Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  *  Digital Audio (PCM) abstract layer
0004  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
0005  *                   Abramo Bagnara <abramo@alsa-project.org>
0006  */
0007 
0008 #include <linux/slab.h>
0009 #include <linux/sched/signal.h>
0010 #include <linux/time.h>
0011 #include <linux/math64.h>
0012 #include <linux/export.h>
0013 #include <sound/core.h>
0014 #include <sound/control.h>
0015 #include <sound/tlv.h>
0016 #include <sound/info.h>
0017 #include <sound/pcm.h>
0018 #include <sound/pcm_params.h>
0019 #include <sound/timer.h>
0020 
0021 #include "pcm_local.h"
0022 
0023 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
0024 #define CREATE_TRACE_POINTS
0025 #include "pcm_trace.h"
0026 #else
0027 #define trace_hwptr(substream, pos, in_interrupt)
0028 #define trace_xrun(substream)
0029 #define trace_hw_ptr_error(substream, reason)
0030 #define trace_applptr(substream, prev, curr)
0031 #endif
0032 
0033 static int fill_silence_frames(struct snd_pcm_substream *substream,
0034                    snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
0035 
0036 /*
0037  * fill ring buffer with silence
0038  * runtime->silence_start: starting pointer to silence area
0039  * runtime->silence_filled: size filled with silence
0040  * runtime->silence_threshold: threshold from application
0041  * runtime->silence_size: maximal size from application
0042  *
0043  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
0044  */
0045 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
0046 {
0047     struct snd_pcm_runtime *runtime = substream->runtime;
0048     snd_pcm_uframes_t frames, ofs, transfer;
0049     int err;
0050 
0051     if (runtime->silence_size < runtime->boundary) {
0052         snd_pcm_sframes_t noise_dist, n;
0053         snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
0054         if (runtime->silence_start != appl_ptr) {
0055             n = appl_ptr - runtime->silence_start;
0056             if (n < 0)
0057                 n += runtime->boundary;
0058             if ((snd_pcm_uframes_t)n < runtime->silence_filled)
0059                 runtime->silence_filled -= n;
0060             else
0061                 runtime->silence_filled = 0;
0062             runtime->silence_start = appl_ptr;
0063         }
0064         if (runtime->silence_filled >= runtime->buffer_size)
0065             return;
0066         noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
0067         if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
0068             return;
0069         frames = runtime->silence_threshold - noise_dist;
0070         if (frames > runtime->silence_size)
0071             frames = runtime->silence_size;
0072     } else {
0073         if (new_hw_ptr == ULONG_MAX) {  /* initialization */
0074             snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
0075             if (avail > runtime->buffer_size)
0076                 avail = runtime->buffer_size;
0077             runtime->silence_filled = avail > 0 ? avail : 0;
0078             runtime->silence_start = (runtime->status->hw_ptr +
0079                           runtime->silence_filled) %
0080                          runtime->boundary;
0081         } else {
0082             ofs = runtime->status->hw_ptr;
0083             frames = new_hw_ptr - ofs;
0084             if ((snd_pcm_sframes_t)frames < 0)
0085                 frames += runtime->boundary;
0086             runtime->silence_filled -= frames;
0087             if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
0088                 runtime->silence_filled = 0;
0089                 runtime->silence_start = new_hw_ptr;
0090             } else {
0091                 runtime->silence_start = ofs;
0092             }
0093         }
0094         frames = runtime->buffer_size - runtime->silence_filled;
0095     }
0096     if (snd_BUG_ON(frames > runtime->buffer_size))
0097         return;
0098     if (frames == 0)
0099         return;
0100     ofs = runtime->silence_start % runtime->buffer_size;
0101     while (frames > 0) {
0102         transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
0103         err = fill_silence_frames(substream, ofs, transfer);
0104         snd_BUG_ON(err < 0);
0105         runtime->silence_filled += transfer;
0106         frames -= transfer;
0107         ofs = 0;
0108     }
0109     snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
0110 }
0111 
0112 #ifdef CONFIG_SND_DEBUG
0113 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
0114                char *name, size_t len)
0115 {
0116     snprintf(name, len, "pcmC%dD%d%c:%d",
0117          substream->pcm->card->number,
0118          substream->pcm->device,
0119          substream->stream ? 'c' : 'p',
0120          substream->number);
0121 }
0122 EXPORT_SYMBOL(snd_pcm_debug_name);
0123 #endif
0124 
0125 #define XRUN_DEBUG_BASIC    (1<<0)
0126 #define XRUN_DEBUG_STACK    (1<<1)  /* dump also stack */
0127 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
0128 
0129 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
0130 
0131 #define xrun_debug(substream, mask) \
0132             ((substream)->pstr->xrun_debug & (mask))
0133 #else
0134 #define xrun_debug(substream, mask) 0
0135 #endif
0136 
0137 #define dump_stack_on_xrun(substream) do {          \
0138         if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
0139             dump_stack();               \
0140     } while (0)
0141 
0142 /* call with stream lock held */
0143 void __snd_pcm_xrun(struct snd_pcm_substream *substream)
0144 {
0145     struct snd_pcm_runtime *runtime = substream->runtime;
0146 
0147     trace_xrun(substream);
0148     if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
0149         struct timespec64 tstamp;
0150 
0151         snd_pcm_gettime(runtime, &tstamp);
0152         runtime->status->tstamp.tv_sec = tstamp.tv_sec;
0153         runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
0154     }
0155     snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
0156     if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
0157         char name[16];
0158         snd_pcm_debug_name(substream, name, sizeof(name));
0159         pcm_warn(substream->pcm, "XRUN: %s\n", name);
0160         dump_stack_on_xrun(substream);
0161     }
0162 }
0163 
0164 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
0165 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
0166     do {                                \
0167         trace_hw_ptr_error(substream, reason);  \
0168         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {      \
0169             pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
0170                        (in_interrupt) ? 'Q' : 'P', ##args); \
0171             dump_stack_on_xrun(substream);          \
0172         }                           \
0173     } while (0)
0174 
0175 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
0176 
0177 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
0178 
0179 #endif
0180 
0181 int snd_pcm_update_state(struct snd_pcm_substream *substream,
0182              struct snd_pcm_runtime *runtime)
0183 {
0184     snd_pcm_uframes_t avail;
0185 
0186     avail = snd_pcm_avail(substream);
0187     if (avail > runtime->avail_max)
0188         runtime->avail_max = avail;
0189     if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
0190         if (avail >= runtime->buffer_size) {
0191             snd_pcm_drain_done(substream);
0192             return -EPIPE;
0193         }
0194     } else {
0195         if (avail >= runtime->stop_threshold) {
0196             __snd_pcm_xrun(substream);
0197             return -EPIPE;
0198         }
0199     }
0200     if (runtime->twake) {
0201         if (avail >= runtime->twake)
0202             wake_up(&runtime->tsleep);
0203     } else if (avail >= runtime->control->avail_min)
0204         wake_up(&runtime->sleep);
0205     return 0;
0206 }
0207 
0208 static void update_audio_tstamp(struct snd_pcm_substream *substream,
0209                 struct timespec64 *curr_tstamp,
0210                 struct timespec64 *audio_tstamp)
0211 {
0212     struct snd_pcm_runtime *runtime = substream->runtime;
0213     u64 audio_frames, audio_nsecs;
0214     struct timespec64 driver_tstamp;
0215 
0216     if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
0217         return;
0218 
0219     if (!(substream->ops->get_time_info) ||
0220         (runtime->audio_tstamp_report.actual_type ==
0221             SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
0222 
0223         /*
0224          * provide audio timestamp derived from pointer position
0225          * add delay only if requested
0226          */
0227 
0228         audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
0229 
0230         if (runtime->audio_tstamp_config.report_delay) {
0231             if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
0232                 audio_frames -=  runtime->delay;
0233             else
0234                 audio_frames +=  runtime->delay;
0235         }
0236         audio_nsecs = div_u64(audio_frames * 1000000000LL,
0237                 runtime->rate);
0238         *audio_tstamp = ns_to_timespec64(audio_nsecs);
0239     }
0240 
0241     if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
0242         runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
0243         runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
0244         runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
0245         runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
0246         runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
0247     }
0248 
0249 
0250     /*
0251      * re-take a driver timestamp to let apps detect if the reference tstamp
0252      * read by low-level hardware was provided with a delay
0253      */
0254     snd_pcm_gettime(substream->runtime, &driver_tstamp);
0255     runtime->driver_tstamp = driver_tstamp;
0256 }
0257 
0258 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
0259                   unsigned int in_interrupt)
0260 {
0261     struct snd_pcm_runtime *runtime = substream->runtime;
0262     snd_pcm_uframes_t pos;
0263     snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
0264     snd_pcm_sframes_t hdelta, delta;
0265     unsigned long jdelta;
0266     unsigned long curr_jiffies;
0267     struct timespec64 curr_tstamp;
0268     struct timespec64 audio_tstamp;
0269     int crossed_boundary = 0;
0270 
0271     old_hw_ptr = runtime->status->hw_ptr;
0272 
0273     /*
0274      * group pointer, time and jiffies reads to allow for more
0275      * accurate correlations/corrections.
