0001
0002
0003
0004
0005
0006
0007
0008 #include <inttypes.h>
0009
0010 #include <pthread.h>
0011
0012 #include <subcmd/parse-options.h>
0013 #include "../util/cloexec.h"
0014
0015 #include "bench.h"
0016
0017 #include <errno.h>
0018 #include <sched.h>
0019 #include <stdio.h>
0020 #include <assert.h>
0021 #include <malloc.h>
0022 #include <signal.h>
0023 #include <stdlib.h>
0024 #include <string.h>
0025 #include <unistd.h>
0026 #include <sys/mman.h>
0027 #include <sys/time.h>
0028 #include <sys/resource.h>
0029 #include <sys/wait.h>
0030 #include <sys/prctl.h>
0031 #include <sys/types.h>
0032 #include <linux/kernel.h>
0033 #include <linux/time64.h>
0034 #include <linux/numa.h>
0035 #include <linux/zalloc.h>
0036
0037 #include "../util/header.h"
0038 #include <numa.h>
0039 #include <numaif.h>
0040
0041 #ifndef RUSAGE_THREAD
0042 # define RUSAGE_THREAD 1
0043 #endif
0044
0045
0046
0047
0048 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
0049
0050
0051
0052
0053 #undef dprintf
0054 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
0055
0056 struct thread_data {
0057 int curr_cpu;
0058 cpu_set_t *bind_cpumask;
0059 int bind_node;
0060 u8 *process_data;
0061 int process_nr;
0062 int thread_nr;
0063 int task_nr;
0064 unsigned int loops_done;
0065 u64 val;
0066 u64 runtime_ns;
0067 u64 system_time_ns;
0068 u64 user_time_ns;
0069 double speed_gbs;
0070 pthread_mutex_t *process_lock;
0071 };
0072
0073
0074
0075 struct params {
0076
0077 bool serialize_startup;
0078
0079
0080 int nr_proc;
0081 int nr_threads;
0082
0083
0084 const char *mb_global_str;
0085 const char *mb_proc_str;
0086 const char *mb_proc_locked_str;
0087 const char *mb_thread_str;
0088
0089 double mb_global;
0090 double mb_proc;
0091 double mb_proc_locked;
0092 double mb_thread;
0093
0094
0095 bool data_reads;
0096 bool data_writes;
0097 bool data_backwards;
0098 bool data_zero_memset;
0099 bool data_rand_walk;
0100 u32 nr_loops;
0101 u32 nr_secs;
0102 u32 sleep_usecs;
0103
0104
0105 bool init_zero;
0106 bool init_random;
0107 bool init_cpu0;
0108
0109
0110 int show_details;
0111 int run_all;
0112 int thp;
0113
0114 long bytes_global;
0115 long bytes_process;
0116 long bytes_process_locked;
0117 long bytes_thread;
0118
0119 int nr_tasks;
0120 bool show_quiet;
0121
0122 bool show_convergence;
0123 bool measure_convergence;
0124
0125 int perturb_secs;
0126 int nr_cpus;
0127 int nr_nodes;
0128
0129
0130 char *cpu_list_str;
0131 char *node_list_str;
0132 };
0133
0134
0135
0136
0137 struct global_info {
0138 u8 *data;
0139
0140 pthread_mutex_t startup_mutex;
0141 pthread_cond_t startup_cond;
0142 int nr_tasks_started;
0143
0144 pthread_mutex_t start_work_mutex;
0145 pthread_cond_t start_work_cond;
0146 int nr_tasks_working;
0147 bool start_work;
0148
0149 pthread_mutex_t stop_work_mutex;
0150 u64 bytes_done;
0151
0152 struct thread_data *threads;
0153
0154
0155 bool all_converged;
0156 bool stop_work;
0157
0158 int print_once;
0159
0160 struct params p;
0161 };
0162
0163 static struct global_info *g = NULL;
0164
0165 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
0166 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
0167
0168 struct params p0;
0169
0170 static const struct option options[] = {
0171 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
0172 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
0173
0174 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
0175 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
0176 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
0177 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
0178
0179 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
0180 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
0181 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
0182
0183 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"),
0184 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
0185 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
0186 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
0187 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
0188
0189
0190 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
0191 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
0192 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
0193 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
0194
0195 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
0196 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
0197 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
0198 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
0199 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
0200 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
0201 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
0202 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
0203
0204
0205 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
0206 "bind the first N tasks to these specific cpus (the rest is unbound)",
0207 parse_cpus_opt),
0208 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
0209 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
0210 parse_nodes_opt),
0211 OPT_END()
0212 };
0213
0214 static const char * const bench_numa_usage[] = {
0215 "perf bench numa <options>",
0216 NULL
0217 };
0218
0219 static const char * const numa_usage[] = {
0220 "perf bench numa mem [<options>]",
0221 NULL
0222 };
0223
0224
0225
0226
0227 static int nr_numa_nodes(void)
0228 {
0229 int i, nr_nodes = 0;
0230
0231 for (i = 0; i < g->p.nr_nodes; i++) {
0232 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
0233 nr_nodes++;
0234 }
0235
0236 return nr_nodes;
0237 }
0238
0239
0240
0241
0242 static int is_node_present(int node)
0243 {
0244 return numa_bitmask_isbitset(numa_nodes_ptr, node);
0245 }
0246
0247
0248
0249
