0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019 #include <linux/kernel.h>
0020 #include <linux/slab.h>
0021 #include <linux/errno.h>
0022 #include <linux/jhash.h>
0023 #include <net/netlabel.h>
0024 #include "ebitmap.h"
0025 #include "policydb.h"
0026
0027 #define BITS_PER_U64 (sizeof(u64) * 8)
0028
0029 static struct kmem_cache *ebitmap_node_cachep __ro_after_init;
0030
0031 int ebitmap_cmp(struct ebitmap *e1, struct ebitmap *e2)
0032 {
0033 struct ebitmap_node *n1, *n2;
0034
0035 if (e1->highbit != e2->highbit)
0036 return 0;
0037
0038 n1 = e1->node;
0039 n2 = e2->node;
0040 while (n1 && n2 &&
0041 (n1->startbit == n2->startbit) &&
0042 !memcmp(n1->maps, n2->maps, EBITMAP_SIZE / 8)) {
0043 n1 = n1->next;
0044 n2 = n2->next;
0045 }
0046
0047 if (n1 || n2)
0048 return 0;
0049
0050 return 1;
0051 }
0052
0053 int ebitmap_cpy(struct ebitmap *dst, struct ebitmap *src)
0054 {
0055 struct ebitmap_node *n, *new, *prev;
0056
0057 ebitmap_init(dst);
0058 n = src->node;
0059 prev = NULL;
0060 while (n) {
0061 new = kmem_cache_zalloc(ebitmap_node_cachep, GFP_ATOMIC);
0062 if (!new) {
0063 ebitmap_destroy(dst);
0064 return -ENOMEM;
0065 }
0066 new->startbit = n->startbit;
0067 memcpy(new->maps, n->maps, EBITMAP_SIZE / 8);
0068 new->next = NULL;
0069 if (prev)
0070 prev->next = new;
0071 else
0072 dst->node = new;
0073 prev = new;
0074 n = n->next;
0075 }
0076
0077 dst->highbit = src->highbit;
0078 return 0;
0079 }
0080
0081 int ebitmap_and(struct ebitmap *dst, struct ebitmap *e1, struct ebitmap *e2)
0082 {
0083 struct ebitmap_node *n;
0084 int bit, rc;
0085
0086 ebitmap_init(dst);
0087
0088 ebitmap_for_each_positive_bit(e1, n, bit) {
0089 if (ebitmap_get_bit(e2, bit)) {
0090 rc = ebitmap_set_bit(dst, bit, 1);
0091 if (rc < 0)
0092 return rc;
0093 }
0094 }
0095 return 0;
0096 }
0097
0098
0099 #ifdef CONFIG_NETLABEL
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110 int ebitmap_netlbl_export(struct ebitmap *ebmap,
0111 struct netlbl_lsm_catmap **catmap)
0112 {
0113 struct ebitmap_node *e_iter = ebmap->node;
0114 unsigned long e_map;
0115 u32 offset;
0116 unsigned int iter;
0117 int rc;
0118
0119 if (e_iter == NULL) {
0120 *catmap = NULL;
0121 return 0;
0122 }
0123
0124 if (*catmap != NULL)
0125 netlbl_catmap_free(*catmap);
0126 *catmap = NULL;
0127
0128 while (e_iter) {
0129 offset = e_iter->startbit;
0130 for (iter = 0; iter < EBITMAP_UNIT_NUMS; iter++) {
0131 e_map = e_iter->maps[iter];
0132 if (e_map != 0) {
0133 rc = netlbl_catmap_setlong(catmap,
0134 offset,
0135 e_map,
0136 GFP_ATOMIC);
0137 if (rc != 0)
0138 goto netlbl_export_failure;
0139 }
0140 offset += EBITMAP_UNIT_SIZE;
0141 }
0142 e_iter = e_iter->next;
0143 }
0144
0145 return 0;
0146
0147 netlbl_export_failure:
0148 netlbl_catmap_free(*catmap);
0149 return -ENOMEM;
0150 }
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162 int ebitmap_netlbl_import(struct ebitmap *ebmap,
0163 struct netlbl_lsm_catmap *catmap)
