Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0 */
0002 /*
0003  * If TRACE_SYSTEM is defined, that will be the directory created
0004  * in the ftrace directory under /sys/kernel/tracing/events/<system>
0005  *
0006  * The define_trace.h below will also look for a file name of
0007  * TRACE_SYSTEM.h where TRACE_SYSTEM is what is defined here.
0008  * In this case, it would look for sample-trace.h
0009  *
0010  * If the header name will be different than the system name
0011  * (as in this case), then you can override the header name that
0012  * define_trace.h will look up by defining TRACE_INCLUDE_FILE
0013  *
0014  * This file is called trace-events-sample.h but we want the system
0015  * to be called "sample-trace". Therefore we must define the name of this
0016  * file:
0017  *
0018  * #define TRACE_INCLUDE_FILE trace-events-sample
0019  *
0020  * As we do an the bottom of this file.
0021  *
0022  * Notice that TRACE_SYSTEM should be defined outside of #if
0023  * protection, just like TRACE_INCLUDE_FILE.
0024  */
0025 #undef TRACE_SYSTEM
0026 #define TRACE_SYSTEM sample-trace
0027 
0028 /*
0029  * TRACE_SYSTEM is expected to be a C valid variable (alpha-numeric
0030  * and underscore), although it may start with numbers. If for some
0031  * reason it is not, you need to add the following lines:
0032  */
0033 #undef TRACE_SYSTEM_VAR
0034 #define TRACE_SYSTEM_VAR sample_trace
0035 /*
0036  * But the above is only needed if TRACE_SYSTEM is not alpha-numeric
0037  * and underscored. By default, TRACE_SYSTEM_VAR will be equal to
0038  * TRACE_SYSTEM. As TRACE_SYSTEM_VAR must be alpha-numeric, if
0039  * TRACE_SYSTEM is not, then TRACE_SYSTEM_VAR must be defined with
0040  * only alpha-numeric and underscores.
0041  *
0042  * The TRACE_SYSTEM_VAR is only used internally and not visible to
0043  * user space.
0044  */
0045 
0046 /*
0047  * Notice that this file is not protected like a normal header.
0048  * We also must allow for rereading of this file. The
0049  *
0050  *  || defined(TRACE_HEADER_MULTI_READ)
0051  *
0052  * serves this purpose.
0053  */
0054 #if !defined(_TRACE_EVENT_SAMPLE_H) || defined(TRACE_HEADER_MULTI_READ)
0055 #define _TRACE_EVENT_SAMPLE_H
0056 
0057 /*
0058  * All trace headers should include tracepoint.h, until we finally
0059  * make it into a standard header.
0060  */
0061 #include <linux/tracepoint.h>
0062 
0063 /*
0064  * The TRACE_EVENT macro is broken up into 5 parts.
0065  *
0066  * name: name of the trace point. This is also how to enable the tracepoint.
0067  *   A function called trace_foo_bar() will be created.
0068  *
0069  * proto: the prototype of the function trace_foo_bar()
0070  *   Here it is trace_foo_bar(char *foo, int bar).
0071  *
0072  * args:  must match the arguments in the prototype.
0073  *    Here it is simply "foo, bar".
0074  *
0075  * struct:  This defines the way the data will be stored in the ring buffer.
0076  *          The items declared here become part of a special structure
0077  *          called "__entry", which can be used in the fast_assign part of the
0078  *          TRACE_EVENT macro.
0079  *
0080  *      Here are the currently defined types you can use:
0081  *
0082  *   __field : Is broken up into type and name. Where type can be any
0083  *         primitive type (integer, long or pointer).
0084  *
0085  *        __field(int, foo)
0086  *
0087  *        __entry->foo = 5;
0088  *
0089  *   __field_struct : This can be any static complex data type (struct, union
0090  *         but not an array). Be careful using complex types, as each
0091  *         event is limited in size, and copying large amounts of data
0092  *         into the ring buffer can slow things down.
0093  *
0094  *         __field_struct(struct bar, foo)
0095  *
0096  *         __entry->bar.x = y;
0097 
0098  *   __array: There are three fields (type, name, size). The type is the
0099  *         type of elements in the array, the name is the name of the array.
0100  *         size is the number of items in the array (not the total size).
