0001
0002
0003
0004
0005
0006 #include "dtc.h"
0007 #include "srcpos.h"
0008
0009 #define FTF_FULLPATH 0x1
0010 #define FTF_VARALIGN 0x2
0011 #define FTF_NAMEPROPS 0x4
0012 #define FTF_BOOTCPUID 0x8
0013 #define FTF_STRTABSIZE 0x10
0014 #define FTF_STRUCTSIZE 0x20
0015 #define FTF_NOPS 0x40
0016
0017 static struct version_info {
0018 int version;
0019 int last_comp_version;
0020 int hdr_size;
0021 int flags;
0022 } version_table[] = {
0023 {1, 1, FDT_V1_SIZE,
0024 FTF_FULLPATH|FTF_VARALIGN|FTF_NAMEPROPS},
0025 {2, 1, FDT_V2_SIZE,
0026 FTF_FULLPATH|FTF_VARALIGN|FTF_NAMEPROPS|FTF_BOOTCPUID},
0027 {3, 1, FDT_V3_SIZE,
0028 FTF_FULLPATH|FTF_VARALIGN|FTF_NAMEPROPS|FTF_BOOTCPUID|FTF_STRTABSIZE},
0029 {16, 16, FDT_V3_SIZE,
0030 FTF_BOOTCPUID|FTF_STRTABSIZE|FTF_NOPS},
0031 {17, 16, FDT_V17_SIZE,
0032 FTF_BOOTCPUID|FTF_STRTABSIZE|FTF_STRUCTSIZE|FTF_NOPS},
0033 };
0034
0035 struct emitter {
0036 void (*cell)(void *, cell_t);
0037 void (*string)(void *, const char *, int);
0038 void (*align)(void *, int);
0039 void (*data)(void *, struct data);
0040 void (*beginnode)(void *, struct label *labels);
0041 void (*endnode)(void *, struct label *labels);
0042 void (*property)(void *, struct label *labels);
0043 };
0044
0045 static void bin_emit_cell(void *e, cell_t val)
0046 {
0047 struct data *dtbuf = e;
0048
0049 *dtbuf = data_append_cell(*dtbuf, val);
0050 }
0051
0052 static void bin_emit_string(void *e, const char *str, int len)
0053 {
0054 struct data *dtbuf = e;
0055
0056 if (len == 0)
0057 len = strlen(str);
0058
0059 *dtbuf = data_append_data(*dtbuf, str, len);
0060 *dtbuf = data_append_byte(*dtbuf, '\0');
0061 }
0062
0063 static void bin_emit_align(void *e, int a)
0064 {
0065 struct data *dtbuf = e;
0066
0067 *dtbuf = data_append_align(*dtbuf, a);
0068 }
0069
0070 static void bin_emit_data(void *e, struct data d)
0071 {
0072 struct data *dtbuf = e;
0073
0074 *dtbuf = data_append_data(*dtbuf, d.val, d.len);
0075 }
0076
0077 static void bin_emit_beginnode(void *e, struct label *labels)
0078 {
0079 bin_emit_cell(e, FDT_BEGIN_NODE);
0080 }
0081
0082 static void bin_emit_endnode(void *e, struct label *labels)
0083 {
0084 bin_emit_cell(e, FDT_END_NODE);
0085 }
0086
0087 static void bin_emit_property(void *e, struct label *labels)
0088 {
0089 bin_emit_cell(e, FDT_PROP);
0090 }
0091
0092 static struct emitter bin_emitter = {
0093 .cell = bin_emit_cell,
0094 .string = bin_emit_string,
0095 .align = bin_emit_align,
0096 .data = bin_emit_data,
0097 .beginnode = bin_emit_beginnode,
0098 .endnode = bin_emit_endnode,
0099 .property = bin_emit_property,
0100 };
0101
0102 static void emit_label(FILE *f, const char *prefix, const char *label)
0103 {
0104 fprintf(f, "\t.globl\t%s_%s\n", prefix, label);
0105 fprintf(f, "%s_%s:\n", prefix, label);
0106 fprintf(f, "_%s_%s:\n", prefix, label);
0107 }
0108
0109 static void emit_offset_label(FILE *f, const char *label, int offset)
0110 {
0111 fprintf(f, "\t.globl\t%s\n", label);
0112 fprintf(f, "%s\t= . + %d\n", label, offset);
0113 }
0114
