Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * builtin-timechart.c - make an svg timechart of system activity
0004  *
0005  * (C) Copyright 2009 Intel Corporation
0006  *
0007  * Authors:
0008  *     Arjan van de Ven <arjan@linux.intel.com>
0009  */
0010 
0011 #include <errno.h>
0012 #include <inttypes.h>
0013 
0014 #include "builtin.h"
0015 #include "util/color.h"
0016 #include <linux/list.h>
0017 #include "util/evlist.h" // for struct evsel_str_handler
0018 #include "util/evsel.h"
0019 #include <linux/kernel.h>
0020 #include <linux/rbtree.h>
0021 #include <linux/time64.h>
0022 #include <linux/zalloc.h>
0023 #include "util/symbol.h"
0024 #include "util/thread.h"
0025 #include "util/callchain.h"
0026 
0027 #include "perf.h"
0028 #include "util/header.h"
0029 #include <subcmd/pager.h>
0030 #include <subcmd/parse-options.h>
0031 #include "util/parse-events.h"
0032 #include "util/event.h"
0033 #include "util/session.h"
0034 #include "util/svghelper.h"
0035 #include "util/tool.h"
0036 #include "util/data.h"
0037 #include "util/debug.h"
0038 #include "util/string2.h"
0039 #include "util/tracepoint.h"
0040 #include <linux/err.h>
0041 
0042 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
0043 FILE *open_memstream(char **ptr, size_t *sizeloc);
0044 #endif
0045 
0046 #define SUPPORT_OLD_POWER_EVENTS 1
0047 #define PWR_EVENT_EXIT -1
0048 
0049 struct per_pid;
0050 struct power_event;
0051 struct wake_event;
0052 
0053 struct timechart {
0054     struct perf_tool    tool;
0055     struct per_pid      *all_data;
0056     struct power_event  *power_events;
0057     struct wake_event   *wake_events;
0058     int         proc_num;
0059     unsigned int        numcpus;
0060     u64         min_freq,   /* Lowest CPU frequency seen */
0061                 max_freq,   /* Highest CPU frequency seen */
0062                 turbo_frequency,
0063                 first_time, last_time;
0064     bool            power_only,
0065                 tasks_only,
0066                 with_backtrace,
0067                 topology;
0068     bool            force;
0069     /* IO related settings */
0070     bool            io_only,
0071                 skip_eagain;
0072     u64         io_events;
0073     u64         min_time,
0074                 merge_dist;
0075 };
0076 
0077 struct per_pidcomm;
0078 struct cpu_sample;
0079 struct io_sample;
0080 
0081 /*
0082  * Datastructure layout:
0083  * We keep an list of "pid"s, matching the kernels notion of a task struct.
0084  * Each "pid" entry, has a list of "comm"s.
0085  *  this is because we want to track different programs different, while
0086  *  exec will reuse the original pid (by design).
0087  * Each comm has a list of samples that will be used to draw
0088  * final graph.
0089  */
0090 
0091 struct per_pid {
0092     struct per_pid *next;
0093 
0094     int     pid;
0095     int     ppid;
0096 
0097     u64     start_time;
0098     u64     end_time;
0099     u64     total_time;
0100     u64     total_bytes;
0101     int     display;
0102 
0103     struct per_pidcomm *all;
0104     struct per_pidcomm *current;
0105 };
0106 
0107 
0108 struct per_pidcomm {
0109     struct per_pidcomm *next;
0110 
0111     u64     start_time;
0112     u64     end_time;
0113     u64     total_time;
0114     u64     max_bytes;
0115     u64     total_bytes;
0116 
0117     int     Y;
0118     int     display;
0119 
0120     long        state;
0121     u64     state_since;
0122 
0123     char        *comm;
0124 
0125     struct cpu_sample *samples;
0126     struct io_sample  *io_samples;
0127 };
0128 
0129 struct sample_wrapper {
0130     struct sample_wrapper *next;
0131 
0132     u64     timestamp;
0133     unsigned char   data[];
0134 };
0135 
0136 #define TYPE_NONE   0
0137 #define TYPE_RUNNING    1
0138 #define TYPE_WAITING    2
0139 #define TYPE_BLOCKED    3
0140 
0141 struct cpu_sample {
0142     struct cpu_sample *next;
0143 
0144     u64 start_time;
0145     u64 end_time;
0146     int type;
0147     int cpu;
0148     const char *backtrace;
0149 };
0150 
0151 enum {
0152     IOTYPE_READ,
0153     IOTYPE_WRITE,
0154     IOTYPE_SYNC,
0155     IOTYPE_TX,
0156     IOTYPE_RX,
0157     IOTYPE_POLL,
0158 };
0159 
0160 struct io_sample {
0161     struct io_sample *next;
0162 
0163     u64 start_time;
0164     u64 end_time;
0165     u64 bytes;
0166     int type;
0167     int fd;
0168     int err;
0169     int merges;
0170 };
0171 
0172 #define CSTATE 1
0173 #define PSTATE 2
0174 
0175 struct power_event {
0176     struct power_event *next;
0177     int type;
0178     int state;
0179     u64 start_time;
0180     u64 end_time;
0181     int cpu;
0182 };
0183 
0184 struct wake_event {
0185     struct wake_event *next;
0186     int waker;
0187     int wakee;
0188     u64 time;
0189     const char *backtrace;
0190 };
0191 
0192 struct process_filter {
0193     char            *name;
0194     int         pid;
0195     struct process_filter   *next;
0196 };
0197 
0198 static struct process_filter *process_filter;
0199 
0200 
0201 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
0202 {
0203     struct per_pid *cursor = tchart->all_data;
0204 
0205     while (cursor) {
0206         if (cursor->pid == pid)
0207             return cursor;
0208         cursor = cursor->next;
0209     }
0210     cursor = zalloc(sizeof(*cursor));
0211     assert(cursor != NULL);
0212     cursor->pid = pid;
0213     cursor->next = tchart->all_data;
0214     tchart->all_data = cursor;
0215     return cursor;
0216 }
0217 
0218 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
0219 {
0220     struct per_pid *p;
0221     struct per_pidcomm *c;
0222     p = find_create_pid(tchart, pid);
0223     c = p->all;
0224     while (c) {
0225         if (c->comm && strcmp(c->comm, comm) == 0) {
0226             p->current = c;
0227             return;
0228         }
0229         if (!c->comm) {
0230             c->comm = strdup(comm);
0231             p->current = c;
0232             return;
0233         }
0234         c = c->next;
0235     }
0236     c = zalloc(sizeof(*c));
0237     assert(c != NULL);
0238     c->comm = strdup(comm);
0239     p->current = c;
0240     c->next = p->all;
0241     p->all = c;
0242 }
0243 
0244 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
0245 {
0246     struct per_pid *p, *pp;
0247     p = find_create_pid(tchart, pid);
0248     pp = find_create_pid(tchart, ppid);
0249     p->ppid = ppid;
0250     if (pp->current && pp->current->comm && !p->current)
0251         pid_set_comm(tchart, pid, pp->current->comm);
0252 
0253     p->start_time = timestamp;
0254     if (p->current && !p->current->start_time) {
0255         p->current->start_time = timestamp;
0256         p->current->state_since = timestamp;
0257     }
0258 }
0259 
0260 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
0261 {
0262     struct per_pid *p;
0263     p = find_create_pid(tchart, pid);
0264     p->end_time = timestamp;
0265     if (p->current)
0266         p->current->end_time = timestamp;
0267 }
0268 
0269 static void pid_put_sample(struct timechart *tchart, int pid, int type,
0270                unsigned int cpu, u64 start, u64 end,
0271                const char *backtrace)
0272 {
0273     struct per_pid *p;
0274     struct per_pidcomm *c;
0275     struct cpu_sample *sample;
0276 
0277     p = find_create_pid(tchart, pid);
0278     c = p->current;
0279     if (!c) {
0280         c = zalloc(sizeof(*c));
0281         assert(c != NULL);
0282         p->current = c;
0283         c->next = p->all;
0284         p->all = c;
0285     }
0286 
0287     sample = zalloc(sizeof(*sample));
0288     assert(sample != NULL);
0289     sample->start_time = start;
0290     sample->end_time = end;
0291     sample->type = type;
0292     sample->next = c->samples;
0293     sample->cpu = cpu;
0294     sample->backtrace = backtrace;
0295     c->samples = sample;
