Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 #include "cpumap.h"
0003 #include "debug.h"
0004 #include "env.h"
0005 #include "util/header.h"
0006 #include <linux/ctype.h>
0007 #include <linux/zalloc.h>
0008 #include "cgroup.h"
0009 #include <errno.h>
0010 #include <sys/utsname.h>
0011 #include <stdlib.h>
0012 #include <string.h>
0013 #include "strbuf.h"
0014 
0015 struct perf_env perf_env;
0016 
0017 #ifdef HAVE_LIBBPF_SUPPORT
0018 #include "bpf-event.h"
0019 #include "bpf-utils.h"
0020 #include <bpf/libbpf.h>
0021 
0022 void perf_env__insert_bpf_prog_info(struct perf_env *env,
0023                     struct bpf_prog_info_node *info_node)
0024 {
0025     __u32 prog_id = info_node->info_linear->info.id;
0026     struct bpf_prog_info_node *node;
0027     struct rb_node *parent = NULL;
0028     struct rb_node **p;
0029 
0030     down_write(&env->bpf_progs.lock);
0031     p = &env->bpf_progs.infos.rb_node;
0032 
0033     while (*p != NULL) {
0034         parent = *p;
0035         node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
0036         if (prog_id < node->info_linear->info.id) {
0037             p = &(*p)->rb_left;
0038         } else if (prog_id > node->info_linear->info.id) {
0039             p = &(*p)->rb_right;
0040         } else {
0041             pr_debug("duplicated bpf prog info %u\n", prog_id);
0042             goto out;
0043         }
0044     }
0045 
0046     rb_link_node(&info_node->rb_node, parent, p);
0047     rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
0048     env->bpf_progs.infos_cnt++;
0049 out:
0050     up_write(&env->bpf_progs.lock);
0051 }
0052 
0053 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
0054                             __u32 prog_id)
0055 {
0056     struct bpf_prog_info_node *node = NULL;
0057     struct rb_node *n;
0058 
0059     down_read(&env->bpf_progs.lock);
0060     n = env->bpf_progs.infos.rb_node;
0061 
0062     while (n) {
0063         node = rb_entry(n, struct bpf_prog_info_node, rb_node);
0064         if (prog_id < node->info_linear->info.id)
0065             n = n->rb_left;
0066         else if (prog_id > node->info_linear->info.id)
0067             n = n->rb_right;
0068         else
0069             goto out;
0070     }
0071     node = NULL;
0072 
0073 out:
0074     up_read(&env->bpf_progs.lock);
0075     return node;
0076 }
0077 
0078 bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
0079 {
0080     struct rb_node *parent = NULL;
0081     __u32 btf_id = btf_node->id;
0082     struct btf_node *node;
0083     struct rb_node **p;
0084     bool ret = true;
0085 
0086     down_write(&env->bpf_progs.lock);
0087     p = &env->bpf_progs.btfs.rb_node;
0088 
0089     while (*p != NULL) {
0090         parent = *p;
0091         node = rb_entry(parent, struct btf_node, rb_node);
0092         if (btf_id < node->id) {
0093             p = &(*p)->rb_left;
0094         } else if (btf_id > node->id) {
0095             p = &(*p)->rb_right;
0096         } else {
0097             pr_debug("duplicated btf %u\n", btf_id);
0098             ret = false;
0099             goto out;
0100         }
0101     }
0102 
0103     rb_link_node(&btf_node->rb_node, parent, p);
0104     rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
0105     env->bpf_progs.btfs_cnt++;
0106 out:
0107     up_write(&env->bpf_progs.lock);
0108     return ret;
0109 }
0110 
0111 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
0112 {
0113     struct btf_node *node = NULL;
0114     struct rb_node *n;
0115 
0116     down_read(&env->bpf_progs.lock);
0117     n = env->bpf_progs.btfs.rb_node;
0118 
0119     while (n) {
0120         node = rb_entry(n, struct btf_node, rb_node);
0121         if (btf_id < node->id)
0122             n = n->rb_left;
0123         else if (btf_id > node->id)
0124             n = n->rb_right;
0125         else
0126             goto out;
0127     }
0128     node = NULL;
0129 
0130 out:
0131     up_read(&env->bpf_progs.lock);
0132     return node;
0133 }
0134 
0135 /* purge data in bpf_progs.infos tree */
