0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <linux/device.h>
0010 #include <linux/err.h>
0011 #include <linux/firewire.h>
0012 #include <linux/firewire-constants.h>
0013 #include <linux/module.h>
0014 #include <linux/slab.h>
0015 #include <sound/pcm.h>
0016 #include <sound/pcm_params.h>
0017 #include "amdtp-stream.h"
0018
0019 #define TICKS_PER_CYCLE 3072
0020 #define CYCLES_PER_SECOND 8000
0021 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
0022
0023 #define OHCI_SECOND_MODULUS 8
0024
0025
0026 #define CREATE_TRACE_POINTS
0027 #include "amdtp-stream-trace.h"
0028
0029 #define TRANSFER_DELAY_TICKS 0x2e00
0030
0031
0032 #define ISO_DATA_LENGTH_SHIFT 16
0033 #define TAG_NO_CIP_HEADER 0
0034 #define TAG_CIP 1
0035
0036
0037 #define CIP_HEADER_QUADLETS 2
0038 #define CIP_EOH_SHIFT 31
0039 #define CIP_EOH (1u << CIP_EOH_SHIFT)
0040 #define CIP_EOH_MASK 0x80000000
0041 #define CIP_SID_SHIFT 24
0042 #define CIP_SID_MASK 0x3f000000
0043 #define CIP_DBS_MASK 0x00ff0000
0044 #define CIP_DBS_SHIFT 16
0045 #define CIP_SPH_MASK 0x00000400
0046 #define CIP_SPH_SHIFT 10
0047 #define CIP_DBC_MASK 0x000000ff
0048 #define CIP_FMT_SHIFT 24
0049 #define CIP_FMT_MASK 0x3f000000
0050 #define CIP_FDF_MASK 0x00ff0000
0051 #define CIP_FDF_SHIFT 16
0052 #define CIP_FDF_NO_DATA 0xff
0053 #define CIP_SYT_MASK 0x0000ffff
0054 #define CIP_SYT_NO_INFO 0xffff
0055 #define CIP_SYT_CYCLE_MODULUS 16
0056 #define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO)
0057
0058 #define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS)
0059
0060
0061 #define CIP_FMT_AM 0x10
0062 #define AMDTP_FDF_NO_DATA 0xff
0063
0064
0065 #define IR_CTX_HEADER_DEFAULT_QUADLETS 2
0066
0067 #define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS)
0068
0069 #define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE)
0070 #define HEADER_TSTAMP_MASK 0x0000ffff
0071
0072 #define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE
0073 #define IT_PKT_HEADER_SIZE_NO_CIP 0
0074
0075
0076
0077
0078 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
0091 enum amdtp_stream_direction dir, unsigned int flags,
0092 unsigned int fmt,
0093 amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
0094 unsigned int protocol_size)
0095 {
0096 if (process_ctx_payloads == NULL)
0097 return -EINVAL;
0098
0099 s->protocol = kzalloc(protocol_size, GFP_KERNEL);
0100 if (!s->protocol)
0101 return -ENOMEM;
0102
0103 s->unit = unit;
0104 s->direction = dir;
0105 s->flags = flags;
0106 s->context = ERR_PTR(-1);
0107 mutex_init(&s->mutex);
0108 s->packet_index = 0;
0109
0110 init_waitqueue_head(&s->ready_wait);
0111
0112 s->fmt = fmt;
0113 s->process_ctx_payloads = process_ctx_payloads;
0114
0115 return 0;
0116 }
0117 EXPORT_SYMBOL(amdtp_stream_init);
0118
0119
0120
0121
0122
0123 void amdtp_stream_destroy(struct amdtp_stream *s)
0124 {
0125
0126 if (s->protocol == NULL)
0127 return;
0128
0129 WARN_ON(amdtp_stream_running(s));
0130 kfree(s->protocol);
0131 mutex_destroy(&s->mutex);
0132 }
0133 EXPORT_SYMBOL(amdtp_stream_destroy);
0134
0135 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
0136 [CIP_SFC_32000] = 8,
0137 [CIP_SFC_44100] = 8,
0138 [CIP_SFC_48000] = 8,
0139 [CIP_SFC_88200] = 16,
0140 [CIP_SFC_96000] = 16,
0141 [CIP_SFC_176400] = 32,
0142 [CIP_SFC_192000] = 32,
0143 };
0144 EXPORT_SYMBOL(amdtp_syt_intervals);
0145
0146 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
0147 [CIP_SFC_32000] = 32000,
0148 [CIP_SFC_44100] = 44100,
0149 [CIP_SFC_48000] = 48000,
0150 [CIP_SFC_88200] = 88200,
0151 [CIP_SFC_96000] = 96000,
0152 [CIP_SFC_176400] = 176400,
0153 [CIP_SFC_192000] = 192000,
0154 };
0155 EXPORT_SYMBOL(amdtp_rate_table);
0156
0157 static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
0158 struct snd_pcm_hw_rule *rule)
0159 {
0160 struct snd_interval *s = hw_param_interval(params, rule->var);
0161 const struct snd_interval *r =
0162 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
0163 struct snd_interval t = {0};
0164 unsigned int step = 0;
0165 int i;
0166
0167 for (i = 0; i < CIP_SFC_COUNT; ++i) {
0168 if (snd_interval_test(r, amdtp_rate_table[i]))
0169 step = max(step, amdtp_syt_intervals[i]);
0170 }
0171
0172 t.min = roundup(s->min, step);
0173 t.max = rounddown(s->max, step);
0174 t.integer = 1;
0175
0176 return snd_interval_refine(s, &t);
0177 }
0178
0179
0180
0181
0182
0183
0184 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
0185 struct snd_pcm_runtime *runtime)
0186 {
0187 struct snd_pcm_hardware *hw = &runtime->hw;
0188 unsigned int ctx_header_size;
0189 unsigned int maximum_usec_per_period;
0190 int err;
0191
0192 hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER |
0193 SNDRV_PCM_INFO_INTERLEAVED |
0194 SNDRV_PCM_INFO_JOINT_DUPLEX |
0195 SNDRV_PCM_INFO_MMAP |
0196 SNDRV_PCM_INFO_MMAP_VALID |
0197 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP;
0198
0199 hw->periods_min = 2;
0200 hw->periods_max = UINT_MAX;
0201
0202
0203 hw->period_bytes_min = 4 * hw->channels_max;
0204
0205
0206 hw->period_bytes_max = hw->period_bytes_min * 2048;
0207 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217 if (!(s->flags & CIP_NO_HEADER))
0218 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
0219 else
0220 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
0221 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
0222 CYCLES_PER_SECOND / ctx_header_size;
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236 err = snd_pcm_hw_constraint_minmax(runtime,
0237 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
0238 250, maximum_usec_per_period);
0239 if (err < 0)
0240 goto end;
0241
0242
0243 if (!(s->flags & CIP_BLOCKING))
0244 goto end;
0245
0246
0247
0248
0249
0250
0251
0252 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
0253 apply_constraint_to_size, NULL,
0254 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
0255 SNDRV_PCM_HW_PARAM_RATE, -1);
0256 if (err < 0)
0257 goto end;
0258 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
0259 apply_constraint_to_size, NULL,
0260 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
0261 SNDRV_PCM_HW_PARAM_RATE, -1);
0262 if (err < 0)
0263 goto end;
0264 end:
0265 return err;
0266 }
0267 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
0279 unsigned int data_block_quadlets)
0280 {
0281 unsigned int sfc;
0282
0283 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
0284 if (amdtp_rate_table[sfc] == rate)
0285 break;
