Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * cfg80211 scan result handling
0004  *
0005  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
0006  * Copyright 2013-2014  Intel Mobile Communications GmbH
0007  * Copyright 2016   Intel Deutschland GmbH
0008  * Copyright (C) 2018-2022 Intel Corporation
0009  */
0010 #include <linux/kernel.h>
0011 #include <linux/slab.h>
0012 #include <linux/module.h>
0013 #include <linux/netdevice.h>
0014 #include <linux/wireless.h>
0015 #include <linux/nl80211.h>
0016 #include <linux/etherdevice.h>
0017 #include <linux/crc32.h>
0018 #include <linux/bitfield.h>
0019 #include <net/arp.h>
0020 #include <net/cfg80211.h>
0021 #include <net/cfg80211-wext.h>
0022 #include <net/iw_handler.h>
0023 #include "core.h"
0024 #include "nl80211.h"
0025 #include "wext-compat.h"
0026 #include "rdev-ops.h"
0027 
0028 /**
0029  * DOC: BSS tree/list structure
0030  *
0031  * At the top level, the BSS list is kept in both a list in each
0032  * registered device (@bss_list) as well as an RB-tree for faster
0033  * lookup. In the RB-tree, entries can be looked up using their
0034  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
0035  * for other BSSes.
0036  *
0037  * Due to the possibility of hidden SSIDs, there's a second level
0038  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
0039  * The hidden_list connects all BSSes belonging to a single AP
0040  * that has a hidden SSID, and connects beacon and probe response
0041  * entries. For a probe response entry for a hidden SSID, the
0042  * hidden_beacon_bss pointer points to the BSS struct holding the
0043  * beacon's information.
0044  *
0045  * Reference counting is done for all these references except for
0046  * the hidden_list, so that a beacon BSS struct that is otherwise
0047  * not referenced has one reference for being on the bss_list and
0048  * one for each probe response entry that points to it using the
0049  * hidden_beacon_bss pointer. When a BSS struct that has such a
0050  * pointer is get/put, the refcount update is also propagated to
0051  * the referenced struct, this ensure that it cannot get removed
0052  * while somebody is using the probe response version.
0053  *
0054  * Note that the hidden_beacon_bss pointer never changes, due to
0055  * the reference counting. Therefore, no locking is needed for
0056  * it.
0057  *
0058  * Also note that the hidden_beacon_bss pointer is only relevant
0059  * if the driver uses something other than the IEs, e.g. private
0060  * data stored in the BSS struct, since the beacon IEs are
0061  * also linked into the probe response struct.
0062  */
0063 
0064 /*
0065  * Limit the number of BSS entries stored in mac80211. Each one is
0066  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
0067  * If somebody wants to really attack this though, they'd likely
0068  * use small beacons, and only one type of frame, limiting each of
0069  * the entries to a much smaller size (in order to generate more
0070  * entries in total, so overhead is bigger.)
0071  */
0072 static int bss_entries_limit = 1000;
0073 module_param(bss_entries_limit, int, 0644);
0074 MODULE_PARM_DESC(bss_entries_limit,
0075                  "limit to number of scan BSS entries (per wiphy, default 1000)");
0076 
0077 #define IEEE80211_SCAN_RESULT_EXPIRE    (30 * HZ)
0078 
0079 /**
0080  * struct cfg80211_colocated_ap - colocated AP information
0081  *
0082  * @list: linked list to all colocated aPS
0083  * @bssid: BSSID of the reported AP
0084  * @ssid: SSID of the reported AP
0085  * @ssid_len: length of the ssid
0086  * @center_freq: frequency the reported AP is on
0087  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
0088  *  that operate in the same channel as the reported AP and that might be
0089  *  detected by a STA receiving this frame, are transmitting unsolicited
0090  *  Probe Response frames every 20 TUs
0091  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
0092  * @same_ssid: the reported AP has the same SSID as the reporting AP
0093  * @multi_bss: the reported AP is part of a multiple BSSID set
0094  * @transmitted_bssid: the reported AP is the transmitting BSSID
0095  * @colocated_ess: all the APs that share the same ESS as the reported AP are
0096  *  colocated and can be discovered via legacy bands.
0097  * @short_ssid_valid: short_ssid is valid and can be used
0098  * @short_ssid: the short SSID for this SSID
0099  */
0100 struct cfg80211_colocated_ap {
0101     struct list_head list;
0102     u8 bssid[ETH_ALEN];
0103     u8 ssid[IEEE80211_MAX_SSID_LEN];
0104     size_t ssid_len;
0105     u32 short_ssid;
0106     u32 center_freq;
0107     u8 unsolicited_probe:1,
0108        oct_recommended:1,
0109        same_ssid:1,
0110        multi_bss:1,
0111        transmitted_bssid:1,
0112        colocated_ess:1,
0113        short_ssid_valid:1;
0114 };
0115 
0116 static void bss_free(struct cfg80211_internal_bss *bss)
0117 {
0118     struct cfg80211_bss_ies *ies;
0119 
0120     if (WARN_ON(atomic_read(&bss->hold)))
0121         return;
0122 
0123     ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
0124     if (ies && !bss->pub.hidden_beacon_bss)
0125         kfree_rcu(ies, rcu_head);
0126     ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
0127     if (ies)
0128         kfree_rcu(ies, rcu_head);
0129 
0130     /*
0131      * This happens when the module is removed, it doesn't
0132      * really matter any more save for completeness
0133      */
0134     if (!list_empty(&bss->hidden_list))
0135         list_del(&bss->hidden_list);
0136 
0137     kfree(bss);
0138 }
0139 
0140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
0141                    struct cfg80211_internal_bss *bss)
0142 {
0143     lockdep_assert_held(&rdev->bss_lock);
0144 
0145     bss->refcount++;
0146     if (bss->pub.hidden_beacon_bss) {
0147         bss = container_of(bss->pub.hidden_beacon_bss,
0148                    struct cfg80211_internal_bss,
0149                    pub);
0150         bss->refcount++;
0151     }
0152     if (bss->pub.transmitted_bss) {
0153         bss = container_of(bss->pub.transmitted_bss,
0154                    struct cfg80211_internal_bss,
0155                    pub);
0156         bss->refcount++;
0157     }
0158 }
0159 
0160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
0161                    struct cfg80211_internal_bss *bss)
0162 {
0163     lockdep_assert_held(&rdev->bss_lock);
0164 
0165     if (bss->pub.hidden_beacon_bss) {
0166         struct cfg80211_internal_bss *hbss;
0167         hbss = container_of(bss->pub.hidden_beacon_bss,
0168                     struct cfg80211_internal_bss,
0169                     pub);
0170         hbss->refcount--;
0171         if (hbss->refcount == 0)
0172             bss_free(hbss);
0173     }
0174 
0175     if (bss->pub.transmitted_bss) {
0176         struct cfg80211_internal_bss *tbss;
0177 
0178         tbss = container_of(bss->pub.transmitted_bss,
0179                     struct cfg80211_internal_bss,
0180                     pub);
0181         tbss->refcount--;
0182         if (tbss->refcount == 0)
0183             bss_free(tbss);
0184     }
0185 
0186     bss->refcount--;
0187     if (bss->refcount == 0)
0188         bss_free(bss);
0189 }
0190 
0191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
0192                   struct cfg80211_internal_bss *bss)
0193 {
0194     lockdep_assert_held(&rdev->bss_lock);
0195 
0196     if (!list_empty(&bss->hidden_list)) {
0197         /*
0198          * don't remove the beacon entry if it has
0199          * probe responses associated with it
0200          */
0201         if (!bss->pub.hidden_beacon_bss)
0202             return false;
0203         /*
0204          * if it's a probe response entry break its
0205          * link to the other entries in the group
0206          */
0207         list_del_init(&bss->hidden_list);
0208     }
0209 
0210     list_del_init(&bss->list);
0211     list_del_init(&bss->pub.nontrans_list);
0212     rb_erase(&bss->rbn, &rdev->bss_tree);
0213     rdev->bss_entries--;
0214     WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
0215           "rdev bss entries[%d]/list[empty:%d] corruption\n",
0216           rdev->bss_entries, list_empty(&rdev->bss_list));
0217     bss_ref_put(rdev, bss);
0218     return true;
0219 }
0220 
0221 bool cfg80211_is_element_inherited(const struct element *elem,
0222                    const struct element *non_inherit_elem)
0223 {
0224     u8 id_len, ext_id_len, i, loop_len, id;
0225     const u8 *list;
0226 
0227     if (elem->id == WLAN_EID_MULTIPLE_BSSID)
0228         return false;
0229 
0230     if (!non_inherit_elem || non_inherit_elem->datalen < 2)
0231         return true;
0232 
0233     /*
0234      * non inheritance element format is:
0235      * ext ID (56) | IDs list len | list | extension IDs list len | list
0236      * Both lists are optional. Both lengths are mandatory.
0237      * This means valid length is:
0238      * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
0239      */
0240     id_len = non_inherit_elem->data[1];
0241     if (non_inherit_elem->datalen < 3 + id_len)
0242         return true;
0243 
0244     ext_id_len = non_inherit_elem->data[2 + id_len];
0245     if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
0246         return true;
0247 
0248     if (elem->id == WLAN_EID_EXTENSION) {
0249         if (!ext_id_len)
0250             return true;
0251         loop_len = ext_id_len;
0252         list = &non_inherit_elem->data[3 + id_len];
0253         id = elem->data[0];
0254     } else {
0255         if (!id_len)
0256             return true;
0257         loop_len = id_len;
0258         list = &non_inherit_elem->data[2];
0259         id = elem->id;
0260     }
0261 
0262     for (i = 0; i < loop_len; i++) {
0263         if (list[i] == id)
0264             return false;
0265     }
0266 
0267     return true;
0268 }
0269 EXPORT_SYMBOL(cfg80211_is_element_inherited);
0270 
0271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
0272                   const u8 *subelement, size_t subie_len,
0273                   u8 *new_ie, gfp_t gfp)
0274 {
0275     u8 *pos, *tmp;
0276     const u8 *tmp_old, *tmp_new;
0277     const struct element *non_inherit_elem;
0278     u8 *sub_copy;
0279 
0280     /* copy subelement as we need to change its content to
0281      * mark an ie after it is processed.
0282      */
0283     sub_copy = kmemdup(subelement, subie_len, gfp);
0284     if (!sub_copy)
0285         return 0;
0286 
0287     pos = &new_ie[0];
0288 
0289     /* set new ssid */
0290     tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
0291     if (tmp_new) {
0292         memcpy(pos, tmp_new, tmp_new[1] + 2);
0293         pos += (tmp_new[1] + 2);
0294     }
0295 
0296     /* get non inheritance list if exists */
0297     non_inherit_elem =
0298         cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
0299                        sub_copy, subie_len);
0300 
0301     /* go through IEs in ie (skip SSID) and subelement,
0302      * merge them into new_ie
0303      */
0304     tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
0305     tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
0306 
0307     while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
0308         if (tmp_old[0] == 0) {
0309             tmp_old++;
0310             continue;
0311         }
0312 
0313         if (tmp_old[0] == WLAN_EID_EXTENSION)
0314             tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
0315                              subie_len);
0316         else
0317             tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
0318                              subie_len);
0319 
0320         if (!tmp) {
0321             const struct element *old_elem = (void *)tmp_old;
0322 
0323             /* ie in old ie but not in subelement */
0324             if (cfg80211_is_element_inherited(old_elem,
0325                               non_inherit_elem)) {
0326                 memcpy(pos, tmp_old, tmp_old[1] + 2);
0327                 pos += tmp_old[1] + 2;
0328             }
0329         } else {
0330             /* ie in transmitting ie also in subelement,
0331              * copy from subelement and flag the ie in subelement
0332              * as copied (by setting eid field to WLAN_EID_SSID,
0333              * which is skipped anyway).
0334              * For vendor ie, compare OUI + type + subType to
0335              * determine if they are the same ie.
