Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /* Userspace key control operations
0003  *
0004  * Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
0005  * Written by David Howells (dhowells@redhat.com)
0006  */
0007 
0008 #include <linux/init.h>
0009 #include <linux/sched.h>
0010 #include <linux/sched/task.h>
0011 #include <linux/slab.h>
0012 #include <linux/syscalls.h>
0013 #include <linux/key.h>
0014 #include <linux/keyctl.h>
0015 #include <linux/fs.h>
0016 #include <linux/capability.h>
0017 #include <linux/cred.h>
0018 #include <linux/string.h>
0019 #include <linux/err.h>
0020 #include <linux/vmalloc.h>
0021 #include <linux/security.h>
0022 #include <linux/uio.h>
0023 #include <linux/uaccess.h>
0024 #include <keys/request_key_auth-type.h>
0025 #include "internal.h"
0026 
0027 #define KEY_MAX_DESC_SIZE 4096
0028 
0029 static const unsigned char keyrings_capabilities[2] = {
0030     [0] = (KEYCTL_CAPS0_CAPABILITIES |
0031            (IS_ENABLED(CONFIG_PERSISTENT_KEYRINGS)  ? KEYCTL_CAPS0_PERSISTENT_KEYRINGS : 0) |
0032            (IS_ENABLED(CONFIG_KEY_DH_OPERATIONS)    ? KEYCTL_CAPS0_DIFFIE_HELLMAN : 0) |
0033            (IS_ENABLED(CONFIG_ASYMMETRIC_KEY_TYPE)  ? KEYCTL_CAPS0_PUBLIC_KEY : 0) |
0034            (IS_ENABLED(CONFIG_BIG_KEYS)     ? KEYCTL_CAPS0_BIG_KEY : 0) |
0035            KEYCTL_CAPS0_INVALIDATE |
0036            KEYCTL_CAPS0_RESTRICT_KEYRING |
0037            KEYCTL_CAPS0_MOVE
0038            ),
0039     [1] = (KEYCTL_CAPS1_NS_KEYRING_NAME |
0040            KEYCTL_CAPS1_NS_KEY_TAG |
0041            (IS_ENABLED(CONFIG_KEY_NOTIFICATIONS)    ? KEYCTL_CAPS1_NOTIFICATIONS : 0)
0042            ),
0043 };
0044 
0045 static int key_get_type_from_user(char *type,
0046                   const char __user *_type,
0047                   unsigned len)
0048 {
0049     int ret;
0050 
0051     ret = strncpy_from_user(type, _type, len);
0052     if (ret < 0)
0053         return ret;
0054     if (ret == 0 || ret >= len)
0055         return -EINVAL;
0056     if (type[0] == '.')
0057         return -EPERM;
0058     type[len - 1] = '\0';
0059     return 0;
0060 }
0061 
0062 /*
0063  * Extract the description of a new key from userspace and either add it as a
0064  * new key to the specified keyring or update a matching key in that keyring.
0065  *
0066  * If the description is NULL or an empty string, the key type is asked to
0067  * generate one from the payload.
0068  *
0069  * The keyring must be writable so that we can attach the key to it.
0070  *
0071  * If successful, the new key's serial number is returned, otherwise an error
0072  * code is returned.
0073  */
0074 SYSCALL_DEFINE5(add_key, const char __user *, _type,
0075         const char __user *, _description,
0076         const void __user *, _payload,
0077         size_t, plen,
0078         key_serial_t, ringid)
0079 {
0080     key_ref_t keyring_ref, key_ref;
0081     char type[32], *description;
0082     void *payload;
0083     long ret;
0084 
0085     ret = -EINVAL;
0086     if (plen > 1024 * 1024 - 1)
0087         goto error;
0088 
0089     /* draw all the data into kernel space */
0090     ret = key_get_type_from_user(type, _type, sizeof(type));
0091     if (ret < 0)
0092         goto error;
0093 
0094     description = NULL;
0095     if (_description) {
0096         description = strndup_user(_description, KEY_MAX_DESC_SIZE);
0097         if (IS_ERR(description)) {
0098             ret = PTR_ERR(description);
0099             goto error;
0100         }
0101         if (!*description) {
0102             kfree(description);
0103             description = NULL;
0104         } else if ((description[0] == '.') &&
0105                (strncmp(type, "keyring", 7) == 0)) {
0106             ret = -EPERM;
0107             goto error2;
0108         }
0109     }
0110 
0111     /* pull the payload in if one was supplied */
0112     payload = NULL;
0113 
0114     if (plen) {
0115         ret = -ENOMEM;
0116         payload = kvmalloc(plen, GFP_KERNEL);
0117         if (!payload)
0118             goto error2;
0119 
0120         ret = -EFAULT;
0121         if (copy_from_user(payload, _payload, plen) != 0)
0122             goto error3;
0123     }
0124 
0125     /* find the target keyring (which must be writable) */
0126     keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
0127     if (IS_ERR(keyring_ref)) {
0128         ret = PTR_ERR(keyring_ref);
0129         goto error3;
0130     }
0131 
0132     /* create or update the requested key and add it to the target
0133      * keyring */
0134     key_ref = key_create_or_update(keyring_ref, type, description,
0135                        payload, plen, KEY_PERM_UNDEF,
0136                        KEY_ALLOC_IN_QUOTA);
0137     if (!IS_ERR(key_ref)) {
0138         ret = key_ref_to_ptr(key_ref)->serial;
0139         key_ref_put(key_ref);
0140     }
0141     else {
0142         ret = PTR_ERR(key_ref);
0143     }
0144 
0145     key_ref_put(keyring_ref);
0146  error3:
0147     kvfree_sensitive(payload, plen);
0148  error2:
0149     kfree(description);
0150  error:
0151     return ret;
0152 }
0153 
0154 /*
0155  * Search the process keyrings and keyring trees linked from those for a
0156  * matching key.  Keyrings must have appropriate Search permission to be
0157  * searched.
0158  *
0159  * If a key is found, it will be attached to the destination keyring if there's
0160  * one specified and the serial number of the key will be returned.
0161  *
0162  * If no key is found, /sbin/request-key will be invoked if _callout_info is
0163  * non-NULL in an attempt to create a key.  The _callout_info string will be
0164  * passed to /sbin/request-key to aid with completing the request.  If the
0165  * _callout_info string is "" then it will be changed to "-".
0166  */
0167 SYSCALL_DEFINE4(request_key, const char __user *, _type,
0168         const char __user *, _description,
0169         const char __user *, _callout_info,
0170         key_serial_t, destringid)
0171 {
0172     struct key_type *ktype;
0173     struct key *key;
0174     key_ref_t dest_ref;
0175     size_t callout_len;
0176     char type[32], *description, *callout_info;
0177     long ret;
0178 
0179     /* pull the type into kernel space */
0180     ret = key_get_type_from_user(type, _type, sizeof(type));
0181     if (ret < 0)
0182         goto error;
0183 
0184     /* pull the description into kernel space */
0185     description = strndup_user(_description, KEY_MAX_DESC_SIZE);
0186     if (IS_ERR(description)) {
0187         ret = PTR_ERR(description);
0188         goto error;
0189     }
0190 
0191     /* pull the callout info into kernel space */
0192     callout_info = NULL;
0193     callout_len = 0;
0194     if (_callout_info) {
0195         callout_info = strndup_user(_callout_info, PAGE_SIZE);
0196         if (IS_ERR(callout_info)) {
0197             ret = PTR_ERR(callout_info);
0198             goto error2;
0199         }
0200         callout_len = strlen(callout_info);
0201     }
0202 
0203     /* get the destination keyring if specified */
0204     dest_ref = NULL;
0205     if (destringid) {
0206         dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
0207                        KEY_NEED_WRITE);
0208         if (IS_ERR(dest_ref)) {
0209             ret = PTR_ERR(dest_ref);
0210             goto error3;
0211         }
0212     }
0213 
0214     /* find the key type */
0215     ktype = key_type_lookup(type);
0216     if (IS_ERR(ktype)) {
0217         ret = PTR_ERR(ktype);
0218         goto error4;
0219     }
0220 
0221     /* do the search */
0222     key = request_key_and_link(ktype, description, NULL, callout_info,
0223                    callout_len, NULL, key_ref_to_ptr(dest_ref),
0224                    KEY_ALLOC_IN_QUOTA);
0225     if (IS_ERR(key)) {
0226         ret = PTR_ERR(key);
0227         goto error5;
0228     }
0229 
0230     /* wait for the key to finish being constructed */
0231     ret = wait_for_key_construction(key, 1);
0232     if (ret < 0)
0233         goto error6;
0234 
0235     ret = key->serial;
0236 
0237 error6:
0238     key_put(key);
0239 error5:
0240     key_type_put(ktype);
0241 error4:
0242     key_ref_put(dest_ref);
0243 error3:
0244     kfree(callout_info);
0245 error2:
0246     kfree(description);
0247 error:
0248     return ret;
0249 }
0250 
0251 /*
0252  * Get the ID of the specified process keyring.
