Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright 2002-2005, Instant802 Networks, Inc.
0003  * Copyright 2005-2006, Devicescape Software, Inc.
0004  * Copyright 2007   Johannes Berg <johannes@sipsolutions.net>
0005  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
0006  * Copyright 2013-2014  Intel Mobile Communications GmbH
0007  * Copyright      2017  Intel Deutschland GmbH
0008  * Copyright (C) 2018 - 2022 Intel Corporation
0009  *
0010  * Permission to use, copy, modify, and/or distribute this software for any
0011  * purpose with or without fee is hereby granted, provided that the above
0012  * copyright notice and this permission notice appear in all copies.
0013  *
0014  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
0015  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
0016  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
0017  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
0018  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
0019  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
0020  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
0021  */
0022 
0023 
0024 /**
0025  * DOC: Wireless regulatory infrastructure
0026  *
0027  * The usual implementation is for a driver to read a device EEPROM to
0028  * determine which regulatory domain it should be operating under, then
0029  * looking up the allowable channels in a driver-local table and finally
0030  * registering those channels in the wiphy structure.
0031  *
0032  * Another set of compliance enforcement is for drivers to use their
0033  * own compliance limits which can be stored on the EEPROM. The host
0034  * driver or firmware may ensure these are used.
0035  *
0036  * In addition to all this we provide an extra layer of regulatory
0037  * conformance. For drivers which do not have any regulatory
0038  * information CRDA provides the complete regulatory solution.
0039  * For others it provides a community effort on further restrictions
0040  * to enhance compliance.
0041  *
0042  * Note: When number of rules --> infinity we will not be able to
0043  * index on alpha2 any more, instead we'll probably have to
0044  * rely on some SHA1 checksum of the regdomain for example.
0045  *
0046  */
0047 
0048 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0049 
0050 #include <linux/kernel.h>
0051 #include <linux/export.h>
0052 #include <linux/slab.h>
0053 #include <linux/list.h>
0054 #include <linux/ctype.h>
0055 #include <linux/nl80211.h>
0056 #include <linux/platform_device.h>
0057 #include <linux/verification.h>
0058 #include <linux/moduleparam.h>
0059 #include <linux/firmware.h>
0060 #include <net/cfg80211.h>
0061 #include "core.h"
0062 #include "reg.h"
0063 #include "rdev-ops.h"
0064 #include "nl80211.h"
0065 
0066 /*
0067  * Grace period we give before making sure all current interfaces reside on
0068  * channels allowed by the current regulatory domain.
0069  */
0070 #define REG_ENFORCE_GRACE_MS 60000
0071 
0072 /**
0073  * enum reg_request_treatment - regulatory request treatment
0074  *
0075  * @REG_REQ_OK: continue processing the regulatory request
0076  * @REG_REQ_IGNORE: ignore the regulatory request
0077  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
0078  *  be intersected with the current one.
0079  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
0080  *  regulatory settings, and no further processing is required.
0081  */
0082 enum reg_request_treatment {
0083     REG_REQ_OK,
0084     REG_REQ_IGNORE,
0085     REG_REQ_INTERSECT,
0086     REG_REQ_ALREADY_SET,
0087 };
0088 
0089 static struct regulatory_request core_request_world = {
0090     .initiator = NL80211_REGDOM_SET_BY_CORE,
0091     .alpha2[0] = '0',
0092     .alpha2[1] = '0',
0093     .intersect = false,
0094     .processed = true,
0095     .country_ie_env = ENVIRON_ANY,
0096 };
0097 
0098 /*
0099  * Receipt of information from last regulatory request,
0100  * protected by RTNL (and can be accessed with RCU protection)
0101  */
0102 static struct regulatory_request __rcu *last_request =
0103     (void __force __rcu *)&core_request_world;
0104 
0105 /* To trigger userspace events and load firmware */
0106 static struct platform_device *reg_pdev;
0107 
0108 /*
0109  * Central wireless core regulatory domains, we only need two,
0110  * the current one and a world regulatory domain in case we have no
0111  * information to give us an alpha2.
0112  * (protected by RTNL, can be read under RCU)
0113  */
0114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
0115 
0116 /*
0117  * Number of devices that registered to the core
0118  * that support cellular base station regulatory hints
0119  * (protected by RTNL)
0120  */
0121 static int reg_num_devs_support_basehint;
0122 
0123 /*
0124  * State variable indicating if the platform on which the devices
0125  * are attached is operating in an indoor environment. The state variable
0126  * is relevant for all registered devices.
0127  */
0128 static bool reg_is_indoor;
0129 static DEFINE_SPINLOCK(reg_indoor_lock);
0130 
0131 /* Used to track the userspace process controlling the indoor setting */
0132 static u32 reg_is_indoor_portid;
0133 
0134 static void restore_regulatory_settings(bool reset_user, bool cached);
0135 static void print_regdomain(const struct ieee80211_regdomain *rd);
0136 static void reg_process_hint(struct regulatory_request *reg_request);
0137 
0138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
0139 {
0140     return rcu_dereference_rtnl(cfg80211_regdomain);
0141 }
0142 
0143 /*
0144  * Returns the regulatory domain associated with the wiphy.
0145  *
0146  * Requires any of RTNL, wiphy mutex or RCU protection.
0147  */
0148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
0149 {
0150     return rcu_dereference_check(wiphy->regd,
0151                      lockdep_is_held(&wiphy->mtx) ||
0152                      lockdep_rtnl_is_held());
0153 }
0154 EXPORT_SYMBOL(get_wiphy_regdom);
0155 
0156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
0157 {
0158     switch (dfs_region) {
0159     case NL80211_DFS_UNSET:
0160         return "unset";
0161     case NL80211_DFS_FCC:
0162         return "FCC";
0163     case NL80211_DFS_ETSI:
0164         return "ETSI";
0165     case NL80211_DFS_JP:
0166         return "JP";
0167     }
0168     return "Unknown";
0169 }
0170 
0171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
0172 {
0173     const struct ieee80211_regdomain *regd = NULL;
0174     const struct ieee80211_regdomain *wiphy_regd = NULL;
0175     enum nl80211_dfs_regions dfs_region;
0176 
0177     rcu_read_lock();
0178     regd = get_cfg80211_regdom();
0179     dfs_region = regd->dfs_region;
0180 
0181     if (!wiphy)
0182         goto out;
0183 
0184     wiphy_regd = get_wiphy_regdom(wiphy);
0185     if (!wiphy_regd)
0186         goto out;
0187 
0188     if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
0189         dfs_region = wiphy_regd->dfs_region;
0190         goto out;
0191     }
0192 
0193     if (wiphy_regd->dfs_region == regd->dfs_region)
0194         goto out;
0195 
0196     pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
0197          dev_name(&wiphy->dev),
0198          reg_dfs_region_str(wiphy_regd->dfs_region),
0199          reg_dfs_region_str(regd->dfs_region));
0200 
0201 out:
0202     rcu_read_unlock();
0203 
0204     return dfs_region;
0205 }
0206 
0207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
0208 {
0209     if (!r)
0210         return;
0211     kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
0212 }
0213 
0214 static struct regulatory_request *get_last_request(void)
0215 {
0216     return rcu_dereference_rtnl(last_request);
0217 }
0218 
0219 /* Used to queue up regulatory hints */
0220 static LIST_HEAD(reg_requests_list);
0221 static DEFINE_SPINLOCK(reg_requests_lock);
0222 
0223 /* Used to queue up beacon hints for review */
0224 static LIST_HEAD(reg_pending_beacons);
0225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
0226 
0227 /* Used to keep track of processed beacon hints */
0228 static LIST_HEAD(reg_beacon_list);
0229 
0230 struct reg_beacon {
0231     struct list_head list;
0232     struct ieee80211_channel chan;
0233 };
0234 
0235 static void reg_check_chans_work(struct work_struct *work);
0236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
0237 
0238 static void reg_todo(struct work_struct *work);
0239 static DECLARE_WORK(reg_work, reg_todo);
0240 
0241 /* We keep a static world regulatory domain in case of the absence of CRDA */
0242 static const struct ieee80211_regdomain world_regdom = {
0243     .n_reg_rules = 8,
0244     .alpha2 =  "00",
0245     .reg_rules = {
0246         /* IEEE 802.11b/g, channels 1..11 */
0247         REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
0248         /* IEEE 802.11b/g, channels 12..13. */
0249         REG_RULE(2467-10, 2472+10, 20, 6, 20,
0250             NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
0251         /* IEEE 802.11 channel 14 - Only JP enables
0252          * this and for 802.11b only */
0253         REG_RULE(2484-10, 2484+10, 20, 6, 20,
