Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright(C) 2015-2018 Linaro Limited.
0004  *
0005  * Author: Tor Jeremiassen <tor@ti.com>
0006  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
0007  */
0008 
0009 #include <linux/bitops.h>
0010 #include <linux/coresight-pmu.h>
0011 #include <linux/err.h>
0012 #include <linux/kernel.h>
0013 #include <linux/log2.h>
0014 #include <linux/types.h>
0015 #include <linux/zalloc.h>
0016 
0017 #include <opencsd/ocsd_if_types.h>
0018 #include <stdlib.h>
0019 
0020 #include "auxtrace.h"
0021 #include "color.h"
0022 #include "cs-etm.h"
0023 #include "cs-etm-decoder/cs-etm-decoder.h"
0024 #include "debug.h"
0025 #include "dso.h"
0026 #include "evlist.h"
0027 #include "intlist.h"
0028 #include "machine.h"
0029 #include "map.h"
0030 #include "perf.h"
0031 #include "session.h"
0032 #include "map_symbol.h"
0033 #include "branch.h"
0034 #include "symbol.h"
0035 #include "tool.h"
0036 #include "thread.h"
0037 #include "thread-stack.h"
0038 #include <tools/libc_compat.h>
0039 #include "util/synthetic-events.h"
0040 
0041 struct cs_etm_auxtrace {
0042     struct auxtrace auxtrace;
0043     struct auxtrace_queues queues;
0044     struct auxtrace_heap heap;
0045     struct itrace_synth_opts synth_opts;
0046     struct perf_session *session;
0047     struct machine *machine;
0048     struct thread *unknown_thread;
0049 
0050     u8 timeless_decoding;
0051     u8 snapshot_mode;
0052     u8 data_queued;
0053 
0054     int num_cpu;
0055     u64 latest_kernel_timestamp;
0056     u32 auxtrace_type;
0057     u64 branches_sample_type;
0058     u64 branches_id;
0059     u64 instructions_sample_type;
0060     u64 instructions_sample_period;
0061     u64 instructions_id;
0062     u64 **metadata;
0063     unsigned int pmu_type;
0064 };
0065 
0066 struct cs_etm_traceid_queue {
0067     u8 trace_chan_id;
0068     pid_t pid, tid;
0069     u64 period_instructions;
0070     size_t last_branch_pos;
0071     union perf_event *event_buf;
0072     struct thread *thread;
0073     struct branch_stack *last_branch;
0074     struct branch_stack *last_branch_rb;
0075     struct cs_etm_packet *prev_packet;
0076     struct cs_etm_packet *packet;
0077     struct cs_etm_packet_queue packet_queue;
0078 };
0079 
0080 struct cs_etm_queue {
0081     struct cs_etm_auxtrace *etm;
0082     struct cs_etm_decoder *decoder;
0083     struct auxtrace_buffer *buffer;
0084     unsigned int queue_nr;
0085     u8 pending_timestamp_chan_id;
0086     u64 offset;
0087     const unsigned char *buf;
0088     size_t buf_len, buf_used;
0089     /* Conversion between traceID and index in traceid_queues array */
0090     struct intlist *traceid_queues_list;
0091     struct cs_etm_traceid_queue **traceid_queues;
0092 };
0093 
0094 /* RB tree for quick conversion between traceID and metadata pointers */
0095 static struct intlist *traceid_list;
0096 
0097 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
0098 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
0099                        pid_t tid);
0100 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
0101 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
0102 
0103 /* PTMs ETMIDR [11:8] set to b0011 */
0104 #define ETMIDR_PTM_VERSION 0x00000300
0105 
0106 /*
0107  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
0108  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
0109  * encode the etm queue number as the upper 16 bit and the channel as
0110  * the lower 16 bit.
0111  */
0112 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
0113               (queue_nr << 16 | trace_chan_id)
0114 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
0115 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
0116 
0117 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
0118 {
0119     etmidr &= ETMIDR_PTM_VERSION;
0120 
0121     if (etmidr == ETMIDR_PTM_VERSION)
0122         return CS_ETM_PROTO_PTM;
0123 
0124     return CS_ETM_PROTO_ETMV3;
0125 }
0126 
0127 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
0128 {
0129     struct int_node *inode;
0130     u64 *metadata;
0131 
0132     inode = intlist__find(traceid_list, trace_chan_id);
0133     if (!inode)
0134         return -EINVAL;
0135 
0136     metadata = inode->priv;
0137     *magic = metadata[CS_ETM_MAGIC];
0138     return 0;
0139 }
0140 
0141 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
0142 {
0143     struct int_node *inode;
0144     u64 *metadata;
0145 
0146     inode = intlist__find(traceid_list, trace_chan_id);
0147     if (!inode)
0148         return -EINVAL;
0149 
0150     metadata = inode->priv;
0151     *cpu = (int)metadata[CS_ETM_CPU];
0152     return 0;
0153 }
0154 
0155 /*
0156  * The returned PID format is presented by two bits:
0157  *
0158  *   Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
0159  *   Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
0160  *
0161  * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
0162  * are enabled at the same time when the session runs on an EL2 kernel.
0163  * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
0164  * recorded in the trace data, the tool will selectively use
0165  * CONTEXTIDR_EL2 as PID.
0166  */
0167 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
0168 {
0169     struct int_node *inode;
0170     u64 *metadata, val;
0171 
0172     inode = intlist__find(traceid_list, trace_chan_id);
0173     if (!inode)
0174         return -EINVAL;
0175 
0176     metadata = inode->priv;
0177 
0178     if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
0179         val = metadata[CS_ETM_ETMCR];
0180         /* CONTEXTIDR is traced */
0181         if (val & BIT(ETM_OPT_CTXTID))
0182             *pid_fmt = BIT(ETM_OPT_CTXTID);
0183     } else {
0184         val = metadata[CS_ETMV4_TRCCONFIGR];
0185         /* CONTEXTIDR_EL2 is traced */
0186         if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
0187             *pid_fmt = BIT(ETM_OPT_CTXTID2);
0188         /* CONTEXTIDR_EL1 is traced */
0189         else if (val & BIT(ETM4_CFG_BIT_CTXTID))
0190             *pid_fmt = BIT(ETM_OPT_CTXTID);
0191     }
0192 
0193     return 0;
0194 }
0195 
0196 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
0197                           u8 trace_chan_id)
0198 {
0199     /*
0200      * When a timestamp packet is encountered the backend code
0201      * is stopped so that the front end has time to process packets
0202      * that were accumulated in the traceID queue.  Since there can
0203      * be more than one channel per cs_etm_queue, we need to specify
0204      * what traceID queue needs servicing.
0205      */
0206     etmq->pending_timestamp_chan_id = trace_chan_id;
0207 }
0208 
0209 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
0210                       u8 *trace_chan_id)
0211 {
0212     struct cs_etm_packet_queue *packet_queue;
0213 
0214     if (!etmq->pending_timestamp_chan_id)
0215         return 0;
0216 
0217     if (trace_chan_id)
0218         *trace_chan_id = etmq->pending_timestamp_chan_id;
0219 
0220     packet_queue = cs_etm__etmq_get_packet_queue(etmq,
0221                              etmq->pending_timestamp_chan_id);
0222     if (!packet_queue)
0223         return 0;
0224 
0225     /* Acknowledge pending status */
0226     etmq->pending_timestamp_chan_id = 0;
0227 
0228     /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
0229     return packet_queue->cs_timestamp;
0230 }
0231 
0232 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
0233 {
0234     int i;
0235 
0236     queue->head = 0;
0237     queue->tail = 0;
0238     queue->packet_count = 0;
0239     for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
0240         queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
0241         queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
0242         queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
0243         queue->packet_buffer[i].instr_count = 0;
0244         queue->packet_buffer[i].last_instr_taken_branch = false;
0245         queue->packet_buffer[i].last_instr_size = 0;
0246         queue->packet_buffer[i].last_instr_type = 0;
0247         queue->packet_buffer[i].last_instr_subtype = 0;
0248         queue->packet_buffer[i].last_instr_cond = 0;
0249         queue->packet_buffer[i].flags = 0;
0250         queue->packet_buffer[i].exception_number = UINT32_MAX;
0251         queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
0252         queue->packet_buffer[i].cpu = INT_MIN;
0253     }
0254 }
0255 
0256 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
0257 {
0258     int idx;
0259     struct int_node *inode;
0260     struct cs_etm_traceid_queue *tidq;
0261     struct intlist *traceid_queues_list = etmq->traceid_queues_list;
0262 
0263     intlist__for_each_entry(inode, traceid_queues_list) {
0264         idx = (int)(intptr_t)inode->priv;
0265         tidq = etmq->traceid_queues[idx];
0266         cs_etm__clear_packet_queue(&tidq->packet_queue);
0267     }
0268 }
0269 
0270 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
0271                       struct cs_etm_traceid_queue *tidq,
0272                       u8 trace_chan_id)
0273 {
0274     int rc = -ENOMEM;
0275     struct auxtrace_queue *queue;
0276     struct cs_etm_auxtrace *etm = etmq->etm;
0277 
0278     cs_etm__clear_packet_queue(&tidq->packet_queue);
0279 
0280     queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
0281     tidq->tid = queue->tid;
0282     tidq->pid = -1;
0283     tidq->trace_chan_id = trace_chan_id;
0284 
0285     tidq->packet = zalloc(sizeof(struct cs_etm_packet));
0286     if (!tidq->packet)
0287         goto out;
0288 
0289     tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
0290     if (!tidq->prev_packet)
0291         goto out_free;
0292 
0293     if (etm->synth_opts.last_branch) {
0294         size_t sz = sizeof(struct branch_stack);
0295 
0296         sz += etm->synth_opts.last_branch_sz *
0297               sizeof(struct branch_entry);
0298         tidq->last_branch = zalloc(sz);
0299         if (!tidq->last_branch)
0300             goto out_free;
0301         tidq->last_branch_rb = zalloc(sz);
0302         if (!tidq->last_branch_rb)
0303             goto out_free;
0304     }
0305 
0306     tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
0307     if (!tidq->event_buf)
0308         goto out_free;
0309 
0310     return 0;
0311 
0312 out_free:
0313     zfree(&tidq->last_branch_rb);
0314     zfree(&tidq->last_branch);
0315     zfree(&tidq->prev_packet);
0316     zfree(&tidq->packet);
0317 out:
0318     return rc;
0319 }
0320 
0321 static struct cs_etm_traceid_queue
0322 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
0323 {
0324     int idx;
0325     struct int_node *inode;
0326     struct intlist *traceid_queues_list;
0327     struct cs_etm_traceid_queue *tidq, **traceid_queues;
0328     struct cs_etm_auxtrace *etm = etmq->etm;
0329 
0330     if (etm->timeless_decoding)
0331         trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
0332 
0333     traceid_queues_list = etmq->traceid_queues_list;
0334 
0335     /*
0336      * Check if the traceid_queue exist for this traceID by looking
0337      * in the queue list.
0338      */
0339     inode = intlist__find(traceid_queues_list, trace_chan_id);
0340     if (inode) {
0341         idx = (int)(intptr_t)inode->priv;
0342         return etmq->traceid_queues[idx];
0343     }
0344 
0345     /* We couldn't find a traceid_queue for this traceID, allocate one */
0346     tidq = malloc(sizeof(*tidq));
0347     if (!tidq)
0348         return NULL;
0349 
0350     memset(tidq, 0, sizeof(*tidq));
0351 
0352     /* Get a valid index for the new traceid_queue */
0353     idx = intlist__nr_entries(traceid_queues_list);
0354     /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
0355     inode = intlist__findnew(traceid_queues_list, trace_chan_id);
0356     if (!inode)
0357         goto out_free;
0358 
0359     /* Associate this traceID with this index */
0360     inode->priv = (void *)(intptr_t)idx;
0361 
0362     if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
0363         goto out_free;
0364 
0365     /* Grow the traceid_queues array by one unit */
0366     traceid_queues = etmq->traceid_queues;
0367     traceid_queues = reallocarray(traceid_queues,
0368                       idx + 1,
0369                       sizeof(*traceid_queues));
0370 
0371     /*
0372      * On failure reallocarray() returns NULL and the original block of
0373      * memory is left untouched.
0374      */
0375     if (!traceid_queues)
0376         goto out_free;
0377 
0378     traceid_queues[idx] = tidq;
0379     etmq->traceid_queues = traceid_queues;
0380 
0381     return etmq->traceid_queues[idx];
0382 
0383 out_free:
0384     /*
0385      * Function intlist__remove() removes the inode from the list
0386      * and delete the memory associated to it.
