Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Security plug functions
0004  *
0005  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
0006  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
0007  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
0008  * Copyright (C) 2016 Mellanox Technologies
0009  */
0010 
0011 #define pr_fmt(fmt) "LSM: " fmt
0012 
0013 #include <linux/bpf.h>
0014 #include <linux/capability.h>
0015 #include <linux/dcache.h>
0016 #include <linux/export.h>
0017 #include <linux/init.h>
0018 #include <linux/kernel.h>
0019 #include <linux/kernel_read_file.h>
0020 #include <linux/lsm_hooks.h>
0021 #include <linux/integrity.h>
0022 #include <linux/ima.h>
0023 #include <linux/evm.h>
0024 #include <linux/fsnotify.h>
0025 #include <linux/mman.h>
0026 #include <linux/mount.h>
0027 #include <linux/personality.h>
0028 #include <linux/backing-dev.h>
0029 #include <linux/string.h>
0030 #include <linux/msg.h>
0031 #include <net/flow.h>
0032 
0033 #define MAX_LSM_EVM_XATTR   2
0034 
0035 /* How many LSMs were built into the kernel? */
0036 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
0037 
0038 /*
0039  * These are descriptions of the reasons that can be passed to the
0040  * security_locked_down() LSM hook. Placing this array here allows
0041  * all security modules to use the same descriptions for auditing
0042  * purposes.
0043  */
0044 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
0045     [LOCKDOWN_NONE] = "none",
0046     [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
0047     [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
0048     [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
0049     [LOCKDOWN_KEXEC] = "kexec of unsigned images",
0050     [LOCKDOWN_HIBERNATION] = "hibernation",
0051     [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
0052     [LOCKDOWN_IOPORT] = "raw io port access",
0053     [LOCKDOWN_MSR] = "raw MSR access",
0054     [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
0055     [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
0056     [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
0057     [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
0058     [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
0059     [LOCKDOWN_DEBUGFS] = "debugfs access",
0060     [LOCKDOWN_XMON_WR] = "xmon write access",
0061     [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
0062     [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
0063     [LOCKDOWN_INTEGRITY_MAX] = "integrity",
0064     [LOCKDOWN_KCORE] = "/proc/kcore access",
0065     [LOCKDOWN_KPROBES] = "use of kprobes",
0066     [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
0067     [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
0068     [LOCKDOWN_PERF] = "unsafe use of perf",
0069     [LOCKDOWN_TRACEFS] = "use of tracefs",
0070     [LOCKDOWN_XMON_RW] = "xmon read and write access",
0071     [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
0072     [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
0073 };
0074 
0075 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
0076 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
0077 
0078 static struct kmem_cache *lsm_file_cache;
0079 static struct kmem_cache *lsm_inode_cache;
0080 
0081 char *lsm_names;
0082 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
0083 
0084 /* Boot-time LSM user choice */
0085 static __initdata const char *chosen_lsm_order;
0086 static __initdata const char *chosen_major_lsm;
0087 
0088 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
0089 
0090 /* Ordered list of LSMs to initialize. */
0091 static __initdata struct lsm_info **ordered_lsms;
0092 static __initdata struct lsm_info *exclusive;
0093 
0094 static __initdata bool debug;
0095 #define init_debug(...)                     \
0096     do {                            \
0097         if (debug)                  \
0098             pr_info(__VA_ARGS__);           \
0099     } while (0)
0100 
0101 static bool __init is_enabled(struct lsm_info *lsm)
0102 {
0103     if (!lsm->enabled)
0104         return false;
0105 
0106     return *lsm->enabled;
0107 }
0108 
0109 /* Mark an LSM's enabled flag. */
0110 static int lsm_enabled_true __initdata = 1;
0111 static int lsm_enabled_false __initdata = 0;
0112 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
0113 {
0114     /*
0115      * When an LSM hasn't configured an enable variable, we can use
0116      * a hard-coded location for storing the default enabled state.
0117      */
0118     if (!lsm->enabled) {
0119         if (enabled)
0120             lsm->enabled = &lsm_enabled_true;
0121         else
0122             lsm->enabled = &lsm_enabled_false;
0123     } else if (lsm->enabled == &lsm_enabled_true) {
0124         if (!enabled)
0125             lsm->enabled = &lsm_enabled_false;
0126     } else if (lsm->enabled == &lsm_enabled_false) {
0127         if (enabled)
0128             lsm->enabled = &lsm_enabled_true;
0129     } else {
0130         *lsm->enabled = enabled;
0131     }
0132 }
0133 
0134 /* Is an LSM already listed in the ordered LSMs list? */
0135 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
0136 {
0137     struct lsm_info **check;
0138 
0139     for (check = ordered_lsms; *check; check++)
0140         if (*check == lsm)
0141             return true;
0142 
0143     return false;
0144 }
0145 
0146 /* Append an LSM to the list of ordered LSMs to initialize. */
0147 static int last_lsm __initdata;
0148 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
0149 {
0150     /* Ignore duplicate selections. */
0151     if (exists_ordered_lsm(lsm))
0152         return;
0153 
0154     if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
0155         return;
0156 
0157     /* Enable this LSM, if it is not already set. */
0158     if (!lsm->enabled)
0159         lsm->enabled = &lsm_enabled_true;
0160     ordered_lsms[last_lsm++] = lsm;
0161 
0162     init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
0163            is_enabled(lsm) ? "en" : "dis");
0164 }
0165 
0166 /* Is an LSM allowed to be initialized? */
0167 static bool __init lsm_allowed(struct lsm_info *lsm)
0168 {
0169     /* Skip if the LSM is disabled. */
0170     if (!is_enabled(lsm))
0171         return false;
0172 
0173     /* Not allowed if another exclusive LSM already initialized. */
0174     if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
0175         init_debug("exclusive disabled: %s\n", lsm->name);
0176         return false;
0177     }
0178 
0179     return true;
0180 }
0181 
0182 static void __init lsm_set_blob_size(int *need, int *lbs)
0183 {
0184     int offset;
0185 
0186     if (*need > 0) {
0187         offset = *lbs;
0188         *lbs += *need;
0189         *need = offset;
0190     }
0191 }
0192 
0193 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
0194 {
0195     if (!needed)
0196         return;
0197 
0198     lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
0199     lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
0200     /*
0201      * The inode blob gets an rcu_head in addition to
0202      * what the modules might need.
0203      */
0204     if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
0205         blob_sizes.lbs_inode = sizeof(struct rcu_head);
0206     lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
0207     lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
0208     lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
0209     lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
0210     lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
0211 }
0212 
0213 /* Prepare LSM for initialization. */
0214 static void __init prepare_lsm(struct lsm_info *lsm)
0215 {
0216     int enabled = lsm_allowed(lsm);
0217 
0218     /* Record enablement (to handle any following exclusive LSMs). */
0219     set_enabled(lsm, enabled);
0220 
0221     /* If enabled, do pre-initialization work. */
0222     if (enabled) {
0223         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
0224             exclusive = lsm;
0225             init_debug("exclusive chosen: %s\n", lsm->name);
0226         }
0227 
0228         lsm_set_blob_sizes(lsm->blobs);
0229     }
0230 }
0231 
0232 /* Initialize a given LSM, if it is enabled. */
0233 static void __init initialize_lsm(struct lsm_info *lsm)
0234 {
0235     if (is_enabled(lsm)) {
0236         int ret;
0237 
0238         init_debug("initializing %s\n", lsm->name);
0239         ret = lsm->init();
0240         WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
0241     }
0242 }
0243 
0244 /* Populate ordered LSMs list from comma-separated LSM name list. */
0245 static void __init ordered_lsm_parse(const char *order, const char *origin)
0246 {
0247     struct lsm_info *lsm;
0248     char *sep, *name, *next;
0249 
0250     /* LSM_ORDER_FIRST is always first. */
0251     for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
0252         if (lsm->order == LSM_ORDER_FIRST)
0253             append_ordered_lsm(lsm, "first");
0254     }
0255 
0256     /* Process "security=", if given. */
0257     if (chosen_major_lsm) {
0258         struct lsm_info *major;
0259 
0260         /*
0261          * To match the original "security=" behavior, this
0262          * explicitly does NOT fallback to another Legacy Major
0263          * if the selected one was separately disabled: disable
0264          * all non-matching Legacy Major LSMs.