0276      * The values are stored at the end of this routine after
0277      * corrections for hw_ptr position
0278      */
0279     pos = substream->ops->pointer(substream);
0280     curr_jiffies = jiffies;
0281     if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
0282         if ((substream->ops->get_time_info) &&
0283             (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
0284             substream->ops->get_time_info(substream, &curr_tstamp,
0285                         &audio_tstamp,
0286                         &runtime->audio_tstamp_config,
0287                         &runtime->audio_tstamp_report);
0288 
0289             /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
0290             if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
0291                 snd_pcm_gettime(runtime, &curr_tstamp);
0292         } else
0293             snd_pcm_gettime(runtime, &curr_tstamp);
0294     }
0295 
0296     if (pos == SNDRV_PCM_POS_XRUN) {
0297         __snd_pcm_xrun(substream);
0298         return -EPIPE;
0299     }
0300     if (pos >= runtime->buffer_size) {
0301         if (printk_ratelimit()) {
0302             char name[16];
0303             snd_pcm_debug_name(substream, name, sizeof(name));
0304             pcm_err(substream->pcm,
0305                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
0306                 name, pos, runtime->buffer_size,
0307                 runtime->period_size);
0308         }
0309         pos = 0;
0310     }
0311     pos -= pos % runtime->min_align;
0312     trace_hwptr(substream, pos, in_interrupt);
0313     hw_base = runtime->hw_ptr_base;
0314     new_hw_ptr = hw_base + pos;
0315     if (in_interrupt) {
0316         /* we know that one period was processed */
0317         /* delta = "expected next hw_ptr" for in_interrupt != 0 */
0318         delta = runtime->hw_ptr_interrupt + runtime->period_size;
0319         if (delta > new_hw_ptr) {
0320             /* check for double acknowledged interrupts */
0321             hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
0322             if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
0323                 hw_base += runtime->buffer_size;
0324                 if (hw_base >= runtime->boundary) {
0325                     hw_base = 0;
0326                     crossed_boundary++;
0327                 }
0328                 new_hw_ptr = hw_base + pos;
0329                 goto __delta;
0330             }
0331         }
0332     }
0333     /* new_hw_ptr might be lower than old_hw_ptr in case when */
0334     /* pointer crosses the end of the ring buffer */
0335     if (new_hw_ptr < old_hw_ptr) {
0336         hw_base += runtime->buffer_size;
0337         if (hw_base >= runtime->boundary) {
0338             hw_base = 0;
0339             crossed_boundary++;
0340         }
0341         new_hw_ptr = hw_base + pos;
0342     }
0343       __delta:
0344     delta = new_hw_ptr - old_hw_ptr;
0345     if (delta < 0)
0346         delta += runtime->boundary;
0347 
0348     if (runtime->no_period_wakeup) {
0349         snd_pcm_sframes_t xrun_threshold;
0350         /*
0351          * Without regular period interrupts, we have to check
0352          * the elapsed time to detect xruns.
0353          */
0354         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
0355         if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
0356             goto no_delta_check;
0357         hdelta = jdelta - delta * HZ / runtime->rate;
0358         xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
0359         while (hdelta > xrun_threshold) {
0360             delta += runtime->buffer_size;
0361             hw_base += runtime->buffer_size;
0362             if (hw_base >= runtime->boundary) {
0363                 hw_base = 0;
0364                 crossed_boundary++;
0365             }
0366             new_hw_ptr = hw_base + pos;
0367             hdelta -= runtime->hw_ptr_buffer_jiffies;
0368         }
0369         goto no_delta_check;
0370     }
0371 
0372     /* something must be really wrong */
0373     if (delta >= runtime->buffer_size + runtime->period_size) {
0374         hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
0375                  "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
0376                  substream->stream, (long)pos,
0377                  (long)new_hw_ptr, (long)old_hw_ptr);
0378         return 0;
0379     }
0380 
0381     /* Do jiffies check only in xrun_debug mode */
0382     if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
0383         goto no_jiffies_check;
0384 
0385     /* Skip the jiffies check for hardwares with BATCH flag.
0386      * Such hardware usually just increases the position at each IRQ,
0387      * thus it can't give any strange position.
0388      */
0389     if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
0390         goto no_jiffies_check;
0391     hdelta = delta;
0392     if (hdelta < runtime->delay)
0393         goto no_jiffies_check;
0394     hdelta -= runtime->delay;
0395     jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
0396     if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
0397         delta = jdelta /
0398             (((runtime->period_size * HZ) / runtime->rate)
0399                                 + HZ/100);
0400         /* move new_hw_ptr according jiffies not pos variable */
0401         new_hw_ptr = old_hw_ptr;
0402         hw_base = delta;
0403         /* use loop to avoid checks for delta overflows */
0404         /* the delta value is small or zero in most cases */
0405         while (delta > 0) {
0406             new_hw_ptr += runtime->period_size;
0407             if (new_hw_ptr >= runtime->boundary) {
0408                 new_hw_ptr -= runtime->boundary;
0409                 crossed_boundary--;
0410             }
0411             delta--;
0412         }
0413         /* align hw_base to buffer_size */
0414         hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
0415                  "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
0416                  (long)pos, (long)hdelta,
0417                  (long)runtime->period_size, jdelta,
0418                  ((hdelta * HZ) / runtime->rate), hw_base,
0419                  (unsigned long)old_hw_ptr,
0420                  (unsigned long)new_hw_ptr);
0421         /* reset values to proper state */
0422         delta = 0;
0423         hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
0424     }
0425  no_jiffies_check:
0426     if (delta > runtime->period_size + runtime->period_size / 2) {
0427         hw_ptr_error(substream, in_interrupt,
0428                  "Lost interrupts?",
0429                  "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
0430                  substream->stream, (long)delta,
0431                  (long)new_hw_ptr,
0432                  (long)old_hw_ptr);
0433     }
0434 
0435  no_delta_check:
0436     if (runtime->status->hw_ptr == new_hw_ptr) {
0437         runtime->hw_ptr_jiffies = curr_jiffies;
0438         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
0439         return 0;
0440     }
0441 
0442     if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
0443         runtime->silence_size > 0)
0444         snd_pcm_playback_silence(substream, new_hw_ptr);
0445 
0446     if (in_interrupt) {
0447         delta = new_hw_ptr - runtime->hw_ptr_interrupt;
0448         if (delta < 0)
0449             delta += runtime->boundary;
0450         delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
0451         runtime->hw_ptr_interrupt += delta;
0452         if (runtime->hw_ptr_interrupt >= runtime->boundary)
0453             runtime->hw_ptr_interrupt -= runtime->boundary;
0454     }
0455     runtime->hw_ptr_base = hw_base;
0456     runtime->status->hw_ptr = new_hw_ptr;
0457     runtime->hw_ptr_jiffies = curr_jiffies;
0458     if (crossed_boundary) {
0459         snd_BUG_ON(crossed_boundary != 1);
0460         runtime->hw_ptr_wrap += runtime->boundary;
0461     }
0462 
0463     update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
0464 
0465     return snd_pcm_update_state(substream, runtime);
0466 }
0467 
0468 /* CAUTION: call it with irq disabled */
0469 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
0470 {
0471     return snd_pcm_update_hw_ptr0(substream, 0);
0472 }
0473 
0474 /**
0475  * snd_pcm_set_ops - set the PCM operators
0476  * @pcm: the pcm instance
0477  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
0478  * @ops: the operator table
0479  *
0480  * Sets the given PCM operators to the pcm instance.
0481  */
0482 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
0483              const struct snd_pcm_ops *ops)
0484 {
0485     struct snd_pcm_str *stream = &pcm->streams[direction];
0486     struct snd_pcm_substream *substream;
0487     
0488     for (substream = stream->substream; substream != NULL; substream = substream->next)
0489         substream->ops = ops;
0490 }
0491 EXPORT_SYMBOL(snd_pcm_set_ops);
0492 
0493 /**
0494  * snd_pcm_set_sync - set the PCM sync id
0495  * @substream: the pcm substream
0496  *
0497  * Sets the PCM sync identifier for the card.
0498  */
0499 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
0500 {
0501     struct snd_pcm_runtime *runtime = substream->runtime;
0502     
0503     runtime->sync.id32[0] = substream->pcm->card->number;
0504     runtime->sync.id32[1] = -1;
0505     runtime->sync.id32[2] = -1;
0506     runtime->sync.id32[3] = -1;
0507 }
0508 EXPORT_SYMBOL(snd_pcm_set_sync);
0509 
0510 /*
0511  *  Standard ioctl routine
0512  */
0513 
0514 static inline unsigned int div32(unsigned int a, unsigned int b, 
0515                  unsigned int *r)
0516 {
0517     if (b == 0) {
0518         *r = 0;
0519         return UINT_MAX;
0520     }
0521     *r = a % b;
0522     return a / b;
0523 }
0524 
0525 static inline unsigned int div_down(unsigned int a, unsigned int b)
0526 {
0527     if (b == 0)
0528         return UINT_MAX;
0529     return a / b;
0530 }
0531 
0532 static inline unsigned int div_up(unsigned int a, unsigned int b)
0533 {
0534     unsigned int r;
0535     unsigned int q;
0536     if (b == 0)
0537         return UINT_MAX;
0538     q = div32(a, b, &r);
0539     if (r)
0540         ++q;
0541     return q;
0542 }
0543 
0544 static inline unsigned int mul(unsigned int a, unsigned int b)
0545 {
0546     if (a == 0)
0547         return 0;
0548     if (div_down(UINT_MAX, a) < b)
0549         return UINT_MAX;
0550     return a * b;
0551 }
0552 
0553 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
0554                     unsigned int c, unsigned int *r)
0555 {
0556     u_int64_t n = (u_int64_t) a * b;
0557     if (c == 0) {
0558         *r = 0;
0559         return UINT_MAX;
0560     }
0561     n = div_u64_rem(n, c, r);
0562     if (n >= UINT_MAX) {
0563         *r = 0;
0564         return UINT_MAX;
0565     }
0566     return n;
0567 }
0568 
0569 /**
0570  * snd_interval_refine - refine the interval value of configurator
0571  * @i: the interval value to refine
0572  * @v: the interval value to refer to
0573  *
0574  * Refines the interval value with the reference value.
0575  * The interval is changed to the range satisfying both intervals.
0576  * The interval status (min, max, integer, etc.) are evaluated.
0577  *
0578  * Return: Positive if the value is changed, zero if it's not changed, or a
0579  * negative error code.