0286 }
0287 if (sfc == ARRAY_SIZE(amdtp_rate_table))
0288 return -EINVAL;
0289
0290 s->sfc = sfc;
0291 s->data_block_quadlets = data_block_quadlets;
0292 s->syt_interval = amdtp_syt_intervals[sfc];
0293
0294
0295 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
0296
0297
0298 if (s->flags & CIP_BLOCKING)
0299 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
0300
0301 return 0;
0302 }
0303 EXPORT_SYMBOL(amdtp_stream_set_parameters);
0304
0305
0306 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s)
0307 {
0308 unsigned int multiplier;
0309
0310 if (s->flags & CIP_JUMBO_PAYLOAD)
0311 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES;
0312 else
0313 multiplier = 1;
0314
0315 return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
0316 }
0317
0318
0319
0320
0321
0322
0323
0324
0325 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
0326 {
0327 unsigned int cip_header_size;
0328
0329 if (!(s->flags & CIP_NO_HEADER))
0330 cip_header_size = CIP_HEADER_SIZE;
0331 else
0332 cip_header_size = 0;
0333
0334 return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s);
0335 }
0336 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
0337
0338
0339
0340
0341
0342
0343
0344 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
0345 {
0346 s->pcm_buffer_pointer = 0;
0347 s->pcm_period_pointer = 0;
0348 }
0349 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
0350
0351 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
0352 const unsigned int seq_size, unsigned int seq_tail,
0353 unsigned int count)
0354 {
0355 const unsigned int syt_interval = s->syt_interval;
0356 int i;
0357
0358 for (i = 0; i < count; ++i) {
0359 struct seq_desc *desc = descs + seq_tail;
0360
0361 if (desc->syt_offset != CIP_SYT_NO_INFO)
0362 desc->data_blocks = syt_interval;
0363 else
0364 desc->data_blocks = 0;
0365
0366 seq_tail = (seq_tail + 1) % seq_size;
0367 }
0368 }
0369
0370 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
0371 const unsigned int seq_size, unsigned int seq_tail,
0372 unsigned int count)
0373 {
0374 const enum cip_sfc sfc = s->sfc;
0375 unsigned int state = s->ctx_data.rx.data_block_state;
0376 int i;
0377
0378 for (i = 0; i < count; ++i) {
0379 struct seq_desc *desc = descs + seq_tail;
0380
0381 if (!cip_sfc_is_base_44100(sfc)) {
0382
0383 desc->data_blocks = state;
0384 } else {
0385 unsigned int phase = state;
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395 if (sfc == CIP_SFC_44100)
0396
0397 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40));
0398 else
0399
0400 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0);
0401 if (++phase >= (80 >> (sfc >> 1)))
0402 phase = 0;
0403 state = phase;
0404 }
0405
0406 seq_tail = (seq_tail + 1) % seq_size;
0407 }
0408
0409 s->ctx_data.rx.data_block_state = state;
0410 }
0411
0412 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
0413 unsigned int *syt_offset_state, enum cip_sfc sfc)
0414 {
0415 unsigned int syt_offset;
0416
0417 if (*last_syt_offset < TICKS_PER_CYCLE) {
0418 if (!cip_sfc_is_base_44100(sfc))
0419 syt_offset = *last_syt_offset + *syt_offset_state;
0420 else {
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431 unsigned int phase = *syt_offset_state;
0432 unsigned int index = phase % 13;
0433
0434 syt_offset = *last_syt_offset;
0435 syt_offset += 1386 + ((index && !(index & 3)) ||
0436 phase == 146);
0437 if (++phase >= 147)
0438 phase = 0;
0439 *syt_offset_state = phase;
0440 }
0441 } else
0442 syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
0443 *last_syt_offset = syt_offset;
0444
0445 if (syt_offset >= TICKS_PER_CYCLE)
0446 syt_offset = CIP_SYT_NO_INFO;
0447
0448 return syt_offset;
0449 }
0450
0451 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs,
0452 const unsigned int seq_size, unsigned int seq_tail,
0453 unsigned int count)
0454 {
0455 const enum cip_sfc sfc = s->sfc;
0456 unsigned int last = s->ctx_data.rx.last_syt_offset;
0457 unsigned int state = s->ctx_data.rx.syt_offset_state;
0458 int i;
0459
0460 for (i = 0; i < count; ++i) {
0461 struct seq_desc *desc = descs + seq_tail;
0462
0463 desc->syt_offset = calculate_syt_offset(&last, &state, sfc);
0464
0465 seq_tail = (seq_tail + 1) % seq_size;
0466 }
0467
0468 s->ctx_data.rx.last_syt_offset = last;
0469 s->ctx_data.rx.syt_offset_state = state;
0470 }
0471
0472 static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle,
0473 unsigned int transfer_delay)
0474 {
0475 unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f;
0476 unsigned int syt_cycle_lo = (syt & 0xf000) >> 12;
0477 unsigned int syt_offset;
0478
0479
0480 if (syt_cycle_lo < cycle_lo)
0481 syt_cycle_lo += CIP_SYT_CYCLE_MODULUS;
0482 syt_cycle_lo -= cycle_lo;
0483
0484
0485
0486 syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff);
0487 if (syt_offset < transfer_delay)
0488 syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE;
0489
0490 return syt_offset - transfer_delay;
0491 }
0492
0493
0494
0495
0496
0497 static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head)
0498 {
0499 const unsigned int cache_size = s->ctx_data.tx.cache.size;
0500 unsigned int cycles = s->ctx_data.tx.cache.tail;
0501
0502 if (cycles < head)
0503 cycles += cache_size;
0504 cycles -= head;
0505
0506 return cycles;
0507 }
0508
0509 static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *descs, unsigned int desc_count)
0510 {
0511 const unsigned int transfer_delay = s->transfer_delay;
0512 const unsigned int cache_size = s->ctx_data.tx.cache.size;
0513 struct seq_desc *cache = s->ctx_data.tx.cache.descs;
0514 unsigned int cache_tail = s->ctx_data.tx.cache.tail;
0515 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
0516 int i;
0517
0518 for (i = 0; i < desc_count; ++i) {
0519 struct seq_desc *dst = cache + cache_tail;
0520 const struct pkt_desc *src = descs + i;
0521
0522 if (aware_syt && src->syt != CIP_SYT_NO_INFO)
0523 dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay);
0524 else
0525 dst->syt_offset = CIP_SYT_NO_INFO;
0526 dst->data_blocks = src->data_blocks;
0527
0528 cache_tail = (cache_tail + 1) % cache_size;
0529 }
0530
0531 s->ctx_data.tx.cache.tail = cache_tail;
0532 }
0533
0534 static void pool_ideal_seq_descs(struct amdtp_stream *s, unsigned int count)
0535 {
0536 struct seq_desc *descs = s->ctx_data.rx.seq.descs;
0537 unsigned int seq_tail = s->ctx_data.rx.seq.tail;
0538 const unsigned int seq_size = s->ctx_data.rx.seq.size;
0539
