Back to home page

OSCL-LXR

 
 

    


0001 perf-intel-pt(1)
0002 ================
0003 
0004 NAME
0005 ----
0006 perf-intel-pt - Support for Intel Processor Trace within perf tools
0007 
0008 SYNOPSIS
0009 --------
0010 [verse]
0011 'perf record' -e intel_pt//
0012 
0013 DESCRIPTION
0014 -----------
0015 
0016 Intel Processor Trace (Intel PT) is an extension of Intel Architecture that
0017 collects information about software execution such as control flow, execution
0018 modes and timings and formats it into highly compressed binary packets.
0019 Technical details are documented in the Intel 64 and IA-32 Architectures
0020 Software Developer Manuals, Chapter 36 Intel Processor Trace.
0021 
0022 Intel PT is first supported in Intel Core M and 5th generation Intel Core
0023 processors that are based on the Intel micro-architecture code name Broadwell.
0024 
0025 Trace data is collected by 'perf record' and stored within the perf.data file.
0026 See below for options to 'perf record'.
0027 
0028 Trace data must be 'decoded' which involves walking the object code and matching
0029 the trace data packets. For example a TNT packet only tells whether a
0030 conditional branch was taken or not taken, so to make use of that packet the
0031 decoder must know precisely which instruction was being executed.
0032 
0033 Decoding is done on-the-fly.  The decoder outputs samples in the same format as
0034 samples output by perf hardware events, for example as though the "instructions"
0035 or "branches" events had been recorded.  Presently 3 tools support this:
0036 'perf script', 'perf report' and 'perf inject'.  See below for more information
0037 on using those tools.
0038 
0039 The main distinguishing feature of Intel PT is that the decoder can determine
0040 the exact flow of software execution.  Intel PT can be used to understand why
0041 and how did software get to a certain point, or behave a certain way.  The
0042 software does not have to be recompiled, so Intel PT works with debug or release
0043 builds, however the executed images are needed - which makes use in JIT-compiled
0044 environments, or with self-modified code, a challenge.  Also symbols need to be
0045 provided to make sense of addresses.
0046 
0047 A limitation of Intel PT is that it produces huge amounts of trace data
0048 (hundreds of megabytes per second per core) which takes a long time to decode,
0049 for example two or three orders of magnitude longer than it took to collect.
0050 Another limitation is the performance impact of tracing, something that will
0051 vary depending on the use-case and architecture.
0052 
0053 
0054 Quickstart
0055 ----------
0056 
0057 It is important to start small.  That is because it is easy to capture vastly
0058 more data than can possibly be processed.
0059 
0060 The simplest thing to do with Intel PT is userspace profiling of small programs.
0061 Data is captured with 'perf record' e.g. to trace 'ls' userspace-only:
0062 
0063         perf record -e intel_pt//u ls
0064 
0065 And profiled with 'perf report' e.g.
0066 
0067         perf report
0068 
0069 To also trace kernel space presents a problem, namely kernel self-modifying
0070 code.  A fairly good kernel image is available in /proc/kcore but to get an
0071 accurate image a copy of /proc/kcore needs to be made under the same conditions
0072 as the data capture. 'perf record' can make a copy of /proc/kcore if the option
0073 --kcore is used, but access to /proc/kcore is restricted e.g.
0074 
0075         sudo perf record -o pt_ls --kcore -e intel_pt// -- ls
0076 
0077 which will create a directory named 'pt_ls' and put the perf.data file (named
0078 simply 'data') and copies of /proc/kcore, /proc/kallsyms and /proc/modules into
0079 it.  The other tools understand the directory format, so to use 'perf report'
0080 becomes:
0081 
0082         sudo perf report -i pt_ls
0083 
0084 Because samples are synthesized after-the-fact, the sampling period can be
0085 selected for reporting. e.g. sample every microsecond
0086 
0087         sudo perf report pt_ls --itrace=i1usge
0088 
0089 See the sections below for more information about the --itrace option.
0090 
0091 Beware the smaller the period, the more samples that are produced, and the
0092 longer it takes to process them.
0093 
0094 Also note that the coarseness of Intel PT timing information will start to
0095 distort the statistical value of the sampling as the sampling period becomes
0096 smaller.
0097 
0098 To represent software control flow, "branches" samples are produced.  By default
0099 a branch sample is synthesized for every single branch.  To get an idea what
0100 data is available you can use the 'perf script' tool with all itrace sampling
0101 options, which will list all the samples.
0102 
0103         perf record -e intel_pt//u ls
0104         perf script --itrace=ibxwpe
0105 
0106 An interesting field that is not printed by default is 'flags' which can be
0107 displayed as follows:
0108 
0109         perf script --itrace=ibxwpe -F+flags
0110 
0111 The flags are "bcrosyiABExghDt" which stand for branch, call, return, conditional,
0112 system, asynchronous, interrupt, transaction abort, trace begin, trace end,
0113 in transaction, VM-entry, VM-exit, interrupt disabled, and interrupt disable
0114 toggle respectively.
0115 
0116 perf script also supports higher level ways to dump instruction traces:
0117 
0118         perf script --insn-trace --xed
0119 
0120 Dump all instructions. This requires installing the xed tool (see XED below)
0121 Dumping all instructions in a long trace can be fairly slow. It is usually better
0122 to start with higher level decoding, like
0123 
0124         perf script --call-trace
0125 
0126 or
0127 
0128         perf script --call-ret-trace
0129 
0130 and then select a time range of interest. The time range can then be examined
0131 in detail with
0132 
0133         perf script --time starttime,stoptime --insn-trace --xed
0134 
0135 While examining the trace it's also useful to filter on specific CPUs using
0136 the -C option
0137 
0138         perf script --time starttime,stoptime --insn-trace --xed -C 1
0139 
0140 Dump all instructions in time range on CPU 1.
0141 
0142 Another interesting field that is not printed by default is 'ipc' which can be
0143 displayed as follows:
0144 
0145         perf script --itrace=be -F+ipc
0146 
0147 There are two ways that instructions-per-cycle (IPC) can be calculated depending
0148 on the recording.
0149 
0150 If the 'cyc' config term (see config terms section below) was used, then IPC is
0151 calculated using the cycle count from CYC packets, otherwise MTC packets are
0152 used - refer to the 'mtc' config term.  When MTC is used, however, the values
0153 are less accurate because the timing is less accurate.
0154 
0155 Because Intel PT does not update the cycle count on every branch or instruction,
0156 the values will often be zero.  When there are values, they will be the number
0157 of instructions and number of cycles since the last update, and thus represent
0158 the average IPC since the last IPC for that event type.  Note IPC for "branches"
0159 events is calculated separately from IPC for "instructions" events.
0160 
0161 Even with the 'cyc' config term, it is possible to produce IPC information for
0162 every change of timestamp, but at the expense of accuracy.  That is selected by
0163 specifying the itrace 'A' option.  Due to the granularity of timestamps, the
0164 actual number of cycles increases even though the cycles reported does not.
0165 The number of instructions is known, but if IPC is reported, cycles can be too
0166 low and so IPC is too high.  Note that inaccuracy decreases as the period of
0167 sampling increases i.e. if the number of cycles is too low by a small amount,
0168 that becomes less significant if the number of cycles is large.  It may also be
0169 useful to use the 'A' option in conjunction with dlfilter-show-cycles.so to
0170 provide higher granularity cycle information.
0171 
0172 Also note that the IPC instruction count may or may not include the current
0173 instruction.  If the cycle count is associated with an asynchronous branch
0174 (e.g. page fault or interrupt), then the instruction count does not include the
0175 current instruction, otherwise it does.  That is consistent with whether or not
0176 that instruction has retired when the cycle count is updated.
0177 
0178 Another note, in the case of "branches" events, non-taken branches are not
0179 presently sampled, so IPC values for them do not appear e.g. a CYC packet with a
0180 TNT packet that starts with a non-taken branch.  To see every possible IPC
0181 value, "instructions" events can be used e.g. --itrace=i0ns
0182 
0183 While it is possible to create scripts to analyze the data, an alternative
0184 approach is available to export the data to a sqlite or postgresql database.
0185 Refer to script export-to-sqlite.py or export-to-postgresql.py for more details,
0186 and to script exported-sql-viewer.py for an example of using the database.
0187 
0188 There is also script intel-pt-events.py which provides an example of how to
0189 unpack the raw data for power events and PTWRITE. The script also displays
0190 branches, and supports 2 additional modes selected by option:
0191 
0192  --insn-trace - instruction trace
0193  --src-trace - source trace
0194 
0195 As mentioned above, it is easy to capture too much data.  One way to limit the
0196 data captured is to use 'snapshot' mode which is explained further below.
0197 Refer to 'new snapshot option' and 'Intel PT modes of operation' further below.
0198 
0199 Another problem that will be experienced is decoder errors.  They can be caused
0200 by inability to access the executed image, self-modified or JIT-ed code, or the
0201 inability to match side-band information (such as context switches and mmaps)
0202 which results in the decoder not knowing what code was executed.
0203 
0204 There is also the problem of perf not being able to copy the data fast enough,
0205 resulting in data lost because the buffer was full.  See 'Buffer handling' below
0206 for more details.
0207 
0208 
0209 perf record
0210 -----------
0211 
0212 new event
0213 ~~~~~~~~~
0214 
0215 The Intel PT kernel driver creates a new PMU for Intel PT.  PMU events are
0216 selected by providing the PMU name followed by the "config" separated by slashes.
0217 An enhancement has been made to allow default "config" e.g. the option
0218 
0219         -e intel_pt//
0220 
0221 will use a default config value.  Currently that is the same as
0222 
0223         -e intel_pt/tsc,noretcomp=0/
0224 
0225 which is the same as
0226 
0227         -e intel_pt/tsc=1,noretcomp=0/
0228 
0229 Note there are now new config terms - see section 'config terms' further below.
0230 
0231 The config terms are listed in /sys/devices/intel_pt/format.  They are bit
0232 fields within the config member of the struct perf_event_attr which is
0233 passed to the kernel by the perf_event_open system call.  They correspond to bit
0234 fields in the IA32_RTIT_CTL MSR.  Here is a list of them and their definitions:
0235 
0236         $ grep -H . /sys/bus/event_source/devices/intel_pt/format/*
0237         /sys/bus/event_source/devices/intel_pt/format/cyc:config:1
0238         /sys/bus/event_source/devices/intel_pt/format/cyc_thresh:config:19-22
0239         /sys/bus/event_source/devices/intel_pt/format/mtc:config:9
0240         /sys/bus/event_source/devices/intel_pt/format/mtc_period:config:14-17
0241         /sys/bus/event_source/devices/intel_pt/format/noretcomp:config:11
0242         /sys/bus/event_source/devices/intel_pt/format/psb_period:config:24-27
0243         /sys/bus/event_source/devices/intel_pt/format/tsc:config:10
0244 
0245 Note that the default config must be overridden for each term i.e.
0246 
0247         -e intel_pt/noretcomp=0/
0248 
0249 is the same as:
0250 
0251         -e intel_pt/tsc=1,noretcomp=0/
0252 
0253 So, to disable TSC packets use:
0254 
0255         -e intel_pt/tsc=0/
0256 
0257 It is also possible to specify the config value explicitly:
0258 
0259         -e intel_pt/config=0x400/
0260 
0261 Note that, as with all events, the event is suffixed with event modifiers:
0262 
0263         u       userspace
0264         k       kernel
0265         h       hypervisor
0266         G       guest
0267         H       host
0268         p       precise ip
0269 
0270 'h', 'G' and 'H' are for virtualization which are not used by Intel PT.
0271 'p' is also not relevant to Intel PT.  So only options 'u' and 'k' are
0272 meaningful for Intel PT.
0273 
0274 perf_event_attr is displayed if the -vv option is used e.g.
0275 
0276         ------------------------------------------------------------
0277         perf_event_attr:
0278         type                             6
0279         size                             112
0280         config                           0x400
0281         { sample_period, sample_freq }   1
0282         sample_type                      IP|TID|TIME|CPU|IDENTIFIER
0283         read_format                      ID
0284         disabled                         1
0285         inherit                          1
0286         exclude_kernel                   1
0287         exclude_hv                       1
0288         enable_on_exec                   1
0289         sample_id_all                    1
0290         ------------------------------------------------------------
0291         sys_perf_event_open: pid 31104  cpu 0  group_fd -1  flags 0x8
0292         sys_perf_event_open: pid 31104  cpu 1  group_fd -1  flags 0x8
0293         sys_perf_event_open: pid 31104  cpu 2  group_fd -1  flags 0x8
0294         sys_perf_event_open: pid 31104  cpu 3  group_fd -1  flags 0x8
0295         ------------------------------------------------------------
0296 
0297 
0298 config terms
0299 ~~~~~~~~~~~~
0300 
0301 The June 2015 version of Intel 64 and IA-32 Architectures Software Developer
0302 Manuals, Chapter 36 Intel Processor Trace, defined new Intel PT features.
0303 Some of the features are reflect in new config terms.  All the config terms are
0304 described below.
