Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Implementation of the security services.
0004  *
0005  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
0006  *       James Morris <jmorris@redhat.com>
0007  *
0008  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
0009  *
0010  *  Support for enhanced MLS infrastructure.
0011  *  Support for context based audit filters.
0012  *
0013  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
0014  *
0015  *  Added conditional policy language extensions
0016  *
0017  * Updated: Hewlett-Packard <paul@paul-moore.com>
0018  *
0019  *      Added support for NetLabel
0020  *      Added support for the policy capability bitmap
0021  *
0022  * Updated: Chad Sellers <csellers@tresys.com>
0023  *
0024  *  Added validation of kernel classes and permissions
0025  *
0026  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
0027  *
0028  *  Added support for bounds domain and audit messaged on masked permissions
0029  *
0030  * Updated: Guido Trentalancia <guido@trentalancia.com>
0031  *
0032  *  Added support for runtime switching of the policy type
0033  *
0034  * Copyright (C) 2008, 2009 NEC Corporation
0035  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
0036  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
0037  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
0038  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
0039  */
0040 #include <linux/kernel.h>
0041 #include <linux/slab.h>
0042 #include <linux/string.h>
0043 #include <linux/spinlock.h>
0044 #include <linux/rcupdate.h>
0045 #include <linux/errno.h>
0046 #include <linux/in.h>
0047 #include <linux/sched.h>
0048 #include <linux/audit.h>
0049 #include <linux/vmalloc.h>
0050 #include <linux/lsm_hooks.h>
0051 #include <net/netlabel.h>
0052 
0053 #include "flask.h"
0054 #include "avc.h"
0055 #include "avc_ss.h"
0056 #include "security.h"
0057 #include "context.h"
0058 #include "policydb.h"
0059 #include "sidtab.h"
0060 #include "services.h"
0061 #include "conditional.h"
0062 #include "mls.h"
0063 #include "objsec.h"
0064 #include "netlabel.h"
0065 #include "xfrm.h"
0066 #include "ebitmap.h"
0067 #include "audit.h"
0068 #include "policycap_names.h"
0069 #include "ima.h"
0070 
0071 struct convert_context_args {
0072     struct selinux_state *state;
0073     struct policydb *oldp;
0074     struct policydb *newp;
0075 };
0076 
0077 struct selinux_policy_convert_data {
0078     struct convert_context_args args;
0079     struct sidtab_convert_params sidtab_params;
0080 };
0081 
0082 /* Forward declaration. */
0083 static int context_struct_to_string(struct policydb *policydb,
0084                     struct context *context,
0085                     char **scontext,
0086                     u32 *scontext_len);
0087 
0088 static int sidtab_entry_to_string(struct policydb *policydb,
0089                   struct sidtab *sidtab,
0090                   struct sidtab_entry *entry,
0091                   char **scontext,
0092                   u32 *scontext_len);
0093 
0094 static void context_struct_compute_av(struct policydb *policydb,
0095                       struct context *scontext,
0096                       struct context *tcontext,
0097                       u16 tclass,
0098                       struct av_decision *avd,
0099                       struct extended_perms *xperms);
0100 
0101 static int selinux_set_mapping(struct policydb *pol,
0102                    const struct security_class_mapping *map,
0103                    struct selinux_map *out_map)
0104 {
0105     u16 i, j;
0106     unsigned k;
0107     bool print_unknown_handle = false;
0108 
0109     /* Find number of classes in the input mapping */
0110     if (!map)
0111         return -EINVAL;
0112     i = 0;
0113     while (map[i].name)
0114         i++;
0115 
0116     /* Allocate space for the class records, plus one for class zero */
0117     out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
0118     if (!out_map->mapping)
0119         return -ENOMEM;
0120 
0121     /* Store the raw class and permission values */
0122     j = 0;
0123     while (map[j].name) {
0124         const struct security_class_mapping *p_in = map + (j++);
0125         struct selinux_mapping *p_out = out_map->mapping + j;
0126 
0127         /* An empty class string skips ahead */
0128         if (!strcmp(p_in->name, "")) {
0129             p_out->num_perms = 0;
0130             continue;
0131         }
0132 
0133         p_out->value = string_to_security_class(pol, p_in->name);
0134         if (!p_out->value) {
0135             pr_info("SELinux:  Class %s not defined in policy.\n",
0136                    p_in->name);
0137             if (pol->reject_unknown)
0138                 goto err;
0139             p_out->num_perms = 0;
0140             print_unknown_handle = true;
0141             continue;
0142         }
0143 
0144         k = 0;
0145         while (p_in->perms[k]) {
0146             /* An empty permission string skips ahead */
0147             if (!*p_in->perms[k]) {
0148                 k++;
0149                 continue;
0150             }
0151             p_out->perms[k] = string_to_av_perm(pol, p_out->value,
0152                                 p_in->perms[k]);
0153             if (!p_out->perms[k]) {
0154                 pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
0155                        p_in->perms[k], p_in->name);
0156                 if (pol->reject_unknown)
0157                     goto err;
0158                 print_unknown_handle = true;
0159             }
0160 
0161             k++;
0162         }
0163         p_out->num_perms = k;
0164     }
0165 
0166     if (print_unknown_handle)
0167         pr_info("SELinux: the above unknown classes and permissions will be %s\n",
0168                pol->allow_unknown ? "allowed" : "denied");
0169 
0170     out_map->size = i;
0171     return 0;
0172 err:
0173     kfree(out_map->mapping);
0174     out_map->mapping = NULL;
0175     return -EINVAL;
0176 }
0177 
0178 /*
0179  * Get real, policy values from mapped values
0180  */
0181 
0182 static u16 unmap_class(struct selinux_map *map, u16 tclass)
0183 {
0184     if (tclass < map->size)
0185         return map->mapping[tclass].value;
0186 
0187     return tclass;
0188 }
0189 
0190 /*
0191  * Get kernel value for class from its policy value
0192  */
0193 static u16 map_class(struct selinux_map *map, u16 pol_value)
0194 {
0195     u16 i;
0196 
0197     for (i = 1; i < map->size; i++) {
0198         if (map->mapping[i].value == pol_value)
0199             return i;
0200     }
0201 
0202     return SECCLASS_NULL;
0203 }
0204 
0205 static void map_decision(struct selinux_map *map,
0206              u16 tclass, struct av_decision *avd,
0207              int allow_unknown)
0208 {
0209     if (tclass < map->size) {
0210         struct selinux_mapping *mapping = &map->mapping[tclass];
0211         unsigned int i, n = mapping->num_perms;
0212         u32 result;
0213 
0214         for (i = 0, result = 0; i < n; i++) {
0215             if (avd->allowed & mapping->perms[i])
0216                 result |= 1<<i;
0217             if (allow_unknown && !mapping->perms[i])
0218                 result |= 1<<i;
0219         }
0220         avd->allowed = result;
0221 
0222         for (i = 0, result = 0; i < n; i++)
0223             if (avd->auditallow & mapping->perms[i])
0224                 result |= 1<<i;
0225         avd->auditallow = result;
0226 
0227         for (i = 0, result = 0; i < n; i++) {
0228             if (avd->auditdeny & mapping->perms[i])
0229                 result |= 1<<i;
0230             if (!allow_unknown && !mapping->perms[i])
0231                 result |= 1<<i;
0232         }
0233         /*
0234          * In case the kernel has a bug and requests a permission
0235          * between num_perms and the maximum permission number, we
0236          * should audit that denial
0237          */
0238         for (; i < (sizeof(u32)*8); i++)
0239             result |= 1<<i;
0240         avd->auditdeny = result;
0241     }
0242 }
0243 
0244 int security_mls_enabled(struct selinux_state *state)
0245 {
0246     int mls_enabled;
0247     struct selinux_policy *policy;
0248 
0249     if (!selinux_initialized(state))
0250         return 0;
0251 
0252     rcu_read_lock();
0253     policy = rcu_dereference(state->policy);
0254     mls_enabled = policy->policydb.mls_enabled;
0255     rcu_read_unlock();
0256     return mls_enabled;
0257 }
0258 
0259 /*
0260  * Return the boolean value of a constraint expression
0261  * when it is applied to the specified source and target
0262  * security contexts.
0263  *
0264  * xcontext is a special beast...  It is used by the validatetrans rules
0265  * only.  For these rules, scontext is the context before the transition,
0266  * tcontext is the context after the transition, and xcontext is the context
0267  * of the process performing the transition.  All other callers of
0268  * constraint_expr_eval should pass in NULL for xcontext.
0269  */
0270 static int constraint_expr_eval(struct policydb *policydb,
0271                 struct context *scontext,
0272                 struct context *tcontext,
0273                 struct context *xcontext,
0274                 struct constraint_expr *cexpr)
0275 {
0276     u32 val1, val2;
0277     struct context *c;
0278     struct role_datum *r1, *r2;
0279     struct mls_level *l1, *l2;
0280     struct constraint_expr *e;
0281     int s[CEXPR_MAXDEPTH];
0282     int sp = -1;
0283 
0284     for (e = cexpr; e; e = e->next) {
0285         switch (e->expr_type) {
0286         case CEXPR_NOT:
0287             BUG_ON(sp < 0);
0288             s[sp] = !s[sp];
0289             break;
0290         case CEXPR_AND:
0291             BUG_ON(sp < 1);
0292             sp--;
0293             s[sp] &= s[sp + 1];
0294             break;
0295         case CEXPR_OR:
0296             BUG_ON(sp < 1);
0297             sp--;
0298             s[sp] |= s[sp + 1];
0299             break;
0300         case CEXPR_ATTR:
0301             if (sp == (CEXPR_MAXDEPTH - 1))
0302                 return 0;
0303             switch (e->attr) {
0304             case CEXPR_USER:
0305                 val1 = scontext->user;
0306                 val2 = tcontext->user;
0307                 break;
0308             case CEXPR_TYPE:
0309                 val1 = scontext->type;
0310                 val2 = tcontext->type;
0311                 break;
0312             case CEXPR_ROLE:
0313                 val1 = scontext->role;
0314                 val2 = tcontext->role;
0315                 r1 = policydb->role_val_to_struct[val1 - 1];
0316                 r2 = policydb->role_val_to_struct[val2 - 1];
0317                 switch (e->op) {
0318                 case CEXPR_DOM:
0319                     s[++sp] = ebitmap_get_bit(&r1->dominates,
0320                                   val2 - 1);
0321                     continue;
0322                 case CEXPR_DOMBY:
0323                     s[++sp] = ebitmap_get_bit(&r2->dominates,
0324                                   val1 - 1);
0325                     continue;
0326                 case CEXPR_INCOMP:
0327                     s[++sp] = (!ebitmap_get_bit(&r1->dominates,
0328                                     val2 - 1) &&
0329                            !ebitmap_get_bit(&r2->dominates,
0330                                     val1 - 1));
0331                     continue;
0332                 default:
0333                     break;
0334                 }
0335                 break;
0336             case CEXPR_L1L2:
0337                 l1 = &(scontext->range.level[0]);
0338                 l2 = &(tcontext->range.level[0]);
0339                 goto mls_ops;
0340             case CEXPR_L1H2:
0341                 l1 = &(scontext->range.level[0]);
0342                 l2 = &(tcontext->range.level[1]);
0343                 goto mls_ops;
0344             case CEXPR_H1L2:
0345                 l1 = &(scontext->range.level[1]);
0346                 l2 = &(tcontext->range.level[0]);
0347                 goto mls_ops;
0348             case CEXPR_H1H2:
0349                 l1 = &(scontext->range.level[1]);
0350                 l2 = &(tcontext->range.level[1]);
0351                 goto mls_ops;
0352             case CEXPR_L1H1:
0353                 l1 = &(scontext->range.level[0]);
0354                 l2 = &(scontext->range.level[1]);
0355                 goto mls_ops;
0356             case CEXPR_L2H2:
0357                 l1 = &(tcontext->range.level[0]);
0358                 l2 = &(tcontext->range.level[1]);
0359                 goto mls_ops;
0360 mls_ops:
0361                 switch (e->op) {
0362                 case CEXPR_EQ:
0363                     s[++sp] = mls_level_eq(l1, l2);
0364                     continue;
0365                 case CEXPR_NEQ:
0366                     s[++sp] = !mls_level_eq(l1, l2);
0367                     continue;
0368                 case CEXPR_DOM:
0369                     s[++sp] = mls_level_dom(l1, l2);
0370                     continue;
0371                 case CEXPR_DOMBY:
0372                     s[++sp] = mls_level_dom(l2, l1);
0373                     continue;
0374                 case CEXPR_INCOMP:
0375                     s[++sp] = mls_level_incomp(l2, l1);
0376                     continue;
0377                 default:
0378                     BUG();
0379                     return 0;
0380                 }
0381                 break;
0382             default:
0383                 BUG();
0384                 return 0;
0385             }
0386 
0387             switch (e->op) {
0388             case CEXPR_EQ:
0389                 s[++sp] = (val1 == val2);
0390                 break;
0391             case CEXPR_NEQ:
0392                 s[++sp] = (val1 != val2);
0393                 break;
0394             default:
0395                 BUG();
0396                 return 0;
0397             }
0398             break;
0399         case CEXPR_NAMES:
0400             if (sp == (CEXPR_MAXDEPTH-1))
0401                 return 0;
0402             c = scontext;
0403             if (e->attr & CEXPR_TARGET)
0404                 c = tcontext;
0405             else if (e->attr & CEXPR_XTARGET) {
0406                 c = xcontext;
0407                 if (!c) {
0408                     BUG();
0409                     return 0;
0410                 }
0411             }
0412             if (e->attr & CEXPR_USER)
0413                 val1 = c->user;
0414             else if (e->attr & CEXPR_ROLE)
0415                 val1 = c->role;
0416             else if (e->attr & CEXPR_TYPE)
0417                 val1 = c->type;
0418             else {
0419                 BUG();
0420                 return 0;
0421             }
0422 
0423             switch (e->op) {
0424             case CEXPR_EQ:
0425                 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
0426                 break;
0427             case CEXPR_NEQ:
0428                 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
0429                 break;
0430             default:
0431                 BUG();
0432                 return 0;
0433             }
0434             break;
0435         default:
0436             BUG();
0437             return 0;
0438         }
0439     }
0440 
0441     BUG_ON(sp != 0);
0442     return s[0];
0443 }
0444 
0445 /*
0446  * security_dump_masked_av - dumps masked permissions during
0447  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
0448  */
0449 static int dump_masked_av_helper(void *k, void *d, void *args)
0450 {
0451     struct perm_datum *pdatum = d;
0452     char **permission_names = args;
0453 
0454     BUG_ON(pdatum->value < 1 || pdatum->value > 32);
0455 
0456     permission_names[pdatum->value - 1] = (char *)k;
0457 
0458     return 0;
0459 }
0460 
0461 static void security_dump_masked_av(struct policydb *policydb,
0462                     struct context *scontext,
0463                     struct context *tcontext,
0464                     u16 tclass,
0465                     u32 permissions,
0466                     const char *reason)
0467 {
0468     struct common_datum *common_dat;
0469     struct class_datum *tclass_dat;
0470     struct audit_buffer *ab;
0471     char *tclass_name;
0472     char *scontext_name = NULL;
0473     char *tcontext_name = NULL;
0474     char *permission_names[32];
0475     int index;
0476     u32 length;
0477     bool need_comma = false;
0478 
0479     if (!permissions)
0480         return;
0481 
0482     tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
0483     tclass_dat = policydb->class_val_to_struct[tclass - 1];
0484     common_dat = tclass_dat->comdatum;
0485 
0486     /* init permission_names */
0487     if (common_dat &&
0488         hashtab_map(&common_dat->permissions.table,
0489             dump_masked_av_helper, permission_names) < 0)
0490         goto out;
0491 
0492     if (hashtab_map(&tclass_dat->permissions.table,
0493             dump_masked_av_helper, permission_names) < 0)
0494         goto out;
0495 
0496     /* get scontext/tcontext in text form */
0497     if (context_struct_to_string(policydb, scontext,
0498                      &scontext_name, &length) < 0)
0499         goto out;
0500 
0501     if (context_struct_to_string(policydb, tcontext,
0502                      &tcontext_name, &length) < 0)
0503         goto out;
0504 
0505     /* audit a message */
0506     ab = audit_log_start(audit_context(),
0507                  GFP_ATOMIC, AUDIT_SELINUX_ERR);
0508     if (!ab)
0509         goto out;
0510 
0511     audit_log_format(ab, "op=security_compute_av reason=%s "
0512              "scontext=%s tcontext=%s tclass=%s perms=",
0513              reason, scontext_name, tcontext_name, tclass_name);
0514 
0515     for (index = 0; index < 32; index++) {
0516         u32 mask = (1 << index);
0517 
0518         if ((mask & permissions) == 0)
0519             continue;
0520 
0521         audit_log_format(ab, "%s%s",
0522                  need_comma ? "," : "",
0523                  permission_names[index]
0524                  ? permission_names[index] : "????");
0525         need_comma = true;
0526     }
0527     audit_log_end(ab);
0528 out:
0529     /* release scontext/tcontext */
0530     kfree(tcontext_name);
0531     kfree(scontext_name);
0532 }
0533 
0534 /*
0535  * security_boundary_permission - drops violated permissions
0536  * on boundary constraint.