0540 pool_ideal_syt_offsets(s, descs, seq_size, seq_tail, count);
0541
0542 if (s->flags & CIP_BLOCKING)
0543 pool_blocking_data_blocks(s, descs, seq_size, seq_tail, count);
0544 else
0545 pool_ideal_nonblocking_data_blocks(s, descs, seq_size, seq_tail, count);
0546
0547 s->ctx_data.rx.seq.tail = (seq_tail + count) % seq_size;
0548 }
0549
0550 static void pool_replayed_seq(struct amdtp_stream *s, unsigned int count)
0551 {
0552 struct amdtp_stream *target = s->ctx_data.rx.replay_target;
0553 const struct seq_desc *cache = target->ctx_data.tx.cache.descs;
0554 const unsigned int cache_size = target->ctx_data.tx.cache.size;
0555 unsigned int cache_head = s->ctx_data.rx.cache_head;
0556 struct seq_desc *descs = s->ctx_data.rx.seq.descs;
0557 const unsigned int seq_size = s->ctx_data.rx.seq.size;
0558 unsigned int seq_tail = s->ctx_data.rx.seq.tail;
0559 int i;
0560
0561 for (i = 0; i < count; ++i) {
0562 descs[seq_tail] = cache[cache_head];
0563 seq_tail = (seq_tail + 1) % seq_size;
0564 cache_head = (cache_head + 1) % cache_size;
0565 }
0566
0567 s->ctx_data.rx.seq.tail = seq_tail;
0568 s->ctx_data.rx.cache_head = cache_head;
0569 }
0570
0571 static void pool_seq_descs(struct amdtp_stream *s, unsigned int count)
0572 {
0573 struct amdtp_domain *d = s->domain;
0574
0575 if (!d->replay.enable || !s->ctx_data.rx.replay_target) {
0576 pool_ideal_seq_descs(s, count);
0577 } else {
0578 if (!d->replay.on_the_fly) {
0579 pool_replayed_seq(s, count);
0580 } else {
0581 struct amdtp_stream *tx = s->ctx_data.rx.replay_target;
0582 const unsigned int cache_size = tx->ctx_data.tx.cache.size;
0583 const unsigned int cache_head = s->ctx_data.rx.cache_head;
0584 unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_head);
0585
0586 if (cached_cycles > count && cached_cycles > cache_size / 2)
0587 pool_replayed_seq(s, count);
0588 else
0589 pool_ideal_seq_descs(s, count);
0590 }
0591 }
0592 }
0593
0594 static void update_pcm_pointers(struct amdtp_stream *s,
0595 struct snd_pcm_substream *pcm,
0596 unsigned int frames)
0597 {
0598 unsigned int ptr;
0599
0600 ptr = s->pcm_buffer_pointer + frames;
0601 if (ptr >= pcm->runtime->buffer_size)
0602 ptr -= pcm->runtime->buffer_size;
0603 WRITE_ONCE(s->pcm_buffer_pointer, ptr);
0604
0605 s->pcm_period_pointer += frames;
0606 if (s->pcm_period_pointer >= pcm->runtime->period_size) {
0607 s->pcm_period_pointer -= pcm->runtime->period_size;
0608
0609
0610
0611
0612 if (!pcm->runtime->no_period_wakeup) {
0613 if (in_softirq()) {
0614
0615 snd_pcm_period_elapsed(pcm);
0616 } else {
0617
0618
0619 snd_pcm_period_elapsed_under_stream_lock(pcm);
0620 }
0621 }
0622 }
0623 }
0624
0625 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
0626 bool sched_irq)
0627 {
0628 int err;
0629
0630 params->interrupt = sched_irq;
0631 params->tag = s->tag;
0632 params->sy = 0;
0633
0634 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
0635 s->buffer.packets[s->packet_index].offset);
0636 if (err < 0) {
0637 dev_err(&s->unit->device, "queueing error: %d\n", err);
0638 goto end;
0639 }
0640
0641 if (++s->packet_index >= s->queue_size)
0642 s->packet_index = 0;
0643 end:
0644 return err;
0645 }
0646
0647 static inline int queue_out_packet(struct amdtp_stream *s,
0648 struct fw_iso_packet *params, bool sched_irq)
0649 {
0650 params->skip =
0651 !!(params->header_length == 0 && params->payload_length == 0);
0652 return queue_packet(s, params, sched_irq);
0653 }
0654
0655 static inline int queue_in_packet(struct amdtp_stream *s,
0656 struct fw_iso_packet *params)
0657 {
0658
0659 params->header_length = s->ctx_data.tx.ctx_header_size;
0660 params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
0661 params->skip = false;
0662 return queue_packet(s, params, false);
0663 }
0664
0665 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
0666 unsigned int data_block_counter, unsigned int syt)
0667 {
0668 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
0669 (s->data_block_quadlets << CIP_DBS_SHIFT) |
0670 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
0671 data_block_counter);
0672 cip_header[1] = cpu_to_be32(CIP_EOH |
0673 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
0674 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
0675 (syt & CIP_SYT_MASK));
0676 }
0677
0678 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
0679 struct fw_iso_packet *params, unsigned int header_length,
0680 unsigned int data_blocks,
0681 unsigned int data_block_counter,
0682 unsigned int syt, unsigned int index)
0683 {
0684 unsigned int payload_length;
0685 __be32 *cip_header;
0686
0687 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
0688 params->payload_length = payload_length;
0689
0690 if (header_length > 0) {
0691 cip_header = (__be32 *)params->header;
0692 generate_cip_header(s, cip_header, data_block_counter, syt);
0693 params->header_length = header_length;
0694 } else {
0695 cip_header = NULL;
0696 }
0697
0698 trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks,
0699 data_block_counter, s->packet_index, index);
0700 }
0701
0702 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
0703 unsigned int payload_length,
0704 unsigned int *data_blocks,
0705 unsigned int *data_block_counter, unsigned int *syt)
0706 {
0707 u32 cip_header[2];
0708 unsigned int sph;
0709 unsigned int fmt;
0710 unsigned int fdf;
0711 unsigned int dbc;
0712 bool lost;
0713
0714 cip_header[0] = be32_to_cpu(buf[0]);
0715 cip_header[1] = be32_to_cpu(buf[1]);
0716
0717
0718
0719
0720
0721 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
0722 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
0723 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
0724 dev_info_ratelimited(&s->unit->device,
0725 "Invalid CIP header for AMDTP: %08X:%08X\n",
0726 cip_header[0], cip_header[1]);
0727 return -EAGAIN;
0728 }
0729
0730
0731 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
0732 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
0733 if (sph != s->sph || fmt != s->fmt) {
0734 dev_info_ratelimited(&s->unit->device,
0735 "Detect unexpected protocol: %08x %08x\n",
0736 cip_header[0], cip_header[1]);
0737 return -EAGAIN;
0738 }
0739
0740
0741 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
0742 if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
0743 *data_blocks = 0;
0744 } else {
0745 unsigned int data_block_quadlets =
0746 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