0305 
0306 tsc             Always supported.  Produces TSC timestamp packets to provide
0307                 timing information.  In some cases it is possible to decode
0308                 without timing information, for example a per-thread context
0309                 that does not overlap executable memory maps.
0310 
0311                 The default config selects tsc (i.e. tsc=1).
0312 
0313 noretcomp       Always supported.  Disables "return compression" so a TIP packet
0314                 is produced when a function returns.  Causes more packets to be
0315                 produced but might make decoding more reliable.
0316 
0317                 The default config does not select noretcomp (i.e. noretcomp=0).
0318 
0319 psb_period      Allows the frequency of PSB packets to be specified.
0320 
0321                 The PSB packet is a synchronization packet that provides a
0322                 starting point for decoding or recovery from errors.
0323 
0324                 Support for psb_period is indicated by:
0325 
0326                         /sys/bus/event_source/devices/intel_pt/caps/psb_cyc
0327 
0328                 which contains "1" if the feature is supported and "0"
0329                 otherwise.
0330 
0331                 Valid values are given by:
0332 
0333                         /sys/bus/event_source/devices/intel_pt/caps/psb_periods
0334 
0335                 which contains a hexadecimal value, the bits of which represent
0336                 valid values e.g. bit 2 set means value 2 is valid.
0337 
0338                 The psb_period value is converted to the approximate number of
0339                 trace bytes between PSB packets as:
0340 
0341                         2 ^ (value + 11)
0342 
0343                 e.g. value 3 means 16KiB bytes between PSBs
0344 
0345                 If an invalid value is entered, the error message
0346                 will give a list of valid values e.g.
0347 
0348                         $ perf record -e intel_pt/psb_period=15/u uname
0349                         Invalid psb_period for intel_pt. Valid values are: 0-5
0350 
0351                 If MTC packets are selected, the default config selects a value
0352                 of 3 (i.e. psb_period=3) or the nearest lower value that is
0353                 supported (0 is always supported).  Otherwise the default is 0.
0354 
0355                 If decoding is expected to be reliable and the buffer is large
0356                 then a large PSB period can be used.
0357 
0358                 Because a TSC packet is produced with PSB, the PSB period can
0359                 also affect the granularity to timing information in the absence
0360                 of MTC or CYC.
0361 
0362 mtc             Produces MTC timing packets.
0363 
0364                 MTC packets provide finer grain timestamp information than TSC
0365                 packets.  MTC packets record time using the hardware crystal
0366                 clock (CTC) which is related to TSC packets using a TMA packet.
0367 
0368                 Support for this feature is indicated by:
0369 
0370                         /sys/bus/event_source/devices/intel_pt/caps/mtc
0371 
0372                 which contains "1" if the feature is supported and
0373                 "0" otherwise.
0374 
0375                 The frequency of MTC packets can also be specified - see
0376                 mtc_period below.
0377 
0378 mtc_period      Specifies how frequently MTC packets are produced - see mtc
0379                 above for how to determine if MTC packets are supported.
0380 
0381                 Valid values are given by:
0382 
0383                         /sys/bus/event_source/devices/intel_pt/caps/mtc_periods
0384 
0385                 which contains a hexadecimal value, the bits of which represent
0386                 valid values e.g. bit 2 set means value 2 is valid.
0387 
0388                 The mtc_period value is converted to the MTC frequency as:
0389 
0390                         CTC-frequency / (2 ^ value)
0391 
0392                 e.g. value 3 means one eighth of CTC-frequency
0393 
0394                 Where CTC is the hardware crystal clock, the frequency of which
0395                 can be related to TSC via values provided in cpuid leaf 0x15.
0396 
0397                 If an invalid value is entered, the error message
0398                 will give a list of valid values e.g.
0399 
0400                         $ perf record -e intel_pt/mtc_period=15/u uname
0401                         Invalid mtc_period for intel_pt. Valid values are: 0,3,6,9
0402 
0403                 The default value is 3 or the nearest lower value
0404                 that is supported (0 is always supported).
0405 
0406 cyc             Produces CYC timing packets.
0407 
0408                 CYC packets provide even finer grain timestamp information than
0409                 MTC and TSC packets.  A CYC packet contains the number of CPU
0410                 cycles since the last CYC packet. Unlike MTC and TSC packets,
0411                 CYC packets are only sent when another packet is also sent.
0412 
0413                 Support for this feature is indicated by:
0414 
0415                         /sys/bus/event_source/devices/intel_pt/caps/psb_cyc
0416 
0417                 which contains "1" if the feature is supported and
0418                 "0" otherwise.
0419 
0420                 The number of CYC packets produced can be reduced by specifying
0421                 a threshold - see cyc_thresh below.
0422 
0423 cyc_thresh      Specifies how frequently CYC packets are produced - see cyc
0424                 above for how to determine if CYC packets are supported.
0425 
0426                 Valid cyc_thresh values are given by:
0427 
0428                         /sys/bus/event_source/devices/intel_pt/caps/cycle_thresholds
0429 
0430                 which contains a hexadecimal value, the bits of which represent
0431                 valid values e.g. bit 2 set means value 2 is valid.
0432 
0433                 The cyc_thresh value represents the minimum number of CPU cycles
0434                 that must have passed before a CYC packet can be sent.  The
0435                 number of CPU cycles is:
0436 
0437                         2 ^ (value - 1)
0438 
0439                 e.g. value 4 means 8 CPU cycles must pass before a CYC packet
0440                 can be sent.  Note a CYC packet is still only sent when another
0441                 packet is sent, not at, e.g. every 8 CPU cycles.
0442 
0443                 If an invalid value is entered, the error message
0444                 will give a list of valid values e.g.
0445 
0446                         $ perf record -e intel_pt/cyc,cyc_thresh=15/u uname
0447                         Invalid cyc_thresh for intel_pt. Valid values are: 0-12
0448 
0449                 CYC packets are not requested by default.
0450 
0451 pt              Specifies pass-through which enables the 'branch' config term.
0452 
0453                 The default config selects 'pt' if it is available, so a user will
0454                 never need to specify this term.
0455 
0456 branch          Enable branch tracing.  Branch tracing is enabled by default so to
0457                 disable branch tracing use 'branch=0'.
0458 
0459                 The default config selects 'branch' if it is available.
0460 
0461 ptw             Enable PTWRITE packets which are produced when a ptwrite instruction
0462                 is executed.
0463 
0464                 Support for this feature is indicated by:
0465 
0466                         /sys/bus/event_source/devices/intel_pt/caps/ptwrite
0467 
0468                 which contains "1" if the feature is supported and
0469                 "0" otherwise.
0470 
0471                 As an alternative, refer to "Emulated PTWRITE" further below.
0472 
0473 fup_on_ptw      Enable a FUP packet to follow the PTWRITE packet.  The FUP packet
0474                 provides the address of the ptwrite instruction.  In the absence of
0475                 fup_on_ptw, the decoder will use the address of the previous branch
0476                 if branch tracing is enabled, otherwise the address will be zero.
0477                 Note that fup_on_ptw will work even when branch tracing is disabled.
0478 
0479 pwr_evt         Enable power events.  The power events provide information about
0480                 changes to the CPU C-state.
0481 
0482                 Support for this feature is indicated by:
0483 
0484                         /sys/bus/event_source/devices/intel_pt/caps/power_event_trace
0485 
0486                 which contains "1" if the feature is supported and
0487                 "0" otherwise.
0488 
0489 event           Enable Event Trace.  The events provide information about asynchronous
0490                 events.
0491 
0492                 Support for this feature is indicated by:
0493 
0494                         /sys/bus/event_source/devices/intel_pt/caps/event_trace
0495 
0496                 which contains "1" if the feature is supported and
0497                 "0" otherwise.
0498 
0499 notnt           Disable TNT packets.  Without TNT packets, it is not possible to walk
0500                 executable code to reconstruct control flow, however FUP, TIP, TIP.PGE
0501                 and TIP.PGD packets still indicate asynchronous control flow, and (if
0502                 return compression is disabled - see noretcomp) return statements.
0503                 The advantage of eliminating TNT packets is reducing the size of the
0504                 trace and corresponding tracing overhead.
0505 
0506                 Support for this feature is indicated by:
0507 
0508                         /sys/bus/event_source/devices/intel_pt/caps/tnt_disable
0509 
0510                 which contains "1" if the feature is supported and
0511                 "0" otherwise.
0512 
0513 
0514 AUX area sampling option
0515 ~~~~~~~~~~~~~~~~~~~~~~~~
0516 
0517 To select Intel PT "sampling" the AUX area sampling option can be used:
0518 
0519         --aux-sample
0520 
0521 Optionally it can be followed by the sample size in bytes e.g.
0522 
0523         --aux-sample=8192
0524 
0525 In addition, the Intel PT event to sample must be defined e.g.
0526 
0527         -e intel_pt//u
0528 
0529 Samples on other events will be created containing Intel PT data e.g. the
0530 following will create Intel PT samples on the branch-misses event, note the
0531 events must be grouped using {}:
0532 
0533         perf record --aux-sample -e '{intel_pt//u,branch-misses:u}'
0534 
0535 An alternative to '--aux-sample' is to add the config term 'aux-sample-size' to
0536 events.  In this case, the grouping is implied e.g.
0537 
0538         perf record -e intel_pt//u -e branch-misses/aux-sample-size=8192/u
0539 
0540 is the same as:
0541 
0542         perf record -e '{intel_pt//u,branch-misses/aux-sample-size=8192/u}'
0543 
0544 but allows for also using an address filter e.g.:
0545 
0546         perf record -e intel_pt//u --filter 'filter * @/bin/ls' -e branch-misses/aux-sample-size=8192/u -- ls
0547 
0548 It is important to select a sample size that is big enough to contain at least
0549 one PSB packet.  If not a warning will be displayed:
0550 
0551         Intel PT sample size (%zu) may be too small for PSB period (%zu)
0552 
0553 The calculation used for that is: if sample_size <= psb_period + 256 display the
0554 warning.  When sampling is used, psb_period defaults to 0 (2KiB).
0555 
0556 The default sample size is 4KiB.
0557 
0558 The sample size is passed in aux_sample_size in struct perf_event_attr.  The
0559 sample size is limited by the maximum event size which is 64KiB.  It is
0560 difficult to know how big the event might be without the trace sample attached,
0561 but the tool validates that the sample size is not greater than 60KiB.
0562 
0563 
0564 new snapshot option
0565 ~~~~~~~~~~~~~~~~~~~
0566 
0567 The difference between full trace and snapshot from the kernel's perspective is
0568 that in full trace we don't overwrite trace data that the user hasn't collected
0569 yet (and indicated that by advancing aux_tail), whereas in snapshot mode we let
0570 the trace run and overwrite older data in the buffer so that whenever something
0571 interesting happens, we can stop it and grab a snapshot of what was going on
0572 around that interesting moment.
0573 
0574 To select snapshot mode a new option has been added:
0575 
0576         -S
0577 
0578 Optionally it can be followed by the snapshot size e.g.
0579 
0580         -S0x100000
0581 
0582 The default snapshot size is the auxtrace mmap size.  If neither auxtrace mmap size
0583 nor snapshot size is specified, then the default is 4MiB for privileged users
0584 (or if /proc/sys/kernel/perf_event_paranoid < 0), 128KiB for unprivileged users.
0585 If an unprivileged user does not specify mmap pages, the mmap pages will be
0586 reduced as described in the 'new auxtrace mmap size option' section below.
0587 
0588 The snapshot size is displayed if the option -vv is used e.g.
0589 
0590         Intel PT snapshot size: %zu
0591 
0592 
0593 new auxtrace mmap size option
0594 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0595 
0596 Intel PT buffer size is specified by an addition to the -m option e.g.
0597 
0598         -m,16
0599 
0600 selects a buffer size of 16 pages i.e. 64KiB.
0601 
0602 Note that the existing functionality of -m is unchanged.  The auxtrace mmap size
0603 is specified by the optional addition of a comma and the value.
0604 
0605 The default auxtrace mmap size for Intel PT is 4MiB/page_size for privileged users
0606 (or if /proc/sys/kernel/perf_event_paranoid < 0), 128KiB for unprivileged users.
0607 If an unprivileged user does not specify mmap pages, the mmap pages will be
0608 reduced from the default 512KiB/page_size to 256KiB/page_size, otherwise the
0609 user is likely to get an error as they exceed their mlock limit (Max locked
0610 memory as shown in /proc/self/limits).  Note that perf does not count the first
0611 512KiB (actually /proc/sys/kernel/perf_event_mlock_kb minus 1 page) per cpu
0612 against the mlock limit so an unprivileged user is allowed 512KiB per cpu plus
0613 their mlock limit (which defaults to 64KiB but is not multiplied by the number
0614 of cpus).
0615 
0616 In full-trace mode, powers of two are allowed for buffer size, with a minimum
0617 size of 2 pages.  In snapshot mode or sampling mode, it is the same but the
0618 minimum size is 1 page.
