0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025 #include <linux/init.h>
0026 #include <linux/slab.h>
0027 #include <linux/time.h>
0028 #include <linux/wait.h>
0029 #include <linux/delay.h>
0030 #include <linux/module.h>
0031 #include <linux/interrupt.h>
0032 #include <linux/spinlock.h>
0033 #include <linux/dma-mapping.h>
0034 #include <linux/io.h>
0035
0036 #include <sound/core.h>
0037 #include <sound/pcm.h>
0038 #include <sound/control.h>
0039 #include <sound/rawmidi.h>
0040 #include <sound/initval.h>
0041 #include <sound/info.h>
0042
0043 #include <asm/hardware.h>
0044 #include <asm/parisc-device.h>
0045
0046 #include "harmony.h"
0047
0048 static int index = SNDRV_DEFAULT_IDX1;
0049 static char *id = SNDRV_DEFAULT_STR1;
0050 module_param(index, int, 0444);
0051 MODULE_PARM_DESC(index, "Index value for Harmony driver.");
0052 module_param(id, charp, 0444);
0053 MODULE_PARM_DESC(id, "ID string for Harmony driver.");
0054
0055
0056 static const struct parisc_device_id snd_harmony_devtable[] __initconst = {
0057
0058 { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007A },
0059
0060 { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007B },
0061
0062 { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007E },
0063
0064 { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007F },
0065 { 0, }
0066 };
0067
0068 MODULE_DEVICE_TABLE(parisc, snd_harmony_devtable);
0069
0070 #define NAME "harmony"
0071 #define PFX NAME ": "
0072
0073 static const unsigned int snd_harmony_rates[] = {
0074 5512, 6615, 8000, 9600,
0075 11025, 16000, 18900, 22050,
0076 27428, 32000, 33075, 37800,
0077 44100, 48000
0078 };
0079
0080 static const unsigned int rate_bits[14] = {
0081 HARMONY_SR_5KHZ, HARMONY_SR_6KHZ, HARMONY_SR_8KHZ,
0082 HARMONY_SR_9KHZ, HARMONY_SR_11KHZ, HARMONY_SR_16KHZ,
0083 HARMONY_SR_18KHZ, HARMONY_SR_22KHZ, HARMONY_SR_27KHZ,
0084 HARMONY_SR_32KHZ, HARMONY_SR_33KHZ, HARMONY_SR_37KHZ,
0085 HARMONY_SR_44KHZ, HARMONY_SR_48KHZ
0086 };
0087
0088 static const struct snd_pcm_hw_constraint_list hw_constraint_rates = {
0089 .count = ARRAY_SIZE(snd_harmony_rates),
0090 .list = snd_harmony_rates,
0091 .mask = 0,
0092 };
0093
0094 static inline unsigned long
0095 harmony_read(struct snd_harmony *h, unsigned r)
0096 {
0097 return __raw_readl(h->iobase + r);
0098 }
0099
0100 static inline void
0101 harmony_write(struct snd_harmony *h, unsigned r, unsigned long v)
0102 {
0103 __raw_writel(v, h->iobase + r);
0104 }
0105
0106 static inline void
0107 harmony_wait_for_control(struct snd_harmony *h)
0108 {
0109 while (harmony_read(h, HARMONY_CNTL) & HARMONY_CNTL_C) ;
0110 }
0111
0112 static inline void
0113 harmony_reset(struct snd_harmony *h)
0114 {
0115 harmony_write(h, HARMONY_RESET, 1);
0116 mdelay(50);
0117 harmony_write(h, HARMONY_RESET, 0);
0118 }
0119
0120 static void
0121 harmony_disable_interrupts(struct snd_harmony *h)
0122 {
0123 u32 dstatus;
0124 harmony_wait_for_control(h);
0125 dstatus = harmony_read(h, HARMONY_DSTATUS);
0126 dstatus &= ~HARMONY_DSTATUS_IE;
0127 harmony_write(h, HARMONY_DSTATUS, dstatus);
0128 }
0129
0130 static void
0131 harmony_enable_interrupts(struct snd_harmony *h)
0132 {
0133 u32 dstatus;
0134 harmony_wait_for_control(h);
0135 dstatus = harmony_read(h, HARMONY_DSTATUS);