0747
0748 if (data_block_quadlets == 0) {
0749 dev_err(&s->unit->device,
0750 "Detect invalid value in dbs field: %08X\n",
0751 cip_header[0]);
0752 return -EPROTO;
0753 }
0754 if (s->flags & CIP_WRONG_DBS)
0755 data_block_quadlets = s->data_block_quadlets;
0756
0757 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets;
0758 }
0759
0760
0761 dbc = cip_header[0] & CIP_DBC_MASK;
0762 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
0763 *data_block_counter != UINT_MAX)
0764 dbc = *data_block_counter;
0765
0766 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
0767 *data_block_counter == UINT_MAX) {
0768 lost = false;
0769 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
0770 lost = dbc != *data_block_counter;
0771 } else {
0772 unsigned int dbc_interval;
0773
0774 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
0775 dbc_interval = s->ctx_data.tx.dbc_interval;
0776 else
0777 dbc_interval = *data_blocks;
0778
0779 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
0780 }
0781
0782 if (lost) {
0783 dev_err(&s->unit->device,
0784 "Detect discontinuity of CIP: %02X %02X\n",
0785 *data_block_counter, dbc);
0786 return -EIO;
0787 }
0788
0789 *data_block_counter = dbc;
0790
0791 if (!(s->flags & CIP_UNAWARE_SYT))
0792 *syt = cip_header[1] & CIP_SYT_MASK;
0793
0794 return 0;
0795 }
0796
0797 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
0798 const __be32 *ctx_header,
0799 unsigned int *data_blocks,
0800 unsigned int *data_block_counter,
0801 unsigned int *syt, unsigned int packet_index, unsigned int index)
0802 {
0803 unsigned int payload_length;
0804 const __be32 *cip_header;
0805 unsigned int cip_header_size;
0806
0807 payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
0808
0809 if (!(s->flags & CIP_NO_HEADER))
0810 cip_header_size = CIP_HEADER_SIZE;
0811 else
0812 cip_header_size = 0;
0813
0814 if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) {
0815 dev_err(&s->unit->device,
0816 "Detect jumbo payload: %04x %04x\n",
0817 payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length);
0818 return -EIO;
0819 }
0820
0821 if (cip_header_size > 0) {
0822 if (payload_length >= cip_header_size) {
0823 int err;
0824
0825 cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
0826 err = check_cip_header(s, cip_header, payload_length - cip_header_size,
0827 data_blocks, data_block_counter, syt);
0828 if (err < 0)
0829 return err;
0830 } else {
0831
0832 cip_header = NULL;
0833 *data_blocks = 0;
0834 *syt = 0;
0835 }
0836 } else {
0837 cip_header = NULL;
0838 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets;
0839 *syt = 0;
0840
0841 if (*data_block_counter == UINT_MAX)
0842 *data_block_counter = 0;
0843 }
0844
0845 trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks,
0846 *data_block_counter, packet_index, index);
0847
0848 return 0;
0849 }
0850
0851
0852
0853
0854 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp)
0855 {
0856 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
0857 return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
0858 }
0859
0860 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend)
0861 {
0862 cycle += addend;
0863 if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND)
0864 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
0865 return cycle;
0866 }
0867
0868 static int compare_ohci_cycle_count(u32 lval, u32 rval)
0869 {
0870 if (lval == rval)
0871 return 0;
0872 else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2)
0873 return -1;
0874 else
0875 return 1;
0876 }
0877
0878
0879
0880
0881
0882 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp,
0883 unsigned int queue_size)
0884 {
0885 u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp);
0886 return increment_ohci_cycle_count(cycle, queue_size);
0887 }
0888
0889 static int generate_device_pkt_descs(struct amdtp_stream *s,
0890 struct pkt_desc *descs,
0891 const __be32 *ctx_header,
0892 unsigned int packets,
0893 unsigned int *desc_count)
0894 {
0895 unsigned int next_cycle = s->next_cycle;
0896 unsigned int dbc = s->data_block_counter;
0897 unsigned int packet_index = s->packet_index;
0898 unsigned int queue_size = s->queue_size;
0899 int i;
0900 int err;
0901
0902 *desc_count = 0;
0903 for (i = 0; i < packets; ++i) {
0904 struct pkt_desc *desc = descs + *desc_count;
0905 unsigned int cycle;
0906 bool lost;
0907 unsigned int data_blocks;
0908 unsigned int syt;
0909
0910 cycle = compute_ohci_cycle_count(ctx_header[1]);
0911 lost = (next_cycle != cycle);
0912 if (lost) {
0913 if (s->flags & CIP_NO_HEADER) {
0914
0915
0916 unsigned int prev_cycle = next_cycle;
0917
0918 next_cycle = increment_ohci_cycle_count(next_cycle, 1);
0919 lost = (next_cycle != cycle);
0920 if (!lost) {
0921
0922
0923 desc->cycle = prev_cycle;
0924 desc->syt = 0;
0925 desc->data_blocks = 0;
0926 desc->data_block_counter = dbc;
0927 desc->ctx_payload = NULL;
0928 ++desc;
0929 ++(*desc_count);
0930 }
0931 } else if (s->flags & CIP_JUMBO_PAYLOAD) {
0932
0933
0934
0935 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle,
0936 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES);
0937 lost = (compare_ohci_cycle_count(safe_cycle, cycle) > 0);
0938 }
0939 if (lost) {
0940 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n",
0941 next_cycle, cycle);
0942 return -EIO;
0943 }
0944 }
0945
0946 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt,
0947 packet_index, i);
0948 if (err < 0)
0949 return err;
0950
0951 desc->cycle = cycle;
0952 desc->syt = syt;
0953 desc->data_blocks = data_blocks;
0954 desc->data_block_counter = dbc;
0955 desc->ctx_payload = s->buffer.packets[packet_index].buffer;
0956
0957 if (!(s->flags & CIP_DBC_IS_END_EVENT))
0958 dbc = (dbc + desc->data_blocks) & 0xff;
0959
0960 next_cycle = increment_ohci_cycle_count(next_cycle, 1);
0961 ++(*desc_count);
0962 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
0963 packet_index = (packet_index + 1) % queue_size;
0964 }
0965
0966 s->next_cycle = next_cycle;
0967 s->data_block_counter = dbc;
0968
0969 return 0;
0970 }
0971
0972 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
0973 unsigned int transfer_delay)
0974 {
0975 unsigned int syt;
0976
0977 syt_offset += transfer_delay;
0978 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
0979 (syt_offset % TICKS_PER_CYCLE);
0980 return syt & CIP_SYT_MASK;
0981 }
0982
0983 static void generate_pkt_descs(struct amdtp_stream *s, const __be32 *ctx_header, unsigned int packets)