0580  */
0581 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
0582 {
0583     int changed = 0;
0584     if (snd_BUG_ON(snd_interval_empty(i)))
0585         return -EINVAL;
0586     if (i->min < v->min) {
0587         i->min = v->min;
0588         i->openmin = v->openmin;
0589         changed = 1;
0590     } else if (i->min == v->min && !i->openmin && v->openmin) {
0591         i->openmin = 1;
0592         changed = 1;
0593     }
0594     if (i->max > v->max) {
0595         i->max = v->max;
0596         i->openmax = v->openmax;
0597         changed = 1;
0598     } else if (i->max == v->max && !i->openmax && v->openmax) {
0599         i->openmax = 1;
0600         changed = 1;
0601     }
0602     if (!i->integer && v->integer) {
0603         i->integer = 1;
0604         changed = 1;
0605     }
0606     if (i->integer) {
0607         if (i->openmin) {
0608             i->min++;
0609             i->openmin = 0;
0610         }
0611         if (i->openmax) {
0612             i->max--;
0613             i->openmax = 0;
0614         }
0615     } else if (!i->openmin && !i->openmax && i->min == i->max)
0616         i->integer = 1;
0617     if (snd_interval_checkempty(i)) {
0618         snd_interval_none(i);
0619         return -EINVAL;
0620     }
0621     return changed;
0622 }
0623 EXPORT_SYMBOL(snd_interval_refine);
0624 
0625 static int snd_interval_refine_first(struct snd_interval *i)
0626 {
0627     const unsigned int last_max = i->max;
0628 
0629     if (snd_BUG_ON(snd_interval_empty(i)))
0630         return -EINVAL;
0631     if (snd_interval_single(i))
0632         return 0;
0633     i->max = i->min;
0634     if (i->openmin)
0635         i->max++;
0636     /* only exclude max value if also excluded before refine */
0637     i->openmax = (i->openmax && i->max >= last_max);
0638     return 1;
0639 }
0640 
0641 static int snd_interval_refine_last(struct snd_interval *i)
0642 {
0643     const unsigned int last_min = i->min;
0644 
0645     if (snd_BUG_ON(snd_interval_empty(i)))
0646         return -EINVAL;
0647     if (snd_interval_single(i))
0648         return 0;
0649     i->min = i->max;
0650     if (i->openmax)
0651         i->min--;
0652     /* only exclude min value if also excluded before refine */
0653     i->openmin = (i->openmin && i->min <= last_min);
0654     return 1;
0655 }
0656 
0657 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
0658 {
0659     if (a->empty || b->empty) {
0660         snd_interval_none(c);
0661         return;
0662     }
0663     c->empty = 0;
0664     c->min = mul(a->min, b->min);
0665     c->openmin = (a->openmin || b->openmin);
0666     c->max = mul(a->max,  b->max);
0667     c->openmax = (a->openmax || b->openmax);
0668     c->integer = (a->integer && b->integer);
0669 }
0670 
0671 /**
0672  * snd_interval_div - refine the interval value with division
0673  * @a: dividend
0674  * @b: divisor
0675  * @c: quotient
0676  *
0677  * c = a / b
0678  *
0679  * Returns non-zero if the value is changed, zero if not changed.
0680  */
0681 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
0682 {
0683     unsigned int r;
0684     if (a->empty || b->empty) {
0685         snd_interval_none(c);
0686         return;
0687     }
0688     c->empty = 0;
0689     c->min = div32(a->min, b->max, &r);
0690     c->openmin = (r || a->openmin || b->openmax);
0691     if (b->min > 0) {
0692         c->max = div32(a->max, b->min, &r);
0693         if (r) {
0694             c->max++;
0695             c->openmax = 1;
0696         } else
0697             c->openmax = (a->openmax || b->openmin);
0698     } else {
0699         c->max = UINT_MAX;
0700         c->openmax = 0;
0701     }
0702     c->integer = 0;
0703 }
0704 
0705 /**
0706  * snd_interval_muldivk - refine the interval value
0707  * @a: dividend 1
0708  * @b: dividend 2
0709  * @k: divisor (as integer)
0710  * @c: result
0711   *
0712  * c = a * b / k
0713  *
0714  * Returns non-zero if the value is changed, zero if not changed.
0715  */
0716 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
0717               unsigned int k, struct snd_interval *c)
0718 {
0719     unsigned int r;
0720     if (a->empty || b->empty) {
0721         snd_interval_none(c);
0722         return;
0723     }
0724     c->empty = 0;
0725     c->min = muldiv32(a->min, b->min, k, &r);
0726     c->openmin = (r || a->openmin || b->openmin);
0727     c->max = muldiv32(a->max, b->max, k, &r);
0728     if (r) {
0729         c->max++;
0730         c->openmax = 1;
0731     } else
0732         c->openmax = (a->openmax || b->openmax);
0733     c->integer = 0;
0734 }
0735 
0736 /**
0737  * snd_interval_mulkdiv - refine the interval value
0738  * @a: dividend 1
0739  * @k: dividend 2 (as integer)
0740  * @b: divisor
0741  * @c: result
0742  *
0743  * c = a * k / b
0744  *
0745  * Returns non-zero if the value is changed, zero if not changed.
0746  */
0747 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
0748               const struct snd_interval *b, struct snd_interval *c)
0749 {
0750     unsigned int r;
0751     if (a->empty || b->empty) {
0752         snd_interval_none(c);
0753         return;
0754     }
0755     c->empty = 0;
0756     c->min = muldiv32(a->min, k, b->max, &r);
0757     c->openmin = (r || a->openmin || b->openmax);
0758     if (b->min > 0) {
0759         c->max = muldiv32(a->max, k, b->min, &r);
0760         if (r) {
0761             c->max++;
0762             c->openmax = 1;
0763         } else
0764             c->openmax = (a->openmax || b->openmin);
0765     } else {
0766         c->max = UINT_MAX;
0767         c->openmax = 0;
0768     }
0769     c->integer = 0;
0770 }
0771 
0772 /* ---- */
0773 
0774 
0775 /**
0776  * snd_interval_ratnum - refine the interval value
0777  * @i: interval to refine
0778  * @rats_count: number of ratnum_t 
0779  * @rats: ratnum_t array
0780  * @nump: pointer to store the resultant numerator
0781  * @denp: pointer to store the resultant denominator
0782  *
0783  * Return: Positive if the value is changed, zero if it's not changed, or a
0784  * negative error code.
0785  */
0786 int snd_interval_ratnum(struct snd_interval *i,
0787             unsigned int rats_count, const struct snd_ratnum *rats,
0788             unsigned int *nump, unsigned int *denp)
0789 {
0790     unsigned int best_num, best_den;
0791     int best_diff;
0792     unsigned int k;
0793     struct snd_interval t;
0794     int err;
0795     unsigned int result_num, result_den;
0796     int result_diff;
0797 
0798     best_num = best_den = best_diff = 0;
0799     for (k = 0; k < rats_count; ++k) {
0800         unsigned int num = rats[k].num;
0801         unsigned int den;
0802         unsigned int q = i->min;
0803         int diff;
0804         if (q == 0)
0805             q = 1;
0806         den = div_up(num, q);
0807         if (den < rats[k].den_min)
0808             continue;
0809         if (den > rats[k].den_max)
0810             den = rats[k].den_max;
0811         else {
0812             unsigned int r;
0813             r = (den - rats[k].den_min) % rats[k].den_step;
0814             if (r != 0)
0815                 den -= r;
0816         }
0817         diff = num - q * den;
0818         if (diff < 0)
0819             diff = -diff;
0820         if (best_num == 0 ||
0821             diff * best_den < best_diff * den) {
0822             best_diff = diff;
0823             best_den = den;
0824             best_num = num;
0825         }
0826     }
0827     if (best_den == 0) {
0828         i->empty = 1;
0829         return -EINVAL;
0830     }
0831     t.min = div_down(best_num, best_den);
0832     t.openmin = !!(best_num % best_den);
0833     
0834     result_num = best_num;
0835     result_diff = best_diff;
0836     result_den = best_den;
0837     best_num = best_den = best_diff = 0;
0838     for (k = 0; k < rats_count; ++k) {
0839         unsigned int num = rats[k].num;
0840         unsigned int den;
0841         unsigned int q = i->max;
0842         int diff;
0843         if (q == 0) {
0844             i->empty = 1;
0845             return -EINVAL;
0846         }
0847         den = div_down(num, q);
0848         if (den > rats[k].den_max)
0849             continue;
0850         if (den < rats[k].den_min)
0851             den = rats[k].den_min;
0852         else {
0853             unsigned int r;
0854             r = (den - rats[k].den_min) % rats[k].den_step;
0855             if (r != 0)
0856                 den += rats[k].den_step - r;
0857         }
0858         diff = q * den - num;
0859         if (diff < 0)
0860             diff = -diff;
0861         if (best_num == 0 ||
0862             diff * best_den < best_diff * den) {
0863             best_diff = diff;
0864             best_den = den;
0865             best_num = num;
0866         }
0867     }
0868     if (best_den == 0) {
0869         i->empty = 1;
0870         return -EINVAL;
0871     }
0872     t.max = div_up(best_num, best_den);
0873     t.openmax = !!(best_num % best_den);
0874     t.integer = 0;
0875     err = snd_interval_refine(i, &t);
0876     if (err < 0)
0877         return err;
0878 
0879     if (snd_interval_single(i)) {
0880         if (best_diff * result_den < result_diff * best_den) {
0881             result_num = best_num;
0882             result_den = best_den;
0883         }
0884         if (nump)
0885             *nump = result_num;
0886         if (denp)
0887             *denp = result_den;
0888     }
0889     return err;
0890 }
0891 EXPORT_SYMBOL(snd_interval_ratnum);
0892 
0893 /**
0894  * snd_interval_ratden - refine the interval value
0895  * @i: interval to refine
0896  * @rats_count: number of struct ratden
0897  * @rats: struct ratden array
0898  * @nump: pointer to store the resultant numerator
0899  * @denp: pointer to store the resultant denominator
0900  *
0901  * Return: Positive if the value is changed, zero if it's not changed, or a
0902  * negative error code.