0253  *
0254  * The requested keyring must have search permission to be found.
0255  *
0256  * If successful, the ID of the requested keyring will be returned.
0257  */
0258 long keyctl_get_keyring_ID(key_serial_t id, int create)
0259 {
0260     key_ref_t key_ref;
0261     unsigned long lflags;
0262     long ret;
0263 
0264     lflags = create ? KEY_LOOKUP_CREATE : 0;
0265     key_ref = lookup_user_key(id, lflags, KEY_NEED_SEARCH);
0266     if (IS_ERR(key_ref)) {
0267         ret = PTR_ERR(key_ref);
0268         goto error;
0269     }
0270 
0271     ret = key_ref_to_ptr(key_ref)->serial;
0272     key_ref_put(key_ref);
0273 error:
0274     return ret;
0275 }
0276 
0277 /*
0278  * Join a (named) session keyring.
0279  *
0280  * Create and join an anonymous session keyring or join a named session
0281  * keyring, creating it if necessary.  A named session keyring must have Search
0282  * permission for it to be joined.  Session keyrings without this permit will
0283  * be skipped over.  It is not permitted for userspace to create or join
0284  * keyrings whose name begin with a dot.
0285  *
0286  * If successful, the ID of the joined session keyring will be returned.
0287  */
0288 long keyctl_join_session_keyring(const char __user *_name)
0289 {
0290     char *name;
0291     long ret;
0292 
0293     /* fetch the name from userspace */
0294     name = NULL;
0295     if (_name) {
0296         name = strndup_user(_name, KEY_MAX_DESC_SIZE);
0297         if (IS_ERR(name)) {
0298             ret = PTR_ERR(name);
0299             goto error;
0300         }
0301 
0302         ret = -EPERM;
0303         if (name[0] == '.')
0304             goto error_name;
0305     }
0306 
0307     /* join the session */
0308     ret = join_session_keyring(name);
0309 error_name:
0310     kfree(name);
0311 error:
0312     return ret;
0313 }
0314 
0315 /*
0316  * Update a key's data payload from the given data.
0317  *
0318  * The key must grant the caller Write permission and the key type must support
0319  * updating for this to work.  A negative key can be positively instantiated
0320  * with this call.
0321  *
0322  * If successful, 0 will be returned.  If the key type does not support
0323  * updating, then -EOPNOTSUPP will be returned.
0324  */
0325 long keyctl_update_key(key_serial_t id,
0326                const void __user *_payload,
0327                size_t plen)
0328 {
0329     key_ref_t key_ref;
0330     void *payload;
0331     long ret;
0332 
0333     ret = -EINVAL;
0334     if (plen > PAGE_SIZE)
0335         goto error;
0336 
0337     /* pull the payload in if one was supplied */
0338     payload = NULL;
0339     if (plen) {
0340         ret = -ENOMEM;
0341         payload = kvmalloc(plen, GFP_KERNEL);
0342         if (!payload)
0343             goto error;
0344 
0345         ret = -EFAULT;
0346         if (copy_from_user(payload, _payload, plen) != 0)
0347             goto error2;
0348     }
0349 
0350     /* find the target key (which must be writable) */
0351     key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
0352     if (IS_ERR(key_ref)) {
0353         ret = PTR_ERR(key_ref);
0354         goto error2;
0355     }
0356 
0357     /* update the key */
0358     ret = key_update(key_ref, payload, plen);
0359 
0360     key_ref_put(key_ref);
0361 error2:
0362     kvfree_sensitive(payload, plen);
0363 error:
0364     return ret;
0365 }
0366 
0367 /*
0368  * Revoke a key.
0369  *
0370  * The key must be grant the caller Write or Setattr permission for this to
0371  * work.  The key type should give up its quota claim when revoked.  The key
0372  * and any links to the key will be automatically garbage collected after a
0373  * certain amount of time (/proc/sys/kernel/keys/gc_delay).
0374  *
0375  * Keys with KEY_FLAG_KEEP set should not be revoked.
0376  *
0377  * If successful, 0 is returned.
0378  */
0379 long keyctl_revoke_key(key_serial_t id)
0380 {
0381     key_ref_t key_ref;
0382     struct key *key;
0383     long ret;
0384 
0385     key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
0386     if (IS_ERR(key_ref)) {
0387         ret = PTR_ERR(key_ref);
0388         if (ret != -EACCES)
0389             goto error;
0390         key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
0391         if (IS_ERR(key_ref)) {
0392             ret = PTR_ERR(key_ref);
0393             goto error;
0394         }
0395     }
0396 
0397     key = key_ref_to_ptr(key_ref);
0398     ret = 0;
0399     if (test_bit(KEY_FLAG_KEEP, &key->flags))
0400         ret = -EPERM;
0401     else
0402         key_revoke(key);
0403 
0404     key_ref_put(key_ref);
0405 error:
0406     return ret;
0407 }
0408 
0409 /*
0410  * Invalidate a key.
0411  *
0412  * The key must be grant the caller Invalidate permission for this to work.
0413  * The key and any links to the key will be automatically garbage collected
0414  * immediately.
0415  *
0416  * Keys with KEY_FLAG_KEEP set should not be invalidated.
0417  *
0418  * If successful, 0 is returned.
0419  */
0420 long keyctl_invalidate_key(key_serial_t id)
0421 {
0422     key_ref_t key_ref;
0423     struct key *key;
0424     long ret;
0425 
0426     kenter("%d", id);
0427 
0428     key_ref = lookup_user_key(id, 0, KEY_NEED_SEARCH);
0429     if (IS_ERR(key_ref)) {
0430         ret = PTR_ERR(key_ref);
0431 
0432         /* Root is permitted to invalidate certain special keys */
0433         if (capable(CAP_SYS_ADMIN)) {
0434             key_ref = lookup_user_key(id, 0, KEY_SYSADMIN_OVERRIDE);
0435             if (IS_ERR(key_ref))
0436                 goto error;
0437             if (test_bit(KEY_FLAG_ROOT_CAN_INVAL,
0438                      &key_ref_to_ptr(key_ref)->flags))
0439                 goto invalidate;
0440             goto error_put;
0441         }
0442 
0443         goto error;
0444     }
0445 
0446 invalidate:
0447     key = key_ref_to_ptr(key_ref);
0448     ret = 0;
0449     if (test_bit(KEY_FLAG_KEEP, &key->flags))
0450         ret = -EPERM;
0451     else
0452         key_invalidate(key);
0453 error_put:
0454     key_ref_put(key_ref);
0455 error:
0456     kleave(" = %ld", ret);
0457     return ret;
0458 }
0459 
0460 /*
0461  * Clear the specified keyring, creating an empty process keyring if one of the
0462  * special keyring IDs is used.
0463  *
0464  * The keyring must grant the caller Write permission and not have
0465  * KEY_FLAG_KEEP set for this to work.  If successful, 0 will be returned.
0466  */
0467 long keyctl_keyring_clear(key_serial_t ringid)
0468 {
0469     key_ref_t keyring_ref;
0470     struct key *keyring;
0471     long ret;
0472 
0473     keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
0474     if (IS_ERR(keyring_ref)) {
0475         ret = PTR_ERR(keyring_ref);
0476 
0477         /* Root is permitted to invalidate certain special keyrings */
0478         if (capable(CAP_SYS_ADMIN)) {
0479             keyring_ref = lookup_user_key(ringid, 0,
0480                               KEY_SYSADMIN_OVERRIDE);
0481             if (IS_ERR(keyring_ref))
0482                 goto error;
0483             if (test_bit(KEY_FLAG_ROOT_CAN_CLEAR,
0484                      &key_ref_to_ptr(keyring_ref)->flags))
0485                 goto clear;
0486             goto error_put;
0487         }
0488 
0489         goto error;
0490     }
0491 
0492 clear:
0493     keyring = key_ref_to_ptr(keyring_ref);
0494     if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
0495         ret = -EPERM;
0496     else
0497         ret = keyring_clear(keyring);
0498 error_put:
0499     key_ref_put(keyring_ref);
0500 error:
0501     return ret;
0502 }
0503 
0504 /*
0505  * Create a link from a keyring to a key if there's no matching key in the
0506  * keyring, otherwise replace the link to the matching key with a link to the
0507  * new key.
0508  *
0509  * The key must grant the caller Link permission and the keyring must grant
0510  * the caller Write permission.  Furthermore, if an additional link is created,
0511  * the keyring's quota will be extended.
0512  *
0513  * If successful, 0 will be returned.