0136 dstatus |= HARMONY_DSTATUS_IE;
0137 harmony_write(h, HARMONY_DSTATUS, dstatus);
0138 }
0139
0140 static void
0141 harmony_mute(struct snd_harmony *h)
0142 {
0143 unsigned long flags;
0144
0145 spin_lock_irqsave(&h->mixer_lock, flags);
0146 harmony_wait_for_control(h);
0147 harmony_write(h, HARMONY_GAINCTL, HARMONY_GAIN_SILENCE);
0148 spin_unlock_irqrestore(&h->mixer_lock, flags);
0149 }
0150
0151 static void
0152 harmony_unmute(struct snd_harmony *h)
0153 {
0154 unsigned long flags;
0155
0156 spin_lock_irqsave(&h->mixer_lock, flags);
0157 harmony_wait_for_control(h);
0158 harmony_write(h, HARMONY_GAINCTL, h->st.gain);
0159 spin_unlock_irqrestore(&h->mixer_lock, flags);
0160 }
0161
0162 static void
0163 harmony_set_control(struct snd_harmony *h)
0164 {
0165 u32 ctrl;
0166 unsigned long flags;
0167
0168 spin_lock_irqsave(&h->lock, flags);
0169
0170 ctrl = (HARMONY_CNTL_C |
0171 (h->st.format << 6) |
0172 (h->st.stereo << 5) |
0173 (h->st.rate));
0174
0175 harmony_wait_for_control(h);
0176 harmony_write(h, HARMONY_CNTL, ctrl);
0177
0178 spin_unlock_irqrestore(&h->lock, flags);
0179 }
0180
0181 static irqreturn_t
0182 snd_harmony_interrupt(int irq, void *dev)
0183 {
0184 u32 dstatus;
0185 struct snd_harmony *h = dev;
0186
0187 spin_lock(&h->lock);
0188 harmony_disable_interrupts(h);
0189 harmony_wait_for_control(h);
0190 dstatus = harmony_read(h, HARMONY_DSTATUS);
0191 spin_unlock(&h->lock);
0192
0193 if (dstatus & HARMONY_DSTATUS_PN) {
0194 if (h->psubs && h->st.playing) {
0195 spin_lock(&h->lock);
0196 h->pbuf.buf += h->pbuf.count;
0197 h->pbuf.buf %= h->pbuf.size;
0198
0199 harmony_write(h, HARMONY_PNXTADD,
0200 h->pbuf.addr + h->pbuf.buf);
0201 h->stats.play_intr++;
0202 spin_unlock(&h->lock);
0203 snd_pcm_period_elapsed(h->psubs);
0204 } else {
0205 spin_lock(&h->lock);
0206 harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
0207 h->stats.silence_intr++;
0208 spin_unlock(&h->lock);
0209 }
0210 }
0211
0212 if (dstatus & HARMONY_DSTATUS_RN) {
0213 if (h->csubs && h->st.capturing) {
0214 spin_lock(&h->lock);
0215 h->cbuf.buf += h->cbuf.count;
0216 h->cbuf.buf %= h->cbuf.size;
0217
0218 harmony_write(h, HARMONY_RNXTADD,
0219 h->cbuf.addr + h->cbuf.buf);
0220 h->stats.rec_intr++;
0221 spin_unlock(&h->lock);
0222 snd_pcm_period_elapsed(h->csubs);
0223 } else {
0224 spin_lock(&h->lock);
0225 harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
0226 h->stats.graveyard_intr++;
0227 spin_unlock(&h->lock);
0228 }
0229 }
0230
0231 spin_lock(&h->lock);
0232 harmony_enable_interrupts(h);
0233 spin_unlock(&h->lock);
0234
0235 return IRQ_HANDLED;
0236 }
0237
0238 static unsigned int
0239 snd_harmony_rate_bits(int rate)
0240 {
0241 unsigned int i;
0242
0243 for (i = 0; i < ARRAY_SIZE(snd_harmony_rates); i++)
0244 if (snd_harmony_rates[i] == rate)
0245 return rate_bits[i];
0246
0247 return HARMONY_SR_44KHZ;
0248 }
0249
0250 static const struct snd_pcm_hardware snd_harmony_playback =
0251 {
0252 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
0253 SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP_VALID |
0254 SNDRV_PCM_INFO_BLOCK_TRANSFER),
0255 .formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_MU_LAW |
0256 SNDRV_PCM_FMTBIT_A_LAW),
0257 .rates = (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000 |