0296 
0297     if (sample->type == TYPE_RUNNING && end > start && start > 0) {
0298         c->total_time += (end-start);
0299         p->total_time += (end-start);
0300     }
0301 
0302     if (c->start_time == 0 || c->start_time > start)
0303         c->start_time = start;
0304     if (p->start_time == 0 || p->start_time > start)
0305         p->start_time = start;
0306 }
0307 
0308 #define MAX_CPUS 4096
0309 
0310 static u64 cpus_cstate_start_times[MAX_CPUS];
0311 static int cpus_cstate_state[MAX_CPUS];
0312 static u64 cpus_pstate_start_times[MAX_CPUS];
0313 static u64 cpus_pstate_state[MAX_CPUS];
0314 
0315 static int process_comm_event(struct perf_tool *tool,
0316                   union perf_event *event,
0317                   struct perf_sample *sample __maybe_unused,
0318                   struct machine *machine __maybe_unused)
0319 {
0320     struct timechart *tchart = container_of(tool, struct timechart, tool);
0321     pid_set_comm(tchart, event->comm.tid, event->comm.comm);
0322     return 0;
0323 }
0324 
0325 static int process_fork_event(struct perf_tool *tool,
0326                   union perf_event *event,
0327                   struct perf_sample *sample __maybe_unused,
0328                   struct machine *machine __maybe_unused)
0329 {
0330     struct timechart *tchart = container_of(tool, struct timechart, tool);
0331     pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
0332     return 0;
0333 }
0334 
0335 static int process_exit_event(struct perf_tool *tool,
0336                   union perf_event *event,
0337                   struct perf_sample *sample __maybe_unused,
0338                   struct machine *machine __maybe_unused)
0339 {
0340     struct timechart *tchart = container_of(tool, struct timechart, tool);
0341     pid_exit(tchart, event->fork.pid, event->fork.time);
0342     return 0;
0343 }
0344 
0345 #ifdef SUPPORT_OLD_POWER_EVENTS
0346 static int use_old_power_events;
0347 #endif
0348 
0349 static void c_state_start(int cpu, u64 timestamp, int state)
0350 {
0351     cpus_cstate_start_times[cpu] = timestamp;
0352     cpus_cstate_state[cpu] = state;
0353 }
0354 
0355 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
0356 {
0357     struct power_event *pwr = zalloc(sizeof(*pwr));
0358 
0359     if (!pwr)
0360         return;
0361 
0362     pwr->state = cpus_cstate_state[cpu];
0363     pwr->start_time = cpus_cstate_start_times[cpu];
0364     pwr->end_time = timestamp;
0365     pwr->cpu = cpu;
0366     pwr->type = CSTATE;
0367     pwr->next = tchart->power_events;
0368 
0369     tchart->power_events = pwr;
0370 }
0371 
0372 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
0373 {
0374     struct power_event *pwr;
0375 
0376     if (new_freq > 8000000) /* detect invalid data */
0377         return;
0378 
0379     pwr = zalloc(sizeof(*pwr));
0380     if (!pwr)
0381         return;
0382 
0383     pwr->state = cpus_pstate_state[cpu];
0384     pwr->start_time = cpus_pstate_start_times[cpu];
0385     pwr->end_time = timestamp;
0386     pwr->cpu = cpu;
0387     pwr->type = PSTATE;
0388     pwr->next = tchart->power_events;
0389 
0390     if (!pwr->start_time)
0391         pwr->start_time = tchart->first_time;
0392 
0393     tchart->power_events = pwr;
0394 
0395     cpus_pstate_state[cpu] = new_freq;
0396     cpus_pstate_start_times[cpu] = timestamp;
0397 
0398     if ((u64)new_freq > tchart->max_freq)
0399         tchart->max_freq = new_freq;
0400 
0401     if (new_freq < tchart->min_freq || tchart->min_freq == 0)
0402         tchart->min_freq = new_freq;
0403 
0404     if (new_freq == tchart->max_freq - 1000)
0405         tchart->turbo_frequency = tchart->max_freq;
0406 }
0407 
0408 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
0409              int waker, int wakee, u8 flags, const char *backtrace)
0410 {
0411     struct per_pid *p;
0412     struct wake_event *we = zalloc(sizeof(*we));
0413 
0414     if (!we)
0415         return;
0416 
0417     we->time = timestamp;
0418     we->waker = waker;
0419     we->backtrace = backtrace;
0420 
0421     if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
0422         we->waker = -1;
0423 
0424     we->wakee = wakee;
0425     we->next = tchart->wake_events;
0426     tchart->wake_events = we;
0427     p = find_create_pid(tchart, we->wakee);
0428 
0429     if (p && p->current && p->current->state == TYPE_NONE) {
0430         p->current->state_since = timestamp;
0431         p->current->state = TYPE_WAITING;
0432     }
0433     if (p && p->current && p->current->state == TYPE_BLOCKED) {
0434         pid_put_sample(tchart, p->pid, p->current->state, cpu,
0435                    p->current->state_since, timestamp, NULL);
0436         p->current->state_since = timestamp;
0437         p->current->state = TYPE_WAITING;
0438     }
0439 }
0440 
0441 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
0442              int prev_pid, int next_pid, u64 prev_state,
0443              const char *backtrace)
0444 {
0445     struct per_pid *p = NULL, *prev_p;
0446 
0447     prev_p = find_create_pid(tchart, prev_pid);
0448 
0449     p = find_create_pid(tchart, next_pid);
0450 
0451     if (prev_p->current && prev_p->current->state != TYPE_NONE)
0452         pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
0453                    prev_p->current->state_since, timestamp,
0454                    backtrace);
0455     if (p && p->current) {
0456         if (p->current->state != TYPE_NONE)
0457             pid_put_sample(tchart, next_pid, p->current->state, cpu,
0458                        p->current->state_since, timestamp,
0459                        backtrace);
0460 
0461         p->current->state_since = timestamp;
0462         p->current->state = TYPE_RUNNING;
0463     }
0464 
0465     if (prev_p->current) {
0466         prev_p->current->state = TYPE_NONE;
0467         prev_p->current->state_since = timestamp;
0468         if (prev_state & 2)
0469             prev_p->current->state = TYPE_BLOCKED;
0470         if (prev_state == 0)
0471             prev_p->current->state = TYPE_WAITING;
0472     }
0473 }
0474 
0475 static const char *cat_backtrace(union perf_event *event,
0476                  struct perf_sample *sample,
0477                  struct machine *machine)
0478 {
0479     struct addr_location al;
0480     unsigned int i;
0481     char *p = NULL;
0482     size_t p_len;
0483     u8 cpumode = PERF_RECORD_MISC_USER;
0484     struct addr_location tal;
0485     struct ip_callchain *chain = sample->callchain;
0486     FILE *f = open_memstream(&p, &p_len);
0487 
0488     if (!f) {
0489         perror("open_memstream error");
0490         return NULL;
0491     }
0492 
0493     if (!chain)
0494         goto exit;
0495 
0496     if (machine__resolve(machine, &al, sample) < 0) {
0497         fprintf(stderr, "problem processing %d event, skipping it.\n",
0498             event->header.type);
0499         goto exit;
0500     }
0501 
0502     for (i = 0; i < chain->nr; i++) {
0503         u64 ip;
0504 
0505         if (callchain_param.order == ORDER_CALLEE)
0506             ip = chain->ips[i];
0507         else
0508             ip = chain->ips[chain->nr - i - 1];
0509 
0510         if (ip >= PERF_CONTEXT_MAX) {
0511             switch (ip) {
0512             case PERF_CONTEXT_HV:
0513                 cpumode = PERF_RECORD_MISC_HYPERVISOR;
0514                 break;
0515             case PERF_CONTEXT_KERNEL:
0516                 cpumode = PERF_RECORD_MISC_KERNEL;
0517                 break;
0518             case PERF_CONTEXT_USER:
0519                 cpumode = PERF_RECORD_MISC_USER;
0520                 break;
0521             default:
0522                 pr_debug("invalid callchain context: "
0523                      "%"PRId64"\n", (s64) ip);
0524 
0525                 /*
0526                  * It seems the callchain is corrupted.