0115 #define ASM_EMIT_BELONG(f, fmt, ...) \
0116 { \
0117 fprintf((f), "\t.byte\t((" fmt ") >> 24) & 0xff\n", __VA_ARGS__); \
0118 fprintf((f), "\t.byte\t((" fmt ") >> 16) & 0xff\n", __VA_ARGS__); \
0119 fprintf((f), "\t.byte\t((" fmt ") >> 8) & 0xff\n", __VA_ARGS__); \
0120 fprintf((f), "\t.byte\t(" fmt ") & 0xff\n", __VA_ARGS__); \
0121 }
0122
0123 static void asm_emit_cell(void *e, cell_t val)
0124 {
0125 FILE *f = e;
0126
0127 fprintf(f, "\t.byte\t0x%02x\n" "\t.byte\t0x%02x\n"
0128 "\t.byte\t0x%02x\n" "\t.byte\t0x%02x\n",
0129 (val >> 24) & 0xff, (val >> 16) & 0xff,
0130 (val >> 8) & 0xff, val & 0xff);
0131 }
0132
0133 static void asm_emit_string(void *e, const char *str, int len)
0134 {
0135 FILE *f = e;
0136
0137 if (len != 0)
0138 fprintf(f, "\t.asciz\t\"%.*s\"\n", len, str);
0139 else
0140 fprintf(f, "\t.asciz\t\"%s\"\n", str);
0141 }
0142
0143 static void asm_emit_align(void *e, int a)
0144 {
0145 FILE *f = e;
0146
0147 fprintf(f, "\t.balign\t%d, 0\n", a);
0148 }
0149
0150 static void asm_emit_data(void *e, struct data d)
0151 {
0152 FILE *f = e;
0153 unsigned int off = 0;
0154 struct marker *m = d.markers;
0155
0156 for_each_marker_of_type(m, LABEL)
0157 emit_offset_label(f, m->ref, m->offset);
0158
0159 while ((d.len - off) >= sizeof(uint32_t)) {
0160 asm_emit_cell(e, dtb_ld32(d.val + off));
0161 off += sizeof(uint32_t);
0162 }
0163
0164 while ((d.len - off) >= 1) {
0165 fprintf(f, "\t.byte\t0x%hhx\n", d.val[off]);
0166 off += 1;
0167 }
0168
0169 assert(off == d.len);
0170 }
0171
0172 static void asm_emit_beginnode(void *e, struct label *labels)
0173 {
0174 FILE *f = e;
0175 struct label *l;
0176
0177 for_each_label(labels, l) {
0178 fprintf(f, "\t.globl\t%s\n", l->label);
0179 fprintf(f, "%s:\n", l->label);
0180 }
0181 fprintf(f, "\t/* FDT_BEGIN_NODE */\n");
0182 asm_emit_cell(e, FDT_BEGIN_NODE);
0183 }
0184
0185 static void asm_emit_endnode(void *e, struct label *labels)
0186 {
0187 FILE *f = e;
0188 struct label *l;
0189
0190 fprintf(f, "\t/* FDT_END_NODE */\n");
0191 asm_emit_cell(e, FDT_END_NODE);
0192 for_each_label(labels, l) {
0193 fprintf(f, "\t.globl\t%s_end\n", l->label);
0194 fprintf(f, "%s_end:\n", l->label);
0195 }
0196 }
0197
0198 static void asm_emit_property(void *e, struct label *labels)
0199 {
0200 FILE *f = e;
0201 struct label *l;
0202
0203 for_each_label(labels, l) {
0204 fprintf(f, "\t.globl\t%s\n", l->label);
0205 fprintf(f, "%s:\n", l->label);
0206 }
0207 fprintf(f, "\t/* FDT_PROP */\n");
0208 asm_emit_cell(e, FDT_PROP);
0209 }
0210
0211 static struct emitter asm_emitter = {
0212 .cell = asm_emit_cell,
0213 .string = asm_emit_string,
0214 .align = asm_emit_align,
0215 .data = asm_emit_data,
0216 .beginnode = asm_emit_beginnode,
0217 .endnode = asm_emit_endnode,
0218 .property = asm_emit_property,
0219 };
0220
0221 static int stringtable_insert(struct data *d, const char *str)
0222 {
0223 unsigned int i;
0224
0225
0226
0227 for (i = 0; i < d->len; i++) {
0228 if (streq(str, d->val + i))
0229 return i;
0230 }
0231