0254             NL80211_RRF_NO_IR |
0255             NL80211_RRF_NO_OFDM),
0256         /* IEEE 802.11a, channel 36..48 */
0257         REG_RULE(5180-10, 5240+10, 80, 6, 20,
0258                         NL80211_RRF_NO_IR |
0259                         NL80211_RRF_AUTO_BW),
0260 
0261         /* IEEE 802.11a, channel 52..64 - DFS required */
0262         REG_RULE(5260-10, 5320+10, 80, 6, 20,
0263             NL80211_RRF_NO_IR |
0264             NL80211_RRF_AUTO_BW |
0265             NL80211_RRF_DFS),
0266 
0267         /* IEEE 802.11a, channel 100..144 - DFS required */
0268         REG_RULE(5500-10, 5720+10, 160, 6, 20,
0269             NL80211_RRF_NO_IR |
0270             NL80211_RRF_DFS),
0271 
0272         /* IEEE 802.11a, channel 149..165 */
0273         REG_RULE(5745-10, 5825+10, 80, 6, 20,
0274             NL80211_RRF_NO_IR),
0275 
0276         /* IEEE 802.11ad (60GHz), channels 1..3 */
0277         REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
0278     }
0279 };
0280 
0281 /* protected by RTNL */
0282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
0283     &world_regdom;
0284 
0285 static char *ieee80211_regdom = "00";
0286 static char user_alpha2[2];
0287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
0288 
0289 module_param(ieee80211_regdom, charp, 0444);
0290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
0291 
0292 static void reg_free_request(struct regulatory_request *request)
0293 {
0294     if (request == &core_request_world)
0295         return;
0296 
0297     if (request != get_last_request())
0298         kfree(request);
0299 }
0300 
0301 static void reg_free_last_request(void)
0302 {
0303     struct regulatory_request *lr = get_last_request();
0304 
0305     if (lr != &core_request_world && lr)
0306         kfree_rcu(lr, rcu_head);
0307 }
0308 
0309 static void reg_update_last_request(struct regulatory_request *request)
0310 {
0311     struct regulatory_request *lr;
0312 
0313     lr = get_last_request();
0314     if (lr == request)
0315         return;
0316 
0317     reg_free_last_request();
0318     rcu_assign_pointer(last_request, request);
0319 }
0320 
0321 static void reset_regdomains(bool full_reset,
0322                  const struct ieee80211_regdomain *new_regdom)
0323 {
0324     const struct ieee80211_regdomain *r;
0325 
0326     ASSERT_RTNL();
0327 
0328     r = get_cfg80211_regdom();
0329 
0330     /* avoid freeing static information or freeing something twice */
0331     if (r == cfg80211_world_regdom)
0332         r = NULL;
0333     if (cfg80211_world_regdom == &world_regdom)
0334         cfg80211_world_regdom = NULL;
0335     if (r == &world_regdom)
0336         r = NULL;
0337 
0338     rcu_free_regdom(r);
0339     rcu_free_regdom(cfg80211_world_regdom);
0340 
0341     cfg80211_world_regdom = &world_regdom;
0342     rcu_assign_pointer(cfg80211_regdomain, new_regdom);
0343 
0344     if (!full_reset)
0345         return;
0346 
0347     reg_update_last_request(&core_request_world);
0348 }
0349 
0350 /*
0351  * Dynamic world regulatory domain requested by the wireless
0352  * core upon initialization
0353  */
0354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
0355 {
0356     struct regulatory_request *lr;
0357 
0358     lr = get_last_request();
0359 
0360     WARN_ON(!lr);
0361 
0362     reset_regdomains(false, rd);
0363 
0364     cfg80211_world_regdom = rd;
0365 }
0366 
0367 bool is_world_regdom(const char *alpha2)
0368 {
0369     if (!alpha2)
0370         return false;
0371     return alpha2[0] == '0' && alpha2[1] == '0';
0372 }
0373 
0374 static bool is_alpha2_set(const char *alpha2)
0375 {
0376     if (!alpha2)
0377         return false;
0378     return alpha2[0] && alpha2[1];
0379 }
0380 
0381 static bool is_unknown_alpha2(const char *alpha2)
0382 {
0383     if (!alpha2)
0384         return false;
0385     /*
0386      * Special case where regulatory domain was built by driver
0387      * but a specific alpha2 cannot be determined
0388      */
0389     return alpha2[0] == '9' && alpha2[1] == '9';
0390 }
0391 
0392 static bool is_intersected_alpha2(const char *alpha2)
0393 {
0394     if (!alpha2)
0395         return false;
0396     /*
0397      * Special case where regulatory domain is the
0398      * result of an intersection between two regulatory domain
0399      * structures
0400      */
0401     return alpha2[0] == '9' && alpha2[1] == '8';
0402 }
0403 
0404 static bool is_an_alpha2(const char *alpha2)
0405 {
0406     if (!alpha2)
0407         return false;
0408     return isalpha(alpha2[0]) && isalpha(alpha2[1]);
0409 }
0410 
0411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
0412 {
0413     if (!alpha2_x || !alpha2_y)
0414         return false;
0415     return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
0416 }
0417 
0418 static bool regdom_changes(const char *alpha2)
0419 {
0420     const struct ieee80211_regdomain *r = get_cfg80211_regdom();
0421 
0422     if (!r)
0423         return true;
0424     return !alpha2_equal(r->alpha2, alpha2);
0425 }
0426 
0427 /*
0428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
0429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
0430  * has ever been issued.
0431  */
0432 static bool is_user_regdom_saved(void)
0433 {
0434     if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
0435         return false;
0436 
0437     /* This would indicate a mistake on the design */
0438     if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
0439          "Unexpected user alpha2: %c%c\n",
0440          user_alpha2[0], user_alpha2[1]))
0441         return false;
0442 
0443     return true;
0444 }
0445 
0446 static const struct ieee80211_regdomain *
0447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
0448 {
0449     struct ieee80211_regdomain *regd;
0450     unsigned int i;
0451 
0452     regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
0453                GFP_KERNEL);
0454     if (!regd)
0455         return ERR_PTR(-ENOMEM);
0456 
0457     memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
0458 
0459     for (i = 0; i < src_regd->n_reg_rules; i++)
0460         memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
0461                sizeof(struct ieee80211_reg_rule));
0462 
0463     return regd;
0464 }
0465 
0466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
0467 {
0468     ASSERT_RTNL();
0469 
0470     if (!IS_ERR(cfg80211_user_regdom))
0471         kfree(cfg80211_user_regdom);
0472     cfg80211_user_regdom = reg_copy_regd(rd);
0473 }
0474 
0475 struct reg_regdb_apply_request {
0476     struct list_head list;
0477     const struct ieee80211_regdomain *regdom;
0478 };
0479 
0480 static LIST_HEAD(reg_regdb_apply_list);
0481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
0482 
0483 static void reg_regdb_apply(struct work_struct *work)
0484 {
0485     struct reg_regdb_apply_request *request;
0486 
0487     rtnl_lock();
0488 
0489     mutex_lock(&reg_regdb_apply_mutex);
0490     while (!list_empty(&reg_regdb_apply_list)) {
0491         request = list_first_entry(&reg_regdb_apply_list,
0492                        struct reg_regdb_apply_request,
0493                        list);
0494         list_del(&request->list);
0495 
0496         set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
0497         kfree(request);
0498     }
0499     mutex_unlock(&reg_regdb_apply_mutex);
0500 
0501     rtnl_unlock();
0502 }
0503 
0504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
0505 
0506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
0507 {
0508     struct reg_regdb_apply_request *request;
0509 
0510     request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
0511     if (!request) {
0512         kfree(regdom);
0513         return -ENOMEM;
0514     }
0515 
0516     request->regdom = regdom;
0517 
0518     mutex_lock(&reg_regdb_apply_mutex);
0519     list_add_tail(&request->list, &reg_regdb_apply_list);
0520     mutex_unlock(&reg_regdb_apply_mutex);
0521 
0522     schedule_work(&reg_regdb_work);
0523     return 0;
0524 }
0525 
0526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
0527 /* Max number of consecutive attempts to communicate with CRDA  */
0528 #define REG_MAX_CRDA_TIMEOUTS 10
0529 
0530 static u32 reg_crda_timeouts;
0531 
0532 static void crda_timeout_work(struct work_struct *work);
0533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
0534 
0535 static void crda_timeout_work(struct work_struct *work)
0536 {
0537     pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
0538     rtnl_lock();
0539     reg_crda_timeouts++;
0540     restore_regulatory_settings(true, false);
0541     rtnl_unlock();
0542 }
0543 
0544 static void cancel_crda_timeout(void)
0545 {
0546     cancel_delayed_work(&crda_timeout);
0547 }
0548 
0549 static void cancel_crda_timeout_sync(void)
0550 {
0551     cancel_delayed_work_sync(&crda_timeout);
0552 }
0553 
0554 static void reset_crda_timeouts(void)
0555 {
0556     reg_crda_timeouts = 0;
0557 }
0558 
0559 /*
0560  * This lets us keep regulatory code which is updated on a regulatory
0561  * basis in userspace.