0258 SNDRV_PCM_RATE_KNOT),
0259 .rate_min = 5512,
0260 .rate_max = 48000,
0261 .channels_min = 1,
0262 .channels_max = 2,
0263 .buffer_bytes_max = MAX_BUF_SIZE,
0264 .period_bytes_min = BUF_SIZE,
0265 .period_bytes_max = BUF_SIZE,
0266 .periods_min = 1,
0267 .periods_max = MAX_BUFS,
0268 .fifo_size = 0,
0269 };
0270
0271 static const struct snd_pcm_hardware snd_harmony_capture =
0272 {
0273 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
0274 SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP_VALID |
0275 SNDRV_PCM_INFO_BLOCK_TRANSFER),
0276 .formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_MU_LAW |
0277 SNDRV_PCM_FMTBIT_A_LAW),
0278 .rates = (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000 |
0279 SNDRV_PCM_RATE_KNOT),
0280 .rate_min = 5512,
0281 .rate_max = 48000,
0282 .channels_min = 1,
0283 .channels_max = 2,
0284 .buffer_bytes_max = MAX_BUF_SIZE,
0285 .period_bytes_min = BUF_SIZE,
0286 .period_bytes_max = BUF_SIZE,
0287 .periods_min = 1,
0288 .periods_max = MAX_BUFS,
0289 .fifo_size = 0,
0290 };
0291
0292 static int
0293 snd_harmony_playback_trigger(struct snd_pcm_substream *ss, int cmd)
0294 {
0295 struct snd_harmony *h = snd_pcm_substream_chip(ss);
0296
0297 if (h->st.capturing)
0298 return -EBUSY;
0299
0300 spin_lock(&h->lock);
0301 switch (cmd) {
0302 case SNDRV_PCM_TRIGGER_START:
0303 h->st.playing = 1;
0304 harmony_write(h, HARMONY_PNXTADD, h->pbuf.addr);
0305 harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
0306 harmony_unmute(h);
0307 harmony_enable_interrupts(h);
0308 break;
0309 case SNDRV_PCM_TRIGGER_STOP:
0310 h->st.playing = 0;
0311 harmony_mute(h);
0312 harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
0313 harmony_disable_interrupts(h);
0314 break;
0315 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
0316 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
0317 case SNDRV_PCM_TRIGGER_SUSPEND:
0318 default:
0319 spin_unlock(&h->lock);
0320 snd_BUG();
0321 return -EINVAL;
0322 }
0323 spin_unlock(&h->lock);
0324
0325 return 0;
0326 }
0327
0328 static int
0329 snd_harmony_capture_trigger(struct snd_pcm_substream *ss, int cmd)
0330 {
0331 struct snd_harmony *h = snd_pcm_substream_chip(ss);
0332
0333 if (h->st.playing)
0334 return -EBUSY;
0335
0336 spin_lock(&h->lock);
0337 switch (cmd) {
0338 case SNDRV_PCM_TRIGGER_START:
0339 h->st.capturing = 1;
0340 harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
0341 harmony_write(h, HARMONY_RNXTADD, h->cbuf.addr);
0342 harmony_unmute(h);
0343 harmony_enable_interrupts(h);
0344 break;
0345 case SNDRV_PCM_TRIGGER_STOP:
0346 h->st.capturing = 0;
0347 harmony_mute(h);
0348 harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
0349 harmony_disable_interrupts(h);
0350 break;
0351 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
0352 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
0353 case SNDRV_PCM_TRIGGER_SUSPEND:
0354 default:
0355 spin_unlock(&h->lock);
0356 snd_BUG();
0357 return -EINVAL;
0358 }
0359 spin_unlock(&h->lock);
0360
0361 return 0;
0362 }
0363
0364 static int
0365 snd_harmony_set_data_format(struct snd_harmony *h, int fmt, int force)
0366 {
0367 int o = h->st.format;
0368 int n;
0369
0370 switch(fmt) {
0371 case SNDRV_PCM_FORMAT_S16_BE:
0372 n = HARMONY_DF_16BIT_LINEAR;
0373 break;
0374 case SNDRV_PCM_FORMAT_A_LAW:
0375 n = HARMONY_DF_8BIT_ALAW;
0376 break;
0377 case SNDRV_PCM_FORMAT_MU_LAW:
0378 n = HARMONY_DF_8BIT_ULAW;
0379 break;
0380 default:
0381 n = HARMONY_DF_16BIT_LINEAR;
0382 break;
0383 }
0384
0385 if (force || o != n) {
0386 snd_pcm_format_set_silence(fmt, h->sdma.area, SILENCE_BUFSZ /
0387 (snd_pcm_format_physical_width(fmt)
0388 / 8));
0389 }
0390
0391 return n;
0392 }
0393
0394 static int
0395 snd_harmony_playback_prepare(struct snd_pcm_substream *ss)
0396 {
0397 struct snd_harmony *h = snd_pcm_substream_chip(ss);
0398 struct snd_pcm_runtime *rt = ss->runtime;
0399
0400 if (h->st.capturing)
0401 return -EBUSY;
0402
0403 h->pbuf.size = snd_pcm_lib_buffer_bytes(ss);
0404 h->pbuf.count = snd_pcm_lib_period_bytes(ss);
0405 if (h->pbuf.buf >= h->pbuf.size)
0406 h->pbuf.buf = 0;
0407 h->st.playing = 0;
0408
0409 h->st.rate = snd_harmony_rate_bits(rt->rate);
0410 h->st.format = snd_harmony_set_data_format(h, rt->format, 0);
0411
0412 if (rt->channels == 2)
0413 h->st.stereo = HARMONY_SS_STEREO;
0414 else
0415 h->st.stereo = HARMONY_SS_MONO;
0416
0417 harmony_set_control(h);
0418
0419 h->pbuf.addr = rt->dma_addr;
0420
0421 return 0;
0422 }
0423
0424 static int
0425 snd_harmony_capture_prepare(struct snd_pcm_substream *ss)
0426 {
0427 struct snd_harmony *h = snd_pcm_substream_chip(ss);
0428 struct snd_pcm_runtime *rt = ss->runtime;
0429
0430 if (h->st.playing)
0431 return -EBUSY;
0432
0433 h->cbuf.size = snd_pcm_lib_buffer_bytes(ss);
0434 h->cbuf.count = snd_pcm_lib_period_bytes(ss);
0435 if (h->cbuf.buf >= h->cbuf.size)
0436 h->cbuf.buf = 0;
0437 h->st.capturing = 0;
0438
0439 h->st.rate = snd_harmony_rate_bits(rt->rate);
0440 h->st.format = snd_harmony_set_data_format(h, rt->format, 0);
0441
0442 if (rt->channels == 2)
0443 h->st.stereo = HARMONY_SS_STEREO;
0444 else
0445 h->st.stereo = HARMONY_SS_MONO;
0446
0447 harmony_set_control(h);
0448
0449 h->cbuf.addr = rt->dma_addr;
0450
0451 return 0;
0452 }
0453
0454 static snd_pcm_uframes_t
0455 snd_harmony_playback_pointer(struct snd_pcm_substream *ss)
0456 {
0457 struct snd_pcm_runtime *rt = ss->runtime;
0458 struct snd_harmony *h = snd_pcm_substream_chip(ss);
0459 unsigned long pcuradd;
0460 unsigned long played;
0461
0462 if (!(h->st.playing) || (h->psubs == NULL))
0463 return 0;
0464
0465 if ((h->pbuf.addr == 0) || (h->pbuf.size == 0))
0466 return 0;
0467
0468 pcuradd = harmony_read(h, HARMONY_PCURADD);
0469 played = pcuradd - h->pbuf.addr;
0470
0471 #ifdef HARMONY_DEBUG
0472 printk(KERN_DEBUG PFX "playback_pointer is 0x%lx-0x%lx = %d bytes\n",
0473 pcuradd, h->pbuf.addr, played);
0474 #endif
0475
0476 if (pcuradd > h->pbuf.addr + h->pbuf.size) {
0477 return 0;
0478 }
0479
0480 return bytes_to_frames(rt, played);
0481 }
0482
0483 static snd_pcm_uframes_t
0484 snd_harmony_capture_pointer(struct snd_pcm_substream *ss)
0485 {
0486 struct snd_pcm_runtime *rt = ss->runtime;
0487 struct snd_harmony *h = snd_pcm_substream_chip(ss);
0488 unsigned long rcuradd;
0489 unsigned long caught;
0490
0491 if (!(h->st.capturing) || (h->csubs == NULL))
0492 return 0;
0493
0494 if ((h->cbuf.addr == 0) || (h->cbuf.size == 0))
0495 return 0;
0496
0497 rcuradd = harmony_read(h, HARMONY_RCURADD);
0498 caught = rcuradd - h->cbuf.addr;