0265          */
0266         for (major = __start_lsm_info; major < __end_lsm_info;
0267              major++) {
0268             if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
0269                 strcmp(major->name, chosen_major_lsm) != 0) {
0270                 set_enabled(major, false);
0271                 init_debug("security=%s disabled: %s\n",
0272                        chosen_major_lsm, major->name);
0273             }
0274         }
0275     }
0276 
0277     sep = kstrdup(order, GFP_KERNEL);
0278     next = sep;
0279     /* Walk the list, looking for matching LSMs. */
0280     while ((name = strsep(&next, ",")) != NULL) {
0281         bool found = false;
0282 
0283         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
0284             if (lsm->order == LSM_ORDER_MUTABLE &&
0285                 strcmp(lsm->name, name) == 0) {
0286                 append_ordered_lsm(lsm, origin);
0287                 found = true;
0288             }
0289         }
0290 
0291         if (!found)
0292             init_debug("%s ignored: %s\n", origin, name);
0293     }
0294 
0295     /* Process "security=", if given. */
0296     if (chosen_major_lsm) {
0297         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
0298             if (exists_ordered_lsm(lsm))
0299                 continue;
0300             if (strcmp(lsm->name, chosen_major_lsm) == 0)
0301                 append_ordered_lsm(lsm, "security=");
0302         }
0303     }
0304 
0305     /* Disable all LSMs not in the ordered list. */
0306     for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
0307         if (exists_ordered_lsm(lsm))
0308             continue;
0309         set_enabled(lsm, false);
0310         init_debug("%s disabled: %s\n", origin, lsm->name);
0311     }
0312 
0313     kfree(sep);
0314 }
0315 
0316 static void __init lsm_early_cred(struct cred *cred);
0317 static void __init lsm_early_task(struct task_struct *task);
0318 
0319 static int lsm_append(const char *new, char **result);
0320 
0321 static void __init ordered_lsm_init(void)
0322 {
0323     struct lsm_info **lsm;
0324 
0325     ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
0326                 GFP_KERNEL);
0327 
0328     if (chosen_lsm_order) {
0329         if (chosen_major_lsm) {
0330             pr_info("security= is ignored because it is superseded by lsm=\n");
0331             chosen_major_lsm = NULL;
0332         }
0333         ordered_lsm_parse(chosen_lsm_order, "cmdline");
0334     } else
0335         ordered_lsm_parse(builtin_lsm_order, "builtin");
0336 
0337     for (lsm = ordered_lsms; *lsm; lsm++)
0338         prepare_lsm(*lsm);
0339 
0340     init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
0341     init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
0342     init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
0343     init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
0344     init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
0345     init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
0346     init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
0347 
0348     /*
0349      * Create any kmem_caches needed for blobs
0350      */
0351     if (blob_sizes.lbs_file)
0352         lsm_file_cache = kmem_cache_create("lsm_file_cache",
0353                            blob_sizes.lbs_file, 0,
0354                            SLAB_PANIC, NULL);
0355     if (blob_sizes.lbs_inode)
0356         lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
0357                             blob_sizes.lbs_inode, 0,
0358                             SLAB_PANIC, NULL);
0359 
0360     lsm_early_cred((struct cred *) current->cred);
0361     lsm_early_task(current);
0362     for (lsm = ordered_lsms; *lsm; lsm++)
0363         initialize_lsm(*lsm);
0364 
0365     kfree(ordered_lsms);
0366 }
0367 
0368 int __init early_security_init(void)
0369 {
0370     struct lsm_info *lsm;
0371 
0372 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
0373     INIT_HLIST_HEAD(&security_hook_heads.NAME);
0374 #include "linux/lsm_hook_defs.h"
0375 #undef LSM_HOOK
0376 
0377     for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
0378         if (!lsm->enabled)
0379             lsm->enabled = &lsm_enabled_true;
0380         prepare_lsm(lsm);
0381         initialize_lsm(lsm);
0382     }
0383 
0384     return 0;
0385 }
0386 
0387 /**
0388  * security_init - initializes the security framework
0389  *
0390  * This should be called early in the kernel initialization sequence.
0391  */
0392 int __init security_init(void)
0393 {
0394     struct lsm_info *lsm;
0395 
0396     pr_info("Security Framework initializing\n");
0397 
0398     /*
0399      * Append the names of the early LSM modules now that kmalloc() is
0400      * available
0401      */
0402     for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
0403         if (lsm->enabled)
0404             lsm_append(lsm->name, &lsm_names);
0405     }
0406 
0407     /* Load LSMs in specified order. */
0408     ordered_lsm_init();
0409 
0410     return 0;
0411 }
0412 
0413 /* Save user chosen LSM */
0414 static int __init choose_major_lsm(char *str)
0415 {
0416     chosen_major_lsm = str;
0417     return 1;
0418 }
0419 __setup("security=", choose_major_lsm);
0420 
0421 /* Explicitly choose LSM initialization order. */
0422 static int __init choose_lsm_order(char *str)
0423 {
0424     chosen_lsm_order = str;
0425     return 1;
0426 }
0427 __setup("lsm=", choose_lsm_order);
0428 
0429 /* Enable LSM order debugging. */
0430 static int __init enable_debug(char *str)
0431 {
0432     debug = true;
0433     return 1;
0434 }
0435 __setup("lsm.debug", enable_debug);
0436 
0437 static bool match_last_lsm(const char *list, const char *lsm)
0438 {
0439     const char *last;
0440 
0441     if (WARN_ON(!list || !lsm))
0442         return false;
0443     last = strrchr(list, ',');
0444     if (last)
0445         /* Pass the comma, strcmp() will check for '\0' */
0446         last++;
0447     else
0448         last = list;
0449     return !strcmp(last, lsm);
0450 }
0451 
0452 static int lsm_append(const char *new, char **result)
0453 {
0454     char *cp;
0455 
0456     if (*result == NULL) {
0457         *result = kstrdup(new, GFP_KERNEL);
0458         if (*result == NULL)
0459             return -ENOMEM;
0460     } else {
0461         /* Check if it is the last registered name */
0462         if (match_last_lsm(*result, new))
0463             return 0;
0464         cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
0465         if (cp == NULL)
0466             return -ENOMEM;
0467         kfree(*result);
0468         *result = cp;
0469     }
0470     return 0;
0471 }
0472 
0473 /**
0474  * security_add_hooks - Add a modules hooks to the hook lists.
0475  * @hooks: the hooks to add
0476  * @count: the number of hooks to add
0477  * @lsm: the name of the security module
0478  *
0479  * Each LSM has to register its hooks with the infrastructure.
0480  */
0481 void __init security_add_hooks(struct security_hook_list *hooks, int count,
0482                 const char *lsm)
0483 {
0484     int i;
0485 
0486     for (i = 0; i < count; i++) {
0487         hooks[i].lsm = lsm;
0488         hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
0489     }
0490 
0491     /*
0492      * Don't try to append during early_security_init(), we'll come back
0493      * and fix this up afterwards.
0494      */
0495     if (slab_is_available()) {
0496         if (lsm_append(lsm, &lsm_names) < 0)
0497             panic("%s - Cannot get early memory.\n", __func__);
0498     }
0499 }
0500 
0501 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
0502 {
0503     return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
0504                         event, data);
0505 }
0506 EXPORT_SYMBOL(call_blocking_lsm_notifier);
0507 
0508 int register_blocking_lsm_notifier(struct notifier_block *nb)
0509 {
0510     return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
0511                         nb);
0512 }
0513 EXPORT_SYMBOL(register_blocking_lsm_notifier);
0514 
0515 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
0516 {
0517     return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
0518                           nb);
0519 }
0520 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
0521 
0522 /**
0523  * lsm_cred_alloc - allocate a composite cred blob
0524  * @cred: the cred that needs a blob
0525  * @gfp: allocation type
0526  *
0527  * Allocate the cred blob for all the modules
0528  *
0529  * Returns 0, or -ENOMEM if memory can't be allocated.
0530  */
0531 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
0532 {
0533     if (blob_sizes.lbs_cred == 0) {
0534         cred->security = NULL;
0535         return 0;
0536     }
0537 
0538     cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
0539     if (cred->security == NULL)
0540         return -ENOMEM;
0541     return 0;
0542 }
0543 
0544 /**
0545  * lsm_early_cred - during initialization allocate a composite cred blob
0546  * @cred: the cred that needs a blob
0547  *
0548  * Allocate the cred blob for all the modules
0549  */
0550 static void __init lsm_early_cred(struct cred *cred)
0551 {
0552     int rc = lsm_cred_alloc(cred, GFP_KERNEL);
0553 
0554     if (rc)
0555         panic("%s: Early cred alloc failed.\n", __func__);
0556 }
0557 
0558 /**
0559  * lsm_file_alloc - allocate a composite file blob
0560  * @file: the file that needs a blob
0561  *
0562  * Allocate the file blob for all the modules
0563  *
0564  * Returns 0, or -ENOMEM if memory can't be allocated.
0565  */
0566 static int lsm_file_alloc(struct file *file)
0567 {
0568     if (!lsm_file_cache) {
0569         file->f_security = NULL;
0570         return 0;
0571     }
0572 
0573     file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
0574     if (file->f_security == NULL)
0575         return -ENOMEM;
0576     return 0;
0577 }
0578 
0579 /**
0580  * lsm_inode_alloc - allocate a composite inode blob
0581  * @inode: the inode that needs a blob
0582  *
0583  * Allocate the inode blob for all the modules
0584  *
0585  * Returns 0, or -ENOMEM if memory can't be allocated.
0586  */
0587 int lsm_inode_alloc(struct inode *inode)
0588 {
0589     if (!lsm_inode_cache) {
0590         inode->i_security = NULL;
0591         return 0;
0592     }
0593 
0594     inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
0595     if (inode->i_security == NULL)
0596         return -ENOMEM;
0597     return 0;
0598 }
0599 
0600 /**
0601  * lsm_task_alloc - allocate a composite task blob
0602  * @task: the task that needs a blob
0603  *
0604  * Allocate the task blob for all the modules
0605  *
0606  * Returns 0, or -ENOMEM if memory can't be allocated.
0607  */
0608 static int lsm_task_alloc(struct task_struct *task)
0609 {
0610     if (blob_sizes.lbs_task == 0) {
0611         task->security = NULL;
0612         return 0;
0613     }
0614 
0615     task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
0616     if (task->security == NULL)
0617         return -ENOMEM;
0618     return 0;
0619 }
0620 
0621 /**
0622  * lsm_ipc_alloc - allocate a composite ipc blob
0623  * @kip: the ipc that needs a blob
0624  *
0625  * Allocate the ipc blob for all the modules
0626  *
0627  * Returns 0, or -ENOMEM if memory can't be allocated.