0101  *
0102  *         __array( char, foo, 10) is the same as saying: char foo[10];
0103  *
0104  *         Assigning arrays can be done like any array:
0105  *
0106  *         __entry->foo[0] = 'a';
0107  *
0108  *         memcpy(__entry->foo, bar, 10);
0109  *
0110  *   __dynamic_array: This is similar to array, but can vary its size from
0111  *         instance to instance of the tracepoint being called.
0112  *         Like __array, this too has three elements (type, name, size);
0113  *         type is the type of the element, name is the name of the array.
0114  *         The size is different than __array. It is not a static number,
0115  *         but the algorithm to figure out the length of the array for the
0116  *         specific instance of tracepoint. Again, size is the number of
0117  *         items in the array, not the total length in bytes.
0118  *
0119  *         __dynamic_array( int, foo, bar) is similar to: int foo[bar];
0120  *
0121  *         Note, unlike arrays, you must use the __get_dynamic_array() macro
0122  *         to access the array.
0123  *
0124  *         memcpy(__get_dynamic_array(foo), bar, 10);
0125  *
0126  *         Notice, that "__entry" is not needed here.
0127  *
0128  *   __string: This is a special kind of __dynamic_array. It expects to
0129  *         have a null terminated character array passed to it (it allows
0130  *         for NULL too, which would be converted into "(null)"). __string
0131  *         takes two parameter (name, src), where name is the name of
0132  *         the string saved, and src is the string to copy into the
0133  *         ring buffer.
0134  *
0135  *         __string(foo, bar)  is similar to:  strcpy(foo, bar)
0136  *
0137  *         To assign a string, use the helper macro __assign_str().
0138  *
0139  *         __assign_str(foo, bar);
0140  *
0141  *         In most cases, the __assign_str() macro will take the same
0142  *         parameters as the __string() macro had to declare the string.
0143  *
0144  *   __vstring: This is similar to __string() but instead of taking a
0145  *         dynamic length, it takes a variable list va_list 'va' variable.
0146  *         Some event callers already have a message from parameters saved
0147  *         in a va_list. Passing in the format and the va_list variable
0148  *         will save just enough on the ring buffer for that string.
0149  *         Note, the va variable used is a pointer to a va_list, not
0150  *         to the va_list directly.
0151  *
0152  *           (va_list *va)
0153  *
0154  *         __vstring(foo, fmt, va)  is similar to:  vsnprintf(foo, fmt, va)
0155  *
0156  *         To assign the string, use the helper macro __assign_vstr().
0157  *
0158  *         __assign_vstr(foo, fmt, va);
0159  *
0160  *         In most cases, the __assign_vstr() macro will take the same
0161  *         parameters as the __vstring() macro had to declare the string.
0162  *         Use __get_str() to retrieve the __vstring() just like it would for
0163  *         __string().
0164  *
0165  *   __string_len: This is a helper to a __dynamic_array, but it understands
0166  *     that the array has characters in it, and with the combined
0167  *         use of __assign_str_len(), it will allocate 'len' + 1 bytes
0168  *         in the ring buffer and add a '\0' to the string. This is
0169  *         useful if the string being saved has no terminating '\0' byte.
0170  *         It requires that the length of the string is known as it acts
0171  *         like a memcpy().
0172  *
0173  *         Declared with:
0174  *
0175  *         __string_len(foo, bar, len)
0176  *
0177  *         To assign this string, use the helper macro __assign_str_len().
0178  *
0179  *         __assign_str_len(foo, bar, len);
0180  *
0181  *         Then len + 1 is allocated to the ring buffer, and a nul terminating
0182  *         byte is added. This is similar to:
0183  *
0184  *         memcpy(__get_str(foo), bar, len);
0185  *         __get_str(foo)[len] = 0;
0186  *
0187  *        The advantage of using this over __dynamic_array, is that it
0188  *        takes care of allocating the extra byte on the ring buffer
0189  *        for the '\0' terminating byte, and __get_str(foo) can be used
0190  *        in the TP_printk().
0191  *
0192  *   __bitmask: This is another kind of __dynamic_array, but it expects
0193  *         an array of longs, and the number of bits to parse. It takes
0194  *         two parameters (name, nr_bits), where name is the name of the
0195  *         bitmask to save, and the nr_bits is the number of bits to record.
