Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * tas5720.c - ALSA SoC Texas Instruments TAS5720 Mono Audio Amplifier
0004  *
0005  * Copyright (C)2015-2016 Texas Instruments Incorporated -  https://www.ti.com
0006  *
0007  * Author: Andreas Dannenberg <dannenberg@ti.com>
0008  */
0009 
0010 #include <linux/module.h>
0011 #include <linux/errno.h>
0012 #include <linux/device.h>
0013 #include <linux/i2c.h>
0014 #include <linux/pm_runtime.h>
0015 #include <linux/regmap.h>
0016 #include <linux/slab.h>
0017 #include <linux/regulator/consumer.h>
0018 #include <linux/delay.h>
0019 
0020 #include <sound/pcm.h>
0021 #include <sound/pcm_params.h>
0022 #include <sound/soc.h>
0023 #include <sound/soc-dapm.h>
0024 #include <sound/tlv.h>
0025 
0026 #include "tas5720.h"
0027 
0028 /* Define how often to check (and clear) the fault status register (in ms) */
0029 #define TAS5720_FAULT_CHECK_INTERVAL        200
0030 
0031 enum tas572x_type {
0032     TAS5720,
0033     TAS5722,
0034 };
0035 
0036 static const char * const tas5720_supply_names[] = {
0037     "dvdd",     /* Digital power supply. Connect to 3.3-V supply. */
0038     "pvdd",     /* Class-D amp and analog power supply (connected). */
0039 };
0040 
0041 #define TAS5720_NUM_SUPPLIES    ARRAY_SIZE(tas5720_supply_names)
0042 
0043 struct tas5720_data {
0044     struct snd_soc_component *component;
0045     struct regmap *regmap;
0046     struct i2c_client *tas5720_client;
0047     enum tas572x_type devtype;
0048     struct regulator_bulk_data supplies[TAS5720_NUM_SUPPLIES];
0049     struct delayed_work fault_check_work;
0050     unsigned int last_fault;
0051 };
0052 
0053 static int tas5720_hw_params(struct snd_pcm_substream *substream,
0054                  struct snd_pcm_hw_params *params,
0055                  struct snd_soc_dai *dai)
0056 {
0057     struct snd_soc_component *component = dai->component;
0058     unsigned int rate = params_rate(params);
0059     bool ssz_ds;
0060     int ret;
0061 
0062     switch (rate) {
0063     case 44100:
0064     case 48000:
0065         ssz_ds = false;
0066         break;
0067     case 88200:
0068     case 96000:
0069         ssz_ds = true;
0070         break;
0071     default:
0072         dev_err(component->dev, "unsupported sample rate: %u\n", rate);
0073         return -EINVAL;
0074     }
0075 
0076     ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL1_REG,
0077                   TAS5720_SSZ_DS, ssz_ds);
0078     if (ret < 0) {
0079         dev_err(component->dev, "error setting sample rate: %d\n", ret);
0080         return ret;
0081     }
0082 
0083     return 0;
0084 }
0085 
0086 static int tas5720_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
0087 {
0088     struct snd_soc_component *component = dai->component;
0089     u8 serial_format;
0090     int ret;
0091 
0092     if ((fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) != SND_SOC_DAIFMT_CBC_CFC) {
0093         dev_vdbg(component->dev, "DAI clocking invalid\n");
0094         return -EINVAL;
0095     }
0096 
0097     switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK |
0098                SND_SOC_DAIFMT_INV_MASK)) {
0099     case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF):
0100         /* 1st data bit occur one BCLK cycle after the frame sync */
0101         serial_format = TAS5720_SAIF_I2S;
0102         break;
0103     case (SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_NB_NF):
0104         /*
0105          * Note that although the TAS5720 does not have a dedicated DSP
0106          * mode it doesn't care about the LRCLK duty cycle during TDM
0107          * operation. Therefore we can use the device's I2S mode with
0108          * its delaying of the 1st data bit to receive DSP_A formatted
0109          * data. See device datasheet for additional details.
0110          */
0111         serial_format = TAS5720_SAIF_I2S;
0112         break;
0113     case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_NB_NF):
0114         /*
0115          * Similar to DSP_A, we can use the fact that the TAS5720 does
0116          * not care about the LRCLK duty cycle during TDM to receive
0117          * DSP_B formatted data in LEFTJ mode (no delaying of the 1st
0118          * data bit).