0628  */
0629 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
0630 {
0631     if (blob_sizes.lbs_ipc == 0) {
0632         kip->security = NULL;
0633         return 0;
0634     }
0635 
0636     kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
0637     if (kip->security == NULL)
0638         return -ENOMEM;
0639     return 0;
0640 }
0641 
0642 /**
0643  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
0644  * @mp: the msg_msg that needs a blob
0645  *
0646  * Allocate the ipc blob for all the modules
0647  *
0648  * Returns 0, or -ENOMEM if memory can't be allocated.
0649  */
0650 static int lsm_msg_msg_alloc(struct msg_msg *mp)
0651 {
0652     if (blob_sizes.lbs_msg_msg == 0) {
0653         mp->security = NULL;
0654         return 0;
0655     }
0656 
0657     mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
0658     if (mp->security == NULL)
0659         return -ENOMEM;
0660     return 0;
0661 }
0662 
0663 /**
0664  * lsm_early_task - during initialization allocate a composite task blob
0665  * @task: the task that needs a blob
0666  *
0667  * Allocate the task blob for all the modules
0668  */
0669 static void __init lsm_early_task(struct task_struct *task)
0670 {
0671     int rc = lsm_task_alloc(task);
0672 
0673     if (rc)
0674         panic("%s: Early task alloc failed.\n", __func__);
0675 }
0676 
0677 /**
0678  * lsm_superblock_alloc - allocate a composite superblock blob
0679  * @sb: the superblock that needs a blob
0680  *
0681  * Allocate the superblock blob for all the modules
0682  *
0683  * Returns 0, or -ENOMEM if memory can't be allocated.
0684  */
0685 static int lsm_superblock_alloc(struct super_block *sb)
0686 {
0687     if (blob_sizes.lbs_superblock == 0) {
0688         sb->s_security = NULL;
0689         return 0;
0690     }
0691 
0692     sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
0693     if (sb->s_security == NULL)
0694         return -ENOMEM;
0695     return 0;
0696 }
0697 
0698 /*
0699  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
0700  * can be accessed with:
0701  *
0702  *  LSM_RET_DEFAULT(<hook_name>)
0703  *
0704  * The macros below define static constants for the default value of each
0705  * LSM hook.
0706  */
0707 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
0708 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
0709 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
0710     static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
0711 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
0712     DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
0713 
0714 #include <linux/lsm_hook_defs.h>
0715 #undef LSM_HOOK
0716 
0717 /*
0718  * Hook list operation macros.
0719  *
0720  * call_void_hook:
0721  *  This is a hook that does not return a value.
0722  *
0723  * call_int_hook:
0724  *  This is a hook that returns a value.
0725  */
0726 
0727 #define call_void_hook(FUNC, ...)               \
0728     do {                            \
0729         struct security_hook_list *P;           \
0730                                 \
0731         hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
0732             P->hook.FUNC(__VA_ARGS__);      \
0733     } while (0)
0734 
0735 #define call_int_hook(FUNC, IRC, ...) ({            \
0736     int RC = IRC;                       \
0737     do {                            \
0738         struct security_hook_list *P;           \
0739                                 \
0740         hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
0741             RC = P->hook.FUNC(__VA_ARGS__);     \
0742             if (RC != 0)                \
0743                 break;              \
0744         }                       \
0745     } while (0);                        \
0746     RC;                         \
0747 })
0748 
0749 /* Security operations */
0750 
0751 int security_binder_set_context_mgr(const struct cred *mgr)
0752 {
0753     return call_int_hook(binder_set_context_mgr, 0, mgr);
0754 }
0755 
0756 int security_binder_transaction(const struct cred *from,
0757                 const struct cred *to)
0758 {
0759     return call_int_hook(binder_transaction, 0, from, to);
0760 }
0761 
0762 int security_binder_transfer_binder(const struct cred *from,
0763                     const struct cred *to)
0764 {
0765     return call_int_hook(binder_transfer_binder, 0, from, to);
0766 }
0767 
0768 int security_binder_transfer_file(const struct cred *from,
0769                   const struct cred *to, struct file *file)
0770 {
0771     return call_int_hook(binder_transfer_file, 0, from, to, file);
0772 }
0773 
0774 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
0775 {
0776     return call_int_hook(ptrace_access_check, 0, child, mode);
0777 }
0778 
0779 int security_ptrace_traceme(struct task_struct *parent)
0780 {
0781     return call_int_hook(ptrace_traceme, 0, parent);
0782 }
0783 
0784 int security_capget(struct task_struct *target,
0785              kernel_cap_t *effective,
0786              kernel_cap_t *inheritable,
0787              kernel_cap_t *permitted)
0788 {
0789     return call_int_hook(capget, 0, target,
0790                 effective, inheritable, permitted);
0791 }
0792 
0793 int security_capset(struct cred *new, const struct cred *old,
0794             const kernel_cap_t *effective,
0795             const kernel_cap_t *inheritable,
0796             const kernel_cap_t *permitted)
0797 {
0798     return call_int_hook(capset, 0, new, old,
0799                 effective, inheritable, permitted);
0800 }
0801 
0802 int security_capable(const struct cred *cred,
0803              struct user_namespace *ns,
0804              int cap,
0805              unsigned int opts)
0806 {
0807     return call_int_hook(capable, 0, cred, ns, cap, opts);
0808 }
0809 
0810 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
0811 {
0812     return call_int_hook(quotactl, 0, cmds, type, id, sb);
0813 }
0814 
0815 int security_quota_on(struct dentry *dentry)
0816 {
0817     return call_int_hook(quota_on, 0, dentry);
0818 }
0819 
0820 int security_syslog(int type)
0821 {
0822     return call_int_hook(syslog, 0, type);
0823 }
0824 
0825 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
0826 {
0827     return call_int_hook(settime, 0, ts, tz);
0828 }
0829 
0830 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
0831 {
0832     struct security_hook_list *hp;
0833     int cap_sys_admin = 1;
0834     int rc;
0835 
0836     /*
0837      * The module will respond with a positive value if
0838      * it thinks the __vm_enough_memory() call should be
0839      * made with the cap_sys_admin set. If all of the modules
0840      * agree that it should be set it will. If any module
0841      * thinks it should not be set it won't.
0842      */
0843     hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
0844         rc = hp->hook.vm_enough_memory(mm, pages);
0845         if (rc <= 0) {
0846             cap_sys_admin = 0;
0847             break;
0848         }
0849     }
0850     return __vm_enough_memory(mm, pages, cap_sys_admin);
0851 }
0852 
0853 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
0854 {
0855     return call_int_hook(bprm_creds_for_exec, 0, bprm);
0856 }
0857 
0858 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
0859 {
0860     return call_int_hook(bprm_creds_from_file, 0, bprm, file);
0861 }
0862 
0863 int security_bprm_check(struct linux_binprm *bprm)
0864 {
0865     int ret;
0866 
0867     ret = call_int_hook(bprm_check_security, 0, bprm);
0868     if (ret)
0869         return ret;
0870     return ima_bprm_check(bprm);
0871 }
0872 
0873 void security_bprm_committing_creds(struct linux_binprm *bprm)
0874 {
0875     call_void_hook(bprm_committing_creds, bprm);
0876 }
0877 
0878 void security_bprm_committed_creds(struct linux_binprm *bprm)
0879 {
0880     call_void_hook(bprm_committed_creds, bprm);
0881 }
0882 
0883 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
0884 {
0885     return call_int_hook(fs_context_dup, 0, fc, src_fc);
0886 }
0887 
0888 int security_fs_context_parse_param(struct fs_context *fc,
0889                     struct fs_parameter *param)
0890 {
0891     struct security_hook_list *hp;
0892     int trc;
0893     int rc = -ENOPARAM;
0894 
0895     hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
0896                  list) {
0897         trc = hp->hook.fs_context_parse_param(fc, param);
0898         if (trc == 0)
0899             rc = 0;
0900         else if (trc != -ENOPARAM)
0901             return trc;
0902     }
0903     return rc;
0904 }
0905 
0906 int security_sb_alloc(struct super_block *sb)
0907 {
0908     int rc = lsm_superblock_alloc(sb);
0909 
0910     if (unlikely(rc))
0911         return rc;
0912     rc = call_int_hook(sb_alloc_security, 0, sb);
0913     if (unlikely(rc))
0914         security_sb_free(sb);
0915     return rc;
0916 }
0917 
0918 void security_sb_delete(struct super_block *sb)
0919 {
0920     call_void_hook(sb_delete, sb);
0921 }
0922 
0923 void security_sb_free(struct super_block *sb)
0924 {
0925     call_void_hook(sb_free_security, sb);
0926     kfree(sb->s_security);
0927     sb->s_security = NULL;
0928 }
0929 
0930 void security_free_mnt_opts(void **mnt_opts)
0931 {
0932     if (!*mnt_opts)
0933         return;
0934     call_void_hook(sb_free_mnt_opts, *mnt_opts);
0935     *mnt_opts = NULL;
0936 }
0937 EXPORT_SYMBOL(security_free_mnt_opts);
0938 
0939 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
0940 {
0941     return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
0942 }
0943 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
0944 
0945 int security_sb_mnt_opts_compat(struct super_block *sb,
0946                 void *mnt_opts)
0947 {
0948     return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
0949 }
0950 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
0951 
0952 int security_sb_remount(struct super_block *sb,
0953             void *mnt_opts)
0954 {
0955     return call_int_hook(sb_remount, 0, sb, mnt_opts);
0956 }
0957 EXPORT_SYMBOL(security_sb_remount);
0958 
0959 int security_sb_kern_mount(struct super_block *sb)
0960 {
0961     return call_int_hook(sb_kern_mount, 0, sb);
0962 }
0963 
0964 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
0965 {
0966     return call_int_hook(sb_show_options, 0, m, sb);
0967 }
0968 
0969 int security_sb_statfs(struct dentry *dentry)
0970 {
0971     return call_int_hook(sb_statfs, 0, dentry);
0972 }
0973 
0974 int security_sb_mount(const char *dev_name, const struct path *path,
0975                        const char *type, unsigned long flags, void *data)
0976 {
0977     return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
0978 }
0979 
0980 int security_sb_umount(struct vfsmount *mnt, int flags)
0981 {
0982     return call_int_hook(sb_umount, 0, mnt, flags);
0983 }
0984 
0985 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
0986 {
0987     return call_int_hook(sb_pivotroot, 0, old_path, new_path);
0988 }
0989 
0990 int security_sb_set_mnt_opts(struct super_block *sb,
0991                 void *mnt_opts,
0992                 unsigned long kern_flags,
0993                 unsigned long *set_kern_flags)
0994 {
0995     return call_int_hook(sb_set_mnt_opts,
0996                 mnt_opts ? -EOPNOTSUPP : 0, sb,
0997                 mnt_opts, kern_flags, set_kern_flags);
0998 }
0999 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1000 
1001 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1002                 struct super_block *newsb,
1003                 unsigned long kern_flags,
1004                 unsigned long *set_kern_flags)
1005 {
1006     return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1007                 kern_flags, set_kern_flags);
1008 }
1009 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1010 
1011 int security_move_mount(const struct path *from_path, const struct path *to_path)
1012 {
1013     return call_int_hook(move_mount, 0, from_path, to_path);
