Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
0004  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
0005  */
0006  
0007 /* Does not work. Warning may block system in capture mode */
0008 /* #define USE_VAR48KRATE */
0009 
0010 #include <linux/io.h>
0011 #include <linux/delay.h>
0012 #include <linux/interrupt.h>
0013 #include <linux/init.h>
0014 #include <linux/pci.h>
0015 #include <linux/slab.h>
0016 #include <linux/gameport.h>
0017 #include <linux/module.h>
0018 #include <linux/mutex.h>
0019 #include <sound/core.h>
0020 #include <sound/info.h>
0021 #include <sound/control.h>
0022 #include <sound/pcm.h>
0023 #include <sound/rawmidi.h>
0024 #include <sound/mpu401.h>
0025 #include <sound/opl3.h>
0026 #include <sound/sb.h>
0027 #include <sound/asoundef.h>
0028 #include <sound/initval.h>
0029 
0030 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
0031 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
0032 MODULE_LICENSE("GPL");
0033 
0034 #if IS_REACHABLE(CONFIG_GAMEPORT)
0035 #define SUPPORT_JOYSTICK 1
0036 #endif
0037 
0038 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;  /* Index 0-MAX */
0039 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;   /* ID for this card */
0040 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
0041 static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
0042 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
0043 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
0044 #ifdef SUPPORT_JOYSTICK
0045 static int joystick_port[SNDRV_CARDS];
0046 #endif
0047 
0048 module_param_array(index, int, NULL, 0444);
0049 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
0050 module_param_array(id, charp, NULL, 0444);
0051 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
0052 module_param_array(enable, bool, NULL, 0444);
0053 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
0054 module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
0055 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
0056 module_param_hw_array(fm_port, long, ioport, NULL, 0444);
0057 MODULE_PARM_DESC(fm_port, "FM port.");
0058 module_param_array(soft_ac3, bool, NULL, 0444);
0059 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
0060 #ifdef SUPPORT_JOYSTICK
0061 module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
0062 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
0063 #endif
0064 
0065 /*
0066  * CM8x38 registers definition
0067  */
0068 
0069 #define CM_REG_FUNCTRL0     0x00
0070 #define CM_RST_CH1      0x00080000
0071 #define CM_RST_CH0      0x00040000
0072 #define CM_CHEN1        0x00020000  /* ch1: enable */
0073 #define CM_CHEN0        0x00010000  /* ch0: enable */
0074 #define CM_PAUSE1       0x00000008  /* ch1: pause */
0075 #define CM_PAUSE0       0x00000004  /* ch0: pause */
0076 #define CM_CHADC1       0x00000002  /* ch1, 0:playback, 1:record */
0077 #define CM_CHADC0       0x00000001  /* ch0, 0:playback, 1:record */
0078 
0079 #define CM_REG_FUNCTRL1     0x04
0080 #define CM_DSFC_MASK        0x0000E000  /* channel 1 (DAC?) sampling frequency */
0081 #define CM_DSFC_SHIFT       13
0082 #define CM_ASFC_MASK        0x00001C00  /* channel 0 (ADC?) sampling frequency */
0083 #define CM_ASFC_SHIFT       10
0084 #define CM_SPDF_1       0x00000200  /* SPDIF IN/OUT at channel B */
0085 #define CM_SPDF_0       0x00000100  /* SPDIF OUT only channel A */
0086 #define CM_SPDFLOOP     0x00000080  /* ext. SPDIIF/IN -> OUT loopback */
0087 #define CM_SPDO2DAC     0x00000040  /* SPDIF/OUT can be heard from internal DAC */
0088 #define CM_INTRM        0x00000020  /* master control block (MCB) interrupt enabled */
0089 #define CM_BREQ         0x00000010  /* bus master enabled */
0090 #define CM_VOICE_EN     0x00000008  /* legacy voice (SB16,FM) */
0091 #define CM_UART_EN      0x00000004  /* legacy UART */
0092 #define CM_JYSTK_EN     0x00000002  /* legacy joystick */
0093 #define CM_ZVPORT       0x00000001  /* ZVPORT */
0094 
0095 #define CM_REG_CHFORMAT     0x08
0096 
0097 #define CM_CHB3D5C      0x80000000  /* 5,6 channels */
0098 #define CM_FMOFFSET2        0x40000000  /* initial FM PCM offset 2 when Fmute=1 */
0099 #define CM_CHB3D        0x20000000  /* 4 channels */
0100 
0101 #define CM_CHIP_MASK1       0x1f000000
0102 #define CM_CHIP_037     0x01000000
0103 #define CM_SETLAT48     0x00800000  /* set latency timer 48h */
0104 #define CM_EDGEIRQ      0x00400000  /* emulated edge trigger legacy IRQ */
0105 #define CM_SPD24SEL39       0x00200000  /* 24-bit spdif: model 039 */
0106 #define CM_AC3EN1       0x00100000  /* enable AC3: model 037 */
0107 #define CM_SPDIF_SELECT1    0x00080000  /* for model <= 037 ? */
0108 #define CM_SPD24SEL     0x00020000  /* 24bit spdif: model 037 */
0109 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
0110 
0111 #define CM_ADCBITLEN_MASK   0x0000C000  
0112 #define CM_ADCBITLEN_16     0x00000000
0113 #define CM_ADCBITLEN_15     0x00004000
0114 #define CM_ADCBITLEN_14     0x00008000
0115 #define CM_ADCBITLEN_13     0x0000C000
0116 
0117 #define CM_ADCDACLEN_MASK   0x00003000  /* model 037 */
0118 #define CM_ADCDACLEN_060    0x00000000
0119 #define CM_ADCDACLEN_066    0x00001000
0120 #define CM_ADCDACLEN_130    0x00002000
0121 #define CM_ADCDACLEN_280    0x00003000
0122 
0123 #define CM_ADCDLEN_MASK     0x00003000  /* model 039 */
0124 #define CM_ADCDLEN_ORIGINAL 0x00000000
0125 #define CM_ADCDLEN_EXTRA    0x00001000
0126 #define CM_ADCDLEN_24K      0x00002000
0127 #define CM_ADCDLEN_WEIGHT   0x00003000
0128 
0129 #define CM_CH1_SRATE_176K   0x00000800
0130 #define CM_CH1_SRATE_96K    0x00000800  /* model 055? */
0131 #define CM_CH1_SRATE_88K    0x00000400
0132 #define CM_CH0_SRATE_176K   0x00000200
0133 #define CM_CH0_SRATE_96K    0x00000200  /* model 055? */
0134 #define CM_CH0_SRATE_88K    0x00000100
0135 #define CM_CH0_SRATE_128K   0x00000300
0136 #define CM_CH0_SRATE_MASK   0x00000300
0137 
0138 #define CM_SPDIF_INVERSE2   0x00000080  /* model 055? */
0139 #define CM_DBLSPDS      0x00000040  /* double SPDIF sample rate 88.2/96 */
0140 #define CM_POLVALID     0x00000020  /* inverse SPDIF/IN valid bit */
0141 #define CM_SPDLOCKED        0x00000010
0142 
0143 #define CM_CH1FMT_MASK      0x0000000C  /* bit 3: 16 bits, bit 2: stereo */
0144 #define CM_CH1FMT_SHIFT     2
0145 #define CM_CH0FMT_MASK      0x00000003  /* bit 1: 16 bits, bit 0: stereo */
0146 #define CM_CH0FMT_SHIFT     0
0147 
0148 #define CM_REG_INT_HLDCLR   0x0C
0149 #define CM_CHIP_MASK2       0xff000000
0150 #define CM_CHIP_8768        0x20000000
0151 #define CM_CHIP_055     0x08000000
0152 #define CM_CHIP_039     0x04000000
0153 #define CM_CHIP_039_6CH     0x01000000
0154 #define CM_UNKNOWN_INT_EN   0x00080000  /* ? */
0155 #define CM_TDMA_INT_EN      0x00040000
0156 #define CM_CH1_INT_EN       0x00020000
0157 #define CM_CH0_INT_EN       0x00010000
0158 
0159 #define CM_REG_INT_STATUS   0x10
0160 #define CM_INTR         0x80000000
0161 #define CM_VCO          0x08000000  /* Voice Control? CMI8738 */
0162 #define CM_MCBINT       0x04000000  /* Master Control Block abort cond.? */
0163 #define CM_UARTINT      0x00010000
0164 #define CM_LTDMAINT     0x00008000
0165 #define CM_HTDMAINT     0x00004000
0166 #define CM_XDO46        0x00000080  /* Modell 033? Direct programming EEPROM (read data register) */
0167 #define CM_LHBTOG       0x00000040  /* High/Low status from DMA ctrl register */
0168 #define CM_LEG_HDMA     0x00000020  /* Legacy is in High DMA channel */
0169 #define CM_LEG_STEREO       0x00000010  /* Legacy is in Stereo mode */
0170 #define CM_CH1BUSY      0x00000008
0171 #define CM_CH0BUSY      0x00000004
0172 #define CM_CHINT1       0x00000002
0173 #define CM_CHINT0       0x00000001
0174 
0175 #define CM_REG_LEGACY_CTRL  0x14
0176 #define CM_NXCHG        0x80000000  /* don't map base reg dword->sample */
0177 #define CM_VMPU_MASK        0x60000000  /* MPU401 i/o port address */
0178 #define CM_VMPU_330     0x00000000
0179 #define CM_VMPU_320     0x20000000
0180 #define CM_VMPU_310     0x40000000
0181 #define CM_VMPU_300     0x60000000
0182 #define CM_ENWR8237     0x10000000  /* enable bus master to write 8237 base reg */
0183 #define CM_VSBSEL_MASK      0x0C000000  /* SB16 base address */
0184 #define CM_VSBSEL_220       0x00000000
0185 #define CM_VSBSEL_240       0x04000000
0186 #define CM_VSBSEL_260       0x08000000
0187 #define CM_VSBSEL_280       0x0C000000
0188 #define CM_FMSEL_MASK       0x03000000  /* FM OPL3 base address */
0189 #define CM_FMSEL_388        0x00000000
0190 #define CM_FMSEL_3C8        0x01000000
0191 #define CM_FMSEL_3E0        0x02000000
0192 #define CM_FMSEL_3E8        0x03000000
0193 #define CM_ENSPDOUT     0x00800000  /* enable XSPDIF/OUT to I/O interface */
0194 #define CM_SPDCOPYRHT       0x00400000  /* spdif in/out copyright bit */
0195 #define CM_DAC2SPDO     0x00200000  /* enable wave+fm_midi -> SPDIF/OUT */
0196 #define CM_INVIDWEN     0x00100000  /* internal vendor ID write enable, model 039? */
0197 #define CM_SETRETRY     0x00100000  /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
0198 #define CM_C_EEACCESS       0x00080000  /* direct programming eeprom regs */
0199 #define CM_C_EECS       0x00040000
0200 #define CM_C_EEDI46     0x00020000
0201 #define CM_C_EECK46     0x00010000
0202 #define CM_CHB3D6C      0x00008000  /* 5.1 channels support */
0203 #define CM_CENTR2LIN        0x00004000  /* line-in as center out */
0204 #define CM_BASE2LIN     0x00002000  /* line-in as bass out */
0205 #define CM_EXBASEN      0x00001000  /* external bass input enable */
0206 
0207 #define CM_REG_MISC_CTRL    0x18
0208 #define CM_PWD          0x80000000  /* power down */
0209 #define CM_RESET        0x40000000
0210 #define CM_SFIL_MASK        0x30000000  /* filter control at front end DAC, model 037? */
0211 #define CM_VMGAIN       0x10000000  /* analog master amp +6dB, model 039? */
0212 #define CM_TXVX         0x08000000  /* model 037? */
0213 #define CM_N4SPK3D      0x04000000  /* copy front to rear */
0214 #define CM_SPDO5V       0x02000000  /* 5V spdif output (1 = 0.5v (coax)) */
0215 #define CM_SPDIF48K     0x01000000  /* write */
0216 #define CM_SPATUS48K        0x01000000  /* read */
0217 #define CM_ENDBDAC      0x00800000  /* enable double dac */
0218 #define CM_XCHGDAC      0x00400000  /* 0: front=ch0, 1: front=ch1 */
0219 #define CM_SPD32SEL     0x00200000  /* 0: 16bit SPDIF, 1: 32bit */
0220 #define CM_SPDFLOOPI        0x00100000  /* int. SPDIF-OUT -> int. IN */
0221 #define CM_FM_EN        0x00080000  /* enable legacy FM */
0222 #define CM_AC3EN2       0x00040000  /* enable AC3: model 039 */
0223 #define CM_ENWRASID     0x00010000  /* choose writable internal SUBID (audio) */
0224 #define CM_VIDWPDSB     0x00010000  /* model 037? */
0225 #define CM_SPDF_AC97        0x00008000  /* 0: SPDIF/OUT 44.1K, 1: 48K */
0226 #define CM_MASK_EN      0x00004000  /* activate channel mask on legacy DMA */
0227 #define CM_ENWRMSID     0x00002000  /* choose writable internal SUBID (modem) */
0228 #define CM_VIDWPPRT     0x00002000  /* model 037? */
0229 #define CM_SFILENB      0x00001000  /* filter stepping at front end DAC, model 037? */
0230 #define CM_MMODE_MASK       0x00000E00  /* model DAA interface mode */
0231 #define CM_SPDIF_SELECT2    0x00000100  /* for model > 039 ? */
0232 #define CM_ENCENTER     0x00000080
0233 #define CM_FLINKON      0x00000040  /* force modem link detection on, model 037 */
0234 #define CM_MUTECH1      0x00000040  /* mute PCI ch1 to DAC */
0235 #define CM_FLINKOFF     0x00000020  /* force modem link detection off, model 037 */
0236 #define CM_MIDSMP       0x00000010  /* 1/2 interpolation at front end DAC */
0237 #define CM_UPDDMA_MASK      0x0000000C  /* TDMA position update notification */
0238 #define CM_UPDDMA_2048      0x00000000
0239 #define CM_UPDDMA_1024      0x00000004
0240 #define CM_UPDDMA_512       0x00000008
0241 #define CM_UPDDMA_256       0x0000000C      
0242 #define CM_TWAIT_MASK       0x00000003  /* model 037 */
0243 #define CM_TWAIT1       0x00000002  /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
0244 #define CM_TWAIT0       0x00000001  /* i/o cycle, 0: 4, 1: 6 PCICLKs */
0245 
0246 #define CM_REG_TDMA_POSITION    0x1C