0514  */
0515 long keyctl_keyring_link(key_serial_t id, key_serial_t ringid)
0516 {
0517     key_ref_t keyring_ref, key_ref;
0518     long ret;
0519 
0520     keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
0521     if (IS_ERR(keyring_ref)) {
0522         ret = PTR_ERR(keyring_ref);
0523         goto error;
0524     }
0525 
0526     key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
0527     if (IS_ERR(key_ref)) {
0528         ret = PTR_ERR(key_ref);
0529         goto error2;
0530     }
0531 
0532     ret = key_link(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
0533 
0534     key_ref_put(key_ref);
0535 error2:
0536     key_ref_put(keyring_ref);
0537 error:
0538     return ret;
0539 }
0540 
0541 /*
0542  * Unlink a key from a keyring.
0543  *
0544  * The keyring must grant the caller Write permission for this to work; the key
0545  * itself need not grant the caller anything.  If the last link to a key is
0546  * removed then that key will be scheduled for destruction.
0547  *
0548  * Keys or keyrings with KEY_FLAG_KEEP set should not be unlinked.
0549  *
0550  * If successful, 0 will be returned.
0551  */
0552 long keyctl_keyring_unlink(key_serial_t id, key_serial_t ringid)
0553 {
0554     key_ref_t keyring_ref, key_ref;
0555     struct key *keyring, *key;
0556     long ret;
0557 
0558     keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_WRITE);
0559     if (IS_ERR(keyring_ref)) {
0560         ret = PTR_ERR(keyring_ref);
0561         goto error;
0562     }
0563 
0564     key_ref = lookup_user_key(id, KEY_LOOKUP_PARTIAL, KEY_NEED_UNLINK);
0565     if (IS_ERR(key_ref)) {
0566         ret = PTR_ERR(key_ref);
0567         goto error2;
0568     }
0569 
0570     keyring = key_ref_to_ptr(keyring_ref);
0571     key = key_ref_to_ptr(key_ref);
0572     if (test_bit(KEY_FLAG_KEEP, &keyring->flags) &&
0573         test_bit(KEY_FLAG_KEEP, &key->flags))
0574         ret = -EPERM;
0575     else
0576         ret = key_unlink(keyring, key);
0577 
0578     key_ref_put(key_ref);
0579 error2:
0580     key_ref_put(keyring_ref);
0581 error:
0582     return ret;
0583 }
0584 
0585 /*
0586  * Move a link to a key from one keyring to another, displacing any matching
0587  * key from the destination keyring.
0588  *
0589  * The key must grant the caller Link permission and both keyrings must grant
0590  * the caller Write permission.  There must also be a link in the from keyring
0591  * to the key.  If both keyrings are the same, nothing is done.
0592  *
0593  * If successful, 0 will be returned.
0594  */
0595 long keyctl_keyring_move(key_serial_t id, key_serial_t from_ringid,
0596              key_serial_t to_ringid, unsigned int flags)
0597 {
0598     key_ref_t key_ref, from_ref, to_ref;
0599     long ret;
0600 
0601     if (flags & ~KEYCTL_MOVE_EXCL)
0602         return -EINVAL;
0603 
0604     key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
0605     if (IS_ERR(key_ref))
0606         return PTR_ERR(key_ref);
0607 
0608     from_ref = lookup_user_key(from_ringid, 0, KEY_NEED_WRITE);
0609     if (IS_ERR(from_ref)) {
0610         ret = PTR_ERR(from_ref);
0611         goto error2;
0612     }
0613 
0614     to_ref = lookup_user_key(to_ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
0615     if (IS_ERR(to_ref)) {
0616         ret = PTR_ERR(to_ref);
0617         goto error3;
0618     }
0619 
0620     ret = key_move(key_ref_to_ptr(key_ref), key_ref_to_ptr(from_ref),
0621                key_ref_to_ptr(to_ref), flags);
0622 
0623     key_ref_put(to_ref);
0624 error3:
0625     key_ref_put(from_ref);
0626 error2:
0627     key_ref_put(key_ref);
0628     return ret;
0629 }
0630 
0631 /*
0632  * Return a description of a key to userspace.
0633  *
0634  * The key must grant the caller View permission for this to work.
0635  *
0636  * If there's a buffer, we place up to buflen bytes of data into it formatted
0637  * in the following way:
0638  *
0639  *  type;uid;gid;perm;description<NUL>
0640  *
0641  * If successful, we return the amount of description available, irrespective
0642  * of how much we may have copied into the buffer.
0643  */
0644 long keyctl_describe_key(key_serial_t keyid,
0645              char __user *buffer,
0646              size_t buflen)
0647 {
0648     struct key *key, *instkey;
0649     key_ref_t key_ref;
0650     char *infobuf;
0651     long ret;
0652     int desclen, infolen;
0653 
0654     key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
0655     if (IS_ERR(key_ref)) {
0656         /* viewing a key under construction is permitted if we have the
0657          * authorisation token handy */
0658         if (PTR_ERR(key_ref) == -EACCES) {
0659             instkey = key_get_instantiation_authkey(keyid);
0660             if (!IS_ERR(instkey)) {
0661                 key_put(instkey);
0662                 key_ref = lookup_user_key(keyid,
0663                               KEY_LOOKUP_PARTIAL,
0664                               KEY_AUTHTOKEN_OVERRIDE);
0665                 if (!IS_ERR(key_ref))
0666                     goto okay;
0667             }
0668         }
0669 
0670         ret = PTR_ERR(key_ref);
0671         goto error;
0672     }
0673 
0674 okay:
0675     key = key_ref_to_ptr(key_ref);
0676     desclen = strlen(key->description);
0677 
0678     /* calculate how much information we're going to return */
0679     ret = -ENOMEM;
0680     infobuf = kasprintf(GFP_KERNEL,
0681                 "%s;%d;%d;%08x;",
0682                 key->type->name,
0683                 from_kuid_munged(current_user_ns(), key->uid),
0684                 from_kgid_munged(current_user_ns(), key->gid),
0685                 key->perm);
0686     if (!infobuf)
0687         goto error2;
0688     infolen = strlen(infobuf);
0689     ret = infolen + desclen + 1;
0690 
0691     /* consider returning the data */
0692     if (buffer && buflen >= ret) {
0693         if (copy_to_user(buffer, infobuf, infolen) != 0 ||
0694             copy_to_user(buffer + infolen, key->description,
0695                  desclen + 1) != 0)
0696             ret = -EFAULT;
0697     }
0698 
0699     kfree(infobuf);
0700 error2:
0701     key_ref_put(key_ref);
0702 error:
0703     return ret;
0704 }
0705 
0706 /*
0707  * Search the specified keyring and any keyrings it links to for a matching
0708  * key.  Only keyrings that grant the caller Search permission will be searched
0709  * (this includes the starting keyring).  Only keys with Search permission can
0710  * be found.
0711  *
0712  * If successful, the found key will be linked to the destination keyring if
0713  * supplied and the key has Link permission, and the found key ID will be
0714  * returned.
0715  */
0716 long keyctl_keyring_search(key_serial_t ringid,
0717                const char __user *_type,
0718                const char __user *_description,
0719                key_serial_t destringid)
0720 {
0721     struct key_type *ktype;
0722     key_ref_t keyring_ref, key_ref, dest_ref;
0723     char type[32], *description;
0724     long ret;
0725 
0726     /* pull the type and description into kernel space */
0727     ret = key_get_type_from_user(type, _type, sizeof(type));
0728     if (ret < 0)
0729         goto error;
0730 
0731     description = strndup_user(_description, KEY_MAX_DESC_SIZE);
0732     if (IS_ERR(description)) {
0733         ret = PTR_ERR(description);
0734         goto error;
0735     }
0736 
0737     /* get the keyring at which to begin the search */
0738     keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_SEARCH);
0739     if (IS_ERR(keyring_ref)) {
0740         ret = PTR_ERR(keyring_ref);
0741         goto error2;
0742     }
0743 
0744     /* get the destination keyring if specified */
0745     dest_ref = NULL;
0746     if (destringid) {
0747         dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
0748                        KEY_NEED_WRITE);
0749         if (IS_ERR(dest_ref)) {
0750             ret = PTR_ERR(dest_ref);
0751             goto error3;
0752         }
0753     }
0754 
0755     /* find the key type */
0756     ktype = key_type_lookup(type);
0757     if (IS_ERR(ktype)) {
0758         ret = PTR_ERR(ktype);
0759         goto error4;
0760     }
0761 
0762     /* do the search */
0763     key_ref = keyring_search(keyring_ref, ktype, description, true);
0764     if (IS_ERR(key_ref)) {
0765         ret = PTR_ERR(key_ref);
0766 
0767         /* treat lack or presence of a negative key the same */
0768         if (ret == -EAGAIN)
0769             ret = -ENOKEY;
0770         goto error5;
0771     }
0772 
0773     /* link the resulting key to the destination keyring if we can */
0774     if (dest_ref) {
0775         ret = key_permission(key_ref, KEY_NEED_LINK);
0776         if (ret < 0)
0777             goto error6;
0778 
0779         ret = key_link(key_ref_to_ptr(dest_ref), key_ref_to_ptr(key_ref));
0780         if (ret < 0)
0781             goto error6;
0782     }
0783 
0784     ret = key_ref_to_ptr(key_ref)->serial;
0785 
0786 error6:
0787     key_ref_put(key_ref);
0788 error5:
0789     key_type_put(ktype);
0790 error4:
0791     key_ref_put(dest_ref);
0792 error3:
0793     key_ref_put(keyring_ref);
0794 error2:
0795     kfree(description);
0796 error:
0797     return ret;
0798 }
0799 
0800 /*
0801  * Call the read method
0802  */
0803 static long __keyctl_read_key(struct key *key, char *buffer, size_t buflen)
0804 {
0805     long ret;
0806 
0807     down_read(&key->sem);
0808     ret = key_validate(key);
0809     if (ret == 0)
0810         ret = key->type->read(key, buffer, buflen);
0811     up_read(&key->sem);
0812     return ret;
0813 }
0814 
0815 /*
0816  * Read a key's payload.