0119          */
0120         serial_format = TAS5720_SAIF_LEFTJ;
0121         break;
0122     case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF):
0123         /* No delay after the frame sync */
0124         serial_format = TAS5720_SAIF_LEFTJ;
0125         break;
0126     default:
0127         dev_vdbg(component->dev, "DAI Format is not found\n");
0128         return -EINVAL;
0129     }
0130 
0131     ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL1_REG,
0132                   TAS5720_SAIF_FORMAT_MASK,
0133                   serial_format);
0134     if (ret < 0) {
0135         dev_err(component->dev, "error setting SAIF format: %d\n", ret);
0136         return ret;
0137     }
0138 
0139     return 0;
0140 }
0141 
0142 static int tas5720_set_dai_tdm_slot(struct snd_soc_dai *dai,
0143                     unsigned int tx_mask, unsigned int rx_mask,
0144                     int slots, int slot_width)
0145 {
0146     struct snd_soc_component *component = dai->component;
0147     struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
0148     unsigned int first_slot;
0149     int ret;
0150 
0151     if (!tx_mask) {
0152         dev_err(component->dev, "tx masks must not be 0\n");
0153         return -EINVAL;
0154     }
0155 
0156     /*
0157      * Determine the first slot that is being requested. We will only
0158      * use the first slot that is found since the TAS5720 is a mono
0159      * amplifier.
0160      */
0161     first_slot = __ffs(tx_mask);
0162 
0163     if (first_slot > 7) {
0164         dev_err(component->dev, "slot selection out of bounds (%u)\n",
0165             first_slot);
0166         return -EINVAL;
0167     }
0168 
0169     /* Enable manual TDM slot selection (instead of I2C ID based) */
0170     ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL1_REG,
0171                   TAS5720_TDM_CFG_SRC, TAS5720_TDM_CFG_SRC);
0172     if (ret < 0)
0173         goto error_snd_soc_component_update_bits;
0174 
0175     /* Configure the TDM slot to process audio from */
0176     ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL2_REG,
0177                   TAS5720_TDM_SLOT_SEL_MASK, first_slot);
0178     if (ret < 0)
0179         goto error_snd_soc_component_update_bits;
0180 
0181     /* Configure TDM slot width. This is only applicable to TAS5722. */
0182     switch (tas5720->devtype) {
0183     case TAS5722:
0184         ret = snd_soc_component_update_bits(component, TAS5722_DIGITAL_CTRL2_REG,
0185                             TAS5722_TDM_SLOT_16B,
0186                             slot_width == 16 ?
0187                             TAS5722_TDM_SLOT_16B : 0);
0188         if (ret < 0)
0189             goto error_snd_soc_component_update_bits;
0190         break;
0191     default:
0192         break;
0193     }
0194 
0195     return 0;
0196 
0197 error_snd_soc_component_update_bits:
0198     dev_err(component->dev, "error configuring TDM mode: %d\n", ret);
0199     return ret;
0200 }
0201 
0202 static int tas5720_mute(struct snd_soc_dai *dai, int mute, int direction)
0203 {
0204     struct snd_soc_component *component = dai->component;
0205     int ret;
0206 
0207     ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL2_REG,
0208                   TAS5720_MUTE, mute ? TAS5720_MUTE : 0);
0209     if (ret < 0) {
0210         dev_err(component->dev, "error (un-)muting device: %d\n", ret);
0211         return ret;
0212     }
0213 
0214     return 0;
0215 }
0216 
0217 static void tas5720_fault_check_work(struct work_struct *work)
0218 {
0219     struct tas5720_data *tas5720 = container_of(work, struct tas5720_data,
0220             fault_check_work.work);
0221     struct device *dev = tas5720->component->dev;
0222     unsigned int curr_fault;
0223     int ret;
0224 
0225     ret = regmap_read(tas5720->regmap, TAS5720_FAULT_REG, &curr_fault);
0226     if (ret < 0) {
0227         dev_err(dev, "failed to read FAULT register: %d\n", ret);
0228         goto out;
0229     }
0230 
0231     /* Check/handle all errors except SAIF clock errors */
0232     curr_fault &= TAS5720_OCE | TAS5720_DCE | TAS5720_OTE;
0233 
0234     /*
0235      * Only flag errors once for a given occurrence. This is needed as
0236      * the TAS5720 will take time clearing the fault condition internally
0237      * during which we don't want to bombard the system with the same
0238      * error message over and over.