0619 
0620 The mmap size and auxtrace mmap size are displayed if the -vv option is used e.g.
0621 
0622         mmap length 528384
0623         auxtrace mmap length 4198400
0624 
0625 
0626 Intel PT modes of operation
0627 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
0628 
0629 Intel PT can be used in 3 modes:
0630         full-trace mode
0631         sample mode
0632         snapshot mode
0633 
0634 Full-trace mode traces continuously e.g.
0635 
0636         perf record -e intel_pt//u uname
0637 
0638 Sample mode attaches a Intel PT sample to other events e.g.
0639 
0640         perf record --aux-sample -e intel_pt//u -e branch-misses:u
0641 
0642 Snapshot mode captures the available data when a signal is sent or "snapshot"
0643 control command is issued. e.g. using a signal
0644 
0645         perf record -v -e intel_pt//u -S ./loopy 1000000000 &
0646         [1] 11435
0647         kill -USR2 11435
0648         Recording AUX area tracing snapshot
0649 
0650 Note that the signal sent is SIGUSR2.
0651 Note that "Recording AUX area tracing snapshot" is displayed because the -v
0652 option is used.
0653 
0654 The advantage of using "snapshot" control command is that the access is
0655 controlled by access to a FIFO e.g.
0656 
0657         $ mkfifo perf.control
0658         $ mkfifo perf.ack
0659         $ cat perf.ack &
0660         [1] 15235
0661         $ sudo ~/bin/perf record --control fifo:perf.control,perf.ack -S -e intel_pt//u -- sleep 60 &
0662         [2] 15243
0663         $ ps -e | grep perf
0664         15244 pts/1    00:00:00 perf
0665         $ kill -USR2 15244
0666         bash: kill: (15244) - Operation not permitted
0667         $ echo snapshot > perf.control
0668         ack
0669 
0670 The 3 Intel PT modes of operation cannot be used together.
0671 
0672 
0673 Buffer handling
0674 ~~~~~~~~~~~~~~~
0675 
0676 There may be buffer limitations (i.e. single ToPa entry) which means that actual
0677 buffer sizes are limited to powers of 2 up to 4MiB (MAX_ORDER).  In order to
0678 provide other sizes, and in particular an arbitrarily large size, multiple
0679 buffers are logically concatenated.  However an interrupt must be used to switch
0680 between buffers.  That has two potential problems:
0681         a) the interrupt may not be handled in time so that the current buffer
0682         becomes full and some trace data is lost.
0683         b) the interrupts may slow the system and affect the performance
0684         results.
0685 
0686 If trace data is lost, the driver sets 'truncated' in the PERF_RECORD_AUX event
0687 which the tools report as an error.
0688 
0689 In full-trace mode, the driver waits for data to be copied out before allowing
0690 the (logical) buffer to wrap-around.  If data is not copied out quickly enough,
0691 again 'truncated' is set in the PERF_RECORD_AUX event.  If the driver has to
0692 wait, the intel_pt event gets disabled.  Because it is difficult to know when
0693 that happens, perf tools always re-enable the intel_pt event after copying out
0694 data.
0695 
0696 
0697 Intel PT and build ids
0698 ~~~~~~~~~~~~~~~~~~~~~~
0699 
0700 By default "perf record" post-processes the event stream to find all build ids
0701 for executables for all addresses sampled.  Deliberately, Intel PT is not
0702 decoded for that purpose (it would take too long).  Instead the build ids for
0703 all executables encountered (due to mmap, comm or task events) are included
0704 in the perf.data file.
0705 
0706 To see buildids included in the perf.data file use the command:
0707 
0708         perf buildid-list
0709 
0710 If the perf.data file contains Intel PT data, that is the same as:
0711 
0712         perf buildid-list --with-hits
0713 
0714 
0715 Snapshot mode and event disabling
0716 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0717 
0718 In order to make a snapshot, the intel_pt event is disabled using an IOCTL,
0719 namely PERF_EVENT_IOC_DISABLE.  However doing that can also disable the
0720 collection of side-band information.  In order to prevent that,  a dummy
0721 software event has been introduced that permits tracking events (like mmaps) to
0722 continue to be recorded while intel_pt is disabled.  That is important to ensure
0723 there is complete side-band information to allow the decoding of subsequent
0724 snapshots.
0725 
0726 A test has been created for that.  To find the test:
0727 
0728         perf test list
0729         ...
0730         23: Test using a dummy software event to keep tracking
0731 
0732 To run the test:
0733 
0734         perf test 23
0735         23: Test using a dummy software event to keep tracking     : Ok
0736 
0737 
0738 perf record modes (nothing new here)
0739 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0740 
0741 perf record essentially operates in one of three modes:
0742         per thread
0743         per cpu
0744         workload only
0745 
0746 "per thread" mode is selected by -t or by --per-thread (with -p or -u or just a
0747 workload).
0748 "per cpu" is selected by -C or -a.
0749 "workload only" mode is selected by not using the other options but providing a
0750 command to run (i.e. the workload).
0751 
0752 In per-thread mode an exact list of threads is traced.  There is no inheritance.
0753 Each thread has its own event buffer.
0754 
0755 In per-cpu mode all processes (or processes from the selected cgroup i.e. -G
0756 option, or processes selected with -p or -u) are traced.  Each cpu has its own
0757 buffer. Inheritance is allowed.
0758 
0759 In workload-only mode, the workload is traced but with per-cpu buffers.
0760 Inheritance is allowed.  Note that you can now trace a workload in per-thread
0761 mode by using the --per-thread option.
0762 
0763 
0764 Privileged vs non-privileged users
0765 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0766 
0767 Unless /proc/sys/kernel/perf_event_paranoid is set to -1, unprivileged users
0768 have memory limits imposed upon them.  That affects what buffer sizes they can
0769 have as outlined above.
0770 
0771 The v4.2 kernel introduced support for a context switch metadata event,
0772 PERF_RECORD_SWITCH, which allows unprivileged users to see when their processes
0773 are scheduled out and in, just not by whom, which is left for the
0774 PERF_RECORD_SWITCH_CPU_WIDE, that is only accessible in system wide context,
0775 which in turn requires CAP_PERFMON or CAP_SYS_ADMIN.
0776 
0777 Please see the 45ac1403f564 ("perf: Add PERF_RECORD_SWITCH to indicate context
0778 switches") commit, that introduces these metadata events for further info.
0779 
0780 When working with kernels < v4.2, the following considerations must be taken,
0781 as the sched:sched_switch tracepoints will be used to receive such information:
0782 
0783 Unless /proc/sys/kernel/perf_event_paranoid is set to -1, unprivileged users are
0784 not permitted to use tracepoints which means there is insufficient side-band
0785 information to decode Intel PT in per-cpu mode, and potentially workload-only
0786 mode too if the workload creates new processes.
0787 
0788 Note also, that to use tracepoints, read-access to debugfs is required.  So if
0789 debugfs is not mounted or the user does not have read-access, it will again not
0790 be possible to decode Intel PT in per-cpu mode.
0791 
0792 
0793 sched_switch tracepoint
0794 ~~~~~~~~~~~~~~~~~~~~~~~
0795 
0796 The sched_switch tracepoint is used to provide side-band data for Intel PT
0797 decoding in kernels where the PERF_RECORD_SWITCH metadata event isn't
0798 available.
0799 
0800 The sched_switch events are automatically added. e.g. the second event shown
0801 below:
0802 
0803         $ perf record -vv -e intel_pt//u uname
0804         ------------------------------------------------------------
0805         perf_event_attr:
0806         type                             6
0807         size                             112
0808         config                           0x400
0809         { sample_period, sample_freq }   1
0810         sample_type                      IP|TID|TIME|CPU|IDENTIFIER
0811         read_format                      ID
0812         disabled                         1
0813         inherit                          1
0814         exclude_kernel                   1
0815         exclude_hv                       1
0816         enable_on_exec                   1
0817         sample_id_all                    1
0818         ------------------------------------------------------------
0819         sys_perf_event_open: pid 31104  cpu 0  group_fd -1  flags 0x8
0820         sys_perf_event_open: pid 31104  cpu 1  group_fd -1  flags 0x8
0821         sys_perf_event_open: pid 31104  cpu 2  group_fd -1  flags 0x8
0822         sys_perf_event_open: pid 31104  cpu 3  group_fd -1  flags 0x8
0823         ------------------------------------------------------------
0824         perf_event_attr:
0825         type                             2
0826         size                             112
0827         config                           0x108
0828         { sample_period, sample_freq }   1
0829         sample_type                      IP|TID|TIME|CPU|PERIOD|RAW|IDENTIFIER
0830         read_format                      ID
0831         inherit                          1
0832         sample_id_all                    1
0833         exclude_guest                    1
0834         ------------------------------------------------------------
0835         sys_perf_event_open: pid -1  cpu 0  group_fd -1  flags 0x8
0836         sys_perf_event_open: pid -1  cpu 1  group_fd -1  flags 0x8
0837         sys_perf_event_open: pid -1  cpu 2  group_fd -1  flags 0x8
0838         sys_perf_event_open: pid -1  cpu 3  group_fd -1  flags 0x8
0839         ------------------------------------------------------------
0840         perf_event_attr:
0841         type                             1
0842         size                             112
0843         config                           0x9
0844         { sample_period, sample_freq }   1
0845         sample_type                      IP|TID|TIME|IDENTIFIER
0846         read_format                      ID
0847         disabled                         1
0848         inherit                          1
0849         exclude_kernel                   1
0850         exclude_hv                       1
0851         mmap                             1
0852         comm                             1
0853         enable_on_exec                   1
0854         task                             1
0855         sample_id_all                    1
0856         mmap2                            1
0857         comm_exec                        1
0858         ------------------------------------------------------------
0859         sys_perf_event_open: pid 31104  cpu 0  group_fd -1  flags 0x8
0860         sys_perf_event_open: pid 31104  cpu 1  group_fd -1  flags 0x8
0861         sys_perf_event_open: pid 31104  cpu 2  group_fd -1  flags 0x8
0862         sys_perf_event_open: pid 31104  cpu 3  group_fd -1  flags 0x8
0863         mmap size 528384B
0864         AUX area mmap length 4194304
0865         perf event ring buffer mmapped per cpu
0866         Synthesizing auxtrace information
0867         Linux
0868         [ perf record: Woken up 1 times to write data ]
0869         [ perf record: Captured and wrote 0.042 MB perf.data ]
0870 
0871 Note, the sched_switch event is only added if the user is permitted to use it
0872 and only in per-cpu mode.
0873 
0874 Note also, the sched_switch event is only added if TSC packets are requested.
0875 That is because, in the absence of timing information, the sched_switch events
0876 cannot be matched against the Intel PT trace.
0877 
0878 
0879 perf script
0880 -----------
0881 
0882 By default, perf script will decode trace data found in the perf.data file.
0883 This can be further controlled by new option --itrace.
0884 
0885 
0886 New --itrace option
0887 ~~~~~~~~~~~~~~~~~~~
0888 
0889 Having no option is the same as
0890 
0891         --itrace
0892 
0893 which, in turn, is the same as
0894 
0895         --itrace=cepwx
0896 
0897 The letters are:
0898 
0899         i       synthesize "instructions" events
0900         b       synthesize "branches" events
0901         x       synthesize "transactions" events
0902         w       synthesize "ptwrite" events
0903         p       synthesize "power" events (incl. PSB events)
0904         c       synthesize branches events (calls only)
0905         r       synthesize branches events (returns only)
0906         o       synthesize PEBS-via-PT events
0907         I       synthesize Event Trace events
0908         e       synthesize tracing error events
0909         d       create a debug log
0910         g       synthesize a call chain (use with i or x)
0911         G       synthesize a call chain on existing event records
0912         l       synthesize last branch entries (use with i or x)
0913         L       synthesize last branch entries on existing event records
0914         s       skip initial number of events
0915         q       quicker (less detailed) decoding
0916         A       approximate IPC
0917         Z       prefer to ignore timestamps (so-called "timeless" decoding)
0918 
0919 "Instructions" events look like they were recorded by "perf record -e
0920 instructions".
0921 
0922 "Branches" events look like they were recorded by "perf record -e branches". "c"
0923 and "r" can be combined to get calls and returns.
0924 
0925 "Transactions" events correspond to the start or end of transactions. The
0926 'flags' field can be used in perf script to determine whether the event is a
0927 transaction start, commit or abort.
0928 
0929 Note that "instructions", "branches" and "transactions" events depend on code
0930 flow packets which can be disabled by using the config term "branch=0".  Refer
0931 to the config terms section above.
0932 
0933 "ptwrite" events record the payload of the ptwrite instruction and whether
0934 "fup_on_ptw" was used.  "ptwrite" events depend on PTWRITE packets which are
0935 recorded only if the "ptw" config term was used.  Refer to the config terms
0936 section above.  perf script "synth" field displays "ptwrite" information like
0937 this: "ip: 0 payload: 0x123456789abcdef0"  where "ip" is 1 if "fup_on_ptw" was
0938 used.