0527                  * Discard all.
0528                  */
0529                 zfree(&p);
0530                 goto exit_put;
0531             }
0532             continue;
0533         }
0534 
0535         tal.filtered = 0;
0536         if (thread__find_symbol(al.thread, cpumode, ip, &tal))
0537             fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
0538         else
0539             fprintf(f, "..... %016" PRIx64 "\n", ip);
0540     }
0541 exit_put:
0542     addr_location__put(&al);
0543 exit:
0544     fclose(f);
0545 
0546     return p;
0547 }
0548 
0549 typedef int (*tracepoint_handler)(struct timechart *tchart,
0550                   struct evsel *evsel,
0551                   struct perf_sample *sample,
0552                   const char *backtrace);
0553 
0554 static int process_sample_event(struct perf_tool *tool,
0555                 union perf_event *event,
0556                 struct perf_sample *sample,
0557                 struct evsel *evsel,
0558                 struct machine *machine)
0559 {
0560     struct timechart *tchart = container_of(tool, struct timechart, tool);
0561 
0562     if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
0563         if (!tchart->first_time || tchart->first_time > sample->time)
0564             tchart->first_time = sample->time;
0565         if (tchart->last_time < sample->time)
0566             tchart->last_time = sample->time;
0567     }
0568 
0569     if (evsel->handler != NULL) {
0570         tracepoint_handler f = evsel->handler;
0571         return f(tchart, evsel, sample,
0572              cat_backtrace(event, sample, machine));
0573     }
0574 
0575     return 0;
0576 }
0577 
0578 static int
0579 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
0580             struct evsel *evsel,
0581             struct perf_sample *sample,
0582             const char *backtrace __maybe_unused)
0583 {
0584     u32 state  = evsel__intval(evsel, sample, "state");
0585     u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
0586 
0587     if (state == (u32)PWR_EVENT_EXIT)
0588         c_state_end(tchart, cpu_id, sample->time);
0589     else
0590         c_state_start(cpu_id, sample->time, state);
0591     return 0;
0592 }
0593 
0594 static int
0595 process_sample_cpu_frequency(struct timechart *tchart,
0596                  struct evsel *evsel,
0597                  struct perf_sample *sample,
0598                  const char *backtrace __maybe_unused)
0599 {
0600     u32 state  = evsel__intval(evsel, sample, "state");
0601     u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
0602 
0603     p_state_change(tchart, cpu_id, sample->time, state);
0604     return 0;
0605 }
0606 
0607 static int
0608 process_sample_sched_wakeup(struct timechart *tchart,
0609                 struct evsel *evsel,
0610                 struct perf_sample *sample,
0611                 const char *backtrace)
0612 {
0613     u8 flags  = evsel__intval(evsel, sample, "common_flags");
0614     int waker = evsel__intval(evsel, sample, "common_pid");
0615     int wakee = evsel__intval(evsel, sample, "pid");
0616 
0617     sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
0618     return 0;
0619 }
0620 
0621 static int
0622 process_sample_sched_switch(struct timechart *tchart,
0623                 struct evsel *evsel,
0624                 struct perf_sample *sample,
0625                 const char *backtrace)
0626 {
0627     int prev_pid   = evsel__intval(evsel, sample, "prev_pid");
0628     int next_pid   = evsel__intval(evsel, sample, "next_pid");
0629     u64 prev_state = evsel__intval(evsel, sample, "prev_state");
0630 
0631     sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
0632              prev_state, backtrace);
0633     return 0;
0634 }
0635 
0636 #ifdef SUPPORT_OLD_POWER_EVENTS
0637 static int
0638 process_sample_power_start(struct timechart *tchart __maybe_unused,
0639                struct evsel *evsel,
0640                struct perf_sample *sample,
0641                const char *backtrace __maybe_unused)
0642 {
0643     u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
0644     u64 value  = evsel__intval(evsel, sample, "value");
0645 
0646     c_state_start(cpu_id, sample->time, value);
0647     return 0;
0648 }
0649 
0650 static int
0651 process_sample_power_end(struct timechart *tchart,
0652              struct evsel *evsel __maybe_unused,
0653              struct perf_sample *sample,
0654              const char *backtrace __maybe_unused)
0655 {
0656     c_state_end(tchart, sample->cpu, sample->time);
0657     return 0;
0658 }
0659 
0660 static int
0661 process_sample_power_frequency(struct timechart *tchart,
0662                    struct evsel *evsel,
0663                    struct perf_sample *sample,
0664                    const char *backtrace __maybe_unused)
0665 {
0666     u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
0667     u64 value  = evsel__intval(evsel, sample, "value");
0668 
0669     p_state_change(tchart, cpu_id, sample->time, value);
0670     return 0;
0671 }
0672 #endif /* SUPPORT_OLD_POWER_EVENTS */
0673 
0674 /*
0675  * After the last sample we need to wrap up the current C/P state
0676  * and close out each CPU for these.
0677  */
0678 static void end_sample_processing(struct timechart *tchart)
0679 {
0680     u64 cpu;
0681     struct power_event *pwr;
0682 
0683     for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
0684         /* C state */
0685 #if 0
0686         pwr = zalloc(sizeof(*pwr));
0687         if (!pwr)
0688             return;
0689 
0690         pwr->state = cpus_cstate_state[cpu];
0691         pwr->start_time = cpus_cstate_start_times[cpu];
0692         pwr->end_time = tchart->last_time;
0693         pwr->cpu = cpu;
0694         pwr->type = CSTATE;
0695         pwr->next = tchart->power_events;
0696 
0697         tchart->power_events = pwr;
0698 #endif
0699         /* P state */
0700 
0701         pwr = zalloc(sizeof(*pwr));
0702         if (!pwr)
0703             return;
0704 
0705         pwr->state = cpus_pstate_state[cpu];
0706         pwr->start_time = cpus_pstate_start_times[cpu];
0707         pwr->end_time = tchart->last_time;
0708         pwr->cpu = cpu;
0709         pwr->type = PSTATE;
0710         pwr->next = tchart->power_events;
0711 
0712         if (!pwr->start_time)
0713             pwr->start_time = tchart->first_time;
0714         if (!pwr->state)
0715             pwr->state = tchart->min_freq;
0716         tchart->power_events = pwr;
0717     }
0718 }
0719 
0720 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
0721                    u64 start, int fd)
0722 {
0723     struct per_pid *p = find_create_pid(tchart, pid);
0724     struct per_pidcomm *c = p->current;
0725     struct io_sample *sample;
0726     struct io_sample *prev;
0727 
0728     if (!c) {
0729         c = zalloc(sizeof(*c));
0730         if (!c)
0731             return -ENOMEM;
0732         p->current = c;
0733         c->next = p->all;
0734         p->all = c;
0735     }
0736 
0737     prev = c->io_samples;
0738 
0739     if (prev && prev->start_time && !prev->end_time) {
0740         pr_warning("Skip invalid start event: "
0741                "previous event already started!\n");
0742 
0743         /* remove previous event that has been started,
0744          * we are not sure we will ever get an end for it */
0745         c->io_samples = prev->next;
0746         free(prev);
0747         return 0;
0748     }
0749 
0750     sample = zalloc(sizeof(*sample));
0751     if (!sample)
0752         return -ENOMEM;
0753     sample->start_time = start;
0754     sample->type = type;
0755     sample->fd = fd;
0756     sample->next = c->io_samples;
0757     c->io_samples = sample;
0758 
0759     if (c->start_time == 0 || c->start_time > start)
0760         c->start_time = start;
0761 
0762     return 0;
0763 }
0764 
0765 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
0766                  u64 end, long ret)
0767 {
0768     struct per_pid *p = find_create_pid(tchart, pid);
0769     struct per_pidcomm *c = p->current;
0770     struct io_sample *sample, *prev;
0771 
0772     if (!c) {
0773         pr_warning("Invalid pidcomm!\n");
0774         return -1;
0775     }
0776 
0777     sample = c->io_samples;
0778 
0779     if (!sample) /* skip partially captured events */
0780         return 0;
0781 
0782     if (sample->end_time) {
0783         pr_warning("Skip invalid end event: "