0239      */
0240     if ((curr_fault & TAS5720_OCE) && !(tas5720->last_fault & TAS5720_OCE))
0241         dev_crit(dev, "experienced an over current hardware fault\n");
0242 
0243     if ((curr_fault & TAS5720_DCE) && !(tas5720->last_fault & TAS5720_DCE))
0244         dev_crit(dev, "experienced a DC detection fault\n");
0245 
0246     if ((curr_fault & TAS5720_OTE) && !(tas5720->last_fault & TAS5720_OTE))
0247         dev_crit(dev, "experienced an over temperature fault\n");
0248 
0249     /* Store current fault value so we can detect any changes next time */
0250     tas5720->last_fault = curr_fault;
0251 
0252     if (!curr_fault)
0253         goto out;
0254 
0255     /*
0256      * Periodically toggle SDZ (shutdown bit) H->L->H to clear any latching
0257      * faults as long as a fault condition persists. Always going through
0258      * the full sequence no matter the first return value to minimizes
0259      * chances for the device to end up in shutdown mode.
0260      */
0261     ret = regmap_write_bits(tas5720->regmap, TAS5720_POWER_CTRL_REG,
0262                 TAS5720_SDZ, 0);
0263     if (ret < 0)
0264         dev_err(dev, "failed to write POWER_CTRL register: %d\n", ret);
0265 
0266     ret = regmap_write_bits(tas5720->regmap, TAS5720_POWER_CTRL_REG,
0267                 TAS5720_SDZ, TAS5720_SDZ);
0268     if (ret < 0)
0269         dev_err(dev, "failed to write POWER_CTRL register: %d\n", ret);
0270 
0271 out:
0272     /* Schedule the next fault check at the specified interval */
0273     schedule_delayed_work(&tas5720->fault_check_work,
0274                   msecs_to_jiffies(TAS5720_FAULT_CHECK_INTERVAL));
0275 }
0276 
0277 static int tas5720_codec_probe(struct snd_soc_component *component)
0278 {
0279     struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
0280     unsigned int device_id, expected_device_id;
0281     int ret;
0282 
0283     tas5720->component = component;
0284 
0285     ret = regulator_bulk_enable(ARRAY_SIZE(tas5720->supplies),
0286                     tas5720->supplies);
0287     if (ret != 0) {
0288         dev_err(component->dev, "failed to enable supplies: %d\n", ret);
0289         return ret;
0290     }
0291 
0292     /*
0293      * Take a liberal approach to checking the device ID to allow the
0294      * driver to be used even if the device ID does not match, however
0295      * issue a warning if there is a mismatch.
0296      */
0297     ret = regmap_read(tas5720->regmap, TAS5720_DEVICE_ID_REG, &device_id);
0298     if (ret < 0) {
0299         dev_err(component->dev, "failed to read device ID register: %d\n",
0300             ret);
0301         goto probe_fail;
0302     }
0303 
0304     switch (tas5720->devtype) {
0305     case TAS5720:
0306         expected_device_id = TAS5720_DEVICE_ID;
0307         break;
0308     case TAS5722:
0309         expected_device_id = TAS5722_DEVICE_ID;
0310         break;
0311     default:
0312         dev_err(component->dev, "unexpected private driver data\n");
0313         return -EINVAL;
0314     }
0315 
0316     if (device_id != expected_device_id)
0317         dev_warn(component->dev, "wrong device ID. expected: %u read: %u\n",
0318              expected_device_id, device_id);
0319 
0320     /* Set device to mute */
0321     ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL2_REG,
0322                   TAS5720_MUTE, TAS5720_MUTE);
0323     if (ret < 0)
0324         goto error_snd_soc_component_update_bits;
0325 
0326     /*
0327      * Enter shutdown mode - our default when not playing audio - to
0328      * minimize current consumption. On the TAS5720 there is no real down
0329      * side doing so as all device registers are preserved and the wakeup
0330      * of the codec is rather quick which we do using a dapm widget.