0336              */
0337             if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
0338                 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
0339                     /* same vendor ie, copy from
0340                      * subelement
0341                      */
0342                     memcpy(pos, tmp, tmp[1] + 2);
0343                     pos += tmp[1] + 2;
0344                     tmp[0] = WLAN_EID_SSID;
0345                 } else {
0346                     memcpy(pos, tmp_old, tmp_old[1] + 2);
0347                     pos += tmp_old[1] + 2;
0348                 }
0349             } else {
0350                 /* copy ie from subelement into new ie */
0351                 memcpy(pos, tmp, tmp[1] + 2);
0352                 pos += tmp[1] + 2;
0353                 tmp[0] = WLAN_EID_SSID;
0354             }
0355         }
0356 
0357         if (tmp_old + tmp_old[1] + 2 - ie == ielen)
0358             break;
0359 
0360         tmp_old += tmp_old[1] + 2;
0361     }
0362 
0363     /* go through subelement again to check if there is any ie not
0364      * copied to new ie, skip ssid, capability, bssid-index ie
0365      */
0366     tmp_new = sub_copy;
0367     while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
0368         if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
0369               tmp_new[0] == WLAN_EID_SSID)) {
0370             memcpy(pos, tmp_new, tmp_new[1] + 2);
0371             pos += tmp_new[1] + 2;
0372         }
0373         if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
0374             break;
0375         tmp_new += tmp_new[1] + 2;
0376     }
0377 
0378     kfree(sub_copy);
0379     return pos - new_ie;
0380 }
0381 
0382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
0383            const u8 *ssid, size_t ssid_len)
0384 {
0385     const struct cfg80211_bss_ies *ies;
0386     const struct element *ssid_elem;
0387 
0388     if (bssid && !ether_addr_equal(a->bssid, bssid))
0389         return false;
0390 
0391     if (!ssid)
0392         return true;
0393 
0394     ies = rcu_access_pointer(a->ies);
0395     if (!ies)
0396         return false;
0397     ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
0398     if (!ssid_elem)
0399         return false;
0400     if (ssid_elem->datalen != ssid_len)
0401         return false;
0402     return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
0403 }
0404 
0405 static int
0406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
0407                struct cfg80211_bss *nontrans_bss)
0408 {
0409     const struct element *ssid_elem;
0410     struct cfg80211_bss *bss = NULL;
0411 
0412     rcu_read_lock();
0413     ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
0414     if (!ssid_elem) {
0415         rcu_read_unlock();
0416         return -EINVAL;
0417     }
0418 
0419     /* check if nontrans_bss is in the list */
0420     list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
0421         if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
0422                ssid_elem->datalen)) {
0423             rcu_read_unlock();
0424             return 0;
0425         }
0426     }
0427 
0428     rcu_read_unlock();
0429 
0430     /* add to the list */
0431     list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
0432     return 0;
0433 }
0434 
0435 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
0436                   unsigned long expire_time)
0437 {
0438     struct cfg80211_internal_bss *bss, *tmp;
0439     bool expired = false;
0440 
0441     lockdep_assert_held(&rdev->bss_lock);
0442 
0443     list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
0444         if (atomic_read(&bss->hold))
0445             continue;
0446         if (!time_after(expire_time, bss->ts))
0447             continue;
0448 
0449         if (__cfg80211_unlink_bss(rdev, bss))
0450             expired = true;
0451     }
0452 
0453     if (expired)
0454         rdev->bss_generation++;
0455 }
0456 
0457 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
0458 {
0459     struct cfg80211_internal_bss *bss, *oldest = NULL;
0460     bool ret;
0461 
0462     lockdep_assert_held(&rdev->bss_lock);
0463 
0464     list_for_each_entry(bss, &rdev->bss_list, list) {
0465         if (atomic_read(&bss->hold))
0466             continue;
0467 
0468         if (!list_empty(&bss->hidden_list) &&
0469             !bss->pub.hidden_beacon_bss)
0470             continue;
0471 
0472         if (oldest && time_before(oldest->ts, bss->ts))
0473             continue;
0474         oldest = bss;
0475     }
0476 
0477     if (WARN_ON(!oldest))
0478         return false;
0479 
0480     /*
0481      * The callers make sure to increase rdev->bss_generation if anything
0482      * gets removed (and a new entry added), so there's no need to also do
0483      * it here.
0484      */
0485 
0486     ret = __cfg80211_unlink_bss(rdev, oldest);
0487     WARN_ON(!ret);
0488     return ret;
0489 }
0490 
0491 static u8 cfg80211_parse_bss_param(u8 data,
0492                    struct cfg80211_colocated_ap *coloc_ap)
0493 {
0494     coloc_ap->oct_recommended =
0495         u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
0496     coloc_ap->same_ssid =
0497         u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
0498     coloc_ap->multi_bss =
0499         u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
0500     coloc_ap->transmitted_bssid =
0501         u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
0502     coloc_ap->unsolicited_probe =
0503         u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
0504     coloc_ap->colocated_ess =
0505         u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
0506 
0507     return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
0508 }
0509 
0510 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
0511                     const struct element **elem, u32 *s_ssid)
0512 {
0513 
0514     *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
0515     if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
0516         return -EINVAL;
0517 
0518     *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
0519     return 0;
0520 }
0521 
0522 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
0523 {
0524     struct cfg80211_colocated_ap *ap, *tmp_ap;
0525 
0526     list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
0527         list_del(&ap->list);
0528         kfree(ap);
0529     }
0530 }
0531 
0532 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
0533                   const u8 *pos, u8 length,
0534                   const struct element *ssid_elem,
0535                   int s_ssid_tmp)
0536 {
0537     /* skip the TBTT offset */
0538     pos++;
0539 
0540     memcpy(entry->bssid, pos, ETH_ALEN);
0541     pos += ETH_ALEN;
0542 
0543     if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
0544         memcpy(&entry->short_ssid, pos,
0545                sizeof(entry->short_ssid));
0546         entry->short_ssid_valid = true;
0547         pos += 4;
0548     }
0549 
0550     /* skip non colocated APs */
0551     if (!cfg80211_parse_bss_param(*pos, entry))
0552         return -EINVAL;
0553     pos++;
0554 
0555     if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
0556         /*
0557          * no information about the short ssid. Consider the entry valid
0558          * for now. It would later be dropped in case there are explicit
0559          * SSIDs that need to be matched
0560          */
0561         if (!entry->same_ssid)
0562             return 0;
0563     }
0564 
0565     if (entry->same_ssid) {
0566         entry->short_ssid = s_ssid_tmp;
0567         entry->short_ssid_valid = true;
0568 
0569         /*
0570          * This is safe because we validate datalen in
0571          * cfg80211_parse_colocated_ap(), before calling this
0572          * function.
0573          */
0574         memcpy(&entry->ssid, &ssid_elem->data,
0575                ssid_elem->datalen);
0576         entry->ssid_len = ssid_elem->datalen;
0577     }
0578     return 0;
0579 }
0580 
0581 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
0582                        struct list_head *list)
0583 {
0584     struct ieee80211_neighbor_ap_info *ap_info;
0585     const struct element *elem, *ssid_elem;
0586     const u8 *pos, *end;
0587     u32 s_ssid_tmp;
0588     int n_coloc = 0, ret;
0589     LIST_HEAD(ap_list);
0590 
0591     elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
0592                   ies->len);
0593     if (!elem)
0594         return 0;
0595 
0596     pos = elem->data;
0597     end = pos + elem->datalen;
0598 
0599     ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
0600     if (ret)
0601         return ret;
0602 
0603     /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
0604     while (pos + sizeof(*ap_info) <= end) {
0605         enum nl80211_band band;
0606         int freq;
0607         u8 length, i, count;
0608 
0609         ap_info = (void *)pos;
0610         count = u8_get_bits(ap_info->tbtt_info_hdr,
0611                     IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
0612         length = ap_info->tbtt_info_len;
0613 
0614         pos += sizeof(*ap_info);
0615 
0616         if (!ieee80211_operating_class_to_band(ap_info->op_class,
0617                                &band))
0618             break;
0619 
0620         freq = ieee80211_channel_to_frequency(ap_info->channel, band);
0621 
0622         if (end - pos < count * length)
0623             break;
0624 
0625         /*
0626          * TBTT info must include bss param + BSSID +
0627          * (short SSID or same_ssid bit to be set).
0628          * ignore other options, and move to the
0629          * next AP info
0630          */
0631         if (band != NL80211_BAND_6GHZ ||
0632             (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
0633              length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
0634             pos += count * length;
0635             continue;
0636         }
0637 
0638         for (i = 0; i < count; i++) {
0639             struct cfg80211_colocated_ap *entry;
0640 
0641             entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
0642                     GFP_ATOMIC);
0643 
0644             if (!entry)
0645                 break;
0646 
0647             entry->center_freq = freq;
0648 
0649             if (!cfg80211_parse_ap_info(entry, pos, length,
0650                             ssid_elem, s_ssid_tmp)) {
0651                 n_coloc++;
0652                 list_add_tail(&entry->list, &ap_list);
0653             } else {
0654                 kfree(entry);
0655             }
0656 
0657             pos += length;
0658         }
0659     }
0660 
0661     if (pos != end) {
0662         cfg80211_free_coloc_ap_list(&ap_list);
0663         return 0;
0664     }
0665 
0666     list_splice_tail(&ap_list, list);
0667     return n_coloc;
0668 }
0669 
0670 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
0671                     struct ieee80211_channel *chan,
0672                     bool add_to_6ghz)
0673 {
0674     int i;
0675     u32 n_channels = request->n_channels;
0676     struct cfg80211_scan_6ghz_params *params =
0677         &request->scan_6ghz_params[request->n_6ghz_params];
0678 
0679     for (i = 0; i < n_channels; i++) {
0680         if (request->channels[i] == chan) {
0681             if (add_to_6ghz)
0682                 params->channel_idx = i;
0683             return;
0684         }
0685     }
0686 
0687     request->channels[n_channels] = chan;
0688     if (add_to_6ghz)
0689         request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
0690             n_channels;
0691 
0692     request->n_channels++;
0693 }
0694 
0695 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
0696                      struct cfg80211_scan_request *request)
0697 {
0698     int i;
0699     u32 s_ssid;
0700 
0701     for (i = 0; i < request->n_ssids; i++) {
0702         /* wildcard ssid in the scan request */
0703         if (!request->ssids[i].ssid_len) {
0704             if (ap->multi_bss && !ap->transmitted_bssid)
0705                 continue;
0706 
0707             return true;
0708         }
0709 
0710         if (ap->ssid_len &&
0711             ap->ssid_len == request->ssids[i].ssid_len) {
0712             if (!memcmp(request->ssids[i].ssid, ap->ssid,
0713                     ap->ssid_len))
0714                 return true;
0715         } else if (ap->short_ssid_valid) {
0716             s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
0717                        request->ssids[i].ssid_len);
0718 
0719             if (ap->short_ssid == s_ssid)
0720                 return true;
0721         }
0722     }
0723 
0724     return false;
0725 }
0726 
0727 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
0728 {
0729     u8 i;
0730     struct cfg80211_colocated_ap *ap;
0731     int n_channels, count = 0, err;
0732     struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
0733     LIST_HEAD(coloc_ap_list);
0734     bool need_scan_psc = true;
0735     const struct ieee80211_sband_iftype_data *iftd;
0736 
0737     rdev_req->scan_6ghz = true;
0738 
0739     if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
0740         return -EOPNOTSUPP;
0741 
0742     iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
0743                            rdev_req->wdev->iftype);
0744     if (!iftd || !iftd->he_cap.has_he)
0745         return -EOPNOTSUPP;
0746 
0747     n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
0748 
0749     if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
0750         struct cfg80211_internal_bss *intbss;
0751 
0752         spin_lock_bh(&rdev->bss_lock);
0753         list_for_each_entry(intbss, &rdev->bss_list, list) {
0754             struct cfg80211_bss *res = &intbss->pub;
0755             const struct cfg80211_bss_ies *ies;
0756 
0757             ies = rcu_access_pointer(res->ies);
0758             count += cfg80211_parse_colocated_ap(ies,
0759                                  &coloc_ap_list);
0760         }
0761         spin_unlock_bh(&rdev->bss_lock);
0762     }
0763 
0764     request = kzalloc(struct_size(request, channels, n_channels) +
0765               sizeof(*request->scan_6ghz_params) * count +
0766               sizeof(*request->ssids) * rdev_req->n_ssids,
0767               GFP_KERNEL);
0768     if (!request) {
0769         cfg80211_free_coloc_ap_list(&coloc_ap_list);
0770         return -ENOMEM;
0771     }
0772 
0773     *request = *rdev_req;
0774     request->n_channels = 0;
0775     request->scan_6ghz_params =
0776         (void *)&request->channels[n_channels];
0777 
0778     /*
0779      * PSC channels should not be scanned in case of direct scan with 1 SSID
0780      * and at least one of the reported co-located APs with same SSID
0781      * indicating that all APs in the same ESS are co-located
0782      */
0783     if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
0784         list_for_each_entry(ap, &coloc_ap_list, list) {
0785             if (ap->colocated_ess &&
0786                 cfg80211_find_ssid_match(ap, request)) {
0787                 need_scan_psc = false;
0788                 break;
0789             }
0790         }
0791     }
0792 
0793     /*
0794      * add to the scan request the channels that need to be scanned
0795      * regardless of the collocated APs (PSC channels or all channels
0796      * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
0797      */
0798     for (i = 0; i < rdev_req->n_channels; i++) {
0799         if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
0800             ((need_scan_psc &&
0801               cfg80211_channel_is_psc(rdev_req->channels[i])) ||
0802              !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
0803             cfg80211_scan_req_add_chan(request,
0804                            rdev_req->channels[i],
0805                            false);
0806         }
0807     }
0808 
0809     if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
0810         goto skip;
0811 
0812     list_for_each_entry(ap, &coloc_ap_list, list) {
0813         bool found = false;
0814         struct cfg80211_scan_6ghz_params *scan_6ghz_params =
0815             &request->scan_6ghz_params[request->n_6ghz_params];
0816         struct ieee80211_channel *chan =
0817             ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
0818 
0819         if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
0820             continue;
0821 
0822         for (i = 0; i < rdev_req->n_channels; i++) {
0823             if (rdev_req->channels[i] == chan)
0824                 found = true;
0825         }
0826 
0827         if (!found)
0828             continue;
0829 
0830         if (request->n_ssids > 0 &&
0831             !cfg80211_find_ssid_match(ap, request))
0832             continue;
0833 
0834         if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
0835             continue;
0836 
0837         cfg80211_scan_req_add_chan(request, chan, true);
0838         memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
0839         scan_6ghz_params->short_ssid = ap->short_ssid;
0840         scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
0841         scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
0842 
0843         /*
0844          * If a PSC channel is added to the scan and 'need_scan_psc' is
0845          * set to false, then all the APs that the scan logic is
0846          * interested with on the channel are collocated and thus there
0847          * is no need to perform the initial PSC channel listen.