0232 *d = data_append_data(*d, str, strlen(str)+1);
0233 return i;
0234 }
0235
0236 static void flatten_tree(struct node *tree, struct emitter *emit,
0237 void *etarget, struct data *strbuf,
0238 struct version_info *vi)
0239 {
0240 struct property *prop;
0241 struct node *child;
0242 bool seen_name_prop = false;
0243
0244 if (tree->deleted)
0245 return;
0246
0247 emit->beginnode(etarget, tree->labels);
0248
0249 if (vi->flags & FTF_FULLPATH)
0250 emit->string(etarget, tree->fullpath, 0);
0251 else
0252 emit->string(etarget, tree->name, 0);
0253
0254 emit->align(etarget, sizeof(cell_t));
0255
0256 for_each_property(tree, prop) {
0257 int nameoff;
0258
0259 if (streq(prop->name, "name"))
0260 seen_name_prop = true;
0261
0262 nameoff = stringtable_insert(strbuf, prop->name);
0263
0264 emit->property(etarget, prop->labels);
0265 emit->cell(etarget, prop->val.len);
0266 emit->cell(etarget, nameoff);
0267
0268 if ((vi->flags & FTF_VARALIGN) && (prop->val.len >= 8))
0269 emit->align(etarget, 8);
0270
0271 emit->data(etarget, prop->val);
0272 emit->align(etarget, sizeof(cell_t));
0273 }
0274
0275 if ((vi->flags & FTF_NAMEPROPS) && !seen_name_prop) {
0276 emit->property(etarget, NULL);
0277 emit->cell(etarget, tree->basenamelen+1);
0278 emit->cell(etarget, stringtable_insert(strbuf, "name"));
0279
0280 if ((vi->flags & FTF_VARALIGN) && ((tree->basenamelen+1) >= 8))
0281 emit->align(etarget, 8);
0282
0283 emit->string(etarget, tree->name, tree->basenamelen);
0284 emit->align(etarget, sizeof(cell_t));
0285 }
0286
0287 for_each_child(tree, child) {
0288 flatten_tree(child, emit, etarget, strbuf, vi);
0289 }
0290
0291 emit->endnode(etarget, tree->labels);
0292 }
0293
0294 static struct data flatten_reserve_list(struct reserve_info *reservelist,
0295 struct version_info *vi)
0296 {
0297 struct reserve_info *re;
0298 struct data d = empty_data;
0299 unsigned int j;
0300
0301 for (re = reservelist; re; re = re->next) {
0302 d = data_append_re(d, re->address, re->size);
0303 }
0304
0305
0306
0307 for (j = 0; j < reservenum; j++) {
0308 d = data_append_re(d, 0, 0);
0309 }
0310
0311 return d;
0312 }
0313
0314 static void make_fdt_header(struct fdt_header *fdt,
0315 struct version_info *vi,
0316 int reservesize, int dtsize, int strsize,
0317 int boot_cpuid_phys)
0318 {
0319 int reserve_off;
0320
0321 reservesize += sizeof(struct fdt_reserve_entry);
0322
0323 memset(fdt, 0xff, sizeof(*fdt));
0324
0325 fdt->magic = cpu_to_fdt32(FDT_MAGIC);
0326 fdt->version = cpu_to_fdt32(vi->version);
0327 fdt->last_comp_version = cpu_to_fdt32(vi->last_comp_version);
0328
0329
0330 reserve_off = ALIGN(vi->hdr_size, 8);
0331
0332 fdt->off_mem_rsvmap = cpu_to_fdt32(reserve_off);
0333 fdt->off_dt_struct = cpu_to_fdt32(reserve_off + reservesize);
0334 fdt->off_dt_strings = cpu_to_fdt32(reserve_off + reservesize
0335 + dtsize);
0336 fdt->totalsize = cpu_to_fdt32(reserve_off + reservesize + dtsize + strsize);
0337
0338 if (vi->flags & FTF_BOOTCPUID)
0339 fdt->boot_cpuid_phys = cpu_to_fdt32(boot_cpuid_phys);