0939 
0940 "Power" events correspond to power event packets and CBR (core-to-bus ratio)
0941 packets.  While CBR packets are always recorded when tracing is enabled, power
0942 event packets are recorded only if the "pwr_evt" config term was used.  Refer to
0943 the config terms section above.  The power events record information about
0944 C-state changes, whereas CBR is indicative of CPU frequency.  perf script
0945 "event,synth" fields display information like this:
0946         cbr:  cbr: 22 freq: 2189 MHz (200%)
0947         mwait:  hints: 0x60 extensions: 0x1
0948         pwre:  hw: 0 cstate: 2 sub-cstate: 0
0949         exstop:  ip: 1
0950         pwrx:  deepest cstate: 2 last cstate: 2 wake reason: 0x4
0951 Where:
0952         "cbr" includes the frequency and the percentage of maximum non-turbo
0953         "mwait" shows mwait hints and extensions
0954         "pwre" shows C-state transitions (to a C-state deeper than C0) and
0955         whether initiated by hardware
0956         "exstop" indicates execution stopped and whether the IP was recorded
0957         exactly,
0958         "pwrx" indicates return to C0
0959 For more details refer to the Intel 64 and IA-32 Architectures Software
0960 Developer Manuals.
0961 
0962 PSB events show when a PSB+ occurred and also the byte-offset in the trace.
0963 Emitting a PSB+ can cause a CPU a slight delay. When doing timing analysis
0964 of code with Intel PT, it is useful to know if a timing bubble was caused
0965 by Intel PT or not.
0966 
0967 Error events show where the decoder lost the trace.  Error events
0968 are quite important.  Users must know if what they are seeing is a complete
0969 picture or not. The "e" option may be followed by flags which affect what errors
0970 will or will not be reported.  Each flag must be preceded by either '+' or '-'.
0971 The flags supported by Intel PT are:
0972                 -o      Suppress overflow errors
0973                 -l      Suppress trace data lost errors
0974 For example, for errors but not overflow or data lost errors:
0975 
0976         --itrace=e-o-l
0977 
0978 The "d" option will cause the creation of a file "intel_pt.log" containing all
0979 decoded packets and instructions.  Note that this option slows down the decoder
0980 and that the resulting file may be very large.  The "d" option may be followed
0981 by flags which affect what debug messages will or will not be logged. Each flag
0982 must be preceded by either '+' or '-'. The flags support by Intel PT are:
0983                 -a      Suppress logging of perf events
0984                 +a      Log all perf events
0985                 +o      Output to stdout instead of "intel_pt.log"
0986 By default, logged perf events are filtered by any specified time ranges, but
0987 flag +a overrides that.
0988 
0989 In addition, the period of the "instructions" event can be specified. e.g.
0990 
0991         --itrace=i10us
0992 
0993 sets the period to 10us i.e. one  instruction sample is synthesized for each 10
0994 microseconds of trace.  Alternatives to "us" are "ms" (milliseconds),
0995 "ns" (nanoseconds), "t" (TSC ticks) or "i" (instructions).
0996 
0997 "ms", "us" and "ns" are converted to TSC ticks.
0998 
0999 The timing information included with Intel PT does not give the time of every
1000 instruction.  Consequently, for the purpose of sampling, the decoder estimates
1001 the time since the last timing packet based on 1 tick per instruction.  The time
1002 on the sample is *not* adjusted and reflects the last known value of TSC.
1003 
1004 For Intel PT, the default period is 100us.
1005 
1006 Setting it to a zero period means "as often as possible".
1007 
1008 In the case of Intel PT that is the same as a period of 1 and a unit of
1009 'instructions' (i.e. --itrace=i1i).
1010 
1011 Also the call chain size (default 16, max. 1024) for instructions or
1012 transactions events can be specified. e.g.
1013 
1014         --itrace=ig32
1015         --itrace=xg32
1016 
1017 Also the number of last branch entries (default 64, max. 1024) for instructions or
1018 transactions events can be specified. e.g.
1019 
1020        --itrace=il10
1021        --itrace=xl10
1022 
1023 Note that last branch entries are cleared for each sample, so there is no overlap
1024 from one sample to the next.
1025 
1026 The G and L options are designed in particular for sample mode, and work much
1027 like g and l but add call chain and branch stack to the other selected events
1028 instead of synthesized events. For example, to record branch-misses events for
1029 'ls' and then add a call chain derived from the Intel PT trace:
1030 
1031         perf record --aux-sample -e '{intel_pt//u,branch-misses:u}' -- ls
1032         perf report --itrace=Ge
1033 
1034 Although in fact G is a default for perf report, so that is the same as just:
1035 
1036         perf report
1037 
1038 One caveat with the G and L options is that they work poorly with "Large PEBS".
1039 Large PEBS means PEBS records will be accumulated by hardware and the written
1040 into the event buffer in one go.  That reduces interrupts, but can give very
1041 late timestamps.  Because the Intel PT trace is synchronized by timestamps,
1042 the PEBS events do not match the trace.  Currently, Large PEBS is used only in
1043 certain circumstances:
1044         - hardware supports it
1045         - PEBS is used
1046         - event period is specified, instead of frequency
1047         - the sample type is limited to the following flags:
1048                 PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_ADDR |
1049                 PERF_SAMPLE_ID | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID |
1050                 PERF_SAMPLE_DATA_SRC | PERF_SAMPLE_IDENTIFIER |
1051                 PERF_SAMPLE_TRANSACTION | PERF_SAMPLE_PHYS_ADDR |
1052                 PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER |
1053                 PERF_SAMPLE_PERIOD (and sometimes) | PERF_SAMPLE_TIME
1054 Because Intel PT sample mode uses a different sample type to the list above,
1055 Large PEBS is not used with Intel PT sample mode. To avoid Large PEBS in other
1056 cases, avoid specifying the event period i.e. avoid the 'perf record' -c option,
1057 --count option, or 'period' config term.
1058 
1059 To disable trace decoding entirely, use the option --no-itrace.
1060 
1061 It is also possible to skip events generated (instructions, branches, transactions)
1062 at the beginning. This is useful to ignore initialization code.
1063 
1064         --itrace=i0nss1000000
1065 
1066 skips the first million instructions.
1067 
1068 The q option changes the way the trace is decoded.  The decoding is much faster
1069 but much less detailed.  Specifically, with the q option, the decoder does not
1070 decode TNT packets, and does not walk object code, but gets the ip from FUP and
1071 TIP packets.  The q option can be used with the b and i options but the period
1072 is not used.  The q option decodes more quickly, but is useful only if the
1073 control flow of interest is represented or indicated by FUP, TIP, TIP.PGE, or
1074 TIP.PGD packets (refer below).  However the q option could be used to find time
1075 ranges that could then be decoded fully using the --time option.
1076 
1077 What will *not* be decoded with the (single) q option:
1078 
1079         - direct calls and jmps
1080         - conditional branches
1081         - non-branch instructions
1082 
1083 What *will* be decoded with the (single) q option:
1084 
1085         - asynchronous branches such as interrupts
1086         - indirect branches
1087         - function return target address *if* the noretcomp config term (refer
1088         config terms section) was used
1089         - start of (control-flow) tracing
1090         - end of (control-flow) tracing, if it is not out of context
1091         - power events, ptwrite, transaction start and abort
1092         - instruction pointer associated with PSB packets
1093 
1094 Note the q option does not specify what events will be synthesized e.g. the p
1095 option must be used also to show power events.
1096 
1097 Repeating the q option (double-q i.e. qq) results in even faster decoding and even
1098 less detail.  The decoder decodes only extended PSB (PSB+) packets, getting the
1099 instruction pointer if there is a FUP packet within PSB+ (i.e. between PSB and
1100 PSBEND).  Note PSB packets occur regularly in the trace based on the psb_period
1101 config term (refer config terms section).  There will be a FUP packet if the
1102 PSB+ occurs while control flow is being traced.
1103 
1104 What will *not* be decoded with the qq option:
1105 
1106         - everything except instruction pointer associated with PSB packets
1107 
1108 What *will* be decoded with the qq option:
1109 
1110         - instruction pointer associated with PSB packets
1111 
1112 The Z option is equivalent to having recorded a trace without TSC
1113 (i.e. config term tsc=0). It can be useful to avoid timestamp issues when
1114 decoding a trace of a virtual machine.
1115 
1116 
1117 dlfilter-show-cycles.so
1118 ~~~~~~~~~~~~~~~~~~~~~~~
1119 
1120 Cycles can be displayed using dlfilter-show-cycles.so in which case the itrace A
1121 option can be useful to provide higher granularity cycle information:
1122 
1123         perf script --itrace=A --call-trace --dlfilter dlfilter-show-cycles.so
1124 
1125 To see a list of dlfilters:
1126 
1127         perf script -v --list-dlfilters
1128 
1129 See also linkperf:perf-dlfilters[1]
1130 
1131 
1132 dump option
1133 ~~~~~~~~~~~
1134 
1135 perf script has an option (-D) to "dump" the events i.e. display the binary
1136 data.
1137 
1138 When -D is used, Intel PT packets are displayed.  The packet decoder does not
1139 pay attention to PSB packets, but just decodes the bytes - so the packets seen
1140 by the actual decoder may not be identical in places where the data is corrupt.
1141 One example of that would be when the buffer-switching interrupt has been too
1142 slow, and the buffer has been filled completely.  In that case, the last packet
1143 in the buffer might be truncated and immediately followed by a PSB as the trace
1144 continues in the next buffer.
1145 
1146 To disable the display of Intel PT packets, combine the -D option with
1147 --no-itrace.
1148 
1149 
1150 perf report
1151 -----------
1152 
1153 By default, perf report will decode trace data found in the perf.data file.
1154 This can be further controlled by new option --itrace exactly the same as
1155 perf script, with the exception that the default is --itrace=igxe.
1156 
1157 
1158 perf inject
1159 -----------
1160 
1161 perf inject also accepts the --itrace option in which case tracing data is
1162 removed and replaced with the synthesized events. e.g.
1163 
1164         perf inject --itrace -i perf.data -o perf.data.new
1165 
1166 Below is an example of using Intel PT with autofdo.  It requires autofdo
1167 (https://github.com/google/autofdo) and gcc version 5.  The bubble
1168 sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial)
1169 amended to take the number of elements as a parameter.
1170 
1171         $ gcc-5 -O3 sort.c -o sort_optimized
1172         $ ./sort_optimized 30000
1173         Bubble sorting array of 30000 elements
1174         2254 ms
1175 
1176         $ cat ~/.perfconfig
1177         [intel-pt]
1178                 mispred-all = on
1179 
1180         $ perf record -e intel_pt//u ./sort 3000
1181         Bubble sorting array of 3000 elements
1182         58 ms
1183         [ perf record: Woken up 2 times to write data ]
1184         [ perf record: Captured and wrote 3.939 MB perf.data ]
1185         $ perf inject -i perf.data -o inj --itrace=i100usle --strip
1186         $ ./create_gcov --binary=./sort --profile=inj --gcov=sort.gcov -gcov_version=1
1187         $ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo
1188         $ ./sort_autofdo 30000
1189         Bubble sorting array of 30000 elements
1190         2155 ms
1191 
1192 Note there is currently no advantage to using Intel PT instead of LBR, but
1193 that may change in the future if greater use is made of the data.
1194 
1195 
1196 PEBS via Intel PT
1197 -----------------
1198 
1199 Some hardware has the feature to redirect PEBS records to the Intel PT trace.
1200 Recording is selected by using the aux-output config term e.g.
1201 
1202         perf record -c 10000 -e '{intel_pt/branch=0/,cycles/aux-output/ppp}' uname
1203 
1204 Originally, software only supported redirecting at most one PEBS event because it
1205 was not able to differentiate one event from another. To overcome that, more recent
1206 kernels and perf tools add support for the PERF_RECORD_AUX_OUTPUT_HW_ID side-band event.
1207 To check for the presence of that event in a PEBS-via-PT trace:
1208 
1209         perf script -D --no-itrace | grep PERF_RECORD_AUX_OUTPUT_HW_ID
1210 
1211 To display PEBS events from the Intel PT trace, use the itrace 'o' option e.g.
1212 
1213         perf script --itrace=oe
1214 
1215 XED
1216 ---
1217 
1218 include::build-xed.txt[]
1219 
1220 
1221 Tracing Virtual Machines (kernel only)
1222 --------------------------------------
1223 
1224 Currently, kernel tracing is supported with either "timeless" decoding
1225 (i.e. no TSC timestamps) or VM Time Correlation. VM Time Correlation is an extra step
1226 using 'perf inject' and requires unchanging VMX TSC Offset and no VMX TSC Scaling.