0250 static bool node_has_cpus(int node)
0251 {
0252 struct bitmask *cpumask = numa_allocate_cpumask();
0253 bool ret = false;
0254 int cpu;
0255
0256 BUG_ON(!cpumask);
0257 if (!numa_node_to_cpus(node, cpumask)) {
0258 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
0259 if (numa_bitmask_isbitset(cpumask, cpu)) {
0260 ret = true;
0261 break;
0262 }
0263 }
0264 }
0265 numa_free_cpumask(cpumask);
0266
0267 return ret;
0268 }
0269
0270 static cpu_set_t *bind_to_cpu(int target_cpu)
0271 {
0272 int nrcpus = numa_num_possible_cpus();
0273 cpu_set_t *orig_mask, *mask;
0274 size_t size;
0275
0276 orig_mask = CPU_ALLOC(nrcpus);
0277 BUG_ON(!orig_mask);
0278 size = CPU_ALLOC_SIZE(nrcpus);
0279 CPU_ZERO_S(size, orig_mask);
0280
0281 if (sched_getaffinity(0, size, orig_mask))
0282 goto err_out;
0283
0284 mask = CPU_ALLOC(nrcpus);
0285 if (!mask)
0286 goto err_out;
0287
0288 CPU_ZERO_S(size, mask);
0289
0290 if (target_cpu == -1) {
0291 int cpu;
0292
0293 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
0294 CPU_SET_S(cpu, size, mask);
0295 } else {
0296 if (target_cpu < 0 || target_cpu >= g->p.nr_cpus)
0297 goto err;
0298
0299 CPU_SET_S(target_cpu, size, mask);
0300 }
0301
0302 if (sched_setaffinity(0, size, mask))
0303 goto err;
0304
0305 return orig_mask;
0306
0307 err:
0308 CPU_FREE(mask);
0309 err_out:
0310 CPU_FREE(orig_mask);
0311
0312
0313 BUG_ON(-1);
0314 return NULL;
0315 }
0316
0317 static cpu_set_t *bind_to_node(int target_node)
0318 {
0319 int nrcpus = numa_num_possible_cpus();
0320 size_t size;
0321 cpu_set_t *orig_mask, *mask;
0322 int cpu;
0323
0324 orig_mask = CPU_ALLOC(nrcpus);
0325 BUG_ON(!orig_mask);
0326 size = CPU_ALLOC_SIZE(nrcpus);
0327 CPU_ZERO_S(size, orig_mask);
0328
0329 if (sched_getaffinity(0, size, orig_mask))
0330 goto err_out;
0331
0332 mask = CPU_ALLOC(nrcpus);
0333 if (!mask)
0334 goto err_out;
0335
0336 CPU_ZERO_S(size, mask);
0337
0338 if (target_node == NUMA_NO_NODE) {
0339 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
0340 CPU_SET_S(cpu, size, mask);
0341 } else {
0342 struct bitmask *cpumask = numa_allocate_cpumask();
0343
0344 if (!cpumask)
0345 goto err;
0346
0347 if (!numa_node_to_cpus(target_node, cpumask)) {
0348 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
0349 if (numa_bitmask_isbitset(cpumask, cpu))
0350 CPU_SET_S(cpu, size, mask);
0351 }
0352 }
0353 numa_free_cpumask(cpumask);
0354 }
0355
0356 if (sched_setaffinity(0, size, mask))
0357 goto err;
0358
0359 return orig_mask;
0360
0361 err:
0362 CPU_FREE(mask);
0363 err_out:
0364 CPU_FREE(orig_mask);
0365
0366
0367 BUG_ON(-1);
0368 return NULL;
0369 }
0370
0371 static void bind_to_cpumask(cpu_set_t *mask)
0372 {
0373 int ret;
0374 size_t size = CPU_ALLOC_SIZE(numa_num_possible_cpus());
0375
0376 ret = sched_setaffinity(0, size, mask);
0377 if (ret) {
0378 CPU_FREE(mask);
0379 BUG_ON(ret);
0380 }
0381 }
0382
0383 static void mempol_restore(void)
0384 {
0385 int ret;
0386
0387 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
0388
0389 BUG_ON(ret);
0390 }
0391
0392 static void bind_to_memnode(int node)
0393 {
0394 struct bitmask *node_mask;
0395 int ret;
0396
0397 if (node == NUMA_NO_NODE)
0398 return;
0399
0400 node_mask = numa_allocate_nodemask();
0401 BUG_ON(!node_mask);
0402
0403 numa_bitmask_clearall(node_mask);
0404 numa_bitmask_setbit(node_mask, node);
0405
0406 ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
0407 dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
0408
0409 numa_bitmask_free(node_mask);
0410 BUG_ON(ret);
0411 }
0412
0413 #define HPSIZE (2*1024*1024)
0414
0415 #define set_taskname(fmt...) \
0416 do { \
0417 char name[20]; \
0418 \
0419 snprintf(name, 20, fmt); \
0420 prctl(PR_SET_NAME, name); \
0421 } while (0)
0422
0423 static u8 *alloc_data(ssize_t bytes0, int map_flags,
0424 int init_zero, int init_cpu0, int thp, int init_random)
0425 {
0426 cpu_set_t *orig_mask = NULL;
0427 ssize_t bytes;
0428 u8 *buf;
0429 int ret;
0430
0431 if (!bytes0)
0432 return NULL;
0433
0434
0435 if (init_cpu0) {
0436 int node = numa_node_of_cpu(0);
0437
0438 orig_mask = bind_to_node(node);
0439 bind_to_memnode(node);
0440 }
0441
0442 bytes = bytes0 + HPSIZE;
0443
0444 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
0445 BUG_ON(buf == (void *)-1);
0446
0447 if (map_flags == MAP_PRIVATE) {
0448 if (thp > 0) {
0449 ret = madvise(buf, bytes, MADV_HUGEPAGE);
0450 if (ret && !g->print_once) {
0451 g->print_once = 1;
0452 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
0453 }
0454 }
0455 if (thp < 0) {
0456 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
0457 if (ret && !g->print_once) {
0458 g->print_once = 1;
0459 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
0460 }
0461 }
0462 }
0463
0464 if (init_zero) {
0465 bzero(buf, bytes);
0466 } else {
0467
0468 if (init_random) {
0469 u64 *wbuf = (void *)buf;
0470 long off = rand();
0471 long i;
0472
0473 for (i = 0; i < bytes/8; i++)
0474 wbuf[i] = i + off;
0475 }
0476 }
0477
0478
0479 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
0480
0481
0482 if (init_cpu0) {
0483 bind_to_cpumask(orig_mask);
0484 CPU_FREE(orig_mask);
0485 mempol_restore();
0486 }
0487
0488 return buf;
0489 }
0490
0491 static void free_data(void *data, ssize_t bytes)
0492 {
0493 int ret;
0494
0495 if (!data)
0496 return;
0497
0498 ret = munmap(data, bytes);
0499 BUG_ON(ret);
0500 }
0501
0502
0503
0504
0505 static void * zalloc_shared_data(ssize_t bytes)
0506 {
0507 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
0508 }
0509
0510
0511
0512
0513 static void * setup_shared_data(ssize_t bytes)
0514 {
0515 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
0516 }
0517
0518
0519
0520
0521
0522 static void * setup_private_data(ssize_t bytes)
0523 {
0524 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
