "%s%s", delimiter, caps[i]);
2089         delimiter = ", ";
2090     }
2091 
2092     fprintf(fp, "\n");
2093 }
2094 
2095 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2096 {
2097     __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2098              ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2099 }
2100 
2101 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2102 {
2103     struct pmu_caps *pmu_caps;
2104 
2105     for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2106         pmu_caps = &ff->ph->env.pmu_caps[i];
2107         __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2108                  pmu_caps->pmu_name);
2109     }
2110 }
2111 
2112 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2113 {
2114     const char *delimiter = "# pmu mappings: ";
2115     char *str, *tmp;
2116     u32 pmu_num;
2117     u32 type;
2118 
2119     pmu_num = ff->ph->env.nr_pmu_mappings;
2120     if (!pmu_num) {
2121         fprintf(fp, "# pmu mappings: not available\n");
2122         return;
2123     }
2124 
2125     str = ff->ph->env.pmu_mappings;
2126 
2127     while (pmu_num) {
2128         type = strtoul(str, &tmp, 0);
2129         if (*tmp != ':')
2130             goto error;
2131 
2132         str = tmp + 1;
2133         fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2134 
2135         delimiter = ", ";
2136         str += strlen(str) + 1;
2137         pmu_num--;
2138     }
2139 
2140     fprintf(fp, "\n");
2141 
2142     if (!pmu_num)
2143         return;
2144 error:
2145     fprintf(fp, "# pmu mappings: unable to read\n");
2146 }
2147 
2148 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2149 {
2150     struct perf_session *session;
2151     struct evsel *evsel;
2152     u32 nr = 0;
2153 
2154     session = container_of(ff->ph, struct perf_session, header);
2155 
2156     evlist__for_each_entry(session->evlist, evsel) {
2157         if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2158             fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2159 
2160             nr = evsel->core.nr_members - 1;
2161         } else if (nr) {
2162             fprintf(fp, ",%s", evsel__name(evsel));
2163 
2164             if (--nr == 0)
2165                 fprintf(fp, "}\n");
2166         }
2167     }
2168 }
2169 
2170 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2171 {
2172     struct perf_session *session;
2173     char time_buf[32];
2174     double d;
2175 
2176     session = container_of(ff->ph, struct perf_session, header);
2177 
2178     timestamp__scnprintf_usec(session->evlist->first_sample_time,
2179                   time_buf, sizeof(time_buf));
2180     fprintf(fp, "# time of first sample : %s\n", time_buf);
2181 
2182     timestamp__scnprintf_usec(session->evlist->last_sample_time,
2183                   time_buf, sizeof(time_buf));
2184     fprintf(fp, "# time of last sample : %s\n", time_buf);
2185 
2186     d = (double)(session->evlist->last_sample_time -
2187         session->evlist->first_sample_time) / NSEC_PER_MSEC;
2188 
2189     fprintf(fp, "# sample duration : %10.3f ms\n", d);
2190 }
2191 
2192 static void memory_node__fprintf(struct memory_node *n,
2193                  unsigned long long bsize, FILE *fp)
2194 {
2195     char buf_map[100], buf_size[50];
2196     unsigned long long size;
2197 
2198     size = bsize * bitmap_weight(n->set, n->size);
2199     unit_number__scnprintf(buf_size, 50, size);
2200 
2201     bitmap_scnprintf(n->set, n->size, buf_map, 100);
2202     fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2203 }
2204 
2205 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2206 {
2207     struct memory_node *nodes;
2208     int i, nr;
2209 
2210     nodes = ff->ph->env.memory_nodes;
2211     nr    = ff->ph->env.nr_memory_nodes;
2212 
2213     fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2214         nr, ff->ph->env.memory_bsize);
2215 
2216     for (i = 0; i < nr; i++) {
2217         memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2218     }
2219 }
2220 
2221 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2222                     char *filename,
2223                     struct perf_session *session)
2224 {
2225     int err = -1;
2226     struct machine *machine;
2227     u16 cpumode;
2228     struct dso *dso;
2229     enum dso_space_type dso_space;
2230 
2231     machine = perf_session__findnew_machine(session, bev->pid);
2232     if (!machine)
2233         goto out;
2234 
2235     cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2236 
2237     switch (cpumode) {
2238     case PERF_RECORD_MISC_KERNEL:
2239         dso_space = DSO_SPACE__KERNEL;
2240         break;
2241     case PERF_RECORD_MISC_GUEST_KERNEL:
2242         dso_space = DSO_SPACE__KERNEL_GUEST;
2243         break;
2244     case PERF_RECORD_MISC_USER:
2245     case PERF_RECORD_MISC_GUEST_USER:
2246         dso_space = DSO_SPACE__USER;
2247         break;
2248     default:
2249         goto out;
2250     }
2251 
2252     dso = machine__findnew_dso(machine, filename);
2253     if (dso != NULL) {
2254         char sbuild_id[SBUILD_ID_SIZE];
2255         struct build_id bid;
2256         size_t size = BUILD_ID_SIZE;
2257 
2258         if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2259             size = bev->size;
2260 
2261         build_id__init(&bid, bev->data, size);
2262         dso__set_build_id(dso, &bid);
2263         dso->header_build_id = 1;
2264 
2265         if (dso_space != DSO_SPACE__USER) {
2266             struct kmod_path m = { .name = NULL, };
2267 
2268             if (!kmod_path__parse_name(&m, filename) && m.kmod)
2269                 dso__set_module_info(dso, &m, machine);
2270 
2271             dso->kernel = dso_space;
2272             free(m.name);
2273         }
2274 
2275         build_id__sprintf(&dso->bid, sbuild_id);
2276         pr_debug("build id event received for %s: %s [%zu]\n",
2277              dso->long_name, sbuild_id, size);
2278         dso__put(dso);
2279     }
2280 
2281     err = 0;
2282 out:
2283     return err;
2284 }
2285 
2286 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2287                          int input, u64 offset, u64 size)
2288 {
2289     struct perf_session *session = container_of(header, struct perf_session, header);
2290     struct {
2291         struct perf_event_header   header;
2292         u8             build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2293         char               filename[0];
2294     } old_bev;
2295     struct perf_record_header_build_id bev;
2296     char filename[PATH_MAX];
2297     u64 limit = offset + size;
2298 
2299     while (offset < limit) {
2300         ssize_t len;
2301 
2302         if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2303             return -1;
2304 
2305         if (header->needs_swap)
2306             perf_event_header__bswap(&old_bev.header);
2307 
2308         len = old_bev.header.size - sizeof(old_bev);
2309         if (readn(input, filename, len) != len)
2310             return -1;
2311 
2312         bev.header = old_bev.header;
2313 
2314         /*
2315          * As the pid is the missing value, we need to fill
2316          * it properly. The header.misc value give us nice hint.
2317          */
2318         bev.pid = HOST_KERNEL_ID;
2319         if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2320             bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2321             bev.pid = DEFAULT_GUEST_KERNEL_ID;
2322 
2323         memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2324         __event_process_build_id(&bev, filename, session);
2325 
2326         offset += bev.header.size;
2327     }
2328 
2329     return 0;
2330 }
2331 
2332 static int perf_header__read_build_ids(struct perf_header *header,
2333                        int input, u64 offset, u64 size)
2334 {
2335     struct perf_session *session = container_of(header, struct perf_session, header);
2336     struct perf_record_header_build_id bev;
2337     char filename[PATH_MAX];
2338     u64 limit = offset + size, orig_offset = offset;
2339     int err = -1;
2340 
2341     while (offset < limit) {
2342         ssize_t len;
2343 
2344         if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2345             goto out;
2346 
2347         if (header->needs_swap)
2348             perf_event_header__bswap(&bev.header);
2349 
2350         len = bev.header.size - sizeof(bev);
2351         if (readn(input, filename, len) != len)
2352             goto out;
2353         /*
2354          * The a1645ce1 changeset:
2355          *
2356          * "perf: 'perf kvm' tool for monitoring guest performance from host"
2357          *
2358          * Added a field to struct perf_record_header_build_id that broke the file
2359          * format.
2360          *
2361          * Since the kernel build-id is the first entry, process the
2362          * table using the old format if the well known
2363          * '[kernel.kallsyms]' string for the kernel build-id has the
2364          * first 4 characters chopped off (where the pid_t sits).