0196  *
0197  *         __bitmask(target_cpu, nr_cpumask_bits)
0198  *
0199  *         To assign a bitmask, use the __assign_bitmask() helper macro.
0200  *
0201  *         __assign_bitmask(target_cpus, cpumask_bits(bar), nr_cpumask_bits);
0202  *
0203  *
0204  * fast_assign: This is a C like function that is used to store the items
0205  *    into the ring buffer. A special variable called "__entry" will be the
0206  *    structure that points into the ring buffer and has the same fields as
0207  *    described by the struct part of TRACE_EVENT above.
0208  *
0209  * printk: This is a way to print out the data in pretty print. This is
0210  *    useful if the system crashes and you are logging via a serial line,
0211  *    the data can be printed to the console using this "printk" method.
0212  *    This is also used to print out the data from the trace files.
0213  *    Again, the __entry macro is used to access the data from the ring buffer.
0214  *
0215  *    Note, __dynamic_array, __string, and __bitmask require special helpers
0216  *       to access the data.
0217  *
0218  *      For __dynamic_array(int, foo, bar) use __get_dynamic_array(foo)
0219  *            Use __get_dynamic_array_len(foo) to get the length of the array
0220  *            saved. Note, __get_dynamic_array_len() returns the total allocated
0221  *            length of the dynamic array; __print_array() expects the second
0222  *            parameter to be the number of elements. To get that, the array length
0223  *            needs to be divided by the element size.
0224  *
0225  *      For __string(foo, bar) use __get_str(foo)
0226  *
0227  *      For __bitmask(target_cpus, nr_cpumask_bits) use __get_bitmask(target_cpus)
0228  *
0229  *
0230  * Note, that for both the assign and the printk, __entry is the handler
0231  * to the data structure in the ring buffer, and is defined by the
0232  * TP_STRUCT__entry.
0233  */
0234 
0235 /*
0236  * It is OK to have helper functions in the file, but they need to be protected
0237  * from being defined more than once. Remember, this file gets included more
0238  * than once.
0239  */
0240 #ifndef __TRACE_EVENT_SAMPLE_HELPER_FUNCTIONS
0241 #define __TRACE_EVENT_SAMPLE_HELPER_FUNCTIONS
0242 static inline int __length_of(const int *list)
0243 {
0244     int i;
0245 
0246     if (!list)
0247         return 0;
0248 
0249     for (i = 0; list[i]; i++)
0250         ;
0251     return i;
0252 }
0253 
0254 enum {
0255     TRACE_SAMPLE_FOO = 2,
0256     TRACE_SAMPLE_BAR = 4,
0257     TRACE_SAMPLE_ZOO = 8,
0258 };
0259 #endif
0260 
0261 /*
0262  * If enums are used in the TP_printk(), their names will be shown in
0263  * format files and not their values. This can cause problems with user
0264  * space programs that parse the format files to know how to translate
0265  * the raw binary trace output into human readable text.
0266  *
0267  * To help out user space programs, any enum that is used in the TP_printk()
0268  * should be defined by TRACE_DEFINE_ENUM() macro. All that is needed to
0269  * be done is to add this macro with the enum within it in the trace
0270  * header file, and it will be converted in the output.
0271  */
0272 
0273 TRACE_DEFINE_ENUM(TRACE_SAMPLE_FOO);
0274 TRACE_DEFINE_ENUM(TRACE_SAMPLE_BAR);
0275 TRACE_DEFINE_ENUM(TRACE_SAMPLE_ZOO);
0276 
0277 TRACE_EVENT(foo_bar,
0278 
0279     TP_PROTO(const char *foo, int bar, const int *lst,
0280          const char *string, const struct cpumask *mask,
0281          const char *fmt, va_list *va),
0282 
0283     TP_ARGS(foo, bar, lst, string, mask, fmt, va),
0284 
0285     TP_STRUCT__entry(
0286         __array(    char,   foo,    10      )
0287         __field(    int,    bar         )
0288         __dynamic_array(int,    list,   __length_of(lst))
0289         __string(   str,    string          )
0290         __bitmask(  cpus,   num_possible_cpus() )
0291         __vstring(  vstr,   fmt,    va      )
0292     ),
0293 
0294     TP_fast_assign(
0295         strlcpy(__entry->foo, foo, 10);
0296         __entry->bar    = bar;
0297         memcpy(__get_dynamic_array(list), lst,
0298                __length_of(lst) * sizeof(int));
0299         __assign_str(str, string);
0300         __assign_vstr(vstr, fmt, va);
0301         __assign_bitmask(cpus, cpumask_bits(mask), num_possible_cpus());
0302     ),
0303 
0304     TP_printk("foo %s %d %s %s %s %s (%s) %s", __entry->foo, __entry->bar,
0305 
0306 /*
0307  * Notice here the use of some helper functions. This includes:
0308  *
0309  *  __print_symbolic( variable, { value, "string" }, ... ),
0310  *
0311  *    The variable is tested against each value of the { } pair. If
0312  *    the variable matches one of the values, then it will print the
0313  *    string in that pair. If non are matched, it returns a string
0314  *    version of the number (if __entry->bar == 7 then "7" is returned).