0525 }
0526
0527
0528
0529
0530 static void init_global_mutex(pthread_mutex_t *mutex)
0531 {
0532 pthread_mutexattr_t attr;
0533
0534 pthread_mutexattr_init(&attr);
0535 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
0536 pthread_mutex_init(mutex, &attr);
0537 }
0538
0539
0540
0541
0542 static void init_global_cond(pthread_cond_t *cond)
0543 {
0544 pthread_condattr_t attr;
0545
0546 pthread_condattr_init(&attr);
0547 pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
0548 pthread_cond_init(cond, &attr);
0549 }
0550
0551 static int parse_cpu_list(const char *arg)
0552 {
0553 p0.cpu_list_str = strdup(arg);
0554
0555 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
0556
0557 return 0;
0558 }
0559
0560 static int parse_setup_cpu_list(void)
0561 {
0562 struct thread_data *td;
0563 char *str0, *str;
0564 int t;
0565
0566 if (!g->p.cpu_list_str)
0567 return 0;
0568
0569 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
0570
0571 str0 = str = strdup(g->p.cpu_list_str);
0572 t = 0;
0573
0574 BUG_ON(!str);
0575
0576 tprintf("# binding tasks to CPUs:\n");
0577 tprintf("# ");
0578
0579 while (true) {
0580 int bind_cpu, bind_cpu_0, bind_cpu_1;
0581 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
0582 int bind_len;
0583 int step;
0584 int mul;
0585
0586 tok = strsep(&str, ",");
0587 if (!tok)
0588 break;
0589
0590 tok_end = strstr(tok, "-");
0591
0592 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
0593 if (!tok_end) {
0594
0595 bind_cpu_0 = bind_cpu_1 = atol(tok);
0596 } else {
0597
0598 bind_cpu_0 = atol(tok);
0599 bind_cpu_1 = atol(tok_end + 1);
0600 }
0601
0602 step = 1;
0603 tok_step = strstr(tok, "#");
0604 if (tok_step) {
0605 step = atol(tok_step + 1);
0606 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
0607 }
0608
0609
0610
0611
0612
0613
0614 bind_len = 1;
0615 tok_len = strstr(tok, "_");
0616 if (tok_len) {
0617 bind_len = atol(tok_len + 1);
0618 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
0619 }
0620
0621
0622 mul = 1;
0623 tok_mul = strstr(tok, "x");
0624 if (tok_mul) {
0625 mul = atol(tok_mul + 1);
0626 BUG_ON(mul <= 0);
0627 }
0628
0629 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
0630
0631 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
0632 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
0633 return -1;
0634 }
0635
0636 if (is_cpu_online(bind_cpu_0) != 1 || is_cpu_online(bind_cpu_1) != 1) {
0637 printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n");
0638 return -1;
0639 }
0640
0641 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
0642 BUG_ON(bind_cpu_0 > bind_cpu_1);
0643
0644 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
0645 size_t size = CPU_ALLOC_SIZE(g->p.nr_cpus);
0646 int i;
0647
0648 for (i = 0; i < mul; i++) {
0649 int cpu;
0650
0651 if (t >= g->p.nr_tasks) {
0652 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
0653 goto out;
0654 }
0655 td = g->threads + t;
0656
0657 if (t)
0658 tprintf(",");
0659 if (bind_len > 1) {
0660 tprintf("%2d/%d", bind_cpu, bind_len);
0661 } else {
0662 tprintf("%2d", bind_cpu);
0663 }
0664
0665 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
0666 BUG_ON(!td->bind_cpumask);
0667 CPU_ZERO_S(size, td->bind_cpumask);
0668 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
0669 if (cpu < 0 || cpu >= g->p.nr_cpus) {
0670 CPU_FREE(td->bind_cpumask);
0671 BUG_ON(-1);
0672 }
0673 CPU_SET_S(cpu, size, td->bind_cpumask);
0674 }
0675 t++;
0676 }
0677 }
0678 }
0679 out:
0680
0681 tprintf("\n");
0682
0683 if (t < g->p.nr_tasks)
0684 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
0685
0686 free(str0);
0687 return 0;
0688 }
0689
0690 static int parse_cpus_opt(const struct option *opt __maybe_unused,
0691 const char *arg, int unset __maybe_unused)
0692 {
0693 if (!arg)
0694 return -1;
0695
0696 return parse_cpu_list(arg);
0697 }
0698
0699 static int parse_node_list(const char *arg)
0700 {
0701 p0.node_list_str = strdup(arg);
0702
0703 dprintf("got NODE list: {%s}\n", p0.node_list_str);
0704
0705 return 0;
0706 }
0707
0708 static int parse_setup_node_list(void)
0709 {
0710 struct thread_data *td;
0711 char *str0, *str;
0712 int t;
0713
0714 if (!g->p.node_list_str)
0715 return 0;
0716
0717 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
0718
0719 str0 = str = strdup(g->p.node_list_str);
0720 t = 0;
0721
0722 BUG_ON(!str);
0723
0724 tprintf("# binding tasks to NODEs:\n");
0725 tprintf("# ");
0726
0727 while (true) {
0728 int bind_node, bind_node_0, bind_node_1;
0729 char *tok, *tok_end, *tok_step, *tok_mul;
0730 int step;
0731 int mul;
0732
0733 tok = strsep(&str, ",");
0734 if (!tok)
0735 break;
0736
0737 tok_end = strstr(tok, "-");
0738
0739 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
0740 if (!tok_end) {
0741
0742 bind_node_0 = bind_node_1 = atol(tok);
0743 } else {
0744
0745 bind_node_0 = atol(tok);
0746 bind_node_1 = atol(tok_end + 1);
0747 }
0748
0749 step = 1;
0750 tok_step = strstr(tok, "#");
0751 if (tok_step) {
0752 step = atol(tok_step + 1);
0753 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
0754 }
0755
0756
0757 mul = 1;
0758 tok_mul = strstr(tok, "x");
0759 if (tok_mul) {
0760 mul = atol(tok_mul + 1);
0761 BUG_ON(mul <= 0);
0762 }
0763
0764 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
0765
0766 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
0767 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
0768 return -1;
0769 }
0770
0771 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
0772 BUG_ON(bind_node_0 > bind_node_1);
0773
0774 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
0775 int i;
0776
0777 for (i = 0; i < mul; i++) {
0778 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
0779 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
0780 goto out;
0781 }