0817  *
0818  * The key must either grant the caller Read permission, or it must grant the
0819  * caller Search permission when searched for from the process keyrings.
0820  *
0821  * If successful, we place up to buflen bytes of data into the buffer, if one
0822  * is provided, and return the amount of data that is available in the key,
0823  * irrespective of how much we copied into the buffer.
0824  */
0825 long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen)
0826 {
0827     struct key *key;
0828     key_ref_t key_ref;
0829     long ret;
0830     char *key_data = NULL;
0831     size_t key_data_len;
0832 
0833     /* find the key first */
0834     key_ref = lookup_user_key(keyid, 0, KEY_DEFER_PERM_CHECK);
0835     if (IS_ERR(key_ref)) {
0836         ret = -ENOKEY;
0837         goto out;
0838     }
0839 
0840     key = key_ref_to_ptr(key_ref);
0841 
0842     ret = key_read_state(key);
0843     if (ret < 0)
0844         goto key_put_out; /* Negatively instantiated */
0845 
0846     /* see if we can read it directly */
0847     ret = key_permission(key_ref, KEY_NEED_READ);
0848     if (ret == 0)
0849         goto can_read_key;
0850     if (ret != -EACCES)
0851         goto key_put_out;
0852 
0853     /* we can't; see if it's searchable from this process's keyrings
0854      * - we automatically take account of the fact that it may be
0855      *   dangling off an instantiation key
0856      */
0857     if (!is_key_possessed(key_ref)) {
0858         ret = -EACCES;
0859         goto key_put_out;
0860     }
0861 
0862     /* the key is probably readable - now try to read it */
0863 can_read_key:
0864     if (!key->type->read) {
0865         ret = -EOPNOTSUPP;
0866         goto key_put_out;
0867     }
0868 
0869     if (!buffer || !buflen) {
0870         /* Get the key length from the read method */
0871         ret = __keyctl_read_key(key, NULL, 0);
0872         goto key_put_out;
0873     }
0874 
0875     /*
0876      * Read the data with the semaphore held (since we might sleep)
0877      * to protect against the key being updated or revoked.
0878      *
0879      * Allocating a temporary buffer to hold the keys before
0880      * transferring them to user buffer to avoid potential
0881      * deadlock involving page fault and mmap_lock.
0882      *
0883      * key_data_len = (buflen <= PAGE_SIZE)
0884      *      ? buflen : actual length of key data
0885      *
0886      * This prevents allocating arbitrary large buffer which can
0887      * be much larger than the actual key length. In the latter case,
0888      * at least 2 passes of this loop is required.
0889      */
0890     key_data_len = (buflen <= PAGE_SIZE) ? buflen : 0;
0891     for (;;) {
0892         if (key_data_len) {
0893             key_data = kvmalloc(key_data_len, GFP_KERNEL);
0894             if (!key_data) {
0895                 ret = -ENOMEM;
0896                 goto key_put_out;
0897             }
0898         }
0899 
0900         ret = __keyctl_read_key(key, key_data, key_data_len);
0901 
0902         /*
0903          * Read methods will just return the required length without
0904          * any copying if the provided length isn't large enough.
0905          */
0906         if (ret <= 0 || ret > buflen)
0907             break;
0908 
0909         /*
0910          * The key may change (unlikely) in between 2 consecutive
0911          * __keyctl_read_key() calls. In this case, we reallocate
0912          * a larger buffer and redo the key read when
0913          * key_data_len < ret <= buflen.
0914          */
0915         if (ret > key_data_len) {
0916             if (unlikely(key_data))
0917                 kvfree_sensitive(key_data, key_data_len);
0918             key_data_len = ret;
0919             continue;   /* Allocate buffer */
0920         }
0921 
0922         if (copy_to_user(buffer, key_data, ret))
0923             ret = -EFAULT;
0924         break;
0925     }
0926     kvfree_sensitive(key_data, key_data_len);
0927 
0928 key_put_out:
0929     key_put(key);
0930 out:
0931     return ret;
0932 }
0933 
0934 /*
0935  * Change the ownership of a key
0936  *
0937  * The key must grant the caller Setattr permission for this to work, though
0938  * the key need not be fully instantiated yet.  For the UID to be changed, or
0939  * for the GID to be changed to a group the caller is not a member of, the
0940  * caller must have sysadmin capability.  If either uid or gid is -1 then that
0941  * attribute is not changed.
0942  *
0943  * If the UID is to be changed, the new user must have sufficient quota to
0944  * accept the key.  The quota deduction will be removed from the old user to
0945  * the new user should the attribute be changed.
0946  *
0947  * If successful, 0 will be returned.
0948  */
0949 long keyctl_chown_key(key_serial_t id, uid_t user, gid_t group)
0950 {
0951     struct key_user *newowner, *zapowner = NULL;
0952     struct key *key;
0953     key_ref_t key_ref;
0954     long ret;
0955     kuid_t uid;
0956     kgid_t gid;
0957 
0958     uid = make_kuid(current_user_ns(), user);
0959     gid = make_kgid(current_user_ns(), group);
0960     ret = -EINVAL;
0961     if ((user != (uid_t) -1) && !uid_valid(uid))
0962         goto error;
0963     if ((group != (gid_t) -1) && !gid_valid(gid))
0964         goto error;
0965 
0966     ret = 0;
0967     if (user == (uid_t) -1 && group == (gid_t) -1)
0968         goto error;
0969 
0970     key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
0971                   KEY_NEED_SETATTR);
0972     if (IS_ERR(key_ref)) {
0973         ret = PTR_ERR(key_ref);
0974         goto error;
0975     }
0976 
0977     key = key_ref_to_ptr(key_ref);
0978 
0979     /* make the changes with the locks held to prevent chown/chown races */
0980     ret = -EACCES;
0981     down_write(&key->sem);
0982 
0983     if (!capable(CAP_SYS_ADMIN)) {
0984         /* only the sysadmin can chown a key to some other UID */
0985         if (user != (uid_t) -1 && !uid_eq(key->uid, uid))
0986             goto error_put;
0987 
0988         /* only the sysadmin can set the key's GID to a group other
0989          * than one of those that the current process subscribes to */
0990         if (group != (gid_t) -1 && !gid_eq(gid, key->gid) && !in_group_p(gid))
0991             goto error_put;
0992     }
0993 
0994     /* change the UID */
0995     if (user != (uid_t) -1 && !uid_eq(uid, key->uid)) {
0996         ret = -ENOMEM;
0997         newowner = key_user_lookup(uid);
0998         if (!newowner)
0999             goto error_put;
1000 
1001         /* transfer the quota burden to the new user */
1002         if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
1003             unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
1004                 key_quota_root_maxkeys : key_quota_maxkeys;
1005             unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
1006                 key_quota_root_maxbytes : key_quota_maxbytes;
1007 
1008             spin_lock(&newowner->lock);
1009             if (newowner->qnkeys + 1 > maxkeys ||
1010                 newowner->qnbytes + key->quotalen > maxbytes ||
1011                 newowner->qnbytes + key->quotalen <
1012                 newowner->qnbytes)
1013                 goto quota_overrun;
1014 
1015             newowner->qnkeys++;
1016             newowner->qnbytes += key->quotalen;
1017             spin_unlock(&newowner->lock);
1018 
1019             spin_lock(&key->user->lock);
1020             key->user->qnkeys--;
1021             key->user->qnbytes -= key->quotalen;
1022             spin_unlock(&key->user->lock);
1023         }
1024 
1025         atomic_dec(&key->user->nkeys);
1026         atomic_inc(&newowner->nkeys);
1027 
1028         if (key->state != KEY_IS_UNINSTANTIATED) {
1029             atomic_dec(&key->user->nikeys);
1030             atomic_inc(&newowner->nikeys);
1031         }
1032 
1033         zapowner = key->user;
1034         key->user = newowner;
1035         key->uid = uid;
1036     }
1037 
1038     /* change the GID */
1039     if (group != (gid_t) -1)
1040         key->gid = gid;
1041 
1042     notify_key(key, NOTIFY_KEY_SETATTR, 0);
1043     ret = 0;
1044 
1045 error_put:
1046     up_write(&key->sem);
1047     key_put(key);
1048     if (zapowner)
1049         key_user_put(zapowner);
1050 error:
1051     return ret;
1052 
1053 quota_overrun:
1054     spin_unlock(&newowner->lock);
1055     zapowner = newowner;
1056     ret = -EDQUOT;
1057     goto error_put;
1058 }
1059 
1060 /*
1061  * Change the permission mask on a key.