0387      */
0388     intlist__remove(traceid_queues_list, inode);
0389     free(tidq);
0390 
0391     return NULL;
0392 }
0393 
0394 struct cs_etm_packet_queue
0395 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
0396 {
0397     struct cs_etm_traceid_queue *tidq;
0398 
0399     tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
0400     if (tidq)
0401         return &tidq->packet_queue;
0402 
0403     return NULL;
0404 }
0405 
0406 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
0407                 struct cs_etm_traceid_queue *tidq)
0408 {
0409     struct cs_etm_packet *tmp;
0410 
0411     if (etm->synth_opts.branches || etm->synth_opts.last_branch ||
0412         etm->synth_opts.instructions) {
0413         /*
0414          * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
0415          * the next incoming packet.
0416          */
0417         tmp = tidq->packet;
0418         tidq->packet = tidq->prev_packet;
0419         tidq->prev_packet = tmp;
0420     }
0421 }
0422 
0423 static void cs_etm__packet_dump(const char *pkt_string)
0424 {
0425     const char *color = PERF_COLOR_BLUE;
0426     int len = strlen(pkt_string);
0427 
0428     if (len && (pkt_string[len-1] == '\n'))
0429         color_fprintf(stdout, color, "  %s", pkt_string);
0430     else
0431         color_fprintf(stdout, color, "  %s\n", pkt_string);
0432 
0433     fflush(stdout);
0434 }
0435 
0436 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
0437                       struct cs_etm_auxtrace *etm, int idx,
0438                       u32 etmidr)
0439 {
0440     u64 **metadata = etm->metadata;
0441 
0442     t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
0443     t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
0444     t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
0445 }
0446 
0447 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
0448                       struct cs_etm_auxtrace *etm, int idx)
0449 {
0450     u64 **metadata = etm->metadata;
0451 
0452     t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
0453     t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
0454     t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
0455     t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
0456     t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
0457     t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
0458     t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
0459 }
0460 
0461 static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params,
0462                       struct cs_etm_auxtrace *etm, int idx)
0463 {
0464     u64 **metadata = etm->metadata;
0465 
0466     t_params[idx].protocol = CS_ETM_PROTO_ETE;
0467     t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
0468     t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
0469     t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
0470     t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
0471     t_params[idx].ete.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
0472     t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
0473     t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH];
0474 }
0475 
0476 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
0477                      struct cs_etm_auxtrace *etm,
0478                      int decoders)
0479 {
0480     int i;
0481     u32 etmidr;
0482     u64 architecture;
0483 
0484     for (i = 0; i < decoders; i++) {
0485         architecture = etm->metadata[i][CS_ETM_MAGIC];
0486 
0487         switch (architecture) {
0488         case __perf_cs_etmv3_magic:
0489             etmidr = etm->metadata[i][CS_ETM_ETMIDR];
0490             cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
0491             break;
0492         case __perf_cs_etmv4_magic:
0493             cs_etm__set_trace_param_etmv4(t_params, etm, i);
0494             break;
0495         case __perf_cs_ete_magic:
0496             cs_etm__set_trace_param_ete(t_params, etm, i);
0497             break;
0498         default:
0499             return -EINVAL;
0500         }
0501     }
0502 
0503     return 0;
0504 }
0505 
0506 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
0507                        struct cs_etm_queue *etmq,
0508                        enum cs_etm_decoder_operation mode,
0509                        bool formatted)
0510 {
0511     int ret = -EINVAL;
0512 
0513     if (!(mode < CS_ETM_OPERATION_MAX))
0514         goto out;
0515 
0516     d_params->packet_printer = cs_etm__packet_dump;
0517     d_params->operation = mode;
0518     d_params->data = etmq;
0519     d_params->formatted = formatted;
0520     d_params->fsyncs = false;
0521     d_params->hsyncs = false;
0522     d_params->frame_aligned = true;
0523 
0524     ret = 0;
0525 out:
0526     return ret;
0527 }
0528 
0529 static void cs_etm__dump_event(struct cs_etm_queue *etmq,
0530                    struct auxtrace_buffer *buffer)
0531 {
0532     int ret;
0533     const char *color = PERF_COLOR_BLUE;
0534     size_t buffer_used = 0;
0535 
0536     fprintf(stdout, "\n");
0537     color_fprintf(stdout, color,
0538              ". ... CoreSight %s Trace data: size %#zx bytes\n",
0539              cs_etm_decoder__get_name(etmq->decoder), buffer->size);
0540 
0541     do {
0542         size_t consumed;
0543 
0544         ret = cs_etm_decoder__process_data_block(
0545                 etmq->decoder, buffer->offset,
0546                 &((u8 *)buffer->data)[buffer_used],
0547                 buffer->size - buffer_used, &consumed);
0548         if (ret)
0549             break;
0550 
0551         buffer_used += consumed;
0552     } while (buffer_used < buffer->size);
0553 
0554     cs_etm_decoder__reset(etmq->decoder);
0555 }
0556 
0557 static int cs_etm__flush_events(struct perf_session *session,
0558                 struct perf_tool *tool)
0559 {
0560     struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
0561                            struct cs_etm_auxtrace,
0562                            auxtrace);
0563     if (dump_trace)
0564         return 0;
0565 
0566     if (!tool->ordered_events)
0567         return -EINVAL;
0568 
0569     if (etm->timeless_decoding)
0570         return cs_etm__process_timeless_queues(etm, -1);
0571 
0572     return cs_etm__process_queues(etm);
0573 }
0574 
0575 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
0576 {
0577     int idx;
0578     uintptr_t priv;
0579     struct int_node *inode, *tmp;
0580     struct cs_etm_traceid_queue *tidq;
0581     struct intlist *traceid_queues_list = etmq->traceid_queues_list;
0582 
0583     intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
0584         priv = (uintptr_t)inode->priv;
0585         idx = priv;
0586 
0587         /* Free this traceid_queue from the array */
0588         tidq = etmq->traceid_queues[idx];
0589         thread__zput(tidq->thread);
0590         zfree(&tidq->event_buf);
0591         zfree(&tidq->last_branch);
0592         zfree(&tidq->last_branch_rb);
0593         zfree(&tidq->prev_packet);
0594         zfree(&tidq->packet);
0595         zfree(&tidq);
0596 
0597         /*
0598          * Function intlist__remove() removes the inode from the list
0599          * and delete the memory associated to it.
0600          */
0601         intlist__remove(traceid_queues_list, inode);
0602     }
0603 
0604     /* Then the RB tree itself */
0605     intlist__delete(traceid_queues_list);
0606     etmq->traceid_queues_list = NULL;
0607 
0608     /* finally free the traceid_queues array */
0609     zfree(&etmq->traceid_queues);
0610 }
0611 
0612 static void cs_etm__free_queue(void *priv)
0613 {
0614     struct cs_etm_queue *etmq = priv;
0615 
0616     if (!etmq)
0617         return;
0618 
0619     cs_etm_decoder__free(etmq->decoder);
0620     cs_etm__free_traceid_queues(etmq);
0621     free(etmq);
0622 }
0623 
0624 static void cs_etm__free_events(struct perf_session *session)
0625 {
0626     unsigned int i;
0627     struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
0628                            struct cs_etm_auxtrace,
0629                            auxtrace);
0630     struct auxtrace_queues *queues = &aux->queues;
0631 
0632     for (i = 0; i < queues->nr_queues; i++) {
0633         cs_etm__free_queue(queues->queue_array[i].priv);
0634         queues->queue_array[i].priv = NULL;
0635     }
0636 
0637     auxtrace_queues__free(queues);
0638 }
0639 
0640 static void cs_etm__free(struct perf_session *session)
0641 {
0642     int i;
0643     struct int_node *inode, *tmp;
0644     struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
0645                            struct cs_etm_auxtrace,
0646                            auxtrace);
0647     cs_etm__free_events(session);
0648     session->auxtrace = NULL;
0649 
0650     /* First remove all traceID/metadata nodes for the RB tree */
0651     intlist__for_each_entry_safe(inode, tmp, traceid_list)
0652         intlist__remove(traceid_list, inode);
0653     /* Then the RB tree itself */
0654     intlist__delete(traceid_list);
0655 
0656     for (i = 0; i < aux->num_cpu; i++)
0657         zfree(&aux->metadata[i]);
0658 
0659     thread__zput(aux->unknown_thread);
0660     zfree(&aux->metadata);
0661     zfree(&aux);
0662 }
0663 
0664 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
0665                       struct evsel *evsel)
0666 {
0667     struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
0668                            struct cs_etm_auxtrace,
0669                            auxtrace);
0670 
0671     return evsel->core.attr.type == aux->pmu_type;
0672 }
0673 
0674 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
0675 {
0676     struct machine *machine;
0677 
0678     machine = etmq->etm->machine;
0679 
0680     if (address >= machine__kernel_start(machine)) {
0681         if (machine__is_host(machine))
0682             return PERF_RECORD_MISC_KERNEL;
0683         else
0684             return PERF_RECORD_MISC_GUEST_KERNEL;
0685     } else {
0686         if (machine__is_host(machine))
0687             return PERF_RECORD_MISC_USER;
0688         else if (perf_guest)
0689             return PERF_RECORD_MISC_GUEST_USER;
0690         else
0691             return PERF_RECORD_MISC_HYPERVISOR;
0692     }
0693 }
0694 
0695 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
0696                   u64 address, size_t size, u8 *buffer)
0697 {
0698     u8  cpumode;
0699     u64 offset;
0700     int len;
0701     struct thread *thread;
0702     struct machine *machine;
0703     struct addr_location al;
0704     struct cs_etm_traceid_queue *tidq;
0705 
0706     if (!etmq)
0707         return 0;
0708 
0709     machine = etmq->etm->machine;
0710     cpumode = cs_etm__cpu_mode(etmq, address);
0711     tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
0712     if (!tidq)
0713         return 0;
0714 
0715     thread = tidq->thread;
0716     if (!thread) {
0717         if (cpumode != PERF_RECORD_MISC_KERNEL)
0718             return 0;
0719         thread = etmq->etm->unknown_thread;
0720     }
0721 
0722     if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
0723         return 0;
0724 
0725     if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
0726         dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
0727         return 0;
0728 
0729     offset = al.map->map_ip(al.map, address);
0730 
0731     map__load(al.map);
0732 
0733     len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
0734 
0735     if (len <= 0) {
0736         ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n"
0737                  "              Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n");
0738         if (!al.map->dso->auxtrace_warned) {
0739             pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n",
0740                     address,
0741                     al.map->dso->long_name ? al.map->dso->long_name : "Unknown");
0742             al.map->dso->auxtrace_warned = true;
0743         }
0744         return 0;
0745     }
0746 
0747     return len;
0748 }
0749 
0750 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
0751                         bool formatted)
0752 {
0753     struct cs_etm_decoder_params d_params;
0754     struct cs_etm_trace_params  *t_params = NULL;
0755     struct cs_etm_queue *etmq;
0756     /*
0757      * Each queue can only contain data from one CPU when unformatted, so only one decoder is
0758      * needed.
0759      */
0760     int decoders = formatted ? etm->num_cpu : 1;
0761 
0762     etmq = zalloc(sizeof(*etmq));
0763     if (!etmq)
0764         return NULL;
0765 
0766     etmq->traceid_queues_list = intlist__new(NULL);
0767     if (!etmq->traceid_queues_list)
0768         goto out_free;
0769 
0770     /* Use metadata to fill in trace parameters for trace decoder */
0771     t_params = zalloc(sizeof(*t_params) * decoders);
0772 
0773     if (!t_params)
0774         goto out_free;
0775 
0776     if (cs_etm__init_trace_params(t_params, etm, decoders))
0777         goto out_free;
0778 
0779     /* Set decoder parameters to decode trace packets */
0780     if (cs_etm__init_decoder_params(&d_params, etmq,
0781                     dump_trace ? CS_ETM_OPERATION_PRINT :
0782                              CS_ETM_OPERATION_DECODE,
0783                     formatted))
0784         goto out_free;
0785 
0786     etmq->decoder = cs_etm_decoder__new(decoders, &d_params,
0787                         t_params);
0788 
0789     if (!etmq->decoder)
0790         goto out_free;
0791 
0792     /*
0793      * Register a function to handle all memory accesses required by
0794      * the trace decoder library.