0984 {
0985 struct pkt_desc *descs = s->pkt_descs;
0986 const struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs;
0987 const unsigned int seq_size = s->ctx_data.rx.seq.size;
0988 unsigned int dbc = s->data_block_counter;
0989 unsigned int seq_head = s->ctx_data.rx.seq.head;
0990 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
0991 int i;
0992
0993 for (i = 0; i < packets; ++i) {
0994 struct pkt_desc *desc = descs + i;
0995 unsigned int index = (s->packet_index + i) % s->queue_size;
0996 const struct seq_desc *seq = seq_descs + seq_head;
0997
0998 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size);
0999
1000 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO)
1001 desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay);
1002 else
1003 desc->syt = CIP_SYT_NO_INFO;
1004
1005 desc->data_blocks = seq->data_blocks;
1006
1007 if (s->flags & CIP_DBC_IS_END_EVENT)
1008 dbc = (dbc + desc->data_blocks) & 0xff;
1009
1010 desc->data_block_counter = dbc;
1011
1012 if (!(s->flags & CIP_DBC_IS_END_EVENT))
1013 dbc = (dbc + desc->data_blocks) & 0xff;
1014
1015 desc->ctx_payload = s->buffer.packets[index].buffer;
1016
1017 seq_head = (seq_head + 1) % seq_size;
1018
1019 ++ctx_header;
1020 }
1021
1022 s->data_block_counter = dbc;
1023 s->ctx_data.rx.seq.head = seq_head;
1024 }
1025
1026 static inline void cancel_stream(struct amdtp_stream *s)
1027 {
1028 s->packet_index = -1;
1029 if (in_softirq())
1030 amdtp_stream_pcm_abort(s);
1031 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
1032 }
1033
1034 static void process_ctx_payloads(struct amdtp_stream *s,
1035 const struct pkt_desc *descs,
1036 unsigned int packets)
1037 {
1038 struct snd_pcm_substream *pcm;
1039 unsigned int pcm_frames;
1040
1041 pcm = READ_ONCE(s->pcm);
1042 pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm);
1043 if (pcm)
1044 update_pcm_pointers(s, pcm, pcm_frames);
1045 }
1046
1047 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1048 void *header, void *private_data)
1049 {
1050 struct amdtp_stream *s = private_data;
1051 const struct amdtp_domain *d = s->domain;
1052 const __be32 *ctx_header = header;
1053 const unsigned int events_per_period = d->events_per_period;
1054 unsigned int event_count = s->ctx_data.rx.event_count;
1055 unsigned int pkt_header_length;
1056 unsigned int packets;
1057 bool need_hw_irq;
1058 int i;
1059
1060 if (s->packet_index < 0)
1061 return;
1062
1063
1064 packets = header_length / sizeof(*ctx_header);
1065
1066 pool_seq_descs(s, packets);
1067
1068 generate_pkt_descs(s, ctx_header, packets);
1069
1070 process_ctx_payloads(s, s->pkt_descs, packets);
1071
1072 if (!(s->flags & CIP_NO_HEADER))
1073 pkt_header_length = IT_PKT_HEADER_SIZE_CIP;
1074 else
1075 pkt_header_length = 0;
1076
1077 if (s == d->irq_target) {
1078
1079
1080
1081 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
1082 need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup;
1083 } else {
1084 need_hw_irq = false;
1085 }
1086
1087 for (i = 0; i < packets; ++i) {
1088 const struct pkt_desc *desc = s->pkt_descs + i;
1089 struct {
1090 struct fw_iso_packet params;
1091 __be32 header[CIP_HEADER_QUADLETS];
1092 } template = { {0}, {0} };
1093 bool sched_irq = false;
1094
1095 build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length,
1096 desc->data_blocks, desc->data_block_counter,
1097 desc->syt, i);
1098
1099 if (s == s->domain->irq_target) {
1100 event_count += desc->data_blocks;
1101 if (event_count >= events_per_period) {
1102 event_count -= events_per_period;
1103 sched_irq = need_hw_irq;
1104 }
1105 }
1106
1107 if (queue_out_packet(s, &template.params, sched_irq) < 0) {
1108 cancel_stream(s);
1109 return;
1110 }
1111 }
1112
1113 s->ctx_data.rx.event_count = event_count;
1114 }
1115
1116 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1117 void *header, void *private_data)
1118 {
1119 struct amdtp_stream *s = private_data;
1120 struct amdtp_domain *d = s->domain;
1121 const __be32 *ctx_header = header;
1122 unsigned int packets;
1123 unsigned int cycle;
1124 int i;
1125
1126 if (s->packet_index < 0)
1127 return;
1128
1129 packets = header_length / sizeof(*ctx_header);
1130
1131 cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size);
1132 s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1133
1134 for (i = 0; i < packets; ++i) {
1135 struct fw_iso_packet params = {
1136 .header_length = 0,
1137 .payload_length = 0,
1138 };
1139 bool sched_irq = (s == d->irq_target && i == packets - 1);
1140
1141 if (queue_out_packet(s, ¶ms, sched_irq) < 0) {
1142 cancel_stream(s);
1143 return;
1144 }
1145 }
1146 }
1147
1148 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1149 void *header, void *private_data);
1150
1151 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1152 size_t header_length, void *header, void *private_data)
1153 {
1154 struct amdtp_stream *s = private_data;
1155 struct amdtp_domain *d = s->domain;
1156 __be32 *ctx_header = header;
1157 const unsigned int queue_size = s->queue_size;
1158 unsigned int packets;
1159 unsigned int offset;
1160
1161 if (s->packet_index < 0)
1162 return;
1163
1164 packets = header_length / sizeof(*ctx_header);
1165
1166 offset = 0;
1167 while (offset < packets) {
1168 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size);
1169
1170 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0)
1171 break;
1172
1173 ++offset;
1174 }
1175
1176 if (offset > 0) {
1177 unsigned int length = sizeof(*ctx_header) * offset;
1178
1179 skip_rx_packets(context, tstamp, length, ctx_header, private_data);
1180 if (amdtp_streaming_error(s))
1181 return;
1182
1183 ctx_header += offset;
1184 header_length -= length;
1185 }
1186
1187 if (offset < packets) {
1188 s->ready_processing = true;
1189 wake_up(&s->ready_wait);
1190
1191 process_rx_packets(context, tstamp, header_length, ctx_header, private_data);
1192 if (amdtp_streaming_error(s))
1193 return;
1194
1195 if (s == d->irq_target)
1196 s->context->callback.sc = irq_target_callback;
1197 else
1198 s->context->callback.sc = process_rx_packets;
1199 }
1200 }
1201
1202 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1203 void *header, void *private_data)
1204 {
1205 struct amdtp_stream *s = private_data;
1206 __be32 *ctx_header = header;
1207 unsigned int packets;
1208 unsigned int desc_count;
1209 int i;
1210 int err;
1211
1212 if (s->packet_index < 0)