1014 }
1015 
1016 int security_path_notify(const struct path *path, u64 mask,
1017                 unsigned int obj_type)
1018 {
1019     return call_int_hook(path_notify, 0, path, mask, obj_type);
1020 }
1021 
1022 int security_inode_alloc(struct inode *inode)
1023 {
1024     int rc = lsm_inode_alloc(inode);
1025 
1026     if (unlikely(rc))
1027         return rc;
1028     rc = call_int_hook(inode_alloc_security, 0, inode);
1029     if (unlikely(rc))
1030         security_inode_free(inode);
1031     return rc;
1032 }
1033 
1034 static void inode_free_by_rcu(struct rcu_head *head)
1035 {
1036     /*
1037      * The rcu head is at the start of the inode blob
1038      */
1039     kmem_cache_free(lsm_inode_cache, head);
1040 }
1041 
1042 void security_inode_free(struct inode *inode)
1043 {
1044     integrity_inode_free(inode);
1045     call_void_hook(inode_free_security, inode);
1046     /*
1047      * The inode may still be referenced in a path walk and
1048      * a call to security_inode_permission() can be made
1049      * after inode_free_security() is called. Ideally, the VFS
1050      * wouldn't do this, but fixing that is a much harder
1051      * job. For now, simply free the i_security via RCU, and
1052      * leave the current inode->i_security pointer intact.
1053      * The inode will be freed after the RCU grace period too.
1054      */
1055     if (inode->i_security)
1056         call_rcu((struct rcu_head *)inode->i_security,
1057                 inode_free_by_rcu);
1058 }
1059 
1060 int security_dentry_init_security(struct dentry *dentry, int mode,
1061                   const struct qstr *name,
1062                   const char **xattr_name, void **ctx,
1063                   u32 *ctxlen)
1064 {
1065     struct security_hook_list *hp;
1066     int rc;
1067 
1068     /*
1069      * Only one module will provide a security context.
1070      */
1071     hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
1072         rc = hp->hook.dentry_init_security(dentry, mode, name,
1073                            xattr_name, ctx, ctxlen);
1074         if (rc != LSM_RET_DEFAULT(dentry_init_security))
1075             return rc;
1076     }
1077     return LSM_RET_DEFAULT(dentry_init_security);
1078 }
1079 EXPORT_SYMBOL(security_dentry_init_security);
1080 
1081 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1082                     struct qstr *name,
1083                     const struct cred *old, struct cred *new)
1084 {
1085     return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1086                 name, old, new);
1087 }
1088 EXPORT_SYMBOL(security_dentry_create_files_as);
1089 
1090 int security_inode_init_security(struct inode *inode, struct inode *dir,
1091                  const struct qstr *qstr,
1092                  const initxattrs initxattrs, void *fs_data)
1093 {
1094     struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1095     struct xattr *lsm_xattr, *evm_xattr, *xattr;
1096     int ret;
1097 
1098     if (unlikely(IS_PRIVATE(inode)))
1099         return 0;
1100 
1101     if (!initxattrs)
1102         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1103                      dir, qstr, NULL, NULL, NULL);
1104     memset(new_xattrs, 0, sizeof(new_xattrs));
1105     lsm_xattr = new_xattrs;
1106     ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1107                         &lsm_xattr->name,
1108                         &lsm_xattr->value,
1109                         &lsm_xattr->value_len);
1110     if (ret)
1111         goto out;
1112 
1113     evm_xattr = lsm_xattr + 1;
1114     ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1115     if (ret)
1116         goto out;
1117     ret = initxattrs(inode, new_xattrs, fs_data);
1118 out:
1119     for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1120         kfree(xattr->value);
1121     return (ret == -EOPNOTSUPP) ? 0 : ret;
1122 }
1123 EXPORT_SYMBOL(security_inode_init_security);
1124 
1125 int security_inode_init_security_anon(struct inode *inode,
1126                       const struct qstr *name,
1127                       const struct inode *context_inode)
1128 {
1129     return call_int_hook(inode_init_security_anon, 0, inode, name,
1130                  context_inode);
1131 }
1132 
1133 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1134                      const struct qstr *qstr, const char **name,
1135                      void **value, size_t *len)
1136 {
1137     if (unlikely(IS_PRIVATE(inode)))
1138         return -EOPNOTSUPP;
1139     return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1140                  qstr, name, value, len);
1141 }
1142 EXPORT_SYMBOL(security_old_inode_init_security);
1143 
1144 #ifdef CONFIG_SECURITY_PATH
1145 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1146             unsigned int dev)
1147 {
1148     if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1149         return 0;
1150     return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1151 }
1152 EXPORT_SYMBOL(security_path_mknod);
1153 
1154 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1155 {
1156     if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1157         return 0;
1158     return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1159 }
1160 EXPORT_SYMBOL(security_path_mkdir);
1161 
1162 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1163 {
1164     if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1165         return 0;
1166     return call_int_hook(path_rmdir, 0, dir, dentry);
1167 }
1168 
1169 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1170 {
1171     if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1172         return 0;
1173     return call_int_hook(path_unlink, 0, dir, dentry);
1174 }
1175 EXPORT_SYMBOL(security_path_unlink);
1176 
1177 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1178               const char *old_name)
1179 {
1180     if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1181         return 0;
1182     return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1183 }
1184 
1185 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1186                struct dentry *new_dentry)
1187 {
1188     if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1189         return 0;
1190     return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1191 }
1192 
1193 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1194              const struct path *new_dir, struct dentry *new_dentry,
1195              unsigned int flags)
1196 {
1197     if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1198              (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1199         return 0;
1200 
1201     return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1202                 new_dentry, flags);
1203 }
1204 EXPORT_SYMBOL(security_path_rename);
1205 
1206 int security_path_truncate(const struct path *path)
1207 {
1208     if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1209         return 0;
1210     return call_int_hook(path_truncate, 0, path);
1211 }
1212 
1213 int security_path_chmod(const struct path *path, umode_t mode)
1214 {
1215     if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1216         return 0;
1217     return call_int_hook(path_chmod, 0, path, mode);
1218 }
1219 
1220 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1221 {
1222     if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1223         return 0;
1224     return call_int_hook(path_chown, 0, path, uid, gid);
1225 }
1226 
1227 int security_path_chroot(const struct path *path)
1228 {
1229     return call_int_hook(path_chroot, 0, path);
1230 }
1231 #endif
1232 
1233 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1234 {
1235     if (unlikely(IS_PRIVATE(dir)))
1236         return 0;
1237     return call_int_hook(inode_create, 0, dir, dentry, mode);
1238 }
1239 EXPORT_SYMBOL_GPL(security_inode_create);
1240 
1241 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1242              struct dentry *new_dentry)
1243 {
1244     if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1245         return 0;
1246     return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1247 }
1248 
1249 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1250 {
1251     if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1252         return 0;
1253     return call_int_hook(inode_unlink, 0, dir, dentry);
1254 }
1255 
1256 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1257                 const char *old_name)
1258 {
1259     if (unlikely(IS_PRIVATE(dir)))
1260         return 0;
1261     return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1262 }
1263 
1264 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1265 {
1266     if (unlikely(IS_PRIVATE(dir)))
1267         return 0;
1268     return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1269 }
1270 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1271 
1272 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1273 {
1274     if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1275         return 0;
1276     return call_int_hook(inode_rmdir, 0, dir, dentry);
1277 }
1278 
1279 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1280 {
1281     if (unlikely(IS_PRIVATE(dir)))
1282         return 0;
1283     return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1284 }
1285 
1286 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1287                struct inode *new_dir, struct dentry *new_dentry,
1288                unsigned int flags)
1289 {
1290         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1291             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1292         return 0;
1293 
1294     if (flags & RENAME_EXCHANGE) {
1295         int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1296                              old_dir, old_dentry);
1297         if (err)
1298             return err;
1299     }
1300 
1301     return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1302                        new_dir, new_dentry);
1303 }
1304 
1305 int security_inode_readlink(struct dentry *dentry)
1306 {
1307     if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1308         return 0;
1309     return call_int_hook(inode_readlink, 0, dentry);
1310 }
1311 
1312 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1313                    bool rcu)
1314 {
1315     if (unlikely(IS_PRIVATE(inode)))
1316         return 0;
1317     return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1318 }
1319 
1320 int security_inode_permission(struct inode *inode, int mask)
1321 {
1322     if (unlikely(IS_PRIVATE(inode)))
1323         return 0;
1324     return call_int_hook(inode_permission, 0, inode, mask);
1325 }
1326 
1327 int security_inode_setattr(struct user_namespace *mnt_userns,
1328                struct dentry *dentry, struct iattr *attr)
1329 {
1330     int ret;
1331 
1332     if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1333         return 0;
1334     ret = call_int_hook(inode_setattr, 0, dentry, attr);
1335     if (ret)
1336         return ret;
1337     return evm_inode_setattr(mnt_userns, dentry, attr);
1338 }
1339 EXPORT_SYMBOL_GPL(security_inode_setattr);
1340 
1341 int security_inode_getattr(const struct path *path)
1342 {
1343     if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1344         return 0;
1345     return call_int_hook(inode_getattr, 0, path);
1346 }
1347 
1348 int security_inode_setxattr(struct user_namespace *mnt_userns,
1349                 struct dentry *dentry, const char *name,
1350                 const void *value, size_t size, int flags)
1351 {
1352     int ret;
1353 
1354     if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1355         return 0;
1356     /*
1357      * SELinux and Smack integrate the cap call,
1358      * so assume that all LSMs supplying this call do so.