0848          */
0849         if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
0850             scan_6ghz_params->psc_no_listen = true;
0851 
0852         request->n_6ghz_params++;
0853     }
0854 
0855 skip:
0856     cfg80211_free_coloc_ap_list(&coloc_ap_list);
0857 
0858     if (request->n_channels) {
0859         struct cfg80211_scan_request *old = rdev->int_scan_req;
0860         rdev->int_scan_req = request;
0861 
0862         /*
0863          * Add the ssids from the parent scan request to the new scan
0864          * request, so the driver would be able to use them in its
0865          * probe requests to discover hidden APs on PSC channels.
0866          */
0867         request->ssids = (void *)&request->channels[request->n_channels];
0868         request->n_ssids = rdev_req->n_ssids;
0869         memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
0870                request->n_ssids);
0871 
0872         /*
0873          * If this scan follows a previous scan, save the scan start
0874          * info from the first part of the scan
0875          */
0876         if (old)
0877             rdev->int_scan_req->info = old->info;
0878 
0879         err = rdev_scan(rdev, request);
0880         if (err) {
0881             rdev->int_scan_req = old;
0882             kfree(request);
0883         } else {
0884             kfree(old);
0885         }
0886 
0887         return err;
0888     }
0889 
0890     kfree(request);
0891     return -EINVAL;
0892 }
0893 
0894 int cfg80211_scan(struct cfg80211_registered_device *rdev)
0895 {
0896     struct cfg80211_scan_request *request;
0897     struct cfg80211_scan_request *rdev_req = rdev->scan_req;
0898     u32 n_channels = 0, idx, i;
0899 
0900     if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
0901         return rdev_scan(rdev, rdev_req);
0902 
0903     for (i = 0; i < rdev_req->n_channels; i++) {
0904         if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
0905             n_channels++;
0906     }
0907 
0908     if (!n_channels)
0909         return cfg80211_scan_6ghz(rdev);
0910 
0911     request = kzalloc(struct_size(request, channels, n_channels),
0912               GFP_KERNEL);
0913     if (!request)
0914         return -ENOMEM;
0915 
0916     *request = *rdev_req;
0917     request->n_channels = n_channels;
0918 
0919     for (i = idx = 0; i < rdev_req->n_channels; i++) {
0920         if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
0921             request->channels[idx++] = rdev_req->channels[i];
0922     }
0923 
0924     rdev_req->scan_6ghz = false;
0925     rdev->int_scan_req = request;
0926     return rdev_scan(rdev, request);
0927 }
0928 
0929 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
0930                bool send_message)
0931 {
0932     struct cfg80211_scan_request *request, *rdev_req;
0933     struct wireless_dev *wdev;
0934     struct sk_buff *msg;
0935 #ifdef CONFIG_CFG80211_WEXT
0936     union iwreq_data wrqu;
0937 #endif
0938 
0939     lockdep_assert_held(&rdev->wiphy.mtx);
0940 
0941     if (rdev->scan_msg) {
0942         nl80211_send_scan_msg(rdev, rdev->scan_msg);
0943         rdev->scan_msg = NULL;
0944         return;
0945     }
0946 
0947     rdev_req = rdev->scan_req;
0948     if (!rdev_req)
0949         return;
0950 
0951     wdev = rdev_req->wdev;
0952     request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
0953 
0954     if (wdev_running(wdev) &&
0955         (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
0956         !rdev_req->scan_6ghz && !request->info.aborted &&
0957         !cfg80211_scan_6ghz(rdev))
0958         return;
0959 
0960     /*
0961      * This must be before sending the other events!
0962      * Otherwise, wpa_supplicant gets completely confused with
0963      * wext events.
0964      */
0965     if (wdev->netdev)
0966         cfg80211_sme_scan_done(wdev->netdev);
0967 
0968     if (!request->info.aborted &&
0969         request->flags & NL80211_SCAN_FLAG_FLUSH) {
0970         /* flush entries from previous scans */
0971         spin_lock_bh(&rdev->bss_lock);
0972         __cfg80211_bss_expire(rdev, request->scan_start);
0973         spin_unlock_bh(&rdev->bss_lock);
0974     }
0975 
0976     msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
0977 
0978 #ifdef CONFIG_CFG80211_WEXT
0979     if (wdev->netdev && !request->info.aborted) {
0980         memset(&wrqu, 0, sizeof(wrqu));
0981 
0982         wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
0983     }
0984 #endif
0985 
0986     dev_put(wdev->netdev);
0987 
0988     kfree(rdev->int_scan_req);
0989     rdev->int_scan_req = NULL;
0990 
0991     kfree(rdev->scan_req);
0992     rdev->scan_req = NULL;
0993 
0994     if (!send_message)
0995         rdev->scan_msg = msg;
0996     else
0997         nl80211_send_scan_msg(rdev, msg);
0998 }
0999 
1000 void __cfg80211_scan_done(struct work_struct *wk)
1001 {
1002     struct cfg80211_registered_device *rdev;
1003 
1004     rdev = container_of(wk, struct cfg80211_registered_device,
1005                 scan_done_wk);
1006 
1007     wiphy_lock(&rdev->wiphy);
1008     ___cfg80211_scan_done(rdev, true);
1009     wiphy_unlock(&rdev->wiphy);
1010 }
1011 
1012 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1013             struct cfg80211_scan_info *info)
1014 {
1015     struct cfg80211_scan_info old_info = request->info;
1016 
1017     trace_cfg80211_scan_done(request, info);
1018     WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1019         request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1020 
1021     request->info = *info;
1022 
1023     /*
1024      * In case the scan is split, the scan_start_tsf and tsf_bssid should
1025      * be of the first part. In such a case old_info.scan_start_tsf should
1026      * be non zero.
1027      */
1028     if (request->scan_6ghz && old_info.scan_start_tsf) {
1029         request->info.scan_start_tsf = old_info.scan_start_tsf;
1030         memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1031                sizeof(request->info.tsf_bssid));
1032     }
1033 
1034     request->notified = true;
1035     queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1036 }
1037 EXPORT_SYMBOL(cfg80211_scan_done);
1038 
1039 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1040                  struct cfg80211_sched_scan_request *req)
1041 {
1042     lockdep_assert_held(&rdev->wiphy.mtx);
1043 
1044     list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1045 }
1046 
1047 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1048                     struct cfg80211_sched_scan_request *req)
1049 {
1050     lockdep_assert_held(&rdev->wiphy.mtx);
1051 
1052     list_del_rcu(&req->list);
1053     kfree_rcu(req, rcu_head);
1054 }
1055 
1056 static struct cfg80211_sched_scan_request *
1057 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1058 {
1059     struct cfg80211_sched_scan_request *pos;
1060 
1061     list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1062                 lockdep_is_held(&rdev->wiphy.mtx)) {
1063         if (pos->reqid == reqid)
1064             return pos;
1065     }
1066     return NULL;
1067 }
1068 
1069 /*
1070  * Determines if a scheduled scan request can be handled. When a legacy
1071  * scheduled scan is running no other scheduled scan is allowed regardless
1072  * whether the request is for legacy or multi-support scan. When a multi-support
1073  * scheduled scan is running a request for legacy scan is not allowed. In this
1074  * case a request for multi-support scan can be handled if resources are
1075  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1076  */
1077 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1078                      bool want_multi)
1079 {
1080     struct cfg80211_sched_scan_request *pos;
1081     int i = 0;
1082 
1083     list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1084         /* request id zero means legacy in progress */
1085         if (!i && !pos->reqid)
1086             return -EINPROGRESS;
1087         i++;
1088     }
1089 
1090     if (i) {
1091         /* no legacy allowed when multi request(s) are active */
1092         if (!want_multi)
1093             return -EINPROGRESS;
1094 
1095         /* resource limit reached */
1096         if (i == rdev->wiphy.max_sched_scan_reqs)
1097             return -ENOSPC;
1098     }
1099     return 0;
1100 }
1101 
1102 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1103 {
1104     struct cfg80211_registered_device *rdev;
1105     struct cfg80211_sched_scan_request *req, *tmp;
1106 
1107     rdev = container_of(work, struct cfg80211_registered_device,
1108                sched_scan_res_wk);
1109 
1110     wiphy_lock(&rdev->wiphy);
1111     list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1112         if (req->report_results) {
1113             req->report_results = false;
1114             if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1115                 /* flush entries from previous scans */
1116                 spin_lock_bh(&rdev->bss_lock);
1117                 __cfg80211_bss_expire(rdev, req->scan_start);
1118                 spin_unlock_bh(&rdev->bss_lock);
1119                 req->scan_start = jiffies;
1120             }
1121             nl80211_send_sched_scan(req,
1122                         NL80211_CMD_SCHED_SCAN_RESULTS);
1123         }
1124     }
1125     wiphy_unlock(&rdev->wiphy);
1126 }
1127 
1128 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1129 {
1130     struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1131     struct cfg80211_sched_scan_request *request;
1132 
1133     trace_cfg80211_sched_scan_results(wiphy, reqid);
1134     /* ignore if we're not scanning */
1135 
1136     rcu_read_lock();
1137     request = cfg80211_find_sched_scan_req(rdev, reqid);
1138     if (request) {
1139         request->report_results = true;
1140         queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1141     }
1142     rcu_read_unlock();
1143 }
1144 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1145 
1146 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1147 {
1148     struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1149 
1150     lockdep_assert_held(&wiphy->mtx);
1151 
1152     trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1153 
1154     __cfg80211_stop_sched_scan(rdev, reqid, true);
1155 }
1156 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1157 
1158 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1159 {
1160     wiphy_lock(wiphy);
1161     cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1162     wiphy_unlock(wiphy);
1163 }
1164 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1165 
1166 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1167                  struct cfg80211_sched_scan_request *req,
1168                  bool driver_initiated)
1169 {
1170     lockdep_assert_held(&rdev->wiphy.mtx);
1171 
1172     if (!driver_initiated) {
1173         int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1174         if (err)
1175             return err;
1176     }
1177 
1178     nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1179 
1180     cfg80211_del_sched_scan_req(rdev, req);
1181 
1182     return 0;
1183 }
1184 
1185 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1186                    u64 reqid, bool driver_initiated)
1187 {
1188     struct cfg80211_sched_scan_request *sched_scan_req;
1189 
1190     lockdep_assert_held(&rdev->wiphy.mtx);
1191 
1192     sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1193     if (!sched_scan_req)
1194         return -ENOENT;
1195 
1196     return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1197                         driver_initiated);
1198 }
1199 
1200 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1201                       unsigned long age_secs)
1202 {
1203     struct cfg80211_internal_bss *bss;
1204     unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1205 
1206     spin_lock_bh(&rdev->bss_lock);
1207     list_for_each_entry(bss, &rdev->bss_list, list)
1208         bss->ts -= age_jiffies;
1209     spin_unlock_bh(&rdev->bss_lock);
1210 }
1211 
1212 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1213 {
1214     __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1215 }
1216 
1217 void cfg80211_bss_flush(struct wiphy *wiphy)
1218 {
1219     struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1220 
1221     spin_lock_bh(&rdev->bss_lock);
1222     __cfg80211_bss_expire(rdev, jiffies);
1223     spin_unlock_bh(&rdev->bss_lock);
1224 }
1225 EXPORT_SYMBOL(cfg80211_bss_flush);
1226 
1227 const struct element *
1228 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1229              const u8 *match, unsigned int match_len,
1230              unsigned int match_offset)
1231 {
1232     const struct element *elem;
1233 
1234     for_each_element_id(elem, eid, ies, len) {
1235         if (elem->datalen >= match_offset + match_len &&
1236             !memcmp(elem->data + match_offset, match, match_len))
1237             return elem;
1238     }
1239 
1240     return NULL;
1241 }
1242 EXPORT_SYMBOL(cfg80211_find_elem_match);
1243 
1244 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1245                         const u8 *ies,
1246                         unsigned int len)
1247 {
1248     const struct element *elem;
1249     u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1250     int match_len = (oui_type < 0) ? 3 : sizeof(match);
1251 
1252     if (WARN_ON(oui_type > 0xff))
1253         return NULL;
1254 
1255     elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1256                     match, match_len, 0);
1257 
1258     if (!elem || elem->datalen < 4)
1259         return NULL;
1260 
1261     return elem;
1262 }
1263 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1264 
1265 /**
1266  * enum bss_compare_mode - BSS compare mode
1267  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1268  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1269  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1270  */
1271 enum bss_compare_mode {
1272     BSS_CMP_REGULAR,
1273     BSS_CMP_HIDE_ZLEN,
1274     BSS_CMP_HIDE_NUL,
1275 };
1276 
1277 static int cmp_bss(struct cfg80211_bss *a,
1278            struct cfg80211_bss *b,
1279            enum bss_compare_mode mode)
1280 {
1281     const struct cfg80211_bss_ies *a_ies, *b_ies;
1282     const u8 *ie1 = NULL;
1283     const u8 *ie2 = NULL;
1284     int i, r;
1285 
1286     if (a->channel != b->channel)
1287         return b->channel->center_freq - a->channel->center_freq;
1288 
1289     a_ies = rcu_access_pointer(a->ies);
1290     if (!a_ies)
1291         return -1;
1292     b_ies = rcu_access_pointer(b->ies);
1293     if (!b_ies)
1294         return 1;
1295 
1296     if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1297         ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1298                        a_ies->data, a_ies->len);
1299     if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1300         ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1301                        b_ies->data, b_ies->len);
1302     if (ie1 && ie2) {
1303         int mesh_id_cmp;
1304 
1305         if (ie1[1] == ie2[1])
1306             mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1307         else
1308             mesh_id_cmp = ie2[1] - ie1[1];
1309 
1310         ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1311                        a_ies->data, a_ies->len);
1312         ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1313                        b_ies->data, b_ies->len);
1314         if (ie1 && ie2) {
1315             if (mesh_id_cmp)
1316                 return mesh_id_cmp;
1317             if (ie1[1] != ie2[1])
1318                 return ie2[1] - ie1[1];
1319             return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1320         }
1321     }
1322 
1323     r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1324     if (r)
1325         return r;
1326 
1327     ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1328     ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1329 
1330     if (!ie1 && !ie2)
1331         return 0;
1332 
1333     /*
1334      * Note that with "hide_ssid", the function returns a match if
1335      * the already-present BSS ("b") is a hidden SSID beacon for
1336      * the new BSS ("a").