0795      */
0796     if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
0797                           0x0L, ((u64) -1L),
0798                           cs_etm__mem_access))
0799         goto out_free_decoder;
0800 
0801     zfree(&t_params);
0802     return etmq;
0803 
0804 out_free_decoder:
0805     cs_etm_decoder__free(etmq->decoder);
0806 out_free:
0807     intlist__delete(etmq->traceid_queues_list);
0808     free(etmq);
0809 
0810     return NULL;
0811 }
0812 
0813 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
0814                    struct auxtrace_queue *queue,
0815                    unsigned int queue_nr,
0816                    bool formatted)
0817 {
0818     struct cs_etm_queue *etmq = queue->priv;
0819 
0820     if (list_empty(&queue->head) || etmq)
0821         return 0;
0822 
0823     etmq = cs_etm__alloc_queue(etm, formatted);
0824 
0825     if (!etmq)
0826         return -ENOMEM;
0827 
0828     queue->priv = etmq;
0829     etmq->etm = etm;
0830     etmq->queue_nr = queue_nr;
0831     etmq->offset = 0;
0832 
0833     return 0;
0834 }
0835 
0836 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm,
0837                         struct cs_etm_queue *etmq,
0838                         unsigned int queue_nr)
0839 {
0840     int ret = 0;
0841     unsigned int cs_queue_nr;
0842     u8 trace_chan_id;
0843     u64 cs_timestamp;
0844 
0845     /*
0846      * We are under a CPU-wide trace scenario.  As such we need to know
0847      * when the code that generated the traces started to execute so that
0848      * it can be correlated with execution on other CPUs.  So we get a
0849      * handle on the beginning of traces and decode until we find a
0850      * timestamp.  The timestamp is then added to the auxtrace min heap
0851      * in order to know what nibble (of all the etmqs) to decode first.
0852      */
0853     while (1) {
0854         /*
0855          * Fetch an aux_buffer from this etmq.  Bail if no more
0856          * blocks or an error has been encountered.
0857          */
0858         ret = cs_etm__get_data_block(etmq);
0859         if (ret <= 0)
0860             goto out;
0861 
0862         /*
0863          * Run decoder on the trace block.  The decoder will stop when
0864          * encountering a CS timestamp, a full packet queue or the end of
0865          * trace for that block.
0866          */
0867         ret = cs_etm__decode_data_block(etmq);
0868         if (ret)
0869             goto out;
0870 
0871         /*
0872          * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
0873          * the timestamp calculation for us.
0874          */
0875         cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
0876 
0877         /* We found a timestamp, no need to continue. */
0878         if (cs_timestamp)
0879             break;
0880 
0881         /*
0882          * We didn't find a timestamp so empty all the traceid packet
0883          * queues before looking for another timestamp packet, either
0884          * in the current data block or a new one.  Packets that were
0885          * just decoded are useless since no timestamp has been
0886          * associated with them.  As such simply discard them.
0887          */
0888         cs_etm__clear_all_packet_queues(etmq);
0889     }
0890 
0891     /*
0892      * We have a timestamp.  Add it to the min heap to reflect when
0893      * instructions conveyed by the range packets of this traceID queue
0894      * started to execute.  Once the same has been done for all the traceID
0895      * queues of each etmq, redenring and decoding can start in
0896      * chronological order.
0897      *
0898      * Note that packets decoded above are still in the traceID's packet
0899      * queue and will be processed in cs_etm__process_queues().
0900      */
0901     cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
0902     ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
0903 out:
0904     return ret;
0905 }
0906 
0907 static inline
0908 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
0909                  struct cs_etm_traceid_queue *tidq)
0910 {
0911     struct branch_stack *bs_src = tidq->last_branch_rb;
0912     struct branch_stack *bs_dst = tidq->last_branch;
0913     size_t nr = 0;
0914 
0915     /*
0916      * Set the number of records before early exit: ->nr is used to
0917      * determine how many branches to copy from ->entries.
0918      */
0919     bs_dst->nr = bs_src->nr;
0920 
0921     /*
0922      * Early exit when there is nothing to copy.
0923      */
0924     if (!bs_src->nr)
0925         return;
0926 
0927     /*
0928      * As bs_src->entries is a circular buffer, we need to copy from it in
0929      * two steps.  First, copy the branches from the most recently inserted
0930      * branch ->last_branch_pos until the end of bs_src->entries buffer.
0931      */
0932     nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
0933     memcpy(&bs_dst->entries[0],
0934            &bs_src->entries[tidq->last_branch_pos],
0935            sizeof(struct branch_entry) * nr);
0936 
0937     /*
0938      * If we wrapped around at least once, the branches from the beginning
0939      * of the bs_src->entries buffer and until the ->last_branch_pos element
0940      * are older valid branches: copy them over.  The total number of
0941      * branches copied over will be equal to the number of branches asked by
0942      * the user in last_branch_sz.
0943      */
0944     if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
0945         memcpy(&bs_dst->entries[nr],
0946                &bs_src->entries[0],
0947                sizeof(struct branch_entry) * tidq->last_branch_pos);
0948     }
0949 }
0950 
0951 static inline
0952 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
0953 {
0954     tidq->last_branch_pos = 0;
0955     tidq->last_branch_rb->nr = 0;
0956 }
0957 
0958 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
0959                      u8 trace_chan_id, u64 addr)
0960 {
0961     u8 instrBytes[2];
0962 
0963     cs_etm__mem_access(etmq, trace_chan_id, addr,
0964                ARRAY_SIZE(instrBytes), instrBytes);
0965     /*
0966      * T32 instruction size is indicated by bits[15:11] of the first
0967      * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
0968      * denote a 32-bit instruction.
0969      */
0970     return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
0971 }
0972 
0973 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
0974 {
0975     /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
0976     if (packet->sample_type == CS_ETM_DISCONTINUITY)
0977         return 0;
0978 
0979     return packet->start_addr;
0980 }
0981 
0982 static inline
0983 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
0984 {
0985     /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
0986     if (packet->sample_type == CS_ETM_DISCONTINUITY)
0987         return 0;
0988 
0989     return packet->end_addr - packet->last_instr_size;
0990 }
0991 
0992 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
0993                      u64 trace_chan_id,
0994                      const struct cs_etm_packet *packet,
0995                      u64 offset)
0996 {
0997     if (packet->isa == CS_ETM_ISA_T32) {
0998         u64 addr = packet->start_addr;
0999 
1000         while (offset) {
1001             addr += cs_etm__t32_instr_size(etmq,
1002                                trace_chan_id, addr);
1003             offset--;
1004         }
1005         return addr;
1006     }
1007 
1008     /* Assume a 4 byte instruction size (A32/A64) */
1009     return packet->start_addr + offset * 4;
1010 }
1011 
1012 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1013                       struct cs_etm_traceid_queue *tidq)
1014 {
1015     struct branch_stack *bs = tidq->last_branch_rb;
1016     struct branch_entry *be;
1017 
1018     /*
1019      * The branches are recorded in a circular buffer in reverse
1020      * chronological order: we start recording from the last element of the
1021      * buffer down.  After writing the first element of the stack, move the
1022      * insert position back to the end of the buffer.
1023      */
1024     if (!tidq->last_branch_pos)
1025         tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1026 
1027     tidq->last_branch_pos -= 1;
1028 
1029     be       = &bs->entries[tidq->last_branch_pos];
1030     be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1031     be->to   = cs_etm__first_executed_instr(tidq->packet);
1032     /* No support for mispredict */
1033     be->flags.mispred = 0;
1034     be->flags.predicted = 1;
1035 
1036     /*
1037      * Increment bs->nr until reaching the number of last branches asked by
1038      * the user on the command line.
1039      */
1040     if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1041         bs->nr += 1;
1042 }
1043 
1044 static int cs_etm__inject_event(union perf_event *event,
1045                    struct perf_sample *sample, u64 type)
1046 {
1047     event->header.size = perf_event__sample_event_size(sample, type, 0);
1048     return perf_event__synthesize_sample(event, type, 0, sample);
1049 }
1050 
1051 
1052 static int
1053 cs_etm__get_trace(struct cs_etm_queue *etmq)
1054 {
1055     struct auxtrace_buffer *aux_buffer = etmq->buffer;
1056     struct auxtrace_buffer *old_buffer = aux_buffer;
1057     struct auxtrace_queue *queue;
1058 
1059     queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1060 
1061     aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1062 
1063     /* If no more data, drop the previous auxtrace_buffer and return */
1064     if (!aux_buffer) {
1065         if (old_buffer)
1066             auxtrace_buffer__drop_data(old_buffer);
1067         etmq->buf_len = 0;
1068         return 0;
1069     }
1070 
1071     etmq->buffer = aux_buffer;
1072 
1073     /* If the aux_buffer doesn't have data associated, try to load it */
1074     if (!aux_buffer->data) {
1075         /* get the file desc associated with the perf data file */
1076         int fd = perf_data__fd(etmq->etm->session->data);
1077 
1078         aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1079         if (!aux_buffer->data)
1080             return -ENOMEM;
1081     }
1082 
1083     /* If valid, drop the previous buffer */
1084     if (old_buffer)
1085         auxtrace_buffer__drop_data(old_buffer);
1086 
1087     etmq->buf_used = 0;
1088     etmq->buf_len = aux_buffer->size;
1089     etmq->buf = aux_buffer->data;
1090 
1091     return etmq->buf_len;
1092 }
1093 
1094 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1095                     struct cs_etm_traceid_queue *tidq)
1096 {
1097     if ((!tidq->thread) && (tidq->tid != -1))
1098         tidq->thread = machine__find_thread(etm->machine, -1,
1099                             tidq->tid);
1100 
1101     if (tidq->thread)
1102         tidq->pid = tidq->thread->pid_;
1103 }
1104 
1105 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1106              pid_t tid, u8 trace_chan_id)
1107 {
1108     int cpu, err = -EINVAL;
1109     struct cs_etm_auxtrace *etm = etmq->etm;
1110     struct cs_etm_traceid_queue *tidq;
1111 
1112     tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1113     if (!tidq)
1114         return err;
1115 
1116     if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1117         return err;
1118 
1119     err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1120     if (err)
1121         return err;
1122 
1123     tidq->tid = tid;
1124     thread__zput(tidq->thread);
1125 
1126     cs_etm__set_pid_tid_cpu(etm, tidq);
1127     return 0;
1128 }
1129 
1130 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1131 {
1132     return !!etmq->etm->timeless_decoding;
1133 }
1134 
1135 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1136                   u64 trace_chan_id,
1137                   const struct cs_etm_packet *packet,
1138                   struct perf_sample *sample)
1139 {
1140     /*
1141      * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1142      * packet, so directly bail out with 'insn_len' = 0.
1143      */
1144     if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1145         sample->insn_len = 0;
1146         return;
1147     }
1148 
1149     /*
1150      * T32 instruction size might be 32-bit or 16-bit, decide by calling
1151      * cs_etm__t32_instr_size().
1152      */
1153     if (packet->isa == CS_ETM_ISA_T32)
1154         sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1155                               sample->ip);
1156     /* Otherwise, A64 and A32 instruction size are always 32-bit. */
1157     else
1158         sample->insn_len = 4;
1159 
1160     cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1161                sample->insn_len, (void *)sample->insn);
1162 }
1163 
1164 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1165                         struct cs_etm_traceid_queue *tidq,
1166                         u64 addr, u64 period)
1167 {
1168     int ret = 0;
1169     struct cs_etm_auxtrace *etm = etmq->etm;
1170     union perf_event *event = tidq->event_buf;
1171     struct perf_sample sample = {.ip = 0,};
1172 
1173     event->sample.header.type = PERF_RECORD_SAMPLE;
1174     event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1175     event->sample.header.size = sizeof(struct perf_event_header);
1176 
1177     if (!etm->timeless_decoding)
1178         sample.time = etm->latest_kernel_timestamp;
1179     sample.ip = addr;
1180     sample.pid = tidq->pid;
1181     sample.tid = tidq->tid;
1182     sample.id = etmq->etm->instructions_id;
1183     sample.stream_id = etmq->etm->instructions_id;
1184     sample.period = period;
1185     sample.cpu = tidq->packet->cpu;
1186     sample.flags = tidq->prev_packet->flags;
1187     sample.cpumode = event->sample.header.misc;
1188 
1189     cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1190 
1191     if (etm->synth_opts.last_branch)
1192         sample.branch_stack = tidq->last_branch;
1193 
1194     if (etm->synth_opts.inject) {
1195         ret = cs_etm__inject_event(event, &sample,
1196                        etm->instructions_sample_type);
1197         if (ret)
1198             return ret;
1199     }
1200 
1201     ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1202 
1203     if (ret)
1204         pr_err(
1205             "CS ETM Trace: failed to deliver instruction event, error %d\n",
1206             ret);
1207 
1208     return ret;
1209 }
1210 
1211 /*
1212  * The cs etm packet encodes an instruction range between a branch target
1213  * and the next taken branch. Generate sample accordingly.