0499
0500 #ifdef HARMONY_DEBUG
0501 printk(KERN_DEBUG PFX "capture_pointer is 0x%lx-0x%lx = %d bytes\n",
0502 rcuradd, h->cbuf.addr, caught);
0503 #endif
0504
0505 if (rcuradd > h->cbuf.addr + h->cbuf.size) {
0506 return 0;
0507 }
0508
0509 return bytes_to_frames(rt, caught);
0510 }
0511
0512 static int
0513 snd_harmony_playback_open(struct snd_pcm_substream *ss)
0514 {
0515 struct snd_harmony *h = snd_pcm_substream_chip(ss);
0516 struct snd_pcm_runtime *rt = ss->runtime;
0517 int err;
0518
0519 h->psubs = ss;
0520 rt->hw = snd_harmony_playback;
0521 snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE,
0522 &hw_constraint_rates);
0523
0524 err = snd_pcm_hw_constraint_integer(rt, SNDRV_PCM_HW_PARAM_PERIODS);
0525 if (err < 0)
0526 return err;
0527
0528 return 0;
0529 }
0530
0531 static int
0532 snd_harmony_capture_open(struct snd_pcm_substream *ss)
0533 {
0534 struct snd_harmony *h = snd_pcm_substream_chip(ss);
0535 struct snd_pcm_runtime *rt = ss->runtime;
0536 int err;
0537
0538 h->csubs = ss;
0539 rt->hw = snd_harmony_capture;
0540 snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE,
0541 &hw_constraint_rates);
0542
0543 err = snd_pcm_hw_constraint_integer(rt, SNDRV_PCM_HW_PARAM_PERIODS);
0544 if (err < 0)
0545 return err;
0546
0547 return 0;
0548 }
0549
0550 static int
0551 snd_harmony_playback_close(struct snd_pcm_substream *ss)
0552 {
0553 struct snd_harmony *h = snd_pcm_substream_chip(ss);
0554 h->psubs = NULL;
0555 return 0;
0556 }
0557
0558 static int
0559 snd_harmony_capture_close(struct snd_pcm_substream *ss)
0560 {
0561 struct snd_harmony *h = snd_pcm_substream_chip(ss);
0562 h->csubs = NULL;
0563 return 0;
0564 }
0565
0566 static const struct snd_pcm_ops snd_harmony_playback_ops = {
0567 .open = snd_harmony_playback_open,
0568 .close = snd_harmony_playback_close,
0569 .prepare = snd_harmony_playback_prepare,
0570 .trigger = snd_harmony_playback_trigger,
0571 .pointer = snd_harmony_playback_pointer,
0572 };
0573
0574 static const struct snd_pcm_ops snd_harmony_capture_ops = {
0575 .open = snd_harmony_capture_open,
0576 .close = snd_harmony_capture_close,
0577 .prepare = snd_harmony_capture_prepare,
0578 .trigger = snd_harmony_capture_trigger,
0579 .pointer = snd_harmony_capture_pointer,
0580 };
0581
0582 static int
0583 snd_harmony_pcm_init(struct snd_harmony *h)
0584 {
0585 struct snd_pcm *pcm;
0586 int err;
0587
0588 if (snd_BUG_ON(!h))
0589 return -EINVAL;
0590
0591 harmony_disable_interrupts(h);
0592
0593 err = snd_pcm_new(h->card, "harmony", 0, 1, 1, &pcm);
0594 if (err < 0)
0595 return err;
0596
0597 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
0598 &snd_harmony_playback_ops);
0599 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
0600 &snd_harmony_capture_ops);
0601
0602 pcm->private_data = h;
0603 pcm->info_flags = 0;
0604 strcpy(pcm->name, "harmony");
0605 h->pcm = pcm;
0606
0607 h->psubs = NULL;
0608 h->csubs = NULL;
0609
0610
0611 h->dma.type = SNDRV_DMA_TYPE_DEV;
0612 h->dma.dev = &h->dev->dev;
0613 err = snd_dma_alloc_pages(h->dma.type,
0614 h->dma.dev,
0615 BUF_SIZE*GRAVEYARD_BUFS,
0616 &h->gdma);
0617 if (err < 0) {
0618 printk(KERN_ERR PFX "cannot allocate graveyard buffer!\n");
0619 return err;
0620 }
0621
0622
0623 err = snd_dma_alloc_pages(h->dma.type,