0136 static void perf_env__purge_bpf(struct perf_env *env)
0137 {
0138     struct rb_root *root;
0139     struct rb_node *next;
0140 
0141     down_write(&env->bpf_progs.lock);
0142 
0143     root = &env->bpf_progs.infos;
0144     next = rb_first(root);
0145 
0146     while (next) {
0147         struct bpf_prog_info_node *node;
0148 
0149         node = rb_entry(next, struct bpf_prog_info_node, rb_node);
0150         next = rb_next(&node->rb_node);
0151         rb_erase(&node->rb_node, root);
0152         free(node->info_linear);
0153         free(node);
0154     }
0155 
0156     env->bpf_progs.infos_cnt = 0;
0157 
0158     root = &env->bpf_progs.btfs;
0159     next = rb_first(root);
0160 
0161     while (next) {
0162         struct btf_node *node;
0163 
0164         node = rb_entry(next, struct btf_node, rb_node);
0165         next = rb_next(&node->rb_node);
0166         rb_erase(&node->rb_node, root);
0167         free(node);
0168     }
0169 
0170     env->bpf_progs.btfs_cnt = 0;
0171 
0172     up_write(&env->bpf_progs.lock);
0173 }
0174 #else // HAVE_LIBBPF_SUPPORT
0175 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
0176 {
0177 }
0178 #endif // HAVE_LIBBPF_SUPPORT
0179 
0180 void perf_env__exit(struct perf_env *env)
0181 {
0182     int i, j;
0183 
0184     perf_env__purge_bpf(env);
0185     perf_env__purge_cgroups(env);
0186     zfree(&env->hostname);
0187     zfree(&env->os_release);
0188     zfree(&env->version);
0189     zfree(&env->arch);
0190     zfree(&env->cpu_desc);
0191     zfree(&env->cpuid);
0192     zfree(&env->cmdline);
0193     zfree(&env->cmdline_argv);
0194     zfree(&env->sibling_dies);
0195     zfree(&env->sibling_cores);
0196     zfree(&env->sibling_threads);
0197     zfree(&env->pmu_mappings);
0198     zfree(&env->cpu);
0199     for (i = 0; i < env->nr_cpu_pmu_caps; i++)
0200         zfree(&env->cpu_pmu_caps[i]);
0201     zfree(&env->cpu_pmu_caps);
0202     zfree(&env->numa_map);
0203 
0204     for (i = 0; i < env->nr_numa_nodes; i++)
0205         perf_cpu_map__put(env->numa_nodes[i].map);
0206     zfree(&env->numa_nodes);
0207 
0208     for (i = 0; i < env->caches_cnt; i++)
0209         cpu_cache_level__free(&env->caches[i]);
0210     zfree(&env->caches);
0211 
0212     for (i = 0; i < env->nr_memory_nodes; i++)
0213         zfree(&env->memory_nodes[i].set);
0214     zfree(&env->memory_nodes);
0215 
0216     for (i = 0; i < env->nr_hybrid_nodes; i++) {
0217         zfree(&env->hybrid_nodes[i].pmu_name);
0218         zfree(&env->hybrid_nodes[i].cpus);
0219     }
0220     zfree(&env->hybrid_nodes);
0221 
0222     for (i = 0; i < env->nr_pmus_with_caps; i++) {
0223         for (j = 0; j < env->pmu_caps[i].nr_caps; j++)
0224             zfree(&env->pmu_caps[i].caps[j]);
0225         zfree(&env->pmu_caps[i].caps);
0226         zfree(&env->pmu_caps[i].pmu_name);
0227     }
0228     zfree(&env->pmu_caps);
0229 }
0230 
0231 void perf_env__init(struct perf_env *env)
0232 {
0233 #ifdef HAVE_LIBBPF_SUPPORT
0234     env->bpf_progs.infos = RB_ROOT;
0235     env->bpf_progs.btfs = RB_ROOT;
0236     init_rwsem(&env->bpf_progs.lock);
0237 #endif
0238     env->kernel_is_64_bit = -1;
0239 }
0240 
0241 static void perf_env__init_kernel_mode(struct perf_env *env)
0242 {
0243     const char *arch = perf_env__raw_arch(env);
0244 
0245     if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
0246         !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
0247         !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
0248         !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
0249         env->kernel_is_64_bit = 1;
0250     else
0251         env->kernel_is_64_bit = 0;
0252 }
0253 
0254 int perf_env__kernel_is_64_bit(struct perf_env *env)
0255 {
0256     if (env->kernel_is_64_bit == -1)
0257         perf_env__init_kernel_mode(env);
0258 
0259     return env->kernel_is_64_bit;
0260 }
0261 
0262 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
0263 {
0264     int i;
0265 
0266     /* do not include NULL termination */