0903  */
0904 static int snd_interval_ratden(struct snd_interval *i,
0905                    unsigned int rats_count,
0906                    const struct snd_ratden *rats,
0907                    unsigned int *nump, unsigned int *denp)
0908 {
0909     unsigned int best_num, best_diff, best_den;
0910     unsigned int k;
0911     struct snd_interval t;
0912     int err;
0913 
0914     best_num = best_den = best_diff = 0;
0915     for (k = 0; k < rats_count; ++k) {
0916         unsigned int num;
0917         unsigned int den = rats[k].den;
0918         unsigned int q = i->min;
0919         int diff;
0920         num = mul(q, den);
0921         if (num > rats[k].num_max)
0922             continue;
0923         if (num < rats[k].num_min)
0924             num = rats[k].num_max;
0925         else {
0926             unsigned int r;
0927             r = (num - rats[k].num_min) % rats[k].num_step;
0928             if (r != 0)
0929                 num += rats[k].num_step - r;
0930         }
0931         diff = num - q * den;
0932         if (best_num == 0 ||
0933             diff * best_den < best_diff * den) {
0934             best_diff = diff;
0935             best_den = den;
0936             best_num = num;
0937         }
0938     }
0939     if (best_den == 0) {
0940         i->empty = 1;
0941         return -EINVAL;
0942     }
0943     t.min = div_down(best_num, best_den);
0944     t.openmin = !!(best_num % best_den);
0945     
0946     best_num = best_den = best_diff = 0;
0947     for (k = 0; k < rats_count; ++k) {
0948         unsigned int num;
0949         unsigned int den = rats[k].den;
0950         unsigned int q = i->max;
0951         int diff;
0952         num = mul(q, den);
0953         if (num < rats[k].num_min)
0954             continue;
0955         if (num > rats[k].num_max)
0956             num = rats[k].num_max;
0957         else {
0958             unsigned int r;
0959             r = (num - rats[k].num_min) % rats[k].num_step;
0960             if (r != 0)
0961                 num -= r;
0962         }
0963         diff = q * den - num;
0964         if (best_num == 0 ||
0965             diff * best_den < best_diff * den) {
0966             best_diff = diff;
0967             best_den = den;
0968             best_num = num;
0969         }
0970     }
0971     if (best_den == 0) {
0972         i->empty = 1;
0973         return -EINVAL;
0974     }
0975     t.max = div_up(best_num, best_den);
0976     t.openmax = !!(best_num % best_den);
0977     t.integer = 0;
0978     err = snd_interval_refine(i, &t);
0979     if (err < 0)
0980         return err;
0981 
0982     if (snd_interval_single(i)) {
0983         if (nump)
0984             *nump = best_num;
0985         if (denp)
0986             *denp = best_den;
0987     }
0988     return err;
0989 }
0990 
0991 /**
0992  * snd_interval_list - refine the interval value from the list
0993  * @i: the interval value to refine
0994  * @count: the number of elements in the list
0995  * @list: the value list
0996  * @mask: the bit-mask to evaluate
0997  *
0998  * Refines the interval value from the list.
0999  * When mask is non-zero, only the elements corresponding to bit 1 are
1000  * evaluated.
1001  *
1002  * Return: Positive if the value is changed, zero if it's not changed, or a
1003  * negative error code.
1004  */
1005 int snd_interval_list(struct snd_interval *i, unsigned int count,
1006               const unsigned int *list, unsigned int mask)
1007 {
1008         unsigned int k;
1009     struct snd_interval list_range;
1010 
1011     if (!count) {
1012         i->empty = 1;
1013         return -EINVAL;
1014     }
1015     snd_interval_any(&list_range);
1016     list_range.min = UINT_MAX;
1017     list_range.max = 0;
1018         for (k = 0; k < count; k++) {
1019         if (mask && !(mask & (1 << k)))
1020             continue;
1021         if (!snd_interval_test(i, list[k]))
1022             continue;
1023         list_range.min = min(list_range.min, list[k]);
1024         list_range.max = max(list_range.max, list[k]);
1025         }
1026     return snd_interval_refine(i, &list_range);
1027 }
1028 EXPORT_SYMBOL(snd_interval_list);
1029 
1030 /**
1031  * snd_interval_ranges - refine the interval value from the list of ranges
1032  * @i: the interval value to refine
1033  * @count: the number of elements in the list of ranges
1034  * @ranges: the ranges list
1035  * @mask: the bit-mask to evaluate
1036  *
1037  * Refines the interval value from the list of ranges.
1038  * When mask is non-zero, only the elements corresponding to bit 1 are
1039  * evaluated.
1040  *
1041  * Return: Positive if the value is changed, zero if it's not changed, or a
1042  * negative error code.
1043  */
1044 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1045             const struct snd_interval *ranges, unsigned int mask)
1046 {
1047     unsigned int k;
1048     struct snd_interval range_union;
1049     struct snd_interval range;
1050 
1051     if (!count) {
1052         snd_interval_none(i);
1053         return -EINVAL;
1054     }
1055     snd_interval_any(&range_union);
1056     range_union.min = UINT_MAX;
1057     range_union.max = 0;
1058     for (k = 0; k < count; k++) {
1059         if (mask && !(mask & (1 << k)))
1060             continue;
1061         snd_interval_copy(&range, &ranges[k]);
1062         if (snd_interval_refine(&range, i) < 0)
1063             continue;
1064         if (snd_interval_empty(&range))
1065             continue;
1066 
1067         if (range.min < range_union.min) {
1068             range_union.min = range.min;
1069             range_union.openmin = 1;
1070         }
1071         if (range.min == range_union.min && !range.openmin)
1072             range_union.openmin = 0;
1073         if (range.max > range_union.max) {
1074             range_union.max = range.max;
1075             range_union.openmax = 1;
1076         }
1077         if (range.max == range_union.max && !range.openmax)
1078             range_union.openmax = 0;
1079     }
1080     return snd_interval_refine(i, &range_union);
1081 }
1082 EXPORT_SYMBOL(snd_interval_ranges);
1083 
1084 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1085 {
1086     unsigned int n;
1087     int changed = 0;
1088     n = i->min % step;
1089     if (n != 0 || i->openmin) {
1090         i->min += step - n;
1091         i->openmin = 0;
1092         changed = 1;
1093     }
1094     n = i->max % step;
1095     if (n != 0 || i->openmax) {
1096         i->max -= n;
1097         i->openmax = 0;
1098         changed = 1;
1099     }
1100     if (snd_interval_checkempty(i)) {
1101         i->empty = 1;
1102         return -EINVAL;
1103     }
1104     return changed;
1105 }
1106 
1107 /* Info constraints helpers */
1108 
1109 /**
1110  * snd_pcm_hw_rule_add - add the hw-constraint rule
1111  * @runtime: the pcm runtime instance
1112  * @cond: condition bits
1113  * @var: the variable to evaluate
1114  * @func: the evaluation function
1115  * @private: the private data pointer passed to function
1116  * @dep: the dependent variables
1117  *
1118  * Return: Zero if successful, or a negative error code on failure.
1119  */
1120 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1121             int var,
1122             snd_pcm_hw_rule_func_t func, void *private,
1123             int dep, ...)
1124 {
1125     struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1126     struct snd_pcm_hw_rule *c;
1127     unsigned int k;
1128     va_list args;
1129     va_start(args, dep);
1130     if (constrs->rules_num >= constrs->rules_all) {
1131         struct snd_pcm_hw_rule *new;
1132         unsigned int new_rules = constrs->rules_all + 16;
1133         new = krealloc_array(constrs->rules, new_rules,
1134                      sizeof(*c), GFP_KERNEL);
1135         if (!new) {
1136             va_end(args);
1137             return -ENOMEM;
1138         }
1139         constrs->rules = new;
1140         constrs->rules_all = new_rules;
1141     }
1142     c = &constrs->rules[constrs->rules_num];
1143     c->cond = cond;
1144     c->func = func;
1145     c->var = var;
1146     c->private = private;
1147     k = 0;
1148     while (1) {
1149         if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1150             va_end(args);
1151             return -EINVAL;
1152         }
1153         c->deps[k++] = dep;
1154         if (dep < 0)
1155             break;
1156         dep = va_arg(args, int);
1157     }
1158     constrs->rules_num++;
1159     va_end(args);
1160     return 0;
1161 }
1162 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1163 
1164 /**
1165  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1166  * @runtime: PCM runtime instance
1167  * @var: hw_params variable to apply the mask
1168  * @mask: the bitmap mask
1169  *
1170  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1171  *
1172  * Return: Zero if successful, or a negative error code on failure.
1173  */
1174 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1175                    u_int32_t mask)
1176 {
1177     struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1178     struct snd_mask *maskp = constrs_mask(constrs, var);
1179     *maskp->bits &= mask;
1180     memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1181     if (*maskp->bits == 0)
1182         return -EINVAL;
1183     return 0;
1184 }
1185 
1186 /**
1187  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1188  * @runtime: PCM runtime instance
1189  * @var: hw_params variable to apply the mask
1190  * @mask: the 64bit bitmap mask
1191  *
1192  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1193  *
1194  * Return: Zero if successful, or a negative error code on failure.
1195  */
1196 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1197                  u_int64_t mask)
1198 {
1199     struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1200     struct snd_mask *maskp = constrs_mask(constrs, var);
1201     maskp->bits[0] &= (u_int32_t)mask;
1202     maskp->bits[1] &= (u_int32_t)(mask >> 32);
1203     memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1204     if (! maskp->bits[0] && ! maskp->bits[1])
1205         return -EINVAL;
1206     return 0;
1207 }
1208 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1209 
1210 /**
1211  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1212  * @runtime: PCM runtime instance
1213  * @var: hw_params variable to apply the integer constraint
1214  *
1215  * Apply the constraint of integer to an interval parameter.
1216  *
1217  * Return: Positive if the value is changed, zero if it's not changed, or a
1218  * negative error code.
1219  */
1220 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1221 {
1222     struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223     return snd_interval_setinteger(constrs_interval(constrs, var));
1224 }
1225 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1226 
1227 /**
1228  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1229  * @runtime: PCM runtime instance
1230  * @var: hw_params variable to apply the range
1231  * @min: the minimal value
1232  * @max: the maximal value
1233  * 
1234  * Apply the min/max range constraint to an interval parameter.
1235  *
1236  * Return: Positive if the value is changed, zero if it's not changed, or a
1237  * negative error code.