0624 h->dma.dev,
0625 BUF_SIZE*SILENCE_BUFS,
0626 &h->sdma);
0627 if (err < 0) {
0628 printk(KERN_ERR PFX "cannot allocate silence buffer!\n");
0629 return err;
0630 }
0631
0632
0633 snd_pcm_set_managed_buffer_all(pcm, h->dma.type, h->dma.dev,
0634 MAX_BUF_SIZE, MAX_BUF_SIZE);
0635
0636 h->st.format = snd_harmony_set_data_format(h,
0637 SNDRV_PCM_FORMAT_S16_BE, 1);
0638
0639 return 0;
0640 }
0641
0642 static void
0643 snd_harmony_set_new_gain(struct snd_harmony *h)
0644 {
0645 harmony_wait_for_control(h);
0646 harmony_write(h, HARMONY_GAINCTL, h->st.gain);
0647 }
0648
0649 static int
0650 snd_harmony_mixercontrol_info(struct snd_kcontrol *kc,
0651 struct snd_ctl_elem_info *uinfo)
0652 {
0653 int mask = (kc->private_value >> 16) & 0xff;
0654 int left_shift = (kc->private_value) & 0xff;
0655 int right_shift = (kc->private_value >> 8) & 0xff;
0656
0657 uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN :
0658 SNDRV_CTL_ELEM_TYPE_INTEGER;
0659 uinfo->count = left_shift == right_shift ? 1 : 2;
0660 uinfo->value.integer.min = 0;
0661 uinfo->value.integer.max = mask;
0662
0663 return 0;
0664 }
0665
0666 static int
0667 snd_harmony_volume_get(struct snd_kcontrol *kc,
0668 struct snd_ctl_elem_value *ucontrol)
0669 {
0670 struct snd_harmony *h = snd_kcontrol_chip(kc);
0671 int shift_left = (kc->private_value) & 0xff;
0672 int shift_right = (kc->private_value >> 8) & 0xff;
0673 int mask = (kc->private_value >> 16) & 0xff;
0674 int invert = (kc->private_value >> 24) & 0xff;
0675 int left, right;
0676
0677 spin_lock_irq(&h->mixer_lock);
0678
0679 left = (h->st.gain >> shift_left) & mask;
0680 right = (h->st.gain >> shift_right) & mask;
0681 if (invert) {
0682 left = mask - left;
0683 right = mask - right;
0684 }
0685
0686 ucontrol->value.integer.value[0] = left;
0687 if (shift_left != shift_right)
0688 ucontrol->value.integer.value[1] = right;
0689
0690 spin_unlock_irq(&h->mixer_lock);
0691
0692 return 0;
0693 }
0694
0695 static int
0696 snd_harmony_volume_put(struct snd_kcontrol *kc,
0697 struct snd_ctl_elem_value *ucontrol)
0698 {
0699 struct snd_harmony *h = snd_kcontrol_chip(kc);
0700 int shift_left = (kc->private_value) & 0xff;
0701 int shift_right = (kc->private_value >> 8) & 0xff;
0702 int mask = (kc->private_value >> 16) & 0xff;
0703 int invert = (kc->private_value >> 24) & 0xff;
0704 int left, right;
0705 int old_gain = h->st.gain;
0706
0707 spin_lock_irq(&h->mixer_lock);
0708
0709 left = ucontrol->value.integer.value[0] & mask;
0710 if (invert)
0711 left = mask - left;
0712 h->st.gain &= ~( (mask << shift_left ) );
0713 h->st.gain |= (left << shift_left);
0714
0715 if (shift_left != shift_right) {
0716 right = ucontrol->value.integer.value[1] & mask;
0717 if (invert)
0718 right = mask - right;
0719 h->st.gain &= ~( (mask << shift_right) );
0720 h->st.gain |= (right << shift_right);
0721 }
0722
0723 snd_harmony_set_new_gain(h);
0724
0725 spin_unlock_irq(&h->mixer_lock);
0726
0727 return h->st.gain != old_gain;
0728 }
0729
0730 static int
0731 snd_harmony_captureroute_info(struct snd_kcontrol *kc,
0732 struct snd_ctl_elem_info *uinfo)
0733 {
0734 static const char * const texts[2] = { "Line", "Mic" };
0735
0736 return snd_ctl_enum_info(uinfo, 1, 2, texts);
0737 }
0738
0739 static int