2365          */
2366         if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2367             if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2368                 return -1;
2369             return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2370         }
2371 
2372         __event_process_build_id(&bev, filename, session);
2373 
2374         offset += bev.header.size;
2375     }
2376     err = 0;
2377 out:
2378     return err;
2379 }
2380 
2381 /* Macro for features that simply need to read and store a string. */
2382 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2383 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2384 {\
2385     free(ff->ph->env.__feat_env);            \
2386     ff->ph->env.__feat_env = do_read_string(ff); \
2387     return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2388 }
2389 
2390 FEAT_PROCESS_STR_FUN(hostname, hostname);
2391 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2392 FEAT_PROCESS_STR_FUN(version, version);
2393 FEAT_PROCESS_STR_FUN(arch, arch);
2394 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2395 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2396 
2397 static int process_tracing_data(struct feat_fd *ff, void *data)
2398 {
2399     ssize_t ret = trace_report(ff->fd, data, false);
2400 
2401     return ret < 0 ? -1 : 0;
2402 }
2403 
2404 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2405 {
2406     if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2407         pr_debug("Failed to read buildids, continuing...\n");
2408     return 0;
2409 }
2410 
2411 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2412 {
2413     int ret;
2414     u32 nr_cpus_avail, nr_cpus_online;
2415 
2416     ret = do_read_u32(ff, &nr_cpus_avail);
2417     if (ret)
2418         return ret;
2419 
2420     ret = do_read_u32(ff, &nr_cpus_online);
2421     if (ret)
2422         return ret;
2423     ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2424     ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2425     return 0;
2426 }
2427 
2428 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2429 {
2430     u64 total_mem;
2431     int ret;
2432 
2433     ret = do_read_u64(ff, &total_mem);
2434     if (ret)
2435         return -1;
2436     ff->ph->env.total_mem = (unsigned long long)total_mem;
2437     return 0;
2438 }
2439 
2440 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2441 {
2442     struct evsel *evsel;
2443 
2444     evlist__for_each_entry(evlist, evsel) {
2445         if (evsel->core.idx == idx)
2446             return evsel;
2447     }
2448 
2449     return NULL;
2450 }
2451 
2452 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2453 {
2454     struct evsel *evsel;
2455 
2456     if (!event->name)
2457         return;
2458 
2459     evsel = evlist__find_by_index(evlist, event->core.idx);
2460     if (!evsel)
2461         return;
2462 
2463     if (evsel->name)
2464         return;
2465 
2466     evsel->name = strdup(event->name);
2467 }
2468 
2469 static int
2470 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2471 {
2472     struct perf_session *session;
2473     struct evsel *evsel, *events = read_event_desc(ff);
2474 
2475     if (!events)
2476         return 0;
2477 
2478     session = container_of(ff->ph, struct perf_session, header);
2479 
2480     if (session->data->is_pipe) {
2481         /* Save events for reading later by print_event_desc,
2482          * since they can't be read again in pipe mode. */
2483         ff->events = events;
2484     }
2485 
2486     for (evsel = events; evsel->core.attr.size; evsel++)
2487         evlist__set_event_name(session->evlist, evsel);
2488 
2489     if (!session->data->is_pipe)
2490         free_event_desc(events);
2491 
2492     return 0;
2493 }
2494 
2495 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2496 {
2497     char *str, *cmdline = NULL, **argv = NULL;
2498     u32 nr, i, len = 0;
2499 
2500     if (do_read_u32(ff, &nr))
2501         return -1;
2502 
2503     ff->ph->env.nr_cmdline = nr;
2504 
2505     cmdline = zalloc(ff->size + nr + 1);
2506     if (!cmdline)
2507         return -1;
2508 
2509     argv = zalloc(sizeof(char *) * (nr + 1));
2510     if (!argv)
2511         goto error;
2512 
2513     for (i = 0; i < nr; i++) {
2514         str = do_read_string(ff);
2515         if (!str)
2516             goto error;
2517 
2518         argv[i] = cmdline + len;
2519         memcpy(argv[i], str, strlen(str) + 1);
2520         len += strlen(str) + 1;
2521         free(str);
2522     }
2523     ff->ph->env.cmdline = cmdline;
2524     ff->ph->env.cmdline_argv = (const char **) argv;
2525     return 0;
2526 
2527 error:
2528     free(argv);
2529     free(cmdline);
2530     return -1;
2531 }
2532 
2533 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2534 {
2535     u32 nr, i;
2536     char *str;
2537     struct strbuf sb;
2538     int cpu_nr = ff->ph->env.nr_cpus_avail;
2539     u64 size = 0;
2540     struct perf_header *ph = ff->ph;
2541     bool do_core_id_test = true;
2542 
2543     ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2544     if (!ph->env.cpu)
2545         return -1;
2546 
2547     if (do_read_u32(ff, &nr))
2548         goto free_cpu;
2549 
2550     ph->env.nr_sibling_cores = nr;
2551     size += sizeof(u32);
2552     if (strbuf_init(&sb, 128) < 0)
2553         goto free_cpu;
2554 
2555     for (i = 0; i < nr; i++) {
2556         str = do_read_string(ff);
2557         if (!str)
2558             goto error;
2559 
2560         /* include a NULL character at the end */
2561         if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2562             goto error;
2563         size += string_size(str);
2564         free(str);
2565     }
2566     ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2567 
2568     if (do_read_u32(ff, &nr))
2569         return -1;
2570 
2571     ph->env.nr_sibling_threads = nr;
2572     size += sizeof(u32);
2573 
2574     for (i = 0; i < nr; i++) {
2575         str = do_read_string(ff);
2576         if (!str)
2577             goto error;
2578 
2579         /* include a NULL character at the end */
2580         if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2581             goto error;
2582         size += string_size(str);
2583         free(str);
2584     }
2585     ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2586 
2587     /*
2588      * The header may be from old perf,
2589      * which doesn't include core id and socket id information.
2590      */
2591     if (ff->size <= size) {
2592         zfree(&ph->env.cpu);
2593         return 0;
2594     }
2595 
2596     /* On s390 the socket_id number is not related to the numbers of cpus.
2597      * The socket_id number might be higher than the numbers of cpus.
2598      * This depends on the configuration.
2599      * AArch64 is the same.
2600      */
2601     if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2602               || !strncmp(ph->env.arch, "aarch64", 7)))
2603         do_core_id_test = false;
2604 
2605     for (i = 0; i < (u32)cpu_nr; i++) {
2606         if (do_read_u32(ff, &nr))
2607             goto free_cpu;
2608 
2609         ph->env.cpu[i].core_id = nr;
2610         size += sizeof(u32);
2611 
2612         if (do_read_u32(ff, &nr))
2613             goto free_cpu;
2614 
2615         if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2616             pr_debug("socket_id number is too big."
2617                  "You may need to upgrade the perf tool.\n");
2618             goto free_cpu;
2619         }
2620 
2621         ph->env.cpu[i].socket_id = nr;
2622         size += sizeof(u32);
2623     }
2624 
2625     /*
2626      * The header may be from old perf,
2627      * which doesn't include die information.