0562  */
0563 static int call_crda(const char *alpha2)
0564 {
0565     char country[12];
0566     char *env[] = { country, NULL };
0567     int ret;
0568 
0569     snprintf(country, sizeof(country), "COUNTRY=%c%c",
0570          alpha2[0], alpha2[1]);
0571 
0572     if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
0573         pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
0574         return -EINVAL;
0575     }
0576 
0577     if (!is_world_regdom((char *) alpha2))
0578         pr_debug("Calling CRDA for country: %c%c\n",
0579              alpha2[0], alpha2[1]);
0580     else
0581         pr_debug("Calling CRDA to update world regulatory domain\n");
0582 
0583     ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
0584     if (ret)
0585         return ret;
0586 
0587     queue_delayed_work(system_power_efficient_wq,
0588                &crda_timeout, msecs_to_jiffies(3142));
0589     return 0;
0590 }
0591 #else
0592 static inline void cancel_crda_timeout(void) {}
0593 static inline void cancel_crda_timeout_sync(void) {}
0594 static inline void reset_crda_timeouts(void) {}
0595 static inline int call_crda(const char *alpha2)
0596 {
0597     return -ENODATA;
0598 }
0599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
0600 
0601 /* code to directly load a firmware database through request_firmware */
0602 static const struct fwdb_header *regdb;
0603 
0604 struct fwdb_country {
0605     u8 alpha2[2];
0606     __be16 coll_ptr;
0607     /* this struct cannot be extended */
0608 } __packed __aligned(4);
0609 
0610 struct fwdb_collection {
0611     u8 len;
0612     u8 n_rules;
0613     u8 dfs_region;
0614     /* no optional data yet */
0615     /* aligned to 2, then followed by __be16 array of rule pointers */
0616 } __packed __aligned(4);
0617 
0618 enum fwdb_flags {
0619     FWDB_FLAG_NO_OFDM   = BIT(0),
0620     FWDB_FLAG_NO_OUTDOOR    = BIT(1),
0621     FWDB_FLAG_DFS       = BIT(2),
0622     FWDB_FLAG_NO_IR     = BIT(3),
0623     FWDB_FLAG_AUTO_BW   = BIT(4),
0624 };
0625 
0626 struct fwdb_wmm_ac {
0627     u8 ecw;
0628     u8 aifsn;
0629     __be16 cot;
0630 } __packed;
0631 
0632 struct fwdb_wmm_rule {
0633     struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
0634     struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
0635 } __packed;
0636 
0637 struct fwdb_rule {
0638     u8 len;
0639     u8 flags;
0640     __be16 max_eirp;
0641     __be32 start, end, max_bw;
0642     /* start of optional data */
0643     __be16 cac_timeout;
0644     __be16 wmm_ptr;
0645 } __packed __aligned(4);
0646 
0647 #define FWDB_MAGIC 0x52474442
0648 #define FWDB_VERSION 20
0649 
0650 struct fwdb_header {
0651     __be32 magic;
0652     __be32 version;
0653     struct fwdb_country country[];
0654 } __packed __aligned(4);
0655 
0656 static int ecw2cw(int ecw)
0657 {
0658     return (1 << ecw) - 1;
0659 }
0660 
0661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
0662 {
0663     struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
0664     int i;
0665 
0666     for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
0667         u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
0668         u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
0669         u8 aifsn = ac[i].aifsn;
0670 
0671         if (cw_min >= cw_max)
0672             return false;
0673 
0674         if (aifsn < 1)
0675             return false;
0676     }
0677 
0678     return true;
0679 }
0680 
0681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
0682 {
0683     struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
0684 
0685     if ((u8 *)rule + sizeof(rule->len) > data + size)
0686         return false;
0687 
0688     /* mandatory fields */
0689     if (rule->len < offsetofend(struct fwdb_rule, max_bw))
0690         return false;
0691     if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
0692         u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
0693         struct fwdb_wmm_rule *wmm;
0694 
0695         if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
0696             return false;
0697 
0698         wmm = (void *)(data + wmm_ptr);
0699 
0700         if (!valid_wmm(wmm))
0701             return false;
0702     }
0703     return true;
0704 }
0705 
0706 static bool valid_country(const u8 *data, unsigned int size,
0707               const struct fwdb_country *country)
0708 {
0709     unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
0710     struct fwdb_collection *coll = (void *)(data + ptr);
0711     __be16 *rules_ptr;
0712     unsigned int i;
0713 
0714     /* make sure we can read len/n_rules */
0715     if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
0716         return false;
0717 
0718     /* make sure base struct and all rules fit */
0719     if ((u8 *)coll + ALIGN(coll->len, 2) +
0720         (coll->n_rules * 2) > data + size)
0721         return false;
0722 
0723     /* mandatory fields must exist */
0724     if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
0725         return false;
0726 
0727     rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
0728 
0729     for (i = 0; i < coll->n_rules; i++) {
0730         u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
0731 
0732         if (!valid_rule(data, size, rule_ptr))
0733             return false;
0734     }
0735 
0736     return true;
0737 }
0738 
0739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
0740 static struct key *builtin_regdb_keys;
0741 
0742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
0743 {
0744     const u8 *end = p + buflen;
0745     size_t plen;
0746     key_ref_t key;
0747 
0748     while (p < end) {
0749         /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
0750          * than 256 bytes in size.
0751          */
0752         if (end - p < 4)
0753             goto dodgy_cert;
0754         if (p[0] != 0x30 &&
0755             p[1] != 0x82)
0756             goto dodgy_cert;
0757         plen = (p[2] << 8) | p[3];
0758         plen += 4;
0759         if (plen > end - p)
0760             goto dodgy_cert;
0761 
0762         key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
0763                        "asymmetric", NULL, p, plen,
0764                        ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
0765                         KEY_USR_VIEW | KEY_USR_READ),
0766                        KEY_ALLOC_NOT_IN_QUOTA |
0767                        KEY_ALLOC_BUILT_IN |
0768                        KEY_ALLOC_BYPASS_RESTRICTION);
0769         if (IS_ERR(key)) {
0770             pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
0771                    PTR_ERR(key));
0772         } else {
0773             pr_notice("Loaded X.509 cert '%s'\n",
0774                   key_ref_to_ptr(key)->description);
0775             key_ref_put(key);
0776         }
0777         p += plen;
0778     }
0779 
0780     return;
0781 
0782 dodgy_cert:
0783     pr_err("Problem parsing in-kernel X.509 certificate list\n");
0784 }
0785 
0786 static int __init load_builtin_regdb_keys(void)
0787 {
0788     builtin_regdb_keys =
0789         keyring_alloc(".builtin_regdb_keys",
0790                   KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
0791                   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
0792                   KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
0793                   KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
0794     if (IS_ERR(builtin_regdb_keys))
0795         return PTR_ERR(builtin_regdb_keys);
0796 
0797     pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
0798 
0799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
0800     load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
0801 #endif
0802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
0803     if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
0804         load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
0805 #endif
0806 
0807     return 0;
0808 }
0809 
0810 MODULE_FIRMWARE("regulatory.db.p7s");
0811 
0812 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
0813 {
0814     const struct firmware *sig;
0815     bool result;
0816 
0817     if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
0818         return false;
0819 
0820     result = verify_pkcs7_signature(data, size, sig->data, sig->size,
0821                     builtin_regdb_keys,
0822                     VERIFYING_UNSPECIFIED_SIGNATURE,
0823                     NULL, NULL) == 0;
0824 
0825     release_firmware(sig);
0826 
0827     return result;
0828 }
0829 
0830 static void free_regdb_keyring(void)
0831 {
0832     key_put(builtin_regdb_keys);
0833 }
0834 #else
0835 static int load_builtin_regdb_keys(void)
0836 {
0837     return 0;
0838 }
0839 
0840 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
0841 {
0842     return true;
0843 }
0844 
0845 static void free_regdb_keyring(void)
0846 {
0847 }
0848 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
0849 
0850 static bool valid_regdb(const u8 *data, unsigned int size)
0851 {
0852     const struct fwdb_header *hdr = (void *)data;
0853     const struct fwdb_country *country;
0854 
0855     if (size < sizeof(*hdr))
0856         return false;
0857 
0858     if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
0859         return false;
0860 
0861     if (hdr->version != cpu_to_be32(FWDB_VERSION))
0862         return false;
0863 
0864     if (!regdb_has_valid_signature(data, size))
0865         return false;
0866 
0867     country = &hdr->country[0];
0868     while ((u8 *)(country + 1) <= data + size) {
0869         if (!country->coll_ptr)
0870             break;
0871         if (!valid_country(data, size, country))
0872             return false;
0873         country++;
0874     }
0875 
0876     return true;
0877 }
0878 
0879 static void set_wmm_rule(const struct fwdb_header *db,
0880              const struct fwdb_country *country,
0881              const struct fwdb_rule *rule,
0882              struct ieee80211_reg_rule *rrule)
0883 {
0884     struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
0885     struct fwdb_wmm_rule *wmm;
0886     unsigned int i, wmm_ptr;
0887 
0888     wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
0889     wmm = (void *)((u8 *)db + wmm_ptr);
0890 
0891     if (!valid_wmm(wmm)) {
0892         pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
0893                be32_to_cpu(rule->start), be32_to_cpu(rule->end),
0894                country->alpha2[0], country->alpha2[1]);
0895         return;
0896     }
0897 
0898     for (i = 0; i < IEEE80211_NUM_ACS; i++) {
0899         wmm_rule->client[i].cw_min =
0900             ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
0901         wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
0902         wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
0903         wmm_rule->client[i].cot =
0904             1000 * be16_to_cpu(wmm->client[i].cot);
0905         wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
0906         wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
0907         wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