0247 #define CM_TDMA_CNT_MASK    0xFFFF0000  /* current byte/word count */
0248 #define CM_TDMA_ADR_MASK    0x0000FFFF  /* current address */
0249 
0250     /* byte */
0251 #define CM_REG_MIXER0       0x20
0252 #define CM_REG_SBVR     0x20        /* write: sb16 version */
0253 #define CM_REG_DEV      0x20        /* read: hardware device version */
0254 
0255 #define CM_REG_MIXER21      0x21
0256 #define CM_UNKNOWN_21_MASK  0x78        /* ? */
0257 #define CM_X_ADPCM      0x04        /* SB16 ADPCM enable */
0258 #define CM_PROINV       0x02        /* SBPro left/right channel switching */
0259 #define CM_X_SB16       0x01        /* SB16 compatible */
0260 
0261 #define CM_REG_SB16_DATA    0x22
0262 #define CM_REG_SB16_ADDR    0x23
0263 
0264 #define CM_REFFREQ_XIN      (315*1000*1000)/22  /* 14.31818 Mhz reference clock frequency pin XIN */
0265 #define CM_ADCMULT_XIN      512         /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
0266 #define CM_TOLERANCE_RATE   0.001           /* Tolerance sample rate pitch (1000ppm) */
0267 #define CM_MAXIMUM_RATE     80000000        /* Note more than 80MHz */
0268 
0269 #define CM_REG_MIXER1       0x24
0270 #define CM_FMMUTE       0x80    /* mute FM */
0271 #define CM_FMMUTE_SHIFT     7
0272 #define CM_WSMUTE       0x40    /* mute PCM */
0273 #define CM_WSMUTE_SHIFT     6
0274 #define CM_REAR2LIN     0x20    /* lin-in -> rear line out */
0275 #define CM_REAR2LIN_SHIFT   5
0276 #define CM_REAR2FRONT       0x10    /* exchange rear/front */
0277 #define CM_REAR2FRONT_SHIFT 4
0278 #define CM_WAVEINL      0x08    /* digital wave rec. left chan */
0279 #define CM_WAVEINL_SHIFT    3
0280 #define CM_WAVEINR      0x04    /* digical wave rec. right */
0281 #define CM_WAVEINR_SHIFT    2
0282 #define CM_X3DEN        0x02    /* 3D surround enable */
0283 #define CM_X3DEN_SHIFT      1
0284 #define CM_CDPLAY       0x01    /* enable SPDIF/IN PCM -> DAC */
0285 #define CM_CDPLAY_SHIFT     0
0286 
0287 #define CM_REG_MIXER2       0x25
0288 #define CM_RAUXREN      0x80    /* AUX right capture */
0289 #define CM_RAUXREN_SHIFT    7
0290 #define CM_RAUXLEN      0x40    /* AUX left capture */
0291 #define CM_RAUXLEN_SHIFT    6
0292 #define CM_VAUXRM       0x20    /* AUX right mute */
0293 #define CM_VAUXRM_SHIFT     5
0294 #define CM_VAUXLM       0x10    /* AUX left mute */
0295 #define CM_VAUXLM_SHIFT     4
0296 #define CM_VADMIC_MASK      0x0e    /* mic gain level (0-3) << 1 */
0297 #define CM_VADMIC_SHIFT     1
0298 #define CM_MICGAINZ     0x01    /* mic boost */
0299 #define CM_MICGAINZ_SHIFT   0
0300 
0301 #define CM_REG_AUX_VOL      0x26
0302 #define CM_VAUXL_MASK       0xf0
0303 #define CM_VAUXR_MASK       0x0f
0304 
0305 #define CM_REG_MISC     0x27
0306 #define CM_UNKNOWN_27_MASK  0xd8    /* ? */
0307 #define CM_XGPO1        0x20
0308 // #define CM_XGPBIO        0x04
0309 #define CM_MIC_CENTER_LFE   0x04    /* mic as center/lfe out? (model 039 or later?) */
0310 #define CM_SPDIF_INVERSE    0x04    /* spdif input phase inverse (model 037) */
0311 #define CM_SPDVALID     0x02    /* spdif input valid check */
0312 #define CM_DMAUTO       0x01    /* SB16 DMA auto detect */
0313 
0314 #define CM_REG_AC97     0x28    /* hmmm.. do we have ac97 link? */
0315 /*
0316  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
0317  * or identical with AC97 codec?
0318  */
0319 #define CM_REG_EXTERN_CODEC CM_REG_AC97
0320 
0321 /*
0322  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
0323  */
0324 #define CM_REG_MPU_PCI      0x40
0325 
0326 /*
0327  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
0328  */
0329 #define CM_REG_FM_PCI       0x50
0330 
0331 /*
0332  * access from SB-mixer port
0333  */
0334 #define CM_REG_EXTENT_IND   0xf0
0335 #define CM_VPHONE_MASK      0xe0    /* Phone volume control (0-3) << 5 */
0336 #define CM_VPHONE_SHIFT     5
0337 #define CM_VPHOM        0x10    /* Phone mute control */
0338 #define CM_VSPKM        0x08    /* Speaker mute control, default high */
0339 #define CM_RLOOPREN     0x04    /* Rec. R-channel enable */
0340 #define CM_RLOOPLEN     0x02    /* Rec. L-channel enable */
0341 #define CM_VADMIC3      0x01    /* Mic record boost */
0342 
0343 /*
0344  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
0345  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
0346  * unit (readonly?).
0347  */
0348 #define CM_REG_PLL      0xf8
0349 
0350 /*
0351  * extended registers
0352  */
0353 #define CM_REG_CH0_FRAME1   0x80    /* write: base address */
0354 #define CM_REG_CH0_FRAME2   0x84    /* read: current address */
0355 #define CM_REG_CH1_FRAME1   0x88    /* 0-15: count of samples at bus master; buffer size */
0356 #define CM_REG_CH1_FRAME2   0x8C    /* 16-31: count of samples at codec; fragment size */
0357 
0358 #define CM_REG_EXT_MISC     0x90
0359 #define CM_ADC48K44K        0x10000000  /* ADC parameters group, 0: 44k, 1: 48k */
0360 #define CM_CHB3D8C      0x00200000  /* 7.1 channels support */
0361 #define CM_SPD32FMT     0x00100000  /* SPDIF/IN 32k sample rate */
0362 #define CM_ADC2SPDIF        0x00080000  /* ADC output to SPDIF/OUT */
0363 #define CM_SHAREADC     0x00040000  /* DAC in ADC as Center/LFE */
0364 #define CM_REALTCMP     0x00020000  /* monitor the CMPL/CMPR of ADC */
0365 #define CM_INVLRCK      0x00010000  /* invert ZVPORT's LRCK */
0366 #define CM_UNKNOWN_90_MASK  0x0000FFFF  /* ? */
0367 
0368 /*
0369  * size of i/o region
0370  */
0371 #define CM_EXTENT_CODEC   0x100
0372 #define CM_EXTENT_MIDI    0x2
0373 #define CM_EXTENT_SYNTH   0x4
0374 
0375 
0376 /*
0377  * channels for playback / capture
0378  */
0379 #define CM_CH_PLAY  0
0380 #define CM_CH_CAPT  1
0381 
0382 /*
0383  * flags to check device open/close
0384  */
0385 #define CM_OPEN_NONE    0
0386 #define CM_OPEN_CH_MASK 0x01
0387 #define CM_OPEN_DAC 0x10
0388 #define CM_OPEN_ADC 0x20
0389 #define CM_OPEN_SPDIF   0x40
0390 #define CM_OPEN_MCHAN   0x80
0391 #define CM_OPEN_PLAYBACK    (CM_CH_PLAY | CM_OPEN_DAC)
0392 #define CM_OPEN_PLAYBACK2   (CM_CH_CAPT | CM_OPEN_DAC)
0393 #define CM_OPEN_PLAYBACK_MULTI  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
0394 #define CM_OPEN_CAPTURE     (CM_CH_CAPT | CM_OPEN_ADC)
0395 #define CM_OPEN_SPDIF_PLAYBACK  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
0396 #define CM_OPEN_SPDIF_CAPTURE   (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
0397 
0398 
0399 #if CM_CH_PLAY == 1
0400 #define CM_PLAYBACK_SRATE_176K  CM_CH1_SRATE_176K
0401 #define CM_PLAYBACK_SPDF    CM_SPDF_1
0402 #define CM_CAPTURE_SPDF     CM_SPDF_0
0403 #else
0404 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
0405 #define CM_PLAYBACK_SPDF    CM_SPDF_0
0406 #define CM_CAPTURE_SPDF     CM_SPDF_1
0407 #endif
0408 
0409 
0410 /*
0411  * driver data
0412  */
0413 
0414 struct cmipci_pcm {
0415     struct snd_pcm_substream *substream;
0416     u8 running;     /* dac/adc running? */
0417     u8 fmt;         /* format bits */
0418     u8 is_dac;
0419     u8 needs_silencing;
0420     unsigned int dma_size;  /* in frames */
0421     unsigned int shift;
0422     unsigned int ch;    /* channel (0/1) */
0423     unsigned int offset;    /* physical address of the buffer */
0424 };
0425 
0426 /* mixer elements toggled/resumed during ac3 playback */
0427 struct cmipci_mixer_auto_switches {
0428     const char *name;   /* switch to toggle */
0429     int toggle_on;      /* value to change when ac3 mode */
0430 };
0431 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
0432     {"PCM Playback Switch", 0},
0433     {"IEC958 Output Switch", 1},
0434     {"IEC958 Mix Analog", 0},
0435     // {"IEC958 Out To DAC", 1}, // no longer used
0436     {"IEC958 Loop", 0},
0437 };
0438 #define CM_SAVED_MIXERS     ARRAY_SIZE(cm_saved_mixer)
0439 
0440 struct cmipci {
0441     struct snd_card *card;
0442 
0443     struct pci_dev *pci;
0444     unsigned int device;    /* device ID */
0445     int irq;
0446 
0447     unsigned long iobase;
0448     unsigned int ctrl;  /* FUNCTRL0 current value */
0449 
0450     struct snd_pcm *pcm;        /* DAC/ADC PCM */
0451     struct snd_pcm *pcm2;   /* 2nd DAC */
0452     struct snd_pcm *pcm_spdif;  /* SPDIF */
0453 
0454     int chip_version;
0455     int max_channels;
0456     unsigned int can_ac3_sw: 1;
0457     unsigned int can_ac3_hw: 1;
0458     unsigned int can_multi_ch: 1;
0459     unsigned int can_96k: 1;    /* samplerate above 48k */
0460     unsigned int do_soft_ac3: 1;
0461 
0462     unsigned int spdif_playback_avail: 1;   /* spdif ready? */
0463     unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
0464     int spdif_counter;  /* for software AC3 */
0465 
0466     unsigned int dig_status;
0467     unsigned int dig_pcm_status;
0468 
0469     struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
0470 
0471     int opened[2];  /* open mode */
0472     struct mutex open_mutex;
0473 
0474     unsigned int mixer_insensitive: 1;
0475     struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
0476     int mixer_res_status[CM_SAVED_MIXERS];
0477 
0478     struct cmipci_pcm channel[2];   /* ch0 - DAC, ch1 - ADC or 2nd DAC */
0479 
0480     /* external MIDI */
0481     struct snd_rawmidi *rmidi;
0482 
0483 #ifdef SUPPORT_JOYSTICK
0484     struct gameport *gameport;
0485 #endif
0486 
0487     spinlock_t reg_lock;
0488 
0489 #ifdef CONFIG_PM_SLEEP
0490     unsigned int saved_regs[0x20];
0491     unsigned char saved_mixers[0x20];
0492 #endif
0493 };
0494 
0495 
0496 /* read/write operations for dword register */
0497 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
0498 {
0499     outl(data, cm->iobase + cmd);
0500 }
0501 
0502 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
0503 {
0504     return inl(cm->iobase + cmd);
0505 }
0506 
0507 /* read/write operations for word register */
0508 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
0509 {
0510     outw(data, cm->iobase + cmd);
0511 }
0512 
0513 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
0514 {
0515     return inw(cm->iobase + cmd);
0516 }
0517 
0518 /* read/write operations for byte register */
0519 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
0520 {
0521     outb(data, cm->iobase + cmd);
0522 }
0523 
0524 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
0525 {
0526     return inb(cm->iobase + cmd);
0527 }
0528 
0529 /* bit operations for dword register */
0530 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
0531 {
0532     unsigned int val, oval;
0533     val = oval = inl(cm->iobase + cmd);
0534     val |= flag;
0535     if (val == oval)
0536         return 0;
0537     outl(val, cm->iobase + cmd);
0538     return 1;
0539 }
0540 
0541 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
0542 {
0543     unsigned int val, oval;
0544     val = oval = inl(cm->iobase + cmd);
0545     val &= ~flag;
0546     if (val == oval)
0547         return 0;
0548     outl(val, cm->iobase + cmd);
0549     return 1;
0550 }
0551 
0552 /* bit operations for byte register */
0553 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
0554 {
0555     unsigned char val, oval;
0556     val = oval = inb(cm->iobase + cmd);
0557     val |= flag;
0558     if (val == oval)
0559         return 0;
0560     outb(val, cm->iobase + cmd);
0561     return 1;
0562 }
0563 
0564 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
0565 {
0566     unsigned char val, oval;
0567     val = oval = inb(cm->iobase + cmd);
0568     val &= ~flag;
0569     if (val == oval)
0570         return 0;
0571     outb(val, cm->iobase + cmd);
0572     return 1;
0573 }
0574 
0575 
0576 /*
0577  * PCM interface
0578  */
0579 
0580 /*
0581  * calculate frequency
0582  */
0583 
0584 static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
0585 
0586 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
0587 {
0588     unsigned int i;
0589 
0590     for (i = 0; i < ARRAY_SIZE(rates); i++) {
0591         if (rates[i] == rate)
0592             return i;
0593     }
0594     snd_BUG();
0595     return 0;
0596 }
0597 
0598 #ifdef USE_VAR48KRATE
0599 /*
0600  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
0601  * does it this way .. maybe not.  Never get any information from C-Media about
0602  * that <werner@suse.de>.