1359      */
1360     ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1361                 size, flags);
1362 
1363     if (ret == 1)
1364         ret = cap_inode_setxattr(dentry, name, value, size, flags);
1365     if (ret)
1366         return ret;
1367     ret = ima_inode_setxattr(dentry, name, value, size);
1368     if (ret)
1369         return ret;
1370     return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1371 }
1372 
1373 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1374                   const void *value, size_t size, int flags)
1375 {
1376     if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1377         return;
1378     call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1379     evm_inode_post_setxattr(dentry, name, value, size);
1380 }
1381 
1382 int security_inode_getxattr(struct dentry *dentry, const char *name)
1383 {
1384     if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1385         return 0;
1386     return call_int_hook(inode_getxattr, 0, dentry, name);
1387 }
1388 
1389 int security_inode_listxattr(struct dentry *dentry)
1390 {
1391     if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1392         return 0;
1393     return call_int_hook(inode_listxattr, 0, dentry);
1394 }
1395 
1396 int security_inode_removexattr(struct user_namespace *mnt_userns,
1397                    struct dentry *dentry, const char *name)
1398 {
1399     int ret;
1400 
1401     if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1402         return 0;
1403     /*
1404      * SELinux and Smack integrate the cap call,
1405      * so assume that all LSMs supplying this call do so.
1406      */
1407     ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1408     if (ret == 1)
1409         ret = cap_inode_removexattr(mnt_userns, dentry, name);
1410     if (ret)
1411         return ret;
1412     ret = ima_inode_removexattr(dentry, name);
1413     if (ret)
1414         return ret;
1415     return evm_inode_removexattr(mnt_userns, dentry, name);
1416 }
1417 
1418 int security_inode_need_killpriv(struct dentry *dentry)
1419 {
1420     return call_int_hook(inode_need_killpriv, 0, dentry);
1421 }
1422 
1423 int security_inode_killpriv(struct user_namespace *mnt_userns,
1424                 struct dentry *dentry)
1425 {
1426     return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1427 }
1428 
1429 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1430                    struct inode *inode, const char *name,
1431                    void **buffer, bool alloc)
1432 {
1433     struct security_hook_list *hp;
1434     int rc;
1435 
1436     if (unlikely(IS_PRIVATE(inode)))
1437         return LSM_RET_DEFAULT(inode_getsecurity);
1438     /*
1439      * Only one module will provide an attribute with a given name.
1440      */
1441     hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1442         rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1443         if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1444             return rc;
1445     }
1446     return LSM_RET_DEFAULT(inode_getsecurity);
1447 }
1448 
1449 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1450 {
1451     struct security_hook_list *hp;
1452     int rc;
1453 
1454     if (unlikely(IS_PRIVATE(inode)))
1455         return LSM_RET_DEFAULT(inode_setsecurity);
1456     /*
1457      * Only one module will provide an attribute with a given name.
1458      */
1459     hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1460         rc = hp->hook.inode_setsecurity(inode, name, value, size,
1461                                 flags);
1462         if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1463             return rc;
1464     }
1465     return LSM_RET_DEFAULT(inode_setsecurity);
1466 }
1467 
1468 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1469 {
1470     if (unlikely(IS_PRIVATE(inode)))
1471         return 0;
1472     return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1473 }
1474 EXPORT_SYMBOL(security_inode_listsecurity);
1475 
1476 void security_inode_getsecid(struct inode *inode, u32 *secid)
1477 {
1478     call_void_hook(inode_getsecid, inode, secid);
1479 }
1480 
1481 int security_inode_copy_up(struct dentry *src, struct cred **new)
1482 {
1483     return call_int_hook(inode_copy_up, 0, src, new);
1484 }
1485 EXPORT_SYMBOL(security_inode_copy_up);
1486 
1487 int security_inode_copy_up_xattr(const char *name)
1488 {
1489     struct security_hook_list *hp;
1490     int rc;
1491 
1492     /*
1493      * The implementation can return 0 (accept the xattr), 1 (discard the
1494      * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1495      * any other error code incase of an error.
1496      */
1497     hlist_for_each_entry(hp,
1498         &security_hook_heads.inode_copy_up_xattr, list) {
1499         rc = hp->hook.inode_copy_up_xattr(name);
1500         if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1501             return rc;
1502     }
1503 
1504     return LSM_RET_DEFAULT(inode_copy_up_xattr);
1505 }
1506 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1507 
1508 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1509                   struct kernfs_node *kn)
1510 {
1511     return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1512 }
1513 
1514 int security_file_permission(struct file *file, int mask)
1515 {
1516     int ret;
1517 
1518     ret = call_int_hook(file_permission, 0, file, mask);
1519     if (ret)
1520         return ret;
1521 
1522     return fsnotify_perm(file, mask);
1523 }
1524 
1525 int security_file_alloc(struct file *file)
1526 {
1527     int rc = lsm_file_alloc(file);
1528 
1529     if (rc)
1530         return rc;
1531     rc = call_int_hook(file_alloc_security, 0, file);
1532     if (unlikely(rc))
1533         security_file_free(file);
1534     return rc;
1535 }
1536 
1537 void security_file_free(struct file *file)
1538 {
1539     void *blob;
1540 
1541     call_void_hook(file_free_security, file);
1542 
1543     blob = file->f_security;
1544     if (blob) {
1545         file->f_security = NULL;
1546         kmem_cache_free(lsm_file_cache, blob);
1547     }
1548 }
1549 
1550 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1551 {
1552     return call_int_hook(file_ioctl, 0, file, cmd, arg);
1553 }
1554 EXPORT_SYMBOL_GPL(security_file_ioctl);
1555 
1556 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1557 {
1558     /*
1559      * Does we have PROT_READ and does the application expect
1560      * it to imply PROT_EXEC?  If not, nothing to talk about...
1561      */
1562     if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1563         return prot;
1564     if (!(current->personality & READ_IMPLIES_EXEC))
1565         return prot;
1566     /*
1567      * if that's an anonymous mapping, let it.
1568      */
1569     if (!file)
1570         return prot | PROT_EXEC;
1571     /*
1572      * ditto if it's not on noexec mount, except that on !MMU we need
1573      * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1574      */
1575     if (!path_noexec(&file->f_path)) {
1576 #ifndef CONFIG_MMU
1577         if (file->f_op->mmap_capabilities) {
1578             unsigned caps = file->f_op->mmap_capabilities(file);
1579             if (!(caps & NOMMU_MAP_EXEC))
1580                 return prot;
1581         }
1582 #endif
1583         return prot | PROT_EXEC;
1584     }
1585     /* anything on noexec mount won't get PROT_EXEC */
1586     return prot;
1587 }
1588 
1589 int security_mmap_file(struct file *file, unsigned long prot,
1590             unsigned long flags)
1591 {
1592     int ret;
1593     ret = call_int_hook(mmap_file, 0, file, prot,
1594                     mmap_prot(file, prot), flags);
1595     if (ret)
1596         return ret;
1597     return ima_file_mmap(file, prot);
1598 }
1599 
1600 int security_mmap_addr(unsigned long addr)
1601 {
1602     return call_int_hook(mmap_addr, 0, addr);
1603 }
1604 
1605 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1606                 unsigned long prot)
1607 {
1608     int ret;
1609 
1610     ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1611     if (ret)
1612         return ret;
1613     return ima_file_mprotect(vma, prot);
1614 }
1615 
1616 int security_file_lock(struct file *file, unsigned int cmd)
1617 {
1618     return call_int_hook(file_lock, 0, file, cmd);
1619 }
1620 
1621 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1622 {
1623     return call_int_hook(file_fcntl, 0, file, cmd, arg);
1624 }
1625 
1626 void security_file_set_fowner(struct file *file)
1627 {
1628     call_void_hook(file_set_fowner, file);
1629 }
1630 
1631 int security_file_send_sigiotask(struct task_struct *tsk,
1632                   struct fown_struct *fown, int sig)
1633 {
1634     return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1635 }
1636 
1637 int security_file_receive(struct file *file)
1638 {
1639     return call_int_hook(file_receive, 0, file);
1640 }
1641 
1642 int security_file_open(struct file *file)
1643 {
1644     int ret;
1645 
1646     ret = call_int_hook(file_open, 0, file);
1647     if (ret)
1648         return ret;
1649 
1650     return fsnotify_perm(file, MAY_OPEN);
1651 }
1652 
1653 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1654 {
1655     int rc = lsm_task_alloc(task);
1656 
1657     if (rc)
1658         return rc;
1659     rc = call_int_hook(task_alloc, 0, task, clone_flags);
1660     if (unlikely(rc))
1661         security_task_free(task);
1662     return rc;
1663 }
1664 
1665 void security_task_free(struct task_struct *task)
1666 {
1667     call_void_hook(task_free, task);
1668 
1669     kfree(task->security);
1670     task->security = NULL;
1671 }
1672 
1673 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1674 {
1675     int rc = lsm_cred_alloc(cred, gfp);
1676 
1677     if (rc)
1678         return rc;
1679 
1680     rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1681     if (unlikely(rc))
1682         security_cred_free(cred);
1683     return rc;
1684 }
1685 
1686 void security_cred_free(struct cred *cred)
1687 {
1688     /*
1689      * There is a failure case in prepare_creds() that
1690      * may result in a call here with ->security being NULL.
