0001
0002
0003
0004
0005
0006
0007
0008
0009
0010 #include <linux/io.h>
0011 #include <asm/irq.h>
0012 #include <linux/init.h>
0013 #include <linux/delay.h>
0014 #include <linux/slab.h>
0015 #include <linux/interrupt.h>
0016 #include <linux/pci.h>
0017 #include <linux/dma-mapping.h>
0018 #include <linux/of_address.h>
0019 #include <linux/of_irq.h>
0020 #include <sound/core.h>
0021 #include "pmac.h"
0022 #include <sound/pcm_params.h>
0023 #include <asm/pmac_feature.h>
0024
0025
0026
0027 static const int awacs_freqs[8] = {
0028 44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
0029 };
0030
0031 static const int tumbler_freqs[1] = {
0032 44100
0033 };
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043 static struct pmac_dbdma emergency_dbdma;
0044 static int emergency_in_use;
0045
0046
0047
0048
0049
0050 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
0051 {
0052 unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
0053
0054 rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
0055 &rec->dma_base, GFP_KERNEL);
0056 if (rec->space == NULL)
0057 return -ENOMEM;
0058 rec->size = size;
0059 memset(rec->space, 0, rsize);
0060 rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
0061 rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
0062
0063 return 0;
0064 }
0065
0066 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
0067 {
0068 if (rec->space) {
0069 unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
0070
0071 dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
0072 }
0073 }
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
0085 {
0086 int i, ok, found;
0087
0088 ok = rec->cur_freqs;
0089 if (rate > chip->freq_table[0])
0090 return 0;
0091 found = 0;
0092 for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
0093 if (! (ok & 1)) continue;
0094 found = i;
0095 if (rate >= chip->freq_table[i])
0096 break;
0097 }
0098 return found;
0099 }
0100
0101
0102
0103
0104 static inline int another_stream(int stream)
0105 {
0106 return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
0107 SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
0108 }
0109
0110
0111
0112
0113 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
0114 {
0115 switch (stream) {
0116 case SNDRV_PCM_STREAM_PLAYBACK:
0117 return &chip->playback;
0118 case SNDRV_PCM_STREAM_CAPTURE:
0119 return &chip->capture;
0120 default:
0121 snd_BUG();
0122 return NULL;
0123 }
0124 }
0125
0126
0127
0128
0129 static inline void
0130 snd_pmac_wait_ack(struct pmac_stream *rec)
0131 {
0132 int timeout = 50000;
0133 while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
0134 udelay(1);
0135 }
0136
0137
0138
0139
0140
0141 static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
0142 {
0143
0144 out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
0145 out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
0146 if (chip->set_format)
0147 chip->set_format(chip);
0148 }
0149
0150
0151
0152
0153 static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
0154 {
0155 out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
0156 snd_pmac_wait_ack(rec);
0157 }
0158
0159
0160
0161
0162 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
0163 {
0164 out_le32(&rec->dma->cmdptr, cmd->addr);
0165 }
0166
0167
0168
0169
0170 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
0171 {
0172 out_le32(&rec->dma->control, status | (status << 16));
0173 }
0174
0175
0176
0177
0178
0179 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
0180 {
0181 int i;
0182 volatile struct dbdma_cmd __iomem *cp;
0183 struct snd_pcm_runtime *runtime = subs->runtime;
0184 int rate_index;
0185 long offset;
0186 struct pmac_stream *astr;
0187
0188 rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
0189 rec->period_size = snd_pcm_lib_period_bytes(subs);
0190 rec->nperiods = rec->dma_size / rec->period_size;
0191 rec->cur_period = 0;
0192 rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
0193
0194
0195 astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
0196 if (! astr)
0197 return -EINVAL;
0198 astr->cur_freqs = 1 << rate_index;
0199 astr->cur_formats = 1 << runtime->format;
0200 chip->rate_index = rate_index;
0201 chip->format = runtime->format;
0202
0203
0204
0205
0206
0207
0208