1062  *
1063  * The key must grant the caller Setattr permission for this to work, though
1064  * the key need not be fully instantiated yet.  If the caller does not have
1065  * sysadmin capability, it may only change the permission on keys that it owns.
1066  */
1067 long keyctl_setperm_key(key_serial_t id, key_perm_t perm)
1068 {
1069     struct key *key;
1070     key_ref_t key_ref;
1071     long ret;
1072 
1073     ret = -EINVAL;
1074     if (perm & ~(KEY_POS_ALL | KEY_USR_ALL | KEY_GRP_ALL | KEY_OTH_ALL))
1075         goto error;
1076 
1077     key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1078                   KEY_NEED_SETATTR);
1079     if (IS_ERR(key_ref)) {
1080         ret = PTR_ERR(key_ref);
1081         goto error;
1082     }
1083 
1084     key = key_ref_to_ptr(key_ref);
1085 
1086     /* make the changes with the locks held to prevent chown/chmod races */
1087     ret = -EACCES;
1088     down_write(&key->sem);
1089 
1090     /* if we're not the sysadmin, we can only change a key that we own */
1091     if (capable(CAP_SYS_ADMIN) || uid_eq(key->uid, current_fsuid())) {
1092         key->perm = perm;
1093         notify_key(key, NOTIFY_KEY_SETATTR, 0);
1094         ret = 0;
1095     }
1096 
1097     up_write(&key->sem);
1098     key_put(key);
1099 error:
1100     return ret;
1101 }
1102 
1103 /*
1104  * Get the destination keyring for instantiation and check that the caller has
1105  * Write permission on it.
1106  */
1107 static long get_instantiation_keyring(key_serial_t ringid,
1108                       struct request_key_auth *rka,
1109                       struct key **_dest_keyring)
1110 {
1111     key_ref_t dkref;
1112 
1113     *_dest_keyring = NULL;
1114 
1115     /* just return a NULL pointer if we weren't asked to make a link */
1116     if (ringid == 0)
1117         return 0;
1118 
1119     /* if a specific keyring is nominated by ID, then use that */
1120     if (ringid > 0) {
1121         dkref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
1122         if (IS_ERR(dkref))
1123             return PTR_ERR(dkref);
1124         *_dest_keyring = key_ref_to_ptr(dkref);
1125         return 0;
1126     }
1127 
1128     if (ringid == KEY_SPEC_REQKEY_AUTH_KEY)
1129         return -EINVAL;
1130 
1131     /* otherwise specify the destination keyring recorded in the
1132      * authorisation key (any KEY_SPEC_*_KEYRING) */
1133     if (ringid >= KEY_SPEC_REQUESTOR_KEYRING) {
1134         *_dest_keyring = key_get(rka->dest_keyring);
1135         return 0;
1136     }
1137 
1138     return -ENOKEY;
1139 }
1140 
1141 /*
1142  * Change the request_key authorisation key on the current process.
1143  */
1144 static int keyctl_change_reqkey_auth(struct key *key)
1145 {
1146     struct cred *new;
1147 
1148     new = prepare_creds();
1149     if (!new)
1150         return -ENOMEM;
1151 
1152     key_put(new->request_key_auth);
1153     new->request_key_auth = key_get(key);
1154 
1155     return commit_creds(new);
1156 }
1157 
1158 /*
1159  * Instantiate a key with the specified payload and link the key into the
1160  * destination keyring if one is given.
1161  *
1162  * The caller must have the appropriate instantiation permit set for this to
1163  * work (see keyctl_assume_authority).  No other permissions are required.
1164  *
1165  * If successful, 0 will be returned.
1166  */
1167 static long keyctl_instantiate_key_common(key_serial_t id,
1168                    struct iov_iter *from,
1169                    key_serial_t ringid)
1170 {
1171     const struct cred *cred = current_cred();
1172     struct request_key_auth *rka;
1173     struct key *instkey, *dest_keyring;
1174     size_t plen = from ? iov_iter_count(from) : 0;
1175     void *payload;
1176     long ret;
1177 
1178     kenter("%d,,%zu,%d", id, plen, ringid);
1179 
1180     if (!plen)
1181         from = NULL;
1182 
1183     ret = -EINVAL;
1184     if (plen > 1024 * 1024 - 1)
1185         goto error;
1186 
1187     /* the appropriate instantiation authorisation key must have been
1188      * assumed before calling this */
1189     ret = -EPERM;
1190     instkey = cred->request_key_auth;
1191     if (!instkey)
1192         goto error;
1193 
1194     rka = instkey->payload.data[0];
1195     if (rka->target_key->serial != id)
1196         goto error;
1197 
1198     /* pull the payload in if one was supplied */
1199     payload = NULL;
1200 
1201     if (from) {
1202         ret = -ENOMEM;
1203         payload = kvmalloc(plen, GFP_KERNEL);
1204         if (!payload)
1205             goto error;
1206 
1207         ret = -EFAULT;
1208         if (!copy_from_iter_full(payload, plen, from))
1209             goto error2;
1210     }
1211 
1212     /* find the destination keyring amongst those belonging to the
1213      * requesting task */
1214     ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1215     if (ret < 0)
1216         goto error2;
1217 
1218     /* instantiate the key and link it into a keyring */
1219     ret = key_instantiate_and_link(rka->target_key, payload, plen,
1220                        dest_keyring, instkey);
1221 
1222     key_put(dest_keyring);
1223 
1224     /* discard the assumed authority if it's just been disabled by
1225      * instantiation of the key */
1226     if (ret == 0)
1227         keyctl_change_reqkey_auth(NULL);
1228 
1229 error2:
1230     kvfree_sensitive(payload, plen);
1231 error:
1232     return ret;
1233 }
1234 
1235 /*
1236  * Instantiate a key with the specified payload and link the key into the
1237  * destination keyring if one is given.
1238  *
1239  * The caller must have the appropriate instantiation permit set for this to
1240  * work (see keyctl_assume_authority).  No other permissions are required.
1241  *
1242  * If successful, 0 will be returned.
1243  */
1244 long keyctl_instantiate_key(key_serial_t id,
1245                 const void __user *_payload,
1246                 size_t plen,
1247                 key_serial_t ringid)
1248 {
1249     if (_payload && plen) {
1250         struct iovec iov;
1251         struct iov_iter from;
1252         int ret;
1253 
1254         ret = import_single_range(WRITE, (void __user *)_payload, plen,
1255                       &iov, &from);
1256         if (unlikely(ret))
1257             return ret;
1258 
1259         return keyctl_instantiate_key_common(id, &from, ringid);
1260     }
1261 
1262     return keyctl_instantiate_key_common(id, NULL, ringid);
1263 }
1264 
1265 /*
1266  * Instantiate a key with the specified multipart payload and link the key into
1267  * the destination keyring if one is given.
1268  *
1269  * The caller must have the appropriate instantiation permit set for this to
1270  * work (see keyctl_assume_authority).  No other permissions are required.
1271  *
1272  * If successful, 0 will be returned.
1273  */
1274 long keyctl_instantiate_key_iov(key_serial_t id,
1275                 const struct iovec __user *_payload_iov,
1276                 unsigned ioc,
1277                 key_serial_t ringid)
1278 {
1279     struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1280     struct iov_iter from;
1281     long ret;
1282 
1283     if (!_payload_iov)
1284         ioc = 0;
1285 
1286     ret = import_iovec(WRITE, _payload_iov, ioc,
1287                     ARRAY_SIZE(iovstack), &iov, &from);
1288     if (ret < 0)
1289         return ret;
1290     ret = keyctl_instantiate_key_common(id, &from, ringid);
1291     kfree(iov);
1292     return ret;
1293 }
1294 
1295 /*
1296  * Negatively instantiate the key with the given timeout (in seconds) and link
1297  * the key into the destination keyring if one is given.