1238  */
1239 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1240                  unsigned int min, unsigned int max)
1241 {
1242     struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1243     struct snd_interval t;
1244     t.min = min;
1245     t.max = max;
1246     t.openmin = t.openmax = 0;
1247     t.integer = 0;
1248     return snd_interval_refine(constrs_interval(constrs, var), &t);
1249 }
1250 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1251 
1252 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1253                 struct snd_pcm_hw_rule *rule)
1254 {
1255     struct snd_pcm_hw_constraint_list *list = rule->private;
1256     return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1257 }       
1258 
1259 
1260 /**
1261  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1262  * @runtime: PCM runtime instance
1263  * @cond: condition bits
1264  * @var: hw_params variable to apply the list constraint
1265  * @l: list
1266  * 
1267  * Apply the list of constraints to an interval parameter.
1268  *
1269  * Return: Zero if successful, or a negative error code on failure.
1270  */
1271 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1272                    unsigned int cond,
1273                    snd_pcm_hw_param_t var,
1274                    const struct snd_pcm_hw_constraint_list *l)
1275 {
1276     return snd_pcm_hw_rule_add(runtime, cond, var,
1277                    snd_pcm_hw_rule_list, (void *)l,
1278                    var, -1);
1279 }
1280 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1281 
1282 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1283                   struct snd_pcm_hw_rule *rule)
1284 {
1285     struct snd_pcm_hw_constraint_ranges *r = rule->private;
1286     return snd_interval_ranges(hw_param_interval(params, rule->var),
1287                    r->count, r->ranges, r->mask);
1288 }
1289 
1290 
1291 /**
1292  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1293  * @runtime: PCM runtime instance
1294  * @cond: condition bits
1295  * @var: hw_params variable to apply the list of range constraints
1296  * @r: ranges
1297  *
1298  * Apply the list of range constraints to an interval parameter.
1299  *
1300  * Return: Zero if successful, or a negative error code on failure.
1301  */
1302 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1303                  unsigned int cond,
1304                  snd_pcm_hw_param_t var,
1305                  const struct snd_pcm_hw_constraint_ranges *r)
1306 {
1307     return snd_pcm_hw_rule_add(runtime, cond, var,
1308                    snd_pcm_hw_rule_ranges, (void *)r,
1309                    var, -1);
1310 }
1311 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1312 
1313 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1314                    struct snd_pcm_hw_rule *rule)
1315 {
1316     const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1317     unsigned int num = 0, den = 0;
1318     int err;
1319     err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1320                   r->nrats, r->rats, &num, &den);
1321     if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1322         params->rate_num = num;
1323         params->rate_den = den;
1324     }
1325     return err;
1326 }
1327 
1328 /**
1329  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1330  * @runtime: PCM runtime instance
1331  * @cond: condition bits
1332  * @var: hw_params variable to apply the ratnums constraint
1333  * @r: struct snd_ratnums constriants
1334  *
1335  * Return: Zero if successful, or a negative error code on failure.
1336  */
1337 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1338                   unsigned int cond,
1339                   snd_pcm_hw_param_t var,
1340                   const struct snd_pcm_hw_constraint_ratnums *r)
1341 {
1342     return snd_pcm_hw_rule_add(runtime, cond, var,
1343                    snd_pcm_hw_rule_ratnums, (void *)r,
1344                    var, -1);
1345 }
1346 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1347 
1348 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1349                    struct snd_pcm_hw_rule *rule)
1350 {
1351     const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1352     unsigned int num = 0, den = 0;
1353     int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1354                   r->nrats, r->rats, &num, &den);
1355     if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1356         params->rate_num = num;
1357         params->rate_den = den;
1358     }
1359     return err;
1360 }
1361 
1362 /**
1363  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1364  * @runtime: PCM runtime instance
1365  * @cond: condition bits
1366  * @var: hw_params variable to apply the ratdens constraint
1367  * @r: struct snd_ratdens constriants
1368  *
1369  * Return: Zero if successful, or a negative error code on failure.
1370  */
1371 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1372                   unsigned int cond,
1373                   snd_pcm_hw_param_t var,
1374                   const struct snd_pcm_hw_constraint_ratdens *r)
1375 {
1376     return snd_pcm_hw_rule_add(runtime, cond, var,
1377                    snd_pcm_hw_rule_ratdens, (void *)r,
1378                    var, -1);
1379 }
1380 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1381 
1382 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1383                   struct snd_pcm_hw_rule *rule)
1384 {
1385     unsigned int l = (unsigned long) rule->private;
1386     int width = l & 0xffff;
1387     unsigned int msbits = l >> 16;
1388     const struct snd_interval *i =
1389         hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1390 
1391     if (!snd_interval_single(i))
1392         return 0;
1393 
1394     if ((snd_interval_value(i) == width) ||
1395         (width == 0 && snd_interval_value(i) > msbits))
1396         params->msbits = min_not_zero(params->msbits, msbits);
1397 
1398     return 0;
1399 }
1400 
1401 /**
1402  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1403  * @runtime: PCM runtime instance
1404  * @cond: condition bits
1405  * @width: sample bits width
1406  * @msbits: msbits width
1407  *
1408  * This constraint will set the number of most significant bits (msbits) if a
1409  * sample format with the specified width has been select. If width is set to 0
1410  * the msbits will be set for any sample format with a width larger than the
1411  * specified msbits.
1412  *
1413  * Return: Zero if successful, or a negative error code on failure.
1414  */
1415 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1416                  unsigned int cond,
1417                  unsigned int width,
1418                  unsigned int msbits)
1419 {
1420     unsigned long l = (msbits << 16) | width;
1421     return snd_pcm_hw_rule_add(runtime, cond, -1,
1422                     snd_pcm_hw_rule_msbits,
1423                     (void*) l,
1424                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1425 }
1426 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1427 
1428 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1429                 struct snd_pcm_hw_rule *rule)
1430 {
1431     unsigned long step = (unsigned long) rule->private;
1432     return snd_interval_step(hw_param_interval(params, rule->var), step);
1433 }
1434 
1435 /**
1436  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1437  * @runtime: PCM runtime instance
1438  * @cond: condition bits
1439  * @var: hw_params variable to apply the step constraint
1440  * @step: step size
1441  *
1442  * Return: Zero if successful, or a negative error code on failure.
1443  */
1444 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1445                    unsigned int cond,
1446                    snd_pcm_hw_param_t var,
1447                    unsigned long step)
1448 {
1449     return snd_pcm_hw_rule_add(runtime, cond, var, 
1450                    snd_pcm_hw_rule_step, (void *) step,
1451                    var, -1);
1452 }
1453 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1454 
1455 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1456 {
1457     static const unsigned int pow2_sizes[] = {
1458         1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1459         1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1460         1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1461         1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1462     };
1463     return snd_interval_list(hw_param_interval(params, rule->var),
1464                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1465 }       
1466 
1467 /**
1468  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1469  * @runtime: PCM runtime instance
1470  * @cond: condition bits
1471  * @var: hw_params variable to apply the power-of-2 constraint
1472  *
1473  * Return: Zero if successful, or a negative error code on failure.
1474  */
1475 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1476                    unsigned int cond,
1477                    snd_pcm_hw_param_t var)
1478 {
1479     return snd_pcm_hw_rule_add(runtime, cond, var, 
1480                    snd_pcm_hw_rule_pow2, NULL,
1481                    var, -1);
1482 }
1483 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484 
1485 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1486                        struct snd_pcm_hw_rule *rule)
1487 {
1488     unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1489     struct snd_interval *rate;
1490 
1491     rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1492     return snd_interval_list(rate, 1, &base_rate, 0);
1493 }
1494 
1495 /**
1496  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1497  * @runtime: PCM runtime instance
1498  * @base_rate: the rate at which the hardware does not resample
1499  *
1500  * Return: Zero if successful, or a negative error code on failure.
1501  */
1502 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1503                    unsigned int base_rate)
1504 {
1505     return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1506                    SNDRV_PCM_HW_PARAM_RATE,
1507                    snd_pcm_hw_rule_noresample_func,
1508                    (void *)(uintptr_t)base_rate,
1509                    SNDRV_PCM_HW_PARAM_RATE, -1);
1510 }
1511 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512 
1513 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1514                   snd_pcm_hw_param_t var)
1515 {
1516     if (hw_is_mask(var)) {
1517         snd_mask_any(hw_param_mask(params, var));
1518         params->cmask |= 1 << var;
1519         params->rmask |= 1 << var;
1520         return;
1521     }
1522     if (hw_is_interval(var)) {
1523         snd_interval_any(hw_param_interval(params, var));
1524         params->cmask |= 1 << var;
1525         params->rmask |= 1 << var;
1526         return;
1527     }
1528     snd_BUG();
1529 }
1530 
1531 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1532 {
1533     unsigned int k;
1534     memset(params, 0, sizeof(*params));
1535     for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1536         _snd_pcm_hw_param_any(params, k);
1537     for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1538         _snd_pcm_hw_param_any(params, k);
1539     params->info = ~0U;
1540 }
1541 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1542 
1543 /**
1544  * snd_pcm_hw_param_value - return @params field @var value
1545  * @params: the hw_params instance
1546  * @var: parameter to retrieve
1547  * @dir: pointer to the direction (-1,0,1) or %NULL
1548  *
1549  * Return: The value for field @var if it's fixed in configuration space
1550  * defined by @params. -%EINVAL otherwise.