0331      */
0332     ret = snd_soc_component_update_bits(component, TAS5720_POWER_CTRL_REG,
0333                   TAS5720_SDZ, 0);
0334     if (ret < 0)
0335         goto error_snd_soc_component_update_bits;
0336 
0337     INIT_DELAYED_WORK(&tas5720->fault_check_work, tas5720_fault_check_work);
0338 
0339     return 0;
0340 
0341 error_snd_soc_component_update_bits:
0342     dev_err(component->dev, "error configuring device registers: %d\n", ret);
0343 
0344 probe_fail:
0345     regulator_bulk_disable(ARRAY_SIZE(tas5720->supplies),
0346                    tas5720->supplies);
0347     return ret;
0348 }
0349 
0350 static void tas5720_codec_remove(struct snd_soc_component *component)
0351 {
0352     struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
0353     int ret;
0354 
0355     cancel_delayed_work_sync(&tas5720->fault_check_work);
0356 
0357     ret = regulator_bulk_disable(ARRAY_SIZE(tas5720->supplies),
0358                      tas5720->supplies);
0359     if (ret < 0)
0360         dev_err(component->dev, "failed to disable supplies: %d\n", ret);
0361 };
0362 
0363 static int tas5720_dac_event(struct snd_soc_dapm_widget *w,
0364                  struct snd_kcontrol *kcontrol, int event)
0365 {
0366     struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
0367     struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
0368     int ret;
0369 
0370     if (event & SND_SOC_DAPM_POST_PMU) {
0371         /* Take TAS5720 out of shutdown mode */
0372         ret = snd_soc_component_update_bits(component, TAS5720_POWER_CTRL_REG,
0373                       TAS5720_SDZ, TAS5720_SDZ);
0374         if (ret < 0) {
0375             dev_err(component->dev, "error waking component: %d\n", ret);
0376             return ret;
0377         }
0378 
0379         /*
0380          * Observe codec shutdown-to-active time. The datasheet only
0381          * lists a nominal value however just use-it as-is without
0382          * additional padding to minimize the delay introduced in
0383          * starting to play audio (actually there is other setup done
0384          * by the ASoC framework that will provide additional delays,
0385          * so we should always be safe).
0386          */
0387         msleep(25);
0388 
0389         /* Turn on TAS5720 periodic fault checking/handling */
0390         tas5720->last_fault = 0;
0391         schedule_delayed_work(&tas5720->fault_check_work,
0392                 msecs_to_jiffies(TAS5720_FAULT_CHECK_INTERVAL));
0393     } else if (event & SND_SOC_DAPM_PRE_PMD) {
0394         /* Disable TAS5720 periodic fault checking/handling */
0395         cancel_delayed_work_sync(&tas5720->fault_check_work);
0396 
0397         /* Place TAS5720 in shutdown mode to minimize current draw */
0398         ret = snd_soc_component_update_bits(component, TAS5720_POWER_CTRL_REG,
0399                       TAS5720_SDZ, 0);
0400         if (ret < 0) {
0401             dev_err(component->dev, "error shutting down component: %d\n",
0402                 ret);
0403             return ret;
0404         }
0405     }
0406 
0407     return 0;
0408 }
0409 
0410 #ifdef CONFIG_PM
0411 static int tas5720_suspend(struct snd_soc_component *component)
0412 {
0413     struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
0414     int ret;
0415 
0416     regcache_cache_only(tas5720->regmap, true);
0417     regcache_mark_dirty(tas5720->regmap);
0418 
0419     ret = regulator_bulk_disable(ARRAY_SIZE(tas5720->supplies),
0420                      tas5720->supplies);
0421     if (ret < 0)
0422         dev_err(component->dev, "failed to disable supplies: %d\n", ret);
0423 
0424     return ret;
0425 }
0426 
0427 static int tas5720_resume(struct snd_soc_component *component)
0428 {