0267     env->cmdline_argv = calloc(argc, sizeof(char *));
0268     if (env->cmdline_argv == NULL)
0269         goto out_enomem;
0270 
0271     /*
0272      * Must copy argv contents because it gets moved around during option
0273      * parsing:
0274      */
0275     for (i = 0; i < argc ; i++) {
0276         env->cmdline_argv[i] = argv[i];
0277         if (env->cmdline_argv[i] == NULL)
0278             goto out_free;
0279     }
0280 
0281     env->nr_cmdline = argc;
0282 
0283     return 0;
0284 out_free:
0285     zfree(&env->cmdline_argv);
0286 out_enomem:
0287     return -ENOMEM;
0288 }
0289 
0290 int perf_env__read_cpu_topology_map(struct perf_env *env)
0291 {
0292     int idx, nr_cpus;
0293 
0294     if (env->cpu != NULL)
0295         return 0;
0296 
0297     if (env->nr_cpus_avail == 0)
0298         env->nr_cpus_avail = cpu__max_present_cpu().cpu;
0299 
0300     nr_cpus = env->nr_cpus_avail;
0301     if (nr_cpus == -1)
0302         return -EINVAL;
0303 
0304     env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
0305     if (env->cpu == NULL)
0306         return -ENOMEM;
0307 
0308     for (idx = 0; idx < nr_cpus; ++idx) {
0309         struct perf_cpu cpu = { .cpu = idx };
0310 
0311         env->cpu[idx].core_id   = cpu__get_core_id(cpu);
0312         env->cpu[idx].socket_id = cpu__get_socket_id(cpu);
0313         env->cpu[idx].die_id    = cpu__get_die_id(cpu);
0314     }
0315 
0316     env->nr_cpus_avail = nr_cpus;
0317     return 0;
0318 }
0319 
0320 int perf_env__read_pmu_mappings(struct perf_env *env)
0321 {
0322     struct perf_pmu *pmu = NULL;
0323     u32 pmu_num = 0;
0324     struct strbuf sb;
0325 
0326     while ((pmu = perf_pmu__scan(pmu))) {
0327         if (!pmu->name)
0328             continue;
0329         pmu_num++;
0330     }
0331     if (!pmu_num) {
0332         pr_debug("pmu mappings not available\n");
0333         return -ENOENT;
0334     }
0335     env->nr_pmu_mappings = pmu_num;
0336 
0337     if (strbuf_init(&sb, 128 * pmu_num) < 0)
0338         return -ENOMEM;
0339 
0340     while ((pmu = perf_pmu__scan(pmu))) {
0341         if (!pmu->name)
0342             continue;
0343         if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
0344             goto error;
0345         /* include a NULL character at the end */
0346         if (strbuf_add(&sb, "", 1) < 0)
0347             goto error;
0348     }
0349 
0350     env->pmu_mappings = strbuf_detach(&sb, NULL);
0351 
0352     return 0;
0353 
0354 error:
0355     strbuf_release(&sb);
0356     return -1;
0357 }
0358 
0359 int perf_env__read_cpuid(struct perf_env *env)
0360 {
0361     char cpuid[128];
0362     int err = get_cpuid(cpuid, sizeof(cpuid));
0363 
0364     if (err)
0365         return err;
0366 
0367     free(env->cpuid);
0368     env->cpuid = strdup(cpuid);
0369     if (env->cpuid == NULL)
0370         return ENOMEM;
0371     return 0;
0372 }
0373 
0374 static int perf_env__read_arch(struct perf_env *env)
0375 {
0376     struct utsname uts;
0377 
0378     if (env->arch)
0379         return 0;
0380 
0381     if (!uname(&uts))
0382         env->arch = strdup(uts.machine);
0383 
0384     return env->arch ? 0 : -ENOMEM;
0385 }
0386 
0387 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
0388 {
0389     if (env->nr_cpus_avail == 0)
0390         env->nr_cpus_avail = cpu__max_present_cpu().cpu;
0391 
0392     return env->nr_cpus_avail ? 0 : -ENOENT;
0393 }
0394 
0395 const char *perf_env__raw_arch(struct perf_env *env)
0396 {
0397     return env && !perf_env__read_arch(env) ? env->arch : "unknown";
0398 }
0399 
0400 int perf_env__nr_cpus_avail(struct perf_env *env)
0401 {
0402     return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
0403 }
0404 
0405 void cpu_cache_level__free(struct cpu_cache_level *cache)
0406 {
0407     zfree(&cache->type);
0408     zfree(&cache->map);
0409     zfree(&cache->size);
0410 }
0411 
0412 /*
0413  * Return architecture name in a normalized form.
0414  * The conversion logic comes from the Makefile.