0164 {
0165 int rc;
0166 struct ebitmap_node *e_iter = NULL;
0167 struct ebitmap_node *e_prev = NULL;
0168 u32 offset = 0, idx;
0169 unsigned long bitmap;
0170
0171 for (;;) {
0172 rc = netlbl_catmap_getlong(catmap, &offset, &bitmap);
0173 if (rc < 0)
0174 goto netlbl_import_failure;
0175 if (offset == (u32)-1)
0176 return 0;
0177
0178
0179 if (bitmap == 0) {
0180 offset += EBITMAP_UNIT_SIZE;
0181 continue;
0182 }
0183
0184 if (e_iter == NULL ||
0185 offset >= e_iter->startbit + EBITMAP_SIZE) {
0186 e_prev = e_iter;
0187 e_iter = kmem_cache_zalloc(ebitmap_node_cachep, GFP_ATOMIC);
0188 if (e_iter == NULL)
0189 goto netlbl_import_failure;
0190 e_iter->startbit = offset - (offset % EBITMAP_SIZE);
0191 if (e_prev == NULL)
0192 ebmap->node = e_iter;
0193 else
0194 e_prev->next = e_iter;
0195 ebmap->highbit = e_iter->startbit + EBITMAP_SIZE;
0196 }
0197
0198
0199 idx = EBITMAP_NODE_INDEX(e_iter, offset);
0200 e_iter->maps[idx] = bitmap;
0201
0202
0203 offset += EBITMAP_UNIT_SIZE;
0204 }
0205
0206
0207 return 0;
0208
0209 netlbl_import_failure:
0210 ebitmap_destroy(ebmap);
0211 return -ENOMEM;
0212 }
0213 #endif
0214
0215
0216
0217
0218
0219
0220 int ebitmap_contains(struct ebitmap *e1, struct ebitmap *e2, u32 last_e2bit)
0221 {
0222 struct ebitmap_node *n1, *n2;
0223 int i;
0224
0225 if (e1->highbit < e2->highbit)
0226 return 0;
0227
0228 n1 = e1->node;
0229 n2 = e2->node;
0230
0231 while (n1 && n2 && (n1->startbit <= n2->startbit)) {
0232 if (n1->startbit < n2->startbit) {
0233 n1 = n1->next;
0234 continue;
0235 }
0236 for (i = EBITMAP_UNIT_NUMS - 1; (i >= 0) && !n2->maps[i]; )
0237 i--;
0238 if (last_e2bit && (i >= 0)) {
0239 u32 lastsetbit = n2->startbit + i * EBITMAP_UNIT_SIZE +
0240 __fls(n2->maps[i]);
0241 if (lastsetbit > last_e2bit)
0242 return 0;
0243 }
0244
0245 while (i >= 0) {
0246 if ((n1->maps[i] & n2->maps[i]) != n2->maps[i])
0247 return 0;
0248 i--;
0249 }
0250
0251 n1 = n1->next;
0252 n2 = n2->next;
0253 }
0254
0255 if (n2)
0256 return 0;
0257
0258 return 1;
0259 }
0260
0261 int ebitmap_get_bit(struct ebitmap *e, unsigned long bit)
0262 {
0263 struct ebitmap_node *n;
0264
0265 if (e->highbit < bit)
0266 return 0;
0267
0268 n = e->node;
0269 while (n && (n->startbit <= bit)) {
0270 if ((n->startbit + EBITMAP_SIZE) > bit)
0271 return ebitmap_node_get_bit(n, bit);
0272 n = n->next;
0273 }
0274
0275 return 0;
0276 }
0277
0278 int ebitmap_set_bit(struct ebitmap *e, unsigned long bit, int value)
0279 {
0280 struct ebitmap_node *n, *prev, *new;
0281
0282 prev = NULL;
0283 n = e->node;
0284 while (n && n->startbit <= bit) {
0285 if ((n->startbit + EBITMAP_SIZE) > bit) {
0286 if (value) {
0287 ebitmap_node_set_bit(n, bit);
0288 } else {
0289 unsigned int s;
0290
0291 ebitmap_node_clr_bit(n, bit);
0292
0293 s = find_first_bit(n->maps, EBITMAP_SIZE);
0294 if (s < EBITMAP_SIZE)
0295 return 0;
0296
0297
0298 if (!n->next) {
0299
0300
0301
0302
0303 if (prev)