0315  */
0316           __print_symbolic(__entry->bar,
0317                    { 0, "zero" },
0318                    { TRACE_SAMPLE_FOO, "TWO" },
0319                    { TRACE_SAMPLE_BAR, "FOUR" },
0320                    { TRACE_SAMPLE_ZOO, "EIGHT" },
0321                    { 10, "TEN" }
0322               ),
0323 
0324 /*
0325  *  __print_flags( variable, "delim", { value, "flag" }, ... ),
0326  *
0327  *    This is similar to __print_symbolic, except that it tests the bits
0328  *    of the value. If ((FLAG & variable) == FLAG) then the string is
0329  *    printed. If more than one flag matches, then each one that does is
0330  *    also printed with delim in between them.
0331  *    If not all bits are accounted for, then the not found bits will be
0332  *    added in hex format: 0x506 will show BIT2|BIT4|0x500
0333  */
0334           __print_flags(__entry->bar, "|",
0335                 { 1, "BIT1" },
0336                 { 2, "BIT2" },
0337                 { 4, "BIT3" },
0338                 { 8, "BIT4" }
0339               ),
0340 /*
0341  *  __print_array( array, len, element_size )
0342  *
0343  *    This prints out the array that is defined by __array in a nice format.
0344  */
0345           __print_array(__get_dynamic_array(list),
0346                 __get_dynamic_array_len(list) / sizeof(int),
0347                 sizeof(int)),
0348           __get_str(str), __get_bitmask(cpus), __get_str(vstr))
0349 );
0350 
0351 /*
0352  * There may be a case where a tracepoint should only be called if
0353  * some condition is set. Otherwise the tracepoint should not be called.
0354  * But to do something like:
0355  *
0356  *  if (cond)
0357  *     trace_foo();
0358  *
0359  * Would cause a little overhead when tracing is not enabled, and that
0360  * overhead, even if small, is not something we want. As tracepoints
0361  * use static branch (aka jump_labels), where no branch is taken to
0362  * skip the tracepoint when not enabled, and a jmp is placed to jump
0363  * to the tracepoint code when it is enabled, having a if statement
0364  * nullifies that optimization. It would be nice to place that
0365  * condition within the static branch. This is where TRACE_EVENT_CONDITION
0366  * comes in.
0367  *
0368  * TRACE_EVENT_CONDITION() is just like TRACE_EVENT, except it adds another
0369  * parameter just after args. Where TRACE_EVENT has:
0370  *
0371  * TRACE_EVENT(name, proto, args, struct, assign, printk)
0372  *
0373  * the CONDITION version has:
0374  *
0375  * TRACE_EVENT_CONDITION(name, proto, args, cond, struct, assign, printk)
0376  *
0377  * Everything is the same as TRACE_EVENT except for the new cond. Think
0378  * of the cond variable as:
0379  *
0380  *   if (cond)
0381  *      trace_foo_bar_with_cond();
0382  *
0383  * Except that the logic for the if branch is placed after the static branch.
0384  * That is, the if statement that processes the condition will not be
0385  * executed unless that traecpoint is enabled. Otherwise it still remains
0386  * a nop.