1298  *
1299  * The caller must have the appropriate instantiation permit set for this to
1300  * work (see keyctl_assume_authority).  No other permissions are required.
1301  *
1302  * The key and any links to the key will be automatically garbage collected
1303  * after the timeout expires.
1304  *
1305  * Negative keys are used to rate limit repeated request_key() calls by causing
1306  * them to return -ENOKEY until the negative key expires.
1307  *
1308  * If successful, 0 will be returned.
1309  */
1310 long keyctl_negate_key(key_serial_t id, unsigned timeout, key_serial_t ringid)
1311 {
1312     return keyctl_reject_key(id, timeout, ENOKEY, ringid);
1313 }
1314 
1315 /*
1316  * Negatively instantiate the key with the given timeout (in seconds) and error
1317  * code and link the key into the destination keyring if one is given.
1318  *
1319  * The caller must have the appropriate instantiation permit set for this to
1320  * work (see keyctl_assume_authority).  No other permissions are required.
1321  *
1322  * The key and any links to the key will be automatically garbage collected
1323  * after the timeout expires.
1324  *
1325  * Negative keys are used to rate limit repeated request_key() calls by causing
1326  * them to return the specified error code until the negative key expires.
1327  *
1328  * If successful, 0 will be returned.
1329  */
1330 long keyctl_reject_key(key_serial_t id, unsigned timeout, unsigned error,
1331                key_serial_t ringid)
1332 {
1333     const struct cred *cred = current_cred();
1334     struct request_key_auth *rka;
1335     struct key *instkey, *dest_keyring;
1336     long ret;
1337 
1338     kenter("%d,%u,%u,%d", id, timeout, error, ringid);
1339 
1340     /* must be a valid error code and mustn't be a kernel special */
1341     if (error <= 0 ||
1342         error >= MAX_ERRNO ||
1343         error == ERESTARTSYS ||
1344         error == ERESTARTNOINTR ||
1345         error == ERESTARTNOHAND ||
1346         error == ERESTART_RESTARTBLOCK)
1347         return -EINVAL;
1348 
1349     /* the appropriate instantiation authorisation key must have been
1350      * assumed before calling this */
1351     ret = -EPERM;
1352     instkey = cred->request_key_auth;
1353     if (!instkey)
1354         goto error;
1355 
1356     rka = instkey->payload.data[0];
1357     if (rka->target_key->serial != id)
1358         goto error;
1359 
1360     /* find the destination keyring if present (which must also be
1361      * writable) */
1362     ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1363     if (ret < 0)
1364         goto error;
1365 
1366     /* instantiate the key and link it into a keyring */
1367     ret = key_reject_and_link(rka->target_key, timeout, error,
1368                   dest_keyring, instkey);
1369 
1370     key_put(dest_keyring);
1371 
1372     /* discard the assumed authority if it's just been disabled by
1373      * instantiation of the key */
1374     if (ret == 0)
1375         keyctl_change_reqkey_auth(NULL);
1376 
1377 error:
1378     return ret;
1379 }
1380 
1381 /*
1382  * Read or set the default keyring in which request_key() will cache keys and
1383  * return the old setting.
1384  *
1385  * If a thread or process keyring is specified then it will be created if it
1386  * doesn't yet exist.  The old setting will be returned if successful.
1387  */
1388 long keyctl_set_reqkey_keyring(int reqkey_defl)
1389 {
1390     struct cred *new;
1391     int ret, old_setting;
1392 
1393     old_setting = current_cred_xxx(jit_keyring);
1394 
1395     if (reqkey_defl == KEY_REQKEY_DEFL_NO_CHANGE)
1396         return old_setting;
1397 
1398     new = prepare_creds();
1399     if (!new)
1400         return -ENOMEM;
1401 
1402     switch (reqkey_defl) {
1403     case KEY_REQKEY_DEFL_THREAD_KEYRING:
1404         ret = install_thread_keyring_to_cred(new);
1405         if (ret < 0)
1406             goto error;
1407         goto set;
1408 
1409     case KEY_REQKEY_DEFL_PROCESS_KEYRING:
1410         ret = install_process_keyring_to_cred(new);
1411         if (ret < 0)
1412             goto error;
1413         goto set;
1414 
1415     case KEY_REQKEY_DEFL_DEFAULT:
1416     case KEY_REQKEY_DEFL_SESSION_KEYRING:
1417     case KEY_REQKEY_DEFL_USER_KEYRING:
1418     case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
1419     case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
1420         goto set;
1421 
1422     case KEY_REQKEY_DEFL_NO_CHANGE:
1423     case KEY_REQKEY_DEFL_GROUP_KEYRING:
1424     default:
1425         ret = -EINVAL;
1426         goto error;
1427     }
1428 
1429 set:
1430     new->jit_keyring = reqkey_defl;
1431     commit_creds(new);
1432     return old_setting;
1433 error:
1434     abort_creds(new);
1435     return ret;
1436 }
1437 
1438 /*
1439  * Set or clear the timeout on a key.
1440  *
1441  * Either the key must grant the caller Setattr permission or else the caller
1442  * must hold an instantiation authorisation token for the key.
1443  *
1444  * The timeout is either 0 to clear the timeout, or a number of seconds from
1445  * the current time.  The key and any links to the key will be automatically
1446  * garbage collected after the timeout expires.
1447  *
1448  * Keys with KEY_FLAG_KEEP set should not be timed out.
1449  *
1450  * If successful, 0 is returned.
1451  */
1452 long keyctl_set_timeout(key_serial_t id, unsigned timeout)
1453 {
1454     struct key *key, *instkey;
1455     key_ref_t key_ref;
1456     long ret;
1457 
1458     key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1459                   KEY_NEED_SETATTR);
1460     if (IS_ERR(key_ref)) {
1461         /* setting the timeout on a key under construction is permitted
1462          * if we have the authorisation token handy */
1463         if (PTR_ERR(key_ref) == -EACCES) {
1464             instkey = key_get_instantiation_authkey(id);
1465             if (!IS_ERR(instkey)) {
1466                 key_put(instkey);
1467                 key_ref = lookup_user_key(id,
1468                               KEY_LOOKUP_PARTIAL,
1469                               KEY_AUTHTOKEN_OVERRIDE);
1470                 if (!IS_ERR(key_ref))
1471                     goto okay;
1472             }
1473         }
1474 
1475         ret = PTR_ERR(key_ref);
1476         goto error;
1477     }
1478 
1479 okay:
1480     key = key_ref_to_ptr(key_ref);
1481     ret = 0;
1482     if (test_bit(KEY_FLAG_KEEP, &key->flags)) {
1483         ret = -EPERM;
1484     } else {
1485         key_set_timeout(key, timeout);
1486         notify_key(key, NOTIFY_KEY_SETATTR, 0);
1487     }
1488     key_put(key);
1489 
1490 error:
1491     return ret;
1492 }
1493 
1494 /*
1495  * Assume (or clear) the authority to instantiate the specified key.
1496  *
1497  * This sets the authoritative token currently in force for key instantiation.
1498  * This must be done for a key to be instantiated.  It has the effect of making
1499  * available all the keys from the caller of the request_key() that created a
1500  * key to request_key() calls made by the caller of this function.
1501  *
1502  * The caller must have the instantiation key in their process keyrings with a
1503  * Search permission grant available to the caller.
1504  *
1505  * If the ID given is 0, then the setting will be cleared and 0 returned.
1506  *
1507  * If the ID given has a matching an authorisation key, then that key will be
1508  * set and its ID will be returned.  The authorisation key can be read to get
1509  * the callout information passed to request_key().
1510  */
1511 long keyctl_assume_authority(key_serial_t id)
1512 {
1513     struct key *authkey;
1514     long ret;
1515 
1516     /* special key IDs aren't permitted */
1517     ret = -EINVAL;
1518     if (id < 0)
1519         goto error;
1520 
1521     /* we divest ourselves of authority if given an ID of 0 */
1522     if (id == 0) {
1523         ret = keyctl_change_reqkey_auth(NULL);
1524         goto error;
1525     }
1526 
1527     /* attempt to assume the authority temporarily granted to us whilst we
1528      * instantiate the specified key
1529      * - the authorisation key must be in the current task's keyrings
1530      *   somewhere
1531      */
1532     authkey = key_get_instantiation_authkey(id);
1533     if (IS_ERR(authkey)) {
1534         ret = PTR_ERR(authkey);
1535         goto error;
1536     }
1537 
1538     ret = keyctl_change_reqkey_auth(authkey);
1539     if (ret == 0)
1540         ret = authkey->serial;
1541     key_put(authkey);
1542 error:
1543     return ret;
1544 }
1545 
1546 /*
1547  * Get a key's the LSM security label.