0537  */
0538 static void type_attribute_bounds_av(struct policydb *policydb,
0539                      struct context *scontext,
0540                      struct context *tcontext,
0541                      u16 tclass,
0542                      struct av_decision *avd)
0543 {
0544     struct context lo_scontext;
0545     struct context lo_tcontext, *tcontextp = tcontext;
0546     struct av_decision lo_avd;
0547     struct type_datum *source;
0548     struct type_datum *target;
0549     u32 masked = 0;
0550 
0551     source = policydb->type_val_to_struct[scontext->type - 1];
0552     BUG_ON(!source);
0553 
0554     if (!source->bounds)
0555         return;
0556 
0557     target = policydb->type_val_to_struct[tcontext->type - 1];
0558     BUG_ON(!target);
0559 
0560     memset(&lo_avd, 0, sizeof(lo_avd));
0561 
0562     memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
0563     lo_scontext.type = source->bounds;
0564 
0565     if (target->bounds) {
0566         memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
0567         lo_tcontext.type = target->bounds;
0568         tcontextp = &lo_tcontext;
0569     }
0570 
0571     context_struct_compute_av(policydb, &lo_scontext,
0572                   tcontextp,
0573                   tclass,
0574                   &lo_avd,
0575                   NULL);
0576 
0577     masked = ~lo_avd.allowed & avd->allowed;
0578 
0579     if (likely(!masked))
0580         return;     /* no masked permission */
0581 
0582     /* mask violated permissions */
0583     avd->allowed &= ~masked;
0584 
0585     /* audit masked permissions */
0586     security_dump_masked_av(policydb, scontext, tcontext,
0587                 tclass, masked, "bounds");
0588 }
0589 
0590 /*
0591  * flag which drivers have permissions
0592  * only looking for ioctl based extended permssions
0593  */
0594 void services_compute_xperms_drivers(
0595         struct extended_perms *xperms,
0596         struct avtab_node *node)
0597 {
0598     unsigned int i;
0599 
0600     if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
0601         /* if one or more driver has all permissions allowed */
0602         for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
0603             xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
0604     } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
0605         /* if allowing permissions within a driver */
0606         security_xperm_set(xperms->drivers.p,
0607                     node->datum.u.xperms->driver);
0608     }
0609 
0610     xperms->len = 1;
0611 }
0612 
0613 /*
0614  * Compute access vectors and extended permissions based on a context
0615  * structure pair for the permissions in a particular class.
0616  */
0617 static void context_struct_compute_av(struct policydb *policydb,
0618                       struct context *scontext,
0619                       struct context *tcontext,
0620                       u16 tclass,
0621                       struct av_decision *avd,
0622                       struct extended_perms *xperms)
0623 {
0624     struct constraint_node *constraint;
0625     struct role_allow *ra;
0626     struct avtab_key avkey;
0627     struct avtab_node *node;
0628     struct class_datum *tclass_datum;
0629     struct ebitmap *sattr, *tattr;
0630     struct ebitmap_node *snode, *tnode;
0631     unsigned int i, j;
0632 
0633     avd->allowed = 0;
0634     avd->auditallow = 0;
0635     avd->auditdeny = 0xffffffff;
0636     if (xperms) {
0637         memset(&xperms->drivers, 0, sizeof(xperms->drivers));
0638         xperms->len = 0;
0639     }
0640 
0641     if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
0642         if (printk_ratelimit())
0643             pr_warn("SELinux:  Invalid class %hu\n", tclass);
0644         return;
0645     }
0646 
0647     tclass_datum = policydb->class_val_to_struct[tclass - 1];
0648 
0649     /*
0650      * If a specific type enforcement rule was defined for
0651      * this permission check, then use it.
0652      */
0653     avkey.target_class = tclass;
0654     avkey.specified = AVTAB_AV | AVTAB_XPERMS;
0655     sattr = &policydb->type_attr_map_array[scontext->type - 1];
0656     tattr = &policydb->type_attr_map_array[tcontext->type - 1];
0657     ebitmap_for_each_positive_bit(sattr, snode, i) {
0658         ebitmap_for_each_positive_bit(tattr, tnode, j) {
0659             avkey.source_type = i + 1;
0660             avkey.target_type = j + 1;
0661             for (node = avtab_search_node(&policydb->te_avtab,
0662                               &avkey);
0663                  node;
0664                  node = avtab_search_node_next(node, avkey.specified)) {
0665                 if (node->key.specified == AVTAB_ALLOWED)
0666                     avd->allowed |= node->datum.u.data;
0667                 else if (node->key.specified == AVTAB_AUDITALLOW)
0668                     avd->auditallow |= node->datum.u.data;
0669                 else if (node->key.specified == AVTAB_AUDITDENY)
0670                     avd->auditdeny &= node->datum.u.data;
0671                 else if (xperms && (node->key.specified & AVTAB_XPERMS))
0672                     services_compute_xperms_drivers(xperms, node);
0673             }
0674 
0675             /* Check conditional av table for additional permissions */
0676             cond_compute_av(&policydb->te_cond_avtab, &avkey,
0677                     avd, xperms);
0678 
0679         }
0680     }
0681 
0682     /*
0683      * Remove any permissions prohibited by a constraint (this includes
0684      * the MLS policy).
0685      */
0686     constraint = tclass_datum->constraints;
0687     while (constraint) {
0688         if ((constraint->permissions & (avd->allowed)) &&
0689             !constraint_expr_eval(policydb, scontext, tcontext, NULL,
0690                       constraint->expr)) {
0691             avd->allowed &= ~(constraint->permissions);
0692         }
0693         constraint = constraint->next;
0694     }
0695 
0696     /*
0697      * If checking process transition permission and the
0698      * role is changing, then check the (current_role, new_role)
0699      * pair.
0700      */
0701     if (tclass == policydb->process_class &&
0702         (avd->allowed & policydb->process_trans_perms) &&
0703         scontext->role != tcontext->role) {
0704         for (ra = policydb->role_allow; ra; ra = ra->next) {
0705             if (scontext->role == ra->role &&
0706                 tcontext->role == ra->new_role)
0707                 break;
0708         }
0709         if (!ra)
0710             avd->allowed &= ~policydb->process_trans_perms;
0711     }
0712 
0713     /*
0714      * If the given source and target types have boundary
0715      * constraint, lazy checks have to mask any violated
0716      * permission and notice it to userspace via audit.
0717      */
0718     type_attribute_bounds_av(policydb, scontext, tcontext,
0719                  tclass, avd);
0720 }
0721 
0722 static int security_validtrans_handle_fail(struct selinux_state *state,
0723                     struct selinux_policy *policy,
0724                     struct sidtab_entry *oentry,
0725                     struct sidtab_entry *nentry,
0726                     struct sidtab_entry *tentry,
0727                     u16 tclass)
0728 {
0729     struct policydb *p = &policy->policydb;
0730     struct sidtab *sidtab = policy->sidtab;
0731     char *o = NULL, *n = NULL, *t = NULL;
0732     u32 olen, nlen, tlen;
0733 
0734     if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
0735         goto out;
0736     if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
0737         goto out;
0738     if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
0739         goto out;
0740     audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
0741           "op=security_validate_transition seresult=denied"
0742           " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
0743           o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
0744 out:
0745     kfree(o);
0746     kfree(n);
0747     kfree(t);
0748 
0749     if (!enforcing_enabled(state))
0750         return 0;
0751     return -EPERM;
0752 }
0753 
0754 static int security_compute_validatetrans(struct selinux_state *state,
0755                       u32 oldsid, u32 newsid, u32 tasksid,
0756                       u16 orig_tclass, bool user)
0757 {
0758     struct selinux_policy *policy;
0759     struct policydb *policydb;
0760     struct sidtab *sidtab;
0761     struct sidtab_entry *oentry;
0762     struct sidtab_entry *nentry;
0763     struct sidtab_entry *tentry;
0764     struct class_datum *tclass_datum;
0765     struct constraint_node *constraint;
0766     u16 tclass;
0767     int rc = 0;
0768 
0769 
0770     if (!selinux_initialized(state))
0771         return 0;
0772 
0773     rcu_read_lock();
0774 
0775     policy = rcu_dereference(state->policy);
0776     policydb = &policy->policydb;
0777     sidtab = policy->sidtab;
0778 
0779     if (!user)
0780         tclass = unmap_class(&policy->map, orig_tclass);
0781     else
0782         tclass = orig_tclass;
0783 
0784     if (!tclass || tclass > policydb->p_classes.nprim) {
0785         rc = -EINVAL;
0786         goto out;
0787     }
0788     tclass_datum = policydb->class_val_to_struct[tclass - 1];
0789 
0790     oentry = sidtab_search_entry(sidtab, oldsid);
0791     if (!oentry) {
0792         pr_err("SELinux: %s:  unrecognized SID %d\n",
0793             __func__, oldsid);
0794         rc = -EINVAL;
0795         goto out;
0796     }
0797 
0798     nentry = sidtab_search_entry(sidtab, newsid);
0799     if (!nentry) {
0800         pr_err("SELinux: %s:  unrecognized SID %d\n",
0801             __func__, newsid);
0802         rc = -EINVAL;
0803         goto out;
0804     }
0805 
0806     tentry = sidtab_search_entry(sidtab, tasksid);
0807     if (!tentry) {
0808         pr_err("SELinux: %s:  unrecognized SID %d\n",
0809             __func__, tasksid);
0810         rc = -EINVAL;
0811         goto out;
0812     }
0813 
0814     constraint = tclass_datum->validatetrans;
0815     while (constraint) {
0816         if (!constraint_expr_eval(policydb, &oentry->context,
0817                       &nentry->context, &tentry->context,
0818                       constraint->expr)) {
0819             if (user)
0820                 rc = -EPERM;
0821             else
0822                 rc = security_validtrans_handle_fail(state,
0823                                 policy,
0824                                 oentry,
0825                                 nentry,
0826                                 tentry,
0827                                 tclass);
0828             goto out;
0829         }
0830         constraint = constraint->next;
0831     }
0832 
0833 out:
0834     rcu_read_unlock();
0835     return rc;
0836 }
0837 
0838 int security_validate_transition_user(struct selinux_state *state,
0839                       u32 oldsid, u32 newsid, u32 tasksid,
0840                       u16 tclass)
0841 {
0842     return security_compute_validatetrans(state, oldsid, newsid, tasksid,
0843                           tclass, true);
0844 }
0845 
0846 int security_validate_transition(struct selinux_state *state,
0847                  u32 oldsid, u32 newsid, u32 tasksid,
0848                  u16 orig_tclass)
0849 {
0850     return security_compute_validatetrans(state, oldsid, newsid, tasksid,
0851                           orig_tclass, false);
0852 }
0853 
0854 /*
0855  * security_bounded_transition - check whether the given
0856  * transition is directed to bounded, or not.
0857  * It returns 0, if @newsid is bounded by @oldsid.
0858  * Otherwise, it returns error code.