0908         wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
0909     }
0910 
0911     rrule->has_wmm = true;
0912 }
0913 
0914 static int __regdb_query_wmm(const struct fwdb_header *db,
0915                  const struct fwdb_country *country, int freq,
0916                  struct ieee80211_reg_rule *rrule)
0917 {
0918     unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
0919     struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
0920     int i;
0921 
0922     for (i = 0; i < coll->n_rules; i++) {
0923         __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
0924         unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
0925         struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
0926 
0927         if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
0928             continue;
0929 
0930         if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
0931             freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
0932             set_wmm_rule(db, country, rule, rrule);
0933             return 0;
0934         }
0935     }
0936 
0937     return -ENODATA;
0938 }
0939 
0940 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
0941 {
0942     const struct fwdb_header *hdr = regdb;
0943     const struct fwdb_country *country;
0944 
0945     if (!regdb)
0946         return -ENODATA;
0947 
0948     if (IS_ERR(regdb))
0949         return PTR_ERR(regdb);
0950 
0951     country = &hdr->country[0];
0952     while (country->coll_ptr) {
0953         if (alpha2_equal(alpha2, country->alpha2))
0954             return __regdb_query_wmm(regdb, country, freq, rule);
0955 
0956         country++;
0957     }
0958 
0959     return -ENODATA;
0960 }
0961 EXPORT_SYMBOL(reg_query_regdb_wmm);
0962 
0963 static int regdb_query_country(const struct fwdb_header *db,
0964                    const struct fwdb_country *country)
0965 {
0966     unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
0967     struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
0968     struct ieee80211_regdomain *regdom;
0969     unsigned int i;
0970 
0971     regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
0972              GFP_KERNEL);
0973     if (!regdom)
0974         return -ENOMEM;
0975 
0976     regdom->n_reg_rules = coll->n_rules;
0977     regdom->alpha2[0] = country->alpha2[0];
0978     regdom->alpha2[1] = country->alpha2[1];
0979     regdom->dfs_region = coll->dfs_region;
0980 
0981     for (i = 0; i < regdom->n_reg_rules; i++) {
0982         __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
0983         unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
0984         struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
0985         struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
0986 
0987         rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
0988         rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
0989         rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
0990 
0991         rrule->power_rule.max_antenna_gain = 0;
0992         rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
0993 
0994         rrule->flags = 0;
0995         if (rule->flags & FWDB_FLAG_NO_OFDM)
0996             rrule->flags |= NL80211_RRF_NO_OFDM;
0997         if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
0998             rrule->flags |= NL80211_RRF_NO_OUTDOOR;
0999         if (rule->flags & FWDB_FLAG_DFS)
1000             rrule->flags |= NL80211_RRF_DFS;
1001         if (rule->flags & FWDB_FLAG_NO_IR)
1002             rrule->flags |= NL80211_RRF_NO_IR;
1003         if (rule->flags & FWDB_FLAG_AUTO_BW)
1004             rrule->flags |= NL80211_RRF_AUTO_BW;
1005 
1006         rrule->dfs_cac_ms = 0;
1007 
1008         /* handle optional data */
1009         if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1010             rrule->dfs_cac_ms =
1011                 1000 * be16_to_cpu(rule->cac_timeout);
1012         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1013             set_wmm_rule(db, country, rule, rrule);
1014     }
1015 
1016     return reg_schedule_apply(regdom);
1017 }
1018 
1019 static int query_regdb(const char *alpha2)
1020 {
1021     const struct fwdb_header *hdr = regdb;
1022     const struct fwdb_country *country;
1023 
1024     ASSERT_RTNL();
1025 
1026     if (IS_ERR(regdb))
1027         return PTR_ERR(regdb);
1028 
1029     country = &hdr->country[0];
1030     while (country->coll_ptr) {
1031         if (alpha2_equal(alpha2, country->alpha2))
1032             return regdb_query_country(regdb, country);
1033         country++;
1034     }
1035 
1036     return -ENODATA;
1037 }
1038 
1039 static void regdb_fw_cb(const struct firmware *fw, void *context)
1040 {
1041     int set_error = 0;
1042     bool restore = true;
1043     void *db;
1044 
1045     if (!fw) {
1046         pr_info("failed to load regulatory.db\n");
1047         set_error = -ENODATA;
1048     } else if (!valid_regdb(fw->data, fw->size)) {
1049         pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1050         set_error = -EINVAL;
1051     }
1052 
1053     rtnl_lock();
1054     if (regdb && !IS_ERR(regdb)) {
1055         /* negative case - a bug
1056          * positive case - can happen due to race in case of multiple cb's in
1057          * queue, due to usage of asynchronous callback
1058          *
1059          * Either case, just restore and free new db.
1060          */
1061     } else if (set_error) {
1062         regdb = ERR_PTR(set_error);
1063     } else if (fw) {
1064         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1065         if (db) {
1066             regdb = db;
1067             restore = context && query_regdb(context);
1068         } else {
1069             restore = true;
1070         }
1071     }
1072 
1073     if (restore)
1074         restore_regulatory_settings(true, false);
1075 
1076     rtnl_unlock();
1077 
1078     kfree(context);
1079 
1080     release_firmware(fw);
1081 }
1082 
1083 MODULE_FIRMWARE("regulatory.db");
1084 
1085 static int query_regdb_file(const char *alpha2)
1086 {
1087     ASSERT_RTNL();
1088 
1089     if (regdb)
1090         return query_regdb(alpha2);
1091 
1092     alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1093     if (!alpha2)
1094         return -ENOMEM;
1095 
1096     return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1097                        &reg_pdev->dev, GFP_KERNEL,
1098                        (void *)alpha2, regdb_fw_cb);
1099 }
1100 
1101 int reg_reload_regdb(void)
1102 {
1103     const struct firmware *fw;
1104     void *db;
1105     int err;
1106     const struct ieee80211_regdomain *current_regdomain;
1107     struct regulatory_request *request;
1108 
1109     err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1110     if (err)
1111         return err;
1112 
1113     if (!valid_regdb(fw->data, fw->size)) {
1114         err = -ENODATA;
1115         goto out;
1116     }
1117 
1118     db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1119     if (!db) {
1120         err = -ENOMEM;
1121         goto out;
1122     }
1123 
1124     rtnl_lock();
1125     if (!IS_ERR_OR_NULL(regdb))
1126         kfree(regdb);
1127     regdb = db;
1128 
1129     /* reset regulatory domain */
1130     current_regdomain = get_cfg80211_regdom();
1131 
1132     request = kzalloc(sizeof(*request), GFP_KERNEL);
1133     if (!request) {
1134         err = -ENOMEM;
1135         goto out_unlock;
1136     }
1137 
1138     request->wiphy_idx = WIPHY_IDX_INVALID;
1139     request->alpha2[0] = current_regdomain->alpha2[0];
1140     request->alpha2[1] = current_regdomain->alpha2[1];
1141     request->initiator = NL80211_REGDOM_SET_BY_CORE;
1142     request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1143 
1144     reg_process_hint(request);
1145 
1146 out_unlock:
1147     rtnl_unlock();
1148  out:
1149     release_firmware(fw);
1150     return err;
1151 }
1152 
1153 static bool reg_query_database(struct regulatory_request *request)
1154 {
1155     if (query_regdb_file(request->alpha2) == 0)
1156         return true;
1157 
1158     if (call_crda(request->alpha2) == 0)
1159         return true;
1160 
1161     return false;
1162 }
1163 
1164 bool reg_is_valid_request(const char *alpha2)
1165 {
1166     struct regulatory_request *lr = get_last_request();
1167 
1168     if (!lr || lr->processed)
1169         return false;
1170 
1171     return alpha2_equal(lr->alpha2, alpha2);
1172 }
1173 
1174 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1175 {
1176     struct regulatory_request *lr = get_last_request();
1177 
1178     /*
1179      * Follow the driver's regulatory domain, if present, unless a country
1180      * IE has been processed or a user wants to help complaince further
1181      */
1182     if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1183         lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1184         wiphy->regd)
1185         return get_wiphy_regdom(wiphy);
1186 
1187     return get_cfg80211_regdom();
1188 }
1189 
1190 static unsigned int
1191 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1192                  const struct ieee80211_reg_rule *rule)
1193 {
1194     const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1195     const struct ieee80211_freq_range *freq_range_tmp;
1196     const struct ieee80211_reg_rule *tmp;
1197     u32 start_freq, end_freq, idx, no;
1198 
1199     for (idx = 0; idx < rd->n_reg_rules; idx++)
1200         if (rule == &rd->reg_rules[idx])
1201             break;
1202 
1203     if (idx == rd->n_reg_rules)
1204         return 0;
1205 
1206     /* get start_freq */
1207     no = idx;
1208 
1209     while (no) {
1210         tmp = &rd->reg_rules[--no];
1211         freq_range_tmp = &tmp->freq_range;
1212 
1213         if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1214             break;
1215 
1216         freq_range = freq_range_tmp;
1217     }
1218 
1219     start_freq = freq_range->start_freq_khz;
1220 
1221     /* get end_freq */
1222     freq_range = &rule->freq_range;
1223     no = idx;
1224 
1225     while (no < rd->n_reg_rules - 1) {
1226         tmp = &rd->reg_rules[++no];
1227         freq_range_tmp = &tmp->freq_range;
1228 
1229         if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1230             break;
1231 
1232         freq_range = freq_range_tmp;
1233     }
1234 
1235     end_freq = freq_range->end_freq_khz;
1236 
1237     return end_freq - start_freq;
1238 }
1239 
1240 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1241                    const struct ieee80211_reg_rule *rule)
1242 {
1243     unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1244 
1245     if (rule->flags & NL80211_RRF_NO_320MHZ)
1246         bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1247     if (rule->flags & NL80211_RRF_NO_160MHZ)
1248         bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1249     if (rule->flags & NL80211_RRF_NO_80MHZ)
1250         bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1251 
1252     /*
1253      * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1254      * are not allowed.