0784                "previous event already ended!\n");
0785         return 0;
0786     }
0787 
0788     if (sample->type != type) {
0789         pr_warning("Skip invalid end event: invalid event type!\n");
0790         return 0;
0791     }
0792 
0793     sample->end_time = end;
0794     prev = sample->next;
0795 
0796     /* we want to be able to see small and fast transfers, so make them
0797      * at least min_time long, but don't overlap them */
0798     if (sample->end_time - sample->start_time < tchart->min_time)
0799         sample->end_time = sample->start_time + tchart->min_time;
0800     if (prev && sample->start_time < prev->end_time) {
0801         if (prev->err) /* try to make errors more visible */
0802             sample->start_time = prev->end_time;
0803         else
0804             prev->end_time = sample->start_time;
0805     }
0806 
0807     if (ret < 0) {
0808         sample->err = ret;
0809     } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
0810            type == IOTYPE_TX || type == IOTYPE_RX) {
0811 
0812         if ((u64)ret > c->max_bytes)
0813             c->max_bytes = ret;
0814 
0815         c->total_bytes += ret;
0816         p->total_bytes += ret;
0817         sample->bytes = ret;
0818     }
0819 
0820     /* merge two requests to make svg smaller and render-friendly */
0821     if (prev &&
0822         prev->type == sample->type &&
0823         prev->err == sample->err &&
0824         prev->fd == sample->fd &&
0825         prev->end_time + tchart->merge_dist >= sample->start_time) {
0826 
0827         sample->bytes += prev->bytes;
0828         sample->merges += prev->merges + 1;
0829 
0830         sample->start_time = prev->start_time;
0831         sample->next = prev->next;
0832         free(prev);
0833 
0834         if (!sample->err && sample->bytes > c->max_bytes)
0835             c->max_bytes = sample->bytes;
0836     }
0837 
0838     tchart->io_events++;
0839 
0840     return 0;
0841 }
0842 
0843 static int
0844 process_enter_read(struct timechart *tchart,
0845            struct evsel *evsel,
0846            struct perf_sample *sample)
0847 {
0848     long fd = evsel__intval(evsel, sample, "fd");
0849     return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
0850                    sample->time, fd);
0851 }
0852 
0853 static int
0854 process_exit_read(struct timechart *tchart,
0855           struct evsel *evsel,
0856           struct perf_sample *sample)
0857 {
0858     long ret = evsel__intval(evsel, sample, "ret");
0859     return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
0860                  sample->time, ret);
0861 }
0862 
0863 static int
0864 process_enter_write(struct timechart *tchart,
0865             struct evsel *evsel,
0866             struct perf_sample *sample)
0867 {
0868     long fd = evsel__intval(evsel, sample, "fd");
0869     return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
0870                    sample->time, fd);
0871 }
0872 
0873 static int
0874 process_exit_write(struct timechart *tchart,
0875            struct evsel *evsel,
0876            struct perf_sample *sample)
0877 {
0878     long ret = evsel__intval(evsel, sample, "ret");
0879     return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
0880                  sample->time, ret);
0881 }
0882 
0883 static int
0884 process_enter_sync(struct timechart *tchart,
0885            struct evsel *evsel,
0886            struct perf_sample *sample)
0887 {
0888     long fd = evsel__intval(evsel, sample, "fd");
0889     return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
0890                    sample->time, fd);
0891 }
0892 
0893 static int
0894 process_exit_sync(struct timechart *tchart,
0895           struct evsel *evsel,
0896           struct perf_sample *sample)
0897 {
0898     long ret = evsel__intval(evsel, sample, "ret");
0899     return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
0900                  sample->time, ret);
0901 }
0902 
0903 static int
0904 process_enter_tx(struct timechart *tchart,
0905          struct evsel *evsel,
0906          struct perf_sample *sample)
0907 {
0908     long fd = evsel__intval(evsel, sample, "fd");
0909     return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
0910                    sample->time, fd);
0911 }
0912 
0913 static int
0914 process_exit_tx(struct timechart *tchart,
0915         struct evsel *evsel,
0916         struct perf_sample *sample)
0917 {
0918     long ret = evsel__intval(evsel, sample, "ret");
0919     return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
0920                  sample->time, ret);
0921 }
0922 
0923 static int
0924 process_enter_rx(struct timechart *tchart,
0925          struct evsel *evsel,
0926          struct perf_sample *sample)
0927 {
0928     long fd = evsel__intval(evsel, sample, "fd");
0929     return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
0930                    sample->time, fd);
0931 }
0932 
0933 static int
0934 process_exit_rx(struct timechart *tchart,
0935         struct evsel *evsel,
0936         struct perf_sample *sample)
0937 {
0938     long ret = evsel__intval(evsel, sample, "ret");
0939     return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
0940                  sample->time, ret);
0941 }
0942 
0943 static int
0944 process_enter_poll(struct timechart *tchart,
0945            struct evsel *evsel,
0946            struct perf_sample *sample)
0947 {
0948     long fd = evsel__intval(evsel, sample, "fd");
0949     return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
0950                    sample->time, fd);
0951 }
0952 
0953 static int
0954 process_exit_poll(struct timechart *tchart,
0955           struct evsel *evsel,
0956           struct perf_sample *sample)
0957 {
0958     long ret = evsel__intval(evsel, sample, "ret");
0959     return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
0960                  sample->time, ret);
0961 }
0962 
0963 /*
0964  * Sort the pid datastructure
0965  */
0966 static void sort_pids(struct timechart *tchart)
0967 {
0968     struct per_pid *new_list, *p, *cursor, *prev;
0969     /* sort by ppid first, then by pid, lowest to highest */
0970 
0971     new_list = NULL;
0972 
0973     while (tchart->all_data) {
0974         p = tchart->all_data;
0975         tchart->all_data = p->next;
0976         p->next = NULL;
0977 
0978         if (new_list == NULL) {
0979             new_list = p;
0980             p->next = NULL;
0981             continue;
0982         }
0983         prev = NULL;
0984         cursor = new_list;
0985         while (cursor) {
0986             if (cursor->ppid > p->ppid ||
0987                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
0988                 /* must insert before */
0989                 if (prev) {
0990                     p->next = prev->next;
0991                     prev->next = p;
0992                     cursor = NULL;
0993                     continue;
0994                 } else {
0995                     p->next = new_list;
0996                     new_list = p;
0997                     cursor = NULL;
0998                     continue;
0999                 }
1000             }
1001 
1002             prev = cursor;
1003             cursor = cursor->next;
1004             if (!cursor)
1005                 prev->next = p;
1006         }
1007     }
1008     tchart->all_data = new_list;
1009 }
1010 
1011 
1012 static void draw_c_p_states(struct timechart *tchart)
1013 {
1014     struct power_event *pwr;
1015     pwr = tchart->power_events;
1016 
1017     /*
1018      * two pass drawing so that the P state bars are on top of the C state blocks
1019      */
1020     while (pwr) {
1021         if (pwr->type == CSTATE)
1022             svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1023         pwr = pwr->next;
1024     }
1025 
1026     pwr = tchart->power_events;
1027     while (pwr) {
1028         if (pwr->type == PSTATE) {
1029             if (!pwr->state)
1030                 pwr->state = tchart->min_freq;
1031             svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1032         }
1033         pwr = pwr->next;
1034     }
1035 }
1036 
1037 static void draw_wakeups(struct timechart *tchart)
1038 {
1039     struct wake_event *we;
1040     struct per_pid *p;
1041     struct per_pidcomm *c;
1042 
1043     we = tchart->wake_events;
1044     while (we) {
1045         int from = 0, to = 0;