1227 
1228 Other limitations and caveats
1229 
1230  VMX controls may suppress packets needed for decoding resulting in decoding errors
1231  VMX controls may block the perf NMI to the host potentially resulting in lost trace data
1232  Guest kernel self-modifying code (e.g. jump labels or JIT-compiled eBPF) will result in decoding errors
1233  Guest thread information is unknown
1234  Guest VCPU is unknown but may be able to be inferred from the host thread
1235  Callchains are not supported
1236 
1237 Example using "timeless" decoding
1238 
1239 Start VM
1240 
1241  $ sudo virsh start kubuntu20.04
1242  Domain kubuntu20.04 started
1243 
1244 Mount the guest file system.  Note sshfs needs -o direct_io to enable reading of proc files.  root access is needed to read /proc/kcore.
1245 
1246  $ mkdir vm0
1247  $ sshfs -o direct_io root@vm0:/ vm0
1248 
1249 Copy the guest /proc/kallsyms, /proc/modules and /proc/kcore
1250 
1251  $ perf buildid-cache -v --kcore vm0/proc/kcore
1252  kcore added to build-id cache directory /home/user/.debug/[kernel.kcore]/9600f316a53a0f54278885e8d9710538ec5f6a08/2021021807494306
1253  $ KALLSYMS=/home/user/.debug/[kernel.kcore]/9600f316a53a0f54278885e8d9710538ec5f6a08/2021021807494306/kallsyms
1254 
1255 Find the VM process
1256 
1257  $ ps -eLl | grep 'KVM\|PID'
1258  F S   UID     PID    PPID     LWP  C PRI  NI ADDR SZ WCHAN  TTY          TIME CMD
1259  3 S 64055    1430       1    1440  1  80   0 - 1921718 -    ?        00:02:47 CPU 0/KVM
1260  3 S 64055    1430       1    1441  1  80   0 - 1921718 -    ?        00:02:41 CPU 1/KVM
1261  3 S 64055    1430       1    1442  1  80   0 - 1921718 -    ?        00:02:38 CPU 2/KVM
1262  3 S 64055    1430       1    1443  2  80   0 - 1921718 -    ?        00:03:18 CPU 3/KVM
1263 
1264 Start an open-ended perf record, tracing the VM process, do something on the VM, and then ctrl-C to stop.
1265 TSC is not supported and tsc=0 must be specified.  That means mtc is useless, so add mtc=0.
1266 However, IPC can still be determined, hence cyc=1 can be added.
1267 Only kernel decoding is supported, so 'k' must be specified.
1268 Intel PT traces both the host and the guest so --guest and --host need to be specified.
1269 Without timestamps, --per-thread must be specified to distinguish threads.
1270 
1271  $ sudo perf kvm --guest --host --guestkallsyms $KALLSYMS record --kcore -e intel_pt/tsc=0,mtc=0,cyc=1/k -p 1430 --per-thread
1272  ^C
1273  [ perf record: Woken up 1 times to write data ]
1274  [ perf record: Captured and wrote 5.829 MB ]
1275 
1276 perf script can be used to provide an instruction trace
1277 
1278  $ perf script --guestkallsyms $KALLSYMS --insn-trace --xed -F+ipc | grep -C10 vmresume | head -21
1279        CPU 0/KVM  1440  ffffffff82133cdd __vmx_vcpu_run+0x3d ([kernel.kallsyms])                movq  0x48(%rax), %r9
1280        CPU 0/KVM  1440  ffffffff82133ce1 __vmx_vcpu_run+0x41 ([kernel.kallsyms])                movq  0x50(%rax), %r10
1281        CPU 0/KVM  1440  ffffffff82133ce5 __vmx_vcpu_run+0x45 ([kernel.kallsyms])                movq  0x58(%rax), %r11
1282        CPU 0/KVM  1440  ffffffff82133ce9 __vmx_vcpu_run+0x49 ([kernel.kallsyms])                movq  0x60(%rax), %r12
1283        CPU 0/KVM  1440  ffffffff82133ced __vmx_vcpu_run+0x4d ([kernel.kallsyms])                movq  0x68(%rax), %r13
1284        CPU 0/KVM  1440  ffffffff82133cf1 __vmx_vcpu_run+0x51 ([kernel.kallsyms])                movq  0x70(%rax), %r14
1285        CPU 0/KVM  1440  ffffffff82133cf5 __vmx_vcpu_run+0x55 ([kernel.kallsyms])                movq  0x78(%rax), %r15
1286        CPU 0/KVM  1440  ffffffff82133cf9 __vmx_vcpu_run+0x59 ([kernel.kallsyms])                movq  (%rax), %rax
1287        CPU 0/KVM  1440  ffffffff82133cfc __vmx_vcpu_run+0x5c ([kernel.kallsyms])                callq  0xffffffff82133c40
1288        CPU 0/KVM  1440  ffffffff82133c40 vmx_vmenter+0x0 ([kernel.kallsyms])            jz 0xffffffff82133c46
1289        CPU 0/KVM  1440  ffffffff82133c42 vmx_vmenter+0x2 ([kernel.kallsyms])            vmresume         IPC: 0.11 (50/445)
1290            :1440  1440  ffffffffbb678b06 native_write_msr+0x6 ([guest.kernel.kallsyms])                 nopl  %eax, (%rax,%rax,1)
1291            :1440  1440  ffffffffbb678b0b native_write_msr+0xb ([guest.kernel.kallsyms])                 retq     IPC: 0.04 (2/41)
1292            :1440  1440  ffffffffbb666646 lapic_next_deadline+0x26 ([guest.kernel.kallsyms])             data16 nop
1293            :1440  1440  ffffffffbb666648 lapic_next_deadline+0x28 ([guest.kernel.kallsyms])             xor %eax, %eax
1294            :1440  1440  ffffffffbb66664a lapic_next_deadline+0x2a ([guest.kernel.kallsyms])             popq  %rbp
1295            :1440  1440  ffffffffbb66664b lapic_next_deadline+0x2b ([guest.kernel.kallsyms])             retq     IPC: 0.16 (4/25)
1296            :1440  1440  ffffffffbb74607f clockevents_program_event+0x8f ([guest.kernel.kallsyms])               test %eax, %eax
1297            :1440  1440  ffffffffbb746081 clockevents_program_event+0x91 ([guest.kernel.kallsyms])               jz 0xffffffffbb74603c    IPC: 0.06 (2/30)
1298            :1440  1440  ffffffffbb74603c clockevents_program_event+0x4c ([guest.kernel.kallsyms])               popq  %rbx
1299            :1440  1440  ffffffffbb74603d clockevents_program_event+0x4d ([guest.kernel.kallsyms])               popq  %r12
1300 
1301 Example using VM Time Correlation
1302 
1303 Start VM
1304 
1305  $ sudo virsh start kubuntu20.04
1306  Domain kubuntu20.04 started
1307 
1308 Mount the guest file system.  Note sshfs needs -o direct_io to enable reading of proc files.  root access is needed to read /proc/kcore.
1309 
1310  $ mkdir -p vm0
1311  $ sshfs -o direct_io root@vm0:/ vm0
1312 
1313 Copy the guest /proc/kallsyms, /proc/modules and /proc/kcore
1314 
1315  $ perf buildid-cache -v --kcore vm0/proc/kcore
1316  same kcore found in /home/user/.debug/[kernel.kcore]/cc9c55a98c5e4ec0aeda69302554aabed5cd6491/2021021312450777
1317  $ KALLSYMS=/home/user/.debug/\[kernel.kcore\]/cc9c55a98c5e4ec0aeda69302554aabed5cd6491/2021021312450777/kallsyms
1318 
1319 Find the VM process
1320 
1321  $ ps -eLl | grep 'KVM\|PID'
1322  F S   UID     PID    PPID     LWP  C PRI  NI ADDR SZ WCHAN  TTY          TIME CMD
1323  3 S 64055   16998       1   17005 13  80   0 - 1818189 -    ?        00:00:16 CPU 0/KVM
1324  3 S 64055   16998       1   17006  4  80   0 - 1818189 -    ?        00:00:05 CPU 1/KVM
1325  3 S 64055   16998       1   17007  3  80   0 - 1818189 -    ?        00:00:04 CPU 2/KVM
1326  3 S 64055   16998       1   17008  4  80   0 - 1818189 -    ?        00:00:05 CPU 3/KVM
1327 
1328 Start an open-ended perf record, tracing the VM process, do something on the VM, and then ctrl-C to stop.
1329 IPC can be determined, hence cyc=1 can be added.
1330 Only kernel decoding is supported, so 'k' must be specified.
1331 Intel PT traces both the host and the guest so --guest and --host need to be specified.
1332 
1333  $ sudo perf kvm --guest --host --guestkallsyms $KALLSYMS record --kcore -e intel_pt/cyc=1/k -p 16998
1334  ^C[ perf record: Woken up 1 times to write data ]
1335  [ perf record: Captured and wrote 9.041 MB perf.data.kvm ]
1336 
1337 Now 'perf inject' can be used to determine the VMX TCS Offset. Note, Intel PT TSC packets are
1338 only 7-bytes, so the TSC Offset might differ from the actual value in the 8th byte. That will
1339 have no effect i.e. the resulting timestamps will be correct anyway.
1340 
1341  $ perf inject -i perf.data.kvm --vm-time-correlation=dry-run
1342  ERROR: Unknown TSC Offset for VMCS 0x1bff6a
1343  VMCS: 0x1bff6a  TSC Offset 0xffffe42722c64c41
1344  ERROR: Unknown TSC Offset for VMCS 0x1cbc08
1345  VMCS: 0x1cbc08  TSC Offset 0xffffe42722c64c41
1346  ERROR: Unknown TSC Offset for VMCS 0x1c3ce8
1347  VMCS: 0x1c3ce8  TSC Offset 0xffffe42722c64c41
1348  ERROR: Unknown TSC Offset for VMCS 0x1cbce9
1349  VMCS: 0x1cbce9  TSC Offset 0xffffe42722c64c41
1350 
1351 Each virtual CPU has a different Virtual Machine Control Structure (VMCS)
1352 shown above with the calculated TSC Offset. For an unchanging TSC Offset
1353 they should all be the same for the same virtual machine.
1354 
1355 Now that the TSC Offset is known, it can be provided to 'perf inject'
1356 
1357  $ perf inject -i perf.data.kvm --vm-time-correlation="dry-run 0xffffe42722c64c41"
1358 
1359 Note the options for 'perf inject' --vm-time-correlation are:
1360 
1361  [ dry-run ] [ <TSC Offset> [ : <VMCS> [ , <VMCS> ]... ]  ]...
1362 
1363 So it is possible to specify different TSC Offsets for different VMCS.
1364 The option "dry-run" will cause the file to be processed but without updating it.
1365 Note it is also possible to get a intel_pt.log file by adding option --itrace=d
1366 
1367 There were no errors so, do it for real
1368 
1369  $ perf inject -i perf.data.kvm --vm-time-correlation=0xffffe42722c64c41 --force
1370 
1371 'perf script' can be used to see if there are any decoder errors
1372 
1373  $ perf script -i perf.data.kvm --guestkallsyms $KALLSYMS --itrace=e-o
1374 
1375 There were none.
1376 
1377 'perf script' can be used to provide an instruction trace showing timestamps
1378 
1379  $ perf script -i perf.data.kvm --guestkallsyms $KALLSYMS --insn-trace --xed -F+ipc | grep -C10 vmresume | head -21
1380        CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133cdd __vmx_vcpu_run+0x3d ([kernel.kallsyms])                 movq  0x48(%rax), %r9
1381        CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133ce1 __vmx_vcpu_run+0x41 ([kernel.kallsyms])                 movq  0x50(%rax), %r10
1382        CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133ce5 __vmx_vcpu_run+0x45 ([kernel.kallsyms])                 movq  0x58(%rax), %r11
1383        CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133ce9 __vmx_vcpu_run+0x49 ([kernel.kallsyms])                 movq  0x60(%rax), %r12
1384        CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133ced __vmx_vcpu_run+0x4d ([kernel.kallsyms])                 movq  0x68(%rax), %r13
1385        CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133cf1 __vmx_vcpu_run+0x51 ([kernel.kallsyms])                 movq  0x70(%rax), %r14
1386        CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133cf5 __vmx_vcpu_run+0x55 ([kernel.kallsyms])                 movq  0x78(%rax), %r15
1387        CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133cf9 __vmx_vcpu_run+0x59 ([kernel.kallsyms])                 movq  (%rax), %rax
1388        CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133cfc __vmx_vcpu_run+0x5c ([kernel.kallsyms])                 callq  0xffffffff82133c40
1389        CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133c40 vmx_vmenter+0x0 ([kernel.kallsyms])             jz 0xffffffff82133c46
1390        CPU 1/KVM 17006 [001] 11500.262866075:  ffffffff82133c42 vmx_vmenter+0x2 ([kernel.kallsyms])             vmresume         IPC: 0.05 (40/769)
1391           :17006 17006 [001] 11500.262869216:  ffffffff82200cb0 asm_sysvec_apic_timer_interrupt+0x0 ([guest.kernel.kallsyms])           clac
1392           :17006 17006 [001] 11500.262869216:  ffffffff82200cb3 asm_sysvec_apic_timer_interrupt+0x3 ([guest.kernel.kallsyms])           pushq  $0xffffffffffffffff
1393           :17006 17006 [001] 11500.262869216:  ffffffff82200cb5 asm_sysvec_apic_timer_interrupt+0x5 ([guest.kernel.kallsyms])           callq  0xffffffff82201160
1394           :17006 17006 [001] 11500.262869216:  ffffffff82201160 error_entry+0x0 ([guest.kernel.kallsyms])               cld
1395           :17006 17006 [001] 11500.262869216:  ffffffff82201161 error_entry+0x1 ([guest.kernel.kallsyms])               pushq  %rsi
1396           :17006 17006 [001] 11500.262869216:  ffffffff82201162 error_entry+0x2 ([guest.kernel.kallsyms])               movq  0x8(%rsp), %rsi
1397           :17006 17006 [001] 11500.262869216:  ffffffff82201167 error_entry+0x7 ([guest.kernel.kallsyms])               movq  %rdi, 0x8(%rsp)
1398           :17006 17006 [001] 11500.262869216:  ffffffff8220116c error_entry+0xc ([guest.kernel.kallsyms])               pushq  %rdx
1399           :17006 17006 [001] 11500.262869216:  ffffffff8220116d error_entry+0xd ([guest.kernel.kallsyms])               pushq  %rcx
1400           :17006 17006 [001] 11500.262869216:  ffffffff8220116e error_entry+0xe ([guest.kernel.kallsyms])               pushq  %rax
1401 
1402 
1403 Tracing Virtual Machines (including user space)
1404 -----------------------------------------------
1405 
1406 It is possible to use perf record to record sideband events within a virtual machine, so that an Intel PT trace on the host can be decoded.