0415  */
0416 static const char *normalize_arch(char *arch)
0417 {
0418     if (!strcmp(arch, "x86_64"))
0419         return "x86";
0420     if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
0421         return "x86";
0422     if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
0423         return "sparc";
0424     if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
0425         return "arm64";
0426     if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
0427         return "arm";
0428     if (!strncmp(arch, "s390", 4))
0429         return "s390";
0430     if (!strncmp(arch, "parisc", 6))
0431         return "parisc";
0432     if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
0433         return "powerpc";
0434     if (!strncmp(arch, "mips", 4))
0435         return "mips";
0436     if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
0437         return "sh";
0438 
0439     return arch;
0440 }
0441 
0442 const char *perf_env__arch(struct perf_env *env)
0443 {
0444     char *arch_name;
0445 
0446     if (!env || !env->arch) { /* Assume local operation */
0447         static struct utsname uts = { .machine[0] = '\0', };
0448         if (uts.machine[0] == '\0' && uname(&uts) < 0)
0449             return NULL;
0450         arch_name = uts.machine;
0451     } else
0452         arch_name = env->arch;
0453 
0454     return normalize_arch(arch_name);
0455 }
0456 
0457 const char *perf_env__cpuid(struct perf_env *env)
0458 {
0459     int status;
0460 
0461     if (!env || !env->cpuid) { /* Assume local operation */
0462         status = perf_env__read_cpuid(env);
0463         if (status)
0464             return NULL;
0465     }
0466 
0467     return env->cpuid;
0468 }
0469 
0470 int perf_env__nr_pmu_mappings(struct perf_env *env)
0471 {
0472     int status;
0473 
0474     if (!env || !env->nr_pmu_mappings) { /* Assume local operation */
0475         status = perf_env__read_pmu_mappings(env);
0476         if (status)
0477             return 0;
0478     }
0479 
0480     return env->nr_pmu_mappings;
0481 }
0482 
0483 const char *perf_env__pmu_mappings(struct perf_env *env)
0484 {
0485     int status;
0486 
0487     if (!env || !env->pmu_mappings) { /* Assume local operation */
0488         status = perf_env__read_pmu_mappings(env);
0489         if (status)
0490             return NULL;
0491     }
0492 
0493     return env->pmu_mappings;
0494 }
0495 
0496 int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu)
0497 {
0498     if (!env->nr_numa_map) {
0499         struct numa_node *nn;
0500         int i, nr = 0;
0501 
0502         for (i = 0; i < env->nr_numa_nodes; i++) {
0503             nn = &env->numa_nodes[i];
0504             nr = max(nr, perf_cpu_map__max(nn->map).cpu);
0505         }
0506 
0507         nr++;
0508 
0509         /*
0510          * We initialize the numa_map array to prepare
0511          * it for missing cpus, which return node -1
0512          */
0513         env->numa_map = malloc(nr * sizeof(int));
0514         if (!env->numa_map)
0515             return -1;
0516 
0517         for (i = 0; i < nr; i++)
0518             env->numa_map[i] = -1;
0519 
0520         env->nr_numa_map = nr;
0521 
0522         for (i = 0; i < env->nr_numa_nodes; i++) {
0523             struct perf_cpu tmp;
0524             int j;
0525 
0526             nn = &env->numa_nodes[i];
0527             perf_cpu_map__for_each_cpu(tmp, j, nn->map)
0528                 env->numa_map[tmp.cpu] = i;
0529         }
0530     }
0531 
0532     return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1;
0533 }
0534 
0535 char *perf_env__find_pmu_cap(struct perf_env *env, const char *pmu_name,
0536                  const char *cap)
0537 {
0538     char *cap_eq;
0539     int cap_size;
0540     char **ptr;
0541     int i, j;
0542 
0543     if (!pmu_name || !cap)
0544         return NULL;
0545 
0546     cap_size = strlen(cap);
0547     cap_eq = zalloc(cap_size + 2);
0548     if (!cap_eq)
0549         return NULL;
0550 
0551     memcpy(cap_eq, cap, cap_size);
0552     cap_eq[cap_size] = '=';
0553 
0554     if (!strcmp(pmu_name, "cpu")) {
0555         for (i = 0; i < env->nr_cpu_pmu_caps; i++) {
0556             if (!strncmp(env->cpu_pmu_caps[i], cap_eq, cap_size + 1)) {
0557                 free(cap_eq);
0558                 return &env->cpu_pmu_caps[i][cap_size + 1];
0559             }
0560         }
0561         goto out;
0562     }
0563 
0564     for (i = 0; i < env->nr_pmus_with_caps; i++) {
0565         if (strcmp(env->pmu_caps[i].pmu_name, pmu_name))
0566             continue;
0567 
0568         ptr = env->pmu_caps[i].caps;
0569 
0570         for (j = 0; j < env->pmu_caps[i].nr_caps; j++) {
0571             if (!strncmp(ptr[j], cap_eq, cap_size + 1)) {
0572                 free(cap_eq);
0573                 return &ptr[j][cap_size + 1];
0574             }
0575         }
0576     }
0577 
0578 out:
0579     free(cap_eq);
0580     return NULL;
0581 }