1337      */
1338 
1339     /* sort missing IE before (left of) present IE */
1340     if (!ie1)
1341         return -1;
1342     if (!ie2)
1343         return 1;
1344 
1345     switch (mode) {
1346     case BSS_CMP_HIDE_ZLEN:
1347         /*
1348          * In ZLEN mode we assume the BSS entry we're
1349          * looking for has a zero-length SSID. So if
1350          * the one we're looking at right now has that,
1351          * return 0. Otherwise, return the difference
1352          * in length, but since we're looking for the
1353          * 0-length it's really equivalent to returning
1354          * the length of the one we're looking at.
1355          *
1356          * No content comparison is needed as we assume
1357          * the content length is zero.
1358          */
1359         return ie2[1];
1360     case BSS_CMP_REGULAR:
1361     default:
1362         /* sort by length first, then by contents */
1363         if (ie1[1] != ie2[1])
1364             return ie2[1] - ie1[1];
1365         return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1366     case BSS_CMP_HIDE_NUL:
1367         if (ie1[1] != ie2[1])
1368             return ie2[1] - ie1[1];
1369         /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1370         for (i = 0; i < ie2[1]; i++)
1371             if (ie2[i + 2])
1372                 return -1;
1373         return 0;
1374     }
1375 }
1376 
1377 static bool cfg80211_bss_type_match(u16 capability,
1378                     enum nl80211_band band,
1379                     enum ieee80211_bss_type bss_type)
1380 {
1381     bool ret = true;
1382     u16 mask, val;
1383 
1384     if (bss_type == IEEE80211_BSS_TYPE_ANY)
1385         return ret;
1386 
1387     if (band == NL80211_BAND_60GHZ) {
1388         mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1389         switch (bss_type) {
1390         case IEEE80211_BSS_TYPE_ESS:
1391             val = WLAN_CAPABILITY_DMG_TYPE_AP;
1392             break;
1393         case IEEE80211_BSS_TYPE_PBSS:
1394             val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1395             break;
1396         case IEEE80211_BSS_TYPE_IBSS:
1397             val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1398             break;
1399         default:
1400             return false;
1401         }
1402     } else {
1403         mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1404         switch (bss_type) {
1405         case IEEE80211_BSS_TYPE_ESS:
1406             val = WLAN_CAPABILITY_ESS;
1407             break;
1408         case IEEE80211_BSS_TYPE_IBSS:
1409             val = WLAN_CAPABILITY_IBSS;
1410             break;
1411         case IEEE80211_BSS_TYPE_MBSS:
1412             val = 0;
1413             break;
1414         default:
1415             return false;
1416         }
1417     }
1418 
1419     ret = ((capability & mask) == val);
1420     return ret;
1421 }
1422 
1423 /* Returned bss is reference counted and must be cleaned up appropriately. */
1424 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1425                       struct ieee80211_channel *channel,
1426                       const u8 *bssid,
1427                       const u8 *ssid, size_t ssid_len,
1428                       enum ieee80211_bss_type bss_type,
1429                       enum ieee80211_privacy privacy)
1430 {
1431     struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1432     struct cfg80211_internal_bss *bss, *res = NULL;
1433     unsigned long now = jiffies;
1434     int bss_privacy;
1435 
1436     trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1437                    privacy);
1438 
1439     spin_lock_bh(&rdev->bss_lock);
1440 
1441     list_for_each_entry(bss, &rdev->bss_list, list) {
1442         if (!cfg80211_bss_type_match(bss->pub.capability,
1443                          bss->pub.channel->band, bss_type))
1444             continue;
1445 
1446         bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1447         if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1448             (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1449             continue;
1450         if (channel && bss->pub.channel != channel)
1451             continue;
1452         if (!is_valid_ether_addr(bss->pub.bssid))
1453             continue;
1454         /* Don't get expired BSS structs */
1455         if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1456             !atomic_read(&bss->hold))
1457             continue;
1458         if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1459             res = bss;
1460             bss_ref_get(rdev, res);
1461             break;
1462         }
1463     }
1464 
1465     spin_unlock_bh(&rdev->bss_lock);
1466     if (!res)
1467         return NULL;
1468     trace_cfg80211_return_bss(&res->pub);
1469     return &res->pub;
1470 }
1471 EXPORT_SYMBOL(cfg80211_get_bss);
1472 
1473 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1474               struct cfg80211_internal_bss *bss)
1475 {
1476     struct rb_node **p = &rdev->bss_tree.rb_node;
1477     struct rb_node *parent = NULL;
1478     struct cfg80211_internal_bss *tbss;
1479     int cmp;
1480 
1481     while (*p) {
1482         parent = *p;
1483         tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1484 
1485         cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1486 
1487         if (WARN_ON(!cmp)) {
1488             /* will sort of leak this BSS */
1489             return;
1490         }
1491 
1492         if (cmp < 0)
1493             p = &(*p)->rb_left;
1494         else
1495             p = &(*p)->rb_right;
1496     }
1497 
1498     rb_link_node(&bss->rbn, parent, p);
1499     rb_insert_color(&bss->rbn, &rdev->bss_tree);
1500 }
1501 
1502 static struct cfg80211_internal_bss *
1503 rb_find_bss(struct cfg80211_registered_device *rdev,
1504         struct cfg80211_internal_bss *res,
1505         enum bss_compare_mode mode)
1506 {
1507     struct rb_node *n = rdev->bss_tree.rb_node;
1508     struct cfg80211_internal_bss *bss;
1509     int r;
1510 
1511     while (n) {
1512         bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1513         r = cmp_bss(&res->pub, &bss->pub, mode);
1514 
1515         if (r == 0)
1516             return bss;
1517         else if (r < 0)
1518             n = n->rb_left;
1519         else
1520             n = n->rb_right;
1521     }
1522 
1523     return NULL;
1524 }
1525 
1526 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1527                    struct cfg80211_internal_bss *new)
1528 {
1529     const struct cfg80211_bss_ies *ies;
1530     struct cfg80211_internal_bss *bss;
1531     const u8 *ie;
1532     int i, ssidlen;
1533     u8 fold = 0;
1534     u32 n_entries = 0;
1535 
1536     ies = rcu_access_pointer(new->pub.beacon_ies);
1537     if (WARN_ON(!ies))
1538         return false;
1539 
1540     ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1541     if (!ie) {
1542         /* nothing to do */
1543         return true;
1544     }
1545 
1546     ssidlen = ie[1];
1547     for (i = 0; i < ssidlen; i++)
1548         fold |= ie[2 + i];
1549 
1550     if (fold) {
1551         /* not a hidden SSID */
1552         return true;
1553     }
1554 
1555     /* This is the bad part ... */
1556 
1557     list_for_each_entry(bss, &rdev->bss_list, list) {
1558         /*
1559          * we're iterating all the entries anyway, so take the
1560          * opportunity to validate the list length accounting
1561          */
1562         n_entries++;
1563 
1564         if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1565             continue;
1566         if (bss->pub.channel != new->pub.channel)
1567             continue;
1568         if (bss->pub.scan_width != new->pub.scan_width)
1569             continue;
1570         if (rcu_access_pointer(bss->pub.beacon_ies))
1571             continue;
1572         ies = rcu_access_pointer(bss->pub.ies);
1573         if (!ies)
1574             continue;
1575         ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1576         if (!ie)
1577             continue;
1578         if (ssidlen && ie[1] != ssidlen)
1579             continue;
1580         if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1581             continue;
1582         if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1583             list_del(&bss->hidden_list);
1584         /* combine them */
1585         list_add(&bss->hidden_list, &new->hidden_list);
1586         bss->pub.hidden_beacon_bss = &new->pub;
1587         new->refcount += bss->refcount;
1588         rcu_assign_pointer(bss->pub.beacon_ies,
1589                    new->pub.beacon_ies);
1590     }
1591 
1592     WARN_ONCE(n_entries != rdev->bss_entries,
1593           "rdev bss entries[%d]/list[len:%d] corruption\n",
1594           rdev->bss_entries, n_entries);
1595 
1596     return true;
1597 }
1598 
1599 struct cfg80211_non_tx_bss {
1600     struct cfg80211_bss *tx_bss;
1601     u8 max_bssid_indicator;
1602     u8 bssid_index;
1603 };
1604 
1605 static bool
1606 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1607               struct cfg80211_internal_bss *known,
1608               struct cfg80211_internal_bss *new,
1609               bool signal_valid)
1610 {
1611     lockdep_assert_held(&rdev->bss_lock);
1612 
1613     /* Update IEs */
1614     if (rcu_access_pointer(new->pub.proberesp_ies)) {
1615         const struct cfg80211_bss_ies *old;
1616 
1617         old = rcu_access_pointer(known->pub.proberesp_ies);
1618 
1619         rcu_assign_pointer(known->pub.proberesp_ies,
1620                    new->pub.proberesp_ies);
1621         /* Override possible earlier Beacon frame IEs */
1622         rcu_assign_pointer(known->pub.ies,
1623                    new->pub.proberesp_ies);
1624         if (old)
1625             kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1626     } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1627         const struct cfg80211_bss_ies *old;
1628         struct cfg80211_internal_bss *bss;
1629 
1630         if (known->pub.hidden_beacon_bss &&
1631             !list_empty(&known->hidden_list)) {
1632             const struct cfg80211_bss_ies *f;
1633 
1634             /* The known BSS struct is one of the probe
1635              * response members of a group, but we're
1636              * receiving a beacon (beacon_ies in the new
1637              * bss is used). This can only mean that the
1638              * AP changed its beacon from not having an
1639              * SSID to showing it, which is confusing so
1640              * drop this information.
1641              */
1642 
1643             f = rcu_access_pointer(new->pub.beacon_ies);
1644             kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1645             return false;
1646         }
1647 
1648         old = rcu_access_pointer(known->pub.beacon_ies);
1649 
1650         rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1651 
1652         /* Override IEs if they were from a beacon before */
1653         if (old == rcu_access_pointer(known->pub.ies))
1654             rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1655 
1656         /* Assign beacon IEs to all sub entries */
1657         list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1658             const struct cfg80211_bss_ies *ies;
1659 
1660             ies = rcu_access_pointer(bss->pub.beacon_ies);
1661             WARN_ON(ies != old);
1662 
1663             rcu_assign_pointer(bss->pub.beacon_ies,
1664                        new->pub.beacon_ies);
1665         }
1666 
1667         if (old)
1668             kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1669     }
1670 
1671     known->pub.beacon_interval = new->pub.beacon_interval;
1672 
1673     /* don't update the signal if beacon was heard on
1674      * adjacent channel.