1691      */
1692     if (unlikely(cred->security == NULL))
1693         return;
1694 
1695     call_void_hook(cred_free, cred);
1696 
1697     kfree(cred->security);
1698     cred->security = NULL;
1699 }
1700 
1701 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1702 {
1703     int rc = lsm_cred_alloc(new, gfp);
1704 
1705     if (rc)
1706         return rc;
1707 
1708     rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1709     if (unlikely(rc))
1710         security_cred_free(new);
1711     return rc;
1712 }
1713 
1714 void security_transfer_creds(struct cred *new, const struct cred *old)
1715 {
1716     call_void_hook(cred_transfer, new, old);
1717 }
1718 
1719 void security_cred_getsecid(const struct cred *c, u32 *secid)
1720 {
1721     *secid = 0;
1722     call_void_hook(cred_getsecid, c, secid);
1723 }
1724 EXPORT_SYMBOL(security_cred_getsecid);
1725 
1726 int security_kernel_act_as(struct cred *new, u32 secid)
1727 {
1728     return call_int_hook(kernel_act_as, 0, new, secid);
1729 }
1730 
1731 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1732 {
1733     return call_int_hook(kernel_create_files_as, 0, new, inode);
1734 }
1735 
1736 int security_kernel_module_request(char *kmod_name)
1737 {
1738     int ret;
1739 
1740     ret = call_int_hook(kernel_module_request, 0, kmod_name);
1741     if (ret)
1742         return ret;
1743     return integrity_kernel_module_request(kmod_name);
1744 }
1745 
1746 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1747                   bool contents)
1748 {
1749     int ret;
1750 
1751     ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1752     if (ret)
1753         return ret;
1754     return ima_read_file(file, id, contents);
1755 }
1756 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1757 
1758 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1759                    enum kernel_read_file_id id)
1760 {
1761     int ret;
1762 
1763     ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1764     if (ret)
1765         return ret;
1766     return ima_post_read_file(file, buf, size, id);
1767 }
1768 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1769 
1770 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1771 {
1772     int ret;
1773 
1774     ret = call_int_hook(kernel_load_data, 0, id, contents);
1775     if (ret)
1776         return ret;
1777     return ima_load_data(id, contents);
1778 }
1779 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1780 
1781 int security_kernel_post_load_data(char *buf, loff_t size,
1782                    enum kernel_load_data_id id,
1783                    char *description)
1784 {
1785     int ret;
1786 
1787     ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1788                 description);
1789     if (ret)
1790         return ret;
1791     return ima_post_load_data(buf, size, id, description);
1792 }
1793 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1794 
1795 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1796                  int flags)
1797 {
1798     return call_int_hook(task_fix_setuid, 0, new, old, flags);
1799 }
1800 
1801 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1802                  int flags)
1803 {
1804     return call_int_hook(task_fix_setgid, 0, new, old, flags);
1805 }
1806 
1807 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
1808 {
1809     return call_int_hook(task_fix_setgroups, 0, new, old);
1810 }
1811 
1812 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1813 {
1814     return call_int_hook(task_setpgid, 0, p, pgid);
1815 }
1816 
1817 int security_task_getpgid(struct task_struct *p)
1818 {
1819     return call_int_hook(task_getpgid, 0, p);
1820 }
1821 
1822 int security_task_getsid(struct task_struct *p)
1823 {
1824     return call_int_hook(task_getsid, 0, p);
1825 }
1826 
1827 void security_current_getsecid_subj(u32 *secid)
1828 {
1829     *secid = 0;
1830     call_void_hook(current_getsecid_subj, secid);
1831 }
1832 EXPORT_SYMBOL(security_current_getsecid_subj);
1833 
1834 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1835 {
1836     *secid = 0;
1837     call_void_hook(task_getsecid_obj, p, secid);
1838 }
1839 EXPORT_SYMBOL(security_task_getsecid_obj);
1840 
1841 int security_task_setnice(struct task_struct *p, int nice)
1842 {
1843     return call_int_hook(task_setnice, 0, p, nice);
1844 }
1845 
1846 int security_task_setioprio(struct task_struct *p, int ioprio)
1847 {
1848     return call_int_hook(task_setioprio, 0, p, ioprio);
1849 }
1850 
1851 int security_task_getioprio(struct task_struct *p)
1852 {
1853     return call_int_hook(task_getioprio, 0, p);
1854 }
1855 
1856 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1857               unsigned int flags)
1858 {
1859     return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1860 }
1861 
1862 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1863         struct rlimit *new_rlim)
1864 {
1865     return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1866 }
1867 
1868 int security_task_setscheduler(struct task_struct *p)
1869 {
1870     return call_int_hook(task_setscheduler, 0, p);
1871 }
1872 
1873 int security_task_getscheduler(struct task_struct *p)
1874 {
1875     return call_int_hook(task_getscheduler, 0, p);
1876 }
1877 
1878 int security_task_movememory(struct task_struct *p)
1879 {
1880     return call_int_hook(task_movememory, 0, p);
1881 }
1882 
1883 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1884             int sig, const struct cred *cred)
1885 {
1886     return call_int_hook(task_kill, 0, p, info, sig, cred);
1887 }
1888 
1889 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1890              unsigned long arg4, unsigned long arg5)
1891 {
1892     int thisrc;
1893     int rc = LSM_RET_DEFAULT(task_prctl);
1894     struct security_hook_list *hp;
1895 
1896     hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1897         thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1898         if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1899             rc = thisrc;
1900             if (thisrc != 0)
1901                 break;
1902         }
1903     }
1904     return rc;
1905 }
1906 
1907 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1908 {
1909     call_void_hook(task_to_inode, p, inode);
1910 }
1911 
1912 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1913 {
1914     return call_int_hook(ipc_permission, 0, ipcp, flag);
1915 }
1916 
1917 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1918 {
1919     *secid = 0;
1920     call_void_hook(ipc_getsecid, ipcp, secid);
1921 }
1922 
1923 int security_msg_msg_alloc(struct msg_msg *msg)
1924 {
1925     int rc = lsm_msg_msg_alloc(msg);
1926 
1927     if (unlikely(rc))
1928         return rc;
1929     rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1930     if (unlikely(rc))
1931         security_msg_msg_free(msg);
1932     return rc;
1933 }
1934 
1935 void security_msg_msg_free(struct msg_msg *msg)
1936 {
1937     call_void_hook(msg_msg_free_security, msg);
1938     kfree(msg->security);
1939     msg->security = NULL;
1940 }
1941 
1942 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1943 {
1944     int rc = lsm_ipc_alloc(msq);
1945 
1946     if (unlikely(rc))
1947         return rc;
1948     rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1949     if (unlikely(rc))
1950         security_msg_queue_free(msq);
1951     return rc;
1952 }
1953 
1954 void security_msg_queue_free(struct kern_ipc_perm *msq)
1955 {
1956     call_void_hook(msg_queue_free_security, msq);
1957     kfree(msq->security);
1958     msq->security = NULL;
1959 }
1960 
1961 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1962 {
1963     return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1964 }
1965 
1966 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1967 {
1968     return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1969 }
1970 
1971 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1972                    struct msg_msg *msg, int msqflg)
1973 {
1974     return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1975 }
1976 
1977 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1978                    struct task_struct *target, long type, int mode)
1979 {
1980     return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1981 }
1982 
1983 int security_shm_alloc(struct kern_ipc_perm *shp)
1984 {
1985     int rc = lsm_ipc_alloc(shp);
1986 
1987     if (unlikely(rc))
1988         return rc;
1989     rc = call_int_hook(shm_alloc_security, 0, shp);
1990     if (unlikely(rc))
1991         security_shm_free(shp);
1992     return rc;
1993 }
1994 
1995 void security_shm_free(struct kern_ipc_perm *shp)
1996 {
1997     call_void_hook(shm_free_security, shp);
1998     kfree(shp->security);
1999     shp->security = NULL;
2000 }
2001 
2002 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
2003 {
2004     return call_int_hook(shm_associate, 0, shp, shmflg);
2005 }
2006 
2007 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
2008 {
2009     return call_int_hook(shm_shmctl, 0, shp, cmd);
2010 }
2011 
2012 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2013 {
2014     return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2015 }
2016 
2017 int security_sem_alloc(struct kern_ipc_perm *sma)
2018 {
2019     int rc = lsm_ipc_alloc(sma);
2020 
2021     if (unlikely(rc))
2022         return rc;
2023     rc = call_int_hook(sem_alloc_security, 0, sma);
2024     if (unlikely(rc))
2025         security_sem_free(sma);
2026     return rc;
2027 }
2028 
2029 void security_sem_free(struct kern_ipc_perm *sma)
2030 {
2031     call_void_hook(sem_free_security, sma);
2032     kfree(sma->security);
2033     sma->security = NULL;
2034 }
2035 
2036 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2037 {
2038     return call_int_hook(sem_associate, 0, sma, semflg);
2039 }
2040 
2041 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2042 {
2043     return call_int_hook(sem_semctl, 0, sma, cmd);
2044 }
2045 
2046 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2047             unsigned nsops, int alter)
2048 {
2049     return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2050 }
2051 
2052 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2053 {
2054     if (unlikely(inode && IS_PRIVATE(inode)))
2055         return;
2056     call_void_hook(d_instantiate, dentry, inode);
2057 }
2058 EXPORT_SYMBOL(security_d_instantiate);
2059 
2060 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2061                 char **value)
2062 {
2063     struct security_hook_list *hp;
2064 
2065     hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2066         if (lsm != NULL && strcmp(lsm, hp->lsm))
2067             continue;
2068         return hp->hook.getprocattr(p, name, value);
2069     }
2070     return LSM_RET_DEFAULT(getprocattr);
2071 }
2072 
2073 int security_setprocattr(const char *lsm, const char *name, void *value,
2074              size_t size)
2075 {
2076     struct security_hook_list *hp;
2077 
2078     hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2079         if (lsm != NULL && strcmp(lsm, hp->lsm))
2080             continue;
2081         return hp->hook.setprocattr(name, value, size);
2082     }
2083     return LSM_RET_DEFAULT(setprocattr);
2084 }
2085 
2086 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2087 {
2088     return call_int_hook(netlink_send, 0, sk, skb);
2089 }
2090 
2091 int security_ismaclabel(const char *name)
2092 {
2093     return call_int_hook(ismaclabel, 0, name);
2094 }
2095 EXPORT_SYMBOL(security_ismaclabel);
2096 
2097 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2098 {
2099     struct security_hook_list *hp;
2100     int rc;
2101 
2102     /*
2103      * Currently, only one LSM can implement secid_to_secctx (i.e this
2104      * LSM hook is not "stackable").