0340 if (vi->flags & FTF_STRTABSIZE)
0341 fdt->size_dt_strings = cpu_to_fdt32(strsize);
0342 if (vi->flags & FTF_STRUCTSIZE)
0343 fdt->size_dt_struct = cpu_to_fdt32(dtsize);
0344 }
0345
0346 void dt_to_blob(FILE *f, struct dt_info *dti, int version)
0347 {
0348 struct version_info *vi = NULL;
0349 unsigned int i;
0350 struct data blob = empty_data;
0351 struct data reservebuf = empty_data;
0352 struct data dtbuf = empty_data;
0353 struct data strbuf = empty_data;
0354 struct fdt_header fdt;
0355 int padlen = 0;
0356
0357 for (i = 0; i < ARRAY_SIZE(version_table); i++) {
0358 if (version_table[i].version == version)
0359 vi = &version_table[i];
0360 }
0361 if (!vi)
0362 die("Unknown device tree blob version %d\n", version);
0363
0364 flatten_tree(dti->dt, &bin_emitter, &dtbuf, &strbuf, vi);
0365 bin_emit_cell(&dtbuf, FDT_END);
0366
0367 reservebuf = flatten_reserve_list(dti->reservelist, vi);
0368
0369
0370 make_fdt_header(&fdt, vi, reservebuf.len, dtbuf.len, strbuf.len,
0371 dti->boot_cpuid_phys);
0372
0373
0374
0375
0376 if (minsize > 0) {
0377 padlen = minsize - fdt32_to_cpu(fdt.totalsize);
0378 if (padlen < 0) {
0379 padlen = 0;
0380 if (quiet < 1)
0381 fprintf(stderr,
0382 "Warning: blob size %"PRIu32" >= minimum size %d\n",
0383 fdt32_to_cpu(fdt.totalsize), minsize);
0384 }
0385 }
0386
0387 if (padsize > 0)
0388 padlen = padsize;
0389
0390 if (alignsize > 0)
0391 padlen = ALIGN(fdt32_to_cpu(fdt.totalsize) + padlen, alignsize)
0392 - fdt32_to_cpu(fdt.totalsize);
0393
0394 if (padlen > 0) {
0395 int tsize = fdt32_to_cpu(fdt.totalsize);
0396 tsize += padlen;
0397 fdt.totalsize = cpu_to_fdt32(tsize);
0398 }
0399
0400
0401
0402
0403
0404
0405 blob = data_append_data(blob, &fdt, vi->hdr_size);
0406 blob = data_append_align(blob, 8);
0407 blob = data_merge(blob, reservebuf);
0408 blob = data_append_zeroes(blob, sizeof(struct fdt_reserve_entry));
0409 blob = data_merge(blob, dtbuf);
0410 blob = data_merge(blob, strbuf);
0411
0412
0413
0414
0415 if (padlen > 0)
0416 blob = data_append_zeroes(blob, padlen);
0417
0418 if (fwrite(blob.val, blob.len, 1, f) != 1) {
0419 if (ferror(f))
0420 die("Error writing device tree blob: %s\n",
0421 strerror(errno));
0422 else
0423 die("Short write on device tree blob\n");
0424 }
0425
0426
0427
0428
0429
0430 data_free(blob);
0431 }
0432
0433 static void dump_stringtable_asm(FILE *f, struct data strbuf)
0434 {
0435 const char *p;
0436 int len;
0437
0438 p = strbuf.val;
0439
0440 while (p < (strbuf.val + strbuf.len)) {
0441 len = strlen(p);
0442 fprintf(f, "\t.asciz \"%s\"\n", p);
0443 p += len+1;
0444 }
0445 }
0446
0447 void dt_to_asm(FILE *f, struct dt_info *dti, int version)
0448 {
0449 struct version_info *vi = NULL;
0450 unsigned int i;
0451 struct data strbuf = empty_data;
0452 struct reserve_info *re;
0453 const char *symprefix = "dt";
0454
0455 for (i = 0; i < ARRAY_SIZE(version_table); i++) {
0456 if (version_table[i].version == version)
0457 vi = &version_table[i];
0458 }
0459 if (!vi)
0460 die("Unknown device tree blob version %d\n", version);