1046         char *task_from = NULL, *task_to = NULL;
1047 
1048         /* locate the column of the waker and wakee */
1049         p = tchart->all_data;
1050         while (p) {
1051             if (p->pid == we->waker || p->pid == we->wakee) {
1052                 c = p->all;
1053                 while (c) {
1054                     if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1055                         if (p->pid == we->waker && !from) {
1056                             from = c->Y;
1057                             task_from = strdup(c->comm);
1058                         }
1059                         if (p->pid == we->wakee && !to) {
1060                             to = c->Y;
1061                             task_to = strdup(c->comm);
1062                         }
1063                     }
1064                     c = c->next;
1065                 }
1066                 c = p->all;
1067                 while (c) {
1068                     if (p->pid == we->waker && !from) {
1069                         from = c->Y;
1070                         task_from = strdup(c->comm);
1071                     }
1072                     if (p->pid == we->wakee && !to) {
1073                         to = c->Y;
1074                         task_to = strdup(c->comm);
1075                     }
1076                     c = c->next;
1077                 }
1078             }
1079             p = p->next;
1080         }
1081 
1082         if (!task_from) {
1083             task_from = malloc(40);
1084             sprintf(task_from, "[%i]", we->waker);
1085         }
1086         if (!task_to) {
1087             task_to = malloc(40);
1088             sprintf(task_to, "[%i]", we->wakee);
1089         }
1090 
1091         if (we->waker == -1)
1092             svg_interrupt(we->time, to, we->backtrace);
1093         else if (from && to && abs(from - to) == 1)
1094             svg_wakeline(we->time, from, to, we->backtrace);
1095         else
1096             svg_partial_wakeline(we->time, from, task_from, to,
1097                          task_to, we->backtrace);
1098         we = we->next;
1099 
1100         free(task_from);
1101         free(task_to);
1102     }
1103 }
1104 
1105 static void draw_cpu_usage(struct timechart *tchart)
1106 {
1107     struct per_pid *p;
1108     struct per_pidcomm *c;
1109     struct cpu_sample *sample;
1110     p = tchart->all_data;
1111     while (p) {
1112         c = p->all;
1113         while (c) {
1114             sample = c->samples;
1115             while (sample) {
1116                 if (sample->type == TYPE_RUNNING) {
1117                     svg_process(sample->cpu,
1118                             sample->start_time,
1119                             sample->end_time,
1120                             p->pid,
1121                             c->comm,
1122                             sample->backtrace);
1123                 }
1124 
1125                 sample = sample->next;
1126             }
1127             c = c->next;
1128         }
1129         p = p->next;
1130     }
1131 }
1132 
1133 static void draw_io_bars(struct timechart *tchart)
1134 {
1135     const char *suf;
1136     double bytes;
1137     char comm[256];
1138     struct per_pid *p;
1139     struct per_pidcomm *c;
1140     struct io_sample *sample;
1141     int Y = 1;
1142 
1143     p = tchart->all_data;
1144     while (p) {
1145         c = p->all;
1146         while (c) {
1147             if (!c->display) {
1148                 c->Y = 0;
1149                 c = c->next;
1150                 continue;
1151             }
1152 
1153             svg_box(Y, c->start_time, c->end_time, "process3");
1154             sample = c->io_samples;
1155             for (sample = c->io_samples; sample; sample = sample->next) {
1156                 double h = (double)sample->bytes / c->max_bytes;
1157 
1158                 if (tchart->skip_eagain &&
1159                     sample->err == -EAGAIN)
1160                     continue;
1161 
1162                 if (sample->err)
1163                     h = 1;
1164 
1165                 if (sample->type == IOTYPE_SYNC)
1166                     svg_fbox(Y,
1167                         sample->start_time,
1168                         sample->end_time,
1169                         1,
1170                         sample->err ? "error" : "sync",
1171                         sample->fd,
1172                         sample->err,
1173                         sample->merges);
1174                 else if (sample->type == IOTYPE_POLL)
1175                     svg_fbox(Y,
1176                         sample->start_time,
1177                         sample->end_time,
1178                         1,
1179                         sample->err ? "error" : "poll",
1180                         sample->fd,
1181                         sample->err,
1182                         sample->merges);
1183                 else if (sample->type == IOTYPE_READ)
1184                     svg_ubox(Y,
1185                         sample->start_time,
1186                         sample->end_time,
1187                         h,
1188                         sample->err ? "error" : "disk",
1189                         sample->fd,
1190                         sample->err,
1191                         sample->merges);
1192                 else if (sample->type == IOTYPE_WRITE)
1193                     svg_lbox(Y,
1194                         sample->start_time,
1195                         sample->end_time,
1196                         h,
1197                         sample->err ? "error" : "disk",
1198                         sample->fd,
1199                         sample->err,
1200                         sample->merges);
1201                 else if (sample->type == IOTYPE_RX)
1202                     svg_ubox(Y,
1203                         sample->start_time,
1204                         sample->end_time,
1205                         h,
1206                         sample->err ? "error" : "net",
1207                         sample->fd,
1208                         sample->err,
1209                         sample->merges);
1210                 else if (sample->type == IOTYPE_TX)
1211                     svg_lbox(Y,
1212                         sample->start_time,
1213                         sample->end_time,
1214                         h,
1215                         sample->err ? "error" : "net",
1216                         sample->fd,
1217                         sample->err,
1218                         sample->merges);
1219             }
1220 
1221             suf = "";
1222             bytes = c->total_bytes;
1223             if (bytes > 1024) {
1224                 bytes = bytes / 1024;
1225                 suf = "K";
1226             }
1227             if (bytes > 1024) {
1228                 bytes = bytes / 1024;
1229                 suf = "M";
1230             }
1231             if (bytes > 1024) {
1232                 bytes = bytes / 1024;
1233                 suf = "G";
1234             }
1235 
1236 
1237             sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1238             svg_text(Y, c->start_time, comm);
1239 
1240             c->Y = Y;
1241             Y++;
1242             c = c->next;
1243         }
1244         p = p->next;
1245     }
1246 }
1247 
1248 static void draw_process_bars(struct timechart *tchart)
1249 {
1250     struct per_pid *p;
1251     struct per_pidcomm *c;
1252     struct cpu_sample *sample;
1253     int Y = 0;
1254 
1255     Y = 2 * tchart->numcpus + 2;
1256 
1257     p = tchart->all_data;
1258     while (p) {
1259         c = p->all;
1260         while (c) {
1261             if (!c->display) {
1262                 c->Y = 0;
1263                 c = c->next;
1264                 continue;
1265             }
1266 
1267             svg_box(Y, c->start_time, c->end_time, "process");
1268             sample = c->samples;
1269             while (sample) {
1270                 if (sample->type == TYPE_RUNNING)
1271                     svg_running(Y, sample->cpu,
1272                             sample->start_time,
1273                             sample->end_time,
1274                             sample->backtrace);
1275                 if (sample->type == TYPE_BLOCKED)
1276                     svg_blocked(Y, sample->cpu,
1277                             sample->start_time,
1278                             sample->end_time,