2105      */
2106     hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2107         rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2108         if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2109             return rc;
2110     }
2111 
2112     return LSM_RET_DEFAULT(secid_to_secctx);
2113 }
2114 EXPORT_SYMBOL(security_secid_to_secctx);
2115 
2116 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2117 {
2118     *secid = 0;
2119     return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2120 }
2121 EXPORT_SYMBOL(security_secctx_to_secid);
2122 
2123 void security_release_secctx(char *secdata, u32 seclen)
2124 {
2125     call_void_hook(release_secctx, secdata, seclen);
2126 }
2127 EXPORT_SYMBOL(security_release_secctx);
2128 
2129 void security_inode_invalidate_secctx(struct inode *inode)
2130 {
2131     call_void_hook(inode_invalidate_secctx, inode);
2132 }
2133 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2134 
2135 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2136 {
2137     return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2138 }
2139 EXPORT_SYMBOL(security_inode_notifysecctx);
2140 
2141 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2142 {
2143     return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2144 }
2145 EXPORT_SYMBOL(security_inode_setsecctx);
2146 
2147 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2148 {
2149     return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2150 }
2151 EXPORT_SYMBOL(security_inode_getsecctx);
2152 
2153 #ifdef CONFIG_WATCH_QUEUE
2154 int security_post_notification(const struct cred *w_cred,
2155                    const struct cred *cred,
2156                    struct watch_notification *n)
2157 {
2158     return call_int_hook(post_notification, 0, w_cred, cred, n);
2159 }
2160 #endif /* CONFIG_WATCH_QUEUE */
2161 
2162 #ifdef CONFIG_KEY_NOTIFICATIONS
2163 int security_watch_key(struct key *key)
2164 {
2165     return call_int_hook(watch_key, 0, key);
2166 }
2167 #endif
2168 
2169 #ifdef CONFIG_SECURITY_NETWORK
2170 
2171 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2172 {
2173     return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2174 }
2175 EXPORT_SYMBOL(security_unix_stream_connect);
2176 
2177 int security_unix_may_send(struct socket *sock,  struct socket *other)
2178 {
2179     return call_int_hook(unix_may_send, 0, sock, other);
2180 }
2181 EXPORT_SYMBOL(security_unix_may_send);
2182 
2183 int security_socket_create(int family, int type, int protocol, int kern)
2184 {
2185     return call_int_hook(socket_create, 0, family, type, protocol, kern);
2186 }
2187 
2188 int security_socket_post_create(struct socket *sock, int family,
2189                 int type, int protocol, int kern)
2190 {
2191     return call_int_hook(socket_post_create, 0, sock, family, type,
2192                         protocol, kern);
2193 }
2194 
2195 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2196 {
2197     return call_int_hook(socket_socketpair, 0, socka, sockb);
2198 }
2199 EXPORT_SYMBOL(security_socket_socketpair);
2200 
2201 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2202 {
2203     return call_int_hook(socket_bind, 0, sock, address, addrlen);
2204 }
2205 
2206 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2207 {
2208     return call_int_hook(socket_connect, 0, sock, address, addrlen);
2209 }
2210 
2211 int security_socket_listen(struct socket *sock, int backlog)
2212 {
2213     return call_int_hook(socket_listen, 0, sock, backlog);
2214 }
2215 
2216 int security_socket_accept(struct socket *sock, struct socket *newsock)
2217 {
2218     return call_int_hook(socket_accept, 0, sock, newsock);
2219 }
2220 
2221 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2222 {
2223     return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2224 }
2225 
2226 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2227                 int size, int flags)
2228 {
2229     return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2230 }
2231 
2232 int security_socket_getsockname(struct socket *sock)
2233 {
2234     return call_int_hook(socket_getsockname, 0, sock);
2235 }
2236 
2237 int security_socket_getpeername(struct socket *sock)
2238 {
2239     return call_int_hook(socket_getpeername, 0, sock);
2240 }
2241 
2242 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2243 {
2244     return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2245 }
2246 
2247 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2248 {
2249     return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2250 }
2251 
2252 int security_socket_shutdown(struct socket *sock, int how)
2253 {
2254     return call_int_hook(socket_shutdown, 0, sock, how);
2255 }
2256 
2257 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2258 {
2259     return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2260 }
2261 EXPORT_SYMBOL(security_sock_rcv_skb);
2262 
2263 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2264                       int __user *optlen, unsigned len)
2265 {
2266     return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2267                 optval, optlen, len);
2268 }
2269 
2270 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2271 {
2272     return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2273                  skb, secid);
2274 }
2275 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2276 
2277 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2278 {
2279     return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2280 }
2281 
2282 void security_sk_free(struct sock *sk)
2283 {
2284     call_void_hook(sk_free_security, sk);
2285 }
2286 
2287 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2288 {
2289     call_void_hook(sk_clone_security, sk, newsk);
2290 }
2291 EXPORT_SYMBOL(security_sk_clone);
2292 
2293 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2294 {
2295     call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2296 }
2297 EXPORT_SYMBOL(security_sk_classify_flow);
2298 
2299 void security_req_classify_flow(const struct request_sock *req,
2300                 struct flowi_common *flic)
2301 {
2302     call_void_hook(req_classify_flow, req, flic);
2303 }
2304 EXPORT_SYMBOL(security_req_classify_flow);
2305 
2306 void security_sock_graft(struct sock *sk, struct socket *parent)
2307 {
2308     call_void_hook(sock_graft, sk, parent);
2309 }
2310 EXPORT_SYMBOL(security_sock_graft);
2311 
2312 int security_inet_conn_request(const struct sock *sk,
2313             struct sk_buff *skb, struct request_sock *req)
2314 {
2315     return call_int_hook(inet_conn_request, 0, sk, skb, req);
2316 }
2317 EXPORT_SYMBOL(security_inet_conn_request);
2318 
2319 void security_inet_csk_clone(struct sock *newsk,
2320             const struct request_sock *req)
2321 {
2322     call_void_hook(inet_csk_clone, newsk, req);
2323 }
2324 
2325 void security_inet_conn_established(struct sock *sk,
2326             struct sk_buff *skb)
2327 {
2328     call_void_hook(inet_conn_established, sk, skb);
2329 }
2330 EXPORT_SYMBOL(security_inet_conn_established);
2331 
2332 int security_secmark_relabel_packet(u32 secid)
2333 {
2334     return call_int_hook(secmark_relabel_packet, 0, secid);
2335 }
2336 EXPORT_SYMBOL(security_secmark_relabel_packet);
2337 
2338 void security_secmark_refcount_inc(void)
2339 {
2340     call_void_hook(secmark_refcount_inc);
2341 }
2342 EXPORT_SYMBOL(security_secmark_refcount_inc);
2343 
2344 void security_secmark_refcount_dec(void)
2345 {
2346     call_void_hook(secmark_refcount_dec);
2347 }
2348 EXPORT_SYMBOL(security_secmark_refcount_dec);
2349 
2350 int security_tun_dev_alloc_security(void **security)
2351 {
2352     return call_int_hook(tun_dev_alloc_security, 0, security);
2353 }
2354 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2355 
2356 void security_tun_dev_free_security(void *security)
2357 {
2358     call_void_hook(tun_dev_free_security, security);
2359 }
2360 EXPORT_SYMBOL(security_tun_dev_free_security);
2361 
2362 int security_tun_dev_create(void)
2363 {
2364     return call_int_hook(tun_dev_create, 0);
2365 }
2366 EXPORT_SYMBOL(security_tun_dev_create);
2367 
2368 int security_tun_dev_attach_queue(void *security)
2369 {
2370     return call_int_hook(tun_dev_attach_queue, 0, security);
2371 }
2372 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2373 
2374 int security_tun_dev_attach(struct sock *sk, void *security)
2375 {
2376     return call_int_hook(tun_dev_attach, 0, sk, security);
2377 }
2378 EXPORT_SYMBOL(security_tun_dev_attach);
2379 
2380 int security_tun_dev_open(void *security)
2381 {
2382     return call_int_hook(tun_dev_open, 0, security);
2383 }
2384 EXPORT_SYMBOL(security_tun_dev_open);