0209 spin_lock_irq(&chip->reg_lock);
0210 snd_pmac_dma_stop(rec);
0211 chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
0212 snd_pmac_dma_set_command(rec, &chip->extra_dma);
0213 snd_pmac_dma_run(rec, RUN);
0214 spin_unlock_irq(&chip->reg_lock);
0215 mdelay(5);
0216 spin_lock_irq(&chip->reg_lock);
0217
0218
0219
0220 offset = runtime->dma_addr;
0221 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
0222 cp->phy_addr = cpu_to_le32(offset);
0223 cp->req_count = cpu_to_le16(rec->period_size);
0224
0225 cp->xfer_status = cpu_to_le16(0);
0226 offset += rec->period_size;
0227 }
0228
0229 cp->command = cpu_to_le16(DBDMA_NOP | BR_ALWAYS);
0230 cp->cmd_dep = cpu_to_le32(rec->cmd.addr);
0231
0232 snd_pmac_dma_stop(rec);
0233 snd_pmac_dma_set_command(rec, &rec->cmd);
0234 spin_unlock_irq(&chip->reg_lock);
0235
0236 return 0;
0237 }
0238
0239
0240
0241
0242
0243 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
0244 struct snd_pcm_substream *subs, int cmd)
0245 {
0246 volatile struct dbdma_cmd __iomem *cp;
0247 int i, command;
0248
0249 switch (cmd) {
0250 case SNDRV_PCM_TRIGGER_START:
0251 case SNDRV_PCM_TRIGGER_RESUME:
0252 if (rec->running)
0253 return -EBUSY;
0254 command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
0255 OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
0256 spin_lock(&chip->reg_lock);
0257 snd_pmac_beep_stop(chip);
0258 snd_pmac_pcm_set_format(chip);
0259 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
0260 out_le16(&cp->command, command);
0261 snd_pmac_dma_set_command(rec, &rec->cmd);
0262 (void)in_le32(&rec->dma->status);
0263 snd_pmac_dma_run(rec, RUN|WAKE);
0264 rec->running = 1;
0265 spin_unlock(&chip->reg_lock);
0266 break;
0267
0268 case SNDRV_PCM_TRIGGER_STOP:
0269 case SNDRV_PCM_TRIGGER_SUSPEND:
0270 spin_lock(&chip->reg_lock);
0271 rec->running = 0;
0272
0273 snd_pmac_dma_stop(rec);
0274 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
0275 out_le16(&cp->command, DBDMA_STOP);
0276 spin_unlock(&chip->reg_lock);
0277 break;
0278
0279 default:
0280 return -EINVAL;
0281 }
0282
0283 return 0;
0284 }
0285
0286
0287
0288
0289 inline
0290 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
0291 struct pmac_stream *rec,
0292 struct snd_pcm_substream *subs)
0293 {
0294 int count = 0;
0295
0296 #if 1
0297 int stat;
0298 volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
0299 stat = le16_to_cpu(cp->xfer_status);
0300 if (stat & (ACTIVE|DEAD)) {
0301 count = in_le16(&cp->res_count);
0302 if (count)
0303 count = rec->period_size - count;
0304 }
0305 #endif
0306 count += rec->cur_period * rec->period_size;
0307
0308 return bytes_to_frames(subs->runtime, count);
0309 }
0310
0311
0312
0313
0314
0315 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
0316 {
0317 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
0318 return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
0319 }
0320
0321 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
0322 int cmd)
0323 {
0324 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
0325 return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
0326 }
0327
0328 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
0329 {
0330 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
0331 return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
0332 }
0333
0334
0335
0336
0337
0338
0339 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
0340 {
0341 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
0342 return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
0343 }
0344
0345 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
0346 int cmd)
0347 {
0348 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
0349 return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
0350 }
0351
0352 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
0353 {
0354 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
0355 return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
0356 }
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec,
0382 volatile struct dbdma_cmd __iomem *cp)
0383 {
0384 unsigned short req, res ;
0385 unsigned int phy ;
0386
0387
0388
0389
0390
0391 (void)in_le32(&rec->dma->status);
0392 out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
0393