0740 snd_harmony_captureroute_get(struct snd_kcontrol *kc,
0741 struct snd_ctl_elem_value *ucontrol)
0742 {
0743 struct snd_harmony *h = snd_kcontrol_chip(kc);
0744 int value;
0745
0746 spin_lock_irq(&h->mixer_lock);
0747
0748 value = (h->st.gain >> HARMONY_GAIN_IS_SHIFT) & 1;
0749 ucontrol->value.enumerated.item[0] = value;
0750
0751 spin_unlock_irq(&h->mixer_lock);
0752
0753 return 0;
0754 }
0755
0756 static int
0757 snd_harmony_captureroute_put(struct snd_kcontrol *kc,
0758 struct snd_ctl_elem_value *ucontrol)
0759 {
0760 struct snd_harmony *h = snd_kcontrol_chip(kc);
0761 int value;
0762 int old_gain = h->st.gain;
0763
0764 spin_lock_irq(&h->mixer_lock);
0765
0766 value = ucontrol->value.enumerated.item[0] & 1;
0767 h->st.gain &= ~HARMONY_GAIN_IS_MASK;
0768 h->st.gain |= value << HARMONY_GAIN_IS_SHIFT;
0769
0770 snd_harmony_set_new_gain(h);
0771
0772 spin_unlock_irq(&h->mixer_lock);
0773
0774 return h->st.gain != old_gain;
0775 }
0776
0777 #define HARMONY_CONTROLS ARRAY_SIZE(snd_harmony_controls)
0778
0779 #define HARMONY_VOLUME(xname, left_shift, right_shift, mask, invert) \
0780 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
0781 .info = snd_harmony_mixercontrol_info, \
0782 .get = snd_harmony_volume_get, .put = snd_harmony_volume_put, \
0783 .private_value = ((left_shift) | ((right_shift) << 8) | \
0784 ((mask) << 16) | ((invert) << 24)) }
0785
0786 static const struct snd_kcontrol_new snd_harmony_controls[] = {
0787 HARMONY_VOLUME("Master Playback Volume", HARMONY_GAIN_LO_SHIFT,
0788 HARMONY_GAIN_RO_SHIFT, HARMONY_GAIN_OUT, 1),
0789 HARMONY_VOLUME("Capture Volume", HARMONY_GAIN_LI_SHIFT,
0790 HARMONY_GAIN_RI_SHIFT, HARMONY_GAIN_IN, 0),
0791 HARMONY_VOLUME("Monitor Volume", HARMONY_GAIN_MA_SHIFT,
0792 HARMONY_GAIN_MA_SHIFT, HARMONY_GAIN_MA, 1),
0793 {
0794 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
0795 .name = "Input Route",
0796 .info = snd_harmony_captureroute_info,
0797 .get = snd_harmony_captureroute_get,
0798 .put = snd_harmony_captureroute_put
0799 },
0800 HARMONY_VOLUME("Internal Speaker Switch", HARMONY_GAIN_SE_SHIFT,
0801 HARMONY_GAIN_SE_SHIFT, 1, 0),
0802 HARMONY_VOLUME("Line-Out Switch", HARMONY_GAIN_LE_SHIFT,
0803 HARMONY_GAIN_LE_SHIFT, 1, 0),
0804 HARMONY_VOLUME("Headphones Switch", HARMONY_GAIN_HE_SHIFT,
0805 HARMONY_GAIN_HE_SHIFT, 1, 0),
0806 };
0807
0808 static void
0809 snd_harmony_mixer_reset(struct snd_harmony *h)
0810 {
0811 harmony_mute(h);
0812 harmony_reset(h);
0813 h->st.gain = HARMONY_GAIN_DEFAULT;
0814 harmony_unmute(h);
0815 }
0816
0817 static int
0818 snd_harmony_mixer_init(struct snd_harmony *h)
0819 {
0820 struct snd_card *card;
0821 int idx, err;
0822
0823 if (snd_BUG_ON(!h))
0824 return -EINVAL;
0825 card = h->card;
0826 strcpy(card->mixername, "Harmony Gain control interface");
0827
0828 for (idx = 0; idx < HARMONY_CONTROLS; idx++) {
0829 err = snd_ctl_add(card,
0830 snd_ctl_new1(&snd_harmony_controls[idx], h));
0831 if (err < 0)
0832 return err;
0833 }
0834
0835 snd_harmony_mixer_reset(h);
0836
0837 return 0;
0838 }
0839
0840 static int
0841 snd_harmony_free(struct snd_harmony *h)
0842 {
0843 if (h->gdma.addr)
0844 snd_dma_free_pages(&h->gdma);
0845 if (h->sdma.addr)
0846 snd_dma_free_pages(&h->sdma);
0847
0848 if (h->irq >= 0)
0849 free_irq(h->irq, h);
