0001
0002 #include "cpumap.h"
0003 #include "debug.h"
0004 #include "env.h"
0005 #include "util/header.h"
0006 #include <linux/ctype.h>
0007 #include <linux/zalloc.h>
0008 #include "cgroup.h"
0009 #include <errno.h>
0010 #include <sys/utsname.h>
0011 #include <stdlib.h>
0012 #include <string.h>
0013 #include "strbuf.h"
0014
0015 struct perf_env perf_env;
0016
0017 #ifdef HAVE_LIBBPF_SUPPORT
0018 #include "bpf-event.h"
0019 #include "bpf-utils.h"
0020 #include <bpf/libbpf.h>
0021
0022 void perf_env__insert_bpf_prog_info(struct perf_env *env,
0023 struct bpf_prog_info_node *info_node)
0024 {
0025 __u32 prog_id = info_node->info_linear->info.id;
0026 struct bpf_prog_info_node *node;
0027 struct rb_node *parent = NULL;
0028 struct rb_node **p;
0029
0030 down_write(&env->bpf_progs.lock);
0031 p = &env->bpf_progs.infos.rb_node;
0032
0033 while (*p != NULL) {
0034 parent = *p;
0035 node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
0036 if (prog_id < node->info_linear->info.id) {
0037 p = &(*p)->rb_left;
0038 } else if (prog_id > node->info_linear->info.id) {
0039 p = &(*p)->rb_right;
0040 } else {
0041 pr_debug("duplicated bpf prog info %u\n", prog_id);
0042 goto out;
0043 }
0044 }
0045
0046 rb_link_node(&info_node->rb_node, parent, p);
0047 rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
0048 env->bpf_progs.infos_cnt++;
0049 out:
0050 up_write(&env->bpf_progs.lock);
0051 }
0052
0053 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
0054 __u32 prog_id)
0055 {
0056 struct bpf_prog_info_node *node = NULL;
0057 struct rb_node *n;
0058
0059 down_read(&env->bpf_progs.lock);
0060 n = env->bpf_progs.infos.rb_node;
0061
0062 while (n) {
0063 node = rb_entry(n, struct bpf_prog_info_node, rb_node);
0064 if (prog_id < node->info_linear->info.id)
0065 n = n->rb_left;
0066 else if (prog_id > node->info_linear->info.id)
0067 n = n->rb_right;
0068 else
0069 goto out;
0070 }
0071 node = NULL;
0072
0073 out:
0074 up_read(&env->bpf_progs.lock);
0075 return node;
0076 }
0077
0078 bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
0079 {
0080 struct rb_node *parent = NULL;
0081 __u32 btf_id = btf_node->id;
0082 struct btf_node *node;
0083 struct rb_node **p;
0084 bool ret = true;
0085
0086 down_write(&env->bpf_progs.lock);
0087 p = &env->bpf_progs.btfs.rb_node;
0088
0089 while (*p != NULL) {
0090 parent = *p;
0091 node = rb_entry(parent, struct btf_node, rb_node);
0092 if (btf_id < node->id) {
0093 p = &(*p)->rb_left;
0094 } else if (btf_id > node->id) {
0095 p = &(*p)->rb_right;
0096 } else {
0097 pr_debug("duplicated btf %u\n", btf_id);
0098 ret = false;
0099 goto out;
0100 }
0101 }
0102
0103 rb_link_node(&btf_node->rb_node, parent, p);
0104 rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
0105 env->bpf_progs.btfs_cnt++;
0106 out:
0107 up_write(&env->bpf_progs.lock);
0108 return ret;
0109 }
0110
0111 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
0112 {
0113 struct btf_node *node = NULL;
0114 struct rb_node *n;
0115
0116 down_read(&env->bpf_progs.lock);
0117 n = env->bpf_progs.btfs.rb_node;
0118
0119 while (n) {
0120 node = rb_entry(n, struct btf_node, rb_node);
0121 if (btf_id < node->id)
0122 n = n->rb_left;
0123 else if (btf_id > node->id)
0124 n = n->rb_right;
0125 else
0126 goto out;
0127 }
0128 node = NULL;
0129
0130 out:
0131 up_read(&env->bpf_progs.lock);
0132 return node;
0133 }
0134
0135
0136 static void perf_env__purge_bpf(struct perf_env *env)
0137 {
0138 struct rb_root *root;
0139 struct rb_node *next;