0782 td = g->threads + t;
0783
0784 if (!t)
0785 tprintf(" %2d", bind_node);
0786 else
0787 tprintf(",%2d", bind_node);
0788
0789 td->bind_node = bind_node;
0790 t++;
0791 }
0792 }
0793 }
0794 out:
0795
0796 tprintf("\n");
0797
0798 if (t < g->p.nr_tasks)
0799 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
0800
0801 free(str0);
0802 return 0;
0803 }
0804
0805 static int parse_nodes_opt(const struct option *opt __maybe_unused,
0806 const char *arg, int unset __maybe_unused)
0807 {
0808 if (!arg)
0809 return -1;
0810
0811 return parse_node_list(arg);
0812 }
0813
0814 static inline uint32_t lfsr_32(uint32_t lfsr)
0815 {
0816 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
0817 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
0818 }
0819
0820
0821
0822
0823
0824
0825
0826 static inline u64 access_data(u64 *data, u64 val)
0827 {
0828 if (g->p.data_reads)
0829 val += *data;
0830 if (g->p.data_writes)
0831 *data = val + 1;
0832 return val;
0833 }
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
0844 {
0845 long words = bytes/sizeof(u64);
0846 u64 *data = (void *)__data;
0847 long chunk_0, chunk_1;
0848 u64 *d0, *d, *d1;
0849 long off;
0850 long i;
0851
0852 BUG_ON(!data && words);
0853 BUG_ON(data && !words);
0854
0855 if (!data)
0856 return val;
0857
0858
0859 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
0860 bzero(data, bytes);
0861 return val;
0862 }
0863
0864
0865 chunk_0 = words/nr_max;
0866 chunk_1 = words/g->p.nr_loops;
0867 off = nr*chunk_0 + loop*chunk_1;
0868
0869 while (off >= words)
0870 off -= words;
0871
0872 if (g->p.data_rand_walk) {
0873 u32 lfsr = nr + loop + val;
0874 int j;
0875
0876 for (i = 0; i < words/1024; i++) {
0877 long start, end;
0878
0879 lfsr = lfsr_32(lfsr);
0880
0881 start = lfsr % words;
0882 end = min(start + 1024, words-1);
0883
0884 if (g->p.data_zero_memset) {
0885 bzero(data + start, (end-start) * sizeof(u64));
0886 } else {
0887 for (j = start; j < end; j++)
0888 val = access_data(data + j, val);
0889 }
0890 }
0891 } else if (!g->p.data_backwards || (nr + loop) & 1) {
0892
0893
0894 d0 = data + off;
0895 d = data + off + 1;
0896 d1 = data + words;
0897
0898 for (;;) {
0899 if (unlikely(d >= d1))
0900 d = data;
0901 if (unlikely(d == d0))
0902 break;
0903
0904 val = access_data(d, val);
0905
0906 d++;
0907 }
0908 } else {
0909
0910
0911 d0 = data + off;
0912 d = data + off - 1;
0913 d1 = data + words;
0914
0915 for (;;) {
0916 if (unlikely(d < data))
0917 d = data + words-1;
0918 if (unlikely(d == d0))
0919 break;
0920
0921 val = access_data(d, val);
0922
0923 d--;
0924 }
0925 }
0926
0927 return val;
0928 }
0929
0930 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
0931 {
0932 unsigned int cpu;
0933
0934 cpu = sched_getcpu();
0935
0936 g->threads[task_nr].curr_cpu = cpu;
0937 prctl(0, bytes_worked);
0938 }
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948 static int count_process_nodes(int process_nr)
0949 {
0950 char *node_present;
0951 int nodes;
0952 int n, t;
0953
0954 node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
0955 BUG_ON(!node_present);
0956 for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
0957 node_present[nodes] = 0;
0958
0959 for (t = 0; t < g->p.nr_threads; t++) {
0960 struct thread_data *td;
0961 int task_nr;
0962 int node;
0963
0964 task_nr = process_nr*g->p.nr_threads + t;
0965 td = g->threads + task_nr;
0966
0967 node = numa_node_of_cpu(td->curr_cpu);
0968 if (node < 0) {
0969 free(node_present);
0970 return 0;
0971 }
0972
0973 node_present[node] = 1;
0974 }
0975
0976 nodes = 0;
0977
0978 for (n = 0; n < g->p.nr_nodes; n++)
0979 nodes += node_present[n];
0980
0981 free(node_present);
0982 return nodes;
0983 }
0984
0985
0986
0987
0988
0989
0990
0991
0992 static int count_node_processes(int node)
0993 {
0994 int processes = 0;
0995 int t, p;
0996
0997 for (p = 0; p < g->p.nr_proc; p++) {
0998 for (t = 0; t < g->p.nr_threads; t++) {
0999 struct thread_data *td;
1000 int task_nr;
1001 int n;
1002
1003 task_nr = p*g->p.nr_threads + t;
1004 td = g->threads + task_nr;
1005
1006 n = numa_node_of_cpu(td->curr_cpu);
1007 if (n == node) {
1008 processes++;
1009 break;
1010 }
1011 }
1012 }
1013
1014 return processes;
1015 }
1016
1017 static void calc_convergence_compression(int *strong)
1018 {
1019 unsigned int nodes_min, nodes_max;
1020 int p;
1021
1022 nodes_min = -1;
1023 nodes_max = 0;
1024
1025 for (p = 0; p < g->p.nr_proc; p++) {
1026 unsigned int nodes = count_process_nodes(p);
1027
1028 if (!nodes) {
1029 *strong = 0;
1030 return;
1031 }
1032
1033 nodes_min = min(nodes, nodes_min);
1034 nodes_max = max(nodes, nodes_max);
1035 }
1036
1037
1038 if (nodes_min == 1 && nodes_max == 1) {
1039 *strong = 1;
1040 } else {
1041 *strong = 0;
1042 tprintf(" {%d-%d}", nodes_min, nodes_max);
1043 }
1044 }
1045
1046 static void calc_convergence(double runtime_ns_max, double *convergence)
1047 {
1048 unsigned int loops_done_min, loops_done_max;
1049 int process_groups;
1050 int *nodes;
1051 int distance;
1052 int nr_min;
1053 int nr_max;
1054 int strong;
1055 int sum;
1056 int nr;
1057 int node;
1058 int cpu;
1059 int t;
1060
1061 if (!g->p.show_convergence && !g->p.measure_convergence)
1062 return;
1063
1064 nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1065 BUG_ON(!nodes);
1066 for (node = 0; node < g->p.nr_nodes; node++)
1067 nodes[node] = 0;
1068
1069 loops_done_min = -1;
1070 loops_done_max = 0;
1071
1072 for (t = 0; t < g->p.nr_tasks; t++) {
1073 struct thread_data *td = g->threads + t;
1074 unsigned int loops_done;
1075
1076 cpu = td->curr_cpu;
1077
1078
1079 if (cpu < 0)
1080 continue;
1081
1082 node = numa_node_of_cpu(cpu);
1083
1084 nodes[node]++;
1085
1086 loops_done = td->loops_done;
1087 loops_done_min = min(loops_done, loops_done_min);