0603  */
0604 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
0605 {
0606     unsigned int delta, tolerance;
0607     int xm, xn, xr;
0608 
0609     for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
0610         rate <<= 1;
0611     *n = -1;
0612     if (*r > 0xff)
0613         goto out;
0614     tolerance = rate*CM_TOLERANCE_RATE;
0615 
0616     for (xn = (1+2); xn < (0x1f+2); xn++) {
0617         for (xm = (1+2); xm < (0xff+2); xm++) {
0618             xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
0619 
0620             if (xr < rate)
0621                 delta = rate - xr;
0622             else
0623                 delta = xr - rate;
0624 
0625             /*
0626              * If we found one, remember this,
0627              * and try to find a closer one
0628              */
0629             if (delta < tolerance) {
0630                 tolerance = delta;
0631                 *m = xm - 2;
0632                 *n = xn - 2;
0633             }
0634         }
0635     }
0636 out:
0637     return (*n > -1);
0638 }
0639 
0640 /*
0641  * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
0642  * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
0643  * at the register CM_REG_FUNCTRL1 (0x04).
0644  * Problem: other ways are also possible (any information about that?)
0645  */
0646 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
0647 {
0648     unsigned int reg = CM_REG_PLL + slot;
0649     /*
0650      * Guess that this programs at reg. 0x04 the pos 15:13/12:10
0651      * for DSFC/ASFC (000 up to 111).
0652      */
0653 
0654     /* FIXME: Init (Do we've to set an other register first before programming?) */
0655 
0656     /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
0657     snd_cmipci_write_b(cm, reg, rate>>8);
0658     snd_cmipci_write_b(cm, reg, rate&0xff);
0659 
0660     /* FIXME: Setup (Do we've to set an other register first to enable this?) */
0661 }
0662 #endif /* USE_VAR48KRATE */
0663 
0664 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
0665                       struct snd_pcm_hw_params *hw_params)
0666 {
0667     struct cmipci *cm = snd_pcm_substream_chip(substream);
0668     if (params_channels(hw_params) > 2) {
0669         mutex_lock(&cm->open_mutex);
0670         if (cm->opened[CM_CH_PLAY]) {
0671             mutex_unlock(&cm->open_mutex);
0672             return -EBUSY;
0673         }
0674         /* reserve the channel A */
0675         cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
0676         mutex_unlock(&cm->open_mutex);
0677     }
0678     return 0;
0679 }
0680 
0681 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
0682 {
0683     int reset = CM_RST_CH0 << (cm->channel[ch].ch);
0684     snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
0685     snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
0686     udelay(10);
0687 }
0688 
0689 
0690 /*
0691  */
0692 
0693 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
0694 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
0695     .count = 3,
0696     .list = hw_channels,
0697     .mask = 0,
0698 };
0699 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
0700     .count = 4,
0701     .list = hw_channels,
0702     .mask = 0,
0703 };
0704 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
0705     .count = 5,
0706     .list = hw_channels,
0707     .mask = 0,
0708 };
0709 
0710 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
0711 {
0712     if (channels > 2) {
0713         if (!cm->can_multi_ch || !rec->ch)
0714             return -EINVAL;
0715         if (rec->fmt != 0x03) /* stereo 16bit only */
0716             return -EINVAL;
0717     }
0718 
0719     if (cm->can_multi_ch) {
0720         spin_lock_irq(&cm->reg_lock);
0721         if (channels > 2) {
0722             snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
0723             snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
0724         } else {
0725             snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
0726             snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
0727         }
0728         if (channels == 8)
0729             snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
0730         else
0731             snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
0732         if (channels == 6) {
0733             snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
0734             snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
0735         } else {
0736             snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
0737             snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
0738         }
0739         if (channels == 4)
0740             snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
0741         else
0742             snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
0743         spin_unlock_irq(&cm->reg_lock);
0744     }
0745     return 0;
0746 }
0747 
0748 
0749 /*
0750  * prepare playback/capture channel
0751  * channel to be used must have been set in rec->ch.
0752  */
0753 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
0754                  struct snd_pcm_substream *substream)
0755 {
0756     unsigned int reg, freq, freq_ext, val;
0757     unsigned int period_size;
0758     struct snd_pcm_runtime *runtime = substream->runtime;
0759 
0760     rec->fmt = 0;
0761     rec->shift = 0;
0762     if (snd_pcm_format_width(runtime->format) >= 16) {
0763         rec->fmt |= 0x02;
0764         if (snd_pcm_format_width(runtime->format) > 16)
0765             rec->shift++; /* 24/32bit */
0766     }
0767     if (runtime->channels > 1)
0768         rec->fmt |= 0x01;
0769     if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
0770         dev_dbg(cm->card->dev, "cannot set dac channels\n");
0771         return -EINVAL;
0772     }
0773 
0774     rec->offset = runtime->dma_addr;
0775     /* buffer and period sizes in frame */
0776     rec->dma_size = runtime->buffer_size << rec->shift;
0777     period_size = runtime->period_size << rec->shift;
0778     if (runtime->channels > 2) {
0779         /* multi-channels */
0780         rec->dma_size = (rec->dma_size * runtime->channels) / 2;
0781         period_size = (period_size * runtime->channels) / 2;
0782     }
0783 
0784     spin_lock_irq(&cm->reg_lock);
0785 
0786     /* set buffer address */
0787     reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
0788     snd_cmipci_write(cm, reg, rec->offset);
0789     /* program sample counts */
0790     reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
0791     snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
0792     snd_cmipci_write_w(cm, reg + 2, period_size - 1);
0793 
0794     /* set adc/dac flag */
0795     val = rec->ch ? CM_CHADC1 : CM_CHADC0;
0796     if (rec->is_dac)
0797         cm->ctrl &= ~val;
0798     else
0799         cm->ctrl |= val;
0800     snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
0801     /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
0802 
0803     /* set sample rate */
0804     freq = 0;
0805     freq_ext = 0;
0806     if (runtime->rate > 48000)
0807         switch (runtime->rate) {
0808         case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
0809         case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
0810         case 128000: freq_ext = CM_CH0_SRATE_128K; break;
0811         default:     snd_BUG(); break;
0812         }
0813     else
0814         freq = snd_cmipci_rate_freq(runtime->rate);
0815     val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
0816     if (rec->ch) {
0817         val &= ~CM_DSFC_MASK;
0818         val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
0819     } else {
0820         val &= ~CM_ASFC_MASK;
0821         val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
0822     }
0823     snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
0824     dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
0825 
0826     /* set format */
0827     val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
0828     if (rec->ch) {
0829         val &= ~CM_CH1FMT_MASK;
0830         val |= rec->fmt << CM_CH1FMT_SHIFT;
0831     } else {
0832         val &= ~CM_CH0FMT_MASK;
0833         val |= rec->fmt << CM_CH0FMT_SHIFT;
0834     }
0835     if (cm->can_96k) {
0836         val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
0837         val |= freq_ext << (rec->ch * 2);
0838     }
0839     snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
0840     dev_dbg(cm->card->dev, "chformat = %08x\n", val);
0841 
0842     if (!rec->is_dac && cm->chip_version) {
0843         if (runtime->rate > 44100)
0844             snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
0845         else
0846             snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
0847     }
0848 
0849     rec->running = 0;
0850     spin_unlock_irq(&cm->reg_lock);
0851 
0852     return 0;
0853 }
0854 
0855 /*
0856  * PCM trigger/stop
0857  */
0858 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
0859                   int cmd)
0860 {
0861     unsigned int inthld, chen, reset, pause;
0862     int result = 0;
0863 
0864     inthld = CM_CH0_INT_EN << rec->ch;
0865     chen = CM_CHEN0 << rec->ch;
0866     reset = CM_RST_CH0 << rec->ch;
0867     pause = CM_PAUSE0 << rec->ch;
0868 
0869     spin_lock(&cm->reg_lock);
0870     switch (cmd) {
0871     case SNDRV_PCM_TRIGGER_START:
0872         rec->running = 1;
0873         /* set interrupt */
0874         snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
0875         cm->ctrl |= chen;
0876         /* enable channel */
0877         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
0878         dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
0879         break;
0880     case SNDRV_PCM_TRIGGER_STOP:
0881         rec->running = 0;
0882         /* disable interrupt */
0883         snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
0884         /* reset */
0885         cm->ctrl &= ~chen;
0886         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
0887         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
0888         rec->needs_silencing = rec->is_dac;
0889         break;
0890     case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
0891     case SNDRV_PCM_TRIGGER_SUSPEND:
0892         cm->ctrl |= pause;
0893         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
0894         break;
0895     case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
0896     case SNDRV_PCM_TRIGGER_RESUME:
0897         cm->ctrl &= ~pause;
0898         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
0899         break;
0900     default:
0901         result = -EINVAL;
0902         break;
0903     }
0904     spin_unlock(&cm->reg_lock);
0905     return result;
0906 }
0907 
0908 /*
0909  * return the current pointer
0910  */
0911 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
0912                         struct snd_pcm_substream *substream)
0913 {
0914     size_t ptr;
0915     unsigned int reg, rem, tries;
0916 
0917     if (!rec->running)
0918         return 0;
0919 #if 1 // this seems better..