0394 if (!emergency_in_use) {
0395 memcpy((void *)emergency_dbdma.cmds, (void *)cp,
0396 sizeof(struct dbdma_cmd));
0397 emergency_in_use = 1;
0398 cp->xfer_status = cpu_to_le16(0);
0399 cp->req_count = cpu_to_le16(rec->period_size);
0400 cp = emergency_dbdma.cmds;
0401 }
0402
0403
0404
0405 req = le16_to_cpu(cp->req_count);
0406 res = le16_to_cpu(cp->res_count);
0407 phy = le32_to_cpu(cp->phy_addr);
0408 phy += (req - res);
0409 cp->req_count = cpu_to_le16(res);
0410 cp->res_count = cpu_to_le16(0);
0411 cp->xfer_status = cpu_to_le16(0);
0412 cp->phy_addr = cpu_to_le32(phy);
0413
0414 cp->cmd_dep = cpu_to_le32(rec->cmd.addr
0415 + sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods));
0416
0417 cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS);
0418
0419
0420 out_le32(&rec->dma->cmdptr, emergency_dbdma.addr);
0421
0422
0423 (void)in_le32(&rec->dma->status);
0424
0425 out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
0426 }
0427
0428
0429
0430
0431 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
0432 {
0433 volatile struct dbdma_cmd __iomem *cp;
0434 int c;
0435 int stat;
0436
0437 spin_lock(&chip->reg_lock);
0438 if (rec->running) {
0439 for (c = 0; c < rec->nperiods; c++) {
0440
0441 if (emergency_in_use)
0442 cp = emergency_dbdma.cmds;
0443 else
0444 cp = &rec->cmd.cmds[rec->cur_period];
0445
0446 stat = le16_to_cpu(cp->xfer_status);
0447
0448 if (stat & DEAD) {
0449 snd_pmac_pcm_dead_xfer(rec, cp);
0450 break;
0451 }
0452
0453 if (emergency_in_use)
0454 emergency_in_use = 0 ;
0455
0456 if (! (stat & ACTIVE))
0457 break;
0458
0459
0460 cp->xfer_status = cpu_to_le16(0);
0461 cp->req_count = cpu_to_le16(rec->period_size);
0462
0463 rec->cur_period++;
0464 if (rec->cur_period >= rec->nperiods) {
0465 rec->cur_period = 0;
0466 }
0467
0468 spin_unlock(&chip->reg_lock);
0469 snd_pcm_period_elapsed(rec->substream);
0470 spin_lock(&chip->reg_lock);
0471 }
0472 }
0473 spin_unlock(&chip->reg_lock);
0474 }
0475
0476
0477
0478
0479
0480
0481 static const struct snd_pcm_hardware snd_pmac_playback =
0482 {
0483 .info = (SNDRV_PCM_INFO_INTERLEAVED |
0484 SNDRV_PCM_INFO_MMAP |
0485 SNDRV_PCM_INFO_MMAP_VALID |
0486 SNDRV_PCM_INFO_RESUME),
0487 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
0488 .rates = SNDRV_PCM_RATE_8000_44100,
0489 .rate_min = 7350,
0490 .rate_max = 44100,
0491 .channels_min = 2,
0492 .channels_max = 2,
0493 .buffer_bytes_max = 131072,
0494 .period_bytes_min = 256,
0495 .period_bytes_max = 16384,
0496 .periods_min = 3,
0497 .periods_max = PMAC_MAX_FRAGS,
0498 };
0499
0500 static const struct snd_pcm_hardware snd_pmac_capture =
0501 {
0502 .info = (SNDRV_PCM_INFO_INTERLEAVED |
0503 SNDRV_PCM_INFO_MMAP |
0504 SNDRV_PCM_INFO_MMAP_VALID |
0505 SNDRV_PCM_INFO_RESUME),
0506 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
0507 .rates = SNDRV_PCM_RATE_8000_44100,
0508 .rate_min = 7350,
0509 .rate_max = 44100,
0510 .channels_min = 2,
0511 .channels_max = 2,
0512 .buffer_bytes_max = 131072,
0513 .period_bytes_min = 256,
0514 .period_bytes_max = 16384,
0515 .periods_min = 3,
0516 .periods_max = PMAC_MAX_FRAGS,
0517 };
0518
0519
0520 #if 0
0521 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
0522 struct snd_pcm_hw_rule *rule)
0523 {
0524 struct snd_pmac *chip = rule->private;
0525 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
0526 int i, freq_table[8], num_freqs;
0527
0528 if (! rec)
0529 return -EINVAL;
0530 num_freqs = 0;
0531 for (i = chip->num_freqs - 1; i >= 0; i--) {
0532 if (rec->cur_freqs & (1 << i))
0533 freq_table[num_freqs++] = chip->freq_table[i];
0534 }
0535
0536 return snd_interval_list(hw_param_interval(params, rule->var),
0537 num_freqs, freq_table, 0);
0538 }
0539
0540 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
0541 struct snd_pcm_hw_rule *rule)
0542 {
0543 struct snd_pmac *chip = rule->private;
0544 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
0545
0546 if (! rec)
0547 return -EINVAL;
0548 return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
0549 rec->cur_formats);
0550 }
0551 #endif
0552
0553 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
0554 struct snd_pcm_substream *subs)
0555 {
0556 struct snd_pcm_runtime *runtime = subs->runtime;
0557 int i;
0558
0559