2628      */
2629     if (ff->size <= size)
2630         return 0;
2631 
2632     if (do_read_u32(ff, &nr))
2633         return -1;
2634 
2635     ph->env.nr_sibling_dies = nr;
2636     size += sizeof(u32);
2637 
2638     for (i = 0; i < nr; i++) {
2639         str = do_read_string(ff);
2640         if (!str)
2641             goto error;
2642 
2643         /* include a NULL character at the end */
2644         if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2645             goto error;
2646         size += string_size(str);
2647         free(str);
2648     }
2649     ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2650 
2651     for (i = 0; i < (u32)cpu_nr; i++) {
2652         if (do_read_u32(ff, &nr))
2653             goto free_cpu;
2654 
2655         ph->env.cpu[i].die_id = nr;
2656     }
2657 
2658     return 0;
2659 
2660 error:
2661     strbuf_release(&sb);
2662 free_cpu:
2663     zfree(&ph->env.cpu);
2664     return -1;
2665 }
2666 
2667 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2668 {
2669     struct numa_node *nodes, *n;
2670     u32 nr, i;
2671     char *str;
2672 
2673     /* nr nodes */
2674     if (do_read_u32(ff, &nr))
2675         return -1;
2676 
2677     nodes = zalloc(sizeof(*nodes) * nr);
2678     if (!nodes)
2679         return -ENOMEM;
2680 
2681     for (i = 0; i < nr; i++) {
2682         n = &nodes[i];
2683 
2684         /* node number */
2685         if (do_read_u32(ff, &n->node))
2686             goto error;
2687 
2688         if (do_read_u64(ff, &n->mem_total))
2689             goto error;
2690 
2691         if (do_read_u64(ff, &n->mem_free))
2692             goto error;
2693 
2694         str = do_read_string(ff);
2695         if (!str)
2696             goto error;
2697 
2698         n->map = perf_cpu_map__new(str);
2699         if (!n->map)
2700             goto error;
2701 
2702         free(str);
2703     }
2704     ff->ph->env.nr_numa_nodes = nr;
2705     ff->ph->env.numa_nodes = nodes;
2706     return 0;
2707 
2708 error:
2709     free(nodes);
2710     return -1;
2711 }
2712 
2713 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2714 {
2715     char *name;
2716     u32 pmu_num;
2717     u32 type;
2718     struct strbuf sb;
2719 
2720     if (do_read_u32(ff, &pmu_num))
2721         return -1;
2722 
2723     if (!pmu_num) {
2724         pr_debug("pmu mappings not available\n");
2725         return 0;
2726     }
2727 
2728     ff->ph->env.nr_pmu_mappings = pmu_num;
2729     if (strbuf_init(&sb, 128) < 0)
2730         return -1;
2731 
2732     while (pmu_num) {
2733         if (do_read_u32(ff, &type))
2734             goto error;
2735 
2736         name = do_read_string(ff);
2737         if (!name)
2738             goto error;
2739 
2740         if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2741             goto error;
2742         /* include a NULL character at the end */
2743         if (strbuf_add(&sb, "", 1) < 0)
2744             goto error;
2745 
2746         if (!strcmp(name, "msr"))
2747             ff->ph->env.msr_pmu_type = type;
2748 
2749         free(name);
2750         pmu_num--;
2751     }
2752     ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2753     return 0;
2754 
2755 error:
2756     strbuf_release(&sb);
2757     return -1;
2758 }
2759 
2760 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2761 {
2762     size_t ret = -1;
2763     u32 i, nr, nr_groups;
2764     struct perf_session *session;
2765     struct evsel *evsel, *leader = NULL;
2766     struct group_desc {
2767         char *name;
2768         u32 leader_idx;
2769         u32 nr_members;
2770     } *desc;
2771 
2772     if (do_read_u32(ff, &nr_groups))
2773         return -1;
2774 
2775     ff->ph->env.nr_groups = nr_groups;
2776     if (!nr_groups) {
2777         pr_debug("group desc not available\n");
2778         return 0;
2779     }
2780 
2781     desc = calloc(nr_groups, sizeof(*desc));
2782     if (!desc)
2783         return -1;
2784 
2785     for (i = 0; i < nr_groups; i++) {
2786         desc[i].name = do_read_string(ff);
2787         if (!desc[i].name)
2788             goto out_free;
2789 
2790         if (do_read_u32(ff, &desc[i].leader_idx))
2791             goto out_free;
2792 
2793         if (do_read_u32(ff, &desc[i].nr_members))
2794             goto out_free;
2795     }
2796 
2797     /*
2798      * Rebuild group relationship based on the group_desc
2799      */
2800     session = container_of(ff->ph, struct perf_session, header);
2801     session->evlist->core.nr_groups = nr_groups;
2802 
2803     i = nr = 0;
2804     evlist__for_each_entry(session->evlist, evsel) {
2805         if (evsel->core.idx == (int) desc[i].leader_idx) {
2806             evsel__set_leader(evsel, evsel);
2807             /* {anon_group} is a dummy name */
2808             if (strcmp(desc[i].name, "{anon_group}")) {
2809                 evsel->group_name = desc[i].name;
2810                 desc[i].name = NULL;
2811             }
2812             evsel->core.nr_members = desc[i].nr_members;
2813 
2814             if (i >= nr_groups || nr > 0) {
2815                 pr_debug("invalid group desc\n");
2816                 goto out_free;
2817             }
2818 
2819             leader = evsel;
2820             nr = evsel->core.nr_members - 1;
2821             i++;
2822         } else if (nr) {
2823             /* This is a group member */
2824             evsel__set_leader(evsel, leader);
2825 
2826             nr--;
2827         }
2828     }
2829 
2830     if (i != nr_groups || nr != 0) {
2831         pr_debug("invalid group desc\n");
2832         goto out_free;
2833     }
2834 
2835     ret = 0;
2836 out_free:
2837     for (i = 0; i < nr_groups; i++)
2838         zfree(&desc[i].name);
2839     free(desc);
2840 
2841     return ret;
2842 }
2843 
2844 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2845 {
2846     struct perf_session *session;
2847     int err;
2848 
2849     session = container_of(ff->ph, struct perf_session, header);
2850 
2851     err = auxtrace_index__process(ff->fd, ff->size, session,
2852                       ff->ph->needs_swap);
2853     if (err < 0)
2854         pr_err("Failed to process auxtrace index\n");
2855     return err;
2856 }
2857 
2858 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2859 {
2860     struct cpu_cache_level *caches;
2861     u32 cnt, i, version;
2862 
2863     if (do_read_u32(ff, &version))
2864         return -1;
2865 
2866     if (version != 1)
2867         return -1;
2868 
2869     if (do_read_u32(ff, &cnt))
2870         return -1;
2871 
2872     caches = zalloc(sizeof(*caches) * cnt);
2873     if (!caches)
2874         return -1;
2875 
2876     for (i = 0; i < cnt; i++) {
2877         struct cpu_cache_level c;
2878 
2879         #define _R(v)                       \
2880             if (do_read_u32(ff, &c.v))\
2881                 goto out_free_caches;           \
2882 
2883         _R(level)
2884         _R(line_size)
2885         _R(sets)
2886         _R(ways)
2887         #undef _R
2888 
2889         #define _R(v)                   \
2890             c.v = do_read_string(ff);       \
2891             if (!c.v)               \
2892                 goto out_free_caches;
2893 
2894         _R(type)
2895         _R(size)
2896         _R(map)
2897         #undef _R
2898 
2899         caches[i] = c;
2900     }
2901 
2902     ff->ph->env.caches = caches;
2903     ff->ph->env.caches_cnt = cnt;
2904     return 0;
2905 out_free_caches:
2906     free(caches);
2907     return -1;
2908 }
2909 
2910 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2911 {
2912     struct perf_session *session;
2913     u64 first_sample_time, last_sample_time;
2914     int ret;
2915 
2916     session = container_of(ff->ph, struct perf_session, header);
2917 
2918     ret = do_read_u64(ff, &first_sample_time);
2919     if (ret)
2920         return -1;
2921 
2922     ret = do_read_u64(ff, &last_sample_time);
2923     if (ret)
2924         return -1;
2925 
2926     session->evlist->first_sample_time = first_sample_time;
2927     session->evlist->last_sample_time = last_sample_time;
2928     return 0;
2929 }
2930 
2931 static int process_mem_topology(struct feat_fd *ff,
2932                 void *data __maybe_unused)
2933 {
2934     struct memory_node *nodes;
2935     u64 version, i, nr, bsize;
2936     int ret = -1;
2937 
2938     if (do_read_u64(ff, &version))
2939         return -1;
2940 
2941     if (version != 1)
2942         return -1;
2943 
2944     if (do_read_u64(ff, &bsize))
2945         return -1;
2946 
2947     if (do_read_u64(ff, &nr))
2948         return -1;
2949 
2950     nodes = zalloc(sizeof(*nodes) * nr);
2951     if (!nodes)
2952         return -1;
2953 
2954     for (i = 0; i < nr; i++) {
2955         struct memory_node n;
2956 
2957         #define _R(v)               \
2958             if (do_read_u64(ff, &n.v))  \
2959                 goto out;       \
2960 
2961         _R(node)
2962         _R(size)
2963 
2964         #undef _R
2965 
2966         if (do_read_bitmap(ff, &n.set, &n.size))
2967             goto out;
2968 
2969         nodes[i] = n;
2970     }
2971 
2972     ff->ph->env.memory_bsize    = bsize;
2973     ff->ph->env.memory_nodes    = nodes;
2974     ff->ph->env.nr_memory_nodes = nr;
2975     ret = 0;
2976 
2977 out:
2978     if (ret)
2979         free(nodes);
2980     return ret;
2981 }
2982 
2983 static int process_clockid(struct feat_fd *ff,
2984                void *data __maybe_unused)
2985 {
2986     if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2987         return -1;
2988 
2989     return 0;
2990 }
2991 
2992 static int process_clock_data(struct feat_fd *ff,
2993                   void *_data __maybe_unused)
2994 {
2995     u32 data32;
2996     u64 data64;
2997 
2998     /* version */
2999     if (do_read_u32(ff, &data32))
3000         return -1;
3001 
3002     if (data32 != 1)
3003         return -1;
3004 
3005     /* clockid */