1214  */
1215 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1216                        struct cs_etm_traceid_queue *tidq)
1217 {
1218     int ret = 0;
1219     struct cs_etm_auxtrace *etm = etmq->etm;
1220     struct perf_sample sample = {.ip = 0,};
1221     union perf_event *event = tidq->event_buf;
1222     struct dummy_branch_stack {
1223         u64         nr;
1224         u64         hw_idx;
1225         struct branch_entry entries;
1226     } dummy_bs;
1227     u64 ip;
1228 
1229     ip = cs_etm__last_executed_instr(tidq->prev_packet);
1230 
1231     event->sample.header.type = PERF_RECORD_SAMPLE;
1232     event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1233     event->sample.header.size = sizeof(struct perf_event_header);
1234 
1235     if (!etm->timeless_decoding)
1236         sample.time = etm->latest_kernel_timestamp;
1237     sample.ip = ip;
1238     sample.pid = tidq->pid;
1239     sample.tid = tidq->tid;
1240     sample.addr = cs_etm__first_executed_instr(tidq->packet);
1241     sample.id = etmq->etm->branches_id;
1242     sample.stream_id = etmq->etm->branches_id;
1243     sample.period = 1;
1244     sample.cpu = tidq->packet->cpu;
1245     sample.flags = tidq->prev_packet->flags;
1246     sample.cpumode = event->sample.header.misc;
1247 
1248     cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1249               &sample);
1250 
1251     /*
1252      * perf report cannot handle events without a branch stack
1253      */
1254     if (etm->synth_opts.last_branch) {
1255         dummy_bs = (struct dummy_branch_stack){
1256             .nr = 1,
1257             .hw_idx = -1ULL,
1258             .entries = {
1259                 .from = sample.ip,
1260                 .to = sample.addr,
1261             },
1262         };
1263         sample.branch_stack = (struct branch_stack *)&dummy_bs;
1264     }
1265 
1266     if (etm->synth_opts.inject) {
1267         ret = cs_etm__inject_event(event, &sample,
1268                        etm->branches_sample_type);
1269         if (ret)
1270             return ret;
1271     }
1272 
1273     ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1274 
1275     if (ret)
1276         pr_err(
1277         "CS ETM Trace: failed to deliver instruction event, error %d\n",
1278         ret);
1279 
1280     return ret;
1281 }
1282 
1283 struct cs_etm_synth {
1284     struct perf_tool dummy_tool;
1285     struct perf_session *session;
1286 };
1287 
1288 static int cs_etm__event_synth(struct perf_tool *tool,
1289                    union perf_event *event,
1290                    struct perf_sample *sample __maybe_unused,
1291                    struct machine *machine __maybe_unused)
1292 {
1293     struct cs_etm_synth *cs_etm_synth =
1294               container_of(tool, struct cs_etm_synth, dummy_tool);
1295 
1296     return perf_session__deliver_synth_event(cs_etm_synth->session,
1297                          event, NULL);
1298 }
1299 
1300 static int cs_etm__synth_event(struct perf_session *session,
1301                    struct perf_event_attr *attr, u64 id)
1302 {
1303     struct cs_etm_synth cs_etm_synth;
1304 
1305     memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1306     cs_etm_synth.session = session;
1307 
1308     return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1309                        &id, cs_etm__event_synth);
1310 }
1311 
1312 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1313                 struct perf_session *session)
1314 {
1315     struct evlist *evlist = session->evlist;
1316     struct evsel *evsel;
1317     struct perf_event_attr attr;
1318     bool found = false;
1319     u64 id;
1320     int err;
1321 
1322     evlist__for_each_entry(evlist, evsel) {
1323         if (evsel->core.attr.type == etm->pmu_type) {
1324             found = true;
1325             break;
1326         }
1327     }
1328 
1329     if (!found) {
1330         pr_debug("No selected events with CoreSight Trace data\n");
1331         return 0;
1332     }
1333 
1334     memset(&attr, 0, sizeof(struct perf_event_attr));
1335     attr.size = sizeof(struct perf_event_attr);
1336     attr.type = PERF_TYPE_HARDWARE;
1337     attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1338     attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1339                 PERF_SAMPLE_PERIOD;
1340     if (etm->timeless_decoding)
1341         attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1342     else
1343         attr.sample_type |= PERF_SAMPLE_TIME;
1344 
1345     attr.exclude_user = evsel->core.attr.exclude_user;
1346     attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1347     attr.exclude_hv = evsel->core.attr.exclude_hv;
1348     attr.exclude_host = evsel->core.attr.exclude_host;
1349     attr.exclude_guest = evsel->core.attr.exclude_guest;
1350     attr.sample_id_all = evsel->core.attr.sample_id_all;
1351     attr.read_format = evsel->core.attr.read_format;
1352 
1353     /* create new id val to be a fixed offset from evsel id */
1354     id = evsel->core.id[0] + 1000000000;
1355 
1356     if (!id)
1357         id = 1;
1358 
1359     if (etm->synth_opts.branches) {
1360         attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1361         attr.sample_period = 1;
1362         attr.sample_type |= PERF_SAMPLE_ADDR;
1363         err = cs_etm__synth_event(session, &attr, id);
1364         if (err)
1365             return err;
1366         etm->branches_sample_type = attr.sample_type;
1367         etm->branches_id = id;
1368         id += 1;
1369         attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1370     }
1371 
1372     if (etm->synth_opts.last_branch) {
1373         attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1374         /*
1375          * We don't use the hardware index, but the sample generation
1376          * code uses the new format branch_stack with this field,
1377          * so the event attributes must indicate that it's present.
1378          */
1379         attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1380     }
1381 
1382     if (etm->synth_opts.instructions) {
1383         attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1384         attr.sample_period = etm->synth_opts.period;
1385         etm->instructions_sample_period = attr.sample_period;
1386         err = cs_etm__synth_event(session, &attr, id);
1387         if (err)
1388             return err;
1389         etm->instructions_sample_type = attr.sample_type;
1390         etm->instructions_id = id;
1391         id += 1;
1392     }
1393 
1394     return 0;
1395 }
1396 
1397 static int cs_etm__sample(struct cs_etm_queue *etmq,
1398               struct cs_etm_traceid_queue *tidq)
1399 {
1400     struct cs_etm_auxtrace *etm = etmq->etm;
1401     int ret;
1402     u8 trace_chan_id = tidq->trace_chan_id;
1403     u64 instrs_prev;
1404 
1405     /* Get instructions remainder from previous packet */
1406     instrs_prev = tidq->period_instructions;
1407 
1408     tidq->period_instructions += tidq->packet->instr_count;
1409 
1410     /*
1411      * Record a branch when the last instruction in
1412      * PREV_PACKET is a branch.
1413      */
1414     if (etm->synth_opts.last_branch &&
1415         tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1416         tidq->prev_packet->last_instr_taken_branch)
1417         cs_etm__update_last_branch_rb(etmq, tidq);
1418 
1419     if (etm->synth_opts.instructions &&
1420         tidq->period_instructions >= etm->instructions_sample_period) {
1421         /*
1422          * Emit instruction sample periodically
1423          * TODO: allow period to be defined in cycles and clock time
1424          */
1425 
1426         /*
1427          * Below diagram demonstrates the instruction samples
1428          * generation flows:
1429          *
1430          *    Instrs     Instrs       Instrs       Instrs
1431          *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1432          *    |            |            |            |
1433          *    V            V            V            V
1434          *   --------------------------------------------------
1435          *            ^                                  ^
1436          *            |                                  |
1437          *         Period                             Period
1438          *    instructions(Pi)                   instructions(Pi')
1439          *
1440          *            |                                  |
1441          *            \---------------- -----------------/
1442          *                             V
1443          *                 tidq->packet->instr_count
1444          *
1445          * Instrs Sample(n...) are the synthesised samples occurring
1446          * every etm->instructions_sample_period instructions - as
1447          * defined on the perf command line.  Sample(n) is being the
1448          * last sample before the current etm packet, n+1 to n+3
1449          * samples are generated from the current etm packet.
1450          *
1451          * tidq->packet->instr_count represents the number of
1452          * instructions in the current etm packet.
1453          *
1454          * Period instructions (Pi) contains the number of
1455          * instructions executed after the sample point(n) from the
1456          * previous etm packet.  This will always be less than
1457          * etm->instructions_sample_period.
1458          *
1459          * When generate new samples, it combines with two parts
1460          * instructions, one is the tail of the old packet and another
1461          * is the head of the new coming packet, to generate
1462          * sample(n+1); sample(n+2) and sample(n+3) consume the
1463          * instructions with sample period.  After sample(n+3), the rest
1464          * instructions will be used by later packet and it is assigned
1465          * to tidq->period_instructions for next round calculation.
1466          */
1467 
1468         /*
1469          * Get the initial offset into the current packet instructions;
1470          * entry conditions ensure that instrs_prev is less than
1471          * etm->instructions_sample_period.
1472          */
1473         u64 offset = etm->instructions_sample_period - instrs_prev;
1474         u64 addr;
1475 
1476         /* Prepare last branches for instruction sample */
1477         if (etm->synth_opts.last_branch)
1478             cs_etm__copy_last_branch_rb(etmq, tidq);
1479 
1480         while (tidq->period_instructions >=
1481                 etm->instructions_sample_period) {
1482             /*
1483              * Calculate the address of the sampled instruction (-1
1484              * as sample is reported as though instruction has just
1485              * been executed, but PC has not advanced to next
1486              * instruction)
1487              */
1488             addr = cs_etm__instr_addr(etmq, trace_chan_id,
1489                           tidq->packet, offset - 1);
1490             ret = cs_etm__synth_instruction_sample(
1491                 etmq, tidq, addr,
1492                 etm->instructions_sample_period);
1493             if (ret)
1494                 return ret;
1495 
1496             offset += etm->instructions_sample_period;
1497             tidq->period_instructions -=
1498                 etm->instructions_sample_period;
1499         }
1500     }
1501 
1502     if (etm->synth_opts.branches) {
1503         bool generate_sample = false;
1504 
1505         /* Generate sample for tracing on packet */
1506         if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1507             generate_sample = true;
1508 
1509         /* Generate sample for branch taken packet */
1510         if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1511             tidq->prev_packet->last_instr_taken_branch)
1512             generate_sample = true;
1513 
1514         if (generate_sample) {
1515             ret = cs_etm__synth_branch_sample(etmq, tidq);
1516             if (ret)
1517                 return ret;
1518         }
1519     }
1520 
1521     cs_etm__packet_swap(etm, tidq);
1522 
1523     return 0;
1524 }
1525 
1526 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1527 {
1528     /*
1529      * When the exception packet is inserted, whether the last instruction
1530      * in previous range packet is taken branch or not, we need to force
1531      * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1532      * to generate branch sample for the instruction range before the
1533      * exception is trapped to kernel or before the exception returning.
1534      *
1535      * The exception packet includes the dummy address values, so don't
1536      * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1537      * for generating instruction and branch samples.
1538      */
1539     if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1540         tidq->prev_packet->last_instr_taken_branch = true;
1541 
1542     return 0;
1543 }
1544 
1545 static int cs_etm__flush(struct cs_etm_queue *etmq,
1546              struct cs_etm_traceid_queue *tidq)
1547 {
1548     int err = 0;
1549     struct cs_etm_auxtrace *etm = etmq->etm;
1550 
1551     /* Handle start tracing packet */
1552     if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1553         goto swap_packet;
1554 
1555     if (etmq->etm->synth_opts.last_branch &&
1556         etmq->etm->synth_opts.instructions &&
1557         tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1558         u64 addr;
1559 
1560         /* Prepare last branches for instruction sample */
1561         cs_etm__copy_last_branch_rb(etmq, tidq);
1562 
1563         /*
1564          * Generate a last branch event for the branches left in the
1565          * circular buffer at the end of the trace.
1566          *
1567          * Use the address of the end of the last reported execution
1568          * range
1569          */
1570         addr = cs_etm__last_executed_instr(tidq->prev_packet);
1571 
1572         err = cs_etm__synth_instruction_sample(
1573             etmq, tidq, addr,
1574             tidq->period_instructions);
1575         if (err)
1576             return err;
1577 
1578         tidq->period_instructions = 0;
1579 
1580     }
1581 
1582     if (etm->synth_opts.branches &&
1583         tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1584         err = cs_etm__synth_branch_sample(etmq, tidq);
1585         if (err)
1586             return err;
1587     }
1588 
1589 swap_packet:
1590     cs_etm__packet_swap(etm, tidq);
1591 
1592     /* Reset last branches after flush the trace */
1593     if (etm->synth_opts.last_branch)
1594         cs_etm__reset_last_branch_rb(tidq);
1595 
1596     return err;
1597 }
1598 
1599 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1600                  struct cs_etm_traceid_queue *tidq)
1601 {
1602     int err;
1603 
1604     /*
1605      * It has no new packet coming and 'etmq->packet' contains the stale
1606      * packet which was set at the previous time with packets swapping;
1607      * so skip to generate branch sample to avoid stale packet.