1675      */
1676     if (signal_valid)
1677         known->pub.signal = new->pub.signal;
1678     known->pub.capability = new->pub.capability;
1679     known->ts = new->ts;
1680     known->ts_boottime = new->ts_boottime;
1681     known->parent_tsf = new->parent_tsf;
1682     known->pub.chains = new->pub.chains;
1683     memcpy(known->pub.chain_signal, new->pub.chain_signal,
1684            IEEE80211_MAX_CHAINS);
1685     ether_addr_copy(known->parent_bssid, new->parent_bssid);
1686     known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1687     known->pub.bssid_index = new->pub.bssid_index;
1688 
1689     return true;
1690 }
1691 
1692 /* Returned bss is reference counted and must be cleaned up appropriately. */
1693 struct cfg80211_internal_bss *
1694 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1695             struct cfg80211_internal_bss *tmp,
1696             bool signal_valid, unsigned long ts)
1697 {
1698     struct cfg80211_internal_bss *found = NULL;
1699 
1700     if (WARN_ON(!tmp->pub.channel))
1701         return NULL;
1702 
1703     tmp->ts = ts;
1704 
1705     spin_lock_bh(&rdev->bss_lock);
1706 
1707     if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1708         spin_unlock_bh(&rdev->bss_lock);
1709         return NULL;
1710     }
1711 
1712     found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1713 
1714     if (found) {
1715         if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1716             goto drop;
1717     } else {
1718         struct cfg80211_internal_bss *new;
1719         struct cfg80211_internal_bss *hidden;
1720         struct cfg80211_bss_ies *ies;
1721 
1722         /*
1723          * create a copy -- the "res" variable that is passed in
1724          * is allocated on the stack since it's not needed in the
1725          * more common case of an update
1726          */
1727         new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1728                   GFP_ATOMIC);
1729         if (!new) {
1730             ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1731             if (ies)
1732                 kfree_rcu(ies, rcu_head);
1733             ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1734             if (ies)
1735                 kfree_rcu(ies, rcu_head);
1736             goto drop;
1737         }
1738         memcpy(new, tmp, sizeof(*new));
1739         new->refcount = 1;
1740         INIT_LIST_HEAD(&new->hidden_list);
1741         INIT_LIST_HEAD(&new->pub.nontrans_list);
1742 
1743         if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1744             hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1745             if (!hidden)
1746                 hidden = rb_find_bss(rdev, tmp,
1747                              BSS_CMP_HIDE_NUL);
1748             if (hidden) {
1749                 new->pub.hidden_beacon_bss = &hidden->pub;
1750                 list_add(&new->hidden_list,
1751                      &hidden->hidden_list);
1752                 hidden->refcount++;
1753                 rcu_assign_pointer(new->pub.beacon_ies,
1754                            hidden->pub.beacon_ies);
1755             }
1756         } else {
1757             /*
1758              * Ok so we found a beacon, and don't have an entry. If
1759              * it's a beacon with hidden SSID, we might be in for an
1760              * expensive search for any probe responses that should
1761              * be grouped with this beacon for updates ...
1762              */
1763             if (!cfg80211_combine_bsses(rdev, new)) {
1764                 bss_ref_put(rdev, new);
1765                 goto drop;
1766             }
1767         }
1768 
1769         if (rdev->bss_entries >= bss_entries_limit &&
1770             !cfg80211_bss_expire_oldest(rdev)) {
1771             bss_ref_put(rdev, new);
1772             goto drop;
1773         }
1774 
1775         /* This must be before the call to bss_ref_get */
1776         if (tmp->pub.transmitted_bss) {
1777             struct cfg80211_internal_bss *pbss =
1778                 container_of(tmp->pub.transmitted_bss,
1779                          struct cfg80211_internal_bss,
1780                          pub);
1781 
1782             new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1783             bss_ref_get(rdev, pbss);
1784         }
1785 
1786         list_add_tail(&new->list, &rdev->bss_list);
1787         rdev->bss_entries++;
1788         rb_insert_bss(rdev, new);
1789         found = new;
1790     }
1791 
1792     rdev->bss_generation++;
1793     bss_ref_get(rdev, found);
1794     spin_unlock_bh(&rdev->bss_lock);
1795 
1796     return found;
1797  drop:
1798     spin_unlock_bh(&rdev->bss_lock);
1799     return NULL;
1800 }
1801 
1802 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1803                     enum nl80211_band band,
1804                     enum cfg80211_bss_frame_type ftype)
1805 {
1806     const struct element *tmp;
1807 
1808     if (band == NL80211_BAND_6GHZ) {
1809         struct ieee80211_he_operation *he_oper;
1810 
1811         tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1812                          ielen);
1813         if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1814             tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1815             const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1816 
1817             he_oper = (void *)&tmp->data[1];
1818 
1819             he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1820             if (!he_6ghz_oper)
1821                 return -1;
1822 
1823             if (ftype != CFG80211_BSS_FTYPE_BEACON ||
1824                 he_6ghz_oper->control & IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON)
1825                 return he_6ghz_oper->primary;
1826         }
1827     } else if (band == NL80211_BAND_S1GHZ) {
1828         tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1829         if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1830             struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1831 
1832             return s1gop->oper_ch;
1833         }
1834     } else {
1835         tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1836         if (tmp && tmp->datalen == 1)
1837             return tmp->data[0];
1838 
1839         tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1840         if (tmp &&
1841             tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1842             struct ieee80211_ht_operation *htop = (void *)tmp->data;
1843 
1844             return htop->primary_chan;
1845         }
1846     }
1847 
1848     return -1;
1849 }
1850 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1851 
1852 /*
1853  * Update RX channel information based on the available frame payload
1854  * information. This is mainly for the 2.4 GHz band where frames can be received
1855  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1856  * element to indicate the current (transmitting) channel, but this might also
1857  * be needed on other bands if RX frequency does not match with the actual
1858  * operating channel of a BSS, or if the AP reports a different primary channel.
1859  */
1860 static struct ieee80211_channel *
1861 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1862              struct ieee80211_channel *channel,
1863              enum nl80211_bss_scan_width scan_width,
1864              enum cfg80211_bss_frame_type ftype)
1865 {
1866     u32 freq;
1867     int channel_number;
1868     struct ieee80211_channel *alt_channel;
1869 
1870     channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1871                              channel->band, ftype);
1872 
1873     if (channel_number < 0) {
1874         /* No channel information in frame payload */
1875         return channel;
1876     }
1877 
1878     freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1879 
1880     /*
1881      * In 6GHz, duplicated beacon indication is relevant for
1882      * beacons only.
1883      */
1884     if (channel->band == NL80211_BAND_6GHZ &&
1885         (freq == channel->center_freq ||
1886          abs(freq - channel->center_freq) > 80))
1887         return channel;
1888 
1889     alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1890     if (!alt_channel) {
1891         if (channel->band == NL80211_BAND_2GHZ) {
1892             /*
1893              * Better not allow unexpected channels when that could
1894              * be going beyond the 1-11 range (e.g., discovering
1895              * BSS on channel 12 when radio is configured for
1896              * channel 11.
1897              */
1898             return NULL;
1899         }
1900 
1901         /* No match for the payload channel number - ignore it */
1902         return channel;
1903     }
1904 
1905     if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1906         scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1907         /*
1908          * Ignore channel number in 5 and 10 MHz channels where there
1909          * may not be an n:1 or 1:n mapping between frequencies and
1910          * channel numbers.
1911          */
1912         return channel;
1913     }
1914 
1915     /*
1916      * Use the channel determined through the payload channel number
1917      * instead of the RX channel reported by the driver.
1918      */
1919     if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1920         return NULL;
1921     return alt_channel;
1922 }
1923 
1924 /* Returned bss is reference counted and must be cleaned up appropriately. */
1925 static struct cfg80211_bss *
1926 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1927                 struct cfg80211_inform_bss *data,
1928                 enum cfg80211_bss_frame_type ftype,
1929                 const u8 *bssid, u64 tsf, u16 capability,
1930                 u16 beacon_interval, const u8 *ie, size_t ielen,
1931                 struct cfg80211_non_tx_bss *non_tx_data,
1932                 gfp_t gfp)
1933 {
1934     struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1935     struct cfg80211_bss_ies *ies;
1936     struct ieee80211_channel *channel;
1937     struct cfg80211_internal_bss tmp = {}, *res;
1938     int bss_type;
1939     bool signal_valid;
1940     unsigned long ts;
1941 
1942     if (WARN_ON(!wiphy))
1943         return NULL;
1944 
1945     if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1946             (data->signal < 0 || data->signal > 100)))
1947         return NULL;
1948 
1949     channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1950                        data->scan_width, ftype);
1951     if (!channel)
1952         return NULL;
1953 
1954     memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1955     tmp.pub.channel = channel;
1956     tmp.pub.scan_width = data->scan_width;
1957     tmp.pub.signal = data->signal;
1958     tmp.pub.beacon_interval = beacon_interval;
1959     tmp.pub.capability = capability;
1960     tmp.ts_boottime = data->boottime_ns;
1961     tmp.parent_tsf = data->parent_tsf;
1962     ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1963 
1964     if (non_tx_data) {
1965         tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1966         ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1967         tmp.pub.bssid_index = non_tx_data->bssid_index;
1968         tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1969     } else {
1970         ts = jiffies;
1971     }
1972 
1973     /*
1974      * If we do not know here whether the IEs are from a Beacon or Probe
1975      * Response frame, we need to pick one of the options and only use it
1976      * with the driver that does not provide the full Beacon/Probe Response
1977      * frame. Use Beacon frame pointer to avoid indicating that this should
1978      * override the IEs pointer should we have received an earlier
1979      * indication of Probe Response data.
1980      */
1981     ies = kzalloc(sizeof(*ies) + ielen, gfp);
1982     if (!ies)
1983         return NULL;
1984     ies->len = ielen;
1985     ies->tsf = tsf;
1986     ies->from_beacon = false;
1987     memcpy(ies->data, ie, ielen);
1988 
1989     switch (ftype) {
1990     case CFG80211_BSS_FTYPE_BEACON:
1991         ies->from_beacon = true;
1992         fallthrough;
1993     case CFG80211_BSS_FTYPE_UNKNOWN:
1994         rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1995         break;
1996     case CFG80211_BSS_FTYPE_PRESP:
1997         rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1998         break;
1999     }
2000     rcu_assign_pointer(tmp.pub.ies, ies);
2001 
2002     signal_valid = data->chan == channel;
2003     res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
2004     if (!res)
2005         return NULL;
2006 
2007     if (channel->band == NL80211_BAND_60GHZ) {
2008         bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2009         if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2010             bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2011             regulatory_hint_found_beacon(wiphy, channel, gfp);
2012     } else {
2013         if (res->pub.capability & WLAN_CAPABILITY_ESS)
2014             regulatory_hint_found_beacon(wiphy, channel, gfp);
2015     }
2016 
2017     if (non_tx_data) {
2018         /* this is a nontransmitting bss, we need to add it to
2019          * transmitting bss' list if it is not there
2020          */
2021         spin_lock_bh(&rdev->bss_lock);
2022         if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
2023                            &res->pub)) {
2024             if (__cfg80211_unlink_bss(rdev, res))
2025                 rdev->bss_generation++;
2026         }
2027         spin_unlock_bh(&rdev->bss_lock);
2028     }
2029 
2030     trace_cfg80211_return_bss(&res->pub);
2031     /* cfg80211_bss_update gives us a referenced result */
2032     return &res->pub;
2033 }
2034 
2035 static const struct element
2036 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2037                    const struct element *mbssid_elem,
2038                    const struct element *sub_elem)
2039 {
2040     const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2041     const struct element *next_mbssid;
2042     const struct element *next_sub;
2043 
2044     next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2045                      mbssid_end,
2046                      ielen - (mbssid_end - ie));
2047 
2048     /*
2049      * If it is not the last subelement in current MBSSID IE or there isn't
2050      * a next MBSSID IE - profile is complete.