1088 loops_done_max = max(loops_done, loops_done_max);
1089 }
1090
1091 nr_max = 0;
1092 nr_min = g->p.nr_tasks;
1093 sum = 0;
1094
1095 for (node = 0; node < g->p.nr_nodes; node++) {
1096 if (!is_node_present(node))
1097 continue;
1098 nr = nodes[node];
1099 nr_min = min(nr, nr_min);
1100 nr_max = max(nr, nr_max);
1101 sum += nr;
1102 }
1103 BUG_ON(nr_min > nr_max);
1104
1105 BUG_ON(sum > g->p.nr_tasks);
1106
1107 if (0 && (sum < g->p.nr_tasks)) {
1108 free(nodes);
1109 return;
1110 }
1111
1112
1113
1114
1115
1116
1117 process_groups = 0;
1118
1119 for (node = 0; node < g->p.nr_nodes; node++) {
1120 int processes;
1121
1122 if (!is_node_present(node))
1123 continue;
1124 processes = count_node_processes(node);
1125 nr = nodes[node];
1126 tprintf(" %2d/%-2d", nr, processes);
1127
1128 process_groups += processes;
1129 }
1130
1131 distance = nr_max - nr_min;
1132
1133 tprintf(" [%2d/%-2d]", distance, process_groups);
1134
1135 tprintf(" l:%3d-%-3d (%3d)",
1136 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1137
1138 if (loops_done_min && loops_done_max) {
1139 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1140
1141 tprintf(" [%4.1f%%]", skew * 100.0);
1142 }
1143
1144 calc_convergence_compression(&strong);
1145
1146 if (strong && process_groups == g->p.nr_proc) {
1147 if (!*convergence) {
1148 *convergence = runtime_ns_max;
1149 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1150 if (g->p.measure_convergence) {
1151 g->all_converged = true;
1152 g->stop_work = true;
1153 }
1154 }
1155 } else {
1156 if (*convergence) {
1157 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1158 *convergence = 0;
1159 }
1160 tprintf("\n");
1161 }
1162
1163 free(nodes);
1164 }
1165
1166 static void show_summary(double runtime_ns_max, int l, double *convergence)
1167 {
1168 tprintf("\r # %5.1f%% [%.1f mins]",
1169 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1170
1171 calc_convergence(runtime_ns_max, convergence);
1172
1173 if (g->p.show_details >= 0)
1174 fflush(stdout);
1175 }
1176
1177 static void *worker_thread(void *__tdata)
1178 {
1179 struct thread_data *td = __tdata;
1180 struct timeval start0, start, stop, diff;
1181 int process_nr = td->process_nr;
1182 int thread_nr = td->thread_nr;
1183 unsigned long last_perturbance;
1184 int task_nr = td->task_nr;
1185 int details = g->p.show_details;
1186 int first_task, last_task;
1187 double convergence = 0;
1188 u64 val = td->val;
1189 double runtime_ns_max;
1190 u8 *global_data;
1191 u8 *process_data;
1192 u8 *thread_data;
1193 u64 bytes_done, secs;
1194 long work_done;
1195 u32 l;
1196 struct rusage rusage;
1197
1198 bind_to_cpumask(td->bind_cpumask);
1199 bind_to_memnode(td->bind_node);
1200
1201 set_taskname("thread %d/%d", process_nr, thread_nr);
1202
1203 global_data = g->data;
1204 process_data = td->process_data;
1205 thread_data = setup_private_data(g->p.bytes_thread);
1206
1207 bytes_done = 0;
1208
1209 last_task = 0;
1210 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1211 last_task = 1;
1212
1213 first_task = 0;
1214 if (process_nr == 0 && thread_nr == 0)
1215 first_task = 1;
1216
1217 if (details >= 2) {
1218 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1219 process_nr, thread_nr, global_data, process_data, thread_data);
1220 }
1221
1222 if (g->p.serialize_startup) {
1223 pthread_mutex_lock(&g->startup_mutex);
1224 g->nr_tasks_started++;
1225
1226 if (g->nr_tasks_started == g->p.nr_tasks)
1227 pthread_cond_signal(&g->startup_cond);
1228
1229 pthread_mutex_unlock(&g->startup_mutex);
1230
1231
1232 pthread_mutex_lock(&g->start_work_mutex);
1233 g->start_work = false;
1234 g->nr_tasks_working++;
1235 while (!g->start_work)
1236 pthread_cond_wait(&g->start_work_cond, &g->start_work_mutex);
1237
1238 pthread_mutex_unlock(&g->start_work_mutex);
1239 }
1240
1241 gettimeofday(&start0, NULL);
1242
1243 start = stop = start0;
1244 last_perturbance = start.tv_sec;
1245
1246 for (l = 0; l < g->p.nr_loops; l++) {
1247 start = stop;
1248
1249 if (g->stop_work)
1250 break;
1251
1252 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1253 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1254 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1255
1256 if (g->p.sleep_usecs) {
1257 pthread_mutex_lock(td->process_lock);
1258 usleep(g->p.sleep_usecs);
1259 pthread_mutex_unlock(td->process_lock);
1260 }
1261
1262
1263
1264 if (g->p.bytes_process_locked) {
1265 pthread_mutex_lock(td->process_lock);
1266 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1267 pthread_mutex_unlock(td->process_lock);
1268 }
1269
1270 work_done = g->p.bytes_global + g->p.bytes_process +
1271 g->p.bytes_process_locked + g->p.bytes_thread;
1272
1273 update_curr_cpu(task_nr, work_done);
1274 bytes_done += work_done;
1275
1276 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1277 continue;
1278
1279 td->loops_done = l;
1280
1281 gettimeofday(&stop, NULL);
1282
1283
1284 if (g->p.nr_secs) {
1285 timersub(&stop, &start0, &diff);
1286 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1287 g->stop_work = true;
1288 break;
1289 }
1290 }
1291
1292
1293 if (start.tv_sec == stop.tv_sec)
1294 continue;
1295
1296
1297
1298
1299
1300 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1301 cpu_set_t *orig_mask;
1302 int target_cpu;
1303 int this_cpu;
1304
1305 last_perturbance = stop.tv_sec;
1306
1307
1308
1309
1310
1311
1312 this_cpu = g->threads[task_nr].curr_cpu;
1313 if (this_cpu < g->p.nr_cpus/2)
1314 target_cpu = g->p.nr_cpus-1;
1315 else
1316 target_cpu = 0;
1317
1318 orig_mask = bind_to_cpu(target_cpu);
1319
1320
1321 if (details >= 1)
1322 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1323
1324 bind_to_cpumask(orig_mask);
1325 CPU_FREE(orig_mask);
1326 }
1327
1328 if (details >= 3) {
1329 timersub(&stop, &start, &diff);