0461
0462 fprintf(f, "/* autogenerated by dtc, do not edit */\n\n");
0463
0464 emit_label(f, symprefix, "blob_start");
0465 emit_label(f, symprefix, "header");
0466 fprintf(f, "\t/* magic */\n");
0467 asm_emit_cell(f, FDT_MAGIC);
0468 fprintf(f, "\t/* totalsize */\n");
0469 ASM_EMIT_BELONG(f, "_%s_blob_abs_end - _%s_blob_start",
0470 symprefix, symprefix);
0471 fprintf(f, "\t/* off_dt_struct */\n");
0472 ASM_EMIT_BELONG(f, "_%s_struct_start - _%s_blob_start",
0473 symprefix, symprefix);
0474 fprintf(f, "\t/* off_dt_strings */\n");
0475 ASM_EMIT_BELONG(f, "_%s_strings_start - _%s_blob_start",
0476 symprefix, symprefix);
0477 fprintf(f, "\t/* off_mem_rsvmap */\n");
0478 ASM_EMIT_BELONG(f, "_%s_reserve_map - _%s_blob_start",
0479 symprefix, symprefix);
0480 fprintf(f, "\t/* version */\n");
0481 asm_emit_cell(f, vi->version);
0482 fprintf(f, "\t/* last_comp_version */\n");
0483 asm_emit_cell(f, vi->last_comp_version);
0484
0485 if (vi->flags & FTF_BOOTCPUID) {
0486 fprintf(f, "\t/* boot_cpuid_phys */\n");
0487 asm_emit_cell(f, dti->boot_cpuid_phys);
0488 }
0489
0490 if (vi->flags & FTF_STRTABSIZE) {
0491 fprintf(f, "\t/* size_dt_strings */\n");
0492 ASM_EMIT_BELONG(f, "_%s_strings_end - _%s_strings_start",
0493 symprefix, symprefix);
0494 }
0495
0496 if (vi->flags & FTF_STRUCTSIZE) {
0497 fprintf(f, "\t/* size_dt_struct */\n");
0498 ASM_EMIT_BELONG(f, "_%s_struct_end - _%s_struct_start",
0499 symprefix, symprefix);
0500 }
0501
0502
0503
0504
0505
0506
0507
0508 asm_emit_align(f, 8);
0509 emit_label(f, symprefix, "reserve_map");
0510
0511 fprintf(f, "/* Memory reserve map from source file */\n");
0512
0513
0514
0515
0516
0517 for (re = dti->reservelist; re; re = re->next) {
0518 struct label *l;
0519
0520 for_each_label(re->labels, l) {
0521 fprintf(f, "\t.globl\t%s\n", l->label);
0522 fprintf(f, "%s:\n", l->label);
0523 }
0524 ASM_EMIT_BELONG(f, "0x%08x", (unsigned int)(re->address >> 32));
0525 ASM_EMIT_BELONG(f, "0x%08x",
0526 (unsigned int)(re->address & 0xffffffff));
0527 ASM_EMIT_BELONG(f, "0x%08x", (unsigned int)(re->size >> 32));
0528 ASM_EMIT_BELONG(f, "0x%08x", (unsigned int)(re->size & 0xffffffff));
0529 }
0530 for (i = 0; i < reservenum; i++) {
0531 fprintf(f, "\t.long\t0, 0\n\t.long\t0, 0\n");
0532 }
0533
0534 fprintf(f, "\t.long\t0, 0\n\t.long\t0, 0\n");
0535
0536 emit_label(f, symprefix, "struct_start");
0537 flatten_tree(dti->dt, &asm_emitter, f, &strbuf, vi);
0538
0539 fprintf(f, "\t/* FDT_END */\n");
0540 asm_emit_cell(f, FDT_END);
0541 emit_label(f, symprefix, "struct_end");
0542
0543 emit_label(f, symprefix, "strings_start");
0544 dump_stringtable_asm(f, strbuf);
0545 emit_label(f, symprefix, "strings_end");
0546
0547 emit_label(f, symprefix, "blob_end");
0548
0549
0550
0551
0552 if (minsize > 0) {
0553 fprintf(f, "\t.space\t%d - (_%s_blob_end - _%s_blob_start), 0\n",
0554 minsize, symprefix, symprefix);
0555 }
0556 if (padsize > 0) {
0557 fprintf(f, "\t.space\t%d, 0\n", padsize);
0558 }
0559 if (alignsize > 0)
0560 asm_emit_align(f, alignsize);