0140
0141 down_write(&env->bpf_progs.lock);
0142
0143 root = &env->bpf_progs.infos;
0144 next = rb_first(root);
0145
0146 while (next) {
0147 struct bpf_prog_info_node *node;
0148
0149 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
0150 next = rb_next(&node->rb_node);
0151 rb_erase(&node->rb_node, root);
0152 free(node->info_linear);
0153 free(node);
0154 }
0155
0156 env->bpf_progs.infos_cnt = 0;
0157
0158 root = &env->bpf_progs.btfs;
0159 next = rb_first(root);
0160
0161 while (next) {
0162 struct btf_node *node;
0163
0164 node = rb_entry(next, struct btf_node, rb_node);
0165 next = rb_next(&node->rb_node);
0166 rb_erase(&node->rb_node, root);
0167 free(node);
0168 }
0169
0170 env->bpf_progs.btfs_cnt = 0;
0171
0172 up_write(&env->bpf_progs.lock);
0173 }
0174 #else
0175 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
0176 {
0177 }
0178 #endif
0179
0180 void perf_env__exit(struct perf_env *env)
0181 {
0182 int i, j;
0183
0184 perf_env__purge_bpf(env);
0185 perf_env__purge_cgroups(env);
0186 zfree(&env->hostname);
0187 zfree(&env->os_release);
0188 zfree(&env->version);
0189 zfree(&env->arch);
0190 zfree(&env->cpu_desc);
0191 zfree(&env->cpuid);
0192 zfree(&env->cmdline);
0193 zfree(&env->cmdline_argv);
0194 zfree(&env->sibling_dies);
0195 zfree(&env->sibling_cores);
0196 zfree(&env->sibling_threads);
0197 zfree(&env->pmu_mappings);
0198 zfree(&env->cpu);
0199 for (i = 0; i < env->nr_cpu_pmu_caps; i++)
0200 zfree(&env->cpu_pmu_caps[i]);
0201 zfree(&env->cpu_pmu_caps);
0202 zfree(&env->numa_map);
0203
0204 for (i = 0; i < env->nr_numa_nodes; i++)
0205 perf_cpu_map__put(env->numa_nodes[i].map);
0206 zfree(&env->numa_nodes);
0207
0208 for (i = 0; i < env->caches_cnt; i++)
0209 cpu_cache_level__free(&env->caches[i]);
0210 zfree(&env->caches);
0211
0212 for (i = 0; i < env->nr_memory_nodes; i++)
0213 zfree(&env->memory_nodes[i].set);
0214 zfree(&env->memory_nodes);
0215
0216 for (i = 0; i < env->nr_hybrid_nodes; i++) {
0217 zfree(&env->hybrid_nodes[i].pmu_name);
0218 zfree(&env->hybrid_nodes[i].cpus);
0219 }
0220 zfree(&env->hybrid_nodes);
0221
0222 for (i = 0; i < env->nr_pmus_with_caps; i++) {
0223 for (j = 0; j < env->pmu_caps[i].nr_caps; j++)
0224 zfree(&env->pmu_caps[i].caps[j]);
0225 zfree(&env->pmu_caps[i].caps);
0226 zfree(&env->pmu_caps[i].pmu_name);
0227 }
0228 zfree(&env->pmu_caps);
0229 }
0230
0231 void perf_env__init(struct perf_env *env)
0232 {
0233 #ifdef HAVE_LIBBPF_SUPPORT
0234 env->bpf_progs.infos = RB_ROOT;
0235 env->bpf_progs.btfs = RB_ROOT;
0236 init_rwsem(&env->bpf_progs.lock);
0237 #endif
0238 env->kernel_is_64_bit = -1;
0239 }
0240
0241 static void perf_env__init_kernel_mode(struct perf_env *env)
0242 {
0243 const char *arch = perf_env__raw_arch(env);
0244
0245 if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
0246 !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
0247 !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
0248 !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
0249 env->kernel_is_64_bit = 1;
0250 else
0251 env->kernel_is_64_bit = 0;
0252 }
0253
0254 int perf_env__kernel_is_64_bit(struct perf_env *env)
0255 {
0256 if (env->kernel_is_64_bit == -1)
0257 perf_env__init_kernel_mode(env);
0258
0259 return env->kernel_is_64_bit;
0260 }
0261
0262 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
0263 {
0264 int i;
0265
0266
0267 env->cmdline_argv = calloc(argc, sizeof(char *));
0268 if (env->cmdline_argv == NULL)
0269 goto out_enomem;
0270
0271
0272
0273