1330 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1331 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1332
1333 if (details >= 0) {
1334 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1335 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1336 }
1337 fflush(stdout);
1338 }
1339 if (!last_task)
1340 continue;
1341
1342 timersub(&stop, &start0, &diff);
1343 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1344 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1345
1346 show_summary(runtime_ns_max, l, &convergence);
1347 }
1348
1349 gettimeofday(&stop, NULL);
1350 timersub(&stop, &start0, &diff);
1351 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1352 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1353 secs = td->runtime_ns / NSEC_PER_SEC;
1354 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1355
1356 getrusage(RUSAGE_THREAD, &rusage);
1357 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1358 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1359 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1360 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1361
1362 free_data(thread_data, g->p.bytes_thread);
1363
1364 pthread_mutex_lock(&g->stop_work_mutex);
1365 g->bytes_done += bytes_done;
1366 pthread_mutex_unlock(&g->stop_work_mutex);
1367
1368 return NULL;
1369 }
1370
1371
1372
1373
1374 static void worker_process(int process_nr)
1375 {
1376 pthread_mutex_t process_lock;
1377 struct thread_data *td;
1378 pthread_t *pthreads;
1379 u8 *process_data;
1380 int task_nr;
1381 int ret;
1382 int t;
1383
1384 pthread_mutex_init(&process_lock, NULL);
1385 set_taskname("process %d", process_nr);
1386
1387
1388
1389
1390
1391 task_nr = process_nr*g->p.nr_threads;
1392 td = g->threads + task_nr;
1393
1394 bind_to_memnode(td->bind_node);
1395 bind_to_cpumask(td->bind_cpumask);
1396
1397 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1398 process_data = setup_private_data(g->p.bytes_process);
1399
1400 if (g->p.show_details >= 3) {
1401 printf(" # process %2d global mem: %p, process mem: %p\n",
1402 process_nr, g->data, process_data);
1403 }
1404
1405 for (t = 0; t < g->p.nr_threads; t++) {
1406 task_nr = process_nr*g->p.nr_threads + t;
1407 td = g->threads + task_nr;
1408
1409 td->process_data = process_data;
1410 td->process_nr = process_nr;
1411 td->thread_nr = t;
1412 td->task_nr = task_nr;
1413 td->val = rand();
1414 td->curr_cpu = -1;
1415 td->process_lock = &process_lock;
1416
1417 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1418 BUG_ON(ret);
1419 }
1420
1421 for (t = 0; t < g->p.nr_threads; t++) {
1422 ret = pthread_join(pthreads[t], NULL);
1423 BUG_ON(ret);
1424 }
1425
1426 free_data(process_data, g->p.bytes_process);
1427 free(pthreads);
1428 }
1429
1430 static void print_summary(void)
1431 {
1432 if (g->p.show_details < 0)
1433 return;
1434
1435 printf("\n ###\n");
1436 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1437 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1438 printf(" # %5dx %5ldMB global shared mem operations\n",
1439 g->p.nr_loops, g->p.bytes_global/1024/1024);
1440 printf(" # %5dx %5ldMB process shared mem operations\n",
1441 g->p.nr_loops, g->p.bytes_process/1024/1024);
1442 printf(" # %5dx %5ldMB thread local mem operations\n",
1443 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1444
1445 printf(" ###\n");
1446
1447 printf("\n ###\n"); fflush(stdout);
1448 }
1449
1450 static void init_thread_data(void)
1451 {
1452 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1453 int t;
1454
1455 g->threads = zalloc_shared_data(size);
1456
1457 for (t = 0; t < g->p.nr_tasks; t++) {
1458 struct thread_data *td = g->threads + t;
1459 size_t cpuset_size = CPU_ALLOC_SIZE(g->p.nr_cpus);
1460 int cpu;
1461
1462
1463 td->bind_node = NUMA_NO_NODE;
1464
1465
1466 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
1467 BUG_ON(!td->bind_cpumask);
1468 CPU_ZERO_S(cpuset_size, td->bind_cpumask);
1469 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1470 CPU_SET_S(cpu, cpuset_size, td->bind_cpumask);
1471 }
1472 }
1473
1474 static void deinit_thread_data(void)
1475 {
1476 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1477 int t;
1478
1479
1480 for (t = 0; t < g->p.nr_tasks; t++) {
1481 struct thread_data *td = g->threads + t;
1482 CPU_FREE(td->bind_cpumask);
1483 }
1484
1485 free_data(g->threads, size);
1486 }
1487
1488 static int init(void)
1489 {
1490 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 , 0);
1491
1492
1493 g->p = p0;
1494
1495 g->p.nr_cpus = numa_num_configured_cpus();
1496
1497 g->p.nr_nodes = numa_max_node() + 1;
1498
1499
1500 BUG_ON(g->p.nr_nodes < 0);
1501
1502 if (g->p.show_quiet && !g->p.show_details)
1503 g->p.show_details = -1;
1504
1505
1506 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1507 return -1;
1508
1509 if (g->p.mb_global_str) {
1510 g->p.mb_global = atof(g->p.mb_global_str);
1511 BUG_ON(g->p.mb_global < 0);
1512 }
1513
1514 if (g->p.mb_proc_str) {
1515 g->p.mb_proc = atof(g->p.mb_proc_str);
1516 BUG_ON(g->p.mb_proc < 0);
1517 }
1518
1519 if (g->p.mb_proc_locked_str) {
1520 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1521 BUG_ON(g->p.mb_proc_locked < 0);
1522 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1523 }
1524
1525 if (g->p.mb_thread_str) {
1526 g->p.mb_thread = atof(g->p.mb_thread_str);
1527 BUG_ON(g->p.mb_thread < 0);
1528 }
1529
1530 BUG_ON(g->p.nr_threads <= 0);
1531 BUG_ON(g->p.nr_proc <= 0);
1532
1533 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1534
1535 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1536 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1537 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1538 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1539