1407 Sideband events from the guest perf.data file can be injected into the host perf.data file using perf inject.
1408 
1409 Here is an example of the steps needed:
1410 
1411 On the guest machine:
1412 
1413 Check that no-kvmclock kernel command line option was used to boot:
1414 
1415 Note, this is essential to enable time correlation between host and guest machines.
1416 
1417  $ cat /proc/cmdline
1418  BOOT_IMAGE=/boot/vmlinuz-5.10.0-16-amd64 root=UUID=cb49c910-e573-47e0-bce7-79e293df8e1d ro no-kvmclock
1419 
1420 There is no BPF support at present so, if possible, disable JIT compiling:
1421 
1422  $ echo 0 | sudo tee /proc/sys/net/core/bpf_jit_enable
1423  0
1424 
1425 Start perf record to collect sideband events:
1426 
1427  $ sudo perf record -o guest-sideband-testing-guest-perf.data --sample-identifier --buildid-all --switch-events --kcore -a -e dummy
1428 
1429 On the host machine:
1430 
1431 Start perf record to collect Intel PT trace:
1432 
1433 Note, the host trace will get very big, very fast, so the steps from starting to stopping the host trace really need to be done so that they happen in the shortest time possible.
1434 
1435  $ sudo perf record -o guest-sideband-testing-host-perf.data -m,64M --kcore -a -e intel_pt/cyc/
1436 
1437 On the guest machine:
1438 
1439 Run a small test case, just 'uname' in this example:
1440 
1441  $ uname
1442  Linux
1443 
1444 On the host machine:
1445 
1446 Stop the Intel PT trace:
1447 
1448  ^C
1449  [ perf record: Woken up 1 times to write data ]
1450  [ perf record: Captured and wrote 76.122 MB guest-sideband-testing-host-perf.data ]
1451 
1452 On the guest machine:
1453 
1454 Stop the Intel PT trace:
1455 
1456  ^C
1457  [ perf record: Woken up 1 times to write data ]
1458  [ perf record: Captured and wrote 1.247 MB guest-sideband-testing-guest-perf.data ]
1459 
1460 And then copy guest-sideband-testing-guest-perf.data to the host (not shown here).
1461 
1462 On the host machine:
1463 
1464 With the 2 perf.data recordings, and with their ownership changed to the user.
1465 
1466 Identify the TSC Offset:
1467 
1468  $ perf inject -i guest-sideband-testing-host-perf.data --vm-time-correlation=dry-run
1469  VMCS: 0x103fc6  TSC Offset 0xfffffa6ae070cb20
1470  VMCS: 0x103ff2  TSC Offset 0xfffffa6ae070cb20
1471  VMCS: 0x10fdaa  TSC Offset 0xfffffa6ae070cb20
1472  VMCS: 0x24d57c  TSC Offset 0xfffffa6ae070cb20
1473 
1474 Correct Intel PT TSC timestamps for the guest machine:
1475 
1476  $ perf inject -i guest-sideband-testing-host-perf.data --vm-time-correlation=0xfffffa6ae070cb20 --force
1477 
1478 Identify the guest machine PID:
1479 
1480  $ perf script -i guest-sideband-testing-host-perf.data --no-itrace --show-task-events | grep KVM
1481        CPU 0/KVM     0 [000]     0.000000: PERF_RECORD_COMM: CPU 0/KVM:13376/13381
1482        CPU 1/KVM     0 [000]     0.000000: PERF_RECORD_COMM: CPU 1/KVM:13376/13382
1483        CPU 2/KVM     0 [000]     0.000000: PERF_RECORD_COMM: CPU 2/KVM:13376/13383
1484        CPU 3/KVM     0 [000]     0.000000: PERF_RECORD_COMM: CPU 3/KVM:13376/13384
1485 
1486 Note, the QEMU option -name debug-threads=on is needed so that thread names
1487 can be used to determine which thread is running which VCPU as above. libvirt seems to use this by default.
1488 
1489 Create a guestmount, assuming the guest machine is 'vm_to_test':
1490 
1491  $ mkdir -p ~/guestmount/13376
1492  $ sshfs -o direct_io vm_to_test:/ ~/guestmount/13376
1493 
1494 Inject the guest perf.data file into the host perf.data file:
1495 
1496 Note, due to the guestmount option, guest object files and debug files will be copied into the build ID cache from the guest machine, with the notable exception of VDSO.
1497 If needed, VDSO can be copied manually in a fashion similar to that used by the perf-archive script.
1498 
1499  $ perf inject -i guest-sideband-testing-host-perf.data -o inj --guestmount ~/guestmount --guest-data=guest-sideband-testing-guest-perf.data,13376,0xfffffa6ae070cb20
1500 
1501 Show an excerpt from the result.  In this case the CPU and time range have been to chosen to show interaction between guest and host when 'uname' is starting to run on the guest machine:
1502 
1503 Notes:
1504 
1505         - the CPU displayed, [002] in this case, is always the host CPU
1506         - events happening in the virtual machine start with VM:13376 VCPU:003, which shows the hypervisor PID 13376 and the VCPU number
1507         - only calls and errors are displayed i.e. --itrace=ce
1508         - branches entering and exiting the virtual machine are split, and show as 2 branches to/from "0 [unknown] ([unknown])"
1509 
1510  $ perf script -i inj --itrace=ce -F+machine_pid,+vcpu,+addr,+pid,+tid,-period --ns --time 7919.408803365,7919.408804631 -C 2
1511        CPU 3/KVM 13376/13384 [002]  7919.408803365:      branches:  ffffffffc0f8ebe0 vmx_vcpu_enter_exit+0xc0 ([kernel.kallsyms]) => ffffffffc0f8edc0 __vmx_vcpu_run+0x0 ([kernel.kallsyms])
1512        CPU 3/KVM 13376/13384 [002]  7919.408803365:      branches:  ffffffffc0f8edd5 __vmx_vcpu_run+0x15 ([kernel.kallsyms]) => ffffffffc0f8eca0 vmx_update_host_rsp+0x0 ([kernel.kallsyms])
1513        CPU 3/KVM 13376/13384 [002]  7919.408803365:      branches:  ffffffffc0f8ee1b __vmx_vcpu_run+0x5b ([kernel.kallsyms]) => ffffffffc0f8ed60 vmx_vmenter+0x0 ([kernel.kallsyms])
1514        CPU 3/KVM 13376/13384 [002]  7919.408803461:      branches:  ffffffffc0f8ed62 vmx_vmenter+0x2 ([kernel.kallsyms]) =>                0 [unknown] ([unknown])
1515  VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408803461:      branches:                 0 [unknown] ([unknown]) =>     7f851c9b5a5c init_cacheinfo+0x3ac (/usr/lib/x86_64-linux-gnu/libc-2.31.so)
1516  VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408803567:      branches:      7f851c9b5a5a init_cacheinfo+0x3aa (/usr/lib/x86_64-linux-gnu/libc-2.31.so) =>                0 [unknown] ([unknown])
1517        CPU 3/KVM 13376/13384 [002]  7919.408803567:      branches:                 0 [unknown] ([unknown]) => ffffffffc0f8ed80 vmx_vmexit+0x0 ([kernel.kallsyms])
1518        CPU 3/KVM 13376/13384 [002]  7919.408803596:      branches:  ffffffffc0f6619a vmx_vcpu_run+0x26a ([kernel.kallsyms]) => ffffffffb2255c60 x86_virt_spec_ctrl+0x0 ([kernel.kallsyms])
1519        CPU 3/KVM 13376/13384 [002]  7919.408803801:      branches:  ffffffffc0f66445 vmx_vcpu_run+0x515 ([kernel.kallsyms]) => ffffffffb2290b30 native_write_msr+0x0 ([kernel.kallsyms])
1520        CPU 3/KVM 13376/13384 [002]  7919.408803850:      branches:  ffffffffc0f661f8 vmx_vcpu_run+0x2c8 ([kernel.kallsyms]) => ffffffffc1092300 kvm_load_host_xsave_state+0x0 ([kernel.kallsyms])
1521        CPU 3/KVM 13376/13384 [002]  7919.408803850:      branches:  ffffffffc1092327 kvm_load_host_xsave_state+0x27 ([kernel.kallsyms]) => ffffffffc1092220 kvm_load_host_xsave_state.part.0+0x0 ([kernel.kallsyms])
1522        CPU 3/KVM 13376/13384 [002]  7919.408803862:      branches:  ffffffffc0f662cf vmx_vcpu_run+0x39f ([kernel.kallsyms]) => ffffffffc0f63f90 vmx_recover_nmi_blocking+0x0 ([kernel.kallsyms])
1523        CPU 3/KVM 13376/13384 [002]  7919.408803862:      branches:  ffffffffc0f662e9 vmx_vcpu_run+0x3b9 ([kernel.kallsyms]) => ffffffffc0f619a0 __vmx_complete_interrupts+0x0 ([kernel.kallsyms])
1524        CPU 3/KVM 13376/13384 [002]  7919.408803872:      branches:  ffffffffc109cfb2 vcpu_enter_guest+0x752 ([kernel.kallsyms]) => ffffffffc0f5f570 vmx_handle_exit_irqoff+0x0 ([kernel.kallsyms])
1525        CPU 3/KVM 13376/13384 [002]  7919.408803881:      branches:  ffffffffc109d028 vcpu_enter_guest+0x7c8 ([kernel.kallsyms]) => ffffffffb234f900 __srcu_read_lock+0x0 ([kernel.kallsyms])
1526        CPU 3/KVM 13376/13384 [002]  7919.408803897:      branches:  ffffffffc109d06f vcpu_enter_guest+0x80f ([kernel.kallsyms]) => ffffffffc0f72e30 vmx_handle_exit+0x0 ([kernel.kallsyms])
1527        CPU 3/KVM 13376/13384 [002]  7919.408803897:      branches:  ffffffffc0f72e3d vmx_handle_exit+0xd ([kernel.kallsyms]) => ffffffffc0f727c0 __vmx_handle_exit+0x0 ([kernel.kallsyms])
1528        CPU 3/KVM 13376/13384 [002]  7919.408803897:      branches:  ffffffffc0f72b15 __vmx_handle_exit+0x355 ([kernel.kallsyms]) => ffffffffc0f60ae0 vmx_flush_pml_buffer+0x0 ([kernel.kallsyms])
1529        CPU 3/KVM 13376/13384 [002]  7919.408803903:      branches:  ffffffffc0f72994 __vmx_handle_exit+0x1d4 ([kernel.kallsyms]) => ffffffffc10b7090 kvm_emulate_cpuid+0x0 ([kernel.kallsyms])
1530        CPU 3/KVM 13376/13384 [002]  7919.408803903:      branches:  ffffffffc10b70f1 kvm_emulate_cpuid+0x61 ([kernel.kallsyms]) => ffffffffc10b6e10 kvm_cpuid+0x0 ([kernel.kallsyms])
1531        CPU 3/KVM 13376/13384 [002]  7919.408803941:      branches:  ffffffffc10b7125 kvm_emulate_cpuid+0x95 ([kernel.kallsyms]) => ffffffffc1093110 kvm_skip_emulated_instruction+0x0 ([kernel.kallsyms])