2051     */
2052     if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2053         !next_mbssid)
2054         return NULL;
2055 
2056     /* For any length error, just return NULL */
2057 
2058     if (next_mbssid->datalen < 4)
2059         return NULL;
2060 
2061     next_sub = (void *)&next_mbssid->data[1];
2062 
2063     if (next_mbssid->data + next_mbssid->datalen <
2064         next_sub->data + next_sub->datalen)
2065         return NULL;
2066 
2067     if (next_sub->id != 0 || next_sub->datalen < 2)
2068         return NULL;
2069 
2070     /*
2071      * Check if the first element in the next sub element is a start
2072      * of a new profile
2073      */
2074     return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2075            NULL : next_mbssid;
2076 }
2077 
2078 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2079                   const struct element *mbssid_elem,
2080                   const struct element *sub_elem,
2081                   u8 *merged_ie, size_t max_copy_len)
2082 {
2083     size_t copied_len = sub_elem->datalen;
2084     const struct element *next_mbssid;
2085 
2086     if (sub_elem->datalen > max_copy_len)
2087         return 0;
2088 
2089     memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2090 
2091     while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2092                                 mbssid_elem,
2093                                 sub_elem))) {
2094         const struct element *next_sub = (void *)&next_mbssid->data[1];
2095 
2096         if (copied_len + next_sub->datalen > max_copy_len)
2097             break;
2098         memcpy(merged_ie + copied_len, next_sub->data,
2099                next_sub->datalen);
2100         copied_len += next_sub->datalen;
2101     }
2102 
2103     return copied_len;
2104 }
2105 EXPORT_SYMBOL(cfg80211_merge_profile);
2106 
2107 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2108                        struct cfg80211_inform_bss *data,
2109                        enum cfg80211_bss_frame_type ftype,
2110                        const u8 *bssid, u64 tsf,
2111                        u16 beacon_interval, const u8 *ie,
2112                        size_t ielen,
2113                        struct cfg80211_non_tx_bss *non_tx_data,
2114                        gfp_t gfp)
2115 {
2116     const u8 *mbssid_index_ie;
2117     const struct element *elem, *sub;
2118     size_t new_ie_len;
2119     u8 new_bssid[ETH_ALEN];
2120     u8 *new_ie, *profile;
2121     u64 seen_indices = 0;
2122     u16 capability;
2123     struct cfg80211_bss *bss;
2124 
2125     if (!non_tx_data)
2126         return;
2127     if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2128         return;
2129     if (!wiphy->support_mbssid)
2130         return;
2131     if (wiphy->support_only_he_mbssid &&
2132         !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2133         return;
2134 
2135     new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2136     if (!new_ie)
2137         return;
2138 
2139     profile = kmalloc(ielen, gfp);
2140     if (!profile)
2141         goto out;
2142 
2143     for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2144         if (elem->datalen < 4)
2145             continue;
2146         for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2147             u8 profile_len;
2148 
2149             if (sub->id != 0 || sub->datalen < 4) {
2150                 /* not a valid BSS profile */
2151                 continue;
2152             }
2153 
2154             if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2155                 sub->data[1] != 2) {
2156                 /* The first element within the Nontransmitted
2157                  * BSSID Profile is not the Nontransmitted
2158                  * BSSID Capability element.
2159                  */
2160                 continue;
2161             }
2162 
2163             memset(profile, 0, ielen);
2164             profile_len = cfg80211_merge_profile(ie, ielen,
2165                                  elem,
2166                                  sub,
2167                                  profile,
2168                                  ielen);
2169 
2170             /* found a Nontransmitted BSSID Profile */
2171             mbssid_index_ie = cfg80211_find_ie
2172                 (WLAN_EID_MULTI_BSSID_IDX,
2173                  profile, profile_len);
2174             if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2175                 mbssid_index_ie[2] == 0 ||
2176                 mbssid_index_ie[2] > 46) {
2177                 /* No valid Multiple BSSID-Index element */
2178                 continue;
2179             }
2180 
2181             if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2182                 /* We don't support legacy split of a profile */
2183                 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2184                             mbssid_index_ie[2]);
2185 
2186             seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2187 
2188             non_tx_data->bssid_index = mbssid_index_ie[2];
2189             non_tx_data->max_bssid_indicator = elem->data[0];
2190 
2191             cfg80211_gen_new_bssid(bssid,
2192                            non_tx_data->max_bssid_indicator,
2193                            non_tx_data->bssid_index,
2194                            new_bssid);
2195             memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2196             new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2197                              profile,
2198                              profile_len, new_ie,
2199                              gfp);
2200             if (!new_ie_len)
2201                 continue;
2202 
2203             capability = get_unaligned_le16(profile + 2);
2204             bss = cfg80211_inform_single_bss_data(wiphy, data,
2205                                   ftype,
2206                                   new_bssid, tsf,
2207                                   capability,
2208                                   beacon_interval,
2209                                   new_ie,
2210                                   new_ie_len,
2211                                   non_tx_data,
2212                                   gfp);
2213             if (!bss)
2214                 break;
2215             cfg80211_put_bss(wiphy, bss);
2216         }
2217     }
2218 
2219 out:
2220     kfree(new_ie);
2221     kfree(profile);
2222 }
2223 
2224 struct cfg80211_bss *
2225 cfg80211_inform_bss_data(struct wiphy *wiphy,
2226              struct cfg80211_inform_bss *data,
2227              enum cfg80211_bss_frame_type ftype,
2228              const u8 *bssid, u64 tsf, u16 capability,
2229              u16 beacon_interval, const u8 *ie, size_t ielen,
2230              gfp_t gfp)
2231 {
2232     struct cfg80211_bss *res;
2233     struct cfg80211_non_tx_bss non_tx_data;
2234 
2235     res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2236                           capability, beacon_interval, ie,
2237                           ielen, NULL, gfp);
2238     if (!res)
2239         return NULL;
2240     non_tx_data.tx_bss = res;
2241     cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2242                    beacon_interval, ie, ielen, &non_tx_data,
2243                    gfp);
2244     return res;
2245 }
2246 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2247 
2248 static void
2249 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2250                  struct cfg80211_inform_bss *data,
2251                  struct ieee80211_mgmt *mgmt, size_t len,
2252                  struct cfg80211_non_tx_bss *non_tx_data,
2253                  gfp_t gfp)
2254 {
2255     enum cfg80211_bss_frame_type ftype;
2256     const u8 *ie = mgmt->u.probe_resp.variable;
2257     size_t ielen = len - offsetof(struct ieee80211_mgmt,
2258                       u.probe_resp.variable);
2259 
2260     ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2261         CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2262 
2263     cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2264                    le64_to_cpu(mgmt->u.probe_resp.timestamp),
2265                    le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2266                    ie, ielen, non_tx_data, gfp);
2267 }
2268 
2269 static void
2270 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2271                    struct cfg80211_bss *nontrans_bss,
2272                    struct ieee80211_mgmt *mgmt, size_t len)
2273 {
2274     u8 *ie, *new_ie, *pos;
2275     const struct element *nontrans_ssid;
2276     const u8 *trans_ssid, *mbssid;
2277     size_t ielen = len - offsetof(struct ieee80211_mgmt,
2278                       u.probe_resp.variable);
2279     size_t new_ie_len;
2280     struct cfg80211_bss_ies *new_ies;
2281     const struct cfg80211_bss_ies *old;
2282     u8 cpy_len;
2283 
2284     lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2285 
2286     ie = mgmt->u.probe_resp.variable;
2287 
2288     new_ie_len = ielen;
2289     trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2290     if (!trans_ssid)
2291         return;
2292     new_ie_len -= trans_ssid[1];
2293     mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2294     /*
2295      * It's not valid to have the MBSSID element before SSID
2296      * ignore if that happens - the code below assumes it is
2297      * after (while copying things inbetween).
2298      */
2299     if (!mbssid || mbssid < trans_ssid)
2300         return;
2301     new_ie_len -= mbssid[1];
2302 
2303     nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
2304     if (!nontrans_ssid)
2305         return;
2306 
2307     new_ie_len += nontrans_ssid->datalen;
2308 
2309     /* generate new ie for nontrans BSS
2310      * 1. replace SSID with nontrans BSS' SSID
2311      * 2. skip MBSSID IE
2312      */
2313     new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2314     if (!new_ie)
2315         return;
2316 
2317     new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2318     if (!new_ies)
2319         goto out_free;
2320 
2321     pos = new_ie;
2322 
2323     /* copy the nontransmitted SSID */
2324     cpy_len = nontrans_ssid->datalen + 2;
2325     memcpy(pos, nontrans_ssid, cpy_len);
2326     pos += cpy_len;
2327     /* copy the IEs between SSID and MBSSID */
2328     cpy_len = trans_ssid[1] + 2;
2329     memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2330     pos += (mbssid - (trans_ssid + cpy_len));
2331     /* copy the IEs after MBSSID */
2332     cpy_len = mbssid[1] + 2;
2333     memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2334 
2335     /* update ie */
2336     new_ies->len = new_ie_len;
2337     new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2338     new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2339     memcpy(new_ies->data, new_ie, new_ie_len);
2340     if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2341         old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2342         rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2343         rcu_assign_pointer(nontrans_bss->ies, new_ies);
2344         if (old)
2345             kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2346     } else {
2347         old = rcu_access_pointer(nontrans_bss->beacon_ies);
2348         rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2349         rcu_assign_pointer(nontrans_bss->ies, new_ies);
2350         if (old)
2351             kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2352     }
2353 
2354 out_free:
2355     kfree(new_ie);
2356 }
2357 
2358 /* cfg80211_inform_bss_width_frame helper */
2359 static struct cfg80211_bss *
2360 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2361                       struct cfg80211_inform_bss *data,
2362                       struct ieee80211_mgmt *mgmt, size_t len,
2363                       gfp_t gfp)
2364 {
2365     struct cfg80211_internal_bss tmp = {}, *res;
2366     struct cfg80211_bss_ies *ies;
2367     struct ieee80211_channel *channel;
2368     bool signal_valid;
2369     struct ieee80211_ext *ext = NULL;
2370     u8 *bssid, *variable;
2371     u16 capability, beacon_int;
2372     size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2373                          u.probe_resp.variable);
2374     int bss_type;
2375     enum cfg80211_bss_frame_type ftype;
2376 
2377     BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2378             offsetof(struct ieee80211_mgmt, u.beacon.variable));
2379 
2380     trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2381 
2382     if (WARN_ON(!mgmt))
2383         return NULL;
2384 
2385     if (WARN_ON(!wiphy))
2386         return NULL;
2387 
2388     if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2389             (data->signal < 0 || data->signal > 100)))
2390         return NULL;
2391 
2392     if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2393         ext = (void *) mgmt;
2394         min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2395         if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2396             min_hdr_len = offsetof(struct ieee80211_ext,
2397                            u.s1g_short_beacon.variable);
2398     }
2399 
2400     if (WARN_ON(len < min_hdr_len))
2401         return NULL;
2402 
2403     ielen = len - min_hdr_len;
2404     variable = mgmt->u.probe_resp.variable;
2405     if (ext) {
2406         if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2407             variable = ext->u.s1g_short_beacon.variable;
2408         else
2409             variable = ext->u.s1g_beacon.variable;
2410     }
2411 
2412     if (ieee80211_is_beacon(mgmt->frame_control))
2413         ftype = CFG80211_BSS_FTYPE_BEACON;