1540 g->data = setup_shared_data(g->p.bytes_global);
1541
1542
1543 init_global_mutex(&g->start_work_mutex);
1544 init_global_cond(&g->start_work_cond);
1545 init_global_mutex(&g->startup_mutex);
1546 init_global_cond(&g->startup_cond);
1547 init_global_mutex(&g->stop_work_mutex);
1548
1549 init_thread_data();
1550
1551 tprintf("#\n");
1552 if (parse_setup_cpu_list() || parse_setup_node_list())
1553 return -1;
1554 tprintf("#\n");
1555
1556 print_summary();
1557
1558 return 0;
1559 }
1560
1561 static void deinit(void)
1562 {
1563 free_data(g->data, g->p.bytes_global);
1564 g->data = NULL;
1565
1566 deinit_thread_data();
1567
1568 free_data(g, sizeof(*g));
1569 g = NULL;
1570 }
1571
1572
1573
1574
1575 static void print_res(const char *name, double val,
1576 const char *txt_unit, const char *txt_short, const char *txt_long)
1577 {
1578 if (!name)
1579 name = "main,";
1580
1581 if (!g->p.show_quiet)
1582 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1583 else
1584 printf(" %14.3f %s\n", val, txt_long);
1585 }
1586
1587 static int __bench_numa(const char *name)
1588 {
1589 struct timeval start, stop, diff;
1590 u64 runtime_ns_min, runtime_ns_sum;
1591 pid_t *pids, pid, wpid;
1592 double delta_runtime;
1593 double runtime_avg;
1594 double runtime_sec_max;
1595 double runtime_sec_min;
1596 int wait_stat;
1597 double bytes;
1598 int i, t, p;
1599
1600 if (init())
1601 return -1;
1602
1603 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1604 pid = -1;
1605
1606 if (g->p.serialize_startup) {
1607 tprintf(" #\n");
1608 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1609 }
1610
1611 gettimeofday(&start, NULL);
1612
1613 for (i = 0; i < g->p.nr_proc; i++) {
1614 pid = fork();
1615 dprintf(" # process %2d: PID %d\n", i, pid);
1616
1617 BUG_ON(pid < 0);
1618 if (!pid) {
1619
1620 worker_process(i);
1621
1622 exit(0);
1623 }
1624 pids[i] = pid;
1625
1626 }
1627
1628 if (g->p.serialize_startup) {
1629 bool threads_ready = false;
1630 double startup_sec;
1631
1632
1633
1634
1635
1636 pthread_mutex_lock(&g->startup_mutex);
1637 while (g->nr_tasks_started != g->p.nr_tasks)
1638 pthread_cond_wait(&g->startup_cond, &g->startup_mutex);
1639
1640 pthread_mutex_unlock(&g->startup_mutex);
1641
1642
1643 while (!threads_ready) {
1644 pthread_mutex_lock(&g->start_work_mutex);
1645 threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1646 pthread_mutex_unlock(&g->start_work_mutex);
1647 if (!threads_ready)
1648 usleep(1);
1649 }
1650
1651 gettimeofday(&stop, NULL);
1652
1653 timersub(&stop, &start, &diff);
1654
1655 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1656 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1657 startup_sec /= NSEC_PER_SEC;
1658
1659 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1660 tprintf(" #\n");
1661
1662 start = stop;
1663
1664 pthread_mutex_lock(&g->start_work_mutex);
1665 g->start_work = true;
1666 pthread_mutex_unlock(&g->start_work_mutex);
1667 pthread_cond_broadcast(&g->start_work_cond);
1668 } else {
1669 gettimeofday(&start, NULL);
1670 }
1671
1672
1673
1674
1675 for (i = 0; i < g->p.nr_proc; i++) {
1676 wpid = waitpid(pids[i], &wait_stat, 0);
1677 BUG_ON(wpid < 0);
1678 BUG_ON(!WIFEXITED(wait_stat));
1679
1680 }
1681
1682 runtime_ns_sum = 0;
1683 runtime_ns_min = -1LL;
1684
1685 for (t = 0; t < g->p.nr_tasks; t++) {
1686 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1687
1688 runtime_ns_sum += thread_runtime_ns;
1689 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1690 }
1691
1692 gettimeofday(&stop, NULL);
1693 timersub(&stop, &start, &diff);
1694
1695 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1696
1697 tprintf("\n ###\n");
1698 tprintf("\n");
1699
1700 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1701 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1702 runtime_sec_max /= NSEC_PER_SEC;
1703
1704 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1705
1706 bytes = g->bytes_done;
1707 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1708
1709 if (g->p.measure_convergence) {
1710 print_res(name, runtime_sec_max,
1711 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1712 }
1713
1714 print_res(name, runtime_sec_max,
1715 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1716
1717 print_res(name, runtime_sec_min,
1718 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1719
1720 print_res(name, runtime_avg,
1721 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1722
1723 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1724 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1725 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1726
1727 print_res(name, bytes / g->p.nr_tasks / 1e9,
1728 "GB,", "data/thread", "GB data processed, per thread");
1729
1730 print_res(name, bytes / 1e9,
1731 "GB,", "data-total", "GB data processed, total");
1732
1733 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1734 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1735
1736 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1737 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1738
1739 print_res(name, bytes / runtime_sec_max / 1e9,
1740 "GB/sec,", "total-speed", "GB/sec total speed");
1741
1742 if (g->p.show_details >= 2) {
1743 char tname[14 + 2 * 11 + 1];
1744 struct thread_data *td;
1745 for (p = 0; p < g->p.nr_proc; p++) {
1746 for (t = 0; t < g->p.nr_threads; t++) {
1747 memset(tname, 0, sizeof(tname));
1748 td = g->threads + p*g->p.nr_threads + t;
1749 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1750 print_res(tname, td->speed_gbs,
1751 "GB/sec", "thread-speed", "GB/sec/thread speed");
1752 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1753 "secs", "thread-system-time", "system CPU time/thread");