1255      */
1256     if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1257         rule->flags & NL80211_RRF_NO_HT40PLUS)
1258         bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1259 
1260     return bw;
1261 }
1262 
1263 /* Sanity check on a regulatory rule */
1264 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1265 {
1266     const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1267     u32 freq_diff;
1268 
1269     if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1270         return false;
1271 
1272     if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1273         return false;
1274 
1275     freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1276 
1277     if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1278         freq_range->max_bandwidth_khz > freq_diff)
1279         return false;
1280 
1281     return true;
1282 }
1283 
1284 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1285 {
1286     const struct ieee80211_reg_rule *reg_rule = NULL;
1287     unsigned int i;
1288 
1289     if (!rd->n_reg_rules)
1290         return false;
1291 
1292     if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1293         return false;
1294 
1295     for (i = 0; i < rd->n_reg_rules; i++) {
1296         reg_rule = &rd->reg_rules[i];
1297         if (!is_valid_reg_rule(reg_rule))
1298             return false;
1299     }
1300 
1301     return true;
1302 }
1303 
1304 /**
1305  * freq_in_rule_band - tells us if a frequency is in a frequency band
1306  * @freq_range: frequency rule we want to query
1307  * @freq_khz: frequency we are inquiring about
1308  *
1309  * This lets us know if a specific frequency rule is or is not relevant to
1310  * a specific frequency's band. Bands are device specific and artificial
1311  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1312  * however it is safe for now to assume that a frequency rule should not be
1313  * part of a frequency's band if the start freq or end freq are off by more
1314  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1315  * 60 GHz band.
1316  * This resolution can be lowered and should be considered as we add
1317  * regulatory rule support for other "bands".
1318  **/
1319 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1320                   u32 freq_khz)
1321 {
1322 #define ONE_GHZ_IN_KHZ  1000000
1323     /*
1324      * From 802.11ad: directional multi-gigabit (DMG):
1325      * Pertaining to operation in a frequency band containing a channel
1326      * with the Channel starting frequency above 45 GHz.
1327      */
1328     u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1329             20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1330     if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1331         return true;
1332     if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1333         return true;
1334     return false;
1335 #undef ONE_GHZ_IN_KHZ
1336 }
1337 
1338 /*
1339  * Later on we can perhaps use the more restrictive DFS
1340  * region but we don't have information for that yet so
1341  * for now simply disallow conflicts.
1342  */
1343 static enum nl80211_dfs_regions
1344 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1345              const enum nl80211_dfs_regions dfs_region2)
1346 {
1347     if (dfs_region1 != dfs_region2)
1348         return NL80211_DFS_UNSET;
1349     return dfs_region1;
1350 }
1351 
1352 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1353                     const struct ieee80211_wmm_ac *wmm_ac2,
1354                     struct ieee80211_wmm_ac *intersect)
1355 {
1356     intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1357     intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1358     intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1359     intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1360 }
1361 
1362 /*
1363  * Helper for regdom_intersect(), this does the real
1364  * mathematical intersection fun
1365  */
1366 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1367                    const struct ieee80211_regdomain *rd2,
1368                    const struct ieee80211_reg_rule *rule1,
1369                    const struct ieee80211_reg_rule *rule2,
1370                    struct ieee80211_reg_rule *intersected_rule)
1371 {
1372     const struct ieee80211_freq_range *freq_range1, *freq_range2;
1373     struct ieee80211_freq_range *freq_range;
1374     const struct ieee80211_power_rule *power_rule1, *power_rule2;
1375     struct ieee80211_power_rule *power_rule;
1376     const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1377     struct ieee80211_wmm_rule *wmm_rule;
1378     u32 freq_diff, max_bandwidth1, max_bandwidth2;
1379 
1380     freq_range1 = &rule1->freq_range;
1381     freq_range2 = &rule2->freq_range;
1382     freq_range = &intersected_rule->freq_range;
1383 
1384     power_rule1 = &rule1->power_rule;
1385     power_rule2 = &rule2->power_rule;
1386     power_rule = &intersected_rule->power_rule;
1387 
1388     wmm_rule1 = &rule1->wmm_rule;
1389     wmm_rule2 = &rule2->wmm_rule;
1390     wmm_rule = &intersected_rule->wmm_rule;
1391 
1392     freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1393                      freq_range2->start_freq_khz);
1394     freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1395                        freq_range2->end_freq_khz);
1396 
1397     max_bandwidth1 = freq_range1->max_bandwidth_khz;
1398     max_bandwidth2 = freq_range2->max_bandwidth_khz;
1399 
1400     if (rule1->flags & NL80211_RRF_AUTO_BW)
1401         max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1402     if (rule2->flags & NL80211_RRF_AUTO_BW)
1403         max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1404 
1405     freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1406 
1407     intersected_rule->flags = rule1->flags | rule2->flags;
1408 
1409     /*
1410      * In case NL80211_RRF_AUTO_BW requested for both rules
1411      * set AUTO_BW in intersected rule also. Next we will
1412      * calculate BW correctly in handle_channel function.
1413      * In other case remove AUTO_BW flag while we calculate
1414      * maximum bandwidth correctly and auto calculation is
1415      * not required.
1416      */
1417     if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1418         (rule2->flags & NL80211_RRF_AUTO_BW))
1419         intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1420     else
1421         intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1422 
1423     freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1424     if (freq_range->max_bandwidth_khz > freq_diff)
1425         freq_range->max_bandwidth_khz = freq_diff;
1426 
1427     power_rule->max_eirp = min(power_rule1->max_eirp,
1428         power_rule2->max_eirp);
1429     power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1430         power_rule2->max_antenna_gain);
1431 
1432     intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1433                        rule2->dfs_cac_ms);
1434 
1435     if (rule1->has_wmm && rule2->has_wmm) {
1436         u8 ac;
1437 
1438         for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1439             reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1440                         &wmm_rule2->client[ac],
1441                         &wmm_rule->client[ac]);
1442             reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1443                         &wmm_rule2->ap[ac],
1444                         &wmm_rule->ap[ac]);
1445         }
1446 
1447         intersected_rule->has_wmm = true;
1448     } else if (rule1->has_wmm) {
1449         *wmm_rule = *wmm_rule1;
1450         intersected_rule->has_wmm = true;
1451     } else if (rule2->has_wmm) {
1452         *wmm_rule = *wmm_rule2;
1453         intersected_rule->has_wmm = true;
1454     } else {
1455         intersected_rule->has_wmm = false;
1456     }
1457 
1458     if (!is_valid_reg_rule(intersected_rule))
1459         return -EINVAL;
1460 
1461     return 0;
1462 }
1463 
1464 /* check whether old rule contains new rule */
1465 static bool rule_contains(struct ieee80211_reg_rule *r1,
1466               struct ieee80211_reg_rule *r2)
1467 {
1468     /* for simplicity, currently consider only same flags */
1469     if (r1->flags != r2->flags)
1470         return false;
1471 
1472     /* verify r1 is more restrictive */
1473     if ((r1->power_rule.max_antenna_gain >
1474          r2->power_rule.max_antenna_gain) ||
1475         r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1476         return false;
1477 
1478     /* make sure r2's range is contained within r1 */
1479     if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1480         r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1481         return false;
1482 
1483     /* and finally verify that r1.max_bw >= r2.max_bw */
1484     if (r1->freq_range.max_bandwidth_khz <
1485         r2->freq_range.max_bandwidth_khz)
1486         return false;
1487 
1488     return true;
1489 }
1490 
1491 /* add or extend current rules. do nothing if rule is already contained */
1492 static void add_rule(struct ieee80211_reg_rule *rule,
1493              struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1494 {
1495     struct ieee80211_reg_rule *tmp_rule;
1496     int i;
1497 
1498     for (i = 0; i < *n_rules; i++) {
1499         tmp_rule = &reg_rules[i];
1500         /* rule is already contained - do nothing */
1501         if (rule_contains(tmp_rule, rule))
1502             return;
1503 
1504         /* extend rule if possible */
1505         if (rule_contains(rule, tmp_rule)) {
1506             memcpy(tmp_rule, rule, sizeof(*rule));
1507             return;
1508         }
1509     }
1510 
1511     memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1512     (*n_rules)++;
1513 }
1514 
1515 /**
1516  * regdom_intersect - do the intersection between two regulatory domains
1517  * @rd1: first regulatory domain
1518  * @rd2: second regulatory domain
1519  *
1520  * Use this function to get the intersection between two regulatory domains.