0561 emit_label(f, symprefix, "blob_abs_end");
0562
0563 data_free(strbuf);
0564 }
0565
0566 struct inbuf {
0567 char *base, *limit, *ptr;
0568 };
0569
0570 static void inbuf_init(struct inbuf *inb, void *base, void *limit)
0571 {
0572 inb->base = base;
0573 inb->limit = limit;
0574 inb->ptr = inb->base;
0575 }
0576
0577 static void flat_read_chunk(struct inbuf *inb, void *p, int len)
0578 {
0579 if ((inb->ptr + len) > inb->limit)
0580 die("Premature end of data parsing flat device tree\n");
0581
0582 memcpy(p, inb->ptr, len);
0583
0584 inb->ptr += len;
0585 }
0586
0587 static uint32_t flat_read_word(struct inbuf *inb)
0588 {
0589 fdt32_t val;
0590
0591 assert(((inb->ptr - inb->base) % sizeof(val)) == 0);
0592
0593 flat_read_chunk(inb, &val, sizeof(val));
0594
0595 return fdt32_to_cpu(val);
0596 }
0597
0598 static void flat_realign(struct inbuf *inb, int align)
0599 {
0600 int off = inb->ptr - inb->base;
0601
0602 inb->ptr = inb->base + ALIGN(off, align);
0603 if (inb->ptr > inb->limit)
0604 die("Premature end of data parsing flat device tree\n");
0605 }
0606
0607 static char *flat_read_string(struct inbuf *inb)
0608 {
0609 int len = 0;
0610 const char *p = inb->ptr;
0611 char *str;
0612
0613 do {
0614 if (p >= inb->limit)
0615 die("Premature end of data parsing flat device tree\n");
0616 len++;
0617 } while ((*p++) != '\0');
0618
0619 str = xstrdup(inb->ptr);
0620
0621 inb->ptr += len;
0622
0623 flat_realign(inb, sizeof(uint32_t));
0624
0625 return str;
0626 }
0627
0628 static struct data flat_read_data(struct inbuf *inb, int len)
0629 {
0630 struct data d = empty_data;
0631
0632 if (len == 0)
0633 return empty_data;
0634
0635 d = data_grow_for(d, len);
0636 d.len = len;
0637
0638 flat_read_chunk(inb, d.val, len);
0639
0640 flat_realign(inb, sizeof(uint32_t));
0641
0642 return d;
0643 }
0644
0645 static char *flat_read_stringtable(struct inbuf *inb, int offset)
0646 {
0647 const char *p;
0648
0649 p = inb->base + offset;
0650 while (1) {
0651 if (p >= inb->limit || p < inb->base)
0652 die("String offset %d overruns string table\n",
0653 offset);
0654
0655 if (*p == '\0')
0656 break;
0657
0658 p++;
0659 }
0660
0661 return xstrdup(inb->base + offset);
0662 }
0663
0664 static struct property *flat_read_property(struct inbuf *dtbuf,
0665 struct inbuf *strbuf, int flags)
0666 {
0667 uint32_t proplen, stroff;
0668 char *name;
0669 struct data val;
0670
0671 proplen = flat_read_word(dtbuf);
0672 stroff = flat_read_word(dtbuf);
0673
0674 name = flat_read_stringtable(strbuf, stroff);
0675
0676 if ((flags & FTF_VARALIGN) && (proplen >= 8))
0677 flat_realign(dtbuf, 8);
0678
0679 val = flat_read_data(dtbuf, proplen);
0680
0681 return build_property(name, val, NULL);
0682 }
0683
0684
0685 static struct reserve_info *flat_read_mem_reserve(struct inbuf *inb)
0686 {
0687 struct reserve_info *reservelist = NULL;
0688 struct reserve_info *new;
0689 struct fdt_reserve_entry re;
0690
0691
0692
0693
0694
0695
0696
0697 while (1) {
0698 uint64_t address, size;
0699