0387  */
0388 TRACE_EVENT_CONDITION(foo_bar_with_cond,
0389 
0390     TP_PROTO(const char *foo, int bar),
0391 
0392     TP_ARGS(foo, bar),
0393 
0394     TP_CONDITION(!(bar % 10)),
0395 
0396     TP_STRUCT__entry(
0397         __string(   foo,    foo     )
0398         __field(    int,    bar         )
0399     ),
0400 
0401     TP_fast_assign(
0402         __assign_str(foo, foo);
0403         __entry->bar    = bar;
0404     ),
0405 
0406     TP_printk("foo %s %d", __get_str(foo), __entry->bar)
0407 );
0408 
0409 int foo_bar_reg(void);
0410 void foo_bar_unreg(void);
0411 
0412 /*
0413  * Now in the case that some function needs to be called when the
0414  * tracepoint is enabled and/or when it is disabled, the
0415  * TRACE_EVENT_FN() serves this purpose. This is just like TRACE_EVENT()
0416  * but adds two more parameters at the end:
0417  *
0418  * TRACE_EVENT_FN( name, proto, args, struct, assign, printk, reg, unreg)
0419  *
0420  * reg and unreg are functions with the prototype of:
0421  *
0422  *    void reg(void)
0423  *
0424  * The reg function gets called before the tracepoint is enabled, and
0425  * the unreg function gets called after the tracepoint is disabled.
0426  *
0427  * Note, reg and unreg are allowed to be NULL. If you only need to
0428  * call a function before enabling, or after disabling, just set one
0429  * function and pass in NULL for the other parameter.
0430  */
0431 TRACE_EVENT_FN(foo_bar_with_fn,
0432 
0433     TP_PROTO(const char *foo, int bar),
0434 
0435     TP_ARGS(foo, bar),
0436 
0437     TP_STRUCT__entry(
0438         __string(   foo,    foo     )
0439         __field(    int,    bar     )
0440     ),
0441 
0442     TP_fast_assign(
0443         __assign_str(foo, foo);
0444         __entry->bar    = bar;
0445     ),
0446 
0447     TP_printk("foo %s %d", __get_str(foo), __entry->bar),
0448 
0449     foo_bar_reg, foo_bar_unreg
0450 );
0451 
0452 /*
0453  * Each TRACE_EVENT macro creates several helper functions to produce
0454  * the code to add the tracepoint, create the files in the trace
0455  * directory, hook it to perf, assign the values and to print out
0456  * the raw data from the ring buffer. To prevent too much bloat,
0457  * if there are more than one tracepoint that uses the same format
0458  * for the proto, args, struct, assign and printk, and only the name
0459  * is different, it is highly recommended to use the DECLARE_EVENT_CLASS
0460  *
0461  * DECLARE_EVENT_CLASS() macro creates most of the functions for the
0462  * tracepoint. Then DEFINE_EVENT() is use to hook a tracepoint to those
0463  * functions. This DEFINE_EVENT() is an instance of the class and can
0464  * be enabled and disabled separately from other events (either TRACE_EVENT
0465  * or other DEFINE_EVENT()s).
0466  *
0467  * Note, TRACE_EVENT() itself is simply defined as:
0468  *
0469  * #define TRACE_EVENT(name, proto, args, tstruct, assign, printk)  \
0470  *  DECLARE_EVENT_CLASS(name, proto, args, tstruct, assign, printk); \
0471  *  DEFINE_EVENT(name, name, proto, args)
0472  *
0473  * The DEFINE_EVENT() also can be declared with conditions and reg functions:
0474  *
0475  * DEFINE_EVENT_CONDITION(template, name, proto, args, cond);
0476  * DEFINE_EVENT_FN(template, name, proto, args, reg, unreg);
0477  */
0478 DECLARE_EVENT_CLASS(foo_template,
0479 
0480     TP_PROTO(const char *foo, int bar),
0481 
0482     TP_ARGS(foo, bar),
0483 
0484     TP_STRUCT__entry(
0485         __string(   foo,    foo     )
0486         __field(    int,    bar     )
0487     ),
0488 
0489     TP_fast_assign(
0490         __assign_str(foo, foo);
0491         __entry->bar    = bar;
0492     ),
0493 
0494     TP_printk("foo %s %d", __get_str(foo), __entry->bar)
0495 );
0496 
0497 /*
0498  * Here's a better way for the previous samples (except, the first
0499  * example had more fields and could not be used here).