0304 e->highbit = prev->startbit
0305 + EBITMAP_SIZE;
0306 else
0307 e->highbit = 0;
0308 }
0309 if (prev)
0310 prev->next = n->next;
0311 else
0312 e->node = n->next;
0313 kmem_cache_free(ebitmap_node_cachep, n);
0314 }
0315 return 0;
0316 }
0317 prev = n;
0318 n = n->next;
0319 }
0320
0321 if (!value)
0322 return 0;
0323
0324 new = kmem_cache_zalloc(ebitmap_node_cachep, GFP_ATOMIC);
0325 if (!new)
0326 return -ENOMEM;
0327
0328 new->startbit = bit - (bit % EBITMAP_SIZE);
0329 ebitmap_node_set_bit(new, bit);
0330
0331 if (!n)
0332
0333 e->highbit = new->startbit + EBITMAP_SIZE;
0334
0335 if (prev) {
0336 new->next = prev->next;
0337 prev->next = new;
0338 } else {
0339 new->next = e->node;
0340 e->node = new;
0341 }
0342
0343 return 0;
0344 }
0345
0346 void ebitmap_destroy(struct ebitmap *e)
0347 {
0348 struct ebitmap_node *n, *temp;
0349
0350 if (!e)
0351 return;
0352
0353 n = e->node;
0354 while (n) {
0355 temp = n;
0356 n = n->next;
0357 kmem_cache_free(ebitmap_node_cachep, temp);
0358 }
0359
0360 e->highbit = 0;
0361 e->node = NULL;
0362 }
0363
0364 int ebitmap_read(struct ebitmap *e, void *fp)
0365 {
0366 struct ebitmap_node *n = NULL;
0367 u32 mapunit, count, startbit, index;
0368 __le32 ebitmap_start;
0369 u64 map;
0370 __le64 mapbits;
0371 __le32 buf[3];
0372 int rc, i;
0373
0374 ebitmap_init(e);
0375
0376 rc = next_entry(buf, fp, sizeof buf);
0377 if (rc < 0)
0378 goto out;
0379
0380 mapunit = le32_to_cpu(buf[0]);
0381 e->highbit = le32_to_cpu(buf[1]);
0382 count = le32_to_cpu(buf[2]);
0383
0384 if (mapunit != BITS_PER_U64) {
0385 pr_err("SELinux: ebitmap: map size %u does not "
0386 "match my size %zd (high bit was %d)\n",
0387 mapunit, BITS_PER_U64, e->highbit);
0388 goto bad;
0389 }
0390
0391
0392 e->highbit += EBITMAP_SIZE - 1;
0393 e->highbit -= (e->highbit % EBITMAP_SIZE);
0394
0395 if (!e->highbit) {
0396 e->node = NULL;
0397 goto ok;
0398 }
0399
0400 if (e->highbit && !count)
0401 goto bad;
0402
0403 for (i = 0; i < count; i++) {
0404 rc = next_entry(&ebitmap_start, fp, sizeof(u32));
0405 if (rc < 0) {
0406 pr_err("SELinux: ebitmap: truncated map\n");
0407 goto bad;
0408 }
0409 startbit = le32_to_cpu(ebitmap_start);
0410
0411 if (startbit & (mapunit - 1)) {
0412 pr_err("SELinux: ebitmap start bit (%d) is "
0413 "not a multiple of the map unit size (%u)\n",
0414 startbit, mapunit);
0415 goto bad;
0416 }
0417 if (startbit > e->highbit - mapunit) {
0418 pr_err("SELinux: ebitmap start bit (%d) is "
0419 "beyond the end of the bitmap (%u)\n",
0420 startbit, (e->highbit - mapunit));
0421 goto bad;
0422 }
0423
0424 if (!n || startbit >= n->startbit + EBITMAP_SIZE) {
0425 struct ebitmap_node *tmp;
0426 tmp = kmem_cache_zalloc(ebitmap_node_cachep, GFP_KERNEL);
0427 if (!tmp) {
0428 pr_err("SELinux: ebitmap: out of memory\n");
0429 rc = -ENOMEM;
0430 goto bad;
0431 }
0432
0433 tmp->startbit = startbit - (startbit % EBITMAP_SIZE);
0434 if (n)
0435 n->next = tmp;
0436 else