0920     reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
0921     for (tries = 0; tries < 3; tries++) {
0922         rem = snd_cmipci_read_w(cm, reg);
0923         if (rem < rec->dma_size)
0924             goto ok;
0925     } 
0926     dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
0927     return SNDRV_PCM_POS_XRUN;
0928 ok:
0929     ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
0930 #else
0931     reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
0932     ptr = snd_cmipci_read(cm, reg) - rec->offset;
0933     ptr = bytes_to_frames(substream->runtime, ptr);
0934 #endif
0935     if (substream->runtime->channels > 2)
0936         ptr = (ptr * 2) / substream->runtime->channels;
0937     return ptr;
0938 }
0939 
0940 /*
0941  * playback
0942  */
0943 
0944 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
0945                        int cmd)
0946 {
0947     struct cmipci *cm = snd_pcm_substream_chip(substream);
0948     return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
0949 }
0950 
0951 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
0952 {
0953     struct cmipci *cm = snd_pcm_substream_chip(substream);
0954     return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
0955 }
0956 
0957 
0958 
0959 /*
0960  * capture
0961  */
0962 
0963 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
0964                      int cmd)
0965 {
0966     struct cmipci *cm = snd_pcm_substream_chip(substream);
0967     return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
0968 }
0969 
0970 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
0971 {
0972     struct cmipci *cm = snd_pcm_substream_chip(substream);
0973     return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
0974 }
0975 
0976 
0977 /*
0978  * hw preparation for spdif
0979  */
0980 
0981 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
0982                      struct snd_ctl_elem_info *uinfo)
0983 {
0984     uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
0985     uinfo->count = 1;
0986     return 0;
0987 }
0988 
0989 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
0990                     struct snd_ctl_elem_value *ucontrol)
0991 {
0992     struct cmipci *chip = snd_kcontrol_chip(kcontrol);
0993     int i;
0994 
0995     spin_lock_irq(&chip->reg_lock);
0996     for (i = 0; i < 4; i++)
0997         ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
0998     spin_unlock_irq(&chip->reg_lock);
0999     return 0;
1000 }
1001 
1002 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1003                      struct snd_ctl_elem_value *ucontrol)
1004 {
1005     struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1006     int i, change;
1007     unsigned int val;
1008 
1009     val = 0;
1010     spin_lock_irq(&chip->reg_lock);
1011     for (i = 0; i < 4; i++)
1012         val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1013     change = val != chip->dig_status;
1014     chip->dig_status = val;
1015     spin_unlock_irq(&chip->reg_lock);
1016     return change;
1017 }
1018 
1019 static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1020 {
1021     .iface =    SNDRV_CTL_ELEM_IFACE_PCM,
1022     .name =     SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1023     .info =     snd_cmipci_spdif_default_info,
1024     .get =      snd_cmipci_spdif_default_get,
1025     .put =      snd_cmipci_spdif_default_put
1026 };
1027 
1028 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1029                       struct snd_ctl_elem_info *uinfo)
1030 {
1031     uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1032     uinfo->count = 1;
1033     return 0;
1034 }
1035 
1036 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1037                      struct snd_ctl_elem_value *ucontrol)
1038 {
1039     ucontrol->value.iec958.status[0] = 0xff;
1040     ucontrol->value.iec958.status[1] = 0xff;
1041     ucontrol->value.iec958.status[2] = 0xff;
1042     ucontrol->value.iec958.status[3] = 0xff;
1043     return 0;
1044 }
1045 
1046 static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1047 {
1048     .access =   SNDRV_CTL_ELEM_ACCESS_READ,
1049     .iface =    SNDRV_CTL_ELEM_IFACE_PCM,
1050     .name =     SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1051     .info =     snd_cmipci_spdif_mask_info,
1052     .get =      snd_cmipci_spdif_mask_get,
1053 };
1054 
1055 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1056                     struct snd_ctl_elem_info *uinfo)
1057 {
1058     uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1059     uinfo->count = 1;
1060     return 0;
1061 }
1062 
1063 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1064                        struct snd_ctl_elem_value *ucontrol)
1065 {
1066     struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1067     int i;
1068 
1069     spin_lock_irq(&chip->reg_lock);
1070     for (i = 0; i < 4; i++)
1071         ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1072     spin_unlock_irq(&chip->reg_lock);
1073     return 0;
1074 }
1075 
1076 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1077                        struct snd_ctl_elem_value *ucontrol)
1078 {
1079     struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1080     int i, change;
1081     unsigned int val;
1082 
1083     val = 0;
1084     spin_lock_irq(&chip->reg_lock);
1085     for (i = 0; i < 4; i++)
1086         val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1087     change = val != chip->dig_pcm_status;
1088     chip->dig_pcm_status = val;
1089     spin_unlock_irq(&chip->reg_lock);
1090     return change;
1091 }
1092 
1093 static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1094 {
1095     .access =   SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1096     .iface =    SNDRV_CTL_ELEM_IFACE_PCM,
1097     .name =     SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1098     .info =     snd_cmipci_spdif_stream_info,
1099     .get =      snd_cmipci_spdif_stream_get,
1100     .put =      snd_cmipci_spdif_stream_put
1101 };
1102 
1103 /*
1104  */
1105 
1106 /* save mixer setting and mute for AC3 playback */
1107 static int save_mixer_state(struct cmipci *cm)
1108 {
1109     if (! cm->mixer_insensitive) {
1110         struct snd_ctl_elem_value *val;
1111         unsigned int i;
1112 
1113         val = kmalloc(sizeof(*val), GFP_KERNEL);
1114         if (!val)
1115             return -ENOMEM;
1116         for (i = 0; i < CM_SAVED_MIXERS; i++) {
1117             struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1118             if (ctl) {
1119                 int event;
1120                 memset(val, 0, sizeof(*val));
1121                 ctl->get(ctl, val);
1122                 cm->mixer_res_status[i] = val->value.integer.value[0];
1123                 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1124                 event = SNDRV_CTL_EVENT_MASK_INFO;
1125                 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1126                     ctl->put(ctl, val); /* toggle */
1127                     event |= SNDRV_CTL_EVENT_MASK_VALUE;
1128                 }
1129                 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1130                 snd_ctl_notify(cm->card, event, &ctl->id);
1131             }
1132         }
1133         kfree(val);
1134         cm->mixer_insensitive = 1;
1135     }
1136     return 0;
1137 }
1138 
1139 
1140 /* restore the previously saved mixer status */
1141 static void restore_mixer_state(struct cmipci *cm)
1142 {
1143     if (cm->mixer_insensitive) {
1144         struct snd_ctl_elem_value *val;
1145         unsigned int i;
1146 
1147         val = kmalloc(sizeof(*val), GFP_KERNEL);
1148         if (!val)
1149             return;
1150         cm->mixer_insensitive = 0; /* at first clear this;
1151                           otherwise the changes will be ignored */
1152         for (i = 0; i < CM_SAVED_MIXERS; i++) {
1153             struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1154             if (ctl) {
1155                 int event;
1156 
1157                 memset(val, 0, sizeof(*val));
1158                 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1159                 ctl->get(ctl, val);
1160                 event = SNDRV_CTL_EVENT_MASK_INFO;
1161                 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1162                     val->value.integer.value[0] = cm->mixer_res_status[i];
1163                     ctl->put(ctl, val);
1164                     event |= SNDRV_CTL_EVENT_MASK_VALUE;
1165                 }
1166                 snd_ctl_notify(cm->card, event, &ctl->id);
1167             }
1168         }
1169         kfree(val);
1170     }
1171 }
1172 
1173 /* spinlock held! */
1174 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1175 {
1176     if (do_ac3) {
1177         /* AC3EN for 037 */
1178         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1179         /* AC3EN for 039 */
1180         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1181     
1182         if (cm->can_ac3_hw) {
1183             /* SPD24SEL for 037, 0x02 */
1184             /* SPD24SEL for 039, 0x20, but cannot be set */
1185             snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1186             snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1187         } else { /* can_ac3_sw */
1188             /* SPD32SEL for 037 & 039, 0x20 */
1189             snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1190             /* set 176K sample rate to fix 033 HW bug */
1191             if (cm->chip_version == 33) {
1192                 if (rate >= 48000) {
1193                     snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1194                 } else {
1195                     snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1196                 }
1197             }
1198         }
1199 
1200     } else {
1201         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1202         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1203 
1204         if (cm->can_ac3_hw) {
1205             /* chip model >= 37 */
1206             if (snd_pcm_format_width(subs->runtime->format) > 16) {
1207                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1208                 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1209             } else {
1210                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1211                 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1212             }
1213         } else {
1214             snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1215             snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1216             snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1217         }
1218     }
1219 }
1220 
1221 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1222 {
1223     int rate, err;
1224 
1225     rate = subs->runtime->rate;
1226 
1227     if (up && do_ac3) {
1228         err = save_mixer_state(cm);
1229         if (err < 0)
1230             return err;
1231     }
1232 
1233     spin_lock_irq(&cm->reg_lock);
1234     cm->spdif_playback_avail = up;
1235     if (up) {
1236         /* they are controlled via "IEC958 Output Switch" */
1237         /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1238         /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1239         if (cm->spdif_playback_enabled)
1240             snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1241         setup_ac3(cm, subs, do_ac3, rate);
1242 
1243         if (rate == 48000 || rate == 96000)
1244             snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1245         else
1246             snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1247         if (rate > 48000)
1248             snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1249         else
1250             snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1251     } else {
1252         /* they are controlled via "IEC958 Output Switch" */
1253         /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1254         /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1255         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1256         snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1257         setup_ac3(cm, subs, 0, 0);
1258     }
1259     spin_unlock_irq(&cm->reg_lock);
1260     return 0;
1261 }
1262 
1263 
1264 /*
1265  * preparation
1266  */
1267 
1268 /* playback - enable spdif only on the certain condition */
1269 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1270 {
1271     struct cmipci *cm = snd_pcm_substream_chip(substream);
1272     int rate = substream->runtime->rate;
1273     int err, do_spdif, do_ac3 = 0;
1274 
1275     do_spdif = (rate >= 44100 && rate <= 96000 &&
1276             substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1277             substream->runtime->channels == 2);
1278     if (do_spdif && cm->can_ac3_hw) 
1279         do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1280     err = setup_spdif_playback(cm, substream, do_spdif, do_ac3);
1281     if (err < 0)
1282         return err;
1283     return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1284 }
1285 
1286 /* playback  (via device #2) - enable spdif always */
1287 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1288 {
1289     struct cmipci *cm = snd_pcm_substream_chip(substream);
1290     int err, do_ac3;
1291 
1292     if (cm->can_ac3_hw) 
1293         do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1294     else
1295         do_ac3 = 1; /* doesn't matter */
1296     err = setup_spdif_playback(cm, substream, 1, do_ac3);
1297     if (err < 0)
1298         return err;
1299     return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1300 }
1301 
1302 /*
1303  * Apparently, the samples last played on channel A stay in some buffer, even
1304  * after the channel is reset, and get added to the data for the rear DACs when
1305  * playing a multichannel stream on channel B.  This is likely to generate
1306  * wraparounds and thus distortions.
1307  * To avoid this, we play at least one zero sample after the actual stream has
1308  * stopped.
1309  */
1310 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1311 {
1312     struct snd_pcm_runtime *runtime = rec->substream->runtime;
1313     unsigned int reg, val;
1314 
1315     if (rec->needs_silencing && runtime && runtime->dma_area) {
1316         /* set up a small silence buffer */
1317         memset(runtime->dma_area, 0, PAGE_SIZE);
1318         reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1319         val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1320         snd_cmipci_write(cm, reg, val);
1321     
1322         /* configure for 16 bits, 2 channels, 8 kHz */
1323         if (runtime->channels > 2)
1324             set_dac_channels(cm, rec, 2);
1325         spin_lock_irq(&cm->reg_lock);
1326         val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1327         val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1328         val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1329         snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1330         val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1331         val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1332         val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1333         if (cm->can_96k)
1334             val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1335         snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1336     
1337         /* start stream (we don't need interrupts) */
1338         cm->ctrl |= CM_CHEN0 << rec->ch;
1339         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1340         spin_unlock_irq(&cm->reg_lock);
1341 
1342         msleep(1);
1343 
1344         /* stop and reset stream */
1345         spin_lock_irq(&cm->reg_lock);
1346         cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1347         val = CM_RST_CH0 << rec->ch;
1348         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1349         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1350         spin_unlock_irq(&cm->reg_lock);
1351 
1352         rec->needs_silencing = 0;
1353     }
1354 }
1355 
1356 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1357 {
1358     struct cmipci *cm = snd_pcm_substream_chip(substream);
1359     setup_spdif_playback(cm, substream, 0, 0);
1360     restore_mixer_state(cm);
1361     snd_cmipci_silence_hack(cm, &cm->channel[0]);
1362     return 0;
1363 }
1364 
1365 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1366 {
1367     struct cmipci *cm = snd_pcm_substream_chip(substream);
1368     snd_cmipci_silence_hack(cm, &cm->channel[1]);
1369     return 0;
1370 }
1371 
1372 /* capture */
1373 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1374 {
1375     struct cmipci *cm = snd_pcm_substream_chip(substream);
1376     return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1377 }
1378 
1379 /* capture with spdif (via device #2) */
1380 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1381 {
1382     struct cmipci *cm = snd_pcm_substream_chip(substream);
1383 
1384     spin_lock_irq(&cm->reg_lock);
1385     snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1386     if (cm->can_96k) {
1387         if (substream->runtime->rate > 48000)
1388             snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1389         else
1390             snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1391     }
1392     if (snd_pcm_format_width(substream->runtime->format) > 16)
1393         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1394     else
1395         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1396 
1397     spin_unlock_irq(&cm->reg_lock);
1398 
1399     return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1400 }
1401 
1402 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1403 {
1404     struct cmipci *cm = snd_pcm_substream_chip(subs);
1405 
1406     spin_lock_irq(&cm->reg_lock);
1407     snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1408     snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1409     spin_unlock_irq(&cm->reg_lock);
1410 
1411     return 0;
1412 }
1413 
1414 
1415 /*
1416  * interrupt handler
1417  */
1418 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1419 {
1420     struct cmipci *cm = dev_id;
1421     unsigned int status, mask = 0;
1422     
1423     /* fastpath out, to ease interrupt sharing */
1424     status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1425     if (!(status & CM_INTR))
1426         return IRQ_NONE;
1427 
1428     /* acknowledge interrupt */
1429     spin_lock(&cm->reg_lock);
1430     if (status & CM_CHINT0)
1431         mask |= CM_CH0_INT_EN;
1432     if (status & CM_CHINT1)
1433         mask |= CM_CH1_INT_EN;
1434     snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1435     snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1436     spin_unlock(&cm->reg_lock);