0859  *
0860  * @state: SELinux state
0861  * @oldsid : current security identifier
0862  * @newsid : destinated security identifier
0863  */
0864 int security_bounded_transition(struct selinux_state *state,
0865                 u32 old_sid, u32 new_sid)
0866 {
0867     struct selinux_policy *policy;
0868     struct policydb *policydb;
0869     struct sidtab *sidtab;
0870     struct sidtab_entry *old_entry, *new_entry;
0871     struct type_datum *type;
0872     int index;
0873     int rc;
0874 
0875     if (!selinux_initialized(state))
0876         return 0;
0877 
0878     rcu_read_lock();
0879     policy = rcu_dereference(state->policy);
0880     policydb = &policy->policydb;
0881     sidtab = policy->sidtab;
0882 
0883     rc = -EINVAL;
0884     old_entry = sidtab_search_entry(sidtab, old_sid);
0885     if (!old_entry) {
0886         pr_err("SELinux: %s: unrecognized SID %u\n",
0887                __func__, old_sid);
0888         goto out;
0889     }
0890 
0891     rc = -EINVAL;
0892     new_entry = sidtab_search_entry(sidtab, new_sid);
0893     if (!new_entry) {
0894         pr_err("SELinux: %s: unrecognized SID %u\n",
0895                __func__, new_sid);
0896         goto out;
0897     }
0898 
0899     rc = 0;
0900     /* type/domain unchanged */
0901     if (old_entry->context.type == new_entry->context.type)
0902         goto out;
0903 
0904     index = new_entry->context.type;
0905     while (true) {
0906         type = policydb->type_val_to_struct[index - 1];
0907         BUG_ON(!type);
0908 
0909         /* not bounded anymore */
0910         rc = -EPERM;
0911         if (!type->bounds)
0912             break;
0913 
0914         /* @newsid is bounded by @oldsid */
0915         rc = 0;
0916         if (type->bounds == old_entry->context.type)
0917             break;
0918 
0919         index = type->bounds;
0920     }
0921 
0922     if (rc) {
0923         char *old_name = NULL;
0924         char *new_name = NULL;
0925         u32 length;
0926 
0927         if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
0928                         &old_name, &length) &&
0929             !sidtab_entry_to_string(policydb, sidtab, new_entry,
0930                         &new_name, &length)) {
0931             audit_log(audit_context(),
0932                   GFP_ATOMIC, AUDIT_SELINUX_ERR,
0933                   "op=security_bounded_transition "
0934                   "seresult=denied "
0935                   "oldcontext=%s newcontext=%s",
0936                   old_name, new_name);
0937         }
0938         kfree(new_name);
0939         kfree(old_name);
0940     }
0941 out:
0942     rcu_read_unlock();
0943 
0944     return rc;
0945 }
0946 
0947 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
0948 {
0949     avd->allowed = 0;
0950     avd->auditallow = 0;
0951     avd->auditdeny = 0xffffffff;
0952     if (policy)
0953         avd->seqno = policy->latest_granting;
0954     else
0955         avd->seqno = 0;
0956     avd->flags = 0;
0957 }
0958 
0959 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
0960                     struct avtab_node *node)
0961 {
0962     unsigned int i;
0963 
0964     if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
0965         if (xpermd->driver != node->datum.u.xperms->driver)
0966             return;
0967     } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
0968         if (!security_xperm_test(node->datum.u.xperms->perms.p,
0969                     xpermd->driver))
0970             return;
0971     } else {
0972         BUG();
0973     }
0974 
0975     if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
0976         xpermd->used |= XPERMS_ALLOWED;
0977         if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
0978             memset(xpermd->allowed->p, 0xff,
0979                     sizeof(xpermd->allowed->p));
0980         }
0981         if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
0982             for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
0983                 xpermd->allowed->p[i] |=
0984                     node->datum.u.xperms->perms.p[i];
0985         }
0986     } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
0987         xpermd->used |= XPERMS_AUDITALLOW;
0988         if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
0989             memset(xpermd->auditallow->p, 0xff,
0990                     sizeof(xpermd->auditallow->p));
0991         }
0992         if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
0993             for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
0994                 xpermd->auditallow->p[i] |=
0995                     node->datum.u.xperms->perms.p[i];
0996         }
0997     } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
0998         xpermd->used |= XPERMS_DONTAUDIT;
0999         if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1000             memset(xpermd->dontaudit->p, 0xff,
1001                     sizeof(xpermd->dontaudit->p));
1002         }
1003         if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1004             for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1005                 xpermd->dontaudit->p[i] |=
1006                     node->datum.u.xperms->perms.p[i];
1007         }
1008     } else {
1009         BUG();
1010     }
1011 }
1012 
1013 void security_compute_xperms_decision(struct selinux_state *state,
1014                       u32 ssid,
1015                       u32 tsid,
1016                       u16 orig_tclass,
1017                       u8 driver,
1018                       struct extended_perms_decision *xpermd)
1019 {
1020     struct selinux_policy *policy;
1021     struct policydb *policydb;
1022     struct sidtab *sidtab;
1023     u16 tclass;
1024     struct context *scontext, *tcontext;
1025     struct avtab_key avkey;
1026     struct avtab_node *node;
1027     struct ebitmap *sattr, *tattr;
1028     struct ebitmap_node *snode, *tnode;
1029     unsigned int i, j;
1030 
1031     xpermd->driver = driver;
1032     xpermd->used = 0;
1033     memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1034     memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1035     memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1036 
1037     rcu_read_lock();
1038     if (!selinux_initialized(state))
1039         goto allow;
1040 
1041     policy = rcu_dereference(state->policy);
1042     policydb = &policy->policydb;
1043     sidtab = policy->sidtab;
1044 
1045     scontext = sidtab_search(sidtab, ssid);
1046     if (!scontext) {
1047         pr_err("SELinux: %s:  unrecognized SID %d\n",
1048                __func__, ssid);
1049         goto out;
1050     }
1051 
1052     tcontext = sidtab_search(sidtab, tsid);
1053     if (!tcontext) {
1054         pr_err("SELinux: %s:  unrecognized SID %d\n",
1055                __func__, tsid);
1056         goto out;
1057     }
1058 
1059     tclass = unmap_class(&policy->map, orig_tclass);
1060     if (unlikely(orig_tclass && !tclass)) {
1061         if (policydb->allow_unknown)
1062             goto allow;
1063         goto out;
1064     }
1065 
1066 
1067     if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1068         pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1069         goto out;
1070     }
1071 
1072     avkey.target_class = tclass;
1073     avkey.specified = AVTAB_XPERMS;
1074     sattr = &policydb->type_attr_map_array[scontext->type - 1];
1075     tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1076     ebitmap_for_each_positive_bit(sattr, snode, i) {
1077         ebitmap_for_each_positive_bit(tattr, tnode, j) {
1078             avkey.source_type = i + 1;
1079             avkey.target_type = j + 1;
1080             for (node = avtab_search_node(&policydb->te_avtab,
1081                               &avkey);
1082                  node;
1083                  node = avtab_search_node_next(node, avkey.specified))
1084                 services_compute_xperms_decision(xpermd, node);
1085 
1086             cond_compute_xperms(&policydb->te_cond_avtab,
1087                         &avkey, xpermd);
1088         }
1089     }
1090 out:
1091     rcu_read_unlock();
1092     return;
1093 allow:
1094     memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1095     goto out;
1096 }
1097 
1098 /**
1099  * security_compute_av - Compute access vector decisions.
1100  * @state: SELinux state
1101  * @ssid: source security identifier
1102  * @tsid: target security identifier
1103  * @orig_tclass: target security class
1104  * @avd: access vector decisions
1105  * @xperms: extended permissions
1106  *
1107  * Compute a set of access vector decisions based on the
1108  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1109  */
1110 void security_compute_av(struct selinux_state *state,
1111              u32 ssid,
1112              u32 tsid,
1113              u16 orig_tclass,
1114              struct av_decision *avd,
1115              struct extended_perms *xperms)
1116 {
1117     struct selinux_policy *policy;
1118     struct policydb *policydb;
1119     struct sidtab *sidtab;
1120     u16 tclass;
1121     struct context *scontext = NULL, *tcontext = NULL;
1122 
1123     rcu_read_lock();
1124     policy = rcu_dereference(state->policy);
1125     avd_init(policy, avd);
1126     xperms->len = 0;
1127     if (!selinux_initialized(state))
1128         goto allow;
1129 
1130     policydb = &policy->policydb;
1131     sidtab = policy->sidtab;
1132 
1133     scontext = sidtab_search(sidtab, ssid);
1134     if (!scontext) {
1135         pr_err("SELinux: %s:  unrecognized SID %d\n",
1136                __func__, ssid);
1137         goto out;
1138     }
1139 
1140     /* permissive domain? */
1141     if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1142         avd->flags |= AVD_FLAGS_PERMISSIVE;
1143 
1144     tcontext = sidtab_search(sidtab, tsid);
1145     if (!tcontext) {
1146         pr_err("SELinux: %s:  unrecognized SID %d\n",
1147                __func__, tsid);
1148         goto out;
1149     }
1150 
1151     tclass = unmap_class(&policy->map, orig_tclass);
1152     if (unlikely(orig_tclass && !tclass)) {
1153         if (policydb->allow_unknown)
1154             goto allow;
1155         goto out;
1156     }
1157     context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1158                   xperms);
1159     map_decision(&policy->map, orig_tclass, avd,
1160              policydb->allow_unknown);
1161 out:
1162     rcu_read_unlock();
1163     return;
1164 allow:
1165     avd->allowed = 0xffffffff;
1166     goto out;
1167 }
1168 
1169 void security_compute_av_user(struct selinux_state *state,
1170                   u32 ssid,
1171                   u32 tsid,
1172                   u16 tclass,
1173                   struct av_decision *avd)
1174 {
1175     struct selinux_policy *policy;
1176     struct policydb *policydb;
1177     struct sidtab *sidtab;
1178     struct context *scontext = NULL, *tcontext = NULL;
1179 
1180     rcu_read_lock();
1181     policy = rcu_dereference(state->policy);
1182     avd_init(policy, avd);
1183     if (!selinux_initialized(state))
1184         goto allow;
1185 
1186     policydb = &policy->policydb;
1187     sidtab = policy->sidtab;
1188 
1189     scontext = sidtab_search(sidtab, ssid);
1190     if (!scontext) {
1191         pr_err("SELinux: %s:  unrecognized SID %d\n",
1192                __func__, ssid);
1193         goto out;
1194     }
1195 
1196     /* permissive domain? */
1197     if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1198         avd->flags |= AVD_FLAGS_PERMISSIVE;
1199 
1200     tcontext = sidtab_search(sidtab, tsid);
1201     if (!tcontext) {
1202         pr_err("SELinux: %s:  unrecognized SID %d\n",
1203                __func__, tsid);
1204         goto out;
1205     }
1206 
1207     if (unlikely(!tclass)) {
1208         if (policydb->allow_unknown)
1209             goto allow;
1210         goto out;
1211     }
1212 
1213     context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1214                   NULL);
1215  out:
1216     rcu_read_unlock();
1217     return;
1218 allow:
1219     avd->allowed = 0xffffffff;
1220     goto out;
1221 }
1222 
1223 /*
1224  * Write the security context string representation of
1225  * the context structure `context' into a dynamically
1226  * allocated string of the correct size.  Set `*scontext'
1227  * to point to this string and set `*scontext_len' to
1228  * the length of the string.
1229  */
1230 static int context_struct_to_string(struct policydb *p,
1231                     struct context *context,
1232                     char **scontext, u32 *scontext_len)
1233 {
1234     char *scontextp;
1235 
1236     if (scontext)
1237         *scontext = NULL;
1238     *scontext_len = 0;
1239 
1240     if (context->len) {
1241         *scontext_len = context->len;
1242         if (scontext) {
1243             *scontext = kstrdup(context->str, GFP_ATOMIC);
1244             if (!(*scontext))
1245                 return -ENOMEM;
1246         }
1247         return 0;
1248     }
1249 
1250     /* Compute the size of the context. */
1251     *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1252     *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1253     *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1254     *scontext_len += mls_compute_context_len(p, context);
1255 
1256     if (!scontext)
1257         return 0;
1258 
1259     /* Allocate space for the context; caller must free this space. */
1260     scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1261     if (!scontextp)
1262         return -ENOMEM;
1263     *scontext = scontextp;
1264 
1265     /*
1266      * Copy the user name, role name and type name into the context.
1267      */
1268     scontextp += sprintf(scontextp, "%s:%s:%s",
1269         sym_name(p, SYM_USERS, context->user - 1),
1270         sym_name(p, SYM_ROLES, context->role - 1),
1271         sym_name(p, SYM_TYPES, context->type - 1));
1272 
1273     mls_sid_to_context(p, context, &scontextp);
1274 
1275     *scontextp = 0;
1276 
1277     return 0;
1278 }
1279 
1280 static int sidtab_entry_to_string(struct policydb *p,
1281                   struct sidtab *sidtab,
1282                   struct sidtab_entry *entry,
1283                   char **scontext, u32 *scontext_len)
1284 {
1285     int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1286 
1287     if (rc != -ENOENT)
1288         return rc;
1289 
1290     rc = context_struct_to_string(p, &entry->context, scontext,
1291                       scontext_len);
1292     if (!rc && scontext)
1293         sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1294     return rc;
1295 }
1296 
1297 #include "initial_sid_to_string.h"
1298 
1299 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1300 {
1301     struct selinux_policy *policy;
1302     int rc;
1303 
1304     if (!selinux_initialized(state)) {
1305         pr_err("SELinux: %s:  called before initial load_policy\n",
1306                __func__);
1307         return -EINVAL;
1308     }
1309 
1310     rcu_read_lock();
1311     policy = rcu_dereference(state->policy);
1312     rc = sidtab_hash_stats(policy->sidtab, page);
1313     rcu_read_unlock();
1314 
1315     return rc;
1316 }
1317 
1318 const char *security_get_initial_sid_context(u32 sid)
1319 {
1320     if (unlikely(sid > SECINITSID_NUM))
1321         return NULL;
1322     return initial_sid_to_string[sid];
1323 }
1324 
1325 static int security_sid_to_context_core(struct selinux_state *state,
1326                     u32 sid, char **scontext,
1327                     u32 *scontext_len, int force,
1328                     int only_invalid)
1329 {
1330     struct selinux_policy *policy;
1331     struct policydb *policydb;
1332     struct sidtab *sidtab;
1333     struct sidtab_entry *entry;
1334     int rc = 0;
1335 
1336     if (scontext)
1337         *scontext = NULL;
1338     *scontext_len  = 0;
1339 
1340     if (!selinux_initialized(state)) {
1341         if (sid <= SECINITSID_NUM) {
1342             char *scontextp;
1343             const char *s = initial_sid_to_string[sid];
1344 
1345             if (!s)
1346                 return -EINVAL;
1347             *scontext_len = strlen(s) + 1;
1348             if (!scontext)
1349                 return 0;
1350             scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1351             if (!scontextp)
1352                 return -ENOMEM;
1353             *scontext = scontextp;
1354             return 0;
1355         }
1356         pr_err("SELinux: %s:  called before initial "
1357                "load_policy on unknown SID %d\n", __func__, sid);
1358         return -EINVAL;
1359     }
1360     rcu_read_lock();
1361     policy = rcu_dereference(state->policy);
1362     policydb = &policy->policydb;
1363     sidtab = policy->sidtab;
1364 
1365     if (force)
1366         entry = sidtab_search_entry_force(sidtab, sid);
1367     else
1368         entry = sidtab_search_entry(sidtab, sid);
1369     if (!entry) {
1370         pr_err("SELinux: %s:  unrecognized SID %d\n",
1371             __func__, sid);
1372         rc = -EINVAL;
1373         goto out_unlock;
1374     }
1375     if (only_invalid && !entry->context.len)
1376         goto out_unlock;
1377 
1378     rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1379                     scontext_len);
1380 
1381 out_unlock:
1382     rcu_read_unlock();
1383     return rc;
1384 
1385 }
1386 
1387 /**
1388  * security_sid_to_context - Obtain a context for a given SID.
1389  * @state: SELinux state
1390  * @sid: security identifier, SID
1391  * @scontext: security context
1392  * @scontext_len: length in bytes
1393  *
1394  * Write the string representation of the context associated with @sid
1395  * into a dynamically allocated string of the correct size.  Set @scontext
1396  * to point to this string and set @scontext_len to the length of the string.
1397  */
1398 int security_sid_to_context(struct selinux_state *state,
1399                 u32 sid, char **scontext, u32 *scontext_len)
1400 {
1401     return security_sid_to_context_core(state, sid, scontext,
1402                         scontext_len, 0, 0);
1403 }
1404 
1405 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1406                   char **scontext, u32 *scontext_len)
1407 {
1408     return security_sid_to_context_core(state, sid, scontext,
1409                         scontext_len, 1, 0);
1410 }
1411 
1412 /**
1413  * security_sid_to_context_inval - Obtain a context for a given SID if it
1414  *                                 is invalid.
1415  * @state: SELinux state
1416  * @sid: security identifier, SID
1417  * @scontext: security context
1418  * @scontext_len: length in bytes
1419  *
1420  * Write the string representation of the context associated with @sid
1421  * into a dynamically allocated string of the correct size, but only if the
1422  * context is invalid in the current policy.  Set @scontext to point to
1423  * this string (or NULL if the context is valid) and set @scontext_len to
1424  * the length of the string (or 0 if the context is valid).
1425  */
1426 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1427                   char **scontext, u32 *scontext_len)
1428 {
1429     return security_sid_to_context_core(state, sid, scontext,
1430                         scontext_len, 1, 1);
1431 }
1432 
1433 /*
1434  * Caveat:  Mutates scontext.