1608      *
1609      * For this case only flush branch stack and generate a last branch
1610      * event for the branches left in the circular buffer at the end of
1611      * the trace.
1612      */
1613     if (etmq->etm->synth_opts.last_branch &&
1614         etmq->etm->synth_opts.instructions &&
1615         tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1616         u64 addr;
1617 
1618         /* Prepare last branches for instruction sample */
1619         cs_etm__copy_last_branch_rb(etmq, tidq);
1620 
1621         /*
1622          * Use the address of the end of the last reported execution
1623          * range.
1624          */
1625         addr = cs_etm__last_executed_instr(tidq->prev_packet);
1626 
1627         err = cs_etm__synth_instruction_sample(
1628             etmq, tidq, addr,
1629             tidq->period_instructions);
1630         if (err)
1631             return err;
1632 
1633         tidq->period_instructions = 0;
1634     }
1635 
1636     return 0;
1637 }
1638 /*
1639  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1640  *             if need be.
1641  * Returns: < 0 if error
1642  *      = 0 if no more auxtrace_buffer to read
1643  *      > 0 if the current buffer isn't empty yet
1644  */
1645 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1646 {
1647     int ret;
1648 
1649     if (!etmq->buf_len) {
1650         ret = cs_etm__get_trace(etmq);
1651         if (ret <= 0)
1652             return ret;
1653         /*
1654          * We cannot assume consecutive blocks in the data file
1655          * are contiguous, reset the decoder to force re-sync.
1656          */
1657         ret = cs_etm_decoder__reset(etmq->decoder);
1658         if (ret)
1659             return ret;
1660     }
1661 
1662     return etmq->buf_len;
1663 }
1664 
1665 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1666                  struct cs_etm_packet *packet,
1667                  u64 end_addr)
1668 {
1669     /* Initialise to keep compiler happy */
1670     u16 instr16 = 0;
1671     u32 instr32 = 0;
1672     u64 addr;
1673 
1674     switch (packet->isa) {
1675     case CS_ETM_ISA_T32:
1676         /*
1677          * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1678          *
1679          *  b'15         b'8
1680          * +-----------------+--------+
1681          * | 1 1 0 1 1 1 1 1 |  imm8  |
1682          * +-----------------+--------+
1683          *
1684          * According to the specification, it only defines SVC for T32
1685          * with 16 bits instruction and has no definition for 32bits;
1686          * so below only read 2 bytes as instruction size for T32.
1687          */
1688         addr = end_addr - 2;
1689         cs_etm__mem_access(etmq, trace_chan_id, addr,
1690                    sizeof(instr16), (u8 *)&instr16);
1691         if ((instr16 & 0xFF00) == 0xDF00)
1692             return true;
1693 
1694         break;
1695     case CS_ETM_ISA_A32:
1696         /*
1697          * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1698          *
1699          *  b'31 b'28 b'27 b'24
1700          * +---------+---------+-------------------------+
1701          * |  !1111  | 1 1 1 1 |        imm24            |
1702          * +---------+---------+-------------------------+
1703          */
1704         addr = end_addr - 4;
1705         cs_etm__mem_access(etmq, trace_chan_id, addr,
1706                    sizeof(instr32), (u8 *)&instr32);
1707         if ((instr32 & 0x0F000000) == 0x0F000000 &&
1708             (instr32 & 0xF0000000) != 0xF0000000)
1709             return true;
1710 
1711         break;
1712     case CS_ETM_ISA_A64:
1713         /*
1714          * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1715          *
1716          *  b'31               b'21           b'4     b'0
1717          * +-----------------------+---------+-----------+
1718          * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1719          * +-----------------------+---------+-----------+
1720          */
1721         addr = end_addr - 4;
1722         cs_etm__mem_access(etmq, trace_chan_id, addr,
1723                    sizeof(instr32), (u8 *)&instr32);
1724         if ((instr32 & 0xFFE0001F) == 0xd4000001)
1725             return true;
1726 
1727         break;
1728     case CS_ETM_ISA_UNKNOWN:
1729     default:
1730         break;
1731     }
1732 
1733     return false;
1734 }
1735 
1736 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1737                    struct cs_etm_traceid_queue *tidq, u64 magic)
1738 {
1739     u8 trace_chan_id = tidq->trace_chan_id;
1740     struct cs_etm_packet *packet = tidq->packet;
1741     struct cs_etm_packet *prev_packet = tidq->prev_packet;
1742 
1743     if (magic == __perf_cs_etmv3_magic)
1744         if (packet->exception_number == CS_ETMV3_EXC_SVC)
1745             return true;
1746 
1747     /*
1748      * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1749      * HVC cases; need to check if it's SVC instruction based on
1750      * packet address.
1751      */
1752     if (magic == __perf_cs_etmv4_magic) {
1753         if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1754             cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1755                      prev_packet->end_addr))
1756             return true;
1757     }
1758 
1759     return false;
1760 }
1761 
1762 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1763                        u64 magic)
1764 {
1765     struct cs_etm_packet *packet = tidq->packet;
1766 
1767     if (magic == __perf_cs_etmv3_magic)
1768         if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1769             packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1770             packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1771             packet->exception_number == CS_ETMV3_EXC_IRQ ||
1772             packet->exception_number == CS_ETMV3_EXC_FIQ)
1773             return true;
1774 
1775     if (magic == __perf_cs_etmv4_magic)
1776         if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1777             packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1778             packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1779             packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1780             packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1781             packet->exception_number == CS_ETMV4_EXC_IRQ ||
1782             packet->exception_number == CS_ETMV4_EXC_FIQ)
1783             return true;
1784 
1785     return false;
1786 }
1787 
1788 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1789                       struct cs_etm_traceid_queue *tidq,
1790                       u64 magic)
1791 {
1792     u8 trace_chan_id = tidq->trace_chan_id;
1793     struct cs_etm_packet *packet = tidq->packet;
1794     struct cs_etm_packet *prev_packet = tidq->prev_packet;
1795 
1796     if (magic == __perf_cs_etmv3_magic)
1797         if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1798             packet->exception_number == CS_ETMV3_EXC_HYP ||
1799             packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1800             packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1801             packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1802             packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1803             packet->exception_number == CS_ETMV3_EXC_GENERIC)
1804             return true;
1805 
1806     if (magic == __perf_cs_etmv4_magic) {
1807         if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1808             packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1809             packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1810             packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1811             return true;
1812 
1813         /*
1814          * For CS_ETMV4_EXC_CALL, except SVC other instructions
1815          * (SMC, HVC) are taken as sync exceptions.
1816          */
1817         if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1818             !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1819                       prev_packet->end_addr))
1820             return true;
1821 
1822         /*
1823          * ETMv4 has 5 bits for exception number; if the numbers
1824          * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1825          * they are implementation defined exceptions.
1826          *
1827          * For this case, simply take it as sync exception.
1828          */
1829         if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1830             packet->exception_number <= CS_ETMV4_EXC_END)
1831             return true;
1832     }
1833 
1834     return false;
1835 }
1836 
1837 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1838                     struct cs_etm_traceid_queue *tidq)
1839 {
1840     struct cs_etm_packet *packet = tidq->packet;
1841     struct cs_etm_packet *prev_packet = tidq->prev_packet;
1842     u8 trace_chan_id = tidq->trace_chan_id;
1843     u64 magic;
1844     int ret;
1845 
1846     switch (packet->sample_type) {
1847     case CS_ETM_RANGE:
1848         /*
1849          * Immediate branch instruction without neither link nor
1850          * return flag, it's normal branch instruction within
1851          * the function.
1852          */
1853         if (packet->last_instr_type == OCSD_INSTR_BR &&
1854             packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1855             packet->flags = PERF_IP_FLAG_BRANCH;
1856 
1857             if (packet->last_instr_cond)
1858                 packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1859         }
1860 
1861         /*
1862          * Immediate branch instruction with link (e.g. BL), this is
1863          * branch instruction for function call.
1864          */
1865         if (packet->last_instr_type == OCSD_INSTR_BR &&
1866             packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1867             packet->flags = PERF_IP_FLAG_BRANCH |
1868                     PERF_IP_FLAG_CALL;
1869 
1870         /*
1871          * Indirect branch instruction with link (e.g. BLR), this is
1872          * branch instruction for function call.
1873          */
1874         if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1875             packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1876             packet->flags = PERF_IP_FLAG_BRANCH |
1877                     PERF_IP_FLAG_CALL;
1878 
1879         /*
1880          * Indirect branch instruction with subtype of
1881          * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1882          * function return for A32/T32.
1883          */
1884         if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1885             packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1886             packet->flags = PERF_IP_FLAG_BRANCH |
1887                     PERF_IP_FLAG_RETURN;
1888 
1889         /*
1890          * Indirect branch instruction without link (e.g. BR), usually
1891          * this is used for function return, especially for functions
1892          * within dynamic link lib.
1893          */
1894         if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1895             packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1896             packet->flags = PERF_IP_FLAG_BRANCH |
1897                     PERF_IP_FLAG_RETURN;
1898 
1899         /* Return instruction for function return. */
1900         if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1901             packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1902             packet->flags = PERF_IP_FLAG_BRANCH |
1903                     PERF_IP_FLAG_RETURN;
1904 
1905         /*
1906          * Decoder might insert a discontinuity in the middle of
1907          * instruction packets, fixup prev_packet with flag
1908          * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1909          */
1910         if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1911             prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1912                           PERF_IP_FLAG_TRACE_BEGIN;
1913 
1914         /*
1915          * If the previous packet is an exception return packet
1916          * and the return address just follows SVC instruction,
1917          * it needs to calibrate the previous packet sample flags
1918          * as PERF_IP_FLAG_SYSCALLRET.
1919          */
1920         if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1921                        PERF_IP_FLAG_RETURN |
1922                        PERF_IP_FLAG_INTERRUPT) &&
1923             cs_etm__is_svc_instr(etmq, trace_chan_id,
1924                      packet, packet->start_addr))
1925             prev_packet->flags = PERF_IP_FLAG_BRANCH |
1926                          PERF_IP_FLAG_RETURN |
1927                          PERF_IP_FLAG_SYSCALLRET;
1928         break;
1929     case CS_ETM_DISCONTINUITY:
1930         /*
1931          * The trace is discontinuous, if the previous packet is
1932          * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1933          * for previous packet.
1934          */
1935         if (prev_packet->sample_type == CS_ETM_RANGE)
1936             prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1937                           PERF_IP_FLAG_TRACE_END;
1938         break;
1939     case CS_ETM_EXCEPTION:
1940         ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1941         if (ret)
1942             return ret;
1943 
1944         /* The exception is for system call. */
1945         if (cs_etm__is_syscall(etmq, tidq, magic))
1946             packet->flags = PERF_IP_FLAG_BRANCH |
1947                     PERF_IP_FLAG_CALL |
1948                     PERF_IP_FLAG_SYSCALLRET;
1949         /*
1950          * The exceptions are triggered by external signals from bus,
1951          * interrupt controller, debug module, PE reset or halt.
1952          */
1953         else if (cs_etm__is_async_exception(tidq, magic))
1954             packet->flags = PERF_IP_FLAG_BRANCH |
1955                     PERF_IP_FLAG_CALL |
1956                     PERF_IP_FLAG_ASYNC |
1957                     PERF_IP_FLAG_INTERRUPT;
1958         /*
1959          * Otherwise, exception is caused by trap, instruction &
1960          * data fault, or alignment errors.
1961          */
1962         else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1963             packet->flags = PERF_IP_FLAG_BRANCH |
1964                     PERF_IP_FLAG_CALL |
1965                     PERF_IP_FLAG_INTERRUPT;
1966 
1967         /*
1968          * When the exception packet is inserted, since exception
1969          * packet is not used standalone for generating samples
1970          * and it's affiliation to the previous instruction range
1971          * packet; so set previous range packet flags to tell perf
1972          * it is an exception taken branch.