0850
0851 iounmap(h->iobase);
0852 kfree(h);
0853 return 0;
0854 }
0855
0856 static int
0857 snd_harmony_dev_free(struct snd_device *dev)
0858 {
0859 struct snd_harmony *h = dev->device_data;
0860 return snd_harmony_free(h);
0861 }
0862
0863 static int
0864 snd_harmony_create(struct snd_card *card,
0865 struct parisc_device *padev,
0866 struct snd_harmony **rchip)
0867 {
0868 int err;
0869 struct snd_harmony *h;
0870 static const struct snd_device_ops ops = {
0871 .dev_free = snd_harmony_dev_free,
0872 };
0873
0874 *rchip = NULL;
0875
0876 h = kzalloc(sizeof(*h), GFP_KERNEL);
0877 if (h == NULL)
0878 return -ENOMEM;
0879
0880 h->hpa = padev->hpa.start;
0881 h->card = card;
0882 h->dev = padev;
0883 h->irq = -1;
0884 h->iobase = ioremap(padev->hpa.start, HARMONY_SIZE);
0885 if (h->iobase == NULL) {
0886 printk(KERN_ERR PFX "unable to remap hpa 0x%lx\n",
0887 (unsigned long)padev->hpa.start);
0888 err = -EBUSY;
0889 goto free_and_ret;
0890 }
0891
0892 err = request_irq(padev->irq, snd_harmony_interrupt, 0,
0893 "harmony", h);
0894 if (err) {
0895 printk(KERN_ERR PFX "could not obtain interrupt %d",
0896 padev->irq);
0897 goto free_and_ret;
0898 }
0899 h->irq = padev->irq;
0900
0901 spin_lock_init(&h->mixer_lock);
0902 spin_lock_init(&h->lock);
0903
0904 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, h, &ops);
0905 if (err < 0)
0906 goto free_and_ret;
0907
0908 *rchip = h;
0909
0910 return 0;
0911
0912 free_and_ret:
0913 snd_harmony_free(h);
0914 return err;
0915 }
0916
0917 static int __init
0918 snd_harmony_probe(struct parisc_device *padev)
0919 {
0920 int err;
0921 struct snd_card *card;
0922 struct snd_harmony *h;
0923
0924 err = snd_card_new(&padev->dev, index, id, THIS_MODULE, 0, &card);
0925 if (err < 0)
0926 return err;
0927
0928 err = snd_harmony_create(card, padev, &h);
0929 if (err < 0)
0930 goto free_and_ret;
0931
0932 err = snd_harmony_pcm_init(h);
0933 if (err < 0)
0934 goto free_and_ret;
0935
0936 err = snd_harmony_mixer_init(h);
0937 if (err < 0)
0938 goto free_and_ret;
0939
0940 strcpy(card->driver, "harmony");
0941 strcpy(card->shortname, "Harmony");
0942 sprintf(card->longname, "%s at 0x%lx, irq %i",
0943 card->shortname, h->hpa, h->irq);
0944
0945 err = snd_card_register(card);
0946 if (err < 0)
0947 goto free_and_ret;
0948
0949 parisc_set_drvdata(padev, card);
0950 return 0;
0951
0952 free_and_ret:
0953 snd_card_free(card);
0954 return err;
0955 }
0956
0957 static void __exit
0958 snd_harmony_remove(struct parisc_device *padev)
0959 {
0960 snd_card_free(parisc_get_drvdata(padev));
0961 }
0962
0963 static struct parisc_driver snd_harmony_driver __refdata = {
0964 .name = "harmony",
0965 .id_table = snd_harmony_devtable,
0966 .probe = snd_harmony_probe,
0967 .remove = __exit_p(snd_harmony_remove),
0968 };
0969
0970 static int __init
0971 alsa_harmony_init(void)
0972 {
0973 return register_parisc_driver(&snd_harmony_driver);
0974 }
0975
0976 static void __exit
0977 alsa_harmony_fini(void)
0978 {
0979 unregister_parisc_driver(&snd_harmony_driver);
0980 }
0981
0982 MODULE_LICENSE("GPL");
0983 MODULE_AUTHOR("Kyle McMartin <kyle@parisc-linux.org>");
0984 MODULE_DESCRIPTION("Harmony sound driver");
0985
0986 module_init(alsa_harmony_init);
0987 module_exit(alsa_harmony_fini);