1435  */
1436 static int string_to_context_struct(struct policydb *pol,
1437                     struct sidtab *sidtabp,
1438                     char *scontext,
1439                     struct context *ctx,
1440                     u32 def_sid)
1441 {
1442     struct role_datum *role;
1443     struct type_datum *typdatum;
1444     struct user_datum *usrdatum;
1445     char *scontextp, *p, oldc;
1446     int rc = 0;
1447 
1448     context_init(ctx);
1449 
1450     /* Parse the security context. */
1451 
1452     rc = -EINVAL;
1453     scontextp = scontext;
1454 
1455     /* Extract the user. */
1456     p = scontextp;
1457     while (*p && *p != ':')
1458         p++;
1459 
1460     if (*p == 0)
1461         goto out;
1462 
1463     *p++ = 0;
1464 
1465     usrdatum = symtab_search(&pol->p_users, scontextp);
1466     if (!usrdatum)
1467         goto out;
1468 
1469     ctx->user = usrdatum->value;
1470 
1471     /* Extract role. */
1472     scontextp = p;
1473     while (*p && *p != ':')
1474         p++;
1475 
1476     if (*p == 0)
1477         goto out;
1478 
1479     *p++ = 0;
1480 
1481     role = symtab_search(&pol->p_roles, scontextp);
1482     if (!role)
1483         goto out;
1484     ctx->role = role->value;
1485 
1486     /* Extract type. */
1487     scontextp = p;
1488     while (*p && *p != ':')
1489         p++;
1490     oldc = *p;
1491     *p++ = 0;
1492 
1493     typdatum = symtab_search(&pol->p_types, scontextp);
1494     if (!typdatum || typdatum->attribute)
1495         goto out;
1496 
1497     ctx->type = typdatum->value;
1498 
1499     rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1500     if (rc)
1501         goto out;
1502 
1503     /* Check the validity of the new context. */
1504     rc = -EINVAL;
1505     if (!policydb_context_isvalid(pol, ctx))
1506         goto out;
1507     rc = 0;
1508 out:
1509     if (rc)
1510         context_destroy(ctx);
1511     return rc;
1512 }
1513 
1514 static int security_context_to_sid_core(struct selinux_state *state,
1515                     const char *scontext, u32 scontext_len,
1516                     u32 *sid, u32 def_sid, gfp_t gfp_flags,
1517                     int force)
1518 {
1519     struct selinux_policy *policy;
1520     struct policydb *policydb;
1521     struct sidtab *sidtab;
1522     char *scontext2, *str = NULL;
1523     struct context context;
1524     int rc = 0;
1525 
1526     /* An empty security context is never valid. */
1527     if (!scontext_len)
1528         return -EINVAL;
1529 
1530     /* Copy the string to allow changes and ensure a NUL terminator */
1531     scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1532     if (!scontext2)
1533         return -ENOMEM;
1534 
1535     if (!selinux_initialized(state)) {
1536         int i;
1537 
1538         for (i = 1; i < SECINITSID_NUM; i++) {
1539             const char *s = initial_sid_to_string[i];
1540 
1541             if (s && !strcmp(s, scontext2)) {
1542                 *sid = i;
1543                 goto out;
1544             }
1545         }
1546         *sid = SECINITSID_KERNEL;
1547         goto out;
1548     }
1549     *sid = SECSID_NULL;
1550 
1551     if (force) {
1552         /* Save another copy for storing in uninterpreted form */
1553         rc = -ENOMEM;
1554         str = kstrdup(scontext2, gfp_flags);
1555         if (!str)
1556             goto out;
1557     }
1558 retry:
1559     rcu_read_lock();
1560     policy = rcu_dereference(state->policy);
1561     policydb = &policy->policydb;
1562     sidtab = policy->sidtab;
1563     rc = string_to_context_struct(policydb, sidtab, scontext2,
1564                       &context, def_sid);
1565     if (rc == -EINVAL && force) {
1566         context.str = str;
1567         context.len = strlen(str) + 1;
1568         str = NULL;
1569     } else if (rc)
1570         goto out_unlock;
1571     rc = sidtab_context_to_sid(sidtab, &context, sid);
1572     if (rc == -ESTALE) {
1573         rcu_read_unlock();
1574         if (context.str) {
1575             str = context.str;
1576             context.str = NULL;
1577         }
1578         context_destroy(&context);
1579         goto retry;
1580     }
1581     context_destroy(&context);
1582 out_unlock:
1583     rcu_read_unlock();
1584 out:
1585     kfree(scontext2);
1586     kfree(str);
1587     return rc;
1588 }
1589 
1590 /**
1591  * security_context_to_sid - Obtain a SID for a given security context.
1592  * @state: SELinux state
1593  * @scontext: security context
1594  * @scontext_len: length in bytes
1595  * @sid: security identifier, SID
1596  * @gfp: context for the allocation
1597  *
1598  * Obtains a SID associated with the security context that
1599  * has the string representation specified by @scontext.
1600  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1601  * memory is available, or 0 on success.
1602  */
1603 int security_context_to_sid(struct selinux_state *state,
1604                 const char *scontext, u32 scontext_len, u32 *sid,
1605                 gfp_t gfp)
1606 {
1607     return security_context_to_sid_core(state, scontext, scontext_len,
1608                         sid, SECSID_NULL, gfp, 0);
1609 }
1610 
1611 int security_context_str_to_sid(struct selinux_state *state,
1612                 const char *scontext, u32 *sid, gfp_t gfp)
1613 {
1614     return security_context_to_sid(state, scontext, strlen(scontext),
1615                        sid, gfp);
1616 }
1617 
1618 /**
1619  * security_context_to_sid_default - Obtain a SID for a given security context,
1620  * falling back to specified default if needed.
1621  *
1622  * @state: SELinux state
1623  * @scontext: security context
1624  * @scontext_len: length in bytes
1625  * @sid: security identifier, SID
1626  * @def_sid: default SID to assign on error
1627  * @gfp_flags: the allocator get-free-page (GFP) flags
1628  *
1629  * Obtains a SID associated with the security context that
1630  * has the string representation specified by @scontext.
1631  * The default SID is passed to the MLS layer to be used to allow
1632  * kernel labeling of the MLS field if the MLS field is not present
1633  * (for upgrading to MLS without full relabel).
1634  * Implicitly forces adding of the context even if it cannot be mapped yet.
1635  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1636  * memory is available, or 0 on success.
1637  */
1638 int security_context_to_sid_default(struct selinux_state *state,
1639                     const char *scontext, u32 scontext_len,
1640                     u32 *sid, u32 def_sid, gfp_t gfp_flags)
1641 {
1642     return security_context_to_sid_core(state, scontext, scontext_len,
1643                         sid, def_sid, gfp_flags, 1);
1644 }
1645 
1646 int security_context_to_sid_force(struct selinux_state *state,
1647                   const char *scontext, u32 scontext_len,
1648                   u32 *sid)
1649 {
1650     return security_context_to_sid_core(state, scontext, scontext_len,
1651                         sid, SECSID_NULL, GFP_KERNEL, 1);
1652 }
1653 
1654 static int compute_sid_handle_invalid_context(
1655     struct selinux_state *state,
1656     struct selinux_policy *policy,
1657     struct sidtab_entry *sentry,
1658     struct sidtab_entry *tentry,
1659     u16 tclass,
1660     struct context *newcontext)
1661 {
1662     struct policydb *policydb = &policy->policydb;
1663     struct sidtab *sidtab = policy->sidtab;
1664     char *s = NULL, *t = NULL, *n = NULL;
1665     u32 slen, tlen, nlen;
1666     struct audit_buffer *ab;
1667 
1668     if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1669         goto out;
1670     if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1671         goto out;
1672     if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1673         goto out;
1674     ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1675     if (!ab)
1676         goto out;
1677     audit_log_format(ab,
1678              "op=security_compute_sid invalid_context=");
1679     /* no need to record the NUL with untrusted strings */
1680     audit_log_n_untrustedstring(ab, n, nlen - 1);
1681     audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1682              s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1683     audit_log_end(ab);
1684 out:
1685     kfree(s);
1686     kfree(t);
1687     kfree(n);
1688     if (!enforcing_enabled(state))
1689         return 0;
1690     return -EACCES;
1691 }
1692 
1693 static void filename_compute_type(struct policydb *policydb,
1694                   struct context *newcontext,
1695                   u32 stype, u32 ttype, u16 tclass,
1696                   const char *objname)
1697 {
1698     struct filename_trans_key ft;
1699     struct filename_trans_datum *datum;
1700 
1701     /*
1702      * Most filename trans rules are going to live in specific directories
1703      * like /dev or /var/run.  This bitmap will quickly skip rule searches
1704      * if the ttype does not contain any rules.
1705      */
1706     if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1707         return;
1708 
1709     ft.ttype = ttype;
1710     ft.tclass = tclass;
1711     ft.name = objname;
1712 
1713     datum = policydb_filenametr_search(policydb, &ft);
1714     while (datum) {
1715         if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1716             newcontext->type = datum->otype;
1717             return;
1718         }
1719         datum = datum->next;
1720     }
1721 }
1722 
1723 static int security_compute_sid(struct selinux_state *state,
1724                 u32 ssid,
1725                 u32 tsid,
1726                 u16 orig_tclass,
1727                 u32 specified,
1728                 const char *objname,
1729                 u32 *out_sid,
1730                 bool kern)
1731 {
1732     struct selinux_policy *policy;
1733     struct policydb *policydb;
1734     struct sidtab *sidtab;
1735     struct class_datum *cladatum;
1736     struct context *scontext, *tcontext, newcontext;
1737     struct sidtab_entry *sentry, *tentry;
1738     struct avtab_key avkey;
1739     struct avtab_datum *avdatum;
1740     struct avtab_node *node;
1741     u16 tclass;
1742     int rc = 0;
1743     bool sock;
1744 
1745     if (!selinux_initialized(state)) {
1746         switch (orig_tclass) {
1747         case SECCLASS_PROCESS: /* kernel value */
1748             *out_sid = ssid;
1749             break;
1750         default:
1751             *out_sid = tsid;
1752             break;
1753         }
1754         goto out;
1755     }
1756 
1757 retry:
1758     cladatum = NULL;
1759     context_init(&newcontext);
1760 
1761     rcu_read_lock();
1762 
1763     policy = rcu_dereference(state->policy);
1764 
1765     if (kern) {
1766         tclass = unmap_class(&policy->map, orig_tclass);
1767         sock = security_is_socket_class(orig_tclass);
1768     } else {
1769         tclass = orig_tclass;
1770         sock = security_is_socket_class(map_class(&policy->map,
1771                               tclass));
1772     }
1773 
1774     policydb = &policy->policydb;
1775     sidtab = policy->sidtab;
1776 
1777     sentry = sidtab_search_entry(sidtab, ssid);
1778     if (!sentry) {
1779         pr_err("SELinux: %s:  unrecognized SID %d\n",
1780                __func__, ssid);
1781         rc = -EINVAL;
1782         goto out_unlock;
1783     }
1784     tentry = sidtab_search_entry(sidtab, tsid);
1785     if (!tentry) {
1786         pr_err("SELinux: %s:  unrecognized SID %d\n",
1787                __func__, tsid);
1788         rc = -EINVAL;
1789         goto out_unlock;
1790     }
1791 
1792     scontext = &sentry->context;
1793     tcontext = &tentry->context;
1794 
1795     if (tclass && tclass <= policydb->p_classes.nprim)
1796         cladatum = policydb->class_val_to_struct[tclass - 1];
1797 
1798     /* Set the user identity. */
1799     switch (specified) {
1800     case AVTAB_TRANSITION:
1801     case AVTAB_CHANGE:
1802         if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1803             newcontext.user = tcontext->user;
1804         } else {
1805             /* notice this gets both DEFAULT_SOURCE and unset */
1806             /* Use the process user identity. */
1807             newcontext.user = scontext->user;
1808         }
1809         break;
1810     case AVTAB_MEMBER:
1811         /* Use the related object owner. */
1812         newcontext.user = tcontext->user;
1813         break;
1814     }
1815 
1816     /* Set the role to default values. */
1817     if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1818         newcontext.role = scontext->role;
1819     } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1820         newcontext.role = tcontext->role;
1821     } else {
1822         if ((tclass == policydb->process_class) || sock)
1823             newcontext.role = scontext->role;
1824         else
1825             newcontext.role = OBJECT_R_VAL;
1826     }
1827 
1828     /* Set the type to default values. */
1829     if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1830         newcontext.type = scontext->type;
1831     } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1832         newcontext.type = tcontext->type;
1833     } else {
1834         if ((tclass == policydb->process_class) || sock) {
1835             /* Use the type of process. */
1836             newcontext.type = scontext->type;
1837         } else {
1838             /* Use the type of the related object. */
1839             newcontext.type = tcontext->type;
1840         }
1841     }
1842 
1843     /* Look for a type transition/member/change rule. */
1844     avkey.source_type = scontext->type;
1845     avkey.target_type = tcontext->type;
1846     avkey.target_class = tclass;
1847     avkey.specified = specified;
1848     avdatum = avtab_search(&policydb->te_avtab, &avkey);
1849 
1850     /* If no permanent rule, also check for enabled conditional rules */
1851     if (!avdatum) {
1852         node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1853         for (; node; node = avtab_search_node_next(node, specified)) {
1854             if (node->key.specified & AVTAB_ENABLED) {
1855                 avdatum = &node->datum;
1856                 break;
1857             }
1858         }
1859     }
1860 
1861     if (avdatum) {
1862         /* Use the type from the type transition/member/change rule. */
1863         newcontext.type = avdatum->u.data;
1864     }
1865 
1866     /* if we have a objname this is a file trans check so check those rules */
1867     if (objname)
1868         filename_compute_type(policydb, &newcontext, scontext->type,
1869                       tcontext->type, tclass, objname);
1870 
1871     /* Check for class-specific changes. */
1872     if (specified & AVTAB_TRANSITION) {
1873         /* Look for a role transition rule. */
1874         struct role_trans_datum *rtd;
1875         struct role_trans_key rtk = {
1876             .role = scontext->role,
1877             .type = tcontext->type,
1878             .tclass = tclass,
1879         };
1880 
1881         rtd = policydb_roletr_search(policydb, &rtk);
1882         if (rtd)
1883             newcontext.role = rtd->new_role;
1884     }
1885 
1886     /* Set the MLS attributes.
1887        This is done last because it may allocate memory. */
1888     rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1889                  &newcontext, sock);
1890     if (rc)
1891         goto out_unlock;
1892 
1893     /* Check the validity of the context. */
1894     if (!policydb_context_isvalid(policydb, &newcontext)) {
1895         rc = compute_sid_handle_invalid_context(state, policy, sentry,
1896                             tentry, tclass,
1897                             &newcontext);
1898         if (rc)
1899             goto out_unlock;
1900     }
1901     /* Obtain the sid for the context. */
1902     rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1903     if (rc == -ESTALE) {
1904         rcu_read_unlock();
1905         context_destroy(&newcontext);
1906         goto retry;
1907     }
1908 out_unlock:
1909     rcu_read_unlock();
1910     context_destroy(&newcontext);
1911 out:
1912     return rc;
1913 }
1914 
1915 /**
1916  * security_transition_sid - Compute the SID for a new subject/object.
1917  * @state: SELinux state
1918  * @ssid: source security identifier
1919  * @tsid: target security identifier
1920  * @tclass: target security class
1921  * @qstr: object name
1922  * @out_sid: security identifier for new subject/object
1923  *
1924  * Compute a SID to use for labeling a new subject or object in the
1925  * class @tclass based on a SID pair (@ssid, @tsid).
1926  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1927  * if insufficient memory is available, or %0 if the new SID was
1928  * computed successfully.
1929  */
1930 int security_transition_sid(struct selinux_state *state,
1931                 u32 ssid, u32 tsid, u16 tclass,
1932                 const struct qstr *qstr, u32 *out_sid)
1933 {
1934     return security_compute_sid(state, ssid, tsid, tclass,
1935                     AVTAB_TRANSITION,
1936                     qstr ? qstr->name : NULL, out_sid, true);
1937 }
1938 
1939 int security_transition_sid_user(struct selinux_state *state,
1940                  u32 ssid, u32 tsid, u16 tclass,
1941                  const char *objname, u32 *out_sid)
1942 {
1943     return security_compute_sid(state, ssid, tsid, tclass,
1944                     AVTAB_TRANSITION,
1945                     objname, out_sid, false);
1946 }
1947 
1948 /**
1949  * security_member_sid - Compute the SID for member selection.
1950  * @state: SELinux state
1951  * @ssid: source security identifier
1952  * @tsid: target security identifier
1953  * @tclass: target security class
1954  * @out_sid: security identifier for selected member
1955  *
1956  * Compute a SID to use when selecting a member of a polyinstantiated
1957  * object of class @tclass based on a SID pair (@ssid, @tsid).
1958  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1959  * if insufficient memory is available, or %0 if the SID was
1960  * computed successfully.