0560 runtime->hw.rates = 0;
0561 for (i = 0; i < chip->num_freqs; i++)
0562 if (chip->freqs_ok & (1 << i))
0563 runtime->hw.rates |=
0564 snd_pcm_rate_to_rate_bit(chip->freq_table[i]);
0565
0566
0567 for (i = 0; i < chip->num_freqs; i++) {
0568 if (chip->freqs_ok & (1 << i)) {
0569 runtime->hw.rate_max = chip->freq_table[i];
0570 break;
0571 }
0572 }
0573 for (i = chip->num_freqs - 1; i >= 0; i--) {
0574 if (chip->freqs_ok & (1 << i)) {
0575 runtime->hw.rate_min = chip->freq_table[i];
0576 break;
0577 }
0578 }
0579 runtime->hw.formats = chip->formats_ok;
0580 if (chip->can_capture) {
0581 if (! chip->can_duplex)
0582 runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
0583 runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
0584 }
0585 runtime->private_data = rec;
0586 rec->substream = subs;
0587
0588 #if 0
0589 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
0590 snd_pmac_hw_rule_rate, chip, rec->stream, -1);
0591 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
0592 snd_pmac_hw_rule_format, chip, rec->stream, -1);
0593 #endif
0594
0595 runtime->hw.periods_max = rec->cmd.size - 1;
0596
0597
0598 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
0599 return 0;
0600 }
0601
0602 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
0603 struct snd_pcm_substream *subs)
0604 {
0605 struct pmac_stream *astr;
0606
0607 snd_pmac_dma_stop(rec);
0608
0609 astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
0610 if (! astr)
0611 return -EINVAL;
0612
0613
0614 astr->cur_freqs = chip->freqs_ok;
0615 astr->cur_formats = chip->formats_ok;
0616
0617 return 0;
0618 }
0619
0620 static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
0621 {
0622 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
0623
0624 subs->runtime->hw = snd_pmac_playback;
0625 return snd_pmac_pcm_open(chip, &chip->playback, subs);
0626 }
0627
0628 static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
0629 {
0630 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
0631
0632 subs->runtime->hw = snd_pmac_capture;
0633 return snd_pmac_pcm_open(chip, &chip->capture, subs);
0634 }
0635
0636 static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
0637 {
0638 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
0639
0640 return snd_pmac_pcm_close(chip, &chip->playback, subs);
0641 }
0642
0643 static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
0644 {
0645 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
0646
0647 return snd_pmac_pcm_close(chip, &chip->capture, subs);
0648 }
0649
0650
0651
0652
0653 static const struct snd_pcm_ops snd_pmac_playback_ops = {
0654 .open = snd_pmac_playback_open,
0655 .close = snd_pmac_playback_close,
0656 .prepare = snd_pmac_playback_prepare,
0657 .trigger = snd_pmac_playback_trigger,
0658 .pointer = snd_pmac_playback_pointer,
0659 };
0660
0661 static const struct snd_pcm_ops snd_pmac_capture_ops = {
0662 .open = snd_pmac_capture_open,
0663 .close = snd_pmac_capture_close,
0664 .prepare = snd_pmac_capture_prepare,
0665 .trigger = snd_pmac_capture_trigger,
0666 .pointer = snd_pmac_capture_pointer,
0667 };
0668
0669 int snd_pmac_pcm_new(struct snd_pmac *chip)
0670 {
0671 struct snd_pcm *pcm;
0672 int err;
0673 int num_captures = 1;
0674
0675 if (! chip->can_capture)
0676 num_captures = 0;
0677 err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
0678 if (err < 0)
0679 return err;
0680
0681 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
0682 if (chip->can_capture)
0683 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
0684
0685 pcm->private_data = chip;
0686 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
0687 strcpy(pcm->name, chip->card->shortname);
0688 chip->pcm = pcm;
0689
0690 chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
0691 if (chip->can_byte_swap)
0692 chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
0693
0694 chip->playback.cur_formats = chip->formats_ok;
0695 chip->capture.cur_formats = chip->formats_ok;
0696 chip->playback.cur_freqs = chip->freqs_ok;
0697 chip->capture.cur_freqs = chip->freqs_ok;
0698
0699
0700 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
0701 &chip->pdev->dev,
0702 64 * 1024, 64 * 1024);
0703
0704 return 0;
0705 }
0706
0707
0708 static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