1279                             sample->backtrace);
1280                 if (sample->type == TYPE_WAITING)
1281                     svg_waiting(Y, sample->cpu,
1282                             sample->start_time,
1283                             sample->end_time,
1284                             sample->backtrace);
1285                 sample = sample->next;
1286             }
1287 
1288             if (c->comm) {
1289                 char comm[256];
1290                 if (c->total_time > 5000000000) /* 5 seconds */
1291                     sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1292                 else
1293                     sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1294 
1295                 svg_text(Y, c->start_time, comm);
1296             }
1297             c->Y = Y;
1298             Y++;
1299             c = c->next;
1300         }
1301         p = p->next;
1302     }
1303 }
1304 
1305 static void add_process_filter(const char *string)
1306 {
1307     int pid = strtoull(string, NULL, 10);
1308     struct process_filter *filt = malloc(sizeof(*filt));
1309 
1310     if (!filt)
1311         return;
1312 
1313     filt->name = strdup(string);
1314     filt->pid  = pid;
1315     filt->next = process_filter;
1316 
1317     process_filter = filt;
1318 }
1319 
1320 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1321 {
1322     struct process_filter *filt;
1323     if (!process_filter)
1324         return 1;
1325 
1326     filt = process_filter;
1327     while (filt) {
1328         if (filt->pid && p->pid == filt->pid)
1329             return 1;
1330         if (strcmp(filt->name, c->comm) == 0)
1331             return 1;
1332         filt = filt->next;
1333     }
1334     return 0;
1335 }
1336 
1337 static int determine_display_tasks_filtered(struct timechart *tchart)
1338 {
1339     struct per_pid *p;
1340     struct per_pidcomm *c;
1341     int count = 0;
1342 
1343     p = tchart->all_data;
1344     while (p) {
1345         p->display = 0;
1346         if (p->start_time == 1)
1347             p->start_time = tchart->first_time;
1348 
1349         /* no exit marker, task kept running to the end */
1350         if (p->end_time == 0)
1351             p->end_time = tchart->last_time;
1352 
1353         c = p->all;
1354 
1355         while (c) {
1356             c->display = 0;
1357 
1358             if (c->start_time == 1)
1359                 c->start_time = tchart->first_time;
1360 
1361             if (passes_filter(p, c)) {
1362                 c->display = 1;
1363                 p->display = 1;
1364                 count++;
1365             }
1366 
1367             if (c->end_time == 0)
1368                 c->end_time = tchart->last_time;
1369 
1370             c = c->next;
1371         }
1372         p = p->next;
1373     }
1374     return count;
1375 }
1376 
1377 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1378 {
1379     struct per_pid *p;
1380     struct per_pidcomm *c;
1381     int count = 0;
1382 
1383     p = tchart->all_data;
1384     while (p) {
1385         p->display = 0;
1386         if (p->start_time == 1)
1387             p->start_time = tchart->first_time;
1388 
1389         /* no exit marker, task kept running to the end */
1390         if (p->end_time == 0)
1391             p->end_time = tchart->last_time;
1392         if (p->total_time >= threshold)
1393             p->display = 1;
1394 
1395         c = p->all;
1396 
1397         while (c) {
1398             c->display = 0;
1399 
1400             if (c->start_time == 1)
1401                 c->start_time = tchart->first_time;
1402 
1403             if (c->total_time >= threshold) {
1404                 c->display = 1;
1405                 count++;
1406             }
1407 
1408             if (c->end_time == 0)
1409                 c->end_time = tchart->last_time;
1410 
1411             c = c->next;
1412         }
1413         p = p->next;
1414     }
1415     return count;
1416 }
1417 
1418 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1419 {
1420     struct per_pid *p;
1421     struct per_pidcomm *c;
1422     int count = 0;
1423 
1424     p = timechart->all_data;
1425     while (p) {
1426         /* no exit marker, task kept running to the end */
1427         if (p->end_time == 0)
1428             p->end_time = timechart->last_time;
1429 
1430         c = p->all;
1431 
1432         while (c) {
1433             c->display = 0;
1434 
1435             if (c->total_bytes >= threshold) {
1436                 c->display = 1;
1437                 count++;
1438             }
1439 
1440             if (c->end_time == 0)
1441                 c->end_time = timechart->last_time;
1442 
1443             c = c->next;
1444         }
1445         p = p->next;
1446     }
1447     return count;
1448 }
1449 
1450 #define BYTES_THRESH (1 * 1024 * 1024)
1451 #define TIME_THRESH 10000000
1452 
1453 static void write_svg_file(struct timechart *tchart, const char *filename)
1454 {
1455     u64 i;
1456     int count;
1457     int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1458 
1459     if (tchart->power_only)
1460         tchart->proc_num = 0;
1461 
1462     /* We'd like to show at least proc_num tasks;
1463      * be less picky if we have fewer */
1464     do {
1465         if (process_filter)
1466             count = determine_display_tasks_filtered(tchart);
1467         else if (tchart->io_events)
1468             count = determine_display_io_tasks(tchart, thresh);
1469         else
1470             count = determine_display_tasks(tchart, thresh);
1471         thresh /= 10;
1472     } while (!process_filter && thresh && count < tchart->proc_num);
1473 
1474     if (!tchart->proc_num)
1475         count = 0;
1476 
1477     if (tchart->io_events) {
1478         open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1479 
1480         svg_time_grid(0.5);
1481         svg_io_legenda();
1482 
1483         draw_io_bars(tchart);
1484     } else {
1485         open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1486 
1487         svg_time_grid(0);
1488 
1489         svg_legenda();
1490 
1491         for (i = 0; i < tchart->numcpus; i++)
1492             svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1493 
1494         draw_cpu_usage(tchart);
1495         if (tchart->proc_num)
1496             draw_process_bars(tchart);
1497         if (!tchart->tasks_only)
1498             draw_c_p_states(tchart);
1499         if (tchart->proc_num)
1500             draw_wakeups(tchart);
1501     }
1502 
1503     svg_close();
1504 }
1505 
1506 static int process_header(struct perf_file_section *section __maybe_unused,
1507               struct perf_header *ph,
1508               int feat,
1509               int fd __maybe_unused,
1510               void *data)
1511 {
1512     struct timechart *tchart = data;
1513 
1514     switch (feat) {
1515     case HEADER_NRCPUS:
1516         tchart->numcpus = ph->env.nr_cpus_avail;
1517         break;
1518 
1519     case HEADER_CPU_TOPOLOGY:
1520         if (!tchart->topology)
1521             break;
1522 
1523         if (svg_build_topology_map(&ph->env))
1524             fprintf(stderr, "problem building topology\n");
1525         break;
1526 
1527     default:
1528         break;
1529     }
1530 
1531     return 0;
1532 }
1533 
1534 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1535 {
1536     const struct evsel_str_handler power_tracepoints[] = {
1537         { "power:cpu_idle",     process_sample_cpu_idle },
1538         { "power:cpu_frequency",    process_sample_cpu_frequency },
1539         { "sched:sched_wakeup",     process_sample_sched_wakeup },
1540         { "sched:sched_switch",     process_sample_sched_switch },
1541 #ifdef SUPPORT_OLD_POWER_EVENTS
1542         { "power:power_start",      process_sample_power_start },
1543         { "power:power_end",        process_sample_power_end },
1544         { "power:power_frequency",  process_sample_power_frequency },
1545 #endif
1546 
1547         { "syscalls:sys_enter_read",        process_enter_read },
1548         { "syscalls:sys_enter_pread64",     process_enter_read },
1549         { "syscalls:sys_enter_readv",       process_enter_read },
1550         { "syscalls:sys_enter_preadv",      process_enter_read },
1551         { "syscalls:sys_enter_write",       process_enter_write },
1552         { "syscalls:sys_enter_pwrite64",    process_enter_write },