1961  */
1962 int security_member_sid(struct selinux_state *state,
1963             u32 ssid,
1964             u32 tsid,
1965             u16 tclass,
1966             u32 *out_sid)
1967 {
1968     return security_compute_sid(state, ssid, tsid, tclass,
1969                     AVTAB_MEMBER, NULL,
1970                     out_sid, false);
1971 }
1972 
1973 /**
1974  * security_change_sid - Compute the SID for object relabeling.
1975  * @state: SELinux state
1976  * @ssid: source security identifier
1977  * @tsid: target security identifier
1978  * @tclass: target security class
1979  * @out_sid: security identifier for selected member
1980  *
1981  * Compute a SID to use for relabeling an object of class @tclass
1982  * based on a SID pair (@ssid, @tsid).
1983  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1984  * if insufficient memory is available, or %0 if the SID was
1985  * computed successfully.
1986  */
1987 int security_change_sid(struct selinux_state *state,
1988             u32 ssid,
1989             u32 tsid,
1990             u16 tclass,
1991             u32 *out_sid)
1992 {
1993     return security_compute_sid(state,
1994                     ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1995                     out_sid, false);
1996 }
1997 
1998 static inline int convert_context_handle_invalid_context(
1999     struct selinux_state *state,
2000     struct policydb *policydb,
2001     struct context *context)
2002 {
2003     char *s;
2004     u32 len;
2005 
2006     if (enforcing_enabled(state))
2007         return -EINVAL;
2008 
2009     if (!context_struct_to_string(policydb, context, &s, &len)) {
2010         pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2011             s);
2012         kfree(s);
2013     }
2014     return 0;
2015 }
2016 
2017 /*
2018  * Convert the values in the security context
2019  * structure `oldc' from the values specified
2020  * in the policy `p->oldp' to the values specified
2021  * in the policy `p->newp', storing the new context
2022  * in `newc'.  Verify that the context is valid
2023  * under the new policy.
2024  */
2025 static int convert_context(struct context *oldc, struct context *newc, void *p)
2026 {
2027     struct convert_context_args *args;
2028     struct ocontext *oc;
2029     struct role_datum *role;
2030     struct type_datum *typdatum;
2031     struct user_datum *usrdatum;
2032     char *s;
2033     u32 len;
2034     int rc;
2035 
2036     args = p;
2037 
2038     if (oldc->str) {
2039         s = kstrdup(oldc->str, GFP_KERNEL);
2040         if (!s)
2041             return -ENOMEM;
2042 
2043         rc = string_to_context_struct(args->newp, NULL, s,
2044                           newc, SECSID_NULL);
2045         if (rc == -EINVAL) {
2046             /*
2047              * Retain string representation for later mapping.
2048              *
2049              * IMPORTANT: We need to copy the contents of oldc->str
2050              * back into s again because string_to_context_struct()
2051              * may have garbled it.
2052              */
2053             memcpy(s, oldc->str, oldc->len);
2054             context_init(newc);
2055             newc->str = s;
2056             newc->len = oldc->len;
2057             return 0;
2058         }
2059         kfree(s);
2060         if (rc) {
2061             /* Other error condition, e.g. ENOMEM. */
2062             pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2063                    oldc->str, -rc);
2064             return rc;
2065         }
2066         pr_info("SELinux:  Context %s became valid (mapped).\n",
2067             oldc->str);
2068         return 0;
2069     }
2070 
2071     context_init(newc);
2072 
2073     /* Convert the user. */
2074     usrdatum = symtab_search(&args->newp->p_users,
2075                  sym_name(args->oldp,
2076                       SYM_USERS, oldc->user - 1));
2077     if (!usrdatum)
2078         goto bad;
2079     newc->user = usrdatum->value;
2080 
2081     /* Convert the role. */
2082     role = symtab_search(&args->newp->p_roles,
2083                  sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2084     if (!role)
2085         goto bad;
2086     newc->role = role->value;
2087 
2088     /* Convert the type. */
2089     typdatum = symtab_search(&args->newp->p_types,
2090                  sym_name(args->oldp,
2091                       SYM_TYPES, oldc->type - 1));
2092     if (!typdatum)
2093         goto bad;
2094     newc->type = typdatum->value;
2095 
2096     /* Convert the MLS fields if dealing with MLS policies */
2097     if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2098         rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2099         if (rc)
2100             goto bad;
2101     } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2102         /*
2103          * Switching between non-MLS and MLS policy:
2104          * ensure that the MLS fields of the context for all
2105          * existing entries in the sidtab are filled in with a
2106          * suitable default value, likely taken from one of the
2107          * initial SIDs.
2108          */
2109         oc = args->newp->ocontexts[OCON_ISID];
2110         while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2111             oc = oc->next;
2112         if (!oc) {
2113             pr_err("SELinux:  unable to look up"
2114                 " the initial SIDs list\n");
2115             goto bad;
2116         }
2117         rc = mls_range_set(newc, &oc->context[0].range);
2118         if (rc)
2119             goto bad;
2120     }
2121 
2122     /* Check the validity of the new context. */
2123     if (!policydb_context_isvalid(args->newp, newc)) {
2124         rc = convert_context_handle_invalid_context(args->state,
2125                             args->oldp,
2126                             oldc);
2127         if (rc)
2128             goto bad;
2129     }
2130 
2131     return 0;
2132 bad:
2133     /* Map old representation to string and save it. */
2134     rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2135     if (rc)
2136         return rc;
2137     context_destroy(newc);
2138     newc->str = s;
2139     newc->len = len;
2140     pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2141         newc->str);
2142     return 0;
2143 }
2144 
2145 static void security_load_policycaps(struct selinux_state *state,
2146                 struct selinux_policy *policy)
2147 {
2148     struct policydb *p;
2149     unsigned int i;
2150     struct ebitmap_node *node;
2151 
2152     p = &policy->policydb;
2153 
2154     for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2155         WRITE_ONCE(state->policycap[i],
2156             ebitmap_get_bit(&p->policycaps, i));
2157 
2158     for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2159         pr_info("SELinux:  policy capability %s=%d\n",
2160             selinux_policycap_names[i],
2161             ebitmap_get_bit(&p->policycaps, i));
2162 
2163     ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2164         if (i >= ARRAY_SIZE(selinux_policycap_names))
2165             pr_info("SELinux:  unknown policy capability %u\n",
2166                 i);
2167     }
2168 }
2169 
2170 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2171                 struct selinux_policy *newpolicy);
2172 
2173 static void selinux_policy_free(struct selinux_policy *policy)
2174 {
2175     if (!policy)
2176         return;
2177 
2178     sidtab_destroy(policy->sidtab);
2179     kfree(policy->map.mapping);
2180     policydb_destroy(&policy->policydb);
2181     kfree(policy->sidtab);
2182     kfree(policy);
2183 }
2184 
2185 static void selinux_policy_cond_free(struct selinux_policy *policy)
2186 {
2187     cond_policydb_destroy_dup(&policy->policydb);
2188     kfree(policy);
2189 }
2190 
2191 void selinux_policy_cancel(struct selinux_state *state,
2192                struct selinux_load_state *load_state)
2193 {
2194     struct selinux_policy *oldpolicy;
2195 
2196     oldpolicy = rcu_dereference_protected(state->policy,
2197                     lockdep_is_held(&state->policy_mutex));
2198 
2199     sidtab_cancel_convert(oldpolicy->sidtab);
2200     selinux_policy_free(load_state->policy);
2201     kfree(load_state->convert_data);
2202 }
2203 
2204 static void selinux_notify_policy_change(struct selinux_state *state,
2205                     u32 seqno)
2206 {
2207     /* Flush external caches and notify userspace of policy load */
2208     avc_ss_reset(state->avc, seqno);
2209     selnl_notify_policyload(seqno);
2210     selinux_status_update_policyload(state, seqno);
2211     selinux_netlbl_cache_invalidate();
2212     selinux_xfrm_notify_policyload();
2213     selinux_ima_measure_state_locked(state);
2214 }
2215 
2216 void selinux_policy_commit(struct selinux_state *state,
2217                struct selinux_load_state *load_state)
2218 {
2219     struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2220     unsigned long flags;
2221     u32 seqno;
2222 
2223     oldpolicy = rcu_dereference_protected(state->policy,
2224                     lockdep_is_held(&state->policy_mutex));
2225 
2226     /* If switching between different policy types, log MLS status */
2227     if (oldpolicy) {
2228         if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2229             pr_info("SELinux: Disabling MLS support...\n");
2230         else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2231             pr_info("SELinux: Enabling MLS support...\n");
2232     }
2233 
2234     /* Set latest granting seqno for new policy. */
2235     if (oldpolicy)
2236         newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2237     else
2238         newpolicy->latest_granting = 1;
2239     seqno = newpolicy->latest_granting;
2240 
2241     /* Install the new policy. */
2242     if (oldpolicy) {
2243         sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2244         rcu_assign_pointer(state->policy, newpolicy);
2245         sidtab_freeze_end(oldpolicy->sidtab, &flags);
2246     } else {
2247         rcu_assign_pointer(state->policy, newpolicy);
2248     }
2249 
2250     /* Load the policycaps from the new policy */
2251     security_load_policycaps(state, newpolicy);
2252 
2253     if (!selinux_initialized(state)) {
2254         /*
2255          * After first policy load, the security server is
2256          * marked as initialized and ready to handle requests and
2257          * any objects created prior to policy load are then labeled.
2258          */
2259         selinux_mark_initialized(state);
2260         selinux_complete_init();
2261     }
2262 
2263     /* Free the old policy */
2264     synchronize_rcu();
2265     selinux_policy_free(oldpolicy);
2266     kfree(load_state->convert_data);
2267 
2268     /* Notify others of the policy change */
2269     selinux_notify_policy_change(state, seqno);
2270 }
2271 
2272 /**
2273  * security_load_policy - Load a security policy configuration.
2274  * @state: SELinux state
2275  * @data: binary policy data
2276  * @len: length of data in bytes
2277  * @load_state: policy load state
2278  *
2279  * Load a new set of security policy configuration data,
2280  * validate it and convert the SID table as necessary.
2281  * This function will flush the access vector cache after
2282  * loading the new policy.
2283  */
2284 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2285              struct selinux_load_state *load_state)
2286 {
2287     struct selinux_policy *newpolicy, *oldpolicy;
2288     struct selinux_policy_convert_data *convert_data;
2289     int rc = 0;
2290     struct policy_file file = { data, len }, *fp = &file;
2291 
2292     newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2293     if (!newpolicy)
2294         return -ENOMEM;
2295 
2296     newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2297     if (!newpolicy->sidtab) {
2298         rc = -ENOMEM;
2299         goto err_policy;
2300     }
2301 
2302     rc = policydb_read(&newpolicy->policydb, fp);
2303     if (rc)
2304         goto err_sidtab;
2305 
2306     newpolicy->policydb.len = len;
2307     rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2308                 &newpolicy->map);
2309     if (rc)
2310         goto err_policydb;
2311 
2312     rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2313     if (rc) {
2314         pr_err("SELinux:  unable to load the initial SIDs\n");
2315         goto err_mapping;
2316     }
2317 
2318     if (!selinux_initialized(state)) {
2319         /* First policy load, so no need to preserve state from old policy */
2320         load_state->policy = newpolicy;
2321         load_state->convert_data = NULL;
2322         return 0;
2323     }
2324 
2325     oldpolicy = rcu_dereference_protected(state->policy,
2326                     lockdep_is_held(&state->policy_mutex));
2327 
2328     /* Preserve active boolean values from the old policy */
2329     rc = security_preserve_bools(oldpolicy, newpolicy);
2330     if (rc) {
2331         pr_err("SELinux:  unable to preserve booleans\n");
2332         goto err_free_isids;
2333     }
2334 
2335     convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2336     if (!convert_data) {
2337         rc = -ENOMEM;
2338         goto err_free_isids;
2339     }
2340 
2341     /*
2342      * Convert the internal representations of contexts
2343      * in the new SID table.
2344      */
2345     convert_data->args.state = state;
2346     convert_data->args.oldp = &oldpolicy->policydb;
2347     convert_data->args.newp = &newpolicy->policydb;
2348 
2349     convert_data->sidtab_params.func = convert_context;
2350     convert_data->sidtab_params.args = &convert_data->args;
2351     convert_data->sidtab_params.target = newpolicy->sidtab;
2352 
2353     rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2354     if (rc) {
2355         pr_err("SELinux:  unable to convert the internal"
2356             " representation of contexts in the new SID"
2357             " table\n");
2358         goto err_free_convert_data;
2359     }
2360 
2361     load_state->policy = newpolicy;
2362     load_state->convert_data = convert_data;
2363     return 0;
2364 
2365 err_free_convert_data:
2366     kfree(convert_data);
2367 err_free_isids:
2368     sidtab_destroy(newpolicy->sidtab);
2369 err_mapping:
2370     kfree(newpolicy->map.mapping);
2371 err_policydb:
2372     policydb_destroy(&newpolicy->policydb);
2373 err_sidtab:
2374     kfree(newpolicy->sidtab);
2375 err_policy:
2376     kfree(newpolicy);
2377 
2378     return rc;
2379 }
2380 
2381 /**
2382  * ocontext_to_sid - Helper to safely get sid for an ocontext
2383  * @sidtab: SID table
2384  * @c: ocontext structure
2385  * @index: index of the context entry (0 or 1)
2386  * @out_sid: pointer to the resulting SID value
2387  *
2388  * For all ocontexts except OCON_ISID the SID fields are populated
2389  * on-demand when needed. Since updating the SID value is an SMP-sensitive
2390  * operation, this helper must be used to do that safely.
2391  *
2392  * WARNING: This function may return -ESTALE, indicating that the caller
2393  * must retry the operation after re-acquiring the policy pointer!
2394  */
2395 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2396                size_t index, u32 *out_sid)
2397 {
2398     int rc;
2399     u32 sid;
2400 
2401     /* Ensure the associated sidtab entry is visible to this thread. */
2402     sid = smp_load_acquire(&c->sid[index]);
2403     if (!sid) {
2404         rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2405         if (rc)
2406             return rc;
2407 
2408         /*
2409          * Ensure the new sidtab entry is visible to other threads
2410          * when they see the SID.
2411          */
2412         smp_store_release(&c->sid[index], sid);
2413     }
2414     *out_sid = sid;
2415     return 0;
2416 }
2417 
2418 /**
2419  * security_port_sid - Obtain the SID for a port.
2420  * @state: SELinux state
2421  * @protocol: protocol number
2422  * @port: port number
2423  * @out_sid: security identifier
2424  */
2425 int security_port_sid(struct selinux_state *state,
2426               u8 protocol, u16 port, u32 *out_sid)
2427 {
2428     struct selinux_policy *policy;
2429     struct policydb *policydb;
2430     struct sidtab *sidtab;
2431     struct ocontext *c;
2432     int rc;
2433 
2434     if (!selinux_initialized(state)) {
2435         *out_sid = SECINITSID_PORT;
2436         return 0;
2437     }
2438 
2439 retry:
2440     rc = 0;
2441     rcu_read_lock();
2442     policy = rcu_dereference(state->policy);
2443     policydb = &policy->policydb;
2444     sidtab = policy->sidtab;
2445 
2446     c = policydb->ocontexts[OCON_PORT];
2447     while (c) {
2448         if (c->u.port.protocol == protocol &&
2449             c->u.port.low_port <= port &&
2450             c->u.port.high_port >= port)
2451             break;
2452         c = c->next;
2453     }
2454 
2455     if (c) {
2456         rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2457         if (rc == -ESTALE) {
2458             rcu_read_unlock();
2459             goto retry;
2460         }
2461         if (rc)
2462             goto out;
2463     } else {
2464         *out_sid = SECINITSID_PORT;
2465     }
2466 
2467 out:
2468     rcu_read_unlock();
2469     return rc;
2470 }
2471 
2472 /**
2473  * security_ib_pkey_sid - Obtain the SID for a pkey.