1437 
1438     if (cm->rmidi && (status & CM_UARTINT))
1439         snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1440 
1441     if (cm->pcm) {
1442         if ((status & CM_CHINT0) && cm->channel[0].running)
1443             snd_pcm_period_elapsed(cm->channel[0].substream);
1444         if ((status & CM_CHINT1) && cm->channel[1].running)
1445             snd_pcm_period_elapsed(cm->channel[1].substream);
1446     }
1447     return IRQ_HANDLED;
1448 }
1449 
1450 /*
1451  * h/w infos
1452  */
1453 
1454 /* playback on channel A */
1455 static const struct snd_pcm_hardware snd_cmipci_playback =
1456 {
1457     .info =         (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1458                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1459                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1460     .formats =      SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1461     .rates =        SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1462     .rate_min =     5512,
1463     .rate_max =     48000,
1464     .channels_min =     1,
1465     .channels_max =     2,
1466     .buffer_bytes_max = (128*1024),
1467     .period_bytes_min = 64,
1468     .period_bytes_max = (128*1024),
1469     .periods_min =      2,
1470     .periods_max =      1024,
1471     .fifo_size =        0,
1472 };
1473 
1474 /* capture on channel B */
1475 static const struct snd_pcm_hardware snd_cmipci_capture =
1476 {
1477     .info =         (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1478                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1479                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1480     .formats =      SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1481     .rates =        SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1482     .rate_min =     5512,
1483     .rate_max =     48000,
1484     .channels_min =     1,
1485     .channels_max =     2,
1486     .buffer_bytes_max = (128*1024),
1487     .period_bytes_min = 64,
1488     .period_bytes_max = (128*1024),
1489     .periods_min =      2,
1490     .periods_max =      1024,
1491     .fifo_size =        0,
1492 };
1493 
1494 /* playback on channel B - stereo 16bit only? */
1495 static const struct snd_pcm_hardware snd_cmipci_playback2 =
1496 {
1497     .info =         (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1498                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1499                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1500     .formats =      SNDRV_PCM_FMTBIT_S16_LE,
1501     .rates =        SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1502     .rate_min =     5512,
1503     .rate_max =     48000,
1504     .channels_min =     2,
1505     .channels_max =     2,
1506     .buffer_bytes_max = (128*1024),
1507     .period_bytes_min = 64,
1508     .period_bytes_max = (128*1024),
1509     .periods_min =      2,
1510     .periods_max =      1024,
1511     .fifo_size =        0,
1512 };
1513 
1514 /* spdif playback on channel A */
1515 static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1516 {
1517     .info =         (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1518                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1519                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1520     .formats =      SNDRV_PCM_FMTBIT_S16_LE,
1521     .rates =        SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1522     .rate_min =     44100,
1523     .rate_max =     48000,
1524     .channels_min =     2,
1525     .channels_max =     2,
1526     .buffer_bytes_max = (128*1024),
1527     .period_bytes_min = 64,
1528     .period_bytes_max = (128*1024),
1529     .periods_min =      2,
1530     .periods_max =      1024,
1531     .fifo_size =        0,
1532 };
1533 
1534 /* spdif playback on channel A (32bit, IEC958 subframes) */
1535 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1536 {
1537     .info =         (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1538                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1539                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1540     .formats =      SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1541     .rates =        SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1542     .rate_min =     44100,
1543     .rate_max =     48000,
1544     .channels_min =     2,
1545     .channels_max =     2,
1546     .buffer_bytes_max = (128*1024),
1547     .period_bytes_min = 64,
1548     .period_bytes_max = (128*1024),
1549     .periods_min =      2,
1550     .periods_max =      1024,
1551     .fifo_size =        0,
1552 };
1553 
1554 /* spdif capture on channel B */
1555 static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1556 {
1557     .info =         (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1558                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1559                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1560     .formats =          SNDRV_PCM_FMTBIT_S16_LE |
1561                 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1562     .rates =        SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1563     .rate_min =     44100,
1564     .rate_max =     48000,
1565     .channels_min =     2,
1566     .channels_max =     2,
1567     .buffer_bytes_max = (128*1024),
1568     .period_bytes_min = 64,
1569     .period_bytes_max = (128*1024),
1570     .periods_min =      2,
1571     .periods_max =      1024,
1572     .fifo_size =        0,
1573 };
1574 
1575 static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1576             32000, 44100, 48000, 88200, 96000, 128000 };
1577 static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1578         .count = ARRAY_SIZE(rate_constraints),
1579         .list = rate_constraints,
1580         .mask = 0,
1581 };
1582 
1583 /*
1584  * check device open/close
1585  */
1586 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1587 {
1588     int ch = mode & CM_OPEN_CH_MASK;
1589 
1590     /* FIXME: a file should wait until the device becomes free
1591      * when it's opened on blocking mode.  however, since the current
1592      * pcm framework doesn't pass file pointer before actually opened,
1593      * we can't know whether blocking mode or not in open callback..
1594      */
1595     mutex_lock(&cm->open_mutex);
1596     if (cm->opened[ch]) {
1597         mutex_unlock(&cm->open_mutex);
1598         return -EBUSY;
1599     }
1600     cm->opened[ch] = mode;
1601     cm->channel[ch].substream = subs;
1602     if (! (mode & CM_OPEN_DAC)) {
1603         /* disable dual DAC mode */
1604         cm->channel[ch].is_dac = 0;
1605         spin_lock_irq(&cm->reg_lock);
1606         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1607         spin_unlock_irq(&cm->reg_lock);
1608     }
1609     mutex_unlock(&cm->open_mutex);
1610     return 0;
1611 }
1612 
1613 static void close_device_check(struct cmipci *cm, int mode)
1614 {
1615     int ch = mode & CM_OPEN_CH_MASK;
1616 
1617     mutex_lock(&cm->open_mutex);
1618     if (cm->opened[ch] == mode) {
1619         if (cm->channel[ch].substream) {
1620             snd_cmipci_ch_reset(cm, ch);
1621             cm->channel[ch].running = 0;
1622             cm->channel[ch].substream = NULL;
1623         }
1624         cm->opened[ch] = 0;
1625         if (! cm->channel[ch].is_dac) {
1626             /* enable dual DAC mode again */
1627             cm->channel[ch].is_dac = 1;
1628             spin_lock_irq(&cm->reg_lock);
1629             snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1630             spin_unlock_irq(&cm->reg_lock);
1631         }
1632     }
1633     mutex_unlock(&cm->open_mutex);
1634 }
1635 
1636 /*
1637  */
1638 
1639 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1640 {
1641     struct cmipci *cm = snd_pcm_substream_chip(substream);
1642     struct snd_pcm_runtime *runtime = substream->runtime;
1643     int err;
1644 
1645     err = open_device_check(cm, CM_OPEN_PLAYBACK, substream);
1646     if (err < 0)
1647         return err;
1648     runtime->hw = snd_cmipci_playback;
1649     if (cm->chip_version == 68) {
1650         runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1651                      SNDRV_PCM_RATE_96000;
1652         runtime->hw.rate_max = 96000;
1653     } else if (cm->chip_version == 55) {
1654         err = snd_pcm_hw_constraint_list(runtime, 0,
1655             SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1656         if (err < 0)
1657             return err;
1658         runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1659         runtime->hw.rate_max = 128000;
1660     }
1661     snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1662     cm->dig_pcm_status = cm->dig_status;
1663     return 0;
1664 }
1665 
1666 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1667 {
1668     struct cmipci *cm = snd_pcm_substream_chip(substream);
1669     struct snd_pcm_runtime *runtime = substream->runtime;
1670     int err;
1671 
1672     err = open_device_check(cm, CM_OPEN_CAPTURE, substream);
1673     if (err < 0)
1674         return err;
1675     runtime->hw = snd_cmipci_capture;
1676     if (cm->chip_version == 68) {   // 8768 only supports 44k/48k recording
1677         runtime->hw.rate_min = 41000;
1678         runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1679     } else if (cm->chip_version == 55) {
1680         err = snd_pcm_hw_constraint_list(runtime, 0,
1681             SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1682         if (err < 0)
1683             return err;
1684         runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1685         runtime->hw.rate_max = 128000;
1686     }
1687     snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1688     return 0;
1689 }
1690 
1691 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1692 {
1693     struct cmipci *cm = snd_pcm_substream_chip(substream);
1694     struct snd_pcm_runtime *runtime = substream->runtime;
1695     int err;
1696 
1697     /* use channel B */
1698     err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream);
1699     if (err < 0)
1700         return err;
1701     runtime->hw = snd_cmipci_playback2;
1702     mutex_lock(&cm->open_mutex);
1703     if (! cm->opened[CM_CH_PLAY]) {
1704         if (cm->can_multi_ch) {
1705             runtime->hw.channels_max = cm->max_channels;
1706             if (cm->max_channels == 4)
1707                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1708             else if (cm->max_channels == 6)
1709                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1710             else if (cm->max_channels == 8)
1711                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1712         }
1713     }
1714     mutex_unlock(&cm->open_mutex);
1715     if (cm->chip_version == 68) {
1716         runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1717                      SNDRV_PCM_RATE_96000;
1718         runtime->hw.rate_max = 96000;
1719     } else if (cm->chip_version == 55) {
1720         err = snd_pcm_hw_constraint_list(runtime, 0,
1721             SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1722         if (err < 0)
1723             return err;
1724         runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1725         runtime->hw.rate_max = 128000;
1726     }
1727     snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1728     return 0;
1729 }
1730 
1731 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1732 {
1733     struct cmipci *cm = snd_pcm_substream_chip(substream);
1734     struct snd_pcm_runtime *runtime = substream->runtime;
1735     int err;
1736 
1737     /* use channel A */
1738     err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream);
1739     if (err < 0)
1740         return err;
1741     if (cm->can_ac3_hw) {
1742         runtime->hw = snd_cmipci_playback_spdif;
1743         if (cm->chip_version >= 37) {
1744             runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1745             snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1746         }
1747         if (cm->can_96k) {
1748             runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1749                          SNDRV_PCM_RATE_96000;
1750             runtime->hw.rate_max = 96000;
1751         }
1752     } else {
1753         runtime->hw = snd_cmipci_playback_iec958_subframe;
1754     }
1755     snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1756     cm->dig_pcm_status = cm->dig_status;
1757     return 0;
1758 }
1759 
1760 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1761 {
1762     struct cmipci *cm = snd_pcm_substream_chip(substream);
1763     struct snd_pcm_runtime *runtime = substream->runtime;
1764     int err;
1765 
1766     /* use channel B */
1767     err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream);
1768     if (err < 0)
1769         return err;
1770     runtime->hw = snd_cmipci_capture_spdif;
1771     if (cm->can_96k && !(cm->chip_version == 68)) {
1772         runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1773                      SNDRV_PCM_RATE_96000;
1774         runtime->hw.rate_max = 96000;
1775     }
1776     snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1777     return 0;
1778 }
1779 
1780 
1781 /*
1782  */
1783 
1784 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1785 {
1786     struct cmipci *cm = snd_pcm_substream_chip(substream);
1787     close_device_check(cm, CM_OPEN_PLAYBACK);
1788     return 0;
1789 }
1790 
1791 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1792 {
1793     struct cmipci *cm = snd_pcm_substream_chip(substream);
1794     close_device_check(cm, CM_OPEN_CAPTURE);
1795     return 0;
1796 }
1797 
1798 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1799 {
1800     struct cmipci *cm = snd_pcm_substream_chip(substream);
1801     close_device_check(cm, CM_OPEN_PLAYBACK2);
1802     close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1803     return 0;
1804 }
1805 
1806 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1807 {
1808     struct cmipci *cm = snd_pcm_substream_chip(substream);
1809     close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1810     return 0;
1811 }
1812 
1813 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1814 {
1815     struct cmipci *cm = snd_pcm_substream_chip(substream);
1816     close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1817     return 0;
1818 }
1819 
1820 
1821 /*
1822  */
1823 
1824 static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1825     .open =     snd_cmipci_playback_open,
1826     .close =    snd_cmipci_playback_close,
1827     .hw_free =  snd_cmipci_playback_hw_free,
1828     .prepare =  snd_cmipci_playback_prepare,
1829     .trigger =  snd_cmipci_playback_trigger,
1830     .pointer =  snd_cmipci_playback_pointer,
1831 };
1832 
1833 static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1834     .open =     snd_cmipci_capture_open,
1835     .close =    snd_cmipci_capture_close,
1836     .prepare =  snd_cmipci_capture_prepare,
1837     .trigger =  snd_cmipci_capture_trigger,
1838     .pointer =  snd_cmipci_capture_pointer,
1839 };
1840 
1841 static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1842     .open =     snd_cmipci_playback2_open,
1843     .close =    snd_cmipci_playback2_close,
1844     .hw_params =    snd_cmipci_playback2_hw_params,
1845     .hw_free =  snd_cmipci_playback2_hw_free,
1846     .prepare =  snd_cmipci_capture_prepare, /* channel B */
1847     .trigger =  snd_cmipci_capture_trigger, /* channel B */
1848     .pointer =  snd_cmipci_capture_pointer, /* channel B */
1849 };
1850 
1851 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1852     .open =     snd_cmipci_playback_spdif_open,
1853     .close =    snd_cmipci_playback_spdif_close,
1854     .hw_free =  snd_cmipci_playback_hw_free,
1855     .prepare =  snd_cmipci_playback_spdif_prepare,  /* set up rate */
1856     .trigger =  snd_cmipci_playback_trigger,
1857     .pointer =  snd_cmipci_playback_pointer,
1858 };
1859 
1860 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1861     .open =     snd_cmipci_capture_spdif_open,
1862     .close =    snd_cmipci_capture_spdif_close,
1863     .hw_free =  snd_cmipci_capture_spdif_hw_free,
1864     .prepare =  snd_cmipci_capture_spdif_prepare,
1865     .trigger =  snd_cmipci_capture_trigger,
1866     .pointer =  snd_cmipci_capture_pointer,
1867 };
1868 
1869 
1870 /*
1871  */
1872 
1873 static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1874 {
1875     struct snd_pcm *pcm;
1876     int err;
1877 
1878     err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1879     if (err < 0)
1880         return err;
1881 
1882     snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1883     snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1884 
1885     pcm->private_data = cm;
1886     pcm->info_flags = 0;
1887     strcpy(pcm->name, "C-Media PCI DAC/ADC");
1888     cm->pcm = pcm;
1889 
1890     snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1891                        &cm->pci->dev, 64*1024, 128*1024);
1892 
1893     return 0;
1894 }
1895 
1896 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1897 {
1898     struct snd_pcm *pcm;
1899     int err;
1900 
1901     err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1902     if (err < 0)
1903         return err;
1904 
1905     snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1906 
1907     pcm->private_data = cm;
1908     pcm->info_flags = 0;
1909     strcpy(pcm->name, "C-Media PCI 2nd DAC");
1910     cm->pcm2 = pcm;
1911 
1912     snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1913                        &cm->pci->dev, 64*1024, 128*1024);
1914 
1915     return 0;
1916 }
1917 
1918 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1919 {
1920     struct snd_pcm *pcm;
1921     int err;
1922 
1923     err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1924     if (err < 0)
1925         return err;
1926 
1927     snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1928     snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1929 
1930     pcm->private_data = cm;
1931     pcm->info_flags = 0;
1932     strcpy(pcm->name, "C-Media PCI IEC958");
1933     cm->pcm_spdif = pcm;
1934 
1935     snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1936                        &cm->pci->dev, 64*1024, 128*1024);
1937 
1938     err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1939                      snd_pcm_alt_chmaps, cm->max_channels, 0,
1940                      NULL);
1941     if (err < 0)
1942         return err;
1943 
1944     return 0;
1945 }
1946 
1947 /*
1948  * mixer interface:
1949  * - CM8338/8738 has a compatible mixer interface with SB16, but
1950  *   lack of some elements like tone control, i/o gain and AGC.