2414     else if (ieee80211_is_probe_resp(mgmt->frame_control))
2415         ftype = CFG80211_BSS_FTYPE_PRESP;
2416     else
2417         ftype = CFG80211_BSS_FTYPE_UNKNOWN;
2418 
2419     channel = cfg80211_get_bss_channel(wiphy, variable,
2420                        ielen, data->chan, data->scan_width,
2421                        ftype);
2422     if (!channel)
2423         return NULL;
2424 
2425     if (ext) {
2426         const struct ieee80211_s1g_bcn_compat_ie *compat;
2427         const struct element *elem;
2428 
2429         elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2430                       variable, ielen);
2431         if (!elem)
2432             return NULL;
2433         if (elem->datalen < sizeof(*compat))
2434             return NULL;
2435         compat = (void *)elem->data;
2436         bssid = ext->u.s1g_beacon.sa;
2437         capability = le16_to_cpu(compat->compat_info);
2438         beacon_int = le16_to_cpu(compat->beacon_int);
2439     } else {
2440         bssid = mgmt->bssid;
2441         beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2442         capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2443     }
2444 
2445     ies = kzalloc(sizeof(*ies) + ielen, gfp);
2446     if (!ies)
2447         return NULL;
2448     ies->len = ielen;
2449     ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2450     ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2451                ieee80211_is_s1g_beacon(mgmt->frame_control);
2452     memcpy(ies->data, variable, ielen);
2453 
2454     if (ieee80211_is_probe_resp(mgmt->frame_control))
2455         rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2456     else
2457         rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2458     rcu_assign_pointer(tmp.pub.ies, ies);
2459 
2460     memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2461     tmp.pub.beacon_interval = beacon_int;
2462     tmp.pub.capability = capability;
2463     tmp.pub.channel = channel;
2464     tmp.pub.scan_width = data->scan_width;
2465     tmp.pub.signal = data->signal;
2466     tmp.ts_boottime = data->boottime_ns;
2467     tmp.parent_tsf = data->parent_tsf;
2468     tmp.pub.chains = data->chains;
2469     memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2470     ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2471 
2472     signal_valid = data->chan == channel;
2473     res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2474                   jiffies);
2475     if (!res)
2476         return NULL;
2477 
2478     if (channel->band == NL80211_BAND_60GHZ) {
2479         bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2480         if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2481             bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2482             regulatory_hint_found_beacon(wiphy, channel, gfp);
2483     } else {
2484         if (res->pub.capability & WLAN_CAPABILITY_ESS)
2485             regulatory_hint_found_beacon(wiphy, channel, gfp);
2486     }
2487 
2488     trace_cfg80211_return_bss(&res->pub);
2489     /* cfg80211_bss_update gives us a referenced result */
2490     return &res->pub;
2491 }
2492 
2493 struct cfg80211_bss *
2494 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2495                    struct cfg80211_inform_bss *data,
2496                    struct ieee80211_mgmt *mgmt, size_t len,
2497                    gfp_t gfp)
2498 {
2499     struct cfg80211_bss *res, *tmp_bss;
2500     const u8 *ie = mgmt->u.probe_resp.variable;
2501     const struct cfg80211_bss_ies *ies1, *ies2;
2502     size_t ielen = len - offsetof(struct ieee80211_mgmt,
2503                       u.probe_resp.variable);
2504     struct cfg80211_non_tx_bss non_tx_data;
2505 
2506     res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2507                             len, gfp);
2508     if (!res || !wiphy->support_mbssid ||
2509         !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2510         return res;
2511     if (wiphy->support_only_he_mbssid &&
2512         !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2513         return res;
2514 
2515     non_tx_data.tx_bss = res;
2516     /* process each non-transmitting bss */
2517     cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2518                      &non_tx_data, gfp);
2519 
2520     spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2521 
2522     /* check if the res has other nontransmitting bss which is not
2523      * in MBSSID IE
2524      */
2525     ies1 = rcu_access_pointer(res->ies);
2526 
2527     /* go through nontrans_list, if the timestamp of the BSS is
2528      * earlier than the timestamp of the transmitting BSS then
2529      * update it
2530      */
2531     list_for_each_entry(tmp_bss, &res->nontrans_list,
2532                 nontrans_list) {
2533         ies2 = rcu_access_pointer(tmp_bss->ies);
2534         if (ies2->tsf < ies1->tsf)
2535             cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2536                                mgmt, len);
2537     }
2538     spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2539 
2540     return res;
2541 }
2542 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2543 
2544 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2545 {
2546     struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2547     struct cfg80211_internal_bss *bss;
2548 
2549     if (!pub)
2550         return;
2551 
2552     bss = container_of(pub, struct cfg80211_internal_bss, pub);
2553 
2554     spin_lock_bh(&rdev->bss_lock);
2555     bss_ref_get(rdev, bss);
2556     spin_unlock_bh(&rdev->bss_lock);
2557 }
2558 EXPORT_SYMBOL(cfg80211_ref_bss);
2559 
2560 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2561 {
2562     struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2563     struct cfg80211_internal_bss *bss;
2564 
2565     if (!pub)
2566         return;
2567 
2568     bss = container_of(pub, struct cfg80211_internal_bss, pub);
2569 
2570     spin_lock_bh(&rdev->bss_lock);
2571     bss_ref_put(rdev, bss);
2572     spin_unlock_bh(&rdev->bss_lock);
2573 }
2574 EXPORT_SYMBOL(cfg80211_put_bss);
2575 
2576 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2577 {
2578     struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2579     struct cfg80211_internal_bss *bss, *tmp1;
2580     struct cfg80211_bss *nontrans_bss, *tmp;
2581 
2582     if (WARN_ON(!pub))
2583         return;
2584 
2585     bss = container_of(pub, struct cfg80211_internal_bss, pub);
2586 
2587     spin_lock_bh(&rdev->bss_lock);
2588     if (list_empty(&bss->list))
2589         goto out;
2590 
2591     list_for_each_entry_safe(nontrans_bss, tmp,
2592                  &pub->nontrans_list,
2593                  nontrans_list) {
2594         tmp1 = container_of(nontrans_bss,
2595                     struct cfg80211_internal_bss, pub);
2596         if (__cfg80211_unlink_bss(rdev, tmp1))
2597             rdev->bss_generation++;
2598     }
2599 
2600     if (__cfg80211_unlink_bss(rdev, bss))
2601         rdev->bss_generation++;
2602 out:
2603     spin_unlock_bh(&rdev->bss_lock);
2604 }
2605 EXPORT_SYMBOL(cfg80211_unlink_bss);
2606 
2607 void cfg80211_bss_iter(struct wiphy *wiphy,
2608                struct cfg80211_chan_def *chandef,
2609                void (*iter)(struct wiphy *wiphy,
2610                     struct cfg80211_bss *bss,
2611                     void *data),
2612                void *iter_data)
2613 {
2614     struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2615     struct cfg80211_internal_bss *bss;
2616 
2617     spin_lock_bh(&rdev->bss_lock);
2618 
2619     list_for_each_entry(bss, &rdev->bss_list, list) {
2620         if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
2621                              false))
2622             iter(wiphy, &bss->pub, iter_data);
2623     }
2624 
2625     spin_unlock_bh(&rdev->bss_lock);
2626 }
2627 EXPORT_SYMBOL(cfg80211_bss_iter);
2628 
2629 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2630                      unsigned int link_id,
2631                      struct ieee80211_channel *chan)
2632 {
2633     struct wiphy *wiphy = wdev->wiphy;
2634     struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2635     struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
2636     struct cfg80211_internal_bss *new = NULL;
2637     struct cfg80211_internal_bss *bss;
2638     struct cfg80211_bss *nontrans_bss;
2639     struct cfg80211_bss *tmp;
2640 
2641     spin_lock_bh(&rdev->bss_lock);
2642 
2643     /*
2644      * Some APs use CSA also for bandwidth changes, i.e., without actually
2645      * changing the control channel, so no need to update in such a case.
2646      */
2647     if (cbss->pub.channel == chan)
2648         goto done;
2649 
2650     /* use transmitting bss */
2651     if (cbss->pub.transmitted_bss)
2652         cbss = container_of(cbss->pub.transmitted_bss,
2653                     struct cfg80211_internal_bss,
2654                     pub);
2655 
2656     cbss->pub.channel = chan;
2657 
2658     list_for_each_entry(bss, &rdev->bss_list, list) {
2659         if (!cfg80211_bss_type_match(bss->pub.capability,
2660                          bss->pub.channel->band,
2661                          wdev->conn_bss_type))
2662             continue;
2663 
2664         if (bss == cbss)
2665             continue;
2666 
2667         if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2668             new = bss;
2669             break;
2670         }
2671     }
2672 
2673     if (new) {
2674         /* to save time, update IEs for transmitting bss only */
2675         if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2676             new->pub.proberesp_ies = NULL;
2677             new->pub.beacon_ies = NULL;
2678         }
2679 
2680         list_for_each_entry_safe(nontrans_bss, tmp,
2681                      &new->pub.nontrans_list,
2682                      nontrans_list) {
2683             bss = container_of(nontrans_bss,
2684                        struct cfg80211_internal_bss, pub);
2685             if (__cfg80211_unlink_bss(rdev, bss))
2686                 rdev->bss_generation++;
2687         }
2688 
2689         WARN_ON(atomic_read(&new->hold));
2690         if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2691             rdev->bss_generation++;
2692     }
2693 
2694     rb_erase(&cbss->rbn, &rdev->bss_tree);
2695     rb_insert_bss(rdev, cbss);
2696     rdev->bss_generation++;
2697 
2698     list_for_each_entry_safe(nontrans_bss, tmp,
2699                  &cbss->pub.nontrans_list,
2700                  nontrans_list) {
2701         bss = container_of(nontrans_bss,
2702                    struct cfg80211_internal_bss, pub);
2703         bss->pub.channel = chan;
2704         rb_erase(&bss->rbn, &rdev->bss_tree);
2705         rb_insert_bss(rdev, bss);
2706         rdev->bss_generation++;
2707     }
2708 
2709 done:
2710     spin_unlock_bh(&rdev->bss_lock);
2711 }
2712 
2713 #ifdef CONFIG_CFG80211_WEXT
2714 static struct cfg80211_registered_device *
2715 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2716 {
2717     struct cfg80211_registered_device *rdev;
2718     struct net_device *dev;
2719 
2720     ASSERT_RTNL();
2721 
2722     dev = dev_get_by_index(net, ifindex);
2723     if (!dev)
2724         return ERR_PTR(-ENODEV);
2725     if (dev->ieee80211_ptr)
2726         rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2727     else
2728         rdev = ERR_PTR(-ENODEV);
2729     dev_put(dev);
2730     return rdev;
2731 }
2732 
2733 int cfg80211_wext_siwscan(struct net_device *dev,
2734               struct iw_request_info *info,
2735               union iwreq_data *wrqu, char *extra)
2736 {
2737     struct cfg80211_registered_device *rdev;
2738     struct wiphy *wiphy;
2739     struct iw_scan_req *wreq = NULL;
2740     struct cfg80211_scan_request *creq;
2741     int i, err, n_channels = 0;
2742     enum nl80211_band band;
2743 
2744     if (!netif_running(dev))
2745         return -ENETDOWN;
2746 
2747     if (wrqu->data.length == sizeof(struct iw_scan_req))
2748         wreq = (struct iw_scan_req *)extra;
2749 
2750     rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2751 
2752     if (IS_ERR(rdev))
2753         return PTR_ERR(rdev);
2754 
2755     if (rdev->scan_req || rdev->scan_msg)
2756         return -EBUSY;
2757 
2758     wiphy = &rdev->wiphy;
2759 
2760     /* Determine number of channels, needed to allocate creq */
2761     if (wreq && wreq->num_channels)
2762         n_channels = wreq->num_channels;
2763     else
2764         n_channels = ieee80211_get_num_supported_channels(wiphy);
2765 
2766     creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2767                n_channels * sizeof(void *),
2768                GFP_ATOMIC);
2769     if (!creq)
2770         return -ENOMEM;
2771 
2772     creq->wiphy = wiphy;
2773     creq->wdev = dev->ieee80211_ptr;
2774     /* SSIDs come after channels */
2775     creq->ssids = (void *)&creq->channels[n_channels];
2776     creq->n_channels = n_channels;
2777     creq->n_ssids = 1;
2778     creq->scan_start = jiffies;
2779 
2780     /* translate "Scan on frequencies" request */
2781     i = 0;
2782     for (band = 0; band < NUM_NL80211_BANDS; band++) {
2783         int j;
2784 
2785         if (!wiphy->bands[band])
2786             continue;
2787 
2788         for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2789             /* ignore disabled channels */
2790             if (wiphy->bands[band]->channels[j].flags &
2791                         IEEE80211_CHAN_DISABLED)
2792                 continue;
2793 
2794             /* If we have a wireless request structure and the
2795              * wireless request specifies frequencies, then search
2796              * for the matching hardware channel.