0500  */
0501 DEFINE_EVENT(foo_template, foo_with_template_simple,
0502     TP_PROTO(const char *foo, int bar),
0503     TP_ARGS(foo, bar));
0504 
0505 DEFINE_EVENT_CONDITION(foo_template, foo_with_template_cond,
0506     TP_PROTO(const char *foo, int bar),
0507     TP_ARGS(foo, bar),
0508     TP_CONDITION(!(bar % 8)));
0509 
0510 
0511 DEFINE_EVENT_FN(foo_template, foo_with_template_fn,
0512     TP_PROTO(const char *foo, int bar),
0513     TP_ARGS(foo, bar),
0514     foo_bar_reg, foo_bar_unreg);
0515 
0516 /*
0517  * Anytime two events share basically the same values and have
0518  * the same output, use the DECLARE_EVENT_CLASS() and DEFINE_EVENT()
0519  * when ever possible.
0520  */
0521 
0522 /*
0523  * If the event is similar to the DECLARE_EVENT_CLASS, but you need
0524  * to have a different output, then use DEFINE_EVENT_PRINT() which
0525  * lets you override the TP_printk() of the class.
0526  */
0527 
0528 DEFINE_EVENT_PRINT(foo_template, foo_with_template_print,
0529     TP_PROTO(const char *foo, int bar),
0530     TP_ARGS(foo, bar),
0531     TP_printk("bar %s %d", __get_str(foo), __entry->bar));
0532 
0533 /*
0534  * There are yet another __rel_loc dynamic data attribute. If you
0535  * use __rel_dynamic_array() and __rel_string() etc. macros, you
0536  * can use this attribute. There is no difference from the viewpoint
0537  * of functionality with/without 'rel' but the encoding is a bit
0538  * different. This is expected to be used with user-space event,
0539  * there is no reason that the kernel event use this, but only for
0540  * testing.
0541  */
0542 
0543 TRACE_EVENT(foo_rel_loc,
0544 
0545     TP_PROTO(const char *foo, int bar, unsigned long *mask),
0546 
0547     TP_ARGS(foo, bar, mask),
0548 
0549     TP_STRUCT__entry(
0550         __rel_string(   foo,    foo )
0551         __field(    int,    bar )
0552         __rel_bitmask(  bitmask,
0553             BITS_PER_BYTE * sizeof(unsigned long)   )
0554     ),
0555 
0556     TP_fast_assign(
0557         __assign_rel_str(foo, foo);
0558         __entry->bar = bar;
0559         __assign_rel_bitmask(bitmask, mask,
0560             BITS_PER_BYTE * sizeof(unsigned long));
0561     ),
0562 
0563     TP_printk("foo_rel_loc %s, %d, %s", __get_rel_str(foo), __entry->bar,
0564           __get_rel_bitmask(bitmask))
0565 );
0566 #endif
0567 
0568 /***** NOTICE! The #if protection ends here. *****/
0569 
0570 
0571 /*
0572  * There are several ways I could have done this. If I left out the
0573  * TRACE_INCLUDE_PATH, then it would default to the kernel source
0574  * include/trace/events directory.
0575  *
0576  * I could specify a path from the define_trace.h file back to this
0577  * file.
0578  *
0579  * #define TRACE_INCLUDE_PATH ../../samples/trace_events
0580  *
0581  * But the safest and easiest way to simply make it use the directory
0582  * that the file is in is to add in the Makefile:
0583  *
0584  * CFLAGS_trace-events-sample.o := -I$(src)
0585  *
0586  * This will make sure the current path is part of the include
0587  * structure for our file so that define_trace.h can find it.
0588  *
0589  * I could have made only the top level directory the include:
0590  *
0591  * CFLAGS_trace-events-sample.o := -I$(PWD)
0592  *
0593  * And then let the path to this directory be the TRACE_INCLUDE_PATH:
0594  *
0595  * #define TRACE_INCLUDE_PATH samples/trace_events
0596  *
0597  * But then if something defines "samples" or "trace_events" as a macro
0598  * then we could risk that being converted too, and give us an unexpected
0599  * result.
0600  */
0601 #undef TRACE_INCLUDE_PATH
0602 #undef TRACE_INCLUDE_FILE
0603 #define TRACE_INCLUDE_PATH .
0604 /*
0605  * TRACE_INCLUDE_FILE is not needed if the filename and TRACE_SYSTEM are equal
0606  */
0607 #define TRACE_INCLUDE_FILE trace-events-sample
0608 #include <trace/define_trace.h>