1213 return;
1214
1215
1216 packets = header_length / s->ctx_data.tx.ctx_header_size;
1217
1218 desc_count = 0;
1219 err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets, &desc_count);
1220 if (err < 0) {
1221 if (err != -EAGAIN) {
1222 cancel_stream(s);
1223 return;
1224 }
1225 } else {
1226 struct amdtp_domain *d = s->domain;
1227
1228 process_ctx_payloads(s, s->pkt_descs, desc_count);
1229
1230 if (d->replay.enable)
1231 cache_seq(s, s->pkt_descs, desc_count);
1232 }
1233
1234 for (i = 0; i < packets; ++i) {
1235 struct fw_iso_packet params = {0};
1236
1237 if (queue_in_packet(s, ¶ms) < 0) {
1238 cancel_stream(s);
1239 return;
1240 }
1241 }
1242 }
1243
1244 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1245 void *header, void *private_data)
1246 {
1247 struct amdtp_stream *s = private_data;
1248 const __be32 *ctx_header = header;
1249 unsigned int packets;
1250 unsigned int cycle;
1251 int i;
1252
1253 if (s->packet_index < 0)
1254 return;
1255
1256 packets = header_length / s->ctx_data.tx.ctx_header_size;
1257
1258 ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
1259 cycle = compute_ohci_cycle_count(ctx_header[1]);
1260 s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1261
1262 for (i = 0; i < packets; ++i) {
1263 struct fw_iso_packet params = {0};
1264
1265 if (queue_in_packet(s, ¶ms) < 0) {
1266 cancel_stream(s);
1267 return;
1268 }
1269 }
1270 }
1271
1272 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1273 size_t header_length, void *header, void *private_data)
1274 {
1275 struct amdtp_stream *s = private_data;
1276 struct amdtp_domain *d = s->domain;
1277 __be32 *ctx_header;
1278 unsigned int packets;
1279 unsigned int offset;
1280
1281 if (s->packet_index < 0)
1282 return;
1283
1284 packets = header_length / s->ctx_data.tx.ctx_header_size;
1285
1286 offset = 0;
1287 ctx_header = header;
1288 while (offset < packets) {
1289 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]);
1290
1291 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0)
1292 break;
1293
1294 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1295 ++offset;
1296 }
1297
1298 ctx_header = header;
1299
1300 if (offset > 0) {
1301 size_t length = s->ctx_data.tx.ctx_header_size * offset;
1302
1303 drop_tx_packets(context, tstamp, length, ctx_header, s);
1304 if (amdtp_streaming_error(s))
1305 return;
1306
1307 ctx_header += length / sizeof(*ctx_header);
1308 header_length -= length;
1309 }
1310
1311 if (offset < packets) {
1312 s->ready_processing = true;
1313 wake_up(&s->ready_wait);
1314
1315 process_tx_packets(context, tstamp, header_length, ctx_header, s);
1316 if (amdtp_streaming_error(s))
1317 return;
1318
1319 context->callback.sc = process_tx_packets;
1320 }
1321 }
1322
1323 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp,
1324 size_t header_length, void *header, void *private_data)
1325 {
1326 struct amdtp_stream *s = private_data;
1327 struct amdtp_domain *d = s->domain;
1328 __be32 *ctx_header;
1329 unsigned int count;
1330 unsigned int events;
1331 int i;
1332
1333 if (s->packet_index < 0)
1334 return;
1335
1336 count = header_length / s->ctx_data.tx.ctx_header_size;
1337
1338
1339 events = 0;
1340 ctx_header = header;
1341 for (i = 0; i < count; ++i) {
1342 unsigned int payload_quads =
1343 (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32);
1344 unsigned int data_blocks;
1345
1346 if (s->flags & CIP_NO_HEADER) {
1347 data_blocks = payload_quads / s->data_block_quadlets;
1348 } else {
1349 __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
1350
1351 if (payload_quads < CIP_HEADER_QUADLETS) {
1352 data_blocks = 0;
1353 } else {
1354 payload_quads -= CIP_HEADER_QUADLETS;
1355
1356 if (s->flags & CIP_UNAWARE_SYT) {
1357 data_blocks = payload_quads / s->data_block_quadlets;
1358 } else {
1359 u32 cip1 = be32_to_cpu(cip_headers[1]);
1360
1361
1362
1363 if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA)
1364 data_blocks = 0;
1365 else
1366 data_blocks = payload_quads / s->data_block_quadlets;
1367 }
1368 }
1369 }
1370
1371 events += data_blocks;
1372
1373 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1374 }
1375
1376 drop_tx_packets(context, tstamp, header_length, header, s);
1377
1378 if (events > 0)
1379 s->ctx_data.tx.event_starts = true;
1380
1381
1382 {
1383 unsigned int stream_count = 0;
1384 unsigned int event_starts_count = 0;
1385 unsigned int cycle = UINT_MAX;
1386
1387 list_for_each_entry(s, &d->streams, list) {
1388 if (s->direction == AMDTP_IN_STREAM) {
1389 ++stream_count;
1390 if (s->ctx_data.tx.event_starts)
1391 ++event_starts_count;
1392 }
1393 }
1394
1395 if (stream_count == event_starts_count) {
1396 unsigned int next_cycle;
1397
1398 list_for_each_entry(s, &d->streams, list) {
1399 if (s->direction != AMDTP_IN_STREAM)
1400 continue;
1401
1402 next_cycle = increment_ohci_cycle_count(s->next_cycle,
1403 d->processing_cycle.tx_init_skip);
1404 if (cycle == UINT_MAX ||
1405 compare_ohci_cycle_count(next_cycle, cycle) > 0)
1406 cycle = next_cycle;
1407
1408 s->context->callback.sc = process_tx_packets_intermediately;
1409 }
1410
1411 d->processing_cycle.tx_start = cycle;
1412 }
1413 }
1414 }
1415
1416 static void process_ctxs_in_domain(struct amdtp_domain *d)
1417 {
1418 struct amdtp_stream *s;
1419
1420 list_for_each_entry(s, &d->streams, list) {
1421 if (s != d->irq_target && amdtp_stream_running(s))
1422 fw_iso_context_flush_completions(s->context);
1423
1424 if (amdtp_streaming_error(s))
1425 goto error;
1426 }
1427
1428 return;
1429 error:
1430 if (amdtp_stream_running(d->irq_target))
1431 cancel_stream(d->irq_target);
1432
1433 list_for_each_entry(s, &d->streams, list) {
1434 if (amdtp_stream_running(s))
1435 cancel_stream(s);
1436 }
1437 }
1438
1439 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1440 void *header, void *private_data)
1441 {
1442 struct amdtp_stream *s = private_data;
1443 struct amdtp_domain *d = s->domain;
1444
1445 process_rx_packets(context, tstamp, header_length, header, private_data);
1446 process_ctxs_in_domain(d);
1447 }
1448
1449 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp,
1450 size_t header_length, void *header, void *private_data)
1451 {
1452 struct amdtp_stream *s = private_data;
1453 struct amdtp_domain *d = s->domain;
1454
1455 process_rx_packets_intermediately(context, tstamp, header_length, header, private_data);
1456 process_ctxs_in_domain(d);
1457 }
1458