1551  */
1552 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1553                snd_pcm_hw_param_t var, int *dir)
1554 {
1555     if (hw_is_mask(var)) {
1556         const struct snd_mask *mask = hw_param_mask_c(params, var);
1557         if (!snd_mask_single(mask))
1558             return -EINVAL;
1559         if (dir)
1560             *dir = 0;
1561         return snd_mask_value(mask);
1562     }
1563     if (hw_is_interval(var)) {
1564         const struct snd_interval *i = hw_param_interval_c(params, var);
1565         if (!snd_interval_single(i))
1566             return -EINVAL;
1567         if (dir)
1568             *dir = i->openmin;
1569         return snd_interval_value(i);
1570     }
1571     return -EINVAL;
1572 }
1573 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1574 
1575 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1576                 snd_pcm_hw_param_t var)
1577 {
1578     if (hw_is_mask(var)) {
1579         snd_mask_none(hw_param_mask(params, var));
1580         params->cmask |= 1 << var;
1581         params->rmask |= 1 << var;
1582     } else if (hw_is_interval(var)) {
1583         snd_interval_none(hw_param_interval(params, var));
1584         params->cmask |= 1 << var;
1585         params->rmask |= 1 << var;
1586     } else {
1587         snd_BUG();
1588     }
1589 }
1590 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1591 
1592 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1593                    snd_pcm_hw_param_t var)
1594 {
1595     int changed;
1596     if (hw_is_mask(var))
1597         changed = snd_mask_refine_first(hw_param_mask(params, var));
1598     else if (hw_is_interval(var))
1599         changed = snd_interval_refine_first(hw_param_interval(params, var));
1600     else
1601         return -EINVAL;
1602     if (changed > 0) {
1603         params->cmask |= 1 << var;
1604         params->rmask |= 1 << var;
1605     }
1606     return changed;
1607 }
1608 
1609 
1610 /**
1611  * snd_pcm_hw_param_first - refine config space and return minimum value
1612  * @pcm: PCM instance
1613  * @params: the hw_params instance
1614  * @var: parameter to retrieve
1615  * @dir: pointer to the direction (-1,0,1) or %NULL
1616  *
1617  * Inside configuration space defined by @params remove from @var all
1618  * values > minimum. Reduce configuration space accordingly.
1619  *
1620  * Return: The minimum, or a negative error code on failure.
1621  */
1622 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1623                struct snd_pcm_hw_params *params, 
1624                snd_pcm_hw_param_t var, int *dir)
1625 {
1626     int changed = _snd_pcm_hw_param_first(params, var);
1627     if (changed < 0)
1628         return changed;
1629     if (params->rmask) {
1630         int err = snd_pcm_hw_refine(pcm, params);
1631         if (err < 0)
1632             return err;
1633     }
1634     return snd_pcm_hw_param_value(params, var, dir);
1635 }
1636 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1637 
1638 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1639                   snd_pcm_hw_param_t var)
1640 {
1641     int changed;
1642     if (hw_is_mask(var))
1643         changed = snd_mask_refine_last(hw_param_mask(params, var));
1644     else if (hw_is_interval(var))
1645         changed = snd_interval_refine_last(hw_param_interval(params, var));
1646     else
1647         return -EINVAL;
1648     if (changed > 0) {
1649         params->cmask |= 1 << var;
1650         params->rmask |= 1 << var;
1651     }
1652     return changed;
1653 }
1654 
1655 
1656 /**
1657  * snd_pcm_hw_param_last - refine config space and return maximum value
1658  * @pcm: PCM instance
1659  * @params: the hw_params instance
1660  * @var: parameter to retrieve
1661  * @dir: pointer to the direction (-1,0,1) or %NULL
1662  *
1663  * Inside configuration space defined by @params remove from @var all
1664  * values < maximum. Reduce configuration space accordingly.
1665  *
1666  * Return: The maximum, or a negative error code on failure.
1667  */
1668 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1669               struct snd_pcm_hw_params *params,
1670               snd_pcm_hw_param_t var, int *dir)
1671 {
1672     int changed = _snd_pcm_hw_param_last(params, var);
1673     if (changed < 0)
1674         return changed;
1675     if (params->rmask) {
1676         int err = snd_pcm_hw_refine(pcm, params);
1677         if (err < 0)
1678             return err;
1679     }
1680     return snd_pcm_hw_param_value(params, var, dir);
1681 }
1682 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1683 
1684 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1685                    void *arg)
1686 {
1687     struct snd_pcm_runtime *runtime = substream->runtime;
1688     unsigned long flags;
1689     snd_pcm_stream_lock_irqsave(substream, flags);
1690     if (snd_pcm_running(substream) &&
1691         snd_pcm_update_hw_ptr(substream) >= 0)
1692         runtime->status->hw_ptr %= runtime->buffer_size;
1693     else {
1694         runtime->status->hw_ptr = 0;
1695         runtime->hw_ptr_wrap = 0;
1696     }
1697     snd_pcm_stream_unlock_irqrestore(substream, flags);
1698     return 0;
1699 }
1700 
1701 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1702                       void *arg)
1703 {
1704     struct snd_pcm_channel_info *info = arg;
1705     struct snd_pcm_runtime *runtime = substream->runtime;
1706     int width;
1707     if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1708         info->offset = -1;
1709         return 0;
1710     }
1711     width = snd_pcm_format_physical_width(runtime->format);
1712     if (width < 0)
1713         return width;
1714     info->offset = 0;
1715     switch (runtime->access) {
1716     case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1717     case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1718         info->first = info->channel * width;
1719         info->step = runtime->channels * width;
1720         break;
1721     case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1722     case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1723     {
1724         size_t size = runtime->dma_bytes / runtime->channels;
1725         info->first = info->channel * size * 8;
1726         info->step = width;
1727         break;
1728     }
1729     default:
1730         snd_BUG();
1731         break;
1732     }
1733     return 0;
1734 }
1735 
1736 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1737                        void *arg)
1738 {
1739     struct snd_pcm_hw_params *params = arg;
1740     snd_pcm_format_t format;
1741     int channels;
1742     ssize_t frame_size;
1743 
1744     params->fifo_size = substream->runtime->hw.fifo_size;
1745     if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1746         format = params_format(params);
1747         channels = params_channels(params);
1748         frame_size = snd_pcm_format_size(format, channels);
1749         if (frame_size > 0)
1750             params->fifo_size /= frame_size;
1751     }
1752     return 0;
1753 }
1754 
1755 /**
1756  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1757  * @substream: the pcm substream instance
1758  * @cmd: ioctl command
1759  * @arg: ioctl argument
1760  *
1761  * Processes the generic ioctl commands for PCM.
1762  * Can be passed as the ioctl callback for PCM ops.
1763  *
1764  * Return: Zero if successful, or a negative error code on failure.
1765  */
1766 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1767               unsigned int cmd, void *arg)
1768 {
1769     switch (cmd) {
1770     case SNDRV_PCM_IOCTL1_RESET:
1771         return snd_pcm_lib_ioctl_reset(substream, arg);
1772     case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1773         return snd_pcm_lib_ioctl_channel_info(substream, arg);
1774     case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1775         return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1776     }
1777     return -ENXIO;
1778 }
1779 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1780 
1781 /**
1782  * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1783  *                      under acquired lock of PCM substream.
1784  * @substream: the instance of pcm substream.
1785  *
1786  * This function is called when the batch of audio data frames as the same size as the period of
1787  * buffer is already processed in audio data transmission.
1788  *
1789  * The call of function updates the status of runtime with the latest position of audio data
1790  * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1791  * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1792  * substream according to configured threshold.
1793  *
1794  * The function is intended to use for the case that PCM driver operates audio data frames under
1795  * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1796  * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1797  * since lock of PCM substream should be acquired in advance.
1798  *
1799  * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1800  * function:
1801  *
1802  * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1803  * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1804  * - .get_time_info - to retrieve audio time stamp if needed.
1805  *
1806  * Even if more than one periods have elapsed since the last call, you have to call this only once.
1807  */
1808 void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1809 {
1810     struct snd_pcm_runtime *runtime;
1811 
1812     if (PCM_RUNTIME_CHECK(substream))
1813         return;
1814     runtime = substream->runtime;
1815 
1816     if (!snd_pcm_running(substream) ||
1817         snd_pcm_update_hw_ptr0(substream, 1) < 0)
1818         goto _end;
1819 
1820 #ifdef CONFIG_SND_PCM_TIMER
1821     if (substream->timer_running)
1822         snd_timer_interrupt(substream->timer, 1);
1823 #endif
1824  _end:
1825     snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
1826 }
1827 EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1828 
1829 /**
1830  * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1831  *                PCM substream.
1832  * @substream: the instance of PCM substream.
1833  *
1834  * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1835  * acquiring lock of PCM substream voluntarily.
1836  *
1837  * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1838  * the batch of audio data frames as the same size as the period of buffer is already processed in
1839  * audio data transmission.
1840  */
1841 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1842 {
1843     unsigned long flags;
1844 
1845     if (snd_BUG_ON(!substream))
1846         return;
1847 
1848     snd_pcm_stream_lock_irqsave(substream, flags);
1849     snd_pcm_period_elapsed_under_stream_lock(substream);
1850     snd_pcm_stream_unlock_irqrestore(substream, flags);
1851 }
1852 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1853 
1854 /*
1855  * Wait until avail_min data becomes available
1856  * Returns a negative error code if any error occurs during operation.
1857  * The available space is stored on availp.  When err = 0 and avail = 0
1858  * on the capture stream, it indicates the stream is in DRAINING state.
1859  */
1860 static int wait_for_avail(struct snd_pcm_substream *substream,
1861                   snd_pcm_uframes_t *availp)
1862 {
1863     struct snd_pcm_runtime *runtime = substream->runtime;
1864     int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1865     wait_queue_entry_t wait;
1866     int err = 0;
1867     snd_pcm_uframes_t avail = 0;
1868     long wait_time, tout;
1869 
1870     init_waitqueue_entry(&wait, current);
1871     set_current_state(TASK_INTERRUPTIBLE);
1872     add_wait_queue(&runtime->tsleep, &wait);
1873 
1874     if (runtime->no_period_wakeup)
1875         wait_time = MAX_SCHEDULE_TIMEOUT;
1876     else {
1877         /* use wait time from substream if available */
1878         if (substream->wait_time) {
1879             wait_time = substream->wait_time;
1880         } else {
1881             wait_time = 10;
1882 
1883             if (runtime->rate) {
1884                 long t = runtime->period_size * 2 /
1885                      runtime->rate;
1886                 wait_time = max(t, wait_time);
1887             }
1888             wait_time = msecs_to_jiffies(wait_time * 1000);
1889         }
1890     }
1891 
1892     for (;;) {
1893         if (signal_pending(current)) {
1894             err = -ERESTARTSYS;
1895             break;
1896         }
1897 
1898         /*
1899          * We need to check if space became available already
1900          * (and thus the wakeup happened already) first to close
1901          * the race of space already having become available.