2474  * @state: SELinux state
2475  * @subnet_prefix: Subnet Prefix
2476  * @pkey_num: pkey number
2477  * @out_sid: security identifier
2478  */
2479 int security_ib_pkey_sid(struct selinux_state *state,
2480              u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2481 {
2482     struct selinux_policy *policy;
2483     struct policydb *policydb;
2484     struct sidtab *sidtab;
2485     struct ocontext *c;
2486     int rc;
2487 
2488     if (!selinux_initialized(state)) {
2489         *out_sid = SECINITSID_UNLABELED;
2490         return 0;
2491     }
2492 
2493 retry:
2494     rc = 0;
2495     rcu_read_lock();
2496     policy = rcu_dereference(state->policy);
2497     policydb = &policy->policydb;
2498     sidtab = policy->sidtab;
2499 
2500     c = policydb->ocontexts[OCON_IBPKEY];
2501     while (c) {
2502         if (c->u.ibpkey.low_pkey <= pkey_num &&
2503             c->u.ibpkey.high_pkey >= pkey_num &&
2504             c->u.ibpkey.subnet_prefix == subnet_prefix)
2505             break;
2506 
2507         c = c->next;
2508     }
2509 
2510     if (c) {
2511         rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2512         if (rc == -ESTALE) {
2513             rcu_read_unlock();
2514             goto retry;
2515         }
2516         if (rc)
2517             goto out;
2518     } else
2519         *out_sid = SECINITSID_UNLABELED;
2520 
2521 out:
2522     rcu_read_unlock();
2523     return rc;
2524 }
2525 
2526 /**
2527  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2528  * @state: SELinux state
2529  * @dev_name: device name
2530  * @port_num: port number
2531  * @out_sid: security identifier
2532  */
2533 int security_ib_endport_sid(struct selinux_state *state,
2534                 const char *dev_name, u8 port_num, u32 *out_sid)
2535 {
2536     struct selinux_policy *policy;
2537     struct policydb *policydb;
2538     struct sidtab *sidtab;
2539     struct ocontext *c;
2540     int rc;
2541 
2542     if (!selinux_initialized(state)) {
2543         *out_sid = SECINITSID_UNLABELED;
2544         return 0;
2545     }
2546 
2547 retry:
2548     rc = 0;
2549     rcu_read_lock();
2550     policy = rcu_dereference(state->policy);
2551     policydb = &policy->policydb;
2552     sidtab = policy->sidtab;
2553 
2554     c = policydb->ocontexts[OCON_IBENDPORT];
2555     while (c) {
2556         if (c->u.ibendport.port == port_num &&
2557             !strncmp(c->u.ibendport.dev_name,
2558                  dev_name,
2559                  IB_DEVICE_NAME_MAX))
2560             break;
2561 
2562         c = c->next;
2563     }
2564 
2565     if (c) {
2566         rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2567         if (rc == -ESTALE) {
2568             rcu_read_unlock();
2569             goto retry;
2570         }
2571         if (rc)
2572             goto out;
2573     } else
2574         *out_sid = SECINITSID_UNLABELED;
2575 
2576 out:
2577     rcu_read_unlock();
2578     return rc;
2579 }
2580 
2581 /**
2582  * security_netif_sid - Obtain the SID for a network interface.
2583  * @state: SELinux state
2584  * @name: interface name
2585  * @if_sid: interface SID
2586  */
2587 int security_netif_sid(struct selinux_state *state,
2588                char *name, u32 *if_sid)
2589 {
2590     struct selinux_policy *policy;
2591     struct policydb *policydb;
2592     struct sidtab *sidtab;
2593     int rc;
2594     struct ocontext *c;
2595 
2596     if (!selinux_initialized(state)) {
2597         *if_sid = SECINITSID_NETIF;
2598         return 0;
2599     }
2600 
2601 retry:
2602     rc = 0;
2603     rcu_read_lock();
2604     policy = rcu_dereference(state->policy);
2605     policydb = &policy->policydb;
2606     sidtab = policy->sidtab;
2607 
2608     c = policydb->ocontexts[OCON_NETIF];
2609     while (c) {
2610         if (strcmp(name, c->u.name) == 0)
2611             break;
2612         c = c->next;
2613     }
2614 
2615     if (c) {
2616         rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2617         if (rc == -ESTALE) {
2618             rcu_read_unlock();
2619             goto retry;
2620         }
2621         if (rc)
2622             goto out;
2623     } else
2624         *if_sid = SECINITSID_NETIF;
2625 
2626 out:
2627     rcu_read_unlock();
2628     return rc;
2629 }
2630 
2631 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2632 {
2633     int i, fail = 0;
2634 
2635     for (i = 0; i < 4; i++)
2636         if (addr[i] != (input[i] & mask[i])) {
2637             fail = 1;
2638             break;
2639         }
2640 
2641     return !fail;
2642 }
2643 
2644 /**
2645  * security_node_sid - Obtain the SID for a node (host).
2646  * @state: SELinux state
2647  * @domain: communication domain aka address family
2648  * @addrp: address
2649  * @addrlen: address length in bytes
2650  * @out_sid: security identifier
2651  */
2652 int security_node_sid(struct selinux_state *state,
2653               u16 domain,
2654               void *addrp,
2655               u32 addrlen,
2656               u32 *out_sid)
2657 {
2658     struct selinux_policy *policy;
2659     struct policydb *policydb;
2660     struct sidtab *sidtab;
2661     int rc;
2662     struct ocontext *c;
2663 
2664     if (!selinux_initialized(state)) {
2665         *out_sid = SECINITSID_NODE;
2666         return 0;
2667     }
2668 
2669 retry:
2670     rcu_read_lock();
2671     policy = rcu_dereference(state->policy);
2672     policydb = &policy->policydb;
2673     sidtab = policy->sidtab;
2674 
2675     switch (domain) {
2676     case AF_INET: {
2677         u32 addr;
2678 
2679         rc = -EINVAL;
2680         if (addrlen != sizeof(u32))
2681             goto out;
2682 
2683         addr = *((u32 *)addrp);
2684 
2685         c = policydb->ocontexts[OCON_NODE];
2686         while (c) {
2687             if (c->u.node.addr == (addr & c->u.node.mask))
2688                 break;
2689             c = c->next;
2690         }
2691         break;
2692     }
2693 
2694     case AF_INET6:
2695         rc = -EINVAL;
2696         if (addrlen != sizeof(u64) * 2)
2697             goto out;
2698         c = policydb->ocontexts[OCON_NODE6];
2699         while (c) {
2700             if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2701                         c->u.node6.mask))
2702                 break;
2703             c = c->next;
2704         }
2705         break;
2706 
2707     default:
2708         rc = 0;
2709         *out_sid = SECINITSID_NODE;
2710         goto out;
2711     }
2712 
2713     if (c) {
2714         rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2715         if (rc == -ESTALE) {
2716             rcu_read_unlock();
2717             goto retry;
2718         }
2719         if (rc)
2720             goto out;
2721     } else {
2722         *out_sid = SECINITSID_NODE;
2723     }
2724 
2725     rc = 0;
2726 out:
2727     rcu_read_unlock();
2728     return rc;
2729 }
2730 
2731 #define SIDS_NEL 25
2732 
2733 /**
2734  * security_get_user_sids - Obtain reachable SIDs for a user.
2735  * @state: SELinux state
2736  * @fromsid: starting SID
2737  * @username: username
2738  * @sids: array of reachable SIDs for user
2739  * @nel: number of elements in @sids
2740  *
2741  * Generate the set of SIDs for legal security contexts
2742  * for a given user that can be reached by @fromsid.
2743  * Set *@sids to point to a dynamically allocated
2744  * array containing the set of SIDs.  Set *@nel to the
2745  * number of elements in the array.
2746  */
2747 
2748 int security_get_user_sids(struct selinux_state *state,
2749                u32 fromsid,
2750                char *username,
2751                u32 **sids,
2752                u32 *nel)
2753 {
2754     struct selinux_policy *policy;
2755     struct policydb *policydb;
2756     struct sidtab *sidtab;
2757     struct context *fromcon, usercon;
2758     u32 *mysids = NULL, *mysids2, sid;
2759     u32 i, j, mynel, maxnel = SIDS_NEL;
2760     struct user_datum *user;
2761     struct role_datum *role;
2762     struct ebitmap_node *rnode, *tnode;
2763     int rc;
2764 
2765     *sids = NULL;
2766     *nel = 0;
2767 
2768     if (!selinux_initialized(state))
2769         return 0;
2770 
2771     mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2772     if (!mysids)
2773         return -ENOMEM;
2774 
2775 retry:
2776     mynel = 0;
2777     rcu_read_lock();
2778     policy = rcu_dereference(state->policy);
2779     policydb = &policy->policydb;
2780     sidtab = policy->sidtab;
2781 
2782     context_init(&usercon);
2783 
2784     rc = -EINVAL;
2785     fromcon = sidtab_search(sidtab, fromsid);
2786     if (!fromcon)
2787         goto out_unlock;
2788 
2789     rc = -EINVAL;
2790     user = symtab_search(&policydb->p_users, username);
2791     if (!user)
2792         goto out_unlock;
2793 
2794     usercon.user = user->value;
2795 
2796     ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2797         role = policydb->role_val_to_struct[i];
2798         usercon.role = i + 1;
2799         ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2800             usercon.type = j + 1;
2801 
2802             if (mls_setup_user_range(policydb, fromcon, user,
2803                          &usercon))
2804                 continue;
2805 
2806             rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2807             if (rc == -ESTALE) {
2808                 rcu_read_unlock();
2809                 goto retry;
2810             }
2811             if (rc)
2812                 goto out_unlock;
2813             if (mynel < maxnel) {
2814                 mysids[mynel++] = sid;
2815             } else {
2816                 rc = -ENOMEM;
2817                 maxnel += SIDS_NEL;
2818                 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2819                 if (!mysids2)
2820                     goto out_unlock;
2821                 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2822                 kfree(mysids);
2823                 mysids = mysids2;
2824                 mysids[mynel++] = sid;
2825             }
2826         }
2827     }
2828     rc = 0;
2829 out_unlock:
2830     rcu_read_unlock();
2831     if (rc || !mynel) {
2832         kfree(mysids);
2833         return rc;
2834     }
2835 
2836     rc = -ENOMEM;
2837     mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2838     if (!mysids2) {
2839         kfree(mysids);
2840         return rc;
2841     }
2842     for (i = 0, j = 0; i < mynel; i++) {
2843         struct av_decision dummy_avd;
2844         rc = avc_has_perm_noaudit(state,
2845                       fromsid, mysids[i],
2846                       SECCLASS_PROCESS, /* kernel value */
2847                       PROCESS__TRANSITION, AVC_STRICT,
2848                       &dummy_avd);
2849         if (!rc)
2850             mysids2[j++] = mysids[i];
2851         cond_resched();
2852     }
2853     kfree(mysids);
2854     *sids = mysids2;
2855     *nel = j;
2856     return 0;
2857 }
2858 
2859 /**
2860  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2861  * @policy: policy
2862  * @fstype: filesystem type
2863  * @path: path from root of mount
2864  * @orig_sclass: file security class
2865  * @sid: SID for path
2866  *
2867  * Obtain a SID to use for a file in a filesystem that
2868  * cannot support xattr or use a fixed labeling behavior like
2869  * transition SIDs or task SIDs.
2870  *
2871  * WARNING: This function may return -ESTALE, indicating that the caller
2872  * must retry the operation after re-acquiring the policy pointer!
2873  */
2874 static inline int __security_genfs_sid(struct selinux_policy *policy,
2875                        const char *fstype,
2876                        const char *path,
2877                        u16 orig_sclass,
2878                        u32 *sid)
2879 {
2880     struct policydb *policydb = &policy->policydb;
2881     struct sidtab *sidtab = policy->sidtab;
2882     int len;
2883     u16 sclass;
2884     struct genfs *genfs;
2885     struct ocontext *c;
2886     int cmp = 0;
2887 
2888     while (path[0] == '/' && path[1] == '/')
2889         path++;
2890 
2891     sclass = unmap_class(&policy->map, orig_sclass);
2892     *sid = SECINITSID_UNLABELED;
2893 
2894     for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2895         cmp = strcmp(fstype, genfs->fstype);
2896         if (cmp <= 0)
2897             break;
2898     }
2899 
2900     if (!genfs || cmp)
2901         return -ENOENT;
2902 
2903     for (c = genfs->head; c; c = c->next) {
2904         len = strlen(c->u.name);
2905         if ((!c->v.sclass || sclass == c->v.sclass) &&
2906             (strncmp(c->u.name, path, len) == 0))
2907             break;
2908     }
2909 
2910     if (!c)
2911         return -ENOENT;
2912 
2913     return ocontext_to_sid(sidtab, c, 0, sid);
2914 }
2915 
2916 /**
2917  * security_genfs_sid - Obtain a SID for a file in a filesystem
2918  * @state: SELinux state
2919  * @fstype: filesystem type
2920  * @path: path from root of mount
2921  * @orig_sclass: file security class
2922  * @sid: SID for path
2923  *
2924  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2925  * it afterward.
2926  */
2927 int security_genfs_sid(struct selinux_state *state,
2928                const char *fstype,
2929                const char *path,
2930                u16 orig_sclass,
2931                u32 *sid)
2932 {
2933     struct selinux_policy *policy;
2934     int retval;
2935 
2936     if (!selinux_initialized(state)) {
2937         *sid = SECINITSID_UNLABELED;
2938         return 0;
2939     }
2940 
2941     do {
2942         rcu_read_lock();
2943         policy = rcu_dereference(state->policy);
2944         retval = __security_genfs_sid(policy, fstype, path,
2945                           orig_sclass, sid);
2946         rcu_read_unlock();
2947     } while (retval == -ESTALE);
2948     return retval;
2949 }
2950 
2951 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2952             const char *fstype,
2953             const char *path,
2954             u16 orig_sclass,
2955             u32 *sid)
2956 {
2957     /* no lock required, policy is not yet accessible by other threads */
2958     return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2959 }
2960 
2961 /**
2962  * security_fs_use - Determine how to handle labeling for a filesystem.