0429     struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
0430     int ret;
0431 
0432     ret = regulator_bulk_enable(ARRAY_SIZE(tas5720->supplies),
0433                     tas5720->supplies);
0434     if (ret < 0) {
0435         dev_err(component->dev, "failed to enable supplies: %d\n", ret);
0436         return ret;
0437     }
0438 
0439     regcache_cache_only(tas5720->regmap, false);
0440 
0441     ret = regcache_sync(tas5720->regmap);
0442     if (ret < 0) {
0443         dev_err(component->dev, "failed to sync regcache: %d\n", ret);
0444         return ret;
0445     }
0446 
0447     return 0;
0448 }
0449 #else
0450 #define tas5720_suspend NULL
0451 #define tas5720_resume NULL
0452 #endif
0453 
0454 static bool tas5720_is_volatile_reg(struct device *dev, unsigned int reg)
0455 {
0456     switch (reg) {
0457     case TAS5720_DEVICE_ID_REG:
0458     case TAS5720_FAULT_REG:
0459         return true;
0460     default:
0461         return false;
0462     }
0463 }
0464 
0465 static const struct regmap_config tas5720_regmap_config = {
0466     .reg_bits = 8,
0467     .val_bits = 8,
0468 
0469     .max_register = TAS5720_MAX_REG,
0470     .cache_type = REGCACHE_RBTREE,
0471     .volatile_reg = tas5720_is_volatile_reg,
0472 };
0473 
0474 static const struct regmap_config tas5722_regmap_config = {
0475     .reg_bits = 8,
0476     .val_bits = 8,
0477 
0478     .max_register = TAS5722_MAX_REG,
0479     .cache_type = REGCACHE_RBTREE,
0480     .volatile_reg = tas5720_is_volatile_reg,
0481 };
0482 
0483 /*
0484  * DAC analog gain. There are four discrete values to select from, ranging
0485  * from 19.2 dB to 26.3dB.
0486  */
0487 static const DECLARE_TLV_DB_RANGE(dac_analog_tlv,
0488     0x0, 0x0, TLV_DB_SCALE_ITEM(1920, 0, 0),
0489     0x1, 0x1, TLV_DB_SCALE_ITEM(2070, 0, 0),
0490     0x2, 0x2, TLV_DB_SCALE_ITEM(2350, 0, 0),
0491     0x3, 0x3, TLV_DB_SCALE_ITEM(2630, 0, 0),
0492 );
0493 
0494 /*
0495  * DAC digital volumes. From -103.5 to 24 dB in 0.5 dB or 0.25 dB steps
0496  * depending on the device. Note that setting the gain below -100 dB
0497  * (register value <0x7) is effectively a MUTE as per device datasheet.
0498  *
0499  * Note that for the TAS5722 the digital volume controls are actually split
0500  * over two registers, so we need custom getters/setters for access.
0501  */
0502 static DECLARE_TLV_DB_SCALE(tas5720_dac_tlv, -10350, 50, 0);
0503 static DECLARE_TLV_DB_SCALE(tas5722_dac_tlv, -10350, 25, 0);
0504 
0505 static int tas5722_volume_get(struct snd_kcontrol *kcontrol,
0506                   struct snd_ctl_elem_value *ucontrol)
0507 {
0508     struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
0509     unsigned int val;
0510 
0511     val = snd_soc_component_read(component, TAS5720_VOLUME_CTRL_REG);
0512     ucontrol->value.integer.value[0] = val << 1;
0513 
0514     val = snd_soc_component_read(component, TAS5722_DIGITAL_CTRL2_REG);
0515     ucontrol->value.integer.value[0] |= val & TAS5722_VOL_CONTROL_LSB;
0516 
0517     return 0;
0518 }
0519 
0520 static int tas5722_volume_set(struct snd_kcontrol *kcontrol,
0521                   struct snd_ctl_elem_value *ucontrol)
0522 {
0523     struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
0524     unsigned int sel = ucontrol->value.integer.value[0];
0525 
0526     snd_soc_component_write(component, TAS5720_VOLUME_CTRL_REG, sel >> 1);
0527     snd_soc_component_update_bits(component, TAS5722_DIGITAL_CTRL2_REG,
0528                       TAS5722_VOL_CONTROL_LSB, sel);
0529 
0530     return 0;
0531 }
0532 
0533 static const struct snd_kcontrol_new tas5720_snd_controls[] = {
0534     SOC_SINGLE_TLV("Speaker Driver Playback Volume",
0535                TAS5720_VOLUME_CTRL_REG, 0, 0xff, 0, tas5720_dac_tlv),