1553         { "syscalls:sys_enter_writev",      process_enter_write },
1554         { "syscalls:sys_enter_pwritev",     process_enter_write },
1555         { "syscalls:sys_enter_sync",        process_enter_sync },
1556         { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1557         { "syscalls:sys_enter_fsync",       process_enter_sync },
1558         { "syscalls:sys_enter_msync",       process_enter_sync },
1559         { "syscalls:sys_enter_recvfrom",    process_enter_rx },
1560         { "syscalls:sys_enter_recvmmsg",    process_enter_rx },
1561         { "syscalls:sys_enter_recvmsg",     process_enter_rx },
1562         { "syscalls:sys_enter_sendto",      process_enter_tx },
1563         { "syscalls:sys_enter_sendmsg",     process_enter_tx },
1564         { "syscalls:sys_enter_sendmmsg",    process_enter_tx },
1565         { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1566         { "syscalls:sys_enter_epoll_wait",  process_enter_poll },
1567         { "syscalls:sys_enter_poll",        process_enter_poll },
1568         { "syscalls:sys_enter_ppoll",       process_enter_poll },
1569         { "syscalls:sys_enter_pselect6",    process_enter_poll },
1570         { "syscalls:sys_enter_select",      process_enter_poll },
1571 
1572         { "syscalls:sys_exit_read",     process_exit_read },
1573         { "syscalls:sys_exit_pread64",      process_exit_read },
1574         { "syscalls:sys_exit_readv",        process_exit_read },
1575         { "syscalls:sys_exit_preadv",       process_exit_read },
1576         { "syscalls:sys_exit_write",        process_exit_write },
1577         { "syscalls:sys_exit_pwrite64",     process_exit_write },
1578         { "syscalls:sys_exit_writev",       process_exit_write },
1579         { "syscalls:sys_exit_pwritev",      process_exit_write },
1580         { "syscalls:sys_exit_sync",     process_exit_sync },
1581         { "syscalls:sys_exit_sync_file_range",  process_exit_sync },
1582         { "syscalls:sys_exit_fsync",        process_exit_sync },
1583         { "syscalls:sys_exit_msync",        process_exit_sync },
1584         { "syscalls:sys_exit_recvfrom",     process_exit_rx },
1585         { "syscalls:sys_exit_recvmmsg",     process_exit_rx },
1586         { "syscalls:sys_exit_recvmsg",      process_exit_rx },
1587         { "syscalls:sys_exit_sendto",       process_exit_tx },
1588         { "syscalls:sys_exit_sendmsg",      process_exit_tx },
1589         { "syscalls:sys_exit_sendmmsg",     process_exit_tx },
1590         { "syscalls:sys_exit_epoll_pwait",  process_exit_poll },
1591         { "syscalls:sys_exit_epoll_wait",   process_exit_poll },
1592         { "syscalls:sys_exit_poll",     process_exit_poll },
1593         { "syscalls:sys_exit_ppoll",        process_exit_poll },
1594         { "syscalls:sys_exit_pselect6",     process_exit_poll },
1595         { "syscalls:sys_exit_select",       process_exit_poll },
1596     };
1597     struct perf_data data = {
1598         .path  = input_name,
1599         .mode  = PERF_DATA_MODE_READ,
1600         .force = tchart->force,
1601     };
1602 
1603     struct perf_session *session = perf_session__new(&data, &tchart->tool);
1604     int ret = -EINVAL;
1605 
1606     if (IS_ERR(session))
1607         return PTR_ERR(session);
1608 
1609     symbol__init(&session->header.env);
1610 
1611     (void)perf_header__process_sections(&session->header,
1612                         perf_data__fd(session->data),
1613                         tchart,
1614                         process_header);
1615 
1616     if (!perf_session__has_traces(session, "timechart record"))
1617         goto out_delete;
1618 
1619     if (perf_session__set_tracepoints_handlers(session,
1620                            power_tracepoints)) {
1621         pr_err("Initializing session tracepoint handlers failed\n");
1622         goto out_delete;
1623     }
1624 
1625     ret = perf_session__process_events(session);
1626     if (ret)
1627         goto out_delete;
1628 
1629     end_sample_processing(tchart);
1630 
1631     sort_pids(tchart);
1632 
1633     write_svg_file(tchart, output_name);
1634 
1635     pr_info("Written %2.1f seconds of trace to %s.\n",
1636         (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1637 out_delete:
1638     perf_session__delete(session);
1639     return ret;
1640 }
1641 
1642 static int timechart__io_record(int argc, const char **argv)
1643 {
1644     unsigned int rec_argc, i;
1645     const char **rec_argv;
1646     const char **p;
1647     char *filter = NULL;
1648 
1649     const char * const common_args[] = {
1650         "record", "-a", "-R", "-c", "1",
1651     };
1652     unsigned int common_args_nr = ARRAY_SIZE(common_args);
1653 
1654     const char * const disk_events[] = {
1655         "syscalls:sys_enter_read",
1656         "syscalls:sys_enter_pread64",
1657         "syscalls:sys_enter_readv",
1658         "syscalls:sys_enter_preadv",
1659         "syscalls:sys_enter_write",
1660         "syscalls:sys_enter_pwrite64",
1661         "syscalls:sys_enter_writev",
1662         "syscalls:sys_enter_pwritev",
1663         "syscalls:sys_enter_sync",
1664         "syscalls:sys_enter_sync_file_range",
1665         "syscalls:sys_enter_fsync",
1666         "syscalls:sys_enter_msync",
1667 
1668         "syscalls:sys_exit_read",
1669         "syscalls:sys_exit_pread64",
1670         "syscalls:sys_exit_readv",
1671         "syscalls:sys_exit_preadv",
1672         "syscalls:sys_exit_write",
1673         "syscalls:sys_exit_pwrite64",
1674         "syscalls:sys_exit_writev",
1675         "syscalls:sys_exit_pwritev",
1676         "syscalls:sys_exit_sync",
1677         "syscalls:sys_exit_sync_file_range",
1678         "syscalls:sys_exit_fsync",
1679         "syscalls:sys_exit_msync",
1680     };
1681     unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1682 
1683     const char * const net_events[] = {
1684         "syscalls:sys_enter_recvfrom",
1685         "syscalls:sys_enter_recvmmsg",
1686         "syscalls:sys_enter_recvmsg",
1687         "syscalls:sys_enter_sendto",
1688         "syscalls:sys_enter_sendmsg",
1689         "syscalls:sys_enter_sendmmsg",
1690 
1691         "syscalls:sys_exit_recvfrom",
1692         "syscalls:sys_exit_recvmmsg",
1693         "syscalls:sys_exit_recvmsg",
1694         "syscalls:sys_exit_sendto",
1695         "syscalls:sys_exit_sendmsg",
1696         "syscalls:sys_exit_sendmmsg",
1697     };
1698     unsigned int net_events_nr = ARRAY_SIZE(net_events);
1699 
1700     const char * const poll_events[] = {
1701         "syscalls:sys_enter_epoll_pwait",
1702         "syscalls:sys_enter_epoll_wait",
1703         "syscalls:sys_enter_poll",
1704         "syscalls:sys_enter_ppoll",
1705         "syscalls:sys_enter_pselect6",
1706         "syscalls:sys_enter_select",
1707 
1708         "syscalls:sys_exit_epoll_pwait",
1709         "syscalls:sys_exit_epoll_wait",
1710         "syscalls:sys_exit_poll",
1711         "syscalls:sys_exit_ppoll",
1712         "syscalls:sys_exit_pselect6",
1713         "syscalls:sys_exit_select",
1714     };
1715     unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1716 
1717     rec_argc = common_args_nr +
1718         disk_events_nr * 4 +
1719         net_events_nr * 4 +
1720         poll_events_nr * 4 +
1721         argc;
1722     rec_argv = calloc(rec_argc + 1, sizeof(char *));
1723 
1724     if (rec_argv == NULL)
1725         return -ENOMEM;
1726 
1727     if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1728         free(rec_argv);
1729         return -ENOMEM;
1730     }
1731 
1732     p = rec_argv;
1733     for (i = 0; i < common_args_nr; i++)
1734         *p++ = strdup(common_args[i]);
1735 
1736     for (i = 0; i < disk_events_nr; i++) {
1737         if (!is_valid_tracepoint(disk_events[i])) {
1738             rec_argc -= 4;
1739             continue;
1740         }
1741 
1742         *p++ = "-e";
1743         *p++ = strdup(disk_events[i]);
1744         *p++ = "--filter";
1745         *p++ = filter;
1746     }
1747     for (i = 0; i < net_events_nr; i++) {
1748         if (!is_valid_tracepoint(net_events[i])) {
1749             rec_argc -= 4;
1750             continue;
1751         }
1752 
1753         *p++ = "-e";
1754         *p++ = strdup(net_events[i]);
1755         *p++ = "--filter";
1756         *p++ = filter;
1757     }
1758     for (i = 0; i < poll_events_nr; i++) {
1759         if (!is_valid_tracepoint(poll_events[i])) {