1521  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1522  * as no one single alpha2 can represent this regulatory domain.
1523  *
1524  * Returns a pointer to the regulatory domain structure which will hold the
1525  * resulting intersection of rules between rd1 and rd2. We will
1526  * kzalloc() this structure for you.
1527  */
1528 static struct ieee80211_regdomain *
1529 regdom_intersect(const struct ieee80211_regdomain *rd1,
1530          const struct ieee80211_regdomain *rd2)
1531 {
1532     int r;
1533     unsigned int x, y;
1534     unsigned int num_rules = 0;
1535     const struct ieee80211_reg_rule *rule1, *rule2;
1536     struct ieee80211_reg_rule intersected_rule;
1537     struct ieee80211_regdomain *rd;
1538 
1539     if (!rd1 || !rd2)
1540         return NULL;
1541 
1542     /*
1543      * First we get a count of the rules we'll need, then we actually
1544      * build them. This is to so we can malloc() and free() a
1545      * regdomain once. The reason we use reg_rules_intersect() here
1546      * is it will return -EINVAL if the rule computed makes no sense.
1547      * All rules that do check out OK are valid.
1548      */
1549 
1550     for (x = 0; x < rd1->n_reg_rules; x++) {
1551         rule1 = &rd1->reg_rules[x];
1552         for (y = 0; y < rd2->n_reg_rules; y++) {
1553             rule2 = &rd2->reg_rules[y];
1554             if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1555                          &intersected_rule))
1556                 num_rules++;
1557         }
1558     }
1559 
1560     if (!num_rules)
1561         return NULL;
1562 
1563     rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1564     if (!rd)
1565         return NULL;
1566 
1567     for (x = 0; x < rd1->n_reg_rules; x++) {
1568         rule1 = &rd1->reg_rules[x];
1569         for (y = 0; y < rd2->n_reg_rules; y++) {
1570             rule2 = &rd2->reg_rules[y];
1571             r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1572                         &intersected_rule);
1573             /*
1574              * No need to memset here the intersected rule here as
1575              * we're not using the stack anymore
1576              */
1577             if (r)
1578                 continue;
1579 
1580             add_rule(&intersected_rule, rd->reg_rules,
1581                  &rd->n_reg_rules);
1582         }
1583     }
1584 
1585     rd->alpha2[0] = '9';
1586     rd->alpha2[1] = '8';
1587     rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1588                           rd2->dfs_region);
1589 
1590     return rd;
1591 }
1592 
1593 /*
1594  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1595  * want to just have the channel structure use these
1596  */
1597 static u32 map_regdom_flags(u32 rd_flags)
1598 {
1599     u32 channel_flags = 0;
1600     if (rd_flags & NL80211_RRF_NO_IR_ALL)
1601         channel_flags |= IEEE80211_CHAN_NO_IR;
1602     if (rd_flags & NL80211_RRF_DFS)
1603         channel_flags |= IEEE80211_CHAN_RADAR;
1604     if (rd_flags & NL80211_RRF_NO_OFDM)
1605         channel_flags |= IEEE80211_CHAN_NO_OFDM;
1606     if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1607         channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1608     if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1609         channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1610     if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1611         channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1612     if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1613         channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1614     if (rd_flags & NL80211_RRF_NO_80MHZ)
1615         channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1616     if (rd_flags & NL80211_RRF_NO_160MHZ)
1617         channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1618     if (rd_flags & NL80211_RRF_NO_HE)
1619         channel_flags |= IEEE80211_CHAN_NO_HE;
1620     if (rd_flags & NL80211_RRF_NO_320MHZ)
1621         channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1622     return channel_flags;
1623 }
1624 
1625 static const struct ieee80211_reg_rule *
1626 freq_reg_info_regd(u32 center_freq,
1627            const struct ieee80211_regdomain *regd, u32 bw)
1628 {
1629     int i;
1630     bool band_rule_found = false;
1631     bool bw_fits = false;
1632 
1633     if (!regd)
1634         return ERR_PTR(-EINVAL);
1635 
1636     for (i = 0; i < regd->n_reg_rules; i++) {
1637         const struct ieee80211_reg_rule *rr;
1638         const struct ieee80211_freq_range *fr = NULL;
1639 
1640         rr = &regd->reg_rules[i];
1641         fr = &rr->freq_range;
1642 
1643         /*
1644          * We only need to know if one frequency rule was
1645          * in center_freq's band, that's enough, so let's
1646          * not overwrite it once found
1647          */
1648         if (!band_rule_found)
1649             band_rule_found = freq_in_rule_band(fr, center_freq);
1650 
1651         bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1652 
1653         if (band_rule_found && bw_fits)
1654             return rr;
1655     }
1656 
1657     if (!band_rule_found)
1658         return ERR_PTR(-ERANGE);
1659 
1660     return ERR_PTR(-EINVAL);
1661 }
1662 
1663 static const struct ieee80211_reg_rule *
1664 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1665 {
1666     const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1667     static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1668     const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1669     int i = ARRAY_SIZE(bws) - 1;
1670     u32 bw;
1671 
1672     for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1673         reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1674         if (!IS_ERR(reg_rule))
1675             return reg_rule;
1676     }
1677 
1678     return reg_rule;
1679 }
1680 
1681 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1682                            u32 center_freq)
1683 {
1684     u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1685 
1686     return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1687 }
1688 EXPORT_SYMBOL(freq_reg_info);
1689 
1690 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1691 {
1692     switch (initiator) {
1693     case NL80211_REGDOM_SET_BY_CORE:
1694         return "core";
1695     case NL80211_REGDOM_SET_BY_USER:
1696         return "user";
1697     case NL80211_REGDOM_SET_BY_DRIVER:
1698         return "driver";
1699     case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1700         return "country element";
1701     default:
1702         WARN_ON(1);
1703         return "bug";
1704     }
1705 }
1706 EXPORT_SYMBOL(reg_initiator_name);
1707 
1708 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1709                       const struct ieee80211_reg_rule *reg_rule,
1710                       const struct ieee80211_channel *chan)
1711 {
1712     const struct ieee80211_freq_range *freq_range = NULL;
1713     u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1714     bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1715 
1716     freq_range = &reg_rule->freq_range;
1717 
1718     max_bandwidth_khz = freq_range->max_bandwidth_khz;
1719     center_freq_khz = ieee80211_channel_to_khz(chan);
1720     /* Check if auto calculation requested */
1721     if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1722         max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1723 
1724     /* If we get a reg_rule we can assume that at least 5Mhz fit */
1725     if (!cfg80211_does_bw_fit_range(freq_range,
1726                     center_freq_khz,
1727                     MHZ_TO_KHZ(10)))
1728         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1729     if (!cfg80211_does_bw_fit_range(freq_range,
1730                     center_freq_khz,
1731                     MHZ_TO_KHZ(20)))
1732         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1733 
1734     if (is_s1g) {
1735         /* S1G is strict about non overlapping channels. We can
1736          * calculate which bandwidth is allowed per channel by finding
1737          * the largest bandwidth which cleanly divides the freq_range.
1738          */
1739         int edge_offset;
1740         int ch_bw = max_bandwidth_khz;
1741 
1742         while (ch_bw) {
1743             edge_offset = (center_freq_khz - ch_bw / 2) -
1744                       freq_range->start_freq_khz;
1745             if (edge_offset % ch_bw == 0) {
1746                 switch (KHZ_TO_MHZ(ch_bw)) {
1747                 case 1:
1748                     bw_flags |= IEEE80211_CHAN_1MHZ;
1749                     break;
1750                 case 2:
1751                     bw_flags |= IEEE80211_CHAN_2MHZ;
1752                     break;
1753                 case 4:
1754                     bw_flags |= IEEE80211_CHAN_4MHZ;
1755                     break;
1756                 case 8:
1757                     bw_flags |= IEEE80211_CHAN_8MHZ;
1758                     break;
1759                 case 16:
1760                     bw_flags |= IEEE80211_CHAN_16MHZ;
1761                     break;
1762                 default:
1763                     /* If we got here, no bandwidths fit on
1764                      * this frequency, ie. band edge.