1459 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp,
1460 size_t header_length, void *header, void *private_data)
1461 {
1462 struct amdtp_stream *s = private_data;
1463 struct amdtp_domain *d = s->domain;
1464 bool ready_to_start;
1465
1466 skip_rx_packets(context, tstamp, header_length, header, private_data);
1467 process_ctxs_in_domain(d);
1468
1469 if (d->replay.enable && !d->replay.on_the_fly) {
1470 unsigned int rx_count = 0;
1471 unsigned int rx_ready_count = 0;
1472 struct amdtp_stream *rx;
1473
1474 list_for_each_entry(rx, &d->streams, list) {
1475 struct amdtp_stream *tx;
1476 unsigned int cached_cycles;
1477
1478 if (rx->direction != AMDTP_OUT_STREAM)
1479 continue;
1480 ++rx_count;
1481
1482 tx = rx->ctx_data.rx.replay_target;
1483 cached_cycles = calculate_cached_cycle_count(tx, 0);
1484 if (cached_cycles > tx->ctx_data.tx.cache.size / 2)
1485 ++rx_ready_count;
1486 }
1487
1488 ready_to_start = (rx_count == rx_ready_count);
1489 } else {
1490 ready_to_start = true;
1491 }
1492
1493
1494
1495 if (ready_to_start) {
1496 unsigned int cycle = s->next_cycle;
1497 list_for_each_entry(s, &d->streams, list) {
1498 if (s->direction != AMDTP_OUT_STREAM)
1499 continue;
1500
1501 if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0)
1502 cycle = s->next_cycle;
1503
1504 if (s == d->irq_target)
1505 s->context->callback.sc = irq_target_callback_intermediately;
1506 else
1507 s->context->callback.sc = process_rx_packets_intermediately;
1508 }
1509
1510 d->processing_cycle.rx_start = cycle;
1511 }
1512 }
1513
1514
1515
1516 static void amdtp_stream_first_callback(struct fw_iso_context *context,
1517 u32 tstamp, size_t header_length,
1518 void *header, void *private_data)
1519 {
1520 struct amdtp_stream *s = private_data;
1521 struct amdtp_domain *d = s->domain;
1522
1523 if (s->direction == AMDTP_IN_STREAM) {
1524 context->callback.sc = drop_tx_packets_initially;
1525 } else {
1526 if (s == d->irq_target)
1527 context->callback.sc = irq_target_callback_skip;
1528 else
1529 context->callback.sc = skip_rx_packets;
1530 }
1531
1532 context->callback.sc(context, tstamp, header_length, header, s);
1533 }
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
1548 unsigned int queue_size, unsigned int idle_irq_interval)
1549 {
1550 bool is_irq_target = (s == s->domain->irq_target);
1551 unsigned int ctx_header_size;
1552 unsigned int max_ctx_payload_size;
1553 enum dma_data_direction dir;
1554 int type, tag, err;
1555
1556 mutex_lock(&s->mutex);
1557
1558 if (WARN_ON(amdtp_stream_running(s) ||
1559 (s->data_block_quadlets < 1))) {
1560 err = -EBADFD;
1561 goto err_unlock;
1562 }
1563
1564 if (s->direction == AMDTP_IN_STREAM) {
1565
1566 if (is_irq_target) {
1567 err = -EINVAL;
1568 goto err_unlock;
1569 }
1570
1571 s->data_block_counter = UINT_MAX;
1572 } else {
1573 s->data_block_counter = 0;
1574 }
1575
1576
1577 if (s->direction == AMDTP_IN_STREAM) {
1578 dir = DMA_FROM_DEVICE;
1579 type = FW_ISO_CONTEXT_RECEIVE;
1580 if (!(s->flags & CIP_NO_HEADER))
1581 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1582 else
1583 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1584 } else {
1585 dir = DMA_TO_DEVICE;
1586 type = FW_ISO_CONTEXT_TRANSMIT;
1587 ctx_header_size = 0;
1588 }
1589 max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s);
1590
1591 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir);
1592 if (err < 0)
1593 goto err_unlock;
1594 s->queue_size = queue_size;
1595
1596 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
1597 type, channel, speed, ctx_header_size,
1598 amdtp_stream_first_callback, s);
1599 if (IS_ERR(s->context)) {
1600 err = PTR_ERR(s->context);
1601 if (err == -EBUSY)
1602 dev_err(&s->unit->device,
1603 "no free stream on this controller\n");
1604 goto err_buffer;
1605 }
1606
1607 amdtp_stream_update(s);
1608
1609 if (s->direction == AMDTP_IN_STREAM) {
1610 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1611 s->ctx_data.tx.ctx_header_size = ctx_header_size;
1612 s->ctx_data.tx.event_starts = false;
1613
1614 if (s->domain->replay.enable) {
1615
1616
1617 s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2,
1618 queue_size * 3 / 2);
1619 s->ctx_data.tx.cache.tail = 0;
1620 s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size,
1621 sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL);
1622 if (!s->ctx_data.tx.cache.descs) {
1623 err = -ENOMEM;
1624 goto err_context;
1625 }
1626 }
1627 } else {
1628 static const struct {
1629 unsigned int data_block;
1630 unsigned int syt_offset;
1631 } *entry, initial_state[] = {
1632 [CIP_SFC_32000] = { 4, 3072 },
1633 [CIP_SFC_48000] = { 6, 1024 },
1634 [CIP_SFC_96000] = { 12, 1024 },
1635 [CIP_SFC_192000] = { 24, 1024 },
1636 [CIP_SFC_44100] = { 0, 67 },
1637 [CIP_SFC_88200] = { 0, 67 },
1638 [CIP_SFC_176400] = { 0, 67 },
1639 };
1640
1641 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL);
1642 if (!s->ctx_data.rx.seq.descs) {
1643 err = -ENOMEM;
1644 goto err_context;
1645 }
1646 s->ctx_data.rx.seq.size = queue_size;
1647 s->ctx_data.rx.seq.tail = 0;
1648 s->ctx_data.rx.seq.head = 0;
1649
1650 entry = &initial_state[s->sfc];
1651 s->ctx_data.rx.data_block_state = entry->data_block;
1652 s->ctx_data.rx.syt_offset_state = entry->syt_offset;
1653 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
1654
1655 s->ctx_data.rx.event_count = 0;
1656 }
1657
1658 if (s->flags & CIP_NO_HEADER)
1659 s->tag = TAG_NO_CIP_HEADER;
1660 else
1661 s->tag = TAG_CIP;
1662
1663 s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs),
1664 GFP_KERNEL);
1665 if (!s->pkt_descs) {
1666 err = -ENOMEM;
1667 goto err_context;
1668 }
1669
1670 s->packet_index = 0;
1671 do {
1672 struct fw_iso_packet params;
1673
1674 if (s->direction == AMDTP_IN_STREAM) {
1675 err = queue_in_packet(s, ¶ms);
1676 } else {
1677 bool sched_irq = false;
1678
1679 params.header_length = 0;
1680 params.payload_length = 0;
1681
1682 if (is_irq_target) {
1683 sched_irq = !((s->packet_index + 1) %
1684 idle_irq_interval);
1685 }
1686
1687 err = queue_out_packet(s, ¶ms, sched_irq);
1688 }
1689 if (err < 0)
1690 goto err_pkt_descs;
1691 } while (s->packet_index > 0);
1692
1693
1694 tag = FW_ISO_CONTEXT_MATCH_TAG1;
1695 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1696 tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1697
1698 s->ready_processing = false;
1699 err = fw_iso_context_start(s->context, -1, 0, tag);
1700 if (err < 0)