0709 {
0710 out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
0711 snd_pmac_wait_ack(&chip->playback);
0712 out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
0713 snd_pmac_wait_ack(&chip->capture);
0714 }
0715
0716
0717
0718
0719
0720 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
0721 {
0722 struct pmac_stream *rec = &chip->playback;
0723
0724 snd_pmac_dma_stop(rec);
0725 chip->extra_dma.cmds->req_count = cpu_to_le16(bytes);
0726 chip->extra_dma.cmds->xfer_status = cpu_to_le16(0);
0727 chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr);
0728 chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr);
0729 chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS);
0730 out_le32(&chip->awacs->control,
0731 (in_le32(&chip->awacs->control) & ~0x1f00)
0732 | (speed << 8));
0733 out_le32(&chip->awacs->byteswap, 0);
0734 snd_pmac_dma_set_command(rec, &chip->extra_dma);
0735 snd_pmac_dma_run(rec, RUN);
0736 }
0737
0738 void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
0739 {
0740 snd_pmac_dma_stop(&chip->playback);
0741 chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
0742 snd_pmac_pcm_set_format(chip);
0743 }
0744
0745
0746
0747
0748
0749 static irqreturn_t
0750 snd_pmac_tx_intr(int irq, void *devid)
0751 {
0752 struct snd_pmac *chip = devid;
0753 snd_pmac_pcm_update(chip, &chip->playback);
0754 return IRQ_HANDLED;
0755 }
0756
0757
0758 static irqreturn_t
0759 snd_pmac_rx_intr(int irq, void *devid)
0760 {
0761 struct snd_pmac *chip = devid;
0762 snd_pmac_pcm_update(chip, &chip->capture);
0763 return IRQ_HANDLED;
0764 }
0765
0766
0767 static irqreturn_t
0768 snd_pmac_ctrl_intr(int irq, void *devid)
0769 {
0770 struct snd_pmac *chip = devid;
0771 int ctrl = in_le32(&chip->awacs->control);
0772
0773
0774 if (ctrl & MASK_PORTCHG) {
0775
0776 if (chip->update_automute)
0777 chip->update_automute(chip, 1);
0778 }
0779 if (ctrl & MASK_CNTLERR) {
0780 int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
0781 if (err && chip->model <= PMAC_SCREAMER)
0782 snd_printk(KERN_DEBUG "error %x\n", err);
0783 }
0784
0785 out_le32(&chip->awacs->control, ctrl);
0786 return IRQ_HANDLED;
0787 }
0788
0789
0790
0791
0792
0793 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
0794 {
0795 if (ppc_md.feature_call)
0796 ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
0797 }
0798
0799
0800
0801
0802
0803 static int snd_pmac_free(struct snd_pmac *chip)
0804 {
0805
0806 if (chip->initialized) {
0807 snd_pmac_dbdma_reset(chip);
0808
0809 out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
0810 }
0811
0812 if (chip->node)
0813 snd_pmac_sound_feature(chip, 0);
0814
0815
0816 if (chip->mixer_free)
0817 chip->mixer_free(chip);
0818
0819 snd_pmac_detach_beep(chip);
0820
0821
0822 if (chip->irq >= 0)
0823 free_irq(chip->irq, (void*)chip);
0824 if (chip->tx_irq >= 0)
0825 free_irq(chip->tx_irq, (void*)chip);
0826 if (chip->rx_irq >= 0)
0827 free_irq(chip->rx_irq, (void*)chip);
0828 snd_pmac_dbdma_free(chip, &chip->playback.cmd);
0829 snd_pmac_dbdma_free(chip, &chip->capture.cmd);
0830 snd_pmac_dbdma_free(chip, &chip->extra_dma);
0831 snd_pmac_dbdma_free(chip, &emergency_dbdma);
0832 iounmap(chip->macio_base);
0833 iounmap(chip->latch_base);
0834 iounmap(chip->awacs);
0835 iounmap(chip->playback.dma);
0836 iounmap(chip->capture.dma);
0837
0838 if (chip->node) {
0839 int i;
0840 for (i = 0; i < 3; i++) {
0841 if (chip->requested & (1 << i))
0842 release_mem_region(chip->rsrc[i].start,
0843 resource_size(&chip->rsrc[i]));
0844 }
0845 }
0846
0847 pci_dev_put(chip->pdev);
0848 of_node_put(chip->node);
0849 kfree(chip);
0850 return 0;
0851 }
0852
0853
0854
0855
0856
0857 static int snd_pmac_dev_free(struct snd_device *device)
0858 {
0859 struct snd_pmac *chip = device->device_data;
0860 return snd_pmac_free(chip);
0861 }
0862
0863
0864
0865
0866
0867
0868 static void detect_byte_swap(struct snd_pmac *chip)
0869 {
0870 struct device_node *mio;
0871
0872
0873 for (mio = chip->node->parent; mio; mio = mio->parent) {
0874 if (of_node_name_eq(mio, "mac-io")) {
0875 if (of_device_is_compatible(mio, "Keylargo"))
0876 chip->can_byte_swap = 0;
0877 break;
0878 }
0879 }
0880
0881
0882 if (of_machine_is_compatible("PowerBook3,1") ||