0274
0275 for (i = 0; i < argc ; i++) {
0276 env->cmdline_argv[i] = argv[i];
0277 if (env->cmdline_argv[i] == NULL)
0278 goto out_free;
0279 }
0280
0281 env->nr_cmdline = argc;
0282
0283 return 0;
0284 out_free:
0285 zfree(&env->cmdline_argv);
0286 out_enomem:
0287 return -ENOMEM;
0288 }
0289
0290 int perf_env__read_cpu_topology_map(struct perf_env *env)
0291 {
0292 int idx, nr_cpus;
0293
0294 if (env->cpu != NULL)
0295 return 0;
0296
0297 if (env->nr_cpus_avail == 0)
0298 env->nr_cpus_avail = cpu__max_present_cpu().cpu;
0299
0300 nr_cpus = env->nr_cpus_avail;
0301 if (nr_cpus == -1)
0302 return -EINVAL;
0303
0304 env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
0305 if (env->cpu == NULL)
0306 return -ENOMEM;
0307
0308 for (idx = 0; idx < nr_cpus; ++idx) {
0309 struct perf_cpu cpu = { .cpu = idx };
0310
0311 env->cpu[idx].core_id = cpu__get_core_id(cpu);
0312 env->cpu[idx].socket_id = cpu__get_socket_id(cpu);
0313 env->cpu[idx].die_id = cpu__get_die_id(cpu);
0314 }
0315
0316 env->nr_cpus_avail = nr_cpus;
0317 return 0;
0318 }
0319
0320 int perf_env__read_pmu_mappings(struct perf_env *env)
0321 {
0322 struct perf_pmu *pmu = NULL;
0323 u32 pmu_num = 0;
0324 struct strbuf sb;
0325
0326 while ((pmu = perf_pmu__scan(pmu))) {
0327 if (!pmu->name)
0328 continue;
0329 pmu_num++;
0330 }
0331 if (!pmu_num) {
0332 pr_debug("pmu mappings not available\n");
0333 return -ENOENT;
0334 }
0335 env->nr_pmu_mappings = pmu_num;
0336
0337 if (strbuf_init(&sb, 128 * pmu_num) < 0)
0338 return -ENOMEM;
0339
0340 while ((pmu = perf_pmu__scan(pmu))) {
0341 if (!pmu->name)
0342 continue;
0343 if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
0344 goto error;
0345
0346 if (strbuf_add(&sb, "", 1) < 0)
0347 goto error;
0348 }
0349
0350 env->pmu_mappings = strbuf_detach(&sb, NULL);
0351
0352 return 0;
0353
0354 error:
0355 strbuf_release(&sb);
0356 return -1;
0357 }
0358
0359 int perf_env__read_cpuid(struct perf_env *env)
0360 {
0361 char cpuid[128];
0362 int err = get_cpuid(cpuid, sizeof(cpuid));
0363
0364 if (err)
0365 return err;
0366
0367 free(env->cpuid);
0368 env->cpuid = strdup(cpuid);
0369 if (env->cpuid == NULL)
0370 return ENOMEM;
0371 return 0;
0372 }
0373
0374 static int perf_env__read_arch(struct perf_env *env)
0375 {
0376 struct utsname uts;
0377
0378 if (env->arch)
0379 return 0;
0380
0381 if (!uname(&uts))
0382 env->arch = strdup(uts.machine);
0383
0384 return env->arch ? 0 : -ENOMEM;
0385 }
0386
0387 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
0388 {
0389 if (env->nr_cpus_avail == 0)
0390 env->nr_cpus_avail = cpu__max_present_cpu().cpu;
0391
0392 return env->nr_cpus_avail ? 0 : -ENOENT;
0393 }
0394
0395 const char *perf_env__raw_arch(struct perf_env *env)
0396 {
0397 return env && !perf_env__read_arch(env) ? env->arch : "unknown";
0398 }
0399
0400 int perf_env__nr_cpus_avail(struct perf_env *env)
0401 {
0402 return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
0403 }
0404
0405 void cpu_cache_level__free(struct cpu_cache_level *cache)
0406 {
0407 zfree(&cache->type);
0408 zfree(&cache->map);
0409 zfree(&cache->size);
0410 }
0411
0412
0413
0414
0415
0416 static const char *normalize_arch(char *arch)
0417 {
0418 if (!strcmp(arch, "x86_64"))
0419 return "x86";
0420 if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
0421 return "x86";
0422 if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
0423 return "sparc";
0424 if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
0425 return "arm64";