1760             rec_argc -= 4;
1761             continue;
1762         }
1763 
1764         *p++ = "-e";
1765         *p++ = strdup(poll_events[i]);
1766         *p++ = "--filter";
1767         *p++ = filter;
1768     }
1769 
1770     for (i = 0; i < (unsigned int)argc; i++)
1771         *p++ = argv[i];
1772 
1773     return cmd_record(rec_argc, rec_argv);
1774 }
1775 
1776 
1777 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1778 {
1779     unsigned int rec_argc, i, j;
1780     const char **rec_argv;
1781     const char **p;
1782     unsigned int record_elems;
1783 
1784     const char * const common_args[] = {
1785         "record", "-a", "-R", "-c", "1",
1786     };
1787     unsigned int common_args_nr = ARRAY_SIZE(common_args);
1788 
1789     const char * const backtrace_args[] = {
1790         "-g",
1791     };
1792     unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1793 
1794     const char * const power_args[] = {
1795         "-e", "power:cpu_frequency",
1796         "-e", "power:cpu_idle",
1797     };
1798     unsigned int power_args_nr = ARRAY_SIZE(power_args);
1799 
1800     const char * const old_power_args[] = {
1801 #ifdef SUPPORT_OLD_POWER_EVENTS
1802         "-e", "power:power_start",
1803         "-e", "power:power_end",
1804         "-e", "power:power_frequency",
1805 #endif
1806     };
1807     unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1808 
1809     const char * const tasks_args[] = {
1810         "-e", "sched:sched_wakeup",
1811         "-e", "sched:sched_switch",
1812     };
1813     unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1814 
1815 #ifdef SUPPORT_OLD_POWER_EVENTS
1816     if (!is_valid_tracepoint("power:cpu_idle") &&
1817         is_valid_tracepoint("power:power_start")) {
1818         use_old_power_events = 1;
1819         power_args_nr = 0;
1820     } else {
1821         old_power_args_nr = 0;
1822     }
1823 #endif
1824 
1825     if (tchart->power_only)
1826         tasks_args_nr = 0;
1827 
1828     if (tchart->tasks_only) {
1829         power_args_nr = 0;
1830         old_power_args_nr = 0;
1831     }
1832 
1833     if (!tchart->with_backtrace)
1834         backtrace_args_no = 0;
1835 
1836     record_elems = common_args_nr + tasks_args_nr +
1837         power_args_nr + old_power_args_nr + backtrace_args_no;
1838 
1839     rec_argc = record_elems + argc;
1840     rec_argv = calloc(rec_argc + 1, sizeof(char *));
1841 
1842     if (rec_argv == NULL)
1843         return -ENOMEM;
1844 
1845     p = rec_argv;
1846     for (i = 0; i < common_args_nr; i++)
1847         *p++ = strdup(common_args[i]);
1848 
1849     for (i = 0; i < backtrace_args_no; i++)
1850         *p++ = strdup(backtrace_args[i]);
1851 
1852     for (i = 0; i < tasks_args_nr; i++)
1853         *p++ = strdup(tasks_args[i]);
1854 
1855     for (i = 0; i < power_args_nr; i++)
1856         *p++ = strdup(power_args[i]);
1857 
1858     for (i = 0; i < old_power_args_nr; i++)
1859         *p++ = strdup(old_power_args[i]);
1860 
1861     for (j = 0; j < (unsigned int)argc; j++)
1862         *p++ = argv[j];
1863 
1864     return cmd_record(rec_argc, rec_argv);
1865 }
1866 
1867 static int
1868 parse_process(const struct option *opt __maybe_unused, const char *arg,
1869           int __maybe_unused unset)
1870 {
1871     if (arg)
1872         add_process_filter(arg);
1873     return 0;
1874 }
1875 
1876 static int
1877 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1878         int __maybe_unused unset)
1879 {
1880     unsigned long duration = strtoul(arg, NULL, 0);
1881 
1882     if (svg_highlight || svg_highlight_name)
1883         return -1;
1884 
1885     if (duration)
1886         svg_highlight = duration;
1887     else
1888         svg_highlight_name = strdup(arg);
1889 
1890     return 0;
1891 }
1892 
1893 static int
1894 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1895 {
1896     char unit = 'n';
1897     u64 *value = opt->value;
1898 
1899     if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1900         switch (unit) {
1901         case 'm':
1902             *value *= NSEC_PER_MSEC;
1903             break;
1904         case 'u':
1905             *value *= NSEC_PER_USEC;
1906             break;
1907         case 'n':
1908             break;
1909         default:
1910             return -1;
1911         }
1912     }
1913 
1914     return 0;
1915 }
1916 
1917 int cmd_timechart(int argc, const char **argv)
1918 {
1919     struct timechart tchart = {
1920         .tool = {
1921             .comm        = process_comm_event,
1922             .fork        = process_fork_event,
1923             .exit        = process_exit_event,
1924             .sample      = process_sample_event,
1925             .ordered_events  = true,
1926         },
1927         .proc_num = 15,
1928         .min_time = NSEC_PER_MSEC,
1929         .merge_dist = 1000,
1930     };
1931     const char *output_name = "output.svg";
1932     const struct option timechart_common_options[] = {
1933     OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1934     OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1935     OPT_END()
1936     };
1937     const struct option timechart_options[] = {
1938     OPT_STRING('i', "input", &input_name, "file", "input file name"),
1939     OPT_STRING('o', "output", &output_name, "file", "output file name"),
1940     OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1941     OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1942               "highlight tasks. Pass duration in ns or process name.",
1943                parse_highlight),
1944     OPT_CALLBACK('p', "process", NULL, "process",
1945               "process selector. Pass a pid or process name.",
1946                parse_process),
1947     OPT_CALLBACK(0, "symfs", NULL, "directory",
1948              "Look for files with symbols relative to this directory",
1949              symbol__config_symfs),
1950     OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1951             "min. number of tasks to print"),
1952     OPT_BOOLEAN('t', "topology", &tchart.topology,
1953             "sort CPUs according to topology"),
1954     OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1955             "skip EAGAIN errors"),
1956     OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1957              "all IO faster than min-time will visually appear longer",
1958              parse_time),
1959     OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1960              "merge events that are merge-dist us apart",
1961              parse_time),
1962     OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1963     OPT_PARENT(timechart_common_options),
1964     };
1965     const char * const timechart_subcommands[] = { "record", NULL };
1966     const char *timechart_usage[] = {
1967         "perf timechart [<options>] {record}",
1968         NULL
1969     };
1970     const struct option timechart_record_options[] = {
1971     OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1972             "record only IO data"),
1973     OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1974     OPT_PARENT(timechart_common_options),
1975     };
1976     const char * const timechart_record_usage[] = {
1977         "perf timechart record [<options>]",
1978         NULL
1979     };
1980     argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1981             timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1982 
1983     if (tchart.power_only && tchart.tasks_only) {
1984         pr_err("-P and -T options cannot be used at the same time.\n");
1985         return -1;
1986     }
1987 
1988     if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
1989         argc = parse_options(argc, argv, timechart_record_options,
1990                      timechart_record_usage,
1991                      PARSE_OPT_STOP_AT_NON_OPTION);
1992 
1993         if (tchart.power_only && tchart.tasks_only) {
1994             pr_err("-P and -T options cannot be used at the same time.\n");
1995             return -1;
1996         }
1997 
1998         if (tchart.io_only)
1999             return timechart__io_record(argc, argv);
2000         else
2001             return timechart__record(&tchart, argc, argv);
2002     } else if (argc)
2003         usage_with_options(timechart_usage, timechart_options);
2004 
2005     setup_pager();
2006 
2007     return __cmd_timechart(&tchart, output_name);
2008 }