0536     SOC_SINGLE_TLV("Speaker Driver Analog Gain", TAS5720_ANALOG_CTRL_REG,
0537                TAS5720_ANALOG_GAIN_SHIFT, 3, 0, dac_analog_tlv),
0538 };
0539 
0540 static const struct snd_kcontrol_new tas5722_snd_controls[] = {
0541     SOC_SINGLE_EXT_TLV("Speaker Driver Playback Volume",
0542                0, 0, 511, 0,
0543                tas5722_volume_get, tas5722_volume_set,
0544                tas5722_dac_tlv),
0545     SOC_SINGLE_TLV("Speaker Driver Analog Gain", TAS5720_ANALOG_CTRL_REG,
0546                TAS5720_ANALOG_GAIN_SHIFT, 3, 0, dac_analog_tlv),
0547 };
0548 
0549 static const struct snd_soc_dapm_widget tas5720_dapm_widgets[] = {
0550     SND_SOC_DAPM_AIF_IN("DAC IN", "Playback", 0, SND_SOC_NOPM, 0, 0),
0551     SND_SOC_DAPM_DAC_E("DAC", NULL, SND_SOC_NOPM, 0, 0, tas5720_dac_event,
0552                SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
0553     SND_SOC_DAPM_OUTPUT("OUT")
0554 };
0555 
0556 static const struct snd_soc_dapm_route tas5720_audio_map[] = {
0557     { "DAC", NULL, "DAC IN" },
0558     { "OUT", NULL, "DAC" },
0559 };
0560 
0561 static const struct snd_soc_component_driver soc_component_dev_tas5720 = {
0562     .probe          = tas5720_codec_probe,
0563     .remove         = tas5720_codec_remove,
0564     .suspend        = tas5720_suspend,
0565     .resume         = tas5720_resume,
0566     .controls       = tas5720_snd_controls,
0567     .num_controls       = ARRAY_SIZE(tas5720_snd_controls),
0568     .dapm_widgets       = tas5720_dapm_widgets,
0569     .num_dapm_widgets   = ARRAY_SIZE(tas5720_dapm_widgets),
0570     .dapm_routes        = tas5720_audio_map,
0571     .num_dapm_routes    = ARRAY_SIZE(tas5720_audio_map),
0572     .idle_bias_on       = 1,
0573     .use_pmdown_time    = 1,
0574     .endianness     = 1,
0575 };
0576 
0577 static const struct snd_soc_component_driver soc_component_dev_tas5722 = {
0578     .probe = tas5720_codec_probe,
0579     .remove = tas5720_codec_remove,
0580     .suspend = tas5720_suspend,
0581     .resume = tas5720_resume,
0582     .controls = tas5722_snd_controls,
0583     .num_controls = ARRAY_SIZE(tas5722_snd_controls),
0584     .dapm_widgets = tas5720_dapm_widgets,
0585     .num_dapm_widgets = ARRAY_SIZE(tas5720_dapm_widgets),
0586     .dapm_routes = tas5720_audio_map,
0587     .num_dapm_routes = ARRAY_SIZE(tas5720_audio_map),
0588     .idle_bias_on       = 1,
0589     .use_pmdown_time    = 1,
0590     .endianness     = 1,
0591 };
0592 
0593 /* PCM rates supported by the TAS5720 driver */
0594 #define TAS5720_RATES   (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 |\
0595              SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000)
0596 
0597 /* Formats supported by TAS5720 driver */
0598 #define TAS5720_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S18_3LE |\
0599              SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_LE)
0600 
0601 static const struct snd_soc_dai_ops tas5720_speaker_dai_ops = {
0602     .hw_params  = tas5720_hw_params,
0603     .set_fmt    = tas5720_set_dai_fmt,
0604     .set_tdm_slot   = tas5720_set_dai_tdm_slot,
0605     .mute_stream    = tas5720_mute,
0606     .no_capture_mute = 1,
0607 };
0608 
0609 /*
0610  * TAS5720 DAI structure
0611  *
0612  * Note that were are advertising .playback.channels_max = 2 despite this being
0613  * a mono amplifier. The reason for that is that some serial ports such as TI's
0614  * McASP module have a minimum number of channels (2) that they can output.
0615  * Advertising more channels than we have will allow us to interface with such
0616  * a serial port without really any negative side effects as the TAS5720 will
0617  * simply ignore any extra channel(s) asides from the one channel that is
0618  * configured to be played back.