2963  * @state: SELinux state
2964  * @sb: superblock in question
2965  */
2966 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2967 {
2968     struct selinux_policy *policy;
2969     struct policydb *policydb;
2970     struct sidtab *sidtab;
2971     int rc;
2972     struct ocontext *c;
2973     struct superblock_security_struct *sbsec = selinux_superblock(sb);
2974     const char *fstype = sb->s_type->name;
2975 
2976     if (!selinux_initialized(state)) {
2977         sbsec->behavior = SECURITY_FS_USE_NONE;
2978         sbsec->sid = SECINITSID_UNLABELED;
2979         return 0;
2980     }
2981 
2982 retry:
2983     rcu_read_lock();
2984     policy = rcu_dereference(state->policy);
2985     policydb = &policy->policydb;
2986     sidtab = policy->sidtab;
2987 
2988     c = policydb->ocontexts[OCON_FSUSE];
2989     while (c) {
2990         if (strcmp(fstype, c->u.name) == 0)
2991             break;
2992         c = c->next;
2993     }
2994 
2995     if (c) {
2996         sbsec->behavior = c->v.behavior;
2997         rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2998         if (rc == -ESTALE) {
2999             rcu_read_unlock();
3000             goto retry;
3001         }
3002         if (rc)
3003             goto out;
3004     } else {
3005         rc = __security_genfs_sid(policy, fstype, "/",
3006                     SECCLASS_DIR, &sbsec->sid);
3007         if (rc == -ESTALE) {
3008             rcu_read_unlock();
3009             goto retry;
3010         }
3011         if (rc) {
3012             sbsec->behavior = SECURITY_FS_USE_NONE;
3013             rc = 0;
3014         } else {
3015             sbsec->behavior = SECURITY_FS_USE_GENFS;
3016         }
3017     }
3018 
3019 out:
3020     rcu_read_unlock();
3021     return rc;
3022 }
3023 
3024 int security_get_bools(struct selinux_policy *policy,
3025                u32 *len, char ***names, int **values)
3026 {
3027     struct policydb *policydb;
3028     u32 i;
3029     int rc;
3030 
3031     policydb = &policy->policydb;
3032 
3033     *names = NULL;
3034     *values = NULL;
3035 
3036     rc = 0;
3037     *len = policydb->p_bools.nprim;
3038     if (!*len)
3039         goto out;
3040 
3041     rc = -ENOMEM;
3042     *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3043     if (!*names)
3044         goto err;
3045 
3046     rc = -ENOMEM;
3047     *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3048     if (!*values)
3049         goto err;
3050 
3051     for (i = 0; i < *len; i++) {
3052         (*values)[i] = policydb->bool_val_to_struct[i]->state;
3053 
3054         rc = -ENOMEM;
3055         (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3056                       GFP_ATOMIC);
3057         if (!(*names)[i])
3058             goto err;
3059     }
3060     rc = 0;
3061 out:
3062     return rc;
3063 err:
3064     if (*names) {
3065         for (i = 0; i < *len; i++)
3066             kfree((*names)[i]);
3067         kfree(*names);
3068     }
3069     kfree(*values);
3070     *len = 0;
3071     *names = NULL;
3072     *values = NULL;
3073     goto out;
3074 }
3075 
3076 
3077 int security_set_bools(struct selinux_state *state, u32 len, int *values)
3078 {
3079     struct selinux_policy *newpolicy, *oldpolicy;
3080     int rc;
3081     u32 i, seqno = 0;
3082 
3083     if (!selinux_initialized(state))
3084         return -EINVAL;
3085 
3086     oldpolicy = rcu_dereference_protected(state->policy,
3087                     lockdep_is_held(&state->policy_mutex));
3088 
3089     /* Consistency check on number of booleans, should never fail */
3090     if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3091         return -EINVAL;
3092 
3093     newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3094     if (!newpolicy)
3095         return -ENOMEM;
3096 
3097     /*
3098      * Deep copy only the parts of the policydb that might be
3099      * modified as a result of changing booleans.
3100      */
3101     rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3102     if (rc) {
3103         kfree(newpolicy);
3104         return -ENOMEM;
3105     }
3106 
3107     /* Update the boolean states in the copy */
3108     for (i = 0; i < len; i++) {
3109         int new_state = !!values[i];
3110         int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3111 
3112         if (new_state != old_state) {
3113             audit_log(audit_context(), GFP_ATOMIC,
3114                 AUDIT_MAC_CONFIG_CHANGE,
3115                 "bool=%s val=%d old_val=%d auid=%u ses=%u",
3116                 sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3117                 new_state,
3118                 old_state,
3119                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
3120                 audit_get_sessionid(current));
3121             newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3122         }
3123     }
3124 
3125     /* Re-evaluate the conditional rules in the copy */
3126     evaluate_cond_nodes(&newpolicy->policydb);
3127 
3128     /* Set latest granting seqno for new policy */
3129     newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3130     seqno = newpolicy->latest_granting;
3131 
3132     /* Install the new policy */
3133     rcu_assign_pointer(state->policy, newpolicy);
3134 
3135     /*
3136      * Free the conditional portions of the old policydb
3137      * that were copied for the new policy, and the oldpolicy
3138      * structure itself but not what it references.
3139      */
3140     synchronize_rcu();
3141     selinux_policy_cond_free(oldpolicy);
3142 
3143     /* Notify others of the policy change */
3144     selinux_notify_policy_change(state, seqno);
3145     return 0;
3146 }
3147 
3148 int security_get_bool_value(struct selinux_state *state,
3149                 u32 index)
3150 {
3151     struct selinux_policy *policy;
3152     struct policydb *policydb;
3153     int rc;
3154     u32 len;
3155 
3156     if (!selinux_initialized(state))
3157         return 0;
3158 
3159     rcu_read_lock();
3160     policy = rcu_dereference(state->policy);
3161     policydb = &policy->policydb;
3162 
3163     rc = -EFAULT;
3164     len = policydb->p_bools.nprim;
3165     if (index >= len)
3166         goto out;
3167 
3168     rc = policydb->bool_val_to_struct[index]->state;
3169 out:
3170     rcu_read_unlock();
3171     return rc;
3172 }
3173 
3174 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3175                 struct selinux_policy *newpolicy)
3176 {
3177     int rc, *bvalues = NULL;
3178     char **bnames = NULL;
3179     struct cond_bool_datum *booldatum;
3180     u32 i, nbools = 0;
3181 
3182     rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3183     if (rc)
3184         goto out;
3185     for (i = 0; i < nbools; i++) {
3186         booldatum = symtab_search(&newpolicy->policydb.p_bools,
3187                     bnames[i]);
3188         if (booldatum)
3189             booldatum->state = bvalues[i];
3190     }
3191     evaluate_cond_nodes(&newpolicy->policydb);
3192 
3193 out:
3194     if (bnames) {
3195         for (i = 0; i < nbools; i++)
3196             kfree(bnames[i]);
3197     }
3198     kfree(bnames);
3199     kfree(bvalues);
3200     return rc;
3201 }
3202 
3203 /*
3204  * security_sid_mls_copy() - computes a new sid based on the given
3205  * sid and the mls portion of mls_sid.
3206  */
3207 int security_sid_mls_copy(struct selinux_state *state,
3208               u32 sid, u32 mls_sid, u32 *new_sid)
3209 {
3210     struct selinux_policy *policy;
3211     struct policydb *policydb;
3212     struct sidtab *sidtab;
3213     struct context *context1;
3214     struct context *context2;
3215     struct context newcon;
3216     char *s;
3217     u32 len;
3218     int rc;
3219 
3220     if (!selinux_initialized(state)) {
3221         *new_sid = sid;
3222         return 0;
3223     }
3224 
3225 retry:
3226     rc = 0;
3227     context_init(&newcon);
3228 
3229     rcu_read_lock();
3230     policy = rcu_dereference(state->policy);
3231     policydb = &policy->policydb;
3232     sidtab = policy->sidtab;
3233 
3234     if (!policydb->mls_enabled) {
3235         *new_sid = sid;
3236         goto out_unlock;
3237     }
3238 
3239     rc = -EINVAL;
3240     context1 = sidtab_search(sidtab, sid);
3241     if (!context1) {
3242         pr_err("SELinux: %s:  unrecognized SID %d\n",
3243             __func__, sid);
3244         goto out_unlock;
3245     }
3246 
3247     rc = -EINVAL;
3248     context2 = sidtab_search(sidtab, mls_sid);
3249     if (!context2) {
3250         pr_err("SELinux: %s:  unrecognized SID %d\n",
3251             __func__, mls_sid);
3252         goto out_unlock;
3253     }
3254 
3255     newcon.user = context1->user;
3256     newcon.role = context1->role;
3257     newcon.type = context1->type;
3258     rc = mls_context_cpy(&newcon, context2);
3259     if (rc)
3260         goto out_unlock;
3261 
3262     /* Check the validity of the new context. */
3263     if (!policydb_context_isvalid(policydb, &newcon)) {
3264         rc = convert_context_handle_invalid_context(state, policydb,
3265                             &newcon);
3266         if (rc) {
3267             if (!context_struct_to_string(policydb, &newcon, &s,
3268                               &len)) {
3269                 struct audit_buffer *ab;
3270 
3271                 ab = audit_log_start(audit_context(),
3272                              GFP_ATOMIC,
3273                              AUDIT_SELINUX_ERR);
3274                 audit_log_format(ab,
3275                          "op=security_sid_mls_copy invalid_context=");
3276                 /* don't record NUL with untrusted strings */
3277                 audit_log_n_untrustedstring(ab, s, len - 1);
3278                 audit_log_end(ab);
3279                 kfree(s);
3280             }
3281             goto out_unlock;
3282         }
3283     }
3284     rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3285     if (rc == -ESTALE) {
3286         rcu_read_unlock();
3287         context_destroy(&newcon);
3288         goto retry;
3289     }
3290 out_unlock:
3291     rcu_read_unlock();
3292     context_destroy(&newcon);
3293     return rc;
3294 }
3295 
3296 /**
3297  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3298  * @state: SELinux state
3299  * @nlbl_sid: NetLabel SID
3300  * @nlbl_type: NetLabel labeling protocol type
3301  * @xfrm_sid: XFRM SID
3302  * @peer_sid: network peer sid
3303  *
3304  * Description:
3305  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3306  * resolved into a single SID it is returned via @peer_sid and the function
3307  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3308  * returns a negative value.  A table summarizing the behavior is below:
3309  *
3310  *                                 | function return |      @sid
3311  *   ------------------------------+-----------------+-----------------
3312  *   no peer labels                |        0        |    SECSID_NULL
3313  *   single peer label             |        0        |    <peer_label>
3314  *   multiple, consistent labels   |        0        |    <peer_label>
3315  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3316  *
3317  */
3318 int security_net_peersid_resolve(struct selinux_state *state,
3319                  u32 nlbl_sid, u32 nlbl_type,
3320                  u32 xfrm_sid,
3321                  u32 *peer_sid)
3322 {
3323     struct selinux_policy *policy;
3324     struct policydb *policydb;
3325     struct sidtab *sidtab;
3326     int rc;
3327     struct context *nlbl_ctx;
3328     struct context *xfrm_ctx;
3329 
3330     *peer_sid = SECSID_NULL;
3331 
3332     /* handle the common (which also happens to be the set of easy) cases
3333      * right away, these two if statements catch everything involving a
3334      * single or absent peer SID/label */
3335     if (xfrm_sid == SECSID_NULL) {
3336         *peer_sid = nlbl_sid;
3337         return 0;
3338     }
3339     /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3340      * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3341      * is present */
3342     if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3343         *peer_sid = xfrm_sid;
3344         return 0;
3345     }
3346 
3347     if (!selinux_initialized(state))
3348         return 0;
3349 
3350     rcu_read_lock();
3351     policy = rcu_dereference(state->policy);
3352     policydb = &policy->policydb;
3353     sidtab = policy->sidtab;
3354 
3355     /*
3356      * We don't need to check initialized here since the only way both
3357      * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3358      * security server was initialized and state->initialized was true.
3359      */
3360     if (!policydb->mls_enabled) {
3361         rc = 0;
3362         goto out;
3363     }
3364 
3365     rc = -EINVAL;
3366     nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3367     if (!nlbl_ctx) {
3368         pr_err("SELinux: %s:  unrecognized SID %d\n",
3369                __func__, nlbl_sid);
3370         goto out;
3371     }
3372     rc = -EINVAL;
3373     xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3374     if (!xfrm_ctx) {
3375         pr_err("SELinux: %s:  unrecognized SID %d\n",
3376                __func__, xfrm_sid);
3377         goto out;
3378     }
3379     rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3380     if (rc)
3381         goto out;
3382 
3383     /* at present NetLabel SIDs/labels really only carry MLS
3384      * information so if the MLS portion of the NetLabel SID
3385      * matches the MLS portion of the labeled XFRM SID/label
3386      * then pass along the XFRM SID as it is the most
3387      * expressive */
3388     *peer_sid = xfrm_sid;
3389 out:
3390     rcu_read_unlock();
3391     return rc;
3392 }
3393 
3394 static int get_classes_callback(void *k, void *d, void *args)
3395 {
3396     struct class_datum *datum = d;
3397     char *name = k, **classes = args;
3398     int value = datum->value - 1;
3399 
3400     classes[value] = kstrdup(name, GFP_ATOMIC);
3401     if (!classes[value])
3402         return -ENOMEM;
3403 
3404     return 0;
3405 }
3406 
3407 int security_get_classes(struct selinux_policy *policy,
3408              char ***classes, int *nclasses)
3409 {
3410     struct policydb *policydb;
3411     int rc;
3412 
3413     policydb = &policy->policydb;
3414 
3415     rc = -ENOMEM;
3416     *nclasses = policydb->p_classes.nprim;
3417     *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3418     if (!*classes)
3419         goto out;
3420 
3421     rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3422              *classes);
3423     if (rc) {
3424         int i;
3425         for (i = 0; i < *nclasses; i++)
3426             kfree((*classes)[i]);
3427         kfree(*classes);
3428     }
3429 
3430 out:
3431     return rc;
3432 }
3433 
3434 static int get_permissions_callback(void *k, void *d, void *args)
3435 {
3436     struct perm_datum *datum = d;
3437     char *name = k, **perms = args;
3438     int value = datum->value - 1;
3439 
3440     perms[value] = kstrdup(name, GFP_ATOMIC);
3441     if (!perms[value])
3442         return -ENOMEM;
3443 
3444     return 0;
3445 }
3446 
3447 int security_get_permissions(struct selinux_policy *policy,
3448                  char *class, char ***perms, int *nperms)
3449 {
3450     struct policydb *policydb;
3451     int rc, i;
3452     struct class_datum *match;
3453 
3454     policydb = &policy->policydb;
3455 
3456     rc = -EINVAL;
3457     match = symtab_search(&policydb->p_classes, class);
3458     if (!match) {
3459         pr_err("SELinux: %s:  unrecognized class %s\n",
3460             __func__, class);
3461         goto out;
3462     }
3463 
3464     rc = -ENOMEM;
3465     *nperms = match->permissions.nprim;
3466     *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3467     if (!*perms)
3468         goto out;
3469 
3470     if (match->comdatum) {
3471         rc = hashtab_map(&match->comdatum->permissions.table,
3472                  get_permissions_callback, *perms);
3473         if (rc)
3474             goto err;
3475     }
3476 
3477     rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3478              *perms);
3479     if (rc)
3480         goto err;
3481 
3482 out:
3483     return rc;
3484 
3485 err:
3486     for (i = 0; i < *nperms; i++)
3487         kfree((*perms)[i]);
3488     kfree(*perms);
3489     return rc;
3490 }
3491 
3492 int security_get_reject_unknown(struct selinux_state *state)
3493 {
3494     struct selinux_policy *policy;
3495     int value;
3496 
3497     if (!selinux_initialized(state))
3498         return 0;
3499 
3500     rcu_read_lock();
3501     policy = rcu_dereference(state->policy);
3502     value = policy->policydb.reject_unknown;
3503     rcu_read_unlock();
3504     return value;
3505 }
3506 
3507 int security_get_allow_unknown(struct selinux_state *state)
3508 {
3509     struct selinux_policy *policy;
3510     int value;
3511 
3512     if (!selinux_initialized(state))
3513         return 0;
3514 
3515     rcu_read_lock();
3516     policy = rcu_dereference(state->policy);
3517     value = policy->policydb.allow_unknown;
3518     rcu_read_unlock();
3519     return value;
3520 }
3521 
3522 /**
3523  * security_policycap_supported - Check for a specific policy capability
3524  * @state: SELinux state
3525  * @req_cap: capability
3526  *
3527  * Description:
3528  * This function queries the currently loaded policy to see if it supports the
3529  * capability specified by @req_cap.  Returns true (1) if the capability is
3530  * supported, false (0) if it isn't supported.