3006     if (do_read_u32(ff, &data32))
3007         return -1;
3008 
3009     ff->ph->env.clock.clockid = data32;
3010 
3011     /* TOD ref time */
3012     if (do_read_u64(ff, &data64))
3013         return -1;
3014 
3015     ff->ph->env.clock.tod_ns = data64;
3016 
3017     /* clockid ref time */
3018     if (do_read_u64(ff, &data64))
3019         return -1;
3020 
3021     ff->ph->env.clock.clockid_ns = data64;
3022     ff->ph->env.clock.enabled = true;
3023     return 0;
3024 }
3025 
3026 static int process_hybrid_topology(struct feat_fd *ff,
3027                    void *data __maybe_unused)
3028 {
3029     struct hybrid_node *nodes, *n;
3030     u32 nr, i;
3031 
3032     /* nr nodes */
3033     if (do_read_u32(ff, &nr))
3034         return -1;
3035 
3036     nodes = zalloc(sizeof(*nodes) * nr);
3037     if (!nodes)
3038         return -ENOMEM;
3039 
3040     for (i = 0; i < nr; i++) {
3041         n = &nodes[i];
3042 
3043         n->pmu_name = do_read_string(ff);
3044         if (!n->pmu_name)
3045             goto error;
3046 
3047         n->cpus = do_read_string(ff);
3048         if (!n->cpus)
3049             goto error;
3050     }
3051 
3052     ff->ph->env.nr_hybrid_nodes = nr;
3053     ff->ph->env.hybrid_nodes = nodes;
3054     return 0;
3055 
3056 error:
3057     for (i = 0; i < nr; i++) {
3058         free(nodes[i].pmu_name);
3059         free(nodes[i].cpus);
3060     }
3061 
3062     free(nodes);
3063     return -1;
3064 }
3065 
3066 static int process_dir_format(struct feat_fd *ff,
3067                   void *_data __maybe_unused)
3068 {
3069     struct perf_session *session;
3070     struct perf_data *data;
3071 
3072     session = container_of(ff->ph, struct perf_session, header);
3073     data = session->data;
3074 
3075     if (WARN_ON(!perf_data__is_dir(data)))
3076         return -1;
3077 
3078     return do_read_u64(ff, &data->dir.version);
3079 }
3080 
3081 #ifdef HAVE_LIBBPF_SUPPORT
3082 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3083 {
3084     struct bpf_prog_info_node *info_node;
3085     struct perf_env *env = &ff->ph->env;
3086     struct perf_bpil *info_linear;
3087     u32 count, i;
3088     int err = -1;
3089 
3090     if (ff->ph->needs_swap) {
3091         pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3092         return 0;
3093     }
3094 
3095     if (do_read_u32(ff, &count))
3096         return -1;
3097 
3098     down_write(&env->bpf_progs.lock);
3099 
3100     for (i = 0; i < count; ++i) {
3101         u32 info_len, data_len;
3102 
3103         info_linear = NULL;
3104         info_node = NULL;
3105         if (do_read_u32(ff, &info_len))
3106             goto out;
3107         if (do_read_u32(ff, &data_len))
3108             goto out;
3109 
3110         if (info_len > sizeof(struct bpf_prog_info)) {
3111             pr_warning("detected invalid bpf_prog_info\n");
3112             goto out;
3113         }
3114 
3115         info_linear = malloc(sizeof(struct perf_bpil) +
3116                      data_len);
3117         if (!info_linear)
3118             goto out;
3119         info_linear->info_len = sizeof(struct bpf_prog_info);
3120         info_linear->data_len = data_len;
3121         if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3122             goto out;
3123         if (__do_read(ff, &info_linear->info, info_len))
3124             goto out;
3125         if (info_len < sizeof(struct bpf_prog_info))
3126             memset(((void *)(&info_linear->info)) + info_len, 0,
3127                    sizeof(struct bpf_prog_info) - info_len);
3128 
3129         if (__do_read(ff, info_linear->data, data_len))
3130             goto out;
3131 
3132         info_node = malloc(sizeof(struct bpf_prog_info_node));
3133         if (!info_node)
3134             goto out;
3135 
3136         /* after reading from file, translate offset to address */
3137         bpil_offs_to_addr(info_linear);
3138         info_node->info_linear = info_linear;
3139         perf_env__insert_bpf_prog_info(env, info_node);
3140     }
3141 
3142     up_write(&env->bpf_progs.lock);
3143     return 0;
3144 out:
3145     free(info_linear);
3146     free(info_node);
3147     up_write(&env->bpf_progs.lock);
3148     return err;
3149 }
3150 
3151 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3152 {
3153     struct perf_env *env = &ff->ph->env;
3154     struct btf_node *node = NULL;
3155     u32 count, i;
3156     int err = -1;
3157 
3158     if (ff->ph->needs_swap) {
3159         pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3160         return 0;
3161     }
3162 
3163     if (do_read_u32(ff, &count))
3164         return -1;
3165 
3166     down_write(&env->bpf_progs.lock);
3167 
3168     for (i = 0; i < count; ++i) {
3169         u32 id, data_size;
3170 
3171         if (do_read_u32(ff, &id))
3172             goto out;
3173         if (do_read_u32(ff, &data_size))
3174             goto out;
3175 
3176         node = malloc(sizeof(struct btf_node) + data_size);
3177         if (!node)
3178             goto out;
3179 
3180         node->id = id;
3181         node->data_size = data_size;
3182 
3183         if (__do_read(ff, node->data, data_size))
3184             goto out;
3185 
3186         perf_env__insert_btf(env, node);
3187         node = NULL;
3188     }
3189 
3190     err = 0;
3191 out:
3192     up_write(&env->bpf_progs.lock);
3193     free(node);
3194     return err;
3195 }
3196 #endif // HAVE_LIBBPF_SUPPORT
3197 
3198 static int process_compressed(struct feat_fd *ff,
3199                   void *data __maybe_unused)
3200 {
3201     if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3202         return -1;
3203 
3204     if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3205         return -1;
3206 
3207     if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3208         return -1;
3209 
3210     if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3211         return -1;
3212 
3213     if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3214         return -1;
3215 
3216     return 0;
3217 }
3218 
3219 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3220                   char ***caps, unsigned int *max_branches)
3221 {
3222     char *name, *value, *ptr;
3223     u32 nr_pmu_caps, i;
3224 
3225     *nr_caps = 0;
3226     *caps = NULL;
3227 
3228     if (do_read_u32(ff, &nr_pmu_caps))
3229         return -1;
3230 
3231     if (!nr_pmu_caps)
3232         return 0;
3233 
3234     *caps = zalloc(sizeof(char *) * nr_pmu_caps);
3235     if (!*caps)
3236         return -1;
3237 
3238     for (i = 0; i < nr_pmu_caps; i++) {
3239         name = do_read_string(ff);
3240         if (!name)
3241             goto error;
3242 
3243         value = do_read_string(ff);
3244         if (!value)
3245             goto free_name;
3246 
3247         if (asprintf(&ptr, "%s=%s", name, value) < 0)
3248             goto free_value;
3249 
3250         (*caps)[i] = ptr;
3251 
3252         if (!strcmp(name, "branches"))
3253             *max_branches = atoi(value);
3254 
3255         free(value);
3256         free(name);
3257     }
3258     *nr_caps = nr_pmu_caps;
3259     return 0;
3260 
3261 free_value:
3262     free(value);
3263 free_name:
3264     free(name);
3265 error:
3266     for (; i > 0; i--)
3267         free((*caps)[i - 1]);
3268     free(*caps);
3269     *caps = NULL;
3270     *nr_caps = 0;
3271     return -1;
3272 }
3273 
3274 static int process_cpu_pmu_caps(struct feat_fd *ff,
3275                 void *data __maybe_unused)
3276 {
3277     int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3278                      &ff->ph->env.cpu_pmu_caps,
3279                      &ff->ph->env.max_branches);
3280 
3281     if (!ret && !ff->ph->env.cpu_pmu_caps)
3282         pr_debug("cpu pmu capabilities not available\n");
3283     return ret;
3284 }
3285 
3286 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3287 {
3288     struct pmu_caps *pmu_caps;
3289     u32 nr_pmu, i;
3290     int ret;
3291     int j;
3292 
3293     if (do_read_u32(ff, &nr_pmu))
3294         return -1;
3295 
3296     if (!nr_pmu) {
3297         pr_debug("pmu capabilities not available\n");
3298         return 0;
3299     }
3300 
3301     pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3302     if (!pmu_caps)
3303         return -ENOMEM;
3304 
3305     for (i = 0; i < nr_pmu; i++) {
3306         ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3307                      &pmu_caps[i].caps,
3308                      &pmu_caps[i].max_branches);
3309         if (ret)
3310             goto err;
3311 
3312         pmu_caps[i].pmu_name = do_read_string(ff);
3313         if (!pmu_caps[i].pmu_name) {
3314             ret = -1;
3315             goto err;
3316         }
3317         if (!pmu_caps[i].nr_caps) {
3318             pr_debug("%s pmu capabilities not available\n",
3319                  pmu_caps[i].pmu_name);
3320         }
3321     }
3322 
3323     ff->ph->env.nr_pmus_with_caps = nr_pmu;
3324     ff->ph->env.pmu_caps = pmu_caps;
3325     return 0;
3326 
3327 err:
3328     for (i = 0; i < nr_pmu; i++) {
3329         for (j = 0; j < pmu_caps[i].nr_caps; j++)
3330             free(pmu_caps[i].caps[j]);
3331         free(pmu_caps[i].caps);
3332         free(pmu_caps[i].pmu_name);
3333     }
3334 
3335     free(pmu_caps);
3336     return ret;
3337 }
3338 
3339 #define FEAT_OPR(n, func, __full_only) \
3340     [HEADER_##n] = {                    \
3341         .name       = __stringify(n),           \
3342         .write      = write_##func,         \
3343         .print      = print_##func,         \
3344         .full_only  = __full_only,          \
3345         .process    = process_##func,           \
3346         .synthesize = true              \
3347     }
3348 
3349 #define FEAT_OPN(n, func, __full_only) \
3350     [HEADER_##n] = {                    \
3351         .name       = __stringify(n),           \