1548  *
1549  * The key must grant the caller View permission for this to work.
1550  *
1551  * If there's a buffer, then up to buflen bytes of data will be placed into it.
1552  *
1553  * If successful, the amount of information available will be returned,
1554  * irrespective of how much was copied (including the terminal NUL).
1555  */
1556 long keyctl_get_security(key_serial_t keyid,
1557              char __user *buffer,
1558              size_t buflen)
1559 {
1560     struct key *key, *instkey;
1561     key_ref_t key_ref;
1562     char *context;
1563     long ret;
1564 
1565     key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
1566     if (IS_ERR(key_ref)) {
1567         if (PTR_ERR(key_ref) != -EACCES)
1568             return PTR_ERR(key_ref);
1569 
1570         /* viewing a key under construction is also permitted if we
1571          * have the authorisation token handy */
1572         instkey = key_get_instantiation_authkey(keyid);
1573         if (IS_ERR(instkey))
1574             return PTR_ERR(instkey);
1575         key_put(instkey);
1576 
1577         key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL,
1578                       KEY_AUTHTOKEN_OVERRIDE);
1579         if (IS_ERR(key_ref))
1580             return PTR_ERR(key_ref);
1581     }
1582 
1583     key = key_ref_to_ptr(key_ref);
1584     ret = security_key_getsecurity(key, &context);
1585     if (ret == 0) {
1586         /* if no information was returned, give userspace an empty
1587          * string */
1588         ret = 1;
1589         if (buffer && buflen > 0 &&
1590             copy_to_user(buffer, "", 1) != 0)
1591             ret = -EFAULT;
1592     } else if (ret > 0) {
1593         /* return as much data as there's room for */
1594         if (buffer && buflen > 0) {
1595             if (buflen > ret)
1596                 buflen = ret;
1597 
1598             if (copy_to_user(buffer, context, buflen) != 0)
1599                 ret = -EFAULT;
1600         }
1601 
1602         kfree(context);
1603     }
1604 
1605     key_ref_put(key_ref);
1606     return ret;
1607 }
1608 
1609 /*
1610  * Attempt to install the calling process's session keyring on the process's
1611  * parent process.
1612  *
1613  * The keyring must exist and must grant the caller LINK permission, and the
1614  * parent process must be single-threaded and must have the same effective
1615  * ownership as this process and mustn't be SUID/SGID.
1616  *
1617  * The keyring will be emplaced on the parent when it next resumes userspace.
1618  *
1619  * If successful, 0 will be returned.
1620  */
1621 long keyctl_session_to_parent(void)
1622 {
1623     struct task_struct *me, *parent;
1624     const struct cred *mycred, *pcred;
1625     struct callback_head *newwork, *oldwork;
1626     key_ref_t keyring_r;
1627     struct cred *cred;
1628     int ret;
1629 
1630     keyring_r = lookup_user_key(KEY_SPEC_SESSION_KEYRING, 0, KEY_NEED_LINK);
1631     if (IS_ERR(keyring_r))
1632         return PTR_ERR(keyring_r);
1633 
1634     ret = -ENOMEM;
1635 
1636     /* our parent is going to need a new cred struct, a new tgcred struct
1637      * and new security data, so we allocate them here to prevent ENOMEM in
1638      * our parent */
1639     cred = cred_alloc_blank();
1640     if (!cred)
1641         goto error_keyring;
1642     newwork = &cred->rcu;
1643 
1644     cred->session_keyring = key_ref_to_ptr(keyring_r);
1645     keyring_r = NULL;
1646     init_task_work(newwork, key_change_session_keyring);
1647 
1648     me = current;
1649     rcu_read_lock();
1650     write_lock_irq(&tasklist_lock);
1651 
1652     ret = -EPERM;
1653     oldwork = NULL;
1654     parent = rcu_dereference_protected(me->real_parent,
1655                        lockdep_is_held(&tasklist_lock));
1656 
1657     /* the parent mustn't be init and mustn't be a kernel thread */
1658     if (parent->pid <= 1 || !parent->mm)
1659         goto unlock;
1660 
1661     /* the parent must be single threaded */
1662     if (!thread_group_empty(parent))
1663         goto unlock;
1664 
1665     /* the parent and the child must have different session keyrings or
1666      * there's no point */
1667     mycred = current_cred();
1668     pcred = __task_cred(parent);
1669     if (mycred == pcred ||
1670         mycred->session_keyring == pcred->session_keyring) {
1671         ret = 0;
1672         goto unlock;
1673     }
1674 
1675     /* the parent must have the same effective ownership and mustn't be
1676      * SUID/SGID */
1677     if (!uid_eq(pcred->uid,  mycred->euid) ||
1678         !uid_eq(pcred->euid, mycred->euid) ||
1679         !uid_eq(pcred->suid, mycred->euid) ||
1680         !gid_eq(pcred->gid,  mycred->egid) ||
1681         !gid_eq(pcred->egid, mycred->egid) ||
1682         !gid_eq(pcred->sgid, mycred->egid))
1683         goto unlock;
1684 
1685     /* the keyrings must have the same UID */
1686     if ((pcred->session_keyring &&
1687          !uid_eq(pcred->session_keyring->uid, mycred->euid)) ||
1688         !uid_eq(mycred->session_keyring->uid, mycred->euid))
1689         goto unlock;
1690 
1691     /* cancel an already pending keyring replacement */
1692     oldwork = task_work_cancel(parent, key_change_session_keyring);
1693 
1694     /* the replacement session keyring is applied just prior to userspace
1695      * restarting */
1696     ret = task_work_add(parent, newwork, TWA_RESUME);
1697     if (!ret)
1698         newwork = NULL;
1699 unlock:
1700     write_unlock_irq(&tasklist_lock);
1701     rcu_read_unlock();
1702     if (oldwork)
1703         put_cred(container_of(oldwork, struct cred, rcu));
1704     if (newwork)
1705         put_cred(cred);
1706     return ret;
1707 
1708 error_keyring:
1709     key_ref_put(keyring_r);
1710     return ret;
1711 }
1712 
1713 /*
1714  * Apply a restriction to a given keyring.
1715  *
1716  * The caller must have Setattr permission to change keyring restrictions.
1717  *
1718  * The requested type name may be a NULL pointer to reject all attempts
1719  * to link to the keyring.  In this case, _restriction must also be NULL.
1720  * Otherwise, both _type and _restriction must be non-NULL.
1721  *
1722  * Returns 0 if successful.
1723  */
1724 long keyctl_restrict_keyring(key_serial_t id, const char __user *_type,
1725                  const char __user *_restriction)
1726 {
1727     key_ref_t key_ref;
1728     char type[32];
1729     char *restriction = NULL;
1730     long ret;
1731 
1732     key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
1733     if (IS_ERR(key_ref))
1734         return PTR_ERR(key_ref);
1735 
1736     ret = -EINVAL;
1737     if (_type) {
1738         if (!_restriction)
1739             goto error;
1740 
1741         ret = key_get_type_from_user(type, _type, sizeof(type));
1742         if (ret < 0)
1743             goto error;
1744 
1745         restriction = strndup_user(_restriction, PAGE_SIZE);
1746         if (IS_ERR(restriction)) {
1747             ret = PTR_ERR(restriction);
1748             goto error;
1749         }
1750     } else {
1751         if (_restriction)
1752             goto error;
1753     }
1754 
1755     ret = keyring_restrict(key_ref, _type ? type : NULL, restriction);
1756     kfree(restriction);
1757 error:
1758     key_ref_put(key_ref);
1759     return ret;
1760 }
1761 
1762 #ifdef CONFIG_KEY_NOTIFICATIONS
1763 /*
1764  * Watch for changes to a key.
1765  *
1766  * The caller must have View permission to watch a key or keyring.