1951  * - Access to native registers:
1952  *   - A 3D switch
1953  *   - Output mute switches
1954  */
1955 
1956 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1957 {
1958     outb(idx, s->iobase + CM_REG_SB16_ADDR);
1959     outb(data, s->iobase + CM_REG_SB16_DATA);
1960 }
1961 
1962 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1963 {
1964     unsigned char v;
1965 
1966     outb(idx, s->iobase + CM_REG_SB16_ADDR);
1967     v = inb(s->iobase + CM_REG_SB16_DATA);
1968     return v;
1969 }
1970 
1971 /*
1972  * general mixer element
1973  */
1974 struct cmipci_sb_reg {
1975     unsigned int left_reg, right_reg;
1976     unsigned int left_shift, right_shift;
1977     unsigned int mask;
1978     unsigned int invert: 1;
1979     unsigned int stereo: 1;
1980 };
1981 
1982 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1983  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1984 
1985 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1986 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1987   .info = snd_cmipci_info_volume, \
1988   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1989   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1990 }
1991 
1992 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1993 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1994 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1995 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1996 
1997 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1998 {
1999     r->left_reg = val & 0xff;
2000     r->right_reg = (val >> 8) & 0xff;
2001     r->left_shift = (val >> 16) & 0x07;
2002     r->right_shift = (val >> 19) & 0x07;
2003     r->invert = (val >> 22) & 1;
2004     r->stereo = (val >> 23) & 1;
2005     r->mask = (val >> 24) & 0xff;
2006 }
2007 
2008 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2009                   struct snd_ctl_elem_info *uinfo)
2010 {
2011     struct cmipci_sb_reg reg;
2012 
2013     cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2014     uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2015     uinfo->count = reg.stereo + 1;
2016     uinfo->value.integer.min = 0;
2017     uinfo->value.integer.max = reg.mask;
2018     return 0;
2019 }
2020  
2021 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2022                  struct snd_ctl_elem_value *ucontrol)
2023 {
2024     struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2025     struct cmipci_sb_reg reg;
2026     int val;
2027 
2028     cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2029     spin_lock_irq(&cm->reg_lock);
2030     val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2031     if (reg.invert)
2032         val = reg.mask - val;
2033     ucontrol->value.integer.value[0] = val;
2034     if (reg.stereo) {
2035         val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2036         if (reg.invert)
2037             val = reg.mask - val;
2038         ucontrol->value.integer.value[1] = val;
2039     }
2040     spin_unlock_irq(&cm->reg_lock);
2041     return 0;
2042 }
2043 
2044 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2045                  struct snd_ctl_elem_value *ucontrol)
2046 {
2047     struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2048     struct cmipci_sb_reg reg;
2049     int change;
2050     int left, right, oleft, oright;
2051 
2052     cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2053     left = ucontrol->value.integer.value[0] & reg.mask;
2054     if (reg.invert)
2055         left = reg.mask - left;
2056     left <<= reg.left_shift;
2057     if (reg.stereo) {
2058         right = ucontrol->value.integer.value[1] & reg.mask;
2059         if (reg.invert)
2060             right = reg.mask - right;
2061         right <<= reg.right_shift;
2062     } else
2063         right = 0;
2064     spin_lock_irq(&cm->reg_lock);
2065     oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2066     left |= oleft & ~(reg.mask << reg.left_shift);
2067     change = left != oleft;
2068     if (reg.stereo) {
2069         if (reg.left_reg != reg.right_reg) {
2070             snd_cmipci_mixer_write(cm, reg.left_reg, left);
2071             oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2072         } else
2073             oright = left;
2074         right |= oright & ~(reg.mask << reg.right_shift);
2075         change |= right != oright;
2076         snd_cmipci_mixer_write(cm, reg.right_reg, right);
2077     } else
2078         snd_cmipci_mixer_write(cm, reg.left_reg, left);
2079     spin_unlock_irq(&cm->reg_lock);
2080     return change;
2081 }
2082 
2083 /*
2084  * input route (left,right) -> (left,right)
2085  */
2086 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2087 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2088   .info = snd_cmipci_info_input_sw, \
2089   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2090   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2091 }
2092 
2093 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2094                     struct snd_ctl_elem_info *uinfo)
2095 {
2096     uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2097     uinfo->count = 4;
2098     uinfo->value.integer.min = 0;
2099     uinfo->value.integer.max = 1;
2100     return 0;
2101 }
2102  
2103 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2104                    struct snd_ctl_elem_value *ucontrol)
2105 {
2106     struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2107     struct cmipci_sb_reg reg;
2108     int val1, val2;
2109 
2110     cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2111     spin_lock_irq(&cm->reg_lock);
2112     val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2113     val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2114     spin_unlock_irq(&cm->reg_lock);
2115     ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2116     ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2117     ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2118     ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2119     return 0;
2120 }
2121 
2122 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2123                    struct snd_ctl_elem_value *ucontrol)
2124 {
2125     struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2126     struct cmipci_sb_reg reg;
2127     int change;
2128     int val1, val2, oval1, oval2;
2129 
2130     cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2131     spin_lock_irq(&cm->reg_lock);
2132     oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2133     oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2134     val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2135     val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2136     val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2137     val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2138     val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2139     val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2140     change = val1 != oval1 || val2 != oval2;
2141     snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2142     snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2143     spin_unlock_irq(&cm->reg_lock);
2144     return change;
2145 }
2146 
2147 /*
2148  * native mixer switches/volumes
2149  */
2150 
2151 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2152 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2153   .info = snd_cmipci_info_native_mixer, \
2154   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2155   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2156 }
2157 
2158 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2159 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2160   .info = snd_cmipci_info_native_mixer, \
2161   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2162   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2163 }
2164 
2165 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2166 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2167   .info = snd_cmipci_info_native_mixer, \
2168   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2169   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2170 }
2171 
2172 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2173 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2174   .info = snd_cmipci_info_native_mixer, \
2175   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2176   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2177 }
2178 
2179 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2180                     struct snd_ctl_elem_info *uinfo)
2181 {
2182     struct cmipci_sb_reg reg;
2183 
2184     cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2185     uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2186     uinfo->count = reg.stereo + 1;
2187     uinfo->value.integer.min = 0;
2188     uinfo->value.integer.max = reg.mask;
2189     return 0;
2190 
2191 }
2192 
2193 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2194                        struct snd_ctl_elem_value *ucontrol)
2195 {
2196     struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2197     struct cmipci_sb_reg reg;
2198     unsigned char oreg, val;
2199 
2200     cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2201     spin_lock_irq(&cm->reg_lock);
2202     oreg = inb(cm->iobase + reg.left_reg);
2203     val = (oreg >> reg.left_shift) & reg.mask;
2204     if (reg.invert)
2205         val = reg.mask - val;
2206     ucontrol->value.integer.value[0] = val;
2207     if (reg.stereo) {
2208         val = (oreg >> reg.right_shift) & reg.mask;
2209         if (reg.invert)
2210             val = reg.mask - val;
2211         ucontrol->value.integer.value[1] = val;
2212     }
2213     spin_unlock_irq(&cm->reg_lock);
2214     return 0;
2215 }
2216 
2217 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2218                        struct snd_ctl_elem_value *ucontrol)
2219 {
2220     struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2221     struct cmipci_sb_reg reg;
2222     unsigned char oreg, nreg, val;
2223 
2224     cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2225     spin_lock_irq(&cm->reg_lock);
2226     oreg = inb(cm->iobase + reg.left_reg);
2227     val = ucontrol->value.integer.value[0] & reg.mask;
2228     if (reg.invert)
2229         val = reg.mask - val;
2230     nreg = oreg & ~(reg.mask << reg.left_shift);
2231     nreg |= (val << reg.left_shift);
2232     if (reg.stereo) {
2233         val = ucontrol->value.integer.value[1] & reg.mask;
2234         if (reg.invert)
2235             val = reg.mask - val;
2236         nreg &= ~(reg.mask << reg.right_shift);
2237         nreg |= (val << reg.right_shift);
2238     }
2239     outb(nreg, cm->iobase + reg.left_reg);
2240     spin_unlock_irq(&cm->reg_lock);
2241     return (nreg != oreg);
2242 }
2243 
2244 /*
2245  * special case - check mixer sensitivity
2246  */
2247 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2248                          struct snd_ctl_elem_value *ucontrol)
2249 {
2250     //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2251     return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2252 }
2253 
2254 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2255                          struct snd_ctl_elem_value *ucontrol)
2256 {
2257     struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2258     if (cm->mixer_insensitive) {
2259         /* ignored */
2260         return 0;
2261     }
2262     return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2263 }
2264 
2265 
2266 static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2267     CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2268     CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2269     CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2270     //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2271     { /* switch with sensitivity */
2272         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2273         .name = "PCM Playback Switch",
2274         .info = snd_cmipci_info_native_mixer,
2275         .get = snd_cmipci_get_native_mixer_sensitive,
2276         .put = snd_cmipci_put_native_mixer_sensitive,
2277         .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2278     },
2279     CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2280     CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2281     CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2282     CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2283     CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2284     CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2285     CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2286     CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2287     CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2288     CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2289     CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2290     CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2291     CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2292     CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2293     CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2294     CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2295     CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2296     CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2297     CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2298     CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2299     CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2300     CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2301     CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2302 };
2303 
2304 /*
2305  * other switches
2306  */
2307 
2308 struct cmipci_switch_args {
2309     int reg;        /* register index */
2310     unsigned int mask;  /* mask bits */
2311     unsigned int mask_on;   /* mask bits to turn on */
2312     unsigned int is_byte: 1;        /* byte access? */
2313     unsigned int ac3_sensitive: 1;  /* access forbidden during
2314                      * non-audio operation?
2315                      */
2316 };
2317 
2318 #define snd_cmipci_uswitch_info     snd_ctl_boolean_mono_info
2319 
2320 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2321                    struct snd_ctl_elem_value *ucontrol,
2322                    struct cmipci_switch_args *args)
2323 {
2324     unsigned int val;
2325     struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2326 
2327     spin_lock_irq(&cm->reg_lock);
2328     if (args->ac3_sensitive && cm->mixer_insensitive) {
2329         ucontrol->value.integer.value[0] = 0;
2330         spin_unlock_irq(&cm->reg_lock);
2331         return 0;
2332     }
2333     if (args->is_byte)
2334         val = inb(cm->iobase + args->reg);
2335     else
2336         val = snd_cmipci_read(cm, args->reg);
2337     ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2338     spin_unlock_irq(&cm->reg_lock);
2339     return 0;
2340 }
2341 
2342 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2343                   struct snd_ctl_elem_value *ucontrol)
2344 {
2345     struct cmipci_switch_args *args;
2346     args = (struct cmipci_switch_args *)kcontrol->private_value;
2347     if (snd_BUG_ON(!args))
2348         return -EINVAL;
2349     return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2350 }
2351 
2352 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2353                    struct snd_ctl_elem_value *ucontrol,
2354                    struct cmipci_switch_args *args)
2355 {
2356     unsigned int val;
2357     int change;
2358     struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2359 
2360     spin_lock_irq(&cm->reg_lock);
2361     if (args->ac3_sensitive && cm->mixer_insensitive) {
2362         /* ignored */
2363         spin_unlock_irq(&cm->reg_lock);
2364         return 0;
2365     }
2366     if (args->is_byte)
2367         val = inb(cm->iobase + args->reg);
2368     else
2369         val = snd_cmipci_read(cm, args->reg);
2370     change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
2371             args->mask_on : (args->mask & ~args->mask_on));
2372     if (change) {
2373         val &= ~args->mask;
2374         if (ucontrol->value.integer.value[0])
2375             val |= args->mask_on;
2376         else
2377             val |= (args->mask & ~args->mask_on);
2378         if (args->is_byte)
2379             outb((unsigned char)val, cm->iobase + args->reg);
2380         else
2381             snd_cmipci_write(cm, args->reg, val);
2382     }
2383     spin_unlock_irq(&cm->reg_lock);
2384     return change;
2385 }
2386 
2387 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2388                   struct snd_ctl_elem_value *ucontrol)
2389 {
2390     struct cmipci_switch_args *args;
2391     args = (struct cmipci_switch_args *)kcontrol->private_value;
2392     if (snd_BUG_ON(!args))
2393         return -EINVAL;
2394     return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2395 }
2396 
2397 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2398 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2399   .reg = xreg, \
2400   .mask = xmask, \
2401   .mask_on = xmask_on, \
2402   .is_byte = xis_byte, \
2403   .ac3_sensitive = xac3, \
2404 }
2405     
2406 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2407     DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2408 
2409 #if 0 /* these will be controlled in pcm device */
2410 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2411 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2412 #endif
2413 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2414 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2415 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2416 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2417 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2418 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2419 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2420 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2421 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2422 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2423 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2424 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2425 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2426 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2427 #if CM_CH_PLAY == 1
2428 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2429 #else
2430 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2431 #endif
2432 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2433 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2434 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2435 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2436 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2437 
2438 #define DEFINE_SWITCH(sname, stype, sarg) \
2439 { .name = sname, \
2440   .iface = stype, \
2441   .info = snd_cmipci_uswitch_info, \
2442   .get = snd_cmipci_uswitch_get, \
2443   .put = snd_cmipci_uswitch_put, \
2444   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2445 }
2446 
2447 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2448 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2449 
2450 
2451 /*
2452  * callbacks for spdif output switch
2453  * needs toggle two registers..