1902          * This check must happen after been added to the waitqueue
1903          * and having current state be INTERRUPTIBLE.
1904          */
1905         avail = snd_pcm_avail(substream);
1906         if (avail >= runtime->twake)
1907             break;
1908         snd_pcm_stream_unlock_irq(substream);
1909 
1910         tout = schedule_timeout(wait_time);
1911 
1912         snd_pcm_stream_lock_irq(substream);
1913         set_current_state(TASK_INTERRUPTIBLE);
1914         switch (runtime->status->state) {
1915         case SNDRV_PCM_STATE_SUSPENDED:
1916             err = -ESTRPIPE;
1917             goto _endloop;
1918         case SNDRV_PCM_STATE_XRUN:
1919             err = -EPIPE;
1920             goto _endloop;
1921         case SNDRV_PCM_STATE_DRAINING:
1922             if (is_playback)
1923                 err = -EPIPE;
1924             else 
1925                 avail = 0; /* indicate draining */
1926             goto _endloop;
1927         case SNDRV_PCM_STATE_OPEN:
1928         case SNDRV_PCM_STATE_SETUP:
1929         case SNDRV_PCM_STATE_DISCONNECTED:
1930             err = -EBADFD;
1931             goto _endloop;
1932         case SNDRV_PCM_STATE_PAUSED:
1933             continue;
1934         }
1935         if (!tout) {
1936             pcm_dbg(substream->pcm,
1937                 "%s write error (DMA or IRQ trouble?)\n",
1938                 is_playback ? "playback" : "capture");
1939             err = -EIO;
1940             break;
1941         }
1942     }
1943  _endloop:
1944     set_current_state(TASK_RUNNING);
1945     remove_wait_queue(&runtime->tsleep, &wait);
1946     *availp = avail;
1947     return err;
1948 }
1949     
1950 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1951                   int channel, unsigned long hwoff,
1952                   void *buf, unsigned long bytes);
1953 
1954 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1955               snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1956 
1957 /* calculate the target DMA-buffer position to be written/read */
1958 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1959                int channel, unsigned long hwoff)
1960 {
1961     return runtime->dma_area + hwoff +
1962         channel * (runtime->dma_bytes / runtime->channels);
1963 }
1964 
1965 /* default copy_user ops for write; used for both interleaved and non- modes */
1966 static int default_write_copy(struct snd_pcm_substream *substream,
1967                   int channel, unsigned long hwoff,
1968                   void *buf, unsigned long bytes)
1969 {
1970     if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1971                (void __user *)buf, bytes))
1972         return -EFAULT;
1973     return 0;
1974 }
1975 
1976 /* default copy_kernel ops for write */
1977 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1978                      int channel, unsigned long hwoff,
1979                      void *buf, unsigned long bytes)
1980 {
1981     memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1982     return 0;
1983 }
1984 
1985 /* fill silence instead of copy data; called as a transfer helper
1986  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1987  * a NULL buffer is passed
1988  */
1989 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1990             unsigned long hwoff, void *buf, unsigned long bytes)
1991 {
1992     struct snd_pcm_runtime *runtime = substream->runtime;
1993 
1994     if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1995         return 0;
1996     if (substream->ops->fill_silence)
1997         return substream->ops->fill_silence(substream, channel,
1998                             hwoff, bytes);
1999 
2000     snd_pcm_format_set_silence(runtime->format,
2001                    get_dma_ptr(runtime, channel, hwoff),
2002                    bytes_to_samples(runtime, bytes));
2003     return 0;
2004 }
2005 
2006 /* default copy_user ops for read; used for both interleaved and non- modes */
2007 static int default_read_copy(struct snd_pcm_substream *substream,
2008                  int channel, unsigned long hwoff,
2009                  void *buf, unsigned long bytes)
2010 {
2011     if (copy_to_user((void __user *)buf,
2012              get_dma_ptr(substream->runtime, channel, hwoff),
2013              bytes))
2014         return -EFAULT;
2015     return 0;
2016 }
2017 
2018 /* default copy_kernel ops for read */
2019 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
2020                     int channel, unsigned long hwoff,
2021                     void *buf, unsigned long bytes)
2022 {
2023     memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
2024     return 0;
2025 }
2026 
2027 /* call transfer function with the converted pointers and sizes;
2028  * for interleaved mode, it's one shot for all samples
2029  */
2030 static int interleaved_copy(struct snd_pcm_substream *substream,
2031                 snd_pcm_uframes_t hwoff, void *data,
2032                 snd_pcm_uframes_t off,
2033                 snd_pcm_uframes_t frames,
2034                 pcm_transfer_f transfer)
2035 {
2036     struct snd_pcm_runtime *runtime = substream->runtime;
2037 
2038     /* convert to bytes */
2039     hwoff = frames_to_bytes(runtime, hwoff);
2040     off = frames_to_bytes(runtime, off);
2041     frames = frames_to_bytes(runtime, frames);
2042     return transfer(substream, 0, hwoff, data + off, frames);
2043 }
2044 
2045 /* call transfer function with the converted pointers and sizes for each
2046  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2047  */
2048 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2049                    snd_pcm_uframes_t hwoff, void *data,
2050                    snd_pcm_uframes_t off,
2051                    snd_pcm_uframes_t frames,
2052                    pcm_transfer_f transfer)
2053 {
2054     struct snd_pcm_runtime *runtime = substream->runtime;
2055     int channels = runtime->channels;
2056     void **bufs = data;
2057     int c, err;
2058 
2059     /* convert to bytes; note that it's not frames_to_bytes() here.
2060      * in non-interleaved mode, we copy for each channel, thus
2061      * each copy is n_samples bytes x channels = whole frames.
2062      */
2063     off = samples_to_bytes(runtime, off);
2064     frames = samples_to_bytes(runtime, frames);
2065     hwoff = samples_to_bytes(runtime, hwoff);
2066     for (c = 0; c < channels; ++c, ++bufs) {
2067         if (!data || !*bufs)
2068             err = fill_silence(substream, c, hwoff, NULL, frames);
2069         else
2070             err = transfer(substream, c, hwoff, *bufs + off,
2071                        frames);
2072         if (err < 0)
2073             return err;
2074     }
2075     return 0;
2076 }
2077 
2078 /* fill silence on the given buffer position;
2079  * called from snd_pcm_playback_silence()
2080  */
2081 static int fill_silence_frames(struct snd_pcm_substream *substream,
2082                    snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2083 {
2084     if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2085         substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2086         return interleaved_copy(substream, off, NULL, 0, frames,
2087                     fill_silence);
2088     else
2089         return noninterleaved_copy(substream, off, NULL, 0, frames,
2090                        fill_silence);
2091 }
2092 
2093 /* sanity-check for read/write methods */
2094 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2095 {
2096     struct snd_pcm_runtime *runtime;
2097     if (PCM_RUNTIME_CHECK(substream))
2098         return -ENXIO;
2099     runtime = substream->runtime;
2100     if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2101         return -EINVAL;
2102     if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2103         return -EBADFD;
2104     return 0;
2105 }
2106 
2107 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2108 {
2109     switch (runtime->status->state) {
2110     case SNDRV_PCM_STATE_PREPARED:
2111     case SNDRV_PCM_STATE_RUNNING:
2112     case SNDRV_PCM_STATE_PAUSED:
2113         return 0;
2114     case SNDRV_PCM_STATE_XRUN:
2115         return -EPIPE;
2116     case SNDRV_PCM_STATE_SUSPENDED:
2117         return -ESTRPIPE;
2118     default:
2119         return -EBADFD;
2120     }
2121 }
2122 
2123 /* update to the given appl_ptr and call ack callback if needed;
2124  * when an error is returned, take back to the original value
2125  */
2126 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2127                snd_pcm_uframes_t appl_ptr)
2128 {
2129     struct snd_pcm_runtime *runtime = substream->runtime;
2130     snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2131     snd_pcm_sframes_t diff;
2132     int ret;
2133 
2134     if (old_appl_ptr == appl_ptr)
2135         return 0;
2136 
2137     if (appl_ptr >= runtime->boundary)
2138         return -EINVAL;
2139     /*
2140      * check if a rewind is requested by the application
2141      */
2142     if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2143         diff = appl_ptr - old_appl_ptr;
2144         if (diff >= 0) {
2145             if (diff > runtime->buffer_size)
2146                 return -EINVAL;
2147         } else {
2148             if (runtime->boundary + diff > runtime->buffer_size)
2149                 return -EINVAL;
2150         }
2151     }
2152 
2153     runtime->control->appl_ptr = appl_ptr;
2154     if (substream->ops->ack) {
2155         ret = substream->ops->ack(substream);
2156         if (ret < 0) {
2157             runtime->control->appl_ptr = old_appl_ptr;
2158             return ret;
2159         }
2160     }
2161 
2162     trace_applptr(substream, old_appl_ptr, appl_ptr);
2163 
2164     return 0;
2165 }
2166 
2167 /* the common loop for read/write data */
2168 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2169                      void *data, bool interleaved,
2170                      snd_pcm_uframes_t size, bool in_kernel)
2171 {
2172     struct snd_pcm_runtime *runtime = substream->runtime;
2173     snd_pcm_uframes_t xfer = 0;
2174     snd_pcm_uframes_t offset = 0;
2175     snd_pcm_uframes_t avail;
2176     pcm_copy_f writer;
2177     pcm_transfer_f transfer;
2178     bool nonblock;
2179     bool is_playback;
2180     int err;
2181 
2182     err = pcm_sanity_check(substream);
2183     if (err < 0)
2184         return err;
2185 
2186     is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2187     if (interleaved) {
2188         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2189             runtime->channels > 1)
2190             return -EINVAL;
2191         writer = interleaved_copy;
2192     } else {
2193         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2194             return -EINVAL;
2195         writer = noninterleaved_copy;
2196     }
2197 
2198     if (!data) {
2199         if (is_playback)
2200             transfer = fill_silence;
2201         else
2202             return -EINVAL;
2203     } else if (in_kernel) {
2204         if (substream->ops->copy_kernel)
2205             transfer = substream->ops->copy_kernel;
2206         else
2207             transfer = is_playback ?