1973          */
1974         if (prev_packet->sample_type == CS_ETM_RANGE)
1975             prev_packet->flags = packet->flags;
1976         break;
1977     case CS_ETM_EXCEPTION_RET:
1978         /*
1979          * When the exception return packet is inserted, since
1980          * exception return packet is not used standalone for
1981          * generating samples and it's affiliation to the previous
1982          * instruction range packet; so set previous range packet
1983          * flags to tell perf it is an exception return branch.
1984          *
1985          * The exception return can be for either system call or
1986          * other exception types; unfortunately the packet doesn't
1987          * contain exception type related info so we cannot decide
1988          * the exception type purely based on exception return packet.
1989          * If we record the exception number from exception packet and
1990          * reuse it for exception return packet, this is not reliable
1991          * due the trace can be discontinuity or the interrupt can
1992          * be nested, thus the recorded exception number cannot be
1993          * used for exception return packet for these two cases.
1994          *
1995          * For exception return packet, we only need to distinguish the
1996          * packet is for system call or for other types.  Thus the
1997          * decision can be deferred when receive the next packet which
1998          * contains the return address, based on the return address we
1999          * can read out the previous instruction and check if it's a
2000          * system call instruction and then calibrate the sample flag
2001          * as needed.
2002          */
2003         if (prev_packet->sample_type == CS_ETM_RANGE)
2004             prev_packet->flags = PERF_IP_FLAG_BRANCH |
2005                          PERF_IP_FLAG_RETURN |
2006                          PERF_IP_FLAG_INTERRUPT;
2007         break;
2008     case CS_ETM_EMPTY:
2009     default:
2010         break;
2011     }
2012 
2013     return 0;
2014 }
2015 
2016 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2017 {
2018     int ret = 0;
2019     size_t processed = 0;
2020 
2021     /*
2022      * Packets are decoded and added to the decoder's packet queue
2023      * until the decoder packet processing callback has requested that
2024      * processing stops or there is nothing left in the buffer.  Normal
2025      * operations that stop processing are a timestamp packet or a full
2026      * decoder buffer queue.
2027      */
2028     ret = cs_etm_decoder__process_data_block(etmq->decoder,
2029                          etmq->offset,
2030                          &etmq->buf[etmq->buf_used],
2031                          etmq->buf_len,
2032                          &processed);
2033     if (ret)
2034         goto out;
2035 
2036     etmq->offset += processed;
2037     etmq->buf_used += processed;
2038     etmq->buf_len -= processed;
2039 
2040 out:
2041     return ret;
2042 }
2043 
2044 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2045                      struct cs_etm_traceid_queue *tidq)
2046 {
2047     int ret;
2048     struct cs_etm_packet_queue *packet_queue;
2049 
2050     packet_queue = &tidq->packet_queue;
2051 
2052     /* Process each packet in this chunk */
2053     while (1) {
2054         ret = cs_etm_decoder__get_packet(packet_queue,
2055                          tidq->packet);
2056         if (ret <= 0)
2057             /*
2058              * Stop processing this chunk on
2059              * end of data or error
2060              */
2061             break;
2062 
2063         /*
2064          * Since packet addresses are swapped in packet
2065          * handling within below switch() statements,
2066          * thus setting sample flags must be called
2067          * prior to switch() statement to use address
2068          * information before packets swapping.
2069          */
2070         ret = cs_etm__set_sample_flags(etmq, tidq);
2071         if (ret < 0)
2072             break;
2073 
2074         switch (tidq->packet->sample_type) {
2075         case CS_ETM_RANGE:
2076             /*
2077              * If the packet contains an instruction
2078              * range, generate instruction sequence
2079              * events.
2080              */
2081             cs_etm__sample(etmq, tidq);
2082             break;
2083         case CS_ETM_EXCEPTION:
2084         case CS_ETM_EXCEPTION_RET:
2085             /*
2086              * If the exception packet is coming,
2087              * make sure the previous instruction
2088              * range packet to be handled properly.
2089              */
2090             cs_etm__exception(tidq);
2091             break;
2092         case CS_ETM_DISCONTINUITY:
2093             /*
2094              * Discontinuity in trace, flush
2095              * previous branch stack
2096              */
2097             cs_etm__flush(etmq, tidq);
2098             break;
2099         case CS_ETM_EMPTY:
2100             /*
2101              * Should not receive empty packet,
2102              * report error.
2103              */
2104             pr_err("CS ETM Trace: empty packet\n");
2105             return -EINVAL;
2106         default:
2107             break;
2108         }
2109     }
2110 
2111     return ret;
2112 }
2113 
2114 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2115 {
2116     int idx;
2117     struct int_node *inode;
2118     struct cs_etm_traceid_queue *tidq;
2119     struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2120 
2121     intlist__for_each_entry(inode, traceid_queues_list) {
2122         idx = (int)(intptr_t)inode->priv;
2123         tidq = etmq->traceid_queues[idx];
2124 
2125         /* Ignore return value */
2126         cs_etm__process_traceid_queue(etmq, tidq);
2127 
2128         /*
2129          * Generate an instruction sample with the remaining
2130          * branchstack entries.
2131          */
2132         cs_etm__flush(etmq, tidq);
2133     }
2134 }
2135 
2136 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2137 {
2138     int err = 0;
2139     struct cs_etm_traceid_queue *tidq;
2140 
2141     tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2142     if (!tidq)
2143         return -EINVAL;
2144 
2145     /* Go through each buffer in the queue and decode them one by one */
2146     while (1) {
2147         err = cs_etm__get_data_block(etmq);
2148         if (err <= 0)
2149             return err;
2150 
2151         /* Run trace decoder until buffer consumed or end of trace */
2152         do {
2153             err = cs_etm__decode_data_block(etmq);
2154             if (err)
2155                 return err;
2156 
2157             /*
2158              * Process each packet in this chunk, nothing to do if
2159              * an error occurs other than hoping the next one will
2160              * be better.
2161              */
2162             err = cs_etm__process_traceid_queue(etmq, tidq);
2163 
2164         } while (etmq->buf_len);
2165 
2166         if (err == 0)
2167             /* Flush any remaining branch stack entries */
2168             err = cs_etm__end_block(etmq, tidq);
2169     }
2170 
2171     return err;
2172 }
2173 
2174 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2175                        pid_t tid)
2176 {
2177     unsigned int i;
2178     struct auxtrace_queues *queues = &etm->queues;
2179 
2180     for (i = 0; i < queues->nr_queues; i++) {
2181         struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2182         struct cs_etm_queue *etmq = queue->priv;
2183         struct cs_etm_traceid_queue *tidq;
2184 
2185         if (!etmq)
2186             continue;
2187 
2188         tidq = cs_etm__etmq_get_traceid_queue(etmq,
2189                         CS_ETM_PER_THREAD_TRACEID);
2190 
2191         if (!tidq)
2192             continue;
2193 
2194         if ((tid == -1) || (tidq->tid == tid)) {
2195             cs_etm__set_pid_tid_cpu(etm, tidq);
2196             cs_etm__run_decoder(etmq);
2197         }
2198     }
2199 
2200     return 0;
2201 }
2202 
2203 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2204 {
2205     int ret = 0;
2206     unsigned int cs_queue_nr, queue_nr, i;
2207     u8 trace_chan_id;
2208     u64 cs_timestamp;
2209     struct auxtrace_queue *queue;
2210     struct cs_etm_queue *etmq;
2211     struct cs_etm_traceid_queue *tidq;
2212 
2213     /*
2214      * Pre-populate the heap with one entry from each queue so that we can
2215      * start processing in time order across all queues.
2216      */
2217     for (i = 0; i < etm->queues.nr_queues; i++) {
2218         etmq = etm->queues.queue_array[i].priv;
2219         if (!etmq)
2220             continue;
2221 
2222         ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i);
2223         if (ret)
2224             return ret;
2225     }
2226 
2227     while (1) {
2228         if (!etm->heap.heap_cnt)
2229             goto out;
2230 
2231         /* Take the entry at the top of the min heap */
2232         cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2233         queue_nr = TO_QUEUE_NR(cs_queue_nr);
2234         trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2235         queue = &etm->queues.queue_array[queue_nr];
2236         etmq = queue->priv;
2237 
2238         /*
2239          * Remove the top entry from the heap since we are about
2240          * to process it.
2241          */
2242         auxtrace_heap__pop(&etm->heap);
2243 
2244         tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2245         if (!tidq) {
2246             /*
2247              * No traceID queue has been allocated for this traceID,
2248              * which means something somewhere went very wrong.  No
2249              * other choice than simply exit.
2250              */
2251             ret = -EINVAL;
2252             goto out;
2253         }
2254 
2255         /*
2256          * Packets associated with this timestamp are already in
2257          * the etmq's traceID queue, so process them.
2258          */
2259         ret = cs_etm__process_traceid_queue(etmq, tidq);
2260         if (ret < 0)
2261             goto out;
2262 
2263         /*
2264          * Packets for this timestamp have been processed, time to
2265          * move on to the next timestamp, fetching a new auxtrace_buffer
2266          * if need be.
2267          */
2268 refetch:
2269         ret = cs_etm__get_data_block(etmq);
2270         if (ret < 0)
2271             goto out;
2272 
2273         /*
2274          * No more auxtrace_buffers to process in this etmq, simply
2275          * move on to another entry in the auxtrace_heap.
2276          */
2277         if (!ret)
2278             continue;
2279 
2280         ret = cs_etm__decode_data_block(etmq);
2281         if (ret)
2282             goto out;
2283 
2284         cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2285 
2286         if (!cs_timestamp) {
2287             /*
2288              * Function cs_etm__decode_data_block() returns when
2289              * there is no more traces to decode in the current
2290              * auxtrace_buffer OR when a timestamp has been
2291              * encountered on any of the traceID queues.  Since we
2292              * did not get a timestamp, there is no more traces to
2293              * process in this auxtrace_buffer.  As such empty and
2294              * flush all traceID queues.
2295              */
2296             cs_etm__clear_all_traceid_queues(etmq);
2297 
2298             /* Fetch another auxtrace_buffer for this etmq */
2299             goto refetch;
2300         }
2301 
2302         /*
2303          * Add to the min heap the timestamp for packets that have
2304          * just been decoded.  They will be processed and synthesized
2305          * during the next call to cs_etm__process_traceid_queue() for
2306          * this queue/traceID.
2307          */
2308         cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2309         ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
2310     }
2311 
2312 out:
2313     return ret;
2314 }
2315 
2316 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2317                     union perf_event *event)
2318 {
2319     struct thread *th;
2320 
2321     if (etm->timeless_decoding)
2322         return 0;
2323 
2324     /*
2325      * Add the tid/pid to the log so that we can get a match when
2326      * we get a contextID from the decoder.
2327      */
2328     th = machine__findnew_thread(etm->machine,
2329                      event->itrace_start.pid,
2330                      event->itrace_start.tid);
2331     if (!th)
2332         return -ENOMEM;
2333 
2334     thread__put(th);
2335 
2336     return 0;
2337 }
2338 
2339 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2340                        union perf_event *event)
2341 {
2342     struct thread *th;
2343     bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2344 
2345     /*
2346      * Context switch in per-thread mode are irrelevant since perf
2347      * will start/stop tracing as the process is scheduled.
2348      */
2349     if (etm->timeless_decoding)
2350         return 0;
2351 
2352     /*
2353      * SWITCH_IN events carry the next process to be switched out while
2354      * SWITCH_OUT events carry the process to be switched in.  As such
2355      * we don't care about IN events.
2356      */
2357     if (!out)
2358         return 0;
2359 
2360     /*
2361      * Add the tid/pid to the log so that we can get a match when
2362      * we get a contextID from the decoder.
2363      */
2364     th = machine__findnew_thread(etm->machine,
2365                      event->context_switch.next_prev_pid,
2366                      event->context_switch.next_prev_tid);
2367     if (!th)
2368         return -ENOMEM;
2369 
2370     thread__put(th);
2371 
2372     return 0;
2373 }
2374 
2375 static int cs_etm__process_event(struct perf_session *session,
2376                  union perf_event *event,
2377                  struct perf_sample *sample,
2378                  struct perf_tool *tool)
2379 {
2380     u64 sample_kernel_timestamp;
2381     struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2382                            struct cs_etm_auxtrace,
2383                            auxtrace);
2384 
2385     if (dump_trace)
2386         return 0;
2387 
2388     if (!tool->ordered_events) {
2389         pr_err("CoreSight ETM Trace requires ordered events\n");
2390         return -EINVAL;
2391     }
2392 
2393     if (sample->time && (sample->time != (u64) -1))
2394         sample_kernel_timestamp = sample->time;
2395     else
2396         sample_kernel_timestamp = 0;
2397 
2398     /*
2399      * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We
2400      * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because
2401      * ETM_OPT_CTXTID is not enabled.