0426 if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
0427 return "arm";
0428 if (!strncmp(arch, "s390", 4))
0429 return "s390";
0430 if (!strncmp(arch, "parisc", 6))
0431 return "parisc";
0432 if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
0433 return "powerpc";
0434 if (!strncmp(arch, "mips", 4))
0435 return "mips";
0436 if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
0437 return "sh";
0438
0439 return arch;
0440 }
0441
0442 const char *perf_env__arch(struct perf_env *env)
0443 {
0444 char *arch_name;
0445
0446 if (!env || !env->arch) {
0447 static struct utsname uts = { .machine[0] = '\0', };
0448 if (uts.machine[0] == '\0' && uname(&uts) < 0)
0449 return NULL;
0450 arch_name = uts.machine;
0451 } else
0452 arch_name = env->arch;
0453
0454 return normalize_arch(arch_name);
0455 }
0456
0457 const char *perf_env__cpuid(struct perf_env *env)
0458 {
0459 int status;
0460
0461 if (!env || !env->cpuid) {
0462 status = perf_env__read_cpuid(env);
0463 if (status)
0464 return NULL;
0465 }
0466
0467 return env->cpuid;
0468 }
0469
0470 int perf_env__nr_pmu_mappings(struct perf_env *env)
0471 {
0472 int status;
0473
0474 if (!env || !env->nr_pmu_mappings) {
0475 status = perf_env__read_pmu_mappings(env);
0476 if (status)
0477 return 0;
0478 }
0479
0480 return env->nr_pmu_mappings;
0481 }
0482
0483 const char *perf_env__pmu_mappings(struct perf_env *env)
0484 {
0485 int status;
0486
0487 if (!env || !env->pmu_mappings) {
0488 status = perf_env__read_pmu_mappings(env);
0489 if (status)
0490 return NULL;
0491 }
0492
0493 return env->pmu_mappings;
0494 }
0495
0496 int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu)
0497 {
0498 if (!env->nr_numa_map) {
0499 struct numa_node *nn;
0500 int i, nr = 0;
0501
0502 for (i = 0; i < env->nr_numa_nodes; i++) {
0503 nn = &env->numa_nodes[i];
0504 nr = max(nr, perf_cpu_map__max(nn->map).cpu);
0505 }
0506
0507 nr++;
0508
0509
0510
0511
0512
0513 env->numa_map = malloc(nr * sizeof(int));
0514 if (!env->numa_map)
0515 return -1;
0516
0517 for (i = 0; i < nr; i++)
0518 env->numa_map[i] = -1;
0519
0520 env->nr_numa_map = nr;
0521
0522 for (i = 0; i < env->nr_numa_nodes; i++) {
0523 struct perf_cpu tmp;
0524 int j;
0525
0526 nn = &env->numa_nodes[i];
0527 perf_cpu_map__for_each_cpu(tmp, j, nn->map)
0528 env->numa_map[tmp.cpu] = i;
0529 }
0530 }
0531
0532 return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1;
0533 }
0534
0535 char *perf_env__find_pmu_cap(struct perf_env *env, const char *pmu_name,
0536 const char *cap)
0537 {
0538 char *cap_eq;
0539 int cap_size;
0540 char **ptr;
0541 int i, j;
0542
0543 if (!pmu_name || !cap)
0544 return NULL;
0545
0546 cap_size = strlen(cap);
0547 cap_eq = zalloc(cap_size + 2);
0548 if (!cap_eq)
0549 return NULL;
0550
0551 memcpy(cap_eq, cap, cap_size);
0552 cap_eq[cap_size] = '=';
0553
0554 if (!strcmp(pmu_name, "cpu")) {
0555 for (i = 0; i < env->nr_cpu_pmu_caps; i++) {
0556 if (!strncmp(env->cpu_pmu_caps[i], cap_eq, cap_size + 1)) {
0557 free(cap_eq);
0558 return &env->cpu_pmu_caps[i][cap_size + 1];
0559 }
0560 }
0561 goto out;
0562 }
0563
0564 for (i = 0; i < env->nr_pmus_with_caps; i++) {
0565 if (strcmp(env->pmu_caps[i].pmu_name, pmu_name))
0566 continue;
0567
0568 ptr = env->pmu_caps[i].caps;
0569
0570 for (j = 0; j < env->pmu_caps[i].nr_caps; j++) {
0571 if (!strncmp(ptr[j], cap_eq, cap_size + 1)) {
0572 free(cap_eq);
0573 return &ptr[j][cap_size + 1];
0574 }
0575 }
0576 }
0577
0578 out:
0579 free(cap_eq);
0580 return NULL;
0581 }