2208                 default_write_copy_kernel : default_read_copy_kernel;
2209     } else {
2210         if (substream->ops->copy_user)
2211             transfer = (pcm_transfer_f)substream->ops->copy_user;
2212         else
2213             transfer = is_playback ?
2214                 default_write_copy : default_read_copy;
2215     }
2216 
2217     if (size == 0)
2218         return 0;
2219 
2220     nonblock = !!(substream->f_flags & O_NONBLOCK);
2221 
2222     snd_pcm_stream_lock_irq(substream);
2223     err = pcm_accessible_state(runtime);
2224     if (err < 0)
2225         goto _end_unlock;
2226 
2227     runtime->twake = runtime->control->avail_min ? : 1;
2228     if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2229         snd_pcm_update_hw_ptr(substream);
2230 
2231     /*
2232      * If size < start_threshold, wait indefinitely. Another
2233      * thread may start capture
2234      */
2235     if (!is_playback &&
2236         runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2237         size >= runtime->start_threshold) {
2238         err = snd_pcm_start(substream);
2239         if (err < 0)
2240             goto _end_unlock;
2241     }
2242 
2243     avail = snd_pcm_avail(substream);
2244 
2245     while (size > 0) {
2246         snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2247         snd_pcm_uframes_t cont;
2248         if (!avail) {
2249             if (!is_playback &&
2250                 runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2251                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2252                 goto _end_unlock;
2253             }
2254             if (nonblock) {
2255                 err = -EAGAIN;
2256                 goto _end_unlock;
2257             }
2258             runtime->twake = min_t(snd_pcm_uframes_t, size,
2259                     runtime->control->avail_min ? : 1);
2260             err = wait_for_avail(substream, &avail);
2261             if (err < 0)
2262                 goto _end_unlock;
2263             if (!avail)
2264                 continue; /* draining */
2265         }
2266         frames = size > avail ? avail : size;
2267         appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2268         appl_ofs = appl_ptr % runtime->buffer_size;
2269         cont = runtime->buffer_size - appl_ofs;
2270         if (frames > cont)
2271             frames = cont;
2272         if (snd_BUG_ON(!frames)) {
2273             err = -EINVAL;
2274             goto _end_unlock;
2275         }
2276         if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2277             err = -EBUSY;
2278             goto _end_unlock;
2279         }
2280         snd_pcm_stream_unlock_irq(substream);
2281         if (!is_playback)
2282             snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2283         err = writer(substream, appl_ofs, data, offset, frames,
2284                  transfer);
2285         if (is_playback)
2286             snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2287         snd_pcm_stream_lock_irq(substream);
2288         atomic_dec(&runtime->buffer_accessing);
2289         if (err < 0)
2290             goto _end_unlock;
2291         err = pcm_accessible_state(runtime);
2292         if (err < 0)
2293             goto _end_unlock;
2294         appl_ptr += frames;
2295         if (appl_ptr >= runtime->boundary)
2296             appl_ptr -= runtime->boundary;
2297         err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2298         if (err < 0)
2299             goto _end_unlock;
2300 
2301         offset += frames;
2302         size -= frames;
2303         xfer += frames;
2304         avail -= frames;
2305         if (is_playback &&
2306             runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2307             snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2308             err = snd_pcm_start(substream);
2309             if (err < 0)
2310                 goto _end_unlock;
2311         }
2312     }
2313  _end_unlock:
2314     runtime->twake = 0;
2315     if (xfer > 0 && err >= 0)
2316         snd_pcm_update_state(substream, runtime);
2317     snd_pcm_stream_unlock_irq(substream);
2318     return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2319 }
2320 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2321 
2322 /*
2323  * standard channel mapping helpers
2324  */
2325 
2326 /* default channel maps for multi-channel playbacks, up to 8 channels */
2327 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2328     { .channels = 1,
2329       .map = { SNDRV_CHMAP_MONO } },
2330     { .channels = 2,
2331       .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2332     { .channels = 4,
2333       .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2334            SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2335     { .channels = 6,
2336       .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2337            SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2338            SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2339     { .channels = 8,
2340       .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2341            SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2342            SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2343            SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2344     { }
2345 };
2346 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2347 
2348 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2349 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2350     { .channels = 1,
2351       .map = { SNDRV_CHMAP_MONO } },
2352     { .channels = 2,
2353       .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2354     { .channels = 4,
2355       .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2356            SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2357     { .channels = 6,
2358       .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2359            SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2360            SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2361     { .channels = 8,
2362       .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2363            SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2364            SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2365            SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2366     { }
2367 };
2368 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2369 
2370 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2371 {
2372     if (ch > info->max_channels)
2373         return false;
2374     return !info->channel_mask || (info->channel_mask & (1U << ch));
2375 }
2376 
2377 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2378                   struct snd_ctl_elem_info *uinfo)
2379 {
2380     struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2381 
2382     uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2383     uinfo->count = info->max_channels;
2384     uinfo->value.integer.min = 0;
2385     uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2386     return 0;
2387 }
2388 
2389 /* get callback for channel map ctl element
2390  * stores the channel position firstly matching with the current channels
2391  */
2392 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2393                  struct snd_ctl_elem_value *ucontrol)
2394 {
2395     struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2396     unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2397     struct snd_pcm_substream *substream;
2398     const struct snd_pcm_chmap_elem *map;
2399 
2400     if (!info->chmap)
2401         return -EINVAL;
2402     substream = snd_pcm_chmap_substream(info, idx);
2403     if (!substream)
2404         return -ENODEV;
2405     memset(ucontrol->value.integer.value, 0,
2406            sizeof(long) * info->max_channels);
2407     if (!substream->runtime)
2408         return 0; /* no channels set */
2409     for (map = info->chmap; map->channels; map++) {
2410         int i;
2411         if (map->channels == substream->runtime->channels &&
2412             valid_chmap_channels(info, map->channels)) {
2413             for (i = 0; i < map->channels; i++)
2414                 ucontrol->value.integer.value[i] = map->map[i];
2415             return 0;
2416         }
2417     }
2418     return -EINVAL;
2419 }
2420 
2421 /* tlv callback for channel map ctl element
2422  * expands the pre-defined channel maps in a form of TLV
2423  */
2424 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2425                  unsigned int size, unsigned int __user *tlv)
2426 {
2427     struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2428     const struct snd_pcm_chmap_elem *map;
2429     unsigned int __user *dst;
2430     int c, count = 0;
2431 
2432     if (!info->chmap)
2433         return -EINVAL;
2434     if (size < 8)
2435         return -ENOMEM;
2436     if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2437         return -EFAULT;
2438     size -= 8;
2439     dst = tlv + 2;
2440     for (map = info->chmap; map->channels; map++) {
2441         int chs_bytes = map->channels * 4;
2442         if (!valid_chmap_channels(info, map->channels))
2443             continue;
2444         if (size < 8)
2445             return -ENOMEM;
2446         if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2447             put_user(chs_bytes, dst + 1))
2448             return -EFAULT;
2449         dst += 2;
2450         size -= 8;
2451         count += 8;
2452         if (size < chs_bytes)
2453             return -ENOMEM;
2454         size -= chs_bytes;
2455         count += chs_bytes;
2456         for (c = 0; c < map->channels; c++) {
2457             if (put_user(map->map[c], dst))
2458                 return -EFAULT;
2459             dst++;
2460         }
2461     }
2462     if (put_user(count, tlv + 1))
2463         return -EFAULT;
2464     return 0;
2465 }
2466 
2467 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2468 {
2469     struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2470     info->pcm->streams[info->stream].chmap_kctl = NULL;
2471     kfree(info);
2472 }
2473 
2474 /**
2475  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2476  * @pcm: the assigned PCM instance
2477  * @stream: stream direction
2478  * @chmap: channel map elements (for query)
2479  * @max_channels: the max number of channels for the stream
2480  * @private_value: the value passed to each kcontrol's private_value field
2481  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2482  *
2483  * Create channel-mapping control elements assigned to the given PCM stream(s).
2484  * Return: Zero if successful, or a negative error value.
2485  */
2486 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2487                const struct snd_pcm_chmap_elem *chmap,
2488                int max_channels,
2489                unsigned long private_value,
2490                struct snd_pcm_chmap **info_ret)
2491 {
2492     struct snd_pcm_chmap *info;
2493     struct snd_kcontrol_new knew = {
2494         .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2495         .access = SNDRV_CTL_ELEM_ACCESS_READ |
2496             SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2497             SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2498         .info = pcm_chmap_ctl_info,
2499         .get = pcm_chmap_ctl_get,
2500         .tlv.c = pcm_chmap_ctl_tlv,
2501     };
2502     int err;
2503 
2504     if (WARN_ON(pcm->streams[stream].chmap_kctl))
2505         return -EBUSY;
2506     info = kzalloc(sizeof(*info), GFP_KERNEL);
2507     if (!info)
2508         return -ENOMEM;
2509     info->pcm = pcm;
2510     info->stream = stream;
2511     info->chmap = chmap;
2512     info->max_channels = max_channels;
2513     if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2514         knew.name = "Playback Channel Map";
2515     else
2516         knew.name = "Capture Channel Map";
2517     knew.device = pcm->device;
2518     knew.count = pcm->streams[stream].substream_count;
2519     knew.private_value = private_value;
2520     info->kctl = snd_ctl_new1(&knew, info);
2521     if (!info->kctl) {
2522         kfree(info);
2523         return -ENOMEM;
2524     }
2525     info->kctl->private_free = pcm_chmap_ctl_private_free;
2526     err = snd_ctl_add(pcm->card, info->kctl);
2527     if (err < 0)
2528         return err;
2529     pcm->streams[stream].chmap_kctl = info->kctl;
2530     if (info_ret)
2531         *info_ret = info;
2532     return 0;
2533 }
2534 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);