1765                      */
1766                     bw_flags |= IEEE80211_CHAN_DISABLED;
1767                     break;
1768                 }
1769                 break;
1770             }
1771             ch_bw /= 2;
1772         }
1773     } else {
1774         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1775             bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1776         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1777             bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1778         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1779             bw_flags |= IEEE80211_CHAN_NO_HT40;
1780         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1781             bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1782         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1783             bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1784         if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1785             bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1786     }
1787     return bw_flags;
1788 }
1789 
1790 static void handle_channel_single_rule(struct wiphy *wiphy,
1791                        enum nl80211_reg_initiator initiator,
1792                        struct ieee80211_channel *chan,
1793                        u32 flags,
1794                        struct regulatory_request *lr,
1795                        struct wiphy *request_wiphy,
1796                        const struct ieee80211_reg_rule *reg_rule)
1797 {
1798     u32 bw_flags = 0;
1799     const struct ieee80211_power_rule *power_rule = NULL;
1800     const struct ieee80211_regdomain *regd;
1801 
1802     regd = reg_get_regdomain(wiphy);
1803 
1804     power_rule = &reg_rule->power_rule;
1805     bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1806 
1807     if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1808         request_wiphy && request_wiphy == wiphy &&
1809         request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1810         /*
1811          * This guarantees the driver's requested regulatory domain
1812          * will always be used as a base for further regulatory
1813          * settings
1814          */
1815         chan->flags = chan->orig_flags =
1816             map_regdom_flags(reg_rule->flags) | bw_flags;
1817         chan->max_antenna_gain = chan->orig_mag =
1818             (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1819         chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1820             (int) MBM_TO_DBM(power_rule->max_eirp);
1821 
1822         if (chan->flags & IEEE80211_CHAN_RADAR) {
1823             chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1824             if (reg_rule->dfs_cac_ms)
1825                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1826         }
1827 
1828         return;
1829     }
1830 
1831     chan->dfs_state = NL80211_DFS_USABLE;
1832     chan->dfs_state_entered = jiffies;
1833 
1834     chan->beacon_found = false;
1835     chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1836     chan->max_antenna_gain =
1837         min_t(int, chan->orig_mag,
1838               MBI_TO_DBI(power_rule->max_antenna_gain));
1839     chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1840 
1841     if (chan->flags & IEEE80211_CHAN_RADAR) {
1842         if (reg_rule->dfs_cac_ms)
1843             chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1844         else
1845             chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1846     }
1847 
1848     if (chan->orig_mpwr) {
1849         /*
1850          * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1851          * will always follow the passed country IE power settings.
1852          */
1853         if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1854             wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1855             chan->max_power = chan->max_reg_power;
1856         else
1857             chan->max_power = min(chan->orig_mpwr,
1858                           chan->max_reg_power);
1859     } else
1860         chan->max_power = chan->max_reg_power;
1861 }
1862 
1863 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1864                       enum nl80211_reg_initiator initiator,
1865                       struct ieee80211_channel *chan,
1866                       u32 flags,
1867                       struct regulatory_request *lr,
1868                       struct wiphy *request_wiphy,
1869                       const struct ieee80211_reg_rule *rrule1,
1870                       const struct ieee80211_reg_rule *rrule2,
1871                       struct ieee80211_freq_range *comb_range)
1872 {
1873     u32 bw_flags1 = 0;
1874     u32 bw_flags2 = 0;
1875     const struct ieee80211_power_rule *power_rule1 = NULL;
1876     const struct ieee80211_power_rule *power_rule2 = NULL;
1877     const struct ieee80211_regdomain *regd;
1878 
1879     regd = reg_get_regdomain(wiphy);
1880 
1881     power_rule1 = &rrule1->power_rule;
1882     power_rule2 = &rrule2->power_rule;
1883     bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1884     bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1885 
1886     if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1887         request_wiphy && request_wiphy == wiphy &&
1888         request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1889         /* This guarantees the driver's requested regulatory domain
1890          * will always be used as a base for further regulatory
1891          * settings
1892          */
1893         chan->flags =
1894             map_regdom_flags(rrule1->flags) |
1895             map_regdom_flags(rrule2->flags) |
1896             bw_flags1 |
1897             bw_flags2;
1898         chan->orig_flags = chan->flags;
1899         chan->max_antenna_gain =
1900             min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1901                   MBI_TO_DBI(power_rule2->max_antenna_gain));
1902         chan->orig_mag = chan->max_antenna_gain;
1903         chan->max_reg_power =
1904             min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1905                   MBM_TO_DBM(power_rule2->max_eirp));
1906         chan->max_power = chan->max_reg_power;
1907         chan->orig_mpwr = chan->max_reg_power;
1908 
1909         if (chan->flags & IEEE80211_CHAN_RADAR) {
1910             chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1911             if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1912                 chan->dfs_cac_ms = max_t(unsigned int,
1913                              rrule1->dfs_cac_ms,
1914                              rrule2->dfs_cac_ms);
1915         }
1916 
1917         return;
1918     }
1919 
1920     chan->dfs_state = NL80211_DFS_USABLE;
1921     chan->dfs_state_entered = jiffies;
1922 
1923     chan->beacon_found = false;
1924     chan->flags = flags | bw_flags1 | bw_flags2 |
1925               map_regdom_flags(rrule1->flags) |
1926               map_regdom_flags(rrule2->flags);
1927 
1928     /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1929      * (otherwise no adj. rule case), recheck therefore
1930      */
1931     if (cfg80211_does_bw_fit_range(comb_range,
1932                        ieee80211_channel_to_khz(chan),
1933                        MHZ_TO_KHZ(10)))
1934         chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1935     if (cfg80211_does_bw_fit_range(comb_range,
1936                        ieee80211_channel_to_khz(chan),
1937                        MHZ_TO_KHZ(20)))
1938         chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1939 
1940     chan->max_antenna_gain =
1941         min_t(int, chan->orig_mag,
1942               min_t(int,
1943                 MBI_TO_DBI(power_rule1->max_antenna_gain),
1944                 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1945     chan->max_reg_power = min_t(int,
1946                     MBM_TO_DBM(power_rule1->max_eirp),
1947                     MBM_TO_DBM(power_rule2->max_eirp));
1948 
1949     if (chan->flags & IEEE80211_CHAN_RADAR) {
1950         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1951             chan->dfs_cac_ms = max_t(unsigned int,
1952                          rrule1->dfs_cac_ms,
1953                          rrule2->dfs_cac_ms);
1954         else
1955             chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1956     }
1957 
1958     if (chan->orig_mpwr) {
1959         /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1960          * will always follow the passed country IE power settings.
1961          */
1962         if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1963             wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1964             chan->max_power = chan->max_reg_power;
1965         else
1966             chan->max_power = min(chan->orig_mpwr,
1967                           chan->max_reg_power);
1968     } else {
1969         chan->max_power = chan->max_reg_power;
1970     }
1971 }
1972 
1973 /* Note that right now we assume the desired channel bandwidth
1974  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1975  * per channel, the primary and the extension channel).
1976  */
1977 static void handle_channel(struct wiphy *wiphy,
1978                enum nl80211_reg_initiator initiator,
1979                struct ieee80211_channel *chan)
1980 {
1981     const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1982     struct regulatory_request *lr = get_last_request();
1983     struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1984     const struct ieee80211_reg_rule *rrule = NULL;
1985     const struct ieee80211_reg_rule *rrule1 = NULL;
1986     const struct ieee80211_reg_rule *rrule2 = NULL;
1987 
1988     u32 flags = chan->orig_flags;
1989 
1990     rrule = freq_reg_info(wiphy, orig_chan_freq);
1991     if (IS_ERR(rrule)) {
1992         /* check for adjacent match, therefore get rules for
1993          * chan - 20 MHz and chan + 20 MHz and test
1994          * if reg rules are adjacent
1995          */
1996         rrule1 = freq_reg_info(wiphy,
1997                        orig_chan_freq - MHZ_TO_KHZ(20));
1998         rrule2 = freq_reg_info(wiphy,
1999                        orig_chan_freq + MHZ_TO_KHZ(20));
2000         if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
2001             struct ieee80211_freq_range comb_range;
2002 
2003             if (rrule1->freq_range.end_freq_khz !=
2004                 rrule2->freq_range.start_freq_khz)
2005                 goto disable_chan;
2006 
2007             comb_range.start_freq_khz =
2008                 rrule1->freq_range.start_freq_khz;
2009             comb_range.end_freq_khz =
2010                 rrule2->freq_range.end_freq_khz;
2011             comb_range.max_bandwidth_khz =
2012                 min_t(u32,
2013                       rrule1->freq_range.max_bandwidth_khz,
2014                       rrule2->freq_range.max_bandwidth_khz);
2015 
2016             if (!cfg80211_does_bw_fit_range(&comb_range,
2017                             orig_chan_freq,
2018                             MHZ_TO_KHZ(20)))
2019                 goto disable_chan;
2020 
2021             handle_channel_adjacent_rules(wiphy, initiator, chan,
2022                               flags, lr, request_wiphy,
2023                               rrule1, rrule2,
2024                               &comb_range);
2025             return;
2026         }
2027 
2028 disable_chan:
2029         /* We will disable all channels that do not match our
2030          * received regulatory rule unless the hint is coming
2031          * from a Country IE and the Country IE had no information
2032          * about a band. The IEEE 802.11 spec allows for an AP
2033          * to send only a subset of the regulatory rules allowed,
2034          * so an AP in the US that only supports 2.4 GHz may only send
2035          * a country IE with information for the 2.4 GHz band
2036          * while 5 GHz is still supported.