1532        CPU 3/KVM 13376/13384 [002]  7919.408803941:      branches:  ffffffffc109311f kvm_skip_emulated_instruction+0xf ([kernel.kallsyms]) => ffffffffc0f5e180 vmx_get_rflags+0x0 ([kernel.kallsyms])
1533        CPU 3/KVM 13376/13384 [002]  7919.408803951:      branches:  ffffffffc109312a kvm_skip_emulated_instruction+0x1a ([kernel.kallsyms]) => ffffffffc0f5fd30 vmx_skip_emulated_instruction+0x0 ([kernel.kallsyms])
1534        CPU 3/KVM 13376/13384 [002]  7919.408803951:      branches:  ffffffffc0f5fd79 vmx_skip_emulated_instruction+0x49 ([kernel.kallsyms]) => ffffffffc0f5fb50 skip_emulated_instruction+0x0 ([kernel.kallsyms])
1535        CPU 3/KVM 13376/13384 [002]  7919.408803956:      branches:  ffffffffc0f5fc68 skip_emulated_instruction+0x118 ([kernel.kallsyms]) => ffffffffc0f6a940 vmx_cache_reg+0x0 ([kernel.kallsyms])
1536        CPU 3/KVM 13376/13384 [002]  7919.408803964:      branches:  ffffffffc0f5fc11 skip_emulated_instruction+0xc1 ([kernel.kallsyms]) => ffffffffc0f5f9e0 vmx_set_interrupt_shadow+0x0 ([kernel.kallsyms])
1537        CPU 3/KVM 13376/13384 [002]  7919.408803980:      branches:  ffffffffc109f8b1 vcpu_run+0x71 ([kernel.kallsyms]) => ffffffffc10ad2f0 kvm_cpu_has_pending_timer+0x0 ([kernel.kallsyms])
1538        CPU 3/KVM 13376/13384 [002]  7919.408803980:      branches:  ffffffffc10ad2fb kvm_cpu_has_pending_timer+0xb ([kernel.kallsyms]) => ffffffffc10b0490 apic_has_pending_timer+0x0 ([kernel.kallsyms])
1539        CPU 3/KVM 13376/13384 [002]  7919.408803991:      branches:  ffffffffc109f899 vcpu_run+0x59 ([kernel.kallsyms]) => ffffffffc109c860 vcpu_enter_guest+0x0 ([kernel.kallsyms])
1540        CPU 3/KVM 13376/13384 [002]  7919.408803993:      branches:  ffffffffc109cd4c vcpu_enter_guest+0x4ec ([kernel.kallsyms]) => ffffffffc0f69140 vmx_prepare_switch_to_guest+0x0 ([kernel.kallsyms])
1541        CPU 3/KVM 13376/13384 [002]  7919.408803996:      branches:  ffffffffc109cd7d vcpu_enter_guest+0x51d ([kernel.kallsyms]) => ffffffffb234f930 __srcu_read_unlock+0x0 ([kernel.kallsyms])
1542        CPU 3/KVM 13376/13384 [002]  7919.408803996:      branches:  ffffffffc109cd9c vcpu_enter_guest+0x53c ([kernel.kallsyms]) => ffffffffc0f609b0 vmx_sync_pir_to_irr+0x0 ([kernel.kallsyms])
1543        CPU 3/KVM 13376/13384 [002]  7919.408803996:      branches:  ffffffffc0f60a6d vmx_sync_pir_to_irr+0xbd ([kernel.kallsyms]) => ffffffffc10adc20 kvm_lapic_find_highest_irr+0x0 ([kernel.kallsyms])
1544        CPU 3/KVM 13376/13384 [002]  7919.408804010:      branches:  ffffffffc0f60abd vmx_sync_pir_to_irr+0x10d ([kernel.kallsyms]) => ffffffffc0f60820 vmx_set_rvi+0x0 ([kernel.kallsyms])
1545        CPU 3/KVM 13376/13384 [002]  7919.408804019:      branches:  ffffffffc109ceca vcpu_enter_guest+0x66a ([kernel.kallsyms]) => ffffffffb2249840 fpregs_assert_state_consistent+0x0 ([kernel.kallsyms])
1546        CPU 3/KVM 13376/13384 [002]  7919.408804021:      branches:  ffffffffc109cf10 vcpu_enter_guest+0x6b0 ([kernel.kallsyms]) => ffffffffc0f65f30 vmx_vcpu_run+0x0 ([kernel.kallsyms])
1547        CPU 3/KVM 13376/13384 [002]  7919.408804024:      branches:  ffffffffc0f6603b vmx_vcpu_run+0x10b ([kernel.kallsyms]) => ffffffffb229bed0 __get_current_cr3_fast+0x0 ([kernel.kallsyms])
1548        CPU 3/KVM 13376/13384 [002]  7919.408804024:      branches:  ffffffffc0f66055 vmx_vcpu_run+0x125 ([kernel.kallsyms]) => ffffffffb2253050 cr4_read_shadow+0x0 ([kernel.kallsyms])
1549        CPU 3/KVM 13376/13384 [002]  7919.408804030:      branches:  ffffffffc0f6608d vmx_vcpu_run+0x15d ([kernel.kallsyms]) => ffffffffc10921e0 kvm_load_guest_xsave_state+0x0 ([kernel.kallsyms])
1550        CPU 3/KVM 13376/13384 [002]  7919.408804030:      branches:  ffffffffc1092207 kvm_load_guest_xsave_state+0x27 ([kernel.kallsyms]) => ffffffffc1092110 kvm_load_guest_xsave_state.part.0+0x0 ([kernel.kallsyms])
1551        CPU 3/KVM 13376/13384 [002]  7919.408804032:      branches:  ffffffffc0f660c6 vmx_vcpu_run+0x196 ([kernel.kallsyms]) => ffffffffb22061a0 perf_guest_get_msrs+0x0 ([kernel.kallsyms])
1552        CPU 3/KVM 13376/13384 [002]  7919.408804032:      branches:  ffffffffb22061a9 perf_guest_get_msrs+0x9 ([kernel.kallsyms]) => ffffffffb220cda0 intel_guest_get_msrs+0x0 ([kernel.kallsyms])
1553        CPU 3/KVM 13376/13384 [002]  7919.408804039:      branches:  ffffffffc0f66109 vmx_vcpu_run+0x1d9 ([kernel.kallsyms]) => ffffffffc0f652c0 clear_atomic_switch_msr+0x0 ([kernel.kallsyms])
1554        CPU 3/KVM 13376/13384 [002]  7919.408804040:      branches:  ffffffffc0f66119 vmx_vcpu_run+0x1e9 ([kernel.kallsyms]) => ffffffffc0f73f60 intel_pmu_lbr_is_enabled+0x0 ([kernel.kallsyms])
1555        CPU 3/KVM 13376/13384 [002]  7919.408804042:      branches:  ffffffffc0f73f81 intel_pmu_lbr_is_enabled+0x21 ([kernel.kallsyms]) => ffffffffc10b68e0 kvm_find_cpuid_entry+0x0 ([kernel.kallsyms])
1556        CPU 3/KVM 13376/13384 [002]  7919.408804045:      branches:  ffffffffc0f66454 vmx_vcpu_run+0x524 ([kernel.kallsyms]) => ffffffffc0f61ff0 vmx_update_hv_timer+0x0 ([kernel.kallsyms])
1557        CPU 3/KVM 13376/13384 [002]  7919.408804057:      branches:  ffffffffc0f66142 vmx_vcpu_run+0x212 ([kernel.kallsyms]) => ffffffffc10af100 kvm_wait_lapic_expire+0x0 ([kernel.kallsyms])
1558        CPU 3/KVM 13376/13384 [002]  7919.408804057:      branches:  ffffffffc0f66156 vmx_vcpu_run+0x226 ([kernel.kallsyms]) => ffffffffb2255c60 x86_virt_spec_ctrl+0x0 ([kernel.kallsyms])
1559        CPU 3/KVM 13376/13384 [002]  7919.408804057:      branches:  ffffffffc0f66161 vmx_vcpu_run+0x231 ([kernel.kallsyms]) => ffffffffc0f8eb20 vmx_vcpu_enter_exit+0x0 ([kernel.kallsyms])
1560        CPU 3/KVM 13376/13384 [002]  7919.408804057:      branches:  ffffffffc0f8eb44 vmx_vcpu_enter_exit+0x24 ([kernel.kallsyms]) => ffffffffb2353e10 rcu_note_context_switch+0x0 ([kernel.kallsyms])
1561        CPU 3/KVM 13376/13384 [002]  7919.408804057:      branches:  ffffffffb2353e1c rcu_note_context_switch+0xc ([kernel.kallsyms]) => ffffffffb2353db0 rcu_qs+0x0 ([kernel.kallsyms])
1562        CPU 3/KVM 13376/13384 [002]  7919.408804066:      branches:  ffffffffc0f8ebe0 vmx_vcpu_enter_exit+0xc0 ([kernel.kallsyms]) => ffffffffc0f8edc0 __vmx_vcpu_run+0x0 ([kernel.kallsyms])
1563        CPU 3/KVM 13376/13384 [002]  7919.408804066:      branches:  ffffffffc0f8edd5 __vmx_vcpu_run+0x15 ([kernel.kallsyms]) => ffffffffc0f8eca0 vmx_update_host_rsp+0x0 ([kernel.kallsyms])
1564        CPU 3/KVM 13376/13384 [002]  7919.408804066:      branches:  ffffffffc0f8ee1b __vmx_vcpu_run+0x5b ([kernel.kallsyms]) => ffffffffc0f8ed60 vmx_vmenter+0x0 ([kernel.kallsyms])
1565        CPU 3/KVM 13376/13384 [002]  7919.408804162:      branches:  ffffffffc0f8ed62 vmx_vmenter+0x2 ([kernel.kallsyms]) =>                0 [unknown] ([unknown])
1566  VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408804162:      branches:                 0 [unknown] ([unknown]) =>     7f851c9b5a5c init_cacheinfo+0x3ac (/usr/lib/x86_64-linux-gnu/libc-2.31.so)
1567  VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408804273:      branches:      7f851cb7c0e4 _dl_init+0x74 (/usr/lib/x86_64-linux-gnu/ld-2.31.so) =>     7f851cb7bf50 call_init.part.0+0x0 (/usr/lib/x86_64-linux-gnu/ld-2.31.so)
1568  VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408804526:      branches:      55e0c00136f0 _start+0x0 (/usr/bin/uname) => ffffffff83200ac0 asm_exc_page_fault+0x0 ([kernel.kallsyms])
1569  VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408804526:      branches:  ffffffff83200ac3 asm_exc_page_fault+0x3 ([kernel.kallsyms]) => ffffffff83201290 error_entry+0x0 ([kernel.kallsyms])
1570  VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408804534:      branches:  ffffffff832012fa error_entry+0x6a ([kernel.kallsyms]) => ffffffff830b59a0 sync_regs+0x0 ([kernel.kallsyms])
1571  VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408804631:      branches:  ffffffff83200ad9 asm_exc_page_fault+0x19 ([kernel.kallsyms]) => ffffffff830b8210 exc_page_fault+0x0 ([kernel.kallsyms])
1572  VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408804631:      branches:  ffffffff830b82a4 exc_page_fault+0x94 ([kernel.kallsyms]) => ffffffff830b80e0 __kvm_handle_async_pf+0x0 ([kernel.kallsyms])
1573  VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408804631:      branches:  ffffffff830b80ed __kvm_handle_async_pf+0xd ([kernel.kallsyms]) => ffffffff830b80c0 kvm_read_and_reset_apf_flags+0x0 ([kernel.kallsyms])
1574 
1575 
1576 Tracing Virtual Machines - Guest Code
1577 -------------------------------------
1578 
1579 A common case for KVM test programs is that the test program acts as the
1580 hypervisor, creating, running and destroying the virtual machine, and
1581 providing the guest object code from its own object code. In this case,
1582 the VM is not running an OS, but only the functions loaded into it by the
1583 hypervisor test program, and conveniently, loaded at the same virtual
1584 addresses. To support that, option "--guest-code" has been added to perf script
1585 and perf kvm report.