0700 flat_read_chunk(inb, &re, sizeof(re));
0701 address = fdt64_to_cpu(re.address);
0702 size = fdt64_to_cpu(re.size);
0703 if (size == 0)
0704 break;
0705
0706 new = build_reserve_entry(address, size);
0707 reservelist = add_reserve_entry(reservelist, new);
0708 }
0709
0710 return reservelist;
0711 }
0712
0713
0714 static char *nodename_from_path(const char *ppath, const char *cpath)
0715 {
0716 int plen;
0717
0718 plen = strlen(ppath);
0719
0720 if (!strstarts(cpath, ppath))
0721 die("Path \"%s\" is not valid as a child of \"%s\"\n",
0722 cpath, ppath);
0723
0724
0725 if (!streq(ppath, "/"))
0726 plen++;
0727
0728 return xstrdup(cpath + plen);
0729 }
0730
0731 static struct node *unflatten_tree(struct inbuf *dtbuf,
0732 struct inbuf *strbuf,
0733 const char *parent_flatname, int flags)
0734 {
0735 struct node *node;
0736 char *flatname;
0737 uint32_t val;
0738
0739 node = build_node(NULL, NULL, NULL);
0740
0741 flatname = flat_read_string(dtbuf);
0742
0743 if (flags & FTF_FULLPATH)
0744 node->name = nodename_from_path(parent_flatname, flatname);
0745 else
0746 node->name = flatname;
0747
0748 do {
0749 struct property *prop;
0750 struct node *child;
0751
0752 val = flat_read_word(dtbuf);
0753 switch (val) {
0754 case FDT_PROP:
0755 if (node->children)
0756 fprintf(stderr, "Warning: Flat tree input has "
0757 "subnodes preceding a property.\n");
0758 prop = flat_read_property(dtbuf, strbuf, flags);
0759 add_property(node, prop);
0760 break;
0761
0762 case FDT_BEGIN_NODE:
0763 child = unflatten_tree(dtbuf,strbuf, flatname, flags);
0764 add_child(node, child);
0765 break;
0766
0767 case FDT_END_NODE:
0768 break;
0769
0770 case FDT_END:
0771 die("Premature FDT_END in device tree blob\n");
0772 break;
0773
0774 case FDT_NOP:
0775 if (!(flags & FTF_NOPS))
0776 fprintf(stderr, "Warning: NOP tag found in flat tree"
0777 " version <16\n");
0778
0779
0780 break;
0781
0782 default:
0783 die("Invalid opcode word %08x in device tree blob\n",
0784 val);
0785 }
0786 } while (val != FDT_END_NODE);
0787
0788 if (node->name != flatname) {
0789 free(flatname);
0790 }
0791
0792 return node;
0793 }
0794
0795
0796 struct dt_info *dt_from_blob(const char *fname)
0797 {
0798 FILE *f;
0799 fdt32_t magic_buf, totalsize_buf;
0800 uint32_t magic, totalsize, version, size_dt, boot_cpuid_phys;
0801 uint32_t off_dt, off_str, off_mem_rsvmap;
0802 int rc;
0803 char *blob;
0804 struct fdt_header *fdt;
0805 char *p;
0806 struct inbuf dtbuf, strbuf;
0807 struct inbuf memresvbuf;
0808 int sizeleft;
0809 struct reserve_info *reservelist;
0810 struct node *tree;
0811 uint32_t val;
0812 int flags = 0;
0813
0814 f = srcfile_relative_open(fname, NULL);
0815
0816 rc = fread(&magic_buf, sizeof(magic_buf), 1, f);
0817 if (ferror(f))
0818 die("Error reading DT blob magic number: %s\n",
0819 strerror(errno));
0820 if (rc < 1) {
0821 if (feof(f))
0822 die("EOF reading DT blob magic number\n");
0823 else
0824 die("Mysterious short read reading magic number\n");
0825 }
0826
0827 magic = fdt32_to_cpu(magic_buf);