1767  */
1768 long keyctl_watch_key(key_serial_t id, int watch_queue_fd, int watch_id)
1769 {
1770     struct watch_queue *wqueue;
1771     struct watch_list *wlist = NULL;
1772     struct watch *watch = NULL;
1773     struct key *key;
1774     key_ref_t key_ref;
1775     long ret;
1776 
1777     if (watch_id < -1 || watch_id > 0xff)
1778         return -EINVAL;
1779 
1780     key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_VIEW);
1781     if (IS_ERR(key_ref))
1782         return PTR_ERR(key_ref);
1783     key = key_ref_to_ptr(key_ref);
1784 
1785     wqueue = get_watch_queue(watch_queue_fd);
1786     if (IS_ERR(wqueue)) {
1787         ret = PTR_ERR(wqueue);
1788         goto err_key;
1789     }
1790 
1791     if (watch_id >= 0) {
1792         ret = -ENOMEM;
1793         if (!key->watchers) {
1794             wlist = kzalloc(sizeof(*wlist), GFP_KERNEL);
1795             if (!wlist)
1796                 goto err_wqueue;
1797             init_watch_list(wlist, NULL);
1798         }
1799 
1800         watch = kzalloc(sizeof(*watch), GFP_KERNEL);
1801         if (!watch)
1802             goto err_wlist;
1803 
1804         init_watch(watch, wqueue);
1805         watch->id   = key->serial;
1806         watch->info_id  = (u32)watch_id << WATCH_INFO_ID__SHIFT;
1807 
1808         ret = security_watch_key(key);
1809         if (ret < 0)
1810             goto err_watch;
1811 
1812         down_write(&key->sem);
1813         if (!key->watchers) {
1814             key->watchers = wlist;
1815             wlist = NULL;
1816         }
1817 
1818         ret = add_watch_to_object(watch, key->watchers);
1819         up_write(&key->sem);
1820 
1821         if (ret == 0)
1822             watch = NULL;
1823     } else {
1824         ret = -EBADSLT;
1825         if (key->watchers) {
1826             down_write(&key->sem);
1827             ret = remove_watch_from_object(key->watchers,
1828                                wqueue, key_serial(key),
1829                                false);
1830             up_write(&key->sem);
1831         }
1832     }
1833 
1834 err_watch:
1835     kfree(watch);
1836 err_wlist:
1837     kfree(wlist);
1838 err_wqueue:
1839     put_watch_queue(wqueue);
1840 err_key:
1841     key_put(key);
1842     return ret;
1843 }
1844 #endif /* CONFIG_KEY_NOTIFICATIONS */
1845 
1846 /*
1847  * Get keyrings subsystem capabilities.
1848  */
1849 long keyctl_capabilities(unsigned char __user *_buffer, size_t buflen)
1850 {
1851     size_t size = buflen;
1852 
1853     if (size > 0) {
1854         if (size > sizeof(keyrings_capabilities))
1855             size = sizeof(keyrings_capabilities);
1856         if (copy_to_user(_buffer, keyrings_capabilities, size) != 0)
1857             return -EFAULT;
1858         if (size < buflen &&
1859             clear_user(_buffer + size, buflen - size) != 0)
1860             return -EFAULT;
1861     }
1862 
1863     return sizeof(keyrings_capabilities);
1864 }
1865 
1866 /*
1867  * The key control system call
1868  */
1869 SYSCALL_DEFINE5(keyctl, int, option, unsigned long, arg2, unsigned long, arg3,
1870         unsigned long, arg4, unsigned long, arg5)
1871 {
1872     switch (option) {
1873     case KEYCTL_GET_KEYRING_ID:
1874         return keyctl_get_keyring_ID((key_serial_t) arg2,
1875                          (int) arg3);
1876 
1877     case KEYCTL_JOIN_SESSION_KEYRING:
1878         return keyctl_join_session_keyring((const char __user *) arg2);
1879 
1880     case KEYCTL_UPDATE:
1881         return keyctl_update_key((key_serial_t) arg2,
1882                      (const void __user *) arg3,
1883                      (size_t) arg4);
1884 
1885     case KEYCTL_REVOKE:
1886         return keyctl_revoke_key((key_serial_t) arg2);
1887 
1888     case KEYCTL_DESCRIBE:
1889         return keyctl_describe_key((key_serial_t) arg2,
1890                        (char __user *) arg3,
1891                        (unsigned) arg4);
1892 
1893     case KEYCTL_CLEAR:
1894         return keyctl_keyring_clear((key_serial_t) arg2);
1895 
1896     case KEYCTL_LINK:
1897         return keyctl_keyring_link((key_serial_t) arg2,
1898                        (key_serial_t) arg3);
1899 
1900     case KEYCTL_UNLINK:
1901         return keyctl_keyring_unlink((key_serial_t) arg2,
1902                          (key_serial_t) arg3);
1903 
1904     case KEYCTL_SEARCH:
1905         return keyctl_keyring_search((key_serial_t) arg2,
1906                          (const char __user *) arg3,
1907                          (const char __user *) arg4,
1908                          (key_serial_t) arg5);
1909 
1910     case KEYCTL_READ:
1911         return keyctl_read_key((key_serial_t) arg2,
1912                        (char __user *) arg3,
1913                        (size_t) arg4);
1914 
1915     case KEYCTL_CHOWN:
1916         return keyctl_chown_key((key_serial_t) arg2,
1917                     (uid_t) arg3,
1918                     (gid_t) arg4);
1919 
1920     case KEYCTL_SETPERM:
1921         return keyctl_setperm_key((key_serial_t) arg2,
1922                       (key_perm_t) arg3);
1923 
1924     case KEYCTL_INSTANTIATE:
1925         return keyctl_instantiate_key((key_serial_t) arg2,
1926                           (const void __user *) arg3,
1927                           (size_t) arg4,
1928                           (key_serial_t) arg5);
1929 
1930     case KEYCTL_NEGATE:
1931         return keyctl_negate_key((key_serial_t) arg2,
1932                      (unsigned) arg3,
1933                      (key_serial_t) arg4);
1934 
1935     case KEYCTL_SET_REQKEY_KEYRING:
1936         return keyctl_set_reqkey_keyring(arg2);
1937 
1938     case KEYCTL_SET_TIMEOUT:
1939         return keyctl_set_timeout((key_serial_t) arg2,
1940                       (unsigned) arg3);
1941 
1942     case KEYCTL_ASSUME_AUTHORITY:
1943         return keyctl_assume_authority((key_serial_t) arg2);
1944 
1945     case KEYCTL_GET_SECURITY:
1946         return keyctl_get_security((key_serial_t) arg2,
1947                        (char __user *) arg3,
1948                        (size_t) arg4);
1949 
1950     case KEYCTL_SESSION_TO_PARENT:
1951         return keyctl_session_to_parent();
1952 
1953     case KEYCTL_REJECT:
1954         return keyctl_reject_key((key_serial_t) arg2,
1955                      (unsigned) arg3,
1956                      (unsigned) arg4,
1957                      (key_serial_t) arg5);
1958 
1959     case KEYCTL_INSTANTIATE_IOV:
1960         return keyctl_instantiate_key_iov(
1961             (key_serial_t) arg2,
1962             (const struct iovec __user *) arg3,
1963             (unsigned) arg4,
1964             (key_serial_t) arg5);
1965 
1966     case KEYCTL_INVALIDATE:
1967         return keyctl_invalidate_key((key_serial_t) arg2);
1968 
1969     case KEYCTL_GET_PERSISTENT:
1970         return keyctl_get_persistent((uid_t)arg2, (key_serial_t)arg3);
1971 
1972     case KEYCTL_DH_COMPUTE:
1973         return keyctl_dh_compute((struct keyctl_dh_params __user *) arg2,
1974                      (char __user *) arg3, (size_t) arg4,
1975                      (struct keyctl_kdf_params __user *) arg5);
1976 
1977     case KEYCTL_RESTRICT_KEYRING:
1978         return keyctl_restrict_keyring((key_serial_t) arg2,
1979                            (const char __user *) arg3,
1980                            (const char __user *) arg4);
1981 
1982     case KEYCTL_PKEY_QUERY:
1983         if (arg3 != 0)
1984             return -EINVAL;
1985         return keyctl_pkey_query((key_serial_t)arg2,
1986                      (const char __user *)arg4,
1987                      (struct keyctl_pkey_query __user *)arg5);
1988 
1989     case KEYCTL_PKEY_ENCRYPT:
1990     case KEYCTL_PKEY_DECRYPT:
1991     case KEYCTL_PKEY_SIGN:
1992         return keyctl_pkey_e_d_s(
1993             option,
1994             (const struct keyctl_pkey_params __user *)arg2,
1995             (const char __user *)arg3,
1996             (const void __user *)arg4,
1997             (void __user *)arg5);
1998 
1999     case KEYCTL_PKEY_VERIFY:
2000         return keyctl_pkey_verify(
2001             (const struct keyctl_pkey_params __user *)arg2,
2002             (const char __user *)arg3,
2003             (const void __user *)arg4,
2004             (const void __user *)arg5);
2005 
2006     case KEYCTL_MOVE:
2007         return keyctl_keyring_move((key_serial_t)arg2,
2008                        (key_serial_t)arg3,
2009                        (key_serial_t)arg4,
2010                        (unsigned int)arg5);
2011 
2012     case KEYCTL_CAPABILITIES:
2013         return keyctl_capabilities((unsigned char __user *)arg2, (size_t)arg3);
2014 
2015     case KEYCTL_WATCH_KEY:
2016         return keyctl_watch_key((key_serial_t)arg2, (int)arg3, (int)arg4);
2017 
2018     default:
2019         return -EOPNOTSUPP;
2020     }
2021 }