1754 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1755 "secs", "thread-user-time", "user CPU time/thread");
1756 }
1757 }
1758 }
1759
1760 free(pids);
1761
1762 deinit();
1763
1764 return 0;
1765 }
1766
1767 #define MAX_ARGS 50
1768
1769 static int command_size(const char **argv)
1770 {
1771 int size = 0;
1772
1773 while (*argv) {
1774 size++;
1775 argv++;
1776 }
1777
1778 BUG_ON(size >= MAX_ARGS);
1779
1780 return size;
1781 }
1782
1783 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1784 {
1785 int i;
1786
1787 printf("\n # Running %s \"perf bench numa", name);
1788
1789 for (i = 0; i < argc; i++)
1790 printf(" %s", argv[i]);
1791
1792 printf("\"\n");
1793
1794 memset(p, 0, sizeof(*p));
1795
1796
1797
1798 p->serialize_startup = 1;
1799 p->data_reads = true;
1800 p->data_writes = true;
1801 p->data_backwards = true;
1802 p->data_rand_walk = true;
1803 p->nr_loops = -1;
1804 p->init_random = true;
1805 p->mb_global_str = "1";
1806 p->nr_proc = 1;
1807 p->nr_threads = 1;
1808 p->nr_secs = 5;
1809 p->run_all = argc == 1;
1810 }
1811
1812 static int run_bench_numa(const char *name, const char **argv)
1813 {
1814 int argc = command_size(argv);
1815
1816 init_params(&p0, name, argc, argv);
1817 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1818 if (argc)
1819 goto err;
1820
1821 if (__bench_numa(name))
1822 goto err;
1823
1824 return 0;
1825
1826 err:
1827 return -1;
1828 }
1829
1830 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1831 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1832
1833 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1834 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1835
1836 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1837 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1838
1839
1840
1841
1842
1843
1844 static const char *tests[][MAX_ARGS] = {
1845
1846 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1847 "-C" , "0", "-M", "0", OPT_BW_RAM },
1848 { "RAM-bw-local-NOTHP,",
1849 "mem", "-p", "1", "-t", "1", "-P", "1024",
1850 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1851 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1852 "-C" , "0", "-M", "1", OPT_BW_RAM },
1853
1854
1855 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1856 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1857 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1858 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1859
1860
1861 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1862 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1863
1864
1865 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1866 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1867 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1868 { " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV },
1869 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1870 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1871 { " 4x4-convergence-NOTHP,",
1872 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1873 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1874 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1875 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1876 { " 8x4-convergence-NOTHP,",
1877 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1878 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1879 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1880 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1881 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1882 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1883
1884
1885 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1886 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1887 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1888 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1889 { " 8x1-bw-process-NOTHP,",
1890 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1891 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1892
1893 { " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1894 { " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1895 { "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1896 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1897
1898 { " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1899 { " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1900 { " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1901 { " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1902 { " 4x8-bw-process-NOTHP,",
1903 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1904 { " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1905 { " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1906
1907 { "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1908 { "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1909
1910 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1911 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1912 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1913 { "numa01-bw-thread-NOTHP,",
1914 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1915 };
1916
1917 static int bench_all(void)
1918 {
1919 int nr = ARRAY_SIZE(tests);
1920 int ret;
1921 int i;
1922
1923 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1924 BUG_ON(ret < 0);
1925
1926 for (i = 0; i < nr; i++) {
1927 run_bench_numa(tests[i][0], tests[i] + 1);
1928 }
1929
1930 printf("\n");
1931
1932 return 0;
1933 }
1934
1935 int bench_numa(int argc, const char **argv)
1936 {
1937 init_params(&p0, "main,", argc, argv);
1938 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1939 if (argc)
1940 goto err;
1941
1942 if (p0.run_all)
1943 return bench_all();
1944
1945 if (__bench_numa(NULL))
1946 goto err;
1947
1948 return 0;
1949
1950 err:
1951 usage_with_options(numa_usage, options);
1952 return -1;
1953 }