0828 if (magic != FDT_MAGIC)
0829 die("Blob has incorrect magic number\n");
0830
0831 rc = fread(&totalsize_buf, sizeof(totalsize_buf), 1, f);
0832 if (ferror(f))
0833 die("Error reading DT blob size: %s\n", strerror(errno));
0834 if (rc < 1) {
0835 if (feof(f))
0836 die("EOF reading DT blob size\n");
0837 else
0838 die("Mysterious short read reading blob size\n");
0839 }
0840
0841 totalsize = fdt32_to_cpu(totalsize_buf);
0842 if (totalsize < FDT_V1_SIZE)
0843 die("DT blob size (%d) is too small\n", totalsize);
0844
0845 blob = xmalloc(totalsize);
0846
0847 fdt = (struct fdt_header *)blob;
0848 fdt->magic = cpu_to_fdt32(magic);
0849 fdt->totalsize = cpu_to_fdt32(totalsize);
0850
0851 sizeleft = totalsize - sizeof(magic) - sizeof(totalsize);
0852 p = blob + sizeof(magic) + sizeof(totalsize);
0853
0854 while (sizeleft) {
0855 if (feof(f))
0856 die("EOF before reading %d bytes of DT blob\n",
0857 totalsize);
0858
0859 rc = fread(p, 1, sizeleft, f);
0860 if (ferror(f))
0861 die("Error reading DT blob: %s\n",
0862 strerror(errno));
0863
0864 sizeleft -= rc;
0865 p += rc;
0866 }
0867
0868 off_dt = fdt32_to_cpu(fdt->off_dt_struct);
0869 off_str = fdt32_to_cpu(fdt->off_dt_strings);
0870 off_mem_rsvmap = fdt32_to_cpu(fdt->off_mem_rsvmap);
0871 version = fdt32_to_cpu(fdt->version);
0872 boot_cpuid_phys = fdt32_to_cpu(fdt->boot_cpuid_phys);
0873
0874 if (off_mem_rsvmap >= totalsize)
0875 die("Mem Reserve structure offset exceeds total size\n");
0876
0877 if (off_dt >= totalsize)
0878 die("DT structure offset exceeds total size\n");
0879
0880 if (off_str > totalsize)
0881 die("String table offset exceeds total size\n");
0882
0883 if (version >= 3) {
0884 uint32_t size_str = fdt32_to_cpu(fdt->size_dt_strings);
0885 if ((off_str+size_str < off_str) || (off_str+size_str > totalsize))
0886 die("String table extends past total size\n");
0887 inbuf_init(&strbuf, blob + off_str, blob + off_str + size_str);
0888 } else {
0889 inbuf_init(&strbuf, blob + off_str, blob + totalsize);
0890 }
0891
0892 if (version >= 17) {
0893 size_dt = fdt32_to_cpu(fdt->size_dt_struct);
0894 if ((off_dt+size_dt < off_dt) || (off_dt+size_dt > totalsize))
0895 die("Structure block extends past total size\n");
0896 }
0897
0898 if (version < 16) {
0899 flags |= FTF_FULLPATH | FTF_NAMEPROPS | FTF_VARALIGN;
0900 } else {
0901 flags |= FTF_NOPS;
0902 }
0903
0904 inbuf_init(&memresvbuf,
0905 blob + off_mem_rsvmap, blob + totalsize);
0906 inbuf_init(&dtbuf, blob + off_dt, blob + totalsize);
0907
0908 reservelist = flat_read_mem_reserve(&memresvbuf);
0909
0910 val = flat_read_word(&dtbuf);
0911
0912 if (val != FDT_BEGIN_NODE)
0913 die("Device tree blob doesn't begin with FDT_BEGIN_NODE (begins with 0x%08x)\n", val);
0914
0915 tree = unflatten_tree(&dtbuf, &strbuf, "", flags);
0916
0917 val = flat_read_word(&dtbuf);
0918 if (val != FDT_END)
0919 die("Device tree blob doesn't end with FDT_END\n");
0920
0921 free(blob);
0922
0923 fclose(f);
0924
0925 return build_dt_info(DTSF_V1, reservelist, tree, boot_cpuid_phys);
0926 }