2402      */
2403     if (etm->timeless_decoding &&
2404         event->header.type == PERF_RECORD_EXIT)
2405         return cs_etm__process_timeless_queues(etm,
2406                                event->fork.tid);
2407 
2408     if (event->header.type == PERF_RECORD_ITRACE_START)
2409         return cs_etm__process_itrace_start(etm, event);
2410     else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2411         return cs_etm__process_switch_cpu_wide(etm, event);
2412 
2413     if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) {
2414         /*
2415          * Record the latest kernel timestamp available in the header
2416          * for samples so that synthesised samples occur from this point
2417          * onwards.
2418          */
2419         etm->latest_kernel_timestamp = sample_kernel_timestamp;
2420     }
2421 
2422     return 0;
2423 }
2424 
2425 static void dump_queued_data(struct cs_etm_auxtrace *etm,
2426                  struct perf_record_auxtrace *event)
2427 {
2428     struct auxtrace_buffer *buf;
2429     unsigned int i;
2430     /*
2431      * Find all buffers with same reference in the queues and dump them.
2432      * This is because the queues can contain multiple entries of the same
2433      * buffer that were split on aux records.
2434      */
2435     for (i = 0; i < etm->queues.nr_queues; ++i)
2436         list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
2437             if (buf->reference == event->reference)
2438                 cs_etm__dump_event(etm->queues.queue_array[i].priv, buf);
2439 }
2440 
2441 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2442                       union perf_event *event,
2443                       struct perf_tool *tool __maybe_unused)
2444 {
2445     struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2446                            struct cs_etm_auxtrace,
2447                            auxtrace);
2448     if (!etm->data_queued) {
2449         struct auxtrace_buffer *buffer;
2450         off_t  data_offset;
2451         int fd = perf_data__fd(session->data);
2452         bool is_pipe = perf_data__is_pipe(session->data);
2453         int err;
2454         int idx = event->auxtrace.idx;
2455 
2456         if (is_pipe)
2457             data_offset = 0;
2458         else {
2459             data_offset = lseek(fd, 0, SEEK_CUR);
2460             if (data_offset == -1)
2461                 return -errno;
2462         }
2463 
2464         err = auxtrace_queues__add_event(&etm->queues, session,
2465                          event, data_offset, &buffer);
2466         if (err)
2467             return err;
2468 
2469         /*
2470          * Knowing if the trace is formatted or not requires a lookup of
2471          * the aux record so only works in non-piped mode where data is
2472          * queued in cs_etm__queue_aux_records(). Always assume
2473          * formatted in piped mode (true).
2474          */
2475         err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2476                       idx, true);
2477         if (err)
2478             return err;
2479 
2480         if (dump_trace)
2481             if (auxtrace_buffer__get_data(buffer, fd)) {
2482                 cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer);
2483                 auxtrace_buffer__put_data(buffer);
2484             }
2485     } else if (dump_trace)
2486         dump_queued_data(etm, &event->auxtrace);
2487 
2488     return 0;
2489 }
2490 
2491 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2492 {
2493     struct evsel *evsel;
2494     struct evlist *evlist = etm->session->evlist;
2495     bool timeless_decoding = true;
2496 
2497     /* Override timeless mode with user input from --itrace=Z */
2498     if (etm->synth_opts.timeless_decoding)
2499         return true;
2500 
2501     /*
2502      * Circle through the list of event and complain if we find one
2503      * with the time bit set.
2504      */
2505     evlist__for_each_entry(evlist, evsel) {
2506         if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2507             timeless_decoding = false;
2508     }
2509 
2510     return timeless_decoding;
2511 }
2512 
2513 static const char * const cs_etm_global_header_fmts[] = {
2514     [CS_HEADER_VERSION] = " Header version             %llx\n",
2515     [CS_PMU_TYPE_CPUS]  = " PMU type/num cpus          %llx\n",
2516     [CS_ETM_SNAPSHOT]   = " Snapshot               %llx\n",
2517 };
2518 
2519 static const char * const cs_etm_priv_fmts[] = {
2520     [CS_ETM_MAGIC]      = " Magic number               %llx\n",
2521     [CS_ETM_CPU]        = " CPU                %lld\n",
2522     [CS_ETM_NR_TRC_PARAMS]  = " NR_TRC_PARAMS              %llx\n",
2523     [CS_ETM_ETMCR]      = " ETMCR                  %llx\n",
2524     [CS_ETM_ETMTRACEIDR]    = " ETMTRACEIDR            %llx\n",
2525     [CS_ETM_ETMCCER]    = " ETMCCER                %llx\n",
2526     [CS_ETM_ETMIDR]     = " ETMIDR                 %llx\n",
2527 };
2528 
2529 static const char * const cs_etmv4_priv_fmts[] = {
2530     [CS_ETM_MAGIC]      = " Magic number               %llx\n",
2531     [CS_ETM_CPU]        = " CPU                %lld\n",
2532     [CS_ETM_NR_TRC_PARAMS]  = " NR_TRC_PARAMS              %llx\n",
2533     [CS_ETMV4_TRCCONFIGR]   = " TRCCONFIGR             %llx\n",
2534     [CS_ETMV4_TRCTRACEIDR]  = " TRCTRACEIDR            %llx\n",
2535     [CS_ETMV4_TRCIDR0]  = " TRCIDR0                %llx\n",
2536     [CS_ETMV4_TRCIDR1]  = " TRCIDR1                %llx\n",
2537     [CS_ETMV4_TRCIDR2]  = " TRCIDR2                %llx\n",
2538     [CS_ETMV4_TRCIDR8]  = " TRCIDR8                %llx\n",
2539     [CS_ETMV4_TRCAUTHSTATUS] = "    TRCAUTHSTATUS              %llx\n",
2540     [CS_ETE_TRCDEVARCH] = " TRCDEVARCH                     %llx\n"
2541 };
2542 
2543 static const char * const param_unk_fmt =
2544     "   Unknown parameter [%d]         %llx\n";
2545 static const char * const magic_unk_fmt =
2546     "   Magic number Unknown           %llx\n";
2547 
2548 static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset)
2549 {
2550     int i = *offset, j, nr_params = 0, fmt_offset;
2551     __u64 magic;
2552 
2553     /* check magic value */
2554     magic = val[i + CS_ETM_MAGIC];
2555     if ((magic != __perf_cs_etmv3_magic) &&
2556         (magic != __perf_cs_etmv4_magic)) {
2557         /* failure - note bad magic value */
2558         fprintf(stdout, magic_unk_fmt, magic);
2559         return -EINVAL;
2560     }
2561 
2562     /* print common header block */
2563     fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]);
2564     fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]);
2565 
2566     if (magic == __perf_cs_etmv3_magic) {
2567         nr_params = CS_ETM_NR_TRC_PARAMS_V0;
2568         fmt_offset = CS_ETM_ETMCR;
2569         /* after common block, offset format index past NR_PARAMS */
2570         for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2571             fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2572     } else if (magic == __perf_cs_etmv4_magic) {
2573         nr_params = CS_ETMV4_NR_TRC_PARAMS_V0;
2574         fmt_offset = CS_ETMV4_TRCCONFIGR;
2575         /* after common block, offset format index past NR_PARAMS */
2576         for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2577             fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2578     }
2579     *offset = i;
2580     return 0;
2581 }
2582 
2583 static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset)
2584 {
2585     int i = *offset, j, total_params = 0;
2586     __u64 magic;
2587 
2588     magic = val[i + CS_ETM_MAGIC];
2589     /* total params to print is NR_PARAMS + common block size for v1 */
2590     total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1;
2591 
2592     if (magic == __perf_cs_etmv3_magic) {
2593         for (j = 0; j < total_params; j++, i++) {
2594             /* if newer record - could be excess params */
2595             if (j >= CS_ETM_PRIV_MAX)
2596                 fprintf(stdout, param_unk_fmt, j, val[i]);
2597             else
2598                 fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2599         }
2600     } else if (magic == __perf_cs_etmv4_magic || magic == __perf_cs_ete_magic) {
2601         /*
2602          * ETE and ETMv4 can be printed in the same block because the number of parameters
2603          * is saved and they share the list of parameter names. ETE is also only supported
2604          * in V1 files.
2605          */
2606         for (j = 0; j < total_params; j++, i++) {
2607             /* if newer record - could be excess params */
2608             if (j >= CS_ETE_PRIV_MAX)
2609                 fprintf(stdout, param_unk_fmt, j, val[i]);
2610             else
2611                 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2612         }
2613     } else {
2614         /* failure - note bad magic value and error out */
2615         fprintf(stdout, magic_unk_fmt, magic);
2616         return -EINVAL;
2617     }
2618     *offset = i;
2619     return 0;
2620 }
2621 
2622 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2623 {
2624     int i, cpu = 0, version, err;
2625 
2626     /* bail out early on bad header version */
2627     version = val[0];
2628     if (version > CS_HEADER_CURRENT_VERSION) {
2629         /* failure.. return */
2630         fprintf(stdout, "   Unknown Header Version = %x, ", version);
2631         fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION);
2632         return;
2633     }
2634 
2635     for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2636         fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2637 
2638     for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) {
2639         if (version == 0)
2640             err = cs_etm__print_cpu_metadata_v0(val, &i);
2641         else if (version == 1)
2642             err = cs_etm__print_cpu_metadata_v1(val, &i);
2643         if (err)
2644             return;
2645     }
2646 }
2647 
2648 /*
2649  * Read a single cpu parameter block from the auxtrace_info priv block.
2650  *
2651  * For version 1 there is a per cpu nr_params entry. If we are handling
2652  * version 1 file, then there may be less, the same, or more params
2653  * indicated by this value than the compile time number we understand.
2654  *
2655  * For a version 0 info block, there are a fixed number, and we need to
2656  * fill out the nr_param value in the metadata we create.
2657  */
2658 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2659                     int out_blk_size, int nr_params_v0)
2660 {
2661     u64 *metadata = NULL;
2662     int hdr_version;
2663     int nr_in_params, nr_out_params, nr_cmn_params;
2664     int i, k;
2665 
2666     metadata = zalloc(sizeof(*metadata) * out_blk_size);
2667     if (!metadata)
2668         return NULL;
2669 
2670     /* read block current index & version */
2671     i = *buff_in_offset;
2672     hdr_version = buff_in[CS_HEADER_VERSION];
2673 
2674     if (!hdr_version) {
2675     /* read version 0 info block into a version 1 metadata block  */
2676         nr_in_params = nr_params_v0;
2677         metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2678         metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2679         metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2680         /* remaining block params at offset +1 from source */
2681         for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2682             metadata[k + 1] = buff_in[i + k];
2683         /* version 0 has 2 common params */
2684         nr_cmn_params = 2;
2685     } else {
2686     /* read version 1 info block - input and output nr_params may differ */
2687         /* version 1 has 3 common params */
2688         nr_cmn_params = 3;
2689         nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2690 
2691         /* if input has more params than output - skip excess */
2692         nr_out_params = nr_in_params + nr_cmn_params;
2693         if (nr_out_params > out_blk_size)
2694             nr_out_params = out_blk_size;
2695 
2696         for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2697             metadata[k] = buff_in[i + k];
2698 
2699         /* record the actual nr params we copied */
2700         metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2701     }
2702 
2703     /* adjust in offset by number of in params used */
2704     i += nr_in_params + nr_cmn_params;
2705     *buff_in_offset = i;
2706     return metadata;
2707 }
2708 
2709 /**
2710  * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2711  * on the bounds of aux_event, if it matches with the buffer that's at
2712  * file_offset.
2713  *
2714  * Normally, whole auxtrace buffers would be added to the queue. But we
2715  * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2716  * is reset across each buffer, so splitting the buffers up in advance has
2717  * the same effect.
2718  */
2719 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2720                       struct perf_record_aux *aux_event, struct perf_sample *sample)
2721 {
2722     int err;
2723     char buf[PERF_SAMPLE_MAX_SIZE];
2724     union perf_event *auxtrace_event_union;
2725     struct perf_record_auxtrace *auxtrace_event;
2726     union perf_event auxtrace_fragment;
2727     __u64 aux_offset, aux_size;
2728     __u32 idx;
2729     bool formatted;
2730 
2731     struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2732                            struct cs_etm_auxtrace,
2733                            auxtrace);
2734 
2735     /*
2736      * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2737      * from looping through the auxtrace index.