1701 goto err_pkt_descs;
1702
1703 mutex_unlock(&s->mutex);
1704
1705 return 0;
1706 err_pkt_descs:
1707 kfree(s->pkt_descs);
1708 err_context:
1709 if (s->direction == AMDTP_OUT_STREAM) {
1710 kfree(s->ctx_data.rx.seq.descs);
1711 } else {
1712 if (s->domain->replay.enable)
1713 kfree(s->ctx_data.tx.cache.descs);
1714 }
1715 fw_iso_context_destroy(s->context);
1716 s->context = ERR_PTR(-1);
1717 err_buffer:
1718 iso_packets_buffer_destroy(&s->buffer, s->unit);
1719 err_unlock:
1720 mutex_unlock(&s->mutex);
1721
1722 return err;
1723 }
1724
1725
1726
1727
1728
1729
1730
1731
1732 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1733 struct amdtp_stream *s)
1734 {
1735 struct amdtp_stream *irq_target = d->irq_target;
1736
1737
1738 if (irq_target && amdtp_stream_running(irq_target)) {
1739
1740
1741 if (!in_softirq())
1742 fw_iso_context_flush_completions(irq_target->context);
1743 }
1744
1745 return READ_ONCE(s->pcm_buffer_pointer);
1746 }
1747 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1748
1749
1750
1751
1752
1753
1754
1755
1756 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1757 {
1758 struct amdtp_stream *irq_target = d->irq_target;
1759
1760
1761
1762 if (irq_target && amdtp_stream_running(irq_target))
1763 fw_iso_context_flush_completions(irq_target->context);
1764
1765 return 0;
1766 }
1767 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1768
1769
1770
1771
1772
1773 void amdtp_stream_update(struct amdtp_stream *s)
1774 {
1775
1776 WRITE_ONCE(s->source_node_id_field,
1777 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1778 }
1779 EXPORT_SYMBOL(amdtp_stream_update);
1780
1781
1782
1783
1784
1785
1786
1787
1788 static void amdtp_stream_stop(struct amdtp_stream *s)
1789 {
1790 mutex_lock(&s->mutex);
1791
1792 if (!amdtp_stream_running(s)) {
1793 mutex_unlock(&s->mutex);
1794 return;
1795 }
1796
1797 fw_iso_context_stop(s->context);
1798 fw_iso_context_destroy(s->context);
1799 s->context = ERR_PTR(-1);
1800 iso_packets_buffer_destroy(&s->buffer, s->unit);
1801 kfree(s->pkt_descs);
1802
1803 if (s->direction == AMDTP_OUT_STREAM) {
1804 kfree(s->ctx_data.rx.seq.descs);
1805 } else {
1806 if (s->domain->replay.enable)
1807 kfree(s->ctx_data.tx.cache.descs);
1808 }
1809
1810 mutex_unlock(&s->mutex);
1811 }
1812
1813
1814
1815
1816
1817
1818
1819
1820 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1821 {
1822 struct snd_pcm_substream *pcm;
1823
1824 pcm = READ_ONCE(s->pcm);
1825 if (pcm)
1826 snd_pcm_stop_xrun(pcm);
1827 }
1828 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1829
1830
1831
1832
1833
1834 int amdtp_domain_init(struct amdtp_domain *d)
1835 {
1836 INIT_LIST_HEAD(&d->streams);
1837
1838 d->events_per_period = 0;
1839
1840 return 0;
1841 }
1842 EXPORT_SYMBOL_GPL(amdtp_domain_init);
1843
1844
1845
1846
1847
1848 void amdtp_domain_destroy(struct amdtp_domain *d)
1849 {
1850
1851 return;
1852 }
1853 EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
1854
1855
1856
1857
1858
1859
1860
1861
1862 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1863 int channel, int speed)
1864 {
1865 struct amdtp_stream *tmp;
1866
1867 list_for_each_entry(tmp, &d->streams, list) {
1868 if (s == tmp)
1869 return -EBUSY;
1870 }
1871
1872 list_add(&s->list, &d->streams);
1873
1874 s->channel = channel;
1875 s->speed = speed;
1876 s->domain = d;
1877
1878 return 0;
1879 }
1880 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
1881
1882
1883
1884 static int make_association(struct amdtp_domain *d)
1885 {
1886 unsigned int dst_index = 0;
1887 struct amdtp_stream *rx;
1888
1889
1890 list_for_each_entry(rx, &d->streams, list) {
1891 if (rx->direction == AMDTP_OUT_STREAM) {
1892 unsigned int src_index = 0;
1893 struct amdtp_stream *tx = NULL;
1894 struct amdtp_stream *s;
1895
1896 list_for_each_entry(s, &d->streams, list) {
1897 if (s->direction == AMDTP_IN_STREAM) {
1898 if (dst_index == src_index) {
1899 tx = s;
1900 break;
1901 }
1902
1903 ++src_index;
1904 }
1905 }
1906 if (!tx) {
1907
1908 list_for_each_entry(s, &d->streams, list) {
1909 if (s->direction == AMDTP_IN_STREAM) {
1910 tx = s;
1911 break;
1912 }
1913 }
1914
1915 if (!tx)
1916 return -EINVAL;
1917 }
1918
1919 rx->ctx_data.rx.replay_target = tx;
1920 rx->ctx_data.rx.cache_head = 0;
1921
1922 ++dst_index;
1923 }
1924 }
1925
1926 return 0;
1927 }
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq,
1940 bool replay_on_the_fly)
1941 {
1942 unsigned int events_per_buffer = d->events_per_buffer;
1943 unsigned int events_per_period = d->events_per_period;
1944 unsigned int queue_size;
1945 struct amdtp_stream *s;
1946 bool found = false;
1947 int err;
1948
1949 if (replay_seq) {
1950 err = make_association(d);
1951 if (err < 0)
1952 return err;
1953 }
1954 d->replay.enable = replay_seq;
1955 d->replay.on_the_fly = replay_on_the_fly;
1956
1957
1958 list_for_each_entry(s, &d->streams, list) {
1959 if (s->direction == AMDTP_OUT_STREAM) {
1960 found = true;
1961 break;
1962 }
1963 }
1964 if (!found)
1965 return -ENXIO;
1966 d->irq_target = s;
1967
1968 d->processing_cycle.tx_init_skip = tx_init_skip_cycles;
1969
1970
1971
1972
1973 if (events_per_period == 0)
1974 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
1975 if (events_per_buffer == 0)
1976 events_per_buffer = events_per_period * 3;
1977
1978 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
1979 amdtp_rate_table[d->irq_target->sfc]);
1980
1981 list_for_each_entry(s, &d->streams, list) {
1982 unsigned int idle_irq_interval = 0;
1983
1984 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) {
1985 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
1986 amdtp_rate_table[d->irq_target->sfc]);
1987 }
1988
1989
1990 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval);
1991 if (err < 0)
1992 goto error;
1993 }
1994
1995 return 0;
1996 error:
1997 list_for_each_entry(s, &d->streams, list)
1998 amdtp_stream_stop(s);
1999 return err;
2000 }
2001 EXPORT_SYMBOL_GPL(amdtp_domain_start);
2002
2003
2004
2005
2006
2007 void amdtp_domain_stop(struct amdtp_domain *d)
2008 {
2009 struct amdtp_stream *s, *next;
2010
2011 if (d->irq_target)
2012 amdtp_stream_stop(d->irq_target);
2013
2014 list_for_each_entry_safe(s, next, &d->streams, list) {
2015 list_del(&s->list);
2016
2017 if (s != d->irq_target)
2018 amdtp_stream_stop(s);
2019 }
2020
2021 d->events_per_period = 0;
2022 d->irq_target = NULL;
2023 }
2024 EXPORT_SYMBOL_GPL(amdtp_domain_stop);