3531  *
3532  */
3533 int security_policycap_supported(struct selinux_state *state,
3534                  unsigned int req_cap)
3535 {
3536     struct selinux_policy *policy;
3537     int rc;
3538 
3539     if (!selinux_initialized(state))
3540         return 0;
3541 
3542     rcu_read_lock();
3543     policy = rcu_dereference(state->policy);
3544     rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3545     rcu_read_unlock();
3546 
3547     return rc;
3548 }
3549 
3550 struct selinux_audit_rule {
3551     u32 au_seqno;
3552     struct context au_ctxt;
3553 };
3554 
3555 void selinux_audit_rule_free(void *vrule)
3556 {
3557     struct selinux_audit_rule *rule = vrule;
3558 
3559     if (rule) {
3560         context_destroy(&rule->au_ctxt);
3561         kfree(rule);
3562     }
3563 }
3564 
3565 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3566 {
3567     struct selinux_state *state = &selinux_state;
3568     struct selinux_policy *policy;
3569     struct policydb *policydb;
3570     struct selinux_audit_rule *tmprule;
3571     struct role_datum *roledatum;
3572     struct type_datum *typedatum;
3573     struct user_datum *userdatum;
3574     struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3575     int rc = 0;
3576 
3577     *rule = NULL;
3578 
3579     if (!selinux_initialized(state))
3580         return -EOPNOTSUPP;
3581 
3582     switch (field) {
3583     case AUDIT_SUBJ_USER:
3584     case AUDIT_SUBJ_ROLE:
3585     case AUDIT_SUBJ_TYPE:
3586     case AUDIT_OBJ_USER:
3587     case AUDIT_OBJ_ROLE:
3588     case AUDIT_OBJ_TYPE:
3589         /* only 'equals' and 'not equals' fit user, role, and type */
3590         if (op != Audit_equal && op != Audit_not_equal)
3591             return -EINVAL;
3592         break;
3593     case AUDIT_SUBJ_SEN:
3594     case AUDIT_SUBJ_CLR:
3595     case AUDIT_OBJ_LEV_LOW:
3596     case AUDIT_OBJ_LEV_HIGH:
3597         /* we do not allow a range, indicated by the presence of '-' */
3598         if (strchr(rulestr, '-'))
3599             return -EINVAL;
3600         break;
3601     default:
3602         /* only the above fields are valid */
3603         return -EINVAL;
3604     }
3605 
3606     tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3607     if (!tmprule)
3608         return -ENOMEM;
3609 
3610     context_init(&tmprule->au_ctxt);
3611 
3612     rcu_read_lock();
3613     policy = rcu_dereference(state->policy);
3614     policydb = &policy->policydb;
3615 
3616     tmprule->au_seqno = policy->latest_granting;
3617 
3618     switch (field) {
3619     case AUDIT_SUBJ_USER:
3620     case AUDIT_OBJ_USER:
3621         rc = -EINVAL;
3622         userdatum = symtab_search(&policydb->p_users, rulestr);
3623         if (!userdatum)
3624             goto out;
3625         tmprule->au_ctxt.user = userdatum->value;
3626         break;
3627     case AUDIT_SUBJ_ROLE:
3628     case AUDIT_OBJ_ROLE:
3629         rc = -EINVAL;
3630         roledatum = symtab_search(&policydb->p_roles, rulestr);
3631         if (!roledatum)
3632             goto out;
3633         tmprule->au_ctxt.role = roledatum->value;
3634         break;
3635     case AUDIT_SUBJ_TYPE:
3636     case AUDIT_OBJ_TYPE:
3637         rc = -EINVAL;
3638         typedatum = symtab_search(&policydb->p_types, rulestr);
3639         if (!typedatum)
3640             goto out;
3641         tmprule->au_ctxt.type = typedatum->value;
3642         break;
3643     case AUDIT_SUBJ_SEN:
3644     case AUDIT_SUBJ_CLR:
3645     case AUDIT_OBJ_LEV_LOW:
3646     case AUDIT_OBJ_LEV_HIGH:
3647         rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3648                      GFP_ATOMIC);
3649         if (rc)
3650             goto out;
3651         break;
3652     }
3653     rc = 0;
3654 out:
3655     rcu_read_unlock();
3656 
3657     if (rc) {
3658         selinux_audit_rule_free(tmprule);
3659         tmprule = NULL;
3660     }
3661 
3662     *rule = tmprule;
3663 
3664     return rc;
3665 }
3666 
3667 /* Check to see if the rule contains any selinux fields */
3668 int selinux_audit_rule_known(struct audit_krule *rule)
3669 {
3670     int i;
3671 
3672     for (i = 0; i < rule->field_count; i++) {
3673         struct audit_field *f = &rule->fields[i];
3674         switch (f->type) {
3675         case AUDIT_SUBJ_USER:
3676         case AUDIT_SUBJ_ROLE:
3677         case AUDIT_SUBJ_TYPE:
3678         case AUDIT_SUBJ_SEN:
3679         case AUDIT_SUBJ_CLR:
3680         case AUDIT_OBJ_USER:
3681         case AUDIT_OBJ_ROLE:
3682         case AUDIT_OBJ_TYPE:
3683         case AUDIT_OBJ_LEV_LOW:
3684         case AUDIT_OBJ_LEV_HIGH:
3685             return 1;
3686         }
3687     }
3688 
3689     return 0;
3690 }
3691 
3692 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3693 {
3694     struct selinux_state *state = &selinux_state;
3695     struct selinux_policy *policy;
3696     struct context *ctxt;
3697     struct mls_level *level;
3698     struct selinux_audit_rule *rule = vrule;
3699     int match = 0;
3700 
3701     if (unlikely(!rule)) {
3702         WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3703         return -ENOENT;
3704     }
3705 
3706     if (!selinux_initialized(state))
3707         return 0;
3708 
3709     rcu_read_lock();
3710 
3711     policy = rcu_dereference(state->policy);
3712 
3713     if (rule->au_seqno < policy->latest_granting) {
3714         match = -ESTALE;
3715         goto out;
3716     }
3717 
3718     ctxt = sidtab_search(policy->sidtab, sid);
3719     if (unlikely(!ctxt)) {
3720         WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3721               sid);
3722         match = -ENOENT;
3723         goto out;
3724     }
3725 
3726     /* a field/op pair that is not caught here will simply fall through
3727        without a match */
3728     switch (field) {
3729     case AUDIT_SUBJ_USER:
3730     case AUDIT_OBJ_USER:
3731         switch (op) {
3732         case Audit_equal:
3733             match = (ctxt->user == rule->au_ctxt.user);
3734             break;
3735         case Audit_not_equal:
3736             match = (ctxt->user != rule->au_ctxt.user);
3737             break;
3738         }
3739         break;
3740     case AUDIT_SUBJ_ROLE:
3741     case AUDIT_OBJ_ROLE:
3742         switch (op) {
3743         case Audit_equal:
3744             match = (ctxt->role == rule->au_ctxt.role);
3745             break;
3746         case Audit_not_equal:
3747             match = (ctxt->role != rule->au_ctxt.role);
3748             break;
3749         }
3750         break;
3751     case AUDIT_SUBJ_TYPE:
3752     case AUDIT_OBJ_TYPE:
3753         switch (op) {
3754         case Audit_equal:
3755             match = (ctxt->type == rule->au_ctxt.type);
3756             break;
3757         case Audit_not_equal:
3758             match = (ctxt->type != rule->au_ctxt.type);
3759             break;
3760         }
3761         break;
3762     case AUDIT_SUBJ_SEN:
3763     case AUDIT_SUBJ_CLR:
3764     case AUDIT_OBJ_LEV_LOW:
3765     case AUDIT_OBJ_LEV_HIGH:
3766         level = ((field == AUDIT_SUBJ_SEN ||
3767               field == AUDIT_OBJ_LEV_LOW) ?
3768              &ctxt->range.level[0] : &ctxt->range.level[1]);
3769         switch (op) {
3770         case Audit_equal:
3771             match = mls_level_eq(&rule->au_ctxt.range.level[0],
3772                          level);
3773             break;
3774         case Audit_not_equal:
3775             match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3776                           level);
3777             break;
3778         case Audit_lt:
3779             match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3780                            level) &&
3781                  !mls_level_eq(&rule->au_ctxt.range.level[0],
3782                            level));
3783             break;
3784         case Audit_le:
3785             match = mls_level_dom(&rule->au_ctxt.range.level[0],
3786                           level);
3787             break;
3788         case Audit_gt:
3789             match = (mls_level_dom(level,
3790                           &rule->au_ctxt.range.level[0]) &&
3791                  !mls_level_eq(level,
3792                            &rule->au_ctxt.range.level[0]));
3793             break;
3794         case Audit_ge:
3795             match = mls_level_dom(level,
3796                           &rule->au_ctxt.range.level[0]);
3797             break;
3798         }
3799     }
3800 
3801 out:
3802     rcu_read_unlock();
3803     return match;
3804 }
3805 
3806 static int aurule_avc_callback(u32 event)
3807 {
3808     if (event == AVC_CALLBACK_RESET)
3809         return audit_update_lsm_rules();
3810     return 0;
3811 }
3812 
3813 static int __init aurule_init(void)
3814 {
3815     int err;
3816 
3817     err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3818     if (err)
3819         panic("avc_add_callback() failed, error %d\n", err);
3820 
3821     return err;
3822 }
3823 __initcall(aurule_init);
3824 
3825 #ifdef CONFIG_NETLABEL
3826 /**
3827  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3828  * @secattr: the NetLabel packet security attributes
3829  * @sid: the SELinux SID
3830  *
3831  * Description:
3832  * Attempt to cache the context in @ctx, which was derived from the packet in
3833  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3834  * already been initialized.
3835  *
3836  */
3837 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3838                       u32 sid)
3839 {
3840     u32 *sid_cache;
3841 
3842     sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3843     if (sid_cache == NULL)
3844         return;
3845     secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3846     if (secattr->cache == NULL) {
3847         kfree(sid_cache);
3848         return;
3849     }
3850 
3851     *sid_cache = sid;
3852     secattr->cache->free = kfree;
3853     secattr->cache->data = sid_cache;
3854     secattr->flags |= NETLBL_SECATTR_CACHE;
3855 }
3856 
3857 /**
3858  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3859  * @state: SELinux state
3860  * @secattr: the NetLabel packet security attributes
3861  * @sid: the SELinux SID
3862  *
3863  * Description:
3864  * Convert the given NetLabel security attributes in @secattr into a
3865  * SELinux SID.  If the @secattr field does not contain a full SELinux
3866  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3867  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3868  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3869  * conversion for future lookups.  Returns zero on success, negative values on
3870  * failure.
3871  *
3872  */
3873 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3874                    struct netlbl_lsm_secattr *secattr,
3875                    u32 *sid)
3876 {
3877     struct selinux_policy *policy;
3878     struct policydb *policydb;
3879     struct sidtab *sidtab;
3880     int rc;
3881     struct context *ctx;
3882     struct context ctx_new;
3883 
3884     if (!selinux_initialized(state)) {
3885         *sid = SECSID_NULL;
3886         return 0;
3887     }
3888 
3889 retry:
3890     rc = 0;
3891     rcu_read_lock();
3892     policy = rcu_dereference(state->policy);
3893     policydb = &policy->policydb;
3894     sidtab = policy->sidtab;
3895 
3896     if (secattr->flags & NETLBL_SECATTR_CACHE)
3897         *sid = *(u32 *)secattr->cache->data;
3898     else if (secattr->flags & NETLBL_SECATTR_SECID)
3899         *sid = secattr->attr.secid;
3900     else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3901         rc = -EIDRM;
3902         ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3903         if (ctx == NULL)
3904             goto out;
3905 
3906         context_init(&ctx_new);
3907         ctx_new.user = ctx->user;
3908         ctx_new.role = ctx->role;
3909         ctx_new.type = ctx->type;
3910         mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3911         if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3912             rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3913             if (rc)
3914                 goto out;
3915         }
3916         rc = -EIDRM;
3917         if (!mls_context_isvalid(policydb, &ctx_new)) {
3918             ebitmap_destroy(&ctx_new.range.level[0].cat);
3919             goto out;
3920         }
3921 
3922         rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3923         ebitmap_destroy(&ctx_new.range.level[0].cat);
3924         if (rc == -ESTALE) {
3925             rcu_read_unlock();
3926             goto retry;
3927         }
3928         if (rc)
3929             goto out;
3930 
3931         security_netlbl_cache_add(secattr, *sid);
3932     } else
3933         *sid = SECSID_NULL;
3934 
3935 out:
3936     rcu_read_unlock();
3937     return rc;
3938 }
3939 
3940 /**
3941  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3942  * @state: SELinux state
3943  * @sid: the SELinux SID
3944  * @secattr: the NetLabel packet security attributes
3945  *
3946  * Description:
3947  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3948  * Returns zero on success, negative values on failure.
3949  *
3950  */
3951 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3952                    u32 sid, struct netlbl_lsm_secattr *secattr)
3953 {
3954     struct selinux_policy *policy;
3955     struct policydb *policydb;
3956     int rc;
3957     struct context *ctx;
3958 
3959     if (!selinux_initialized(state))
3960         return 0;
3961 
3962     rcu_read_lock();
3963     policy = rcu_dereference(state->policy);
3964     policydb = &policy->policydb;
3965 
3966     rc = -ENOENT;
3967     ctx = sidtab_search(policy->sidtab, sid);
3968     if (ctx == NULL)
3969         goto out;
3970 
3971     rc = -ENOMEM;
3972     secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3973                   GFP_ATOMIC);
3974     if (secattr->domain == NULL)
3975         goto out;
3976 
3977     secattr->attr.secid = sid;
3978     secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3979     mls_export_netlbl_lvl(policydb, ctx, secattr);
3980     rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3981 out:
3982     rcu_read_unlock();
3983     return rc;
3984 }
3985 #endif /* CONFIG_NETLABEL */
3986 
3987 /**
3988  * __security_read_policy - read the policy.
3989  * @policy: SELinux policy
3990  * @data: binary policy data
3991  * @len: length of data in bytes
3992  *
3993  */
3994 static int __security_read_policy(struct selinux_policy *policy,
3995                   void *data, size_t *len)
3996 {
3997     int rc;
3998     struct policy_file fp;
3999 
4000     fp.data = data;
4001     fp.len = *len;
4002 
4003     rc = policydb_write(&policy->policydb, &fp);
4004     if (rc)
4005         return rc;
4006 
4007     *len = (unsigned long)fp.data - (unsigned long)data;
4008     return 0;
4009 }
4010 
4011 /**
4012  * security_read_policy - read the policy.
4013  * @state: selinux_state
4014  * @data: binary policy data
4015  * @len: length of data in bytes
4016  *
4017  */
4018 int security_read_policy(struct selinux_state *state,
4019              void **data, size_t *len)
4020 {
4021     struct selinux_policy *policy;
4022 
4023     policy = rcu_dereference_protected(
4024             state->policy, lockdep_is_held(&state->policy_mutex));
4025     if (!policy)
4026         return -EINVAL;
4027 
4028     *len = policy->policydb.len;
4029     *data = vmalloc_user(*len);
4030     if (!*data)
4031         return -ENOMEM;
4032 
4033     return __security_read_policy(policy, *data, len);
4034 }
4035 
4036 /**
4037  * security_read_state_kernel - read the policy.
4038  * @state: selinux_state
4039  * @data: binary policy data
4040  * @len: length of data in bytes
4041  *
4042  * Allocates kernel memory for reading SELinux policy.
4043  * This function is for internal use only and should not
4044  * be used for returning data to user space.
4045  *
4046  * This function must be called with policy_mutex held.
4047  */
4048 int security_read_state_kernel(struct selinux_state *state,
4049                    void **data, size_t *len)
4050 {
4051     int err;
4052     struct selinux_policy *policy;
4053 
4054     policy = rcu_dereference_protected(
4055             state->policy, lockdep_is_held(&state->policy_mutex));
4056     if (!policy)
4057         return -EINVAL;
4058 
4059     *len = policy->policydb.len;
4060     *data = vmalloc(*len);
4061     if (!*data)
4062         return -ENOMEM;
4063 
4064     err = __security_read_policy(policy, *data, len);
4065     if (err) {
4066         vfree(*data);
4067         *data = NULL;
4068         *len = 0;
4069     }
4070     return err;
4071 }