0883 of_machine_is_compatible("PowerBook2,1"))
0884 chip->can_byte_swap = 0 ;
0885
0886 if (of_machine_is_compatible("PowerBook2,1"))
0887 chip->can_duplex = 0;
0888 }
0889
0890
0891
0892
0893
0894 static int snd_pmac_detect(struct snd_pmac *chip)
0895 {
0896 struct device_node *sound;
0897 struct device_node *dn;
0898 const unsigned int *prop;
0899 unsigned int l;
0900 struct macio_chip* macio;
0901
0902 if (!machine_is(powermac))
0903 return -ENODEV;
0904
0905 chip->subframe = 0;
0906 chip->revision = 0;
0907 chip->freqs_ok = 0xff;
0908 chip->model = PMAC_AWACS;
0909 chip->can_byte_swap = 1;
0910 chip->can_duplex = 1;
0911 chip->can_capture = 1;
0912 chip->num_freqs = ARRAY_SIZE(awacs_freqs);
0913 chip->freq_table = awacs_freqs;
0914 chip->pdev = NULL;
0915
0916 chip->control_mask = MASK_IEPC | MASK_IEE | 0x11;
0917
0918
0919 if (of_machine_is_compatible("AAPL,3400/2400")
0920 || of_machine_is_compatible("AAPL,3500"))
0921 chip->is_pbook_3400 = 1;
0922 else if (of_machine_is_compatible("PowerBook1,1")
0923 || of_machine_is_compatible("AAPL,PowerBook1998"))
0924 chip->is_pbook_G3 = 1;
0925 chip->node = of_find_node_by_name(NULL, "awacs");
0926 sound = of_node_get(chip->node);
0927
0928
0929
0930
0931
0932 if (!chip->node)
0933 chip->node = of_find_node_by_name(NULL, "davbus");
0934
0935
0936
0937
0938 if (! chip->node) {
0939 chip->node = of_find_node_by_name(NULL, "i2s-a");
0940 if (chip->node && chip->node->parent &&
0941 chip->node->parent->parent) {
0942 if (of_device_is_compatible(chip->node->parent->parent,
0943 "K2-Keylargo"))
0944 chip->is_k2 = 1;
0945 }
0946 }
0947 if (! chip->node)
0948 return -ENODEV;
0949
0950 if (!sound) {
0951 for_each_node_by_name(sound, "sound")
0952 if (sound->parent == chip->node)
0953 break;
0954 }
0955 if (! sound) {
0956 of_node_put(chip->node);
0957 chip->node = NULL;
0958 return -ENODEV;
0959 }
0960 prop = of_get_property(sound, "sub-frame", NULL);
0961 if (prop && *prop < 16)
0962 chip->subframe = *prop;
0963 prop = of_get_property(sound, "layout-id", NULL);
0964 if (prop) {
0965
0966
0967 printk(KERN_INFO "snd-powermac no longer handles any "
0968 "machines with a layout-id property "
0969 "in the device-tree, use snd-aoa.\n");
0970 of_node_put(sound);
0971 of_node_put(chip->node);
0972 chip->node = NULL;
0973 return -ENODEV;
0974 }
0975
0976 if (of_device_is_compatible(sound, "screamer")) {
0977 chip->model = PMAC_SCREAMER;
0978
0979 }
0980 if (of_device_is_compatible(sound, "burgundy")) {
0981 chip->model = PMAC_BURGUNDY;
0982 chip->control_mask = MASK_IEPC | 0x11;
0983 }
0984 if (of_device_is_compatible(sound, "daca")) {
0985 chip->model = PMAC_DACA;
0986 chip->can_capture = 0;
0987 chip->can_duplex = 0;
0988
0989 chip->control_mask = MASK_IEPC | 0x11;
0990 }
0991 if (of_device_is_compatible(sound, "tumbler")) {
0992 chip->model = PMAC_TUMBLER;
0993 chip->can_capture = of_machine_is_compatible("PowerMac4,2")
0994 || of_machine_is_compatible("PowerBook3,2")
0995 || of_machine_is_compatible("PowerBook3,3")
0996 || of_machine_is_compatible("PowerBook4,1")
0997 || of_machine_is_compatible("PowerBook4,2")
0998 || of_machine_is_compatible("PowerBook4,3");
0999 chip->can_duplex = 0;
1000
1001 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1002 chip->freq_table = tumbler_freqs;
1003 chip->control_mask = MASK_IEPC | 0x11;
1004 }
1005 if (of_device_is_compatible(sound, "snapper")) {
1006 chip->model = PMAC_SNAPPER;
1007
1008 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1009 chip->freq_table = tumbler_freqs;
1010 chip->control_mask = MASK_IEPC | 0x11;
1011 }
1012 prop = of_get_property(sound, "device-id", NULL);
1013 if (prop)
1014 chip->device_id = *prop;
1015 dn = of_find_node_by_name(NULL, "perch");
1016 chip->has_iic = (dn != NULL);
1017 of_node_put(dn);
1018
1019
1020
1021
1022 macio = macio_find(chip->node, macio_unknown);
1023 if (macio == NULL)
1024 printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
1025 else {
1026 struct pci_dev *pdev = NULL;
1027
1028 for_each_pci_dev(pdev) {
1029 struct device_node *np = pci_device_to_OF_node(pdev);
1030 if (np && np == macio->of_node) {
1031 chip->pdev = pdev;
1032 break;
1033 }
1034 }
1035 }
1036 if (chip->pdev == NULL)
1037 printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