1586 
1587 Here is an example tracing a test program from the kernel's KVM selftests:
1588 
1589  # perf record --kcore -e intel_pt/cyc/ -- tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test
1590  [ perf record: Woken up 1 times to write data ]
1591  [ perf record: Captured and wrote 0.280 MB perf.data ]
1592  # perf script --guest-code --itrace=bep --ns -F-period,+addr,+flags
1593  [SNIP]
1594    tsc_msrs_test 18436 [007] 10897.962087733:      branches:   call                   ffffffffc13b2ff5 __vmx_vcpu_run+0x15 (vmlinux) => ffffffffc13b2f50 vmx_update_host_rsp+0x0 (vmlinux)
1595    tsc_msrs_test 18436 [007] 10897.962087733:      branches:   return                 ffffffffc13b2f5d vmx_update_host_rsp+0xd (vmlinux) => ffffffffc13b2ffa __vmx_vcpu_run+0x1a (vmlinux)
1596    tsc_msrs_test 18436 [007] 10897.962087733:      branches:   call                   ffffffffc13b303b __vmx_vcpu_run+0x5b (vmlinux) => ffffffffc13b2f80 vmx_vmenter+0x0 (vmlinux)
1597    tsc_msrs_test 18436 [007] 10897.962087836:      branches:   vmentry                ffffffffc13b2f82 vmx_vmenter+0x2 (vmlinux) =>                0 [unknown] ([unknown])
1598    [guest/18436] 18436 [007] 10897.962087836:      branches:   vmentry                               0 [unknown] ([unknown]) =>           402c81 guest_code+0x131 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1599    [guest/18436] 18436 [007] 10897.962087836:      branches:   call                             402c81 guest_code+0x131 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) =>           40dba0 ucall+0x0 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1600    [guest/18436] 18436 [007] 10897.962088248:      branches:   vmexit                           40dba0 ucall+0x0 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) =>                0 [unknown] ([unknown])
1601    tsc_msrs_test 18436 [007] 10897.962088248:      branches:   vmexit                                0 [unknown] ([unknown]) => ffffffffc13b2fa0 vmx_vmexit+0x0 (vmlinux)
1602    tsc_msrs_test 18436 [007] 10897.962088248:      branches:   jmp                    ffffffffc13b2fa0 vmx_vmexit+0x0 (vmlinux) => ffffffffc13b2fd2 vmx_vmexit+0x32 (vmlinux)
1603    tsc_msrs_test 18436 [007] 10897.962088256:      branches:   return                 ffffffffc13b2fd2 vmx_vmexit+0x32 (vmlinux) => ffffffffc13b3040 __vmx_vcpu_run+0x60 (vmlinux)
1604    tsc_msrs_test 18436 [007] 10897.962088270:      branches:   return                 ffffffffc13b30b6 __vmx_vcpu_run+0xd6 (vmlinux) => ffffffffc13b2f2e vmx_vcpu_enter_exit+0x4e (vmlinux)
1605  [SNIP]
1606    tsc_msrs_test 18436 [007] 10897.962089321:      branches:   call                   ffffffffc13b2ff5 __vmx_vcpu_run+0x15 (vmlinux) => ffffffffc13b2f50 vmx_update_host_rsp+0x0 (vmlinux)
1607    tsc_msrs_test 18436 [007] 10897.962089321:      branches:   return                 ffffffffc13b2f5d vmx_update_host_rsp+0xd (vmlinux) => ffffffffc13b2ffa __vmx_vcpu_run+0x1a (vmlinux)
1608    tsc_msrs_test 18436 [007] 10897.962089321:      branches:   call                   ffffffffc13b303b __vmx_vcpu_run+0x5b (vmlinux) => ffffffffc13b2f80 vmx_vmenter+0x0 (vmlinux)
1609    tsc_msrs_test 18436 [007] 10897.962089424:      branches:   vmentry                ffffffffc13b2f82 vmx_vmenter+0x2 (vmlinux) =>                0 [unknown] ([unknown])
1610    [guest/18436] 18436 [007] 10897.962089424:      branches:   vmentry                               0 [unknown] ([unknown]) =>           40dba0 ucall+0x0 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1611    [guest/18436] 18436 [007] 10897.962089701:      branches:   jmp                              40dc1b ucall+0x7b (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) =>           40dc39 ucall+0x99 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1612    [guest/18436] 18436 [007] 10897.962089701:      branches:   jcc                              40dc3c ucall+0x9c (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) =>           40dc20 ucall+0x80 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1613    [guest/18436] 18436 [007] 10897.962089701:      branches:   jcc                              40dc3c ucall+0x9c (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) =>           40dc20 ucall+0x80 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1614    [guest/18436] 18436 [007] 10897.962089701:      branches:   jcc                              40dc37 ucall+0x97 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) =>           40dc50 ucall+0xb0 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1615    [guest/18436] 18436 [007] 10897.962089878:      branches:   vmexit                           40dc55 ucall+0xb5 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) =>                0 [unknown] ([unknown])
1616    tsc_msrs_test 18436 [007] 10897.962089878:      branches:   vmexit                                0 [unknown] ([unknown]) => ffffffffc13b2fa0 vmx_vmexit+0x0 (vmlinux)
1617    tsc_msrs_test 18436 [007] 10897.962089878:      branches:   jmp                    ffffffffc13b2fa0 vmx_vmexit+0x0 (vmlinux) => ffffffffc13b2fd2 vmx_vmexit+0x32 (vmlinux)
1618    tsc_msrs_test 18436 [007] 10897.962089887:      branches:   return                 ffffffffc13b2fd2 vmx_vmexit+0x32 (vmlinux) => ffffffffc13b3040 __vmx_vcpu_run+0x60 (vmlinux)
1619    tsc_msrs_test 18436 [007] 10897.962089901:      branches:   return                 ffffffffc13b30b6 __vmx_vcpu_run+0xd6 (vmlinux) => ffffffffc13b2f2e vmx_vcpu_enter_exit+0x4e (vmlinux)
1620  [SNIP]
1621 
1622  # perf kvm --guest-code --guest --host report -i perf.data --stdio | head -20
1623 
1624  # To display the perf.data header info, please use --header/--header-only options.
1625  #
1626  #
1627  # Total Lost Samples: 0
1628  #
1629  # Samples: 12  of event 'instructions'
1630  # Event count (approx.): 2274583
1631  #
1632  # Children      Self  Command        Shared Object         Symbol
1633  # ........  ........  .............  ....................  ...........................................
1634  #
1635     54.70%     0.00%  tsc_msrs_test  [kernel.vmlinux]      [k] entry_SYSCALL_64_after_hwframe
1636             |
1637             ---entry_SYSCALL_64_after_hwframe
1638                do_syscall_64
1639                |
1640                |--29.44%--syscall_exit_to_user_mode
1641                |          exit_to_user_mode_prepare
1642                |          task_work_run
1643                |          __fput
1644 
1645 
1646 Event Trace
1647 -----------
1648 
1649 Event Trace records information about asynchronous events, for example interrupts,
1650 faults, VM exits and entries.  The information is recorded in CFE and EVD packets,
1651 and also the Interrupt Flag is recorded on the MODE.Exec packet.  The CFE packet
1652 contains a type field to identify one of the following:
1653 
1654          1      INTR            interrupt, fault, exception, NMI
1655          2      IRET            interrupt return
1656          3      SMI             system management interrupt
1657          4      RSM             resume from system management mode
1658          5      SIPI            startup interprocessor interrupt
1659          6      INIT            INIT signal
1660          7      VMENTRY         VM-Entry
1661          8      VMEXIT          VM-Entry
1662          9      VMEXIT_INTR     VM-Exit due to interrupt
1663         10      SHUTDOWN        Shutdown
1664 
1665 For more details, refer to the Intel 64 and IA-32 Architectures Software
1666 Developer Manuals (version 076 or later).
1667 
1668 The capability to do Event Trace is indicated by the
1669 /sys/bus/event_source/devices/intel_pt/caps/event_trace file.
1670 
1671 Event trace is selected for recording using the "event" config term. e.g.
1672 
1673         perf record -e intel_pt/event/u uname
1674 
1675 Event trace events are output using the --itrace I option. e.g.
1676 
1677         perf script --itrace=Ie
1678 
1679 perf script displays events containing CFE type, vector and event data,
1680 in the form:
1681 
1682           evt:   hw int            (t)  cfe: INTR IP: 1 vector: 3 PFA: 0x8877665544332211
1683 
1684 The IP flag indicates if the event binds to an IP, which includes any case where
1685 flow control packet generation is enabled, as well as when CFE packet IP bit is
1686 set.
1687 
1688 perf script displays events containing changes to the Interrupt Flag in the form:
1689 
1690         iflag:   t                      IFLAG: 1->0 via branch
1691 
1692 where "via branch" indicates a branch (interrupt or return from interrupt) and
1693 "non branch" indicates an instruction such as CFI, STI or POPF).
1694 
1695 In addition, the current state of the interrupt flag is indicated by the presence
1696 or absence of the "D" (interrupt disabled) perf script flag.  If the interrupt
1697 flag is changed, then the "t" flag is also included i.e.
1698 
1699                 no flag, interrupts enabled IF=1
1700         t       interrupts become disabled IF=1 -> IF=0
1701         D       interrupts are disabled IF=0
1702         Dt      interrupts become enabled  IF=0 -> IF=1
1703 
1704 The intel-pt-events.py script illustrates how to access Event Trace information
1705 using a Python script.
1706 
1707 
1708 TNT Disable
1709 -----------
1710 
1711 TNT packets are disabled using the "notnt" config term. e.g.
1712 
1713         perf record -e intel_pt/notnt/u uname
1714 
1715 In that case the --itrace q option is forced because walking executable code
1716 to reconstruct the control flow is not possible.
1717 
1718 
1719 Emulated PTWRITE
1720 ----------------
1721 
1722 Later perf tools support a method to emulate the ptwrite instruction, which
1723 can be useful if hardware does not support the ptwrite instruction.
1724 
1725 Instead of using the ptwrite instruction, a function is used which produces
1726 a trace that encodes the payload data into TNT packets.  Here is an example
1727 of the function:
1728 
1729  #include <stdint.h>
1730 
1731  void perf_emulate_ptwrite(uint64_t x)
1732  __attribute__((externally_visible, noipa, no_instrument_function, naked));
1733 
1734  #define PERF_EMULATE_PTWRITE_8_BITS \
1735                  "1: shl %rax\n"     \
1736                  "   jc 1f\n"        \
1737                  "1: shl %rax\n"     \
1738                  "   jc 1f\n"        \
1739                  "1: shl %rax\n"     \
1740                  "   jc 1f\n"        \
1741                  "1: shl %rax\n"     \
1742                  "   jc 1f\n"        \
1743                  "1: shl %rax\n"     \
1744                  "   jc 1f\n"        \
1745                  "1: shl %rax\n"     \
1746                  "   jc 1f\n"        \
1747                  "1: shl %rax\n"     \
1748                  "   jc 1f\n"        \
1749                  "1: shl %rax\n"     \
1750                  "   jc 1f\n"
1751 
1752  /* Undefined instruction */
1753  #define PERF_EMULATE_PTWRITE_UD2        ".byte 0x0f, 0x0b\n"
1754 
1755  #define PERF_EMULATE_PTWRITE_MAGIC        PERF_EMULATE_PTWRITE_UD2 ".ascii \"perf,ptwrite  \"\n"
1756 
1757  void perf_emulate_ptwrite(uint64_t x __attribute__ ((__unused__)))
1758  {
1759           /* Assumes SysV ABI : x passed in rdi */
1760          __asm__ volatile (
1761                  "jmp 1f\n"
1762                  PERF_EMULATE_PTWRITE_MAGIC
1763                  "1: mov %rdi, %rax\n"
1764                  PERF_EMULATE_PTWRITE_8_BITS
1765                  PERF_EMULATE_PTWRITE_8_BITS
1766                  PERF_EMULATE_PTWRITE_8_BITS
1767                  PERF_EMULATE_PTWRITE_8_BITS
1768                  PERF_EMULATE_PTWRITE_8_BITS
1769                  PERF_EMULATE_PTWRITE_8_BITS
1770                  PERF_EMULATE_PTWRITE_8_BITS
1771                  PERF_EMULATE_PTWRITE_8_BITS
1772                  "1: ret\n"
1773          );
1774  }
1775 
1776 For example, a test program with the function above:
1777 
1778  #include <stdio.h>
1779  #include <stdint.h>
1780  #include <stdlib.h>
1781 
1782  #include "perf_emulate_ptwrite.h"
1783 
1784  int main(int argc, char *argv[])
1785  {
1786          uint64_t x = 0;
1787 
1788          if (argc > 1)
1789                  x = strtoull(argv[1], NULL, 0);
1790          perf_emulate_ptwrite(x);
1791          return 0;
1792  }
1793 
1794 Can be compiled and traced:
1795 
1796  $ gcc -Wall -Wextra -O3 -g -o eg_ptw eg_ptw.c
1797  $ perf record -e intel_pt//u ./eg_ptw 0x1234567890abcdef
1798  [ perf record: Woken up 1 times to write data ]
1799  [ perf record: Captured and wrote 0.017 MB perf.data ]
1800  $ perf script --itrace=ew
1801            eg_ptw 19875 [007]  8061.235912:     ptwrite:  IP: 0 payload: 0x1234567890abcdef      55701249a196 perf_emulate_ptwrite+0x16 (/home/user/eg_ptw)
1802  $
1803 
1804 
1805 EXAMPLE
1806 -------
1807 
1808 Examples can be found on perf wiki page "Perf tools support for IntelĀ® Processor Trace":
1809 
1810 https://perf.wiki.kernel.org/index.php/Perf_tools_support_for_Intel%C2%AE_Processor_Trace
1811 
1812 
1813 SEE ALSO
1814 --------
1815 
1816 linkperf:perf-record[1], linkperf:perf-script[1], linkperf:perf-report[1],
1817 linkperf:perf-inject[1]