0619  */
0620 static struct snd_soc_dai_driver tas5720_dai[] = {
0621     {
0622         .name = "tas5720-amplifier",
0623         .playback = {
0624             .stream_name = "Playback",
0625             .channels_min = 1,
0626             .channels_max = 2,
0627             .rates = TAS5720_RATES,
0628             .formats = TAS5720_FORMATS,
0629         },
0630         .ops = &tas5720_speaker_dai_ops,
0631     },
0632 };
0633 
0634 static const struct i2c_device_id tas5720_id[] = {
0635     { "tas5720", TAS5720 },
0636     { "tas5722", TAS5722 },
0637     { }
0638 };
0639 MODULE_DEVICE_TABLE(i2c, tas5720_id);
0640 
0641 static int tas5720_probe(struct i2c_client *client)
0642 {
0643     struct device *dev = &client->dev;
0644     struct tas5720_data *data;
0645     const struct regmap_config *regmap_config;
0646     const struct i2c_device_id *id;
0647     int ret;
0648     int i;
0649 
0650     data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
0651     if (!data)
0652         return -ENOMEM;
0653 
0654     id = i2c_match_id(tas5720_id, client);
0655     data->tas5720_client = client;
0656     data->devtype = id->driver_data;
0657 
0658     switch (id->driver_data) {
0659     case TAS5720:
0660         regmap_config = &tas5720_regmap_config;
0661         break;
0662     case TAS5722:
0663         regmap_config = &tas5722_regmap_config;
0664         break;
0665     default:
0666         dev_err(dev, "unexpected private driver data\n");
0667         return -EINVAL;
0668     }
0669     data->regmap = devm_regmap_init_i2c(client, regmap_config);
0670     if (IS_ERR(data->regmap)) {
0671         ret = PTR_ERR(data->regmap);
0672         dev_err(dev, "failed to allocate register map: %d\n", ret);
0673         return ret;
0674     }
0675 
0676     for (i = 0; i < ARRAY_SIZE(data->supplies); i++)
0677         data->supplies[i].supply = tas5720_supply_names[i];
0678 
0679     ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(data->supplies),
0680                       data->supplies);
0681     if (ret != 0) {
0682         dev_err(dev, "failed to request supplies: %d\n", ret);
0683         return ret;
0684     }
0685 
0686     dev_set_drvdata(dev, data);
0687 
0688     switch (id->driver_data) {
0689     case TAS5720:
0690         ret = devm_snd_soc_register_component(&client->dev,
0691                     &soc_component_dev_tas5720,
0692                     tas5720_dai,
0693                     ARRAY_SIZE(tas5720_dai));
0694         break;
0695     case TAS5722:
0696         ret = devm_snd_soc_register_component(&client->dev,
0697                     &soc_component_dev_tas5722,
0698                     tas5720_dai,
0699                     ARRAY_SIZE(tas5720_dai));
0700         break;
0701     default:
0702         dev_err(dev, "unexpected private driver data\n");
0703         return -EINVAL;
0704     }
0705     if (ret < 0) {
0706         dev_err(dev, "failed to register component: %d\n", ret);
0707         return ret;
0708     }
0709 
0710     return 0;
0711 }
0712 
0713 #if IS_ENABLED(CONFIG_OF)
0714 static const struct of_device_id tas5720_of_match[] = {
0715     { .compatible = "ti,tas5720", },
0716     { .compatible = "ti,tas5722", },
0717     { },
0718 };
0719 MODULE_DEVICE_TABLE(of, tas5720_of_match);
0720 #endif
0721 
0722 static struct i2c_driver tas5720_i2c_driver = {
0723     .driver = {
0724         .name = "tas5720",
0725         .of_match_table = of_match_ptr(tas5720_of_match),
0726     },
0727     .probe_new = tas5720_probe,
0728     .id_table = tas5720_id,
0729 };
0730 
0731 module_i2c_driver(tas5720_i2c_driver);
0732 
0733 MODULE_AUTHOR("Andreas Dannenberg <dannenberg@ti.com>");
0734 MODULE_DESCRIPTION("TAS5720 Audio amplifier driver");
0735 MODULE_LICENSE("GPL");