1038 " device !\n");
1039
1040 detect_byte_swap(chip);
1041
1042
1043
1044 prop = of_get_property(sound, "sample-rates", &l);
1045 if (! prop)
1046 prop = of_get_property(sound, "output-frame-rates", &l);
1047 if (prop) {
1048 int i;
1049 chip->freqs_ok = 0;
1050 for (l /= sizeof(int); l > 0; --l) {
1051 unsigned int r = *prop++;
1052
1053 if (r >= 0x10000)
1054 r >>= 16;
1055 for (i = 0; i < chip->num_freqs; ++i) {
1056 if (r == chip->freq_table[i]) {
1057 chip->freqs_ok |= (1 << i);
1058 break;
1059 }
1060 }
1061 }
1062 } else {
1063
1064 chip->freqs_ok = 1;
1065 }
1066
1067 of_node_put(sound);
1068 return 0;
1069 }
1070
1071 #ifdef PMAC_SUPPORT_AUTOMUTE
1072
1073
1074
1075 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1076 struct snd_ctl_elem_value *ucontrol)
1077 {
1078 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1079 ucontrol->value.integer.value[0] = chip->auto_mute;
1080 return 0;
1081 }
1082
1083 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1084 struct snd_ctl_elem_value *ucontrol)
1085 {
1086 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1087 if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1088 chip->auto_mute = !!ucontrol->value.integer.value[0];
1089 if (chip->update_automute)
1090 chip->update_automute(chip, 1);
1091 return 1;
1092 }
1093 return 0;
1094 }
1095
1096 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1097 struct snd_ctl_elem_value *ucontrol)
1098 {
1099 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1100 if (chip->detect_headphone)
1101 ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1102 else
1103 ucontrol->value.integer.value[0] = 0;
1104 return 0;
1105 }
1106
1107 static const struct snd_kcontrol_new auto_mute_controls[] = {
1108 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1109 .name = "Auto Mute Switch",
1110 .info = snd_pmac_boolean_mono_info,
1111 .get = pmac_auto_mute_get,
1112 .put = pmac_auto_mute_put,
1113 },
1114 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1115 .name = "Headphone Detection",
1116 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1117 .info = snd_pmac_boolean_mono_info,
1118 .get = pmac_hp_detect_get,
1119 },
1120 };
1121
1122 int snd_pmac_add_automute(struct snd_pmac *chip)
1123 {
1124 int err;
1125 chip->auto_mute = 1;
1126 err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1127 if (err < 0) {
1128 printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
1129 return err;
1130 }
1131 chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1132 return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1133 }
1134 #endif
1135
1136
1137
1138
1139 int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1140 {
1141 struct snd_pmac *chip;
1142 struct device_node *np;
1143 int i, err;
1144 unsigned int irq;
1145 unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1146 static const struct snd_device_ops ops = {
1147 .dev_free = snd_pmac_dev_free,
1148 };
1149
1150 *chip_return = NULL;
1151
1152 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1153 if (chip == NULL)
1154 return -ENOMEM;
1155 chip->card = card;
1156
1157 spin_lock_init(&chip->reg_lock);
1158 chip->irq = chip->tx_irq = chip->rx_irq = -1;
1159
1160 chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1161 chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1162
1163 err = snd_pmac_detect(chip);
1164 if (err < 0)
1165 goto __error;
1166
1167 if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1168 snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1169 snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 ||
1170 snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) {
1171 err = -ENOMEM;
1172 goto __error;
1173 }
1174
1175 np = chip->node;
1176 chip->requested = 0;
1177 if (chip->is_k2) {
1178 static const char * const rnames[] = {
1179 "Sound Control", "Sound DMA" };
1180 for (i = 0; i < 2; i ++) {
1181 if (of_address_to_resource(np->parent, i,
1182 &chip->rsrc[i])) {
1183 printk(KERN_ERR "snd: can't translate rsrc "
1184 " %d (%s)\n", i, rnames[i]);
1185 err = -ENODEV;
1186 goto __error;
1187 }
1188 if (request_mem_region(chip->rsrc[i].start,
1189 resource_size(&chip->rsrc[i]),
1190 rnames[i]) == NULL) {
1191 printk(KERN_ERR "snd: can't request rsrc "