2385 
2386 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2387 {
2388     return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2389 }
2390 EXPORT_SYMBOL(security_sctp_assoc_request);
2391 
2392 int security_sctp_bind_connect(struct sock *sk, int optname,
2393                    struct sockaddr *address, int addrlen)
2394 {
2395     return call_int_hook(sctp_bind_connect, 0, sk, optname,
2396                  address, addrlen);
2397 }
2398 EXPORT_SYMBOL(security_sctp_bind_connect);
2399 
2400 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2401                 struct sock *newsk)
2402 {
2403     call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2404 }
2405 EXPORT_SYMBOL(security_sctp_sk_clone);
2406 
2407 int security_sctp_assoc_established(struct sctp_association *asoc,
2408                     struct sk_buff *skb)
2409 {
2410     return call_int_hook(sctp_assoc_established, 0, asoc, skb);
2411 }
2412 EXPORT_SYMBOL(security_sctp_assoc_established);
2413 
2414 #endif  /* CONFIG_SECURITY_NETWORK */
2415 
2416 #ifdef CONFIG_SECURITY_INFINIBAND
2417 
2418 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2419 {
2420     return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2421 }
2422 EXPORT_SYMBOL(security_ib_pkey_access);
2423 
2424 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2425 {
2426     return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2427 }
2428 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2429 
2430 int security_ib_alloc_security(void **sec)
2431 {
2432     return call_int_hook(ib_alloc_security, 0, sec);
2433 }
2434 EXPORT_SYMBOL(security_ib_alloc_security);
2435 
2436 void security_ib_free_security(void *sec)
2437 {
2438     call_void_hook(ib_free_security, sec);
2439 }
2440 EXPORT_SYMBOL(security_ib_free_security);
2441 #endif  /* CONFIG_SECURITY_INFINIBAND */
2442 
2443 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2444 
2445 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2446                    struct xfrm_user_sec_ctx *sec_ctx,
2447                    gfp_t gfp)
2448 {
2449     return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2450 }
2451 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2452 
2453 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2454                   struct xfrm_sec_ctx **new_ctxp)
2455 {
2456     return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2457 }
2458 
2459 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2460 {
2461     call_void_hook(xfrm_policy_free_security, ctx);
2462 }
2463 EXPORT_SYMBOL(security_xfrm_policy_free);
2464 
2465 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2466 {
2467     return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2468 }
2469 
2470 int security_xfrm_state_alloc(struct xfrm_state *x,
2471                   struct xfrm_user_sec_ctx *sec_ctx)
2472 {
2473     return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2474 }
2475 EXPORT_SYMBOL(security_xfrm_state_alloc);
2476 
2477 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2478                       struct xfrm_sec_ctx *polsec, u32 secid)
2479 {
2480     return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2481 }
2482 
2483 int security_xfrm_state_delete(struct xfrm_state *x)
2484 {
2485     return call_int_hook(xfrm_state_delete_security, 0, x);
2486 }
2487 EXPORT_SYMBOL(security_xfrm_state_delete);
2488 
2489 void security_xfrm_state_free(struct xfrm_state *x)
2490 {
2491     call_void_hook(xfrm_state_free_security, x);
2492 }
2493 
2494 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2495 {
2496     return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2497 }
2498 
2499 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2500                        struct xfrm_policy *xp,
2501                        const struct flowi_common *flic)
2502 {
2503     struct security_hook_list *hp;
2504     int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2505 
2506     /*
2507      * Since this function is expected to return 0 or 1, the judgment
2508      * becomes difficult if multiple LSMs supply this call. Fortunately,
2509      * we can use the first LSM's judgment because currently only SELinux
2510      * supplies this call.
2511      *
2512      * For speed optimization, we explicitly break the loop rather than
2513      * using the macro
2514      */
2515     hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2516                 list) {
2517         rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2518         break;
2519     }
2520     return rc;
2521 }
2522 
2523 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2524 {
2525     return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2526 }
2527 
2528 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2529 {
2530     int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2531                 0);
2532 
2533     BUG_ON(rc);
2534 }
2535 EXPORT_SYMBOL(security_skb_classify_flow);
2536 
2537 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2538 
2539 #ifdef CONFIG_KEYS
2540 
2541 int security_key_alloc(struct key *key, const struct cred *cred,
2542                unsigned long flags)
2543 {
2544     return call_int_hook(key_alloc, 0, key, cred, flags);
2545 }
2546 
2547 void security_key_free(struct key *key)
2548 {
2549     call_void_hook(key_free, key);
2550 }
2551 
2552 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2553                 enum key_need_perm need_perm)
2554 {
2555     return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2556 }
2557 
2558 int security_key_getsecurity(struct key *key, char **_buffer)
2559 {
2560     *_buffer = NULL;
2561     return call_int_hook(key_getsecurity, 0, key, _buffer);
2562 }
2563 
2564 #endif  /* CONFIG_KEYS */
2565 
2566 #ifdef CONFIG_AUDIT
2567 
2568 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2569 {
2570     return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2571 }
2572 
2573 int security_audit_rule_known(struct audit_krule *krule)
2574 {
2575     return call_int_hook(audit_rule_known, 0, krule);
2576 }
2577 
2578 void security_audit_rule_free(void *lsmrule)
2579 {
2580     call_void_hook(audit_rule_free, lsmrule);
2581 }
2582 
2583 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2584 {
2585     return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2586 }
2587 #endif /* CONFIG_AUDIT */
2588 
2589 #ifdef CONFIG_BPF_SYSCALL
2590 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2591 {
2592     return call_int_hook(bpf, 0, cmd, attr, size);
2593 }
2594 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2595 {
2596     return call_int_hook(bpf_map, 0, map, fmode);
2597 }
2598 int security_bpf_prog(struct bpf_prog *prog)
2599 {
2600     return call_int_hook(bpf_prog, 0, prog);
2601 }
2602 int security_bpf_map_alloc(struct bpf_map *map)
2603 {
2604     return call_int_hook(bpf_map_alloc_security, 0, map);
2605 }
2606 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2607 {
2608     return call_int_hook(bpf_prog_alloc_security, 0, aux);
2609 }
2610 void security_bpf_map_free(struct bpf_map *map)
2611 {
2612     call_void_hook(bpf_map_free_security, map);
2613 }
2614 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2615 {
2616     call_void_hook(bpf_prog_free_security, aux);
2617 }
2618 #endif /* CONFIG_BPF_SYSCALL */
2619 
2620 int security_locked_down(enum lockdown_reason what)
2621 {
2622     return call_int_hook(locked_down, 0, what);
2623 }
2624 EXPORT_SYMBOL(security_locked_down);
2625 
2626 #ifdef CONFIG_PERF_EVENTS
2627 int security_perf_event_open(struct perf_event_attr *attr, int type)
2628 {
2629     return call_int_hook(perf_event_open, 0, attr, type);
2630 }
2631 
2632 int security_perf_event_alloc(struct perf_event *event)
2633 {
2634     return call_int_hook(perf_event_alloc, 0, event);
2635 }
2636 
2637 void security_perf_event_free(struct perf_event *event)
2638 {
2639     call_void_hook(perf_event_free, event);
2640 }
2641 
2642 int security_perf_event_read(struct perf_event *event)
2643 {
2644     return call_int_hook(perf_event_read, 0, event);
2645 }
2646 
2647 int security_perf_event_write(struct perf_event *event)
2648 {
2649     return call_int_hook(perf_event_write, 0, event);
2650 }
2651 #endif /* CONFIG_PERF_EVENTS */
2652 
2653 #ifdef CONFIG_IO_URING
2654 int security_uring_override_creds(const struct cred *new)
2655 {
2656     return call_int_hook(uring_override_creds, 0, new);
2657 }
2658 
2659 int security_uring_sqpoll(void)
2660 {
2661     return call_int_hook(uring_sqpoll, 0);
2662 }
2663 int security_uring_cmd(struct io_uring_cmd *ioucmd)
2664 {
2665     return call_int_hook(uring_cmd, 0, ioucmd);
2666 }
2667 #endif /* CONFIG_IO_URING */