3352         .write      = write_##func,         \
3353         .print      = print_##func,         \
3354         .full_only  = __full_only,          \
3355         .process    = process_##func            \
3356     }
3357 
3358 /* feature_ops not implemented: */
3359 #define print_tracing_data  NULL
3360 #define print_build_id      NULL
3361 
3362 #define process_branch_stack    NULL
3363 #define process_stat        NULL
3364 
3365 // Only used in util/synthetic-events.c
3366 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3367 
3368 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3369     FEAT_OPN(TRACING_DATA,  tracing_data,   false),
3370     FEAT_OPN(BUILD_ID,  build_id,   false),
3371     FEAT_OPR(HOSTNAME,  hostname,   false),
3372     FEAT_OPR(OSRELEASE, osrelease,  false),
3373     FEAT_OPR(VERSION,   version,    false),
3374     FEAT_OPR(ARCH,      arch,       false),
3375     FEAT_OPR(NRCPUS,    nrcpus,     false),
3376     FEAT_OPR(CPUDESC,   cpudesc,    false),
3377     FEAT_OPR(CPUID,     cpuid,      false),
3378     FEAT_OPR(TOTAL_MEM, total_mem,  false),
3379     FEAT_OPR(EVENT_DESC,    event_desc, false),
3380     FEAT_OPR(CMDLINE,   cmdline,    false),
3381     FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
3382     FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
3383     FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
3384     FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
3385     FEAT_OPR(GROUP_DESC,    group_desc, false),
3386     FEAT_OPN(AUXTRACE,  auxtrace,   false),
3387     FEAT_OPN(STAT,      stat,       false),
3388     FEAT_OPN(CACHE,     cache,      true),
3389     FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
3390     FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
3391     FEAT_OPR(CLOCKID,   clockid,    false),
3392     FEAT_OPN(DIR_FORMAT,    dir_format, false),
3393 #ifdef HAVE_LIBBPF_SUPPORT
3394     FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3395     FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3396 #endif
3397     FEAT_OPR(COMPRESSED,    compressed, false),
3398     FEAT_OPR(CPU_PMU_CAPS,  cpu_pmu_caps,   false),
3399     FEAT_OPR(CLOCK_DATA,    clock_data, false),
3400     FEAT_OPN(HYBRID_TOPOLOGY,   hybrid_topology,    true),
3401     FEAT_OPR(PMU_CAPS,  pmu_caps,   false),
3402 };
3403 
3404 struct header_print_data {
3405     FILE *fp;
3406     bool full; /* extended list of headers */
3407 };
3408 
3409 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3410                        struct perf_header *ph,
3411                        int feat, int fd, void *data)
3412 {
3413     struct header_print_data *hd = data;
3414     struct feat_fd ff;
3415 
3416     if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3417         pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3418                 "%d, continuing...\n", section->offset, feat);
3419         return 0;
3420     }
3421     if (feat >= HEADER_LAST_FEATURE) {
3422         pr_warning("unknown feature %d\n", feat);
3423         return 0;
3424     }
3425     if (!feat_ops[feat].print)
3426         return 0;
3427 
3428     ff = (struct  feat_fd) {
3429         .fd = fd,
3430         .ph = ph,
3431     };
3432 
3433     if (!feat_ops[feat].full_only || hd->full)
3434         feat_ops[feat].print(&ff, hd->fp);
3435     else
3436         fprintf(hd->fp, "# %s info available, use -I to display\n",
3437             feat_ops[feat].name);
3438 
3439     return 0;
3440 }
3441 
3442 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3443 {
3444     struct header_print_data hd;
3445     struct perf_header *header = &session->header;
3446     int fd = perf_data__fd(session->data);
3447     struct stat st;
3448     time_t stctime;
3449     int ret, bit;
3450 
3451     hd.fp = fp;
3452     hd.full = full;
3453 
3454     ret = fstat(fd, &st);
3455     if (ret == -1)
3456         return -1;
3457 
3458     stctime = st.st_mtime;
3459     fprintf(fp, "# captured on    : %s", ctime(&stctime));
3460 
3461     fprintf(fp, "# header version : %u\n", header->version);
3462     fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3463     fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3464     fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3465 
3466     perf_header__process_sections(header, fd, &hd,
3467                       perf_file_section__fprintf_info);
3468 
3469     if (session->data->is_pipe)
3470         return 0;
3471 
3472     fprintf(fp, "# missing features: ");
3473     for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3474         if (bit)
3475             fprintf(fp, "%s ", feat_ops[bit].name);
3476     }
3477 
3478     fprintf(fp, "\n");
3479     return 0;
3480 }
3481 
3482 struct header_fw {
3483     struct feat_writer  fw;
3484     struct feat_fd      *ff;
3485 };
3486 
3487 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3488 {
3489     struct header_fw *h = container_of(fw, struct header_fw, fw);
3490 
3491     return do_write(h->ff, buf, sz);
3492 }
3493 
3494 static int do_write_feat(struct feat_fd *ff, int type,
3495              struct perf_file_section **p,
3496              struct evlist *evlist,
3497              struct feat_copier *fc)
3498 {
3499     int err;
3500     int ret = 0;
3501 
3502     if (perf_header__has_feat(ff->ph, type)) {
3503         if (!feat_ops[type].write)
3504             return -1;
3505 
3506         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3507             return -1;
3508 
3509         (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3510 
3511         /*
3512          * Hook to let perf inject copy features sections from the input
3513          * file.
3514          */
3515         if (fc && fc->copy) {
3516             struct header_fw h = {
3517                 .fw.write = feat_writer_cb,
3518                 .ff = ff,
3519             };
3520 
3521             /* ->copy() returns 0 if the feature was not copied */
3522             err = fc->copy(fc, type, &h.fw);
3523         } else {
3524             err = 0;
3525         }
3526         if (!err)
3527             err = feat_ops[type].write(ff, evlist);
3528         if (err < 0) {
3529             pr_debug("failed to write feature %s\n", feat_ops[type].name);
3530 
3531             /* undo anything written */
3532             lseek(ff->fd, (*p)->offset, SEEK_SET);
3533 
3534             return -1;
3535         }
3536         (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3537         (*p)++;
3538     }
3539     return ret;
3540 }
3541 
3542 static int perf_header__adds_write(struct perf_header *header,
3543                    struct evlist *evlist, int fd,
3544                    struct feat_copier *fc)
3545 {
3546     int nr_sections;
3547     struct feat_fd ff;
3548     struct perf_file_section *feat_sec, *p;
3549     int sec_size;
3550     u64 sec_start;
3551     int feat;
3552     int err;
3553 
3554     ff = (struct feat_fd){
3555         .fd  = fd,
3556         .ph = header,
3557     };
3558 
3559     nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3560     if (!nr_sections)
3561         return 0;
3562 
3563     feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3564     if (feat_sec == NULL)
3565         return -ENOMEM;
3566 
3567     sec_size = sizeof(*feat_sec) * nr_sections;
3568 
3569     sec_start = header->feat_offset;
3570     lseek(fd, sec_start + sec_size, SEEK_SET);
3571 
3572     for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3573         if (do_write_feat(&ff, feat, &p, evlist, fc))
3574             perf_header__clear_feat(header, feat);
3575     }
3576 
3577     lseek(fd, sec_start, SEEK_SET);
3578     /*
3579      * may write more than needed due to dropped feature, but
3580      * this is okay, reader will skip the missing entries
3581      */
3582     err = do_write(&ff, feat_sec, sec_size);
3583     if (err < 0)
3584         pr_debug("failed to write feature section\n");
3585     free(feat_sec);
3586     return err;
3587 }
3588 
3589 int perf_header__write_pipe(int fd)
3590 {
3591     struct perf_pipe_file_header f_header;
3592     struct feat_fd ff;
3593     int err;
3594 
3595     ff = (struct feat_fd){ .fd = fd };
3596 
3597     f_header = (struct perf_pipe_file_header){
3598         .magic     = PERF_MAGIC,
3599         .size      = sizeof(f_header),
3600     };
3601 
3602     err = do_write(&ff, &f_header, sizeof(f_header));
3603     if (err < 0) {
3604         pr_debug("failed to write perf pipe header\n");
3605         return err;
3606     }
3607 
3608     return 0;
3609 }
3610 
3611 static int perf_session__do_write_header(struct perf_session *session,
3612                      struct evlist *evlist,
3613                      int fd, bool at_exit,
3614                      struct feat_copier *fc)
3615 {
3616     struct perf_file_header f_header;
3617     struct perf_file_attr   f_attr;
3618     struct perf_header *header = &session->header;
3619     struct evsel *evsel;
3620     struct feat_fd ff;
3621     u64 attr_offset;
3622     int err;
3623 
3624     ff = (struct feat_fd){ .fd = fd};
3625     lseek(fd, sizeof(f_header), SEEK_SET);
3626 
3627     evlist__for_each_entry(session->evlist, evsel) {
3628         evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3629         err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3630         if (err < 0) {
3631             pr_debug("failed to write perf header\n");
3632             return err;
3633         }
3634     }
3635 
3636     attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3637 
3638     evlist__for_each_entry(evlist, evsel) {
3639         if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3640             /*
3641              * We are likely in "perf inject" and have read
3642              * from an older file. Update attr size so that
3643              * reader gets the right offset to the ids.