2454  */
2455 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2456                     struct snd_ctl_elem_value *ucontrol)
2457 {
2458     int changed;
2459     changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2460     changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2461     return changed;
2462 }
2463 
2464 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2465                     struct snd_ctl_elem_value *ucontrol)
2466 {
2467     struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2468     int changed;
2469     changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2470     changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2471     if (changed) {
2472         if (ucontrol->value.integer.value[0]) {
2473             if (chip->spdif_playback_avail)
2474                 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2475         } else {
2476             if (chip->spdif_playback_avail)
2477                 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2478         }
2479     }
2480     chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2481     return changed;
2482 }
2483 
2484 
2485 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2486                     struct snd_ctl_elem_info *uinfo)
2487 {
2488     struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2489     static const char *const texts[3] = {
2490         "Line-In", "Rear Output", "Bass Output"
2491     };
2492 
2493     return snd_ctl_enum_info(uinfo, 1,
2494                  cm->chip_version >= 39 ? 3 : 2, texts);
2495 }
2496 
2497 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2498 {
2499     unsigned int val;
2500     if (cm->chip_version >= 39) {
2501         val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2502         if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2503             return 2;
2504     }
2505     val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2506     if (val & CM_REAR2LIN)
2507         return 1;
2508     return 0;
2509 }
2510 
2511 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2512                        struct snd_ctl_elem_value *ucontrol)
2513 {
2514     struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2515 
2516     spin_lock_irq(&cm->reg_lock);
2517     ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2518     spin_unlock_irq(&cm->reg_lock);
2519     return 0;
2520 }
2521 
2522 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2523                        struct snd_ctl_elem_value *ucontrol)
2524 {
2525     struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2526     int change;
2527 
2528     spin_lock_irq(&cm->reg_lock);
2529     if (ucontrol->value.enumerated.item[0] == 2)
2530         change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2531     else
2532         change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2533     if (ucontrol->value.enumerated.item[0] == 1)
2534         change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2535     else
2536         change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2537     spin_unlock_irq(&cm->reg_lock);
2538     return change;
2539 }
2540 
2541 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2542                        struct snd_ctl_elem_info *uinfo)
2543 {
2544     static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2545 
2546     return snd_ctl_enum_info(uinfo, 1, 2, texts);
2547 }
2548 
2549 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2550                       struct snd_ctl_elem_value *ucontrol)
2551 {
2552     struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2553     /* same bit as spdi_phase */
2554     spin_lock_irq(&cm->reg_lock);
2555     ucontrol->value.enumerated.item[0] = 
2556         (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2557     spin_unlock_irq(&cm->reg_lock);
2558     return 0;
2559 }
2560 
2561 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2562                       struct snd_ctl_elem_value *ucontrol)
2563 {
2564     struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2565     int change;
2566 
2567     spin_lock_irq(&cm->reg_lock);
2568     if (ucontrol->value.enumerated.item[0])
2569         change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2570     else
2571         change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2572     spin_unlock_irq(&cm->reg_lock);
2573     return change;
2574 }
2575 
2576 /* both for CM8338/8738 */
2577 static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2578     DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2579     {
2580         .name = "Line-In Mode",
2581         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2582         .info = snd_cmipci_line_in_mode_info,
2583         .get = snd_cmipci_line_in_mode_get,
2584         .put = snd_cmipci_line_in_mode_put,
2585     },
2586 };
2587 
2588 /* for non-multichannel chips */
2589 static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2590 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2591 
2592 /* only for CM8738 */
2593 static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2594 #if 0 /* controlled in pcm device */
2595     DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2596     DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2597     DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2598 #endif
2599     // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2600     { .name = "IEC958 Output Switch",
2601       .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2602       .info = snd_cmipci_uswitch_info,
2603       .get = snd_cmipci_spdout_enable_get,
2604       .put = snd_cmipci_spdout_enable_put,
2605     },
2606     DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2607     DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2608     DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2609 //  DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2610     DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2611     DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2612 };
2613 
2614 /* only for model 033/037 */
2615 static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2616     DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2617     DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2618     DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2619 };
2620 
2621 /* only for model 039 or later */
2622 static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2623     DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2624     DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2625     {
2626         .name = "Mic-In Mode",
2627         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2628         .info = snd_cmipci_mic_in_mode_info,
2629         .get = snd_cmipci_mic_in_mode_get,
2630         .put = snd_cmipci_mic_in_mode_put,
2631     }
2632 };
2633 
2634 /* card control switches */
2635 static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2636 DEFINE_CARD_SWITCH("Modem", modem);
2637 
2638 
2639 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2640 {
2641     struct snd_card *card;
2642     const struct snd_kcontrol_new *sw;
2643     struct snd_kcontrol *kctl;
2644     unsigned int idx;
2645     int err;
2646 
2647     if (snd_BUG_ON(!cm || !cm->card))
2648         return -EINVAL;
2649 
2650     card = cm->card;
2651 
2652     strcpy(card->mixername, "CMedia PCI");
2653 
2654     spin_lock_irq(&cm->reg_lock);
2655     snd_cmipci_mixer_write(cm, 0x00, 0x00);     /* mixer reset */
2656     spin_unlock_irq(&cm->reg_lock);
2657 
2658     for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2659         if (cm->chip_version == 68) {   // 8768 has no PCM volume
2660             if (!strcmp(snd_cmipci_mixers[idx].name,
2661                 "PCM Playback Volume"))
2662                 continue;
2663         }
2664         err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm));
2665         if (err < 0)
2666             return err;
2667     }
2668 
2669     /* mixer switches */
2670     sw = snd_cmipci_mixer_switches;
2671     for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2672         err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2673         if (err < 0)
2674             return err;
2675     }
2676     if (! cm->can_multi_ch) {
2677         err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2678         if (err < 0)
2679             return err;
2680     }
2681     if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2682         cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2683         sw = snd_cmipci_8738_mixer_switches;
2684         for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2685             err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2686             if (err < 0)
2687                 return err;
2688         }
2689         if (cm->can_ac3_hw) {
2690             kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm);
2691             err = snd_ctl_add(card, kctl);
2692             if (err < 0)
2693                 return err;
2694             kctl->id.device = pcm_spdif_device;
2695             kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm);
2696             err = snd_ctl_add(card, kctl);
2697             if (err < 0)
2698                 return err;
2699             kctl->id.device = pcm_spdif_device;
2700             kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm);
2701             err = snd_ctl_add(card, kctl);
2702             if (err < 0)
2703                 return err;
2704             kctl->id.device = pcm_spdif_device;
2705         }
2706         if (cm->chip_version <= 37) {
2707             sw = snd_cmipci_old_mixer_switches;
2708             for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2709                 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2710                 if (err < 0)
2711                     return err;
2712             }
2713         }
2714     }
2715     if (cm->chip_version >= 39) {
2716         sw = snd_cmipci_extra_mixer_switches;
2717         for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2718             err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2719             if (err < 0)
2720                 return err;
2721         }
2722     }
2723 
2724     /* card switches */
2725     /*
2726      * newer chips don't have the register bits to force modem link
2727      * detection; the bit that was FLINKON now mutes CH1
2728      */
2729     if (cm->chip_version < 39) {
2730         err = snd_ctl_add(cm->card,
2731                   snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2732         if (err < 0)
2733             return err;
2734     }
2735 
2736     for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2737         struct snd_ctl_elem_id elem_id;
2738         struct snd_kcontrol *ctl;
2739         memset(&elem_id, 0, sizeof(elem_id));
2740         elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2741         strcpy(elem_id.name, cm_saved_mixer[idx].name);
2742         ctl = snd_ctl_find_id(cm->card, &elem_id);
2743         if (ctl)
2744             cm->mixer_res_ctl[idx] = ctl;
2745     }
2746 
2747     return 0;
2748 }
2749 
2750 
2751 /*
2752  * proc interface
2753  */
2754 
2755 static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
2756                  struct snd_info_buffer *buffer)
2757 {
2758     struct cmipci *cm = entry->private_data;
2759     int i, v;
2760     
2761     snd_iprintf(buffer, "%s\n", cm->card->longname);
2762     for (i = 0; i < 0x94; i++) {
2763         if (i == 0x28)
2764             i = 0x90;
2765         v = inb(cm->iobase + i);
2766         if (i % 4 == 0)
2767             snd_iprintf(buffer, "\n%02x:", i);
2768         snd_iprintf(buffer, " %02x", v);
2769     }
2770     snd_iprintf(buffer, "\n");
2771 }
2772 
2773 static void snd_cmipci_proc_init(struct cmipci *cm)
2774 {
2775     snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2776 }
2777 
2778 static const struct pci_device_id snd_cmipci_ids[] = {
2779     {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2780     {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2781     {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2782     {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2783     {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2784     {0,},
2785 };
2786 
2787 
2788 /*
2789  * check chip version and capabilities
2790  * driver name is modified according to the chip model
2791  */
2792 static void query_chip(struct cmipci *cm)
2793 {
2794     unsigned int detect;
2795 
2796     /* check reg 0Ch, bit 24-31 */
2797     detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2798     if (! detect) {
2799         /* check reg 08h, bit 24-28 */
2800         detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2801         switch (detect) {
2802         case 0:
2803             cm->chip_version = 33;
2804             if (cm->do_soft_ac3)
2805                 cm->can_ac3_sw = 1;
2806             else
2807                 cm->can_ac3_hw = 1;
2808             break;
2809         case CM_CHIP_037:
2810             cm->chip_version = 37;
2811             cm->can_ac3_hw = 1;
2812             break;
2813         default:
2814             cm->chip_version = 39;
2815             cm->can_ac3_hw = 1;
2816             break;
2817         }
2818         cm->max_channels = 2;
2819     } else {
2820         if (detect & CM_CHIP_039) {
2821             cm->chip_version = 39;
2822             if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2823                 cm->max_channels = 6;
2824             else
2825                 cm->max_channels = 4;
2826         } else if (detect & CM_CHIP_8768) {
2827             cm->chip_version = 68;
2828             cm->max_channels = 8;
2829             cm->can_96k = 1;
2830         } else {
2831             cm->chip_version = 55;
2832             cm->max_channels = 6;
2833             cm->can_96k = 1;
2834         }
2835         cm->can_ac3_hw = 1;
2836         cm->can_multi_ch = 1;
2837     }
2838 }
2839 
2840 #ifdef SUPPORT_JOYSTICK
2841 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2842 {
2843     static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2844     struct gameport *gp;
2845     struct resource *r = NULL;
2846     int i, io_port = 0;
2847 
2848     if (joystick_port[dev] == 0)
2849         return -ENODEV;
2850 
2851     if (joystick_port[dev] == 1) { /* auto-detect */
2852         for (i = 0; ports[i]; i++) {
2853             io_port = ports[i];
2854             r = devm_request_region(&cm->pci->dev, io_port, 1,
2855                         "CMIPCI gameport");
2856             if (r)
2857                 break;
2858         }
2859     } else {
2860         io_port = joystick_port[dev];
2861         r = devm_request_region(&cm->pci->dev, io_port, 1,
2862                     "CMIPCI gameport");
2863     }
2864 
2865     if (!r) {
2866         dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2867         return -EBUSY;
2868     }
2869 
2870     cm->gameport = gp = gameport_allocate_port();
2871     if (!gp) {
2872         dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2873         return -ENOMEM;
2874     }
2875     gameport_set_name(gp, "C-Media Gameport");
2876     gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2877     gameport_set_dev_parent(gp, &cm->pci->dev);
2878     gp->io = io_port;
2879 
2880     snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2881 
2882     gameport_register_port(cm->gameport);
2883 
2884     return 0;
2885 }
2886 
2887 static void snd_cmipci_free_gameport(struct cmipci *cm)
2888 {
2889     if (cm->gameport) {