2797              */
2798             if (wreq && wreq->num_channels) {
2799                 int k;
2800                 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2801                 for (k = 0; k < wreq->num_channels; k++) {
2802                     struct iw_freq *freq =
2803                         &wreq->channel_list[k];
2804                     int wext_freq =
2805                         cfg80211_wext_freq(freq);
2806 
2807                     if (wext_freq == wiphy_freq)
2808                         goto wext_freq_found;
2809                 }
2810                 goto wext_freq_not_found;
2811             }
2812 
2813         wext_freq_found:
2814             creq->channels[i] = &wiphy->bands[band]->channels[j];
2815             i++;
2816         wext_freq_not_found: ;
2817         }
2818     }
2819     /* No channels found? */
2820     if (!i) {
2821         err = -EINVAL;
2822         goto out;
2823     }
2824 
2825     /* Set real number of channels specified in creq->channels[] */
2826     creq->n_channels = i;
2827 
2828     /* translate "Scan for SSID" request */
2829     if (wreq) {
2830         if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2831             if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2832                 err = -EINVAL;
2833                 goto out;
2834             }
2835             memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2836             creq->ssids[0].ssid_len = wreq->essid_len;
2837         }
2838         if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2839             creq->n_ssids = 0;
2840     }
2841 
2842     for (i = 0; i < NUM_NL80211_BANDS; i++)
2843         if (wiphy->bands[i])
2844             creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2845 
2846     eth_broadcast_addr(creq->bssid);
2847 
2848     wiphy_lock(&rdev->wiphy);
2849 
2850     rdev->scan_req = creq;
2851     err = rdev_scan(rdev, creq);
2852     if (err) {
2853         rdev->scan_req = NULL;
2854         /* creq will be freed below */
2855     } else {
2856         nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2857         /* creq now owned by driver */
2858         creq = NULL;
2859         dev_hold(dev);
2860     }
2861     wiphy_unlock(&rdev->wiphy);
2862  out:
2863     kfree(creq);
2864     return err;
2865 }
2866 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2867 
2868 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2869                     const struct cfg80211_bss_ies *ies,
2870                     char *current_ev, char *end_buf)
2871 {
2872     const u8 *pos, *end, *next;
2873     struct iw_event iwe;
2874 
2875     if (!ies)
2876         return current_ev;
2877 
2878     /*
2879      * If needed, fragment the IEs buffer (at IE boundaries) into short
2880      * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2881      */
2882     pos = ies->data;
2883     end = pos + ies->len;
2884 
2885     while (end - pos > IW_GENERIC_IE_MAX) {
2886         next = pos + 2 + pos[1];
2887         while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2888             next = next + 2 + next[1];
2889 
2890         memset(&iwe, 0, sizeof(iwe));
2891         iwe.cmd = IWEVGENIE;
2892         iwe.u.data.length = next - pos;
2893         current_ev = iwe_stream_add_point_check(info, current_ev,
2894                             end_buf, &iwe,
2895                             (void *)pos);
2896         if (IS_ERR(current_ev))
2897             return current_ev;
2898         pos = next;
2899     }
2900 
2901     if (end > pos) {
2902         memset(&iwe, 0, sizeof(iwe));
2903         iwe.cmd = IWEVGENIE;
2904         iwe.u.data.length = end - pos;
2905         current_ev = iwe_stream_add_point_check(info, current_ev,
2906                             end_buf, &iwe,
2907                             (void *)pos);
2908         if (IS_ERR(current_ev))
2909             return current_ev;
2910     }
2911 
2912     return current_ev;
2913 }
2914 
2915 static char *
2916 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2917           struct cfg80211_internal_bss *bss, char *current_ev,
2918           char *end_buf)
2919 {
2920     const struct cfg80211_bss_ies *ies;
2921     struct iw_event iwe;
2922     const u8 *ie;
2923     u8 buf[50];
2924     u8 *cfg, *p, *tmp;
2925     int rem, i, sig;
2926     bool ismesh = false;
2927 
2928     memset(&iwe, 0, sizeof(iwe));
2929     iwe.cmd = SIOCGIWAP;
2930     iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2931     memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2932     current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2933                         IW_EV_ADDR_LEN);
2934     if (IS_ERR(current_ev))
2935         return current_ev;
2936 
2937     memset(&iwe, 0, sizeof(iwe));
2938     iwe.cmd = SIOCGIWFREQ;
2939     iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2940     iwe.u.freq.e = 0;
2941     current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2942                         IW_EV_FREQ_LEN);
2943     if (IS_ERR(current_ev))
2944         return current_ev;
2945 
2946     memset(&iwe, 0, sizeof(iwe));
2947     iwe.cmd = SIOCGIWFREQ;
2948     iwe.u.freq.m = bss->pub.channel->center_freq;
2949     iwe.u.freq.e = 6;
2950     current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2951                         IW_EV_FREQ_LEN);
2952     if (IS_ERR(current_ev))
2953         return current_ev;
2954 
2955     if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2956         memset(&iwe, 0, sizeof(iwe));
2957         iwe.cmd = IWEVQUAL;
2958         iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2959                      IW_QUAL_NOISE_INVALID |
2960                      IW_QUAL_QUAL_UPDATED;
2961         switch (wiphy->signal_type) {
2962         case CFG80211_SIGNAL_TYPE_MBM:
2963             sig = bss->pub.signal / 100;
2964             iwe.u.qual.level = sig;
2965             iwe.u.qual.updated |= IW_QUAL_DBM;
2966             if (sig < -110)     /* rather bad */
2967                 sig = -110;
2968             else if (sig > -40) /* perfect */
2969                 sig = -40;
2970             /* will give a range of 0 .. 70 */
2971             iwe.u.qual.qual = sig + 110;
2972             break;
2973         case CFG80211_SIGNAL_TYPE_UNSPEC:
2974             iwe.u.qual.level = bss->pub.signal;
2975             /* will give range 0 .. 100 */
2976             iwe.u.qual.qual = bss->pub.signal;
2977             break;
2978         default:
2979             /* not reached */
2980             break;
2981         }
2982         current_ev = iwe_stream_add_event_check(info, current_ev,
2983                             end_buf, &iwe,
2984                             IW_EV_QUAL_LEN);
2985         if (IS_ERR(current_ev))
2986             return current_ev;
2987     }
2988 
2989     memset(&iwe, 0, sizeof(iwe));
2990     iwe.cmd = SIOCGIWENCODE;
2991     if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2992         iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2993     else
2994         iwe.u.data.flags = IW_ENCODE_DISABLED;
2995     iwe.u.data.length = 0;
2996     current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2997                         &iwe, "");
2998     if (IS_ERR(current_ev))
2999         return current_ev;
3000 
3001     rcu_read_lock();
3002     ies = rcu_dereference(bss->pub.ies);
3003     rem = ies->len;
3004     ie = ies->data;
3005 
3006     while (rem >= 2) {
3007         /* invalid data */
3008         if (ie[1] > rem - 2)
3009             break;
3010 
3011         switch (ie[0]) {
3012         case WLAN_EID_SSID:
3013             memset(&iwe, 0, sizeof(iwe));
3014             iwe.cmd = SIOCGIWESSID;
3015             iwe.u.data.length = ie[1];
3016             iwe.u.data.flags = 1;
3017             current_ev = iwe_stream_add_point_check(info,
3018                                 current_ev,
3019                                 end_buf, &iwe,
3020                                 (u8 *)ie + 2);
3021             if (IS_ERR(current_ev))
3022                 goto unlock;
3023             break;
3024         case WLAN_EID_MESH_ID:
3025             memset(&iwe, 0, sizeof(iwe));
3026             iwe.cmd = SIOCGIWESSID;
3027             iwe.u.data.length = ie[1];
3028             iwe.u.data.flags = 1;
3029             current_ev = iwe_stream_add_point_check(info,
3030                                 current_ev,
3031                                 end_buf, &iwe,
3032                                 (u8 *)ie + 2);
3033             if (IS_ERR(current_ev))
3034                 goto unlock;
3035             break;
3036         case WLAN_EID_MESH_CONFIG:
3037             ismesh = true;
3038             if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3039                 break;
3040             cfg = (u8 *)ie + 2;
3041             memset(&iwe, 0, sizeof(iwe));
3042             iwe.cmd = IWEVCUSTOM;
3043             sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3044                 "0x%02X", cfg[0]);
3045             iwe.u.data.length = strlen(buf);
3046             current_ev = iwe_stream_add_point_check(info,
3047                                 current_ev,
3048                                 end_buf,
3049                                 &iwe, buf);
3050             if (IS_ERR(current_ev))
3051                 goto unlock;
3052             sprintf(buf, "Path Selection Metric ID: 0x%02X",
3053                 cfg[1]);
3054             iwe.u.data.length = strlen(buf);
3055             current_ev = iwe_stream_add_point_check(info,
3056                                 current_ev,
3057                                 end_buf,
3058                                 &iwe, buf);
3059             if (IS_ERR(current_ev))
3060                 goto unlock;
3061             sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3062                 cfg[2]);
3063             iwe.u.data.length = strlen(buf);
3064             current_ev = iwe_stream_add_point_check(info,
3065                                 current_ev,
3066                                 end_buf,
3067                                 &iwe, buf);
3068             if (IS_ERR(current_ev))
3069                 goto unlock;
3070             sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3071             iwe.u.data.length = strlen(buf);
3072             current_ev = iwe_stream_add_point_check(info,
3073                                 current_ev,
3074                                 end_buf,
3075                                 &iwe, buf);
3076             if (IS_ERR(current_ev))
3077                 goto unlock;
3078             sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3079             iwe.u.data.length = strlen(buf);
3080             current_ev = iwe_stream_add_point_check(info,
3081                                 current_ev,
3082                                 end_buf,
3083                                 &iwe, buf);
3084             if (IS_ERR(current_ev))
3085                 goto unlock;
3086             sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3087             iwe.u.data.length = strlen(buf);
3088             current_ev = iwe_stream_add_point_check(info,
3089                                 current_ev,
3090                                 end_buf,
3091                                 &iwe, buf);
3092             if (IS_ERR(current_ev))
3093                 goto unlock;
3094             sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3095             iwe.u.data.length = strlen(buf);
3096             current_ev = iwe_stream_add_point_check(info,
3097                                 current_ev,
3098                                 end_buf,
3099                                 &iwe, buf);
3100             if (IS_ERR(current_ev))
3101                 goto unlock;
3102             break;
3103         case WLAN_EID_SUPP_RATES:
3104         case WLAN_EID_EXT_SUPP_RATES:
3105             /* display all supported rates in readable format */
3106             p = current_ev + iwe_stream_lcp_len(info);
3107 
3108             memset(&iwe, 0, sizeof(iwe));
3109             iwe.cmd = SIOCGIWRATE;
3110             /* Those two flags are ignored... */
3111             iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3112 
3113             for (i = 0; i < ie[1]; i++) {
3114                 iwe.u.bitrate.value =
3115                     ((ie[i + 2] & 0x7f) * 500000);
3116                 tmp = p;
3117                 p = iwe_stream_add_value(info, current_ev, p,
3118                              end_buf, &iwe,
3119                              IW_EV_PARAM_LEN);
3120                 if (p == tmp) {
3121                     current_ev = ERR_PTR(-E2BIG);
3122                     goto unlock;
3123                 }
3124             }
3125             current_ev = p;
3126             break;
3127         }
3128         rem -= ie[1] + 2;
3129         ie += ie[1] + 2;
3130     }
3131 
3132     if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3133         ismesh) {
3134         memset(&iwe, 0, sizeof(iwe));
3135         iwe.cmd = SIOCGIWMODE;
3136         if (ismesh)
3137             iwe.u.mode = IW_MODE_MESH;
3138         else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3139             iwe.u.mode = IW_MODE_MASTER;
3140         else
3141             iwe.u.mode = IW_MODE_ADHOC;
3142         current_ev = iwe_stream_add_event_check(info, current_ev,
3143                             end_buf, &iwe,
3144                             IW_EV_UINT_LEN);
3145         if (IS_ERR(current_ev))
3146             goto unlock;
3147     }
3148 
3149     memset(&iwe, 0, sizeof(iwe));
3150     iwe.cmd = IWEVCUSTOM;
3151     sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3152     iwe.u.data.length = strlen(buf);
3153     current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3154                         &iwe, buf);
3155     if (IS_ERR(current_ev))
3156         goto unlock;
3157     memset(&iwe, 0, sizeof(iwe));
3158     iwe.cmd = IWEVCUSTOM;
3159     sprintf(buf, " Last beacon: %ums ago",
3160         elapsed_jiffies_msecs(bss->ts));
3161     iwe.u.data.length = strlen(buf);
3162     current_ev = iwe_stream_add_point_check(info, current_ev,
3163                         end_buf, &iwe, buf);
3164     if (IS_ERR(current_ev))
3165         goto unlock;
3166 
3167     current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3168 
3169  unlock:
3170     rcu_read_unlock();
3171     return current_ev;
3172 }
3173 
3174 
3175 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3176                   struct iw_request_info *info,
3177                   char *buf, size_t len)
3178 {
3179     char *current_ev = buf;
3180     char *end_buf = buf + len;
3181     struct cfg80211_internal_bss *bss;
3182     int err = 0;
3183 
3184     spin_lock_bh(&rdev->bss_lock);
3185     cfg80211_bss_expire(rdev);
3186 
3187     list_for_each_entry(bss, &rdev->bss_list, list) {
3188         if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3189             err = -E2BIG;
3190             break;
3191         }
3192         current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3193                        current_ev, end_buf);
3194         if (IS_ERR(current_ev)) {
3195             err = PTR_ERR(current_ev);
3196             break;
3197         }
3198     }
3199     spin_unlock_bh(&rdev->bss_lock);
3200 
3201     if (err)
3202         return err;
3203     return current_ev - buf;
3204 }
3205 
3206 
3207 int cfg80211_wext_giwscan(struct net_device *dev,
3208               struct iw_request_info *info,
3209               struct iw_point *data, char *extra)
3210 {
3211     struct cfg80211_registered_device *rdev;
3212     int res;
3213 
3214     if (!netif_running(dev))
3215         return -ENETDOWN;
3216 
3217     rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3218 
3219     if (IS_ERR(rdev))
3220         return PTR_ERR(rdev);
3221 
3222     if (rdev->scan_req || rdev->scan_msg)
3223         return -EAGAIN;
3224 
3225     res = ieee80211_scan_results(rdev, info, extra, data->length);
3226     data->length = 0;
3227     if (res >= 0) {
3228         data->length = res;
3229         res = 0;
3230     }
3231 
3232     return res;
3233 }
3234 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3235 #endif