3644              */
3645             evsel->core.attr.size = sizeof(evsel->core.attr);
3646         }
3647         f_attr = (struct perf_file_attr){
3648             .attr = evsel->core.attr,
3649             .ids  = {
3650                 .offset = evsel->id_offset,
3651                 .size   = evsel->core.ids * sizeof(u64),
3652             }
3653         };
3654         err = do_write(&ff, &f_attr, sizeof(f_attr));
3655         if (err < 0) {
3656             pr_debug("failed to write perf header attribute\n");
3657             return err;
3658         }
3659     }
3660 
3661     if (!header->data_offset)
3662         header->data_offset = lseek(fd, 0, SEEK_CUR);
3663     header->feat_offset = header->data_offset + header->data_size;
3664 
3665     if (at_exit) {
3666         err = perf_header__adds_write(header, evlist, fd, fc);
3667         if (err < 0)
3668             return err;
3669     }
3670 
3671     f_header = (struct perf_file_header){
3672         .magic     = PERF_MAGIC,
3673         .size      = sizeof(f_header),
3674         .attr_size = sizeof(f_attr),
3675         .attrs = {
3676             .offset = attr_offset,
3677             .size   = evlist->core.nr_entries * sizeof(f_attr),
3678         },
3679         .data = {
3680             .offset = header->data_offset,
3681             .size   = header->data_size,
3682         },
3683         /* event_types is ignored, store zeros */
3684     };
3685 
3686     memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3687 
3688     lseek(fd, 0, SEEK_SET);
3689     err = do_write(&ff, &f_header, sizeof(f_header));
3690     if (err < 0) {
3691         pr_debug("failed to write perf header\n");
3692         return err;
3693     }
3694     lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3695 
3696     return 0;
3697 }
3698 
3699 int perf_session__write_header(struct perf_session *session,
3700                    struct evlist *evlist,
3701                    int fd, bool at_exit)
3702 {
3703     return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3704 }
3705 
3706 size_t perf_session__data_offset(const struct evlist *evlist)
3707 {
3708     struct evsel *evsel;
3709     size_t data_offset;
3710 
3711     data_offset = sizeof(struct perf_file_header);
3712     evlist__for_each_entry(evlist, evsel) {
3713         data_offset += evsel->core.ids * sizeof(u64);
3714     }
3715     data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3716 
3717     return data_offset;
3718 }
3719 
3720 int perf_session__inject_header(struct perf_session *session,
3721                 struct evlist *evlist,
3722                 int fd,
3723                 struct feat_copier *fc)
3724 {
3725     return perf_session__do_write_header(session, evlist, fd, true, fc);
3726 }
3727 
3728 static int perf_header__getbuffer64(struct perf_header *header,
3729                     int fd, void *buf, size_t size)
3730 {
3731     if (readn(fd, buf, size) <= 0)
3732         return -1;
3733 
3734     if (header->needs_swap)
3735         mem_bswap_64(buf, size);
3736 
3737     return 0;
3738 }
3739 
3740 int perf_header__process_sections(struct perf_header *header, int fd,
3741                   void *data,
3742                   int (*process)(struct perf_file_section *section,
3743                          struct perf_header *ph,
3744                          int feat, int fd, void *data))
3745 {
3746     struct perf_file_section *feat_sec, *sec;
3747     int nr_sections;
3748     int sec_size;
3749     int feat;
3750     int err;
3751 
3752     nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3753     if (!nr_sections)
3754         return 0;
3755 
3756     feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3757     if (!feat_sec)
3758         return -1;
3759 
3760     sec_size = sizeof(*feat_sec) * nr_sections;
3761 
3762     lseek(fd, header->feat_offset, SEEK_SET);
3763 
3764     err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3765     if (err < 0)
3766         goto out_free;
3767 
3768     for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3769         err = process(sec++, header, feat, fd, data);
3770         if (err < 0)
3771             goto out_free;
3772     }
3773     err = 0;
3774 out_free:
3775     free(feat_sec);
3776     return err;
3777 }
3778 
3779 static const int attr_file_abi_sizes[] = {
3780     [0] = PERF_ATTR_SIZE_VER0,
3781     [1] = PERF_ATTR_SIZE_VER1,
3782     [2] = PERF_ATTR_SIZE_VER2,
3783     [3] = PERF_ATTR_SIZE_VER3,
3784     [4] = PERF_ATTR_SIZE_VER4,
3785     0,
3786 };
3787 
3788 /*
3789  * In the legacy file format, the magic number is not used to encode endianness.
3790  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3791  * on ABI revisions, we need to try all combinations for all endianness to
3792  * detect the endianness.
3793  */
3794 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3795 {
3796     uint64_t ref_size, attr_size;
3797     int i;
3798 
3799     for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3800         ref_size = attr_file_abi_sizes[i]
3801              + sizeof(struct perf_file_section);
3802         if (hdr_sz != ref_size) {
3803             attr_size = bswap_64(hdr_sz);
3804             if (attr_size != ref_size)
3805                 continue;
3806 
3807             ph->needs_swap = true;
3808         }
3809         pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3810              i,
3811              ph->needs_swap);
3812         return 0;
3813     }
3814     /* could not determine endianness */
3815     return -1;
3816 }
3817 
3818 #define PERF_PIPE_HDR_VER0  16
3819 
3820 static const size_t attr_pipe_abi_sizes[] = {
3821     [0] = PERF_PIPE_HDR_VER0,
3822     0,
3823 };
3824 
3825 /*
3826  * In the legacy pipe format, there is an implicit assumption that endianness
3827  * between host recording the samples, and host parsing the samples is the
3828  * same. This is not always the case given that the pipe output may always be
3829  * redirected into a file and analyzed on a different machine with possibly a
3830  * different endianness and perf_event ABI revisions in the perf tool itself.
3831  */
3832 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3833 {
3834     u64 attr_size;
3835     int i;
3836 
3837     for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3838         if (hdr_sz != attr_pipe_abi_sizes[i]) {
3839             attr_size = bswap_64(hdr_sz);
3840             if (attr_size != hdr_sz)
3841                 continue;
3842 
3843             ph->needs_swap = true;
3844         }
3845         pr_debug("Pipe ABI%d perf.data file detected\n", i);
3846         return 0;
3847     }
3848     return -1;
3849 }
3850 
3851 bool is_perf_magic(u64 magic)
3852 {
3853     if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3854         || magic == __perf_magic2
3855         || magic == __perf_magic2_sw)
3856         return true;
3857 
3858     return false;
3859 }
3860 
3861 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3862                   bool is_pipe, struct perf_header *ph)
3863 {
3864     int ret;
3865 
3866     /* check for legacy format */
3867     ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3868     if (ret == 0) {
3869         ph->version = PERF_HEADER_VERSION_1;
3870         pr_debug("legacy perf.data format\n");
3871         if (is_pipe)
3872             return try_all_pipe_abis(hdr_sz, ph);
3873 
3874         return try_all_file_abis(hdr_sz, ph);
3875     }
3876     /*
3877      * the new magic number serves two purposes:
3878      * - unique number to identify actual perf.data files
3879      * - encode endianness of file
3880      */
3881     ph->version = PERF_HEADER_VERSION_2;
3882 
3883     /* check magic number with one endianness */
3884     if (magic == __perf_magic2)
3885         return 0;
3886 
3887     /* check magic number with opposite endianness */
3888     if (magic != __perf_magic2_sw)
3889         return -1;
3890 
3891     ph->needs_swap = true;
3892 
3893     return 0;
3894 }
3895 
3896 int perf_file_header__read(struct perf_file_header *header,
3897                struct perf_header *ph, int fd)
3898 {
3899     ssize_t ret;
3900 
3901     lseek(fd, 0, SEEK_SET);
3902 
3903     ret = readn(fd, header, sizeof(*header));
3904     if (ret <= 0)
3905         return -1;
3906 
3907     if (check_magic_endian(header->magic,
3908                    header->attr_size, false, ph) < 0) {
3909         pr_debug("magic/endian check failed\n");
3910         return -1;
3911     }
3912 
3913     if (ph->needs_swap) {
3914         mem_bswap_64(header, offsetof(struct perf_file_header,
3915                  adds_features));
3916     }
3917 
3918     if (header->size != sizeof(*header)) {
3919         /* Support the previous format */
3920         if (header->size == offsetof(typeof(*header), adds_features))
3921             bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3922         else
3923             return -1;
3924     } else if (ph->needs_swap) {
3925         /*
3926          * feature bitmap is declared as an array of unsigned longs --
3927          * not good since its size can differ between the host that
3928          * generated the data file and the host analyzing the file.