2890         gameport_unregister_port(cm->gameport);
2891         cm->gameport = NULL;
2892 
2893         snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2894     }
2895 }
2896 #else
2897 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2898 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2899 #endif
2900 
2901 static void snd_cmipci_free(struct snd_card *card)
2902 {
2903     struct cmipci *cm = card->private_data;
2904 
2905     snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2906     snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2907     snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2908     snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2909     snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2910     snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2911     snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2912 
2913     /* reset mixer */
2914     snd_cmipci_mixer_write(cm, 0, 0);
2915 
2916     snd_cmipci_free_gameport(cm);
2917 }
2918 
2919 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2920 {
2921     long iosynth;
2922     unsigned int val;
2923     struct snd_opl3 *opl3;
2924     int err;
2925 
2926     if (!fm_port)
2927         goto disable_fm;
2928 
2929     if (cm->chip_version >= 39) {
2930         /* first try FM regs in PCI port range */
2931         iosynth = cm->iobase + CM_REG_FM_PCI;
2932         err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2933                       OPL3_HW_OPL3, 1, &opl3);
2934     } else {
2935         err = -EIO;
2936     }
2937     if (err < 0) {
2938         /* then try legacy ports */
2939         val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2940         iosynth = fm_port;
2941         switch (iosynth) {
2942         case 0x3E8: val |= CM_FMSEL_3E8; break;
2943         case 0x3E0: val |= CM_FMSEL_3E0; break;
2944         case 0x3C8: val |= CM_FMSEL_3C8; break;
2945         case 0x388: val |= CM_FMSEL_388; break;
2946         default:
2947             goto disable_fm;
2948         }
2949         snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2950         /* enable FM */
2951         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2952 
2953         if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2954                     OPL3_HW_OPL3, 0, &opl3) < 0) {
2955             dev_err(cm->card->dev,
2956                 "no OPL device at %#lx, skipping...\n",
2957                 iosynth);
2958             goto disable_fm;
2959         }
2960     }
2961     err = snd_opl3_hwdep_new(opl3, 0, 1, NULL);
2962     if (err < 0) {
2963         dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2964         return err;
2965     }
2966     return 0;
2967 
2968  disable_fm:
2969     snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2970     snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2971     return 0;
2972 }
2973 
2974 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2975                  int dev)
2976 {
2977     struct cmipci *cm = card->private_data;
2978     int err;
2979     unsigned int val;
2980     long iomidi = 0;
2981     int integrated_midi = 0;
2982     char modelstr[16];
2983     int pcm_index, pcm_spdif_index;
2984     static const struct pci_device_id intel_82437vx[] = {
2985         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2986         { },
2987     };
2988 
2989     err = pcim_enable_device(pci);
2990     if (err < 0)
2991         return err;
2992 
2993     spin_lock_init(&cm->reg_lock);
2994     mutex_init(&cm->open_mutex);
2995     cm->device = pci->device;
2996     cm->card = card;
2997     cm->pci = pci;
2998     cm->irq = -1;
2999     cm->channel[0].ch = 0;
3000     cm->channel[1].ch = 1;
3001     cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3002 
3003     err = pci_request_regions(pci, card->driver);
3004     if (err < 0)
3005         return err;
3006     cm->iobase = pci_resource_start(pci, 0);
3007 
3008     if (devm_request_irq(&pci->dev, pci->irq, snd_cmipci_interrupt,
3009                  IRQF_SHARED, KBUILD_MODNAME, cm)) {
3010         dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3011         return -EBUSY;
3012     }
3013     cm->irq = pci->irq;
3014     card->sync_irq = cm->irq;
3015     card->private_free = snd_cmipci_free;
3016 
3017     pci_set_master(cm->pci);
3018 
3019     /*
3020      * check chip version, max channels and capabilities
3021      */
3022 
3023     cm->chip_version = 0;
3024     cm->max_channels = 2;
3025     cm->do_soft_ac3 = soft_ac3[dev];
3026 
3027     if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3028         pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3029         query_chip(cm);
3030     /* added -MCx suffix for chip supporting multi-channels */
3031     if (cm->can_multi_ch)
3032         sprintf(cm->card->driver + strlen(cm->card->driver),
3033             "-MC%d", cm->max_channels);
3034     else if (cm->can_ac3_sw)
3035         strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3036 
3037     cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3038     cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3039 
3040 #if CM_CH_PLAY == 1
3041     cm->ctrl = CM_CHADC0;   /* default FUNCNTRL0 */
3042 #else
3043     cm->ctrl = CM_CHADC1;   /* default FUNCNTRL0 */
3044 #endif
3045 
3046     /* initialize codec registers */
3047     snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3048     snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3049     snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
3050     snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3051     snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3052     snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);   /* disable channels */
3053     snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3054 
3055     snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3056     snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3057 #if CM_CH_PLAY == 1
3058     snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3059 #else
3060     snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3061 #endif
3062     if (cm->chip_version) {
3063         snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3064         snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3065     }
3066     /* Set Bus Master Request */
3067     snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3068 
3069     /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3070     switch (pci->device) {
3071     case PCI_DEVICE_ID_CMEDIA_CM8738:
3072     case PCI_DEVICE_ID_CMEDIA_CM8738B:
3073         if (!pci_dev_present(intel_82437vx)) 
3074             snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3075         break;
3076     default:
3077         break;
3078     }
3079 
3080     if (cm->chip_version < 68) {
3081         val = pci->device < 0x110 ? 8338 : 8738;
3082     } else {
3083         switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3084         case 0:
3085             val = 8769;
3086             break;
3087         case 2:
3088             val = 8762;
3089             break;
3090         default:
3091             switch ((pci->subsystem_vendor << 16) |
3092                 pci->subsystem_device) {
3093             case 0x13f69761:
3094             case 0x584d3741:
3095             case 0x584d3751:
3096             case 0x584d3761:
3097             case 0x584d3771:
3098             case 0x72848384:
3099                 val = 8770;
3100                 break;
3101             default:
3102                 val = 8768;
3103                 break;
3104             }
3105         }
3106     }
3107     sprintf(card->shortname, "C-Media CMI%d", val);
3108     if (cm->chip_version < 68)
3109         sprintf(modelstr, " (model %d)", cm->chip_version);
3110     else
3111         modelstr[0] = '\0';
3112     sprintf(card->longname, "%s%s at %#lx, irq %i",
3113         card->shortname, modelstr, cm->iobase, cm->irq);
3114 
3115     if (cm->chip_version >= 39) {
3116         val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3117         if (val != 0x00 && val != 0xff) {
3118             if (mpu_port[dev])
3119                 iomidi = cm->iobase + CM_REG_MPU_PCI;
3120             integrated_midi = 1;
3121         }
3122     }
3123     if (!integrated_midi) {
3124         val = 0;
3125         iomidi = mpu_port[dev];
3126         switch (iomidi) {
3127         case 0x320: val = CM_VMPU_320; break;
3128         case 0x310: val = CM_VMPU_310; break;
3129         case 0x300: val = CM_VMPU_300; break;
3130         case 0x330: val = CM_VMPU_330; break;
3131         default:
3132                 iomidi = 0; break;
3133         }
3134         if (iomidi > 0) {
3135             snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3136             /* enable UART */
3137             snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3138             if (inb(iomidi + 1) == 0xff) {
3139                 dev_err(cm->card->dev,
3140                     "cannot enable MPU-401 port at %#lx\n",
3141                     iomidi);
3142                 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3143                              CM_UART_EN);
3144                 iomidi = 0;
3145             }
3146         }
3147     }
3148 
3149     if (cm->chip_version < 68) {
3150         err = snd_cmipci_create_fm(cm, fm_port[dev]);
3151         if (err < 0)
3152             return err;
3153     }
3154 
3155     /* reset mixer */
3156     snd_cmipci_mixer_write(cm, 0, 0);
3157 
3158     snd_cmipci_proc_init(cm);
3159 
3160     /* create pcm devices */
3161     pcm_index = pcm_spdif_index = 0;
3162     err = snd_cmipci_pcm_new(cm, pcm_index);
3163     if (err < 0)
3164         return err;
3165     pcm_index++;
3166     err = snd_cmipci_pcm2_new(cm, pcm_index);
3167     if (err < 0)
3168         return err;
3169     pcm_index++;
3170     if (cm->can_ac3_hw || cm->can_ac3_sw) {
3171         pcm_spdif_index = pcm_index;
3172         err = snd_cmipci_pcm_spdif_new(cm, pcm_index);
3173         if (err < 0)
3174             return err;
3175     }
3176 
3177     /* create mixer interface & switches */
3178     err = snd_cmipci_mixer_new(cm, pcm_spdif_index);
3179     if (err < 0)
3180         return err;
3181 
3182     if (iomidi > 0) {
3183         err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3184                       iomidi,
3185                       (integrated_midi ?
3186                        MPU401_INFO_INTEGRATED : 0) |
3187                       MPU401_INFO_IRQ_HOOK,
3188                       -1, &cm->rmidi);
3189         if (err < 0)
3190             dev_err(cm->card->dev,
3191                 "no UART401 device at 0x%lx\n", iomidi);
3192     }
3193 
3194 #ifdef USE_VAR48KRATE
3195     for (val = 0; val < ARRAY_SIZE(rates); val++)
3196         snd_cmipci_set_pll(cm, rates[val], val);
3197 
3198     /*
3199      * (Re-)Enable external switch spdo_48k
3200      */
3201     snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3202 #endif /* USE_VAR48KRATE */
3203 
3204     if (snd_cmipci_create_gameport(cm, dev) < 0)
3205         snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3206 
3207     return 0;
3208 }
3209 
3210 /*
3211  */
3212 
3213 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3214 
3215 static int snd_cmipci_probe(struct pci_dev *pci,
3216                 const struct pci_device_id *pci_id)
3217 {
3218     static int dev;
3219     struct snd_card *card;
3220     int err;
3221 
3222     if (dev >= SNDRV_CARDS)
3223         return -ENODEV;
3224     if (! enable[dev]) {
3225         dev++;
3226         return -ENOENT;
3227     }
3228 
3229     err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3230                 sizeof(struct cmipci), &card);
3231     if (err < 0)
3232         return err;
3233     
3234     switch (pci->device) {
3235     case PCI_DEVICE_ID_CMEDIA_CM8738:
3236     case PCI_DEVICE_ID_CMEDIA_CM8738B:
3237         strcpy(card->driver, "CMI8738");
3238         break;
3239     case PCI_DEVICE_ID_CMEDIA_CM8338A:
3240     case PCI_DEVICE_ID_CMEDIA_CM8338B:
3241         strcpy(card->driver, "CMI8338");
3242         break;
3243     default:
3244         strcpy(card->driver, "CMIPCI");
3245         break;
3246     }
3247 
3248     err = snd_cmipci_create(card, pci, dev);
3249     if (err < 0)
3250         goto error;
3251 
3252     err = snd_card_register(card);
3253     if (err < 0)
3254         goto error;
3255 
3256     pci_set_drvdata(pci, card);
3257     dev++;
3258     return 0;
3259 
3260  error:
3261     snd_card_free(card);
3262     return err;
3263 }
3264 
3265 #ifdef CONFIG_PM_SLEEP
3266 /*
3267  * power management
3268  */
3269 static const unsigned char saved_regs[] = {
3270     CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3271     CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL,
3272     CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3273     CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3274     CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3275 };
3276 
3277 static const unsigned char saved_mixers[] = {
3278     SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3279     SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3280     SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3281     SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3282     SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3283     SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3284     CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3285     SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3286 };
3287 
3288 static int snd_cmipci_suspend(struct device *dev)
3289 {
3290     struct snd_card *card = dev_get_drvdata(dev);
3291     struct cmipci *cm = card->private_data;
3292     int i;
3293 
3294     snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3295     
3296     /* save registers */
3297     for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3298         cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3299     for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3300         cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3301 
3302     /* disable ints */
3303     snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3304     return 0;
3305 }
3306 
3307 static int snd_cmipci_resume(struct device *dev)
3308 {
3309     struct snd_card *card = dev_get_drvdata(dev);
3310     struct cmipci *cm = card->private_data;
3311     int i;
3312 
3313     /* reset / initialize to a sane state */
3314     snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3315     snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3316     snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3317     snd_cmipci_mixer_write(cm, 0, 0);
3318 
3319     /* restore registers */
3320     for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3321         snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3322     for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3323         snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3324 
3325     snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3326     return 0;
3327 }
3328 
3329 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3330 #define SND_CMIPCI_PM_OPS   &snd_cmipci_pm
3331 #else
3332 #define SND_CMIPCI_PM_OPS   NULL
3333 #endif /* CONFIG_PM_SLEEP */
3334 
3335 static struct pci_driver cmipci_driver = {
3336     .name = KBUILD_MODNAME,
3337     .id_table = snd_cmipci_ids,
3338     .probe = snd_cmipci_probe,
3339     .driver = {
3340         .pm = SND_CMIPCI_PM_OPS,
3341     },
3342 };
3343     
3344 module_pci_driver(cmipci_driver);