0437 e->node = tmp;
0438 n = tmp;
0439 } else if (startbit <= n->startbit) {
0440 pr_err("SELinux: ebitmap: start bit %d"
0441 " comes after start bit %d\n",
0442 startbit, n->startbit);
0443 goto bad;
0444 }
0445
0446 rc = next_entry(&mapbits, fp, sizeof(u64));
0447 if (rc < 0) {
0448 pr_err("SELinux: ebitmap: truncated map\n");
0449 goto bad;
0450 }
0451 map = le64_to_cpu(mapbits);
0452
0453 index = (startbit - n->startbit) / EBITMAP_UNIT_SIZE;
0454 while (map) {
0455 n->maps[index++] = map & (-1UL);
0456 map = EBITMAP_SHIFT_UNIT_SIZE(map);
0457 }
0458 }
0459 ok:
0460 rc = 0;
0461 out:
0462 return rc;
0463 bad:
0464 if (!rc)
0465 rc = -EINVAL;
0466 ebitmap_destroy(e);
0467 goto out;
0468 }
0469
0470 int ebitmap_write(struct ebitmap *e, void *fp)
0471 {
0472 struct ebitmap_node *n;
0473 u32 count;
0474 __le32 buf[3];
0475 u64 map;
0476 int bit, last_bit, last_startbit, rc;
0477
0478 buf[0] = cpu_to_le32(BITS_PER_U64);
0479
0480 count = 0;
0481 last_bit = 0;
0482 last_startbit = -1;
0483 ebitmap_for_each_positive_bit(e, n, bit) {
0484 if (rounddown(bit, (int)BITS_PER_U64) > last_startbit) {
0485 count++;
0486 last_startbit = rounddown(bit, BITS_PER_U64);
0487 }
0488 last_bit = roundup(bit + 1, BITS_PER_U64);
0489 }
0490 buf[1] = cpu_to_le32(last_bit);
0491 buf[2] = cpu_to_le32(count);
0492
0493 rc = put_entry(buf, sizeof(u32), 3, fp);
0494 if (rc)
0495 return rc;
0496
0497 map = 0;
0498 last_startbit = INT_MIN;
0499 ebitmap_for_each_positive_bit(e, n, bit) {
0500 if (rounddown(bit, (int)BITS_PER_U64) > last_startbit) {
0501 __le64 buf64[1];
0502
0503
0504 if (!map) {
0505 last_startbit = rounddown(bit, BITS_PER_U64);
0506 map = (u64)1 << (bit - last_startbit);
0507 continue;
0508 }
0509
0510
0511 buf[0] = cpu_to_le32(last_startbit);
0512 rc = put_entry(buf, sizeof(u32), 1, fp);
0513 if (rc)
0514 return rc;
0515
0516 buf64[0] = cpu_to_le64(map);
0517 rc = put_entry(buf64, sizeof(u64), 1, fp);
0518 if (rc)
0519 return rc;
0520
0521
0522 map = 0;
0523 last_startbit = rounddown(bit, BITS_PER_U64);
0524 }
0525 map |= (u64)1 << (bit - last_startbit);
0526 }
0527
0528 if (map) {
0529 __le64 buf64[1];
0530
0531
0532 buf[0] = cpu_to_le32(last_startbit);
0533 rc = put_entry(buf, sizeof(u32), 1, fp);
0534 if (rc)
0535 return rc;
0536
0537 buf64[0] = cpu_to_le64(map);
0538 rc = put_entry(buf64, sizeof(u64), 1, fp);
0539 if (rc)
0540 return rc;
0541 }
0542 return 0;
0543 }
0544
0545 u32 ebitmap_hash(const struct ebitmap *e, u32 hash)
0546 {
0547 struct ebitmap_node *node;
0548
0549
0550 hash = jhash_1word(e->highbit, hash);
0551 for (node = e->node; node; node = node->next) {
0552 hash = jhash_1word(node->startbit, hash);
0553 hash = jhash(node->maps, sizeof(node->maps), hash);
0554 }
0555 return hash;
0556 }
0557
0558 void __init ebitmap_cache_init(void)
0559 {
0560 ebitmap_node_cachep = kmem_cache_create("ebitmap_node",
0561 sizeof(struct ebitmap_node),
0562 0, SLAB_PANIC, NULL);
0563 }