3929          *
3930          * We need to handle endianness, but we don't know the size of
3931          * the unsigned long where the file was generated. Take a best
3932          * guess at determining it: try 64-bit swap first (ie., file
3933          * created on a 64-bit host), and check if the hostname feature
3934          * bit is set (this feature bit is forced on as of fbe96f2).
3935          * If the bit is not, undo the 64-bit swap and try a 32-bit
3936          * swap. If the hostname bit is still not set (e.g., older data
3937          * file), punt and fallback to the original behavior --
3938          * clearing all feature bits and setting buildid.
3939          */
3940         mem_bswap_64(&header->adds_features,
3941                 BITS_TO_U64(HEADER_FEAT_BITS));
3942 
3943         if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3944             /* unswap as u64 */
3945             mem_bswap_64(&header->adds_features,
3946                     BITS_TO_U64(HEADER_FEAT_BITS));
3947 
3948             /* unswap as u32 */
3949             mem_bswap_32(&header->adds_features,
3950                     BITS_TO_U32(HEADER_FEAT_BITS));
3951         }
3952 
3953         if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3954             bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3955             set_bit(HEADER_BUILD_ID, header->adds_features);
3956         }
3957     }
3958 
3959     memcpy(&ph->adds_features, &header->adds_features,
3960            sizeof(ph->adds_features));
3961 
3962     ph->data_offset  = header->data.offset;
3963     ph->data_size    = header->data.size;
3964     ph->feat_offset  = header->data.offset + header->data.size;
3965     return 0;
3966 }
3967 
3968 static int perf_file_section__process(struct perf_file_section *section,
3969                       struct perf_header *ph,
3970                       int feat, int fd, void *data)
3971 {
3972     struct feat_fd fdd = {
3973         .fd = fd,
3974         .ph = ph,
3975         .size   = section->size,
3976         .offset = section->offset,
3977     };
3978 
3979     if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3980         pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3981               "%d, continuing...\n", section->offset, feat);
3982         return 0;
3983     }
3984 
3985     if (feat >= HEADER_LAST_FEATURE) {
3986         pr_debug("unknown feature %d, continuing...\n", feat);
3987         return 0;
3988     }
3989 
3990     if (!feat_ops[feat].process)
3991         return 0;
3992 
3993     return feat_ops[feat].process(&fdd, data);
3994 }
3995 
3996 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3997                        struct perf_header *ph,
3998                        struct perf_data* data,
3999                        bool repipe, int repipe_fd)
4000 {
4001     struct feat_fd ff = {
4002         .fd = repipe_fd,
4003         .ph = ph,
4004     };
4005     ssize_t ret;
4006 
4007     ret = perf_data__read(data, header, sizeof(*header));
4008     if (ret <= 0)
4009         return -1;
4010 
4011     if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4012         pr_debug("endian/magic failed\n");
4013         return -1;
4014     }
4015 
4016     if (ph->needs_swap)
4017         header->size = bswap_64(header->size);
4018 
4019     if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4020         return -1;
4021 
4022     return 0;
4023 }
4024 
4025 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4026 {
4027     struct perf_header *header = &session->header;
4028     struct perf_pipe_file_header f_header;
4029 
4030     if (perf_file_header__read_pipe(&f_header, header, session->data,
4031                     session->repipe, repipe_fd) < 0) {
4032         pr_debug("incompatible file format\n");
4033         return -EINVAL;
4034     }
4035 
4036     return f_header.size == sizeof(f_header) ? 0 : -1;
4037 }
4038 
4039 static int read_attr(int fd, struct perf_header *ph,
4040              struct perf_file_attr *f_attr)
4041 {
4042     struct perf_event_attr *attr = &f_attr->attr;
4043     size_t sz, left;
4044     size_t our_sz = sizeof(f_attr->attr);
4045     ssize_t ret;
4046 
4047     memset(f_attr, 0, sizeof(*f_attr));
4048 
4049     /* read minimal guaranteed structure */
4050     ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4051     if (ret <= 0) {
4052         pr_debug("cannot read %d bytes of header attr\n",
4053              PERF_ATTR_SIZE_VER0);
4054         return -1;
4055     }
4056 
4057     /* on file perf_event_attr size */
4058     sz = attr->size;
4059 
4060     if (ph->needs_swap)
4061         sz = bswap_32(sz);
4062 
4063     if (sz == 0) {
4064         /* assume ABI0 */
4065         sz =  PERF_ATTR_SIZE_VER0;
4066     } else if (sz > our_sz) {
4067         pr_debug("file uses a more recent and unsupported ABI"
4068              " (%zu bytes extra)\n", sz - our_sz);
4069         return -1;
4070     }
4071     /* what we have not yet read and that we know about */
4072     left = sz - PERF_ATTR_SIZE_VER0;
4073     if (left) {
4074         void *ptr = attr;
4075         ptr += PERF_ATTR_SIZE_VER0;
4076 
4077         ret = readn(fd, ptr, left);
4078     }
4079     /* read perf_file_section, ids are read in caller */
4080     ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4081 
4082     return ret <= 0 ? -1 : 0;
4083 }
4084 
4085 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4086 {
4087     struct tep_event *event;
4088     char bf[128];
4089 
4090     /* already prepared */
4091     if (evsel->tp_format)
4092         return 0;
4093 
4094     if (pevent == NULL) {
4095         pr_debug("broken or missing trace data\n");
4096         return -1;
4097     }
4098 
4099     event = tep_find_event(pevent, evsel->core.attr.config);
4100     if (event == NULL) {
4101         pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4102         return -1;
4103     }
4104 
4105     if (!evsel->name) {
4106         snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4107         evsel->name = strdup(bf);
4108         if (evsel->name == NULL)
4109             return -1;
4110     }
4111 
4112     evsel->tp_format = event;
4113     return 0;
4114 }
4115 
4116 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4117 {
4118     struct evsel *pos;
4119 
4120     evlist__for_each_entry(evlist, pos) {
4121         if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4122             evsel__prepare_tracepoint_event(pos, pevent))
4123             return -1;
4124     }
4125 
4126     return 0;
4127 }
4128 
4129 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4130 {
4131     struct perf_data *data = session->data;
4132     struct perf_header *header = &session->header;
4133     struct perf_file_header f_header;
4134     struct perf_file_attr   f_attr;
4135     u64         f_id;
4136     int nr_attrs, nr_ids, i, j, err;
4137     int fd = perf_data__fd(data);
4138 
4139     session->evlist = evlist__new();
4140     if (session->evlist == NULL)
4141         return -ENOMEM;
4142 
4143     session->evlist->env = &header->env;
4144     session->machines.host.env = &header->env;
4145 
4146     /*
4147      * We can read 'pipe' data event from regular file,
4148      * check for the pipe header regardless of source.
4149      */
4150     err = perf_header__read_pipe(session, repipe_fd);
4151     if (!err || perf_data__is_pipe(data)) {
4152         data->is_pipe = true;
4153         return err;
4154     }
4155 
4156     if (perf_file_header__read(&f_header, header, fd) < 0)
4157         return -EINVAL;
4158 
4159     if (header->needs_swap && data->in_place_update) {
4160         pr_err("In-place update not supported when byte-swapping is required\n");
4161         return -EINVAL;
4162     }
4163 
4164     /*
4165      * Sanity check that perf.data was written cleanly; data size is
4166      * initialized to 0 and updated only if the on_exit function is run.
4167      * If data size is still 0 then the file contains only partial
4168      * information.  Just warn user and process it as much as it can.
4169      */
4170     if (f_header.data.size == 0) {
4171         pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4172                "Was the 'perf record' command properly terminated?\n",
4173                data->file.path);
4174     }
4175 
4176     if (f_header.attr_size == 0) {
4177         pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4178                "Was the 'perf record' command properly terminated?\n",
4179                data->file.path);
4180         return -EINVAL;
4181     }
4182 
4183     nr_attrs = f_header.attrs.size / f_header.attr_size;
4184     lseek(fd, f_header.attrs.offset, SEEK_SET);
4185 
4186     for (i = 0; i < nr_attrs; i++) {
4187         struct evsel *evsel;
4188         off_t tmp;
4189 
4190         if (read_attr(fd, header, &f_attr) < 0)
4191             goto out_errno;
4192 
4193         if (header->needs_swap) {
4194             f_attr.ids.size   = bswap_64(f_attr.ids.size);
4195             f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4196             perf_event__attr_swap(&f_attr.attr);
4197         }
4198 
4199         tmp = lseek(fd, 0, SEEK_CUR);
4200         evsel = evsel__new(&f_attr.attr);
4201 
4202         if (evsel == NULL)
4203             goto out_delete_evlist;
4204 
4205         evsel->needs_swap = header->needs_swap;
4206         /*
4207          * Do it before so that if perf_evsel__alloc_id fails, this
4208          * entry gets purged too at evlist__delete().