2738      */
2739     err = perf_session__peek_event(session, file_offset, buf,
2740                        PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2741     if (err)
2742         return err;
2743     auxtrace_event = &auxtrace_event_union->auxtrace;
2744     if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2745         return -EINVAL;
2746 
2747     if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2748         auxtrace_event->header.size != sz) {
2749         return -EINVAL;
2750     }
2751 
2752     /*
2753      * In per-thread mode, CPU is set to -1, but TID will be set instead. See
2754      * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match.
2755      */
2756     if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) ||
2757             auxtrace_event->cpu != sample->cpu)
2758         return 1;
2759 
2760     if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
2761         /*
2762          * Clamp size in snapshot mode. The buffer size is clamped in
2763          * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
2764          * the buffer size.
2765          */
2766         aux_size = min(aux_event->aux_size, auxtrace_event->size);
2767 
2768         /*
2769          * In this mode, the head also points to the end of the buffer so aux_offset
2770          * needs to have the size subtracted so it points to the beginning as in normal mode
2771          */
2772         aux_offset = aux_event->aux_offset - aux_size;
2773     } else {
2774         aux_size = aux_event->aux_size;
2775         aux_offset = aux_event->aux_offset;
2776     }
2777 
2778     if (aux_offset >= auxtrace_event->offset &&
2779         aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
2780         /*
2781          * If this AUX event was inside this buffer somewhere, create a new auxtrace event
2782          * based on the sizes of the aux event, and queue that fragment.
2783          */
2784         auxtrace_fragment.auxtrace = *auxtrace_event;
2785         auxtrace_fragment.auxtrace.size = aux_size;
2786         auxtrace_fragment.auxtrace.offset = aux_offset;
2787         file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
2788 
2789         pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
2790               " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
2791         err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
2792                          file_offset, NULL);
2793         if (err)
2794             return err;
2795 
2796         idx = auxtrace_event->idx;
2797         formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW);
2798         return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2799                        idx, formatted);
2800     }
2801 
2802     /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
2803     return 1;
2804 }
2805 
2806 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
2807                     u64 offset __maybe_unused, void *data __maybe_unused)
2808 {
2809     struct perf_sample sample;
2810     int ret;
2811     struct auxtrace_index_entry *ent;
2812     struct auxtrace_index *auxtrace_index;
2813     struct evsel *evsel;
2814     size_t i;
2815 
2816     /* Don't care about any other events, we're only queuing buffers for AUX events */
2817     if (event->header.type != PERF_RECORD_AUX)
2818         return 0;
2819 
2820     if (event->header.size < sizeof(struct perf_record_aux))
2821         return -EINVAL;
2822 
2823     /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
2824     if (!event->aux.aux_size)
2825         return 0;
2826 
2827     /*
2828      * Parse the sample, we need the sample_id_all data that comes after the event so that the
2829      * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
2830      */
2831     evsel = evlist__event2evsel(session->evlist, event);
2832     if (!evsel)
2833         return -EINVAL;
2834     ret = evsel__parse_sample(evsel, event, &sample);
2835     if (ret)
2836         return ret;
2837 
2838     /*
2839      * Loop through the auxtrace index to find the buffer that matches up with this aux event.
2840      */
2841     list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
2842         for (i = 0; i < auxtrace_index->nr; i++) {
2843             ent = &auxtrace_index->entries[i];
2844             ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
2845                              ent->sz, &event->aux, &sample);
2846             /*
2847              * Stop search on error or successful values. Continue search on
2848              * 1 ('not found')
2849              */
2850             if (ret != 1)
2851                 return ret;
2852         }
2853     }
2854 
2855     /*
2856      * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
2857      * don't exit with an error because it will still be possible to decode other aux records.
2858      */
2859     pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
2860            " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
2861     return 0;
2862 }
2863 
2864 static int cs_etm__queue_aux_records(struct perf_session *session)
2865 {
2866     struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
2867                                 struct auxtrace_index, list);
2868     if (index && index->nr > 0)
2869         return perf_session__peek_events(session, session->header.data_offset,
2870                          session->header.data_size,
2871                          cs_etm__queue_aux_records_cb, NULL);
2872 
2873     /*
2874      * We would get here if there are no entries in the index (either no auxtrace
2875      * buffers or no index at all). Fail silently as there is the possibility of
2876      * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
2877      * false.
2878      *
2879      * In that scenario, buffers will not be split by AUX records.
2880      */
2881     return 0;
2882 }
2883 
2884 int cs_etm__process_auxtrace_info(union perf_event *event,
2885                   struct perf_session *session)
2886 {
2887     struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2888     struct cs_etm_auxtrace *etm = NULL;
2889     struct int_node *inode;
2890     unsigned int pmu_type;
2891     int event_header_size = sizeof(struct perf_event_header);
2892     int info_header_size;
2893     int total_size = auxtrace_info->header.size;
2894     int priv_size = 0;
2895     int num_cpu, trcidr_idx;
2896     int err = 0;
2897     int i, j;
2898     u64 *ptr, *hdr = NULL;
2899     u64 **metadata = NULL;
2900     u64 hdr_version;
2901 
2902     /*
2903      * sizeof(auxtrace_info_event::type) +
2904      * sizeof(auxtrace_info_event::reserved) == 8
2905      */
2906     info_header_size = 8;
2907 
2908     if (total_size < (event_header_size + info_header_size))
2909         return -EINVAL;
2910 
2911     priv_size = total_size - event_header_size - info_header_size;
2912 
2913     /* First the global part */
2914     ptr = (u64 *) auxtrace_info->priv;
2915 
2916     /* Look for version of the header */
2917     hdr_version = ptr[0];
2918     if (hdr_version > CS_HEADER_CURRENT_VERSION) {
2919         /* print routine will print an error on bad version */
2920         if (dump_trace)
2921             cs_etm__print_auxtrace_info(auxtrace_info->priv, 0);
2922         return -EINVAL;
2923     }
2924 
2925     hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX);
2926     if (!hdr)
2927         return -ENOMEM;
2928 
2929     /* Extract header information - see cs-etm.h for format */
2930     for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2931         hdr[i] = ptr[i];
2932     num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2933     pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2934                     0xffffffff);
2935 
2936     /*
2937      * Create an RB tree for traceID-metadata tuple.  Since the conversion
2938      * has to be made for each packet that gets decoded, optimizing access
2939      * in anything other than a sequential array is worth doing.
2940      */
2941     traceid_list = intlist__new(NULL);
2942     if (!traceid_list) {
2943         err = -ENOMEM;
2944         goto err_free_hdr;
2945     }
2946 
2947     metadata = zalloc(sizeof(*metadata) * num_cpu);
2948     if (!metadata) {
2949         err = -ENOMEM;
2950         goto err_free_traceid_list;
2951     }
2952 
2953     /*
2954      * The metadata is stored in the auxtrace_info section and encodes
2955      * the configuration of the ARM embedded trace macrocell which is
2956      * required by the trace decoder to properly decode the trace due
2957      * to its highly compressed nature.
2958      */
2959     for (j = 0; j < num_cpu; j++) {
2960         if (ptr[i] == __perf_cs_etmv3_magic) {
2961             metadata[j] =
2962                 cs_etm__create_meta_blk(ptr, &i,
2963                             CS_ETM_PRIV_MAX,
2964                             CS_ETM_NR_TRC_PARAMS_V0);
2965 
2966             /* The traceID is our handle */
2967             trcidr_idx = CS_ETM_ETMTRACEIDR;
2968 
2969         } else if (ptr[i] == __perf_cs_etmv4_magic) {
2970             metadata[j] =
2971                 cs_etm__create_meta_blk(ptr, &i,
2972                             CS_ETMV4_PRIV_MAX,
2973                             CS_ETMV4_NR_TRC_PARAMS_V0);
2974 
2975             /* The traceID is our handle */
2976             trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2977         } else if (ptr[i] == __perf_cs_ete_magic) {
2978             metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1);
2979 
2980             /* ETE shares first part of metadata with ETMv4 */
2981             trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2982         } else {
2983             ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n",
2984                   ptr[i]);
2985             err = -EINVAL;
2986             goto err_free_metadata;
2987         }
2988 
2989         if (!metadata[j]) {
2990             err = -ENOMEM;
2991             goto err_free_metadata;
2992         }
2993 
2994         /* Get an RB node for this CPU */
2995         inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
2996 
2997         /* Something went wrong, no need to continue */
2998         if (!inode) {
2999             err = -ENOMEM;
3000             goto err_free_metadata;
3001         }
3002 
3003         /*
3004          * The node for that CPU should not be taken.
3005          * Back out if that's the case.
3006          */
3007         if (inode->priv) {
3008             err = -EINVAL;
3009             goto err_free_metadata;
3010         }
3011         /* All good, associate the traceID with the metadata pointer */
3012         inode->priv = metadata[j];
3013     }
3014 
3015     /*
3016      * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
3017      * CS_ETMV4_PRIV_MAX mark how many double words are in the
3018      * global metadata, and each cpu's metadata respectively.
3019      * The following tests if the correct number of double words was
3020      * present in the auxtrace info section.
3021      */
3022     if (i * 8 != priv_size) {
3023         err = -EINVAL;
3024         goto err_free_metadata;
3025     }
3026 
3027     etm = zalloc(sizeof(*etm));
3028 
3029     if (!etm) {
3030         err = -ENOMEM;
3031         goto err_free_metadata;
3032     }
3033 
3034     err = auxtrace_queues__init(&etm->queues);
3035     if (err)
3036         goto err_free_etm;
3037 
3038     if (session->itrace_synth_opts->set) {
3039         etm->synth_opts = *session->itrace_synth_opts;
3040     } else {
3041         itrace_synth_opts__set_default(&etm->synth_opts,
3042                 session->itrace_synth_opts->default_no_sample);
3043         etm->synth_opts.callchain = false;
3044     }
3045 
3046     etm->session = session;
3047     etm->machine = &session->machines.host;
3048 
3049     etm->num_cpu = num_cpu;
3050     etm->pmu_type = pmu_type;
3051     etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
3052     etm->metadata = metadata;
3053     etm->auxtrace_type = auxtrace_info->type;
3054     etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
3055 
3056     etm->auxtrace.process_event = cs_etm__process_event;
3057     etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
3058     etm->auxtrace.flush_events = cs_etm__flush_events;
3059     etm->auxtrace.free_events = cs_etm__free_events;
3060     etm->auxtrace.free = cs_etm__free;
3061     etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
3062     session->auxtrace = &etm->auxtrace;
3063 
3064     etm->unknown_thread = thread__new(999999999, 999999999);
3065     if (!etm->unknown_thread) {
3066         err = -ENOMEM;
3067         goto err_free_queues;
3068     }
3069 
3070     /*
3071      * Initialize list node so that at thread__zput() we can avoid
3072      * segmentation fault at list_del_init().
3073      */
3074     INIT_LIST_HEAD(&etm->unknown_thread->node);
3075 
3076     err = thread__set_comm(etm->unknown_thread, "unknown", 0);
3077     if (err)
3078         goto err_delete_thread;
3079 
3080     if (thread__init_maps(etm->unknown_thread, etm->machine)) {
3081         err = -ENOMEM;
3082         goto err_delete_thread;
3083     }
3084 
3085     if (dump_trace) {
3086         cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3087     }
3088 
3089     err = cs_etm__synth_events(etm, session);
3090     if (err)
3091         goto err_delete_thread;
3092 
3093     err = cs_etm__queue_aux_records(session);
3094     if (err)
3095         goto err_delete_thread;
3096 
3097     etm->data_queued = etm->queues.populated;
3098     /*
3099      * Print warning in pipe mode, see cs_etm__process_auxtrace_event() and
3100      * cs_etm__queue_aux_fragment() for details relating to limitations.
3101      */
3102     if (!etm->data_queued)
3103         pr_warning("CS ETM warning: Coresight decode and TRBE support requires random file access.\n"
3104                "Continuing with best effort decoding in piped mode.\n\n");
3105 
3106     return 0;
3107 
3108 err_delete_thread:
3109     thread__zput(etm->unknown_thread);
3110 err_free_queues:
3111     auxtrace_queues__free(&etm->queues);
3112     session->auxtrace = NULL;
3113 err_free_etm:
3114     zfree(&etm);
3115 err_free_metadata:
3116     /* No need to check @metadata[j], free(NULL) is supported */
3117     for (j = 0; j < num_cpu; j++)
3118         zfree(&metadata[j]);
3119     zfree(&metadata);
3120 err_free_traceid_list:
3121     intlist__delete(traceid_list);
3122 err_free_hdr:
3123     zfree(&hdr);
3124     /*
3125      * At this point, as a minimum we have valid header. Dump the rest of
3126      * the info section - the print routines will error out on structural
3127      * issues.
3128      */
3129     if (dump_trace)
3130         cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3131     return err;
3132 }