1192 " %d (%s: %pR)\n",
1193 i, rnames[i], &chip->rsrc[i]);
1194 err = -ENODEV;
1195 goto __error;
1196 }
1197 chip->requested |= (1 << i);
1198 }
1199 ctrl_addr = chip->rsrc[0].start;
1200 txdma_addr = chip->rsrc[1].start;
1201 rxdma_addr = txdma_addr + 0x100;
1202 } else {
1203 static const char * const rnames[] = {
1204 "Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1205 for (i = 0; i < 3; i ++) {
1206 if (of_address_to_resource(np, i,
1207 &chip->rsrc[i])) {
1208 printk(KERN_ERR "snd: can't translate rsrc "
1209 " %d (%s)\n", i, rnames[i]);
1210 err = -ENODEV;
1211 goto __error;
1212 }
1213 if (request_mem_region(chip->rsrc[i].start,
1214 resource_size(&chip->rsrc[i]),
1215 rnames[i]) == NULL) {
1216 printk(KERN_ERR "snd: can't request rsrc "
1217 " %d (%s: %pR)\n",
1218 i, rnames[i], &chip->rsrc[i]);
1219 err = -ENODEV;
1220 goto __error;
1221 }
1222 chip->requested |= (1 << i);
1223 }
1224 ctrl_addr = chip->rsrc[0].start;
1225 txdma_addr = chip->rsrc[1].start;
1226 rxdma_addr = chip->rsrc[2].start;
1227 }
1228
1229 chip->awacs = ioremap(ctrl_addr, 0x1000);
1230 chip->playback.dma = ioremap(txdma_addr, 0x100);
1231 chip->capture.dma = ioremap(rxdma_addr, 0x100);
1232 if (chip->model <= PMAC_BURGUNDY) {
1233 irq = irq_of_parse_and_map(np, 0);
1234 if (request_irq(irq, snd_pmac_ctrl_intr, 0,
1235 "PMac", (void*)chip)) {
1236 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n",
1237 irq);
1238 err = -EBUSY;
1239 goto __error;
1240 }
1241 chip->irq = irq;
1242 }
1243 irq = irq_of_parse_and_map(np, 1);
1244 if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){
1245 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1246 err = -EBUSY;
1247 goto __error;
1248 }
1249 chip->tx_irq = irq;
1250 irq = irq_of_parse_and_map(np, 2);
1251 if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) {
1252 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1253 err = -EBUSY;
1254 goto __error;
1255 }
1256 chip->rx_irq = irq;
1257
1258 snd_pmac_sound_feature(chip, 1);
1259
1260
1261 if (chip->model <= PMAC_BURGUNDY)
1262 out_le32(&chip->awacs->control, chip->control_mask);
1263
1264
1265
1266
1267 if (chip->is_pbook_3400) {
1268
1269
1270
1271
1272
1273
1274
1275 chip->latch_base = ioremap (0xf301a000, 0x1000);
1276 in_8(chip->latch_base + 0x190);
1277 } else if (chip->is_pbook_G3) {
1278 struct device_node* mio;
1279 for (mio = chip->node->parent; mio; mio = mio->parent) {
1280 if (of_node_name_eq(mio, "mac-io")) {
1281 struct resource r;
1282 if (of_address_to_resource(mio, 0, &r) == 0)
1283 chip->macio_base =
1284 ioremap(r.start, 0x40);
1285 break;
1286 }
1287 }
1288
1289
1290
1291
1292
1293
1294
1295
1296 if (chip->macio_base)
1297 out_8(chip->macio_base + 0x37, 3);
1298 }
1299
1300
1301 snd_pmac_dbdma_reset(chip);
1302
1303 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1304 if (err < 0)
1305 goto __error;
1306
1307 *chip_return = chip;
1308 return 0;
1309
1310 __error:
1311 snd_pmac_free(chip);
1312 return err;
1313 }
1314
1315
1316
1317
1318
1319
1320 #ifdef CONFIG_PM
1321
1322
1323
1324
1325
1326 void snd_pmac_suspend(struct snd_pmac *chip)
1327 {
1328 unsigned long flags;
1329
1330 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1331 if (chip->suspend)
1332 chip->suspend(chip);
1333 spin_lock_irqsave(&chip->reg_lock, flags);
1334 snd_pmac_beep_stop(chip);
1335 spin_unlock_irqrestore(&chip->reg_lock, flags);
1336 if (chip->irq >= 0)
1337 disable_irq(chip->irq);
1338 if (chip->tx_irq >= 0)
1339 disable_irq(chip->tx_irq);
1340 if (chip->rx_irq >= 0)
1341 disable_irq(chip->rx_irq);
1342 snd_pmac_sound_feature(chip, 0);
1343 }
1344
1345 void snd_pmac_resume(struct snd_pmac *chip)
1346 {
1347 snd_pmac_sound_feature(chip, 1);
1348 if (chip->resume)
1349 chip->resume(chip);
1350
1351 if (chip->macio_base && chip->is_pbook_G3)
1352 out_8(chip->macio_base + 0x37, 3);
1353 else if (chip->is_pbook_3400)
1354 in_8(chip->latch_base + 0x190);
1355
1356 snd_pmac_pcm_set_format(chip);
1357
1358 if (chip->irq >= 0)
1359 enable_irq(chip->irq);
1360 if (chip->tx_irq >= 0)
1361 enable_irq(chip->tx_irq);
1362 if (chip->rx_irq >= 0)
1363 enable_irq(chip->rx_irq);
1364
1365 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1366 }
1367
1368 #endif
1369