4209          */
4210         evlist__add(session->evlist, evsel);
4211 
4212         nr_ids = f_attr.ids.size / sizeof(u64);
4213         /*
4214          * We don't have the cpu and thread maps on the header, so
4215          * for allocating the perf_sample_id table we fake 1 cpu and
4216          * hattr->ids threads.
4217          */
4218         if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4219             goto out_delete_evlist;
4220 
4221         lseek(fd, f_attr.ids.offset, SEEK_SET);
4222 
4223         for (j = 0; j < nr_ids; j++) {
4224             if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4225                 goto out_errno;
4226 
4227             perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4228         }
4229 
4230         lseek(fd, tmp, SEEK_SET);
4231     }
4232 
4233     perf_header__process_sections(header, fd, &session->tevent,
4234                       perf_file_section__process);
4235 
4236     if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4237         goto out_delete_evlist;
4238 
4239     return 0;
4240 out_errno:
4241     return -errno;
4242 
4243 out_delete_evlist:
4244     evlist__delete(session->evlist);
4245     session->evlist = NULL;
4246     return -ENOMEM;
4247 }
4248 
4249 int perf_event__process_feature(struct perf_session *session,
4250                 union perf_event *event)
4251 {
4252     struct perf_tool *tool = session->tool;
4253     struct feat_fd ff = { .fd = 0 };
4254     struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4255     int type = fe->header.type;
4256     u64 feat = fe->feat_id;
4257     int ret = 0;
4258 
4259     if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4260         pr_warning("invalid record type %d in pipe-mode\n", type);
4261         return 0;
4262     }
4263     if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4264         pr_warning("invalid record type %d in pipe-mode\n", type);
4265         return -1;
4266     }
4267 
4268     if (!feat_ops[feat].process)
4269         return 0;
4270 
4271     ff.buf  = (void *)fe->data;
4272     ff.size = event->header.size - sizeof(*fe);
4273     ff.ph = &session->header;
4274 
4275     if (feat_ops[feat].process(&ff, NULL)) {
4276         ret = -1;
4277         goto out;
4278     }
4279 
4280     if (!feat_ops[feat].print || !tool->show_feat_hdr)
4281         goto out;
4282 
4283     if (!feat_ops[feat].full_only ||
4284         tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4285         feat_ops[feat].print(&ff, stdout);
4286     } else {
4287         fprintf(stdout, "# %s info available, use -I to display\n",
4288             feat_ops[feat].name);
4289     }
4290 out:
4291     free_event_desc(ff.events);
4292     return ret;
4293 }
4294 
4295 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4296 {
4297     struct perf_record_event_update *ev = &event->event_update;
4298     struct perf_record_event_update_scale *ev_scale;
4299     struct perf_record_event_update_cpus *ev_cpus;
4300     struct perf_cpu_map *map;
4301     size_t ret;
4302 
4303     ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4304 
4305     switch (ev->type) {
4306     case PERF_EVENT_UPDATE__SCALE:
4307         ev_scale = (struct perf_record_event_update_scale *)ev->data;
4308         ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
4309         break;
4310     case PERF_EVENT_UPDATE__UNIT:
4311         ret += fprintf(fp, "... unit:  %s\n", ev->data);
4312         break;
4313     case PERF_EVENT_UPDATE__NAME:
4314         ret += fprintf(fp, "... name:  %s\n", ev->data);
4315         break;
4316     case PERF_EVENT_UPDATE__CPUS:
4317         ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4318         ret += fprintf(fp, "... ");
4319 
4320         map = cpu_map__new_data(&ev_cpus->cpus);
4321         if (map)
4322             ret += cpu_map__fprintf(map, fp);
4323         else
4324             ret += fprintf(fp, "failed to get cpus\n");
4325         break;
4326     default:
4327         ret += fprintf(fp, "... unknown type\n");
4328         break;
4329     }
4330 
4331     return ret;
4332 }
4333 
4334 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4335                  union perf_event *event,
4336                  struct evlist **pevlist)
4337 {
4338     u32 i, ids, n_ids;
4339     struct evsel *evsel;
4340     struct evlist *evlist = *pevlist;
4341 
4342     if (evlist == NULL) {
4343         *pevlist = evlist = evlist__new();
4344         if (evlist == NULL)
4345             return -ENOMEM;
4346     }
4347 
4348     evsel = evsel__new(&event->attr.attr);
4349     if (evsel == NULL)
4350         return -ENOMEM;
4351 
4352     evlist__add(evlist, evsel);
4353 
4354     ids = event->header.size;
4355     ids -= (void *)&event->attr.id - (void *)event;
4356     n_ids = ids / sizeof(u64);
4357     /*
4358      * We don't have the cpu and thread maps on the header, so
4359      * for allocating the perf_sample_id table we fake 1 cpu and
4360      * hattr->ids threads.
4361      */
4362     if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4363         return -ENOMEM;
4364 
4365     for (i = 0; i < n_ids; i++) {
4366         perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4367     }
4368 
4369     return 0;
4370 }
4371 
4372 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4373                      union perf_event *event,
4374                      struct evlist **pevlist)
4375 {
4376     struct perf_record_event_update *ev = &event->event_update;
4377     struct perf_record_event_update_scale *ev_scale;
4378     struct perf_record_event_update_cpus *ev_cpus;
4379     struct evlist *evlist;
4380     struct evsel *evsel;
4381     struct perf_cpu_map *map;
4382 
4383     if (dump_trace)
4384         perf_event__fprintf_event_update(event, stdout);
4385 
4386     if (!pevlist || *pevlist == NULL)
4387         return -EINVAL;
4388 
4389     evlist = *pevlist;
4390 
4391     evsel = evlist__id2evsel(evlist, ev->id);
4392     if (evsel == NULL)
4393         return -EINVAL;
4394 
4395     switch (ev->type) {
4396     case PERF_EVENT_UPDATE__UNIT:
4397         free((char *)evsel->unit);
4398         evsel->unit = strdup(ev->data);
4399         break;
4400     case PERF_EVENT_UPDATE__NAME:
4401         free(evsel->name);
4402         evsel->name = strdup(ev->data);
4403         break;
4404     case PERF_EVENT_UPDATE__SCALE:
4405         ev_scale = (struct perf_record_event_update_scale *)ev->data;
4406         evsel->scale = ev_scale->scale;
4407         break;
4408     case PERF_EVENT_UPDATE__CPUS:
4409         ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4410         map = cpu_map__new_data(&ev_cpus->cpus);
4411         if (map) {
4412             perf_cpu_map__put(evsel->core.own_cpus);
4413             evsel->core.own_cpus = map;
4414         } else
4415             pr_err("failed to get event_update cpus\n");
4416     default:
4417         break;
4418     }
4419 
4420     return 0;
4421 }
4422 
4423 int perf_event__process_tracing_data(struct perf_session *session,
4424                      union perf_event *event)
4425 {
4426     ssize_t size_read, padding, size = event->tracing_data.size;
4427     int fd = perf_data__fd(session->data);
4428     char buf[BUFSIZ];
4429 
4430     /*
4431      * The pipe fd is already in proper place and in any case
4432      * we can't move it, and we'd screw the case where we read
4433      * 'pipe' data from regular file. The trace_report reads
4434      * data from 'fd' so we need to set it directly behind the
4435      * event, where the tracing data starts.
4436      */
4437     if (!perf_data__is_pipe(session->data)) {
4438         off_t offset = lseek(fd, 0, SEEK_CUR);
4439 
4440         /* setup for reading amidst mmap */
4441         lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4442               SEEK_SET);
4443     }
4444 
4445     size_read = trace_report(fd, &session->tevent,
4446                  session->repipe);
4447     padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4448 
4449     if (readn(fd, buf, padding) < 0) {
4450         pr_err("%s: reading input file", __func__);
4451         return -1;
4452     }
4453     if (session->repipe) {
4454         int retw = write(STDOUT_FILENO, buf, padding);
4455         if (retw <= 0 || retw != padding) {
4456             pr_err("%s: repiping tracing data padding", __func__);
4457             return -1;
4458         }
4459     }
4460 
4461     if (size_read + padding != size) {
4462         pr_err("%s: tracing data size mismatch", __func__);
4463         return -1;
4464     }
4465 
4466     evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4467 
4468     return size_read + padding;
4469 }
4470 
4471 int perf_event__process_build_id(struct perf_session *session,
4472                  union perf_event *event)
4473 {
4474     __event_process_build_id(&event->build_id,
4475                  event->build_id.filename,
4476                  session);
4477     return 0;
4478 }