2037          */
2038         if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2039             PTR_ERR(rrule) == -ERANGE)
2040             return;
2041 
2042         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2043             request_wiphy && request_wiphy == wiphy &&
2044             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2045             pr_debug("Disabling freq %d.%03d MHz for good\n",
2046                  chan->center_freq, chan->freq_offset);
2047             chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2048             chan->flags = chan->orig_flags;
2049         } else {
2050             pr_debug("Disabling freq %d.%03d MHz\n",
2051                  chan->center_freq, chan->freq_offset);
2052             chan->flags |= IEEE80211_CHAN_DISABLED;
2053         }
2054         return;
2055     }
2056 
2057     handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2058                    request_wiphy, rrule);
2059 }
2060 
2061 static void handle_band(struct wiphy *wiphy,
2062             enum nl80211_reg_initiator initiator,
2063             struct ieee80211_supported_band *sband)
2064 {
2065     unsigned int i;
2066 
2067     if (!sband)
2068         return;
2069 
2070     for (i = 0; i < sband->n_channels; i++)
2071         handle_channel(wiphy, initiator, &sband->channels[i]);
2072 }
2073 
2074 static bool reg_request_cell_base(struct regulatory_request *request)
2075 {
2076     if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2077         return false;
2078     return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2079 }
2080 
2081 bool reg_last_request_cell_base(void)
2082 {
2083     return reg_request_cell_base(get_last_request());
2084 }
2085 
2086 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2087 /* Core specific check */
2088 static enum reg_request_treatment
2089 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2090 {
2091     struct regulatory_request *lr = get_last_request();
2092 
2093     if (!reg_num_devs_support_basehint)
2094         return REG_REQ_IGNORE;
2095 
2096     if (reg_request_cell_base(lr) &&
2097         !regdom_changes(pending_request->alpha2))
2098         return REG_REQ_ALREADY_SET;
2099 
2100     return REG_REQ_OK;
2101 }
2102 
2103 /* Device specific check */
2104 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2105 {
2106     return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2107 }
2108 #else
2109 static enum reg_request_treatment
2110 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2111 {
2112     return REG_REQ_IGNORE;
2113 }
2114 
2115 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2116 {
2117     return true;
2118 }
2119 #endif
2120 
2121 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2122 {
2123     if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2124         !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2125         return true;
2126     return false;
2127 }
2128 
2129 static bool ignore_reg_update(struct wiphy *wiphy,
2130                   enum nl80211_reg_initiator initiator)
2131 {
2132     struct regulatory_request *lr = get_last_request();
2133 
2134     if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2135         return true;
2136 
2137     if (!lr) {
2138         pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2139              reg_initiator_name(initiator));
2140         return true;
2141     }
2142 
2143     if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2144         wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2145         pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2146              reg_initiator_name(initiator));
2147         return true;
2148     }
2149 
2150     /*
2151      * wiphy->regd will be set once the device has its own
2152      * desired regulatory domain set
2153      */
2154     if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2155         initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2156         !is_world_regdom(lr->alpha2)) {
2157         pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2158              reg_initiator_name(initiator));
2159         return true;
2160     }
2161 
2162     if (reg_request_cell_base(lr))
2163         return reg_dev_ignore_cell_hint(wiphy);
2164 
2165     return false;
2166 }
2167 
2168 static bool reg_is_world_roaming(struct wiphy *wiphy)
2169 {
2170     const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2171     const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2172     struct regulatory_request *lr = get_last_request();
2173 
2174     if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2175         return true;
2176 
2177     if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2178         wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2179         return true;
2180 
2181     return false;
2182 }
2183 
2184 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2185                   struct reg_beacon *reg_beacon)
2186 {
2187     struct ieee80211_supported_band *sband;
2188     struct ieee80211_channel *chan;
2189     bool channel_changed = false;
2190     struct ieee80211_channel chan_before;
2191 
2192     sband = wiphy->bands[reg_beacon->chan.band];
2193     chan = &sband->channels[chan_idx];
2194 
2195     if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2196         return;
2197 
2198     if (chan->beacon_found)
2199         return;
2200 
2201     chan->beacon_found = true;
2202 
2203     if (!reg_is_world_roaming(wiphy))
2204         return;
2205 
2206     if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2207         return;
2208 
2209     chan_before = *chan;
2210 
2211     if (chan->flags & IEEE80211_CHAN_NO_IR) {
2212         chan->flags &= ~IEEE80211_CHAN_NO_IR;
2213         channel_changed = true;
2214     }
2215 
2216     if (channel_changed)
2217         nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2218 }
2219 
2220 /*
2221  * Called when a scan on a wiphy finds a beacon on
2222  * new channel
2223  */
2224 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2225                     struct reg_beacon *reg_beacon)
2226 {
2227     unsigned int i;
2228     struct ieee80211_supported_band *sband;
2229 
2230     if (!wiphy->bands[reg_beacon->chan.band])
2231         return;
2232 
2233     sband = wiphy->bands[reg_beacon->chan.band];
2234 
2235     for (i = 0; i < sband->n_channels; i++)
2236         handle_reg_beacon(wiphy, i, reg_beacon);
2237 }
2238 
2239 /*
2240  * Called upon reg changes or a new wiphy is added
2241  */
2242 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2243 {
2244     unsigned int i;
2245     struct ieee80211_supported_band *sband;
2246     struct reg_beacon *reg_beacon;
2247 
2248     list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2249         if (!wiphy->bands[reg_beacon->chan.band])
2250             continue;
2251         sband = wiphy->bands[reg_beacon->chan.band];
2252         for (i = 0; i < sband->n_channels; i++)
2253             handle_reg_beacon(wiphy, i, reg_beacon);
2254     }
2255 }
2256 
2257 /* Reap the advantages of previously found beacons */
2258 static void reg_process_beacons(struct wiphy *wiphy)
2259 {
2260     /*
2261      * Means we are just firing up cfg80211, so no beacons would
2262      * have been processed yet.
2263      */
2264     if (!last_request)
2265         return;
2266     wiphy_update_beacon_reg(wiphy);
2267 }
2268 
2269 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2270 {
2271     if (!chan)
2272         return false;
2273     if (chan->flags & IEEE80211_CHAN_DISABLED)
2274         return false;
2275     /* This would happen when regulatory rules disallow HT40 completely */
2276     if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2277         return false;
2278     return true;
2279 }
2280 
2281 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2282                      struct ieee80211_channel *channel)
2283 {
2284     struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2285     struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2286     const struct ieee80211_regdomain *regd;
2287     unsigned int i;
2288     u32 flags;
2289 
2290     if (!is_ht40_allowed(channel)) {
2291         channel->flags |= IEEE80211_CHAN_NO_HT40;
2292         return;
2293     }
2294 
2295     /*
2296      * We need to ensure the extension channels exist to
2297      * be able to use HT40- or HT40+, this finds them (or not)
2298      */
2299     for (i = 0; i < sband->n_channels; i++) {
2300         struct ieee80211_channel *c = &sband->channels[i];
2301 
2302         if (c->center_freq == (channel->center_freq - 20))
2303             channel_before = c;
2304         if (c->center_freq == (channel->center_freq + 20))
2305             channel_after = c;
2306     }
2307 
2308     flags = 0;
2309     regd = get_wiphy_regdom(wiphy);
2310     if (regd) {
2311         const struct ieee80211_reg_rule *reg_rule =
2312             freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2313                        regd, MHZ_TO_KHZ(20));
2314 
2315         if (!IS_ERR(reg_rule))
2316             flags = reg_rule->flags;
2317     }
2318 
2319     /*
2320      * Please note that this assumes target bandwidth is 20 MHz,
2321      * if that ever changes we also need to change the below logic
2322      * to include that as well.
2323      */
2324     if (!is_ht40_allowed(channel_before) ||
2325         flags & NL80211_RRF_NO_HT40MINUS)
2326         channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2327     else
2328         channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2329 
2330     if (!is_ht40_allowed(channel_after) ||
2331         flags & NL80211_RRF_NO_HT40PLUS)
2332         channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2333     else
2334         channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2335 }
2336 
2337 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2338                       struct ieee80211_supported_band *sband)
2339 {
2340     unsigned int i;
2341 
2342     if (!sband)
2343         return;
2344 
2345     for (i = 0; i < sband->n_channels; i++)
2346         reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2347 }
2348 
2349 static void reg_process_ht_flags(struct wiphy *wiphy)
2350 {
2351     enum nl80211_band band;
2352 
2353     if (!wiphy)
2354         return;
2355 
2356     for (band = 0; band < NUM_NL80211_BANDS; band++)
2357         reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2358 }
2359 
2360 static void reg_call_notifier(struct wiphy *wiphy,
2361                   struct regulatory_request *request)
2362 {
2363     if (wiphy->reg_notifier)
2364         wiphy->reg_notifier(wiphy, request);
2365 }
2366 
2367 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2368 {
2369     struct cfg80211_chan_def chandef = {};
2370     struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2371     enum nl80211_iftype iftype;
2372     bool ret;
2373     int link;
2374 
2375     wdev_lock(wdev);
2376     iftype = wdev->iftype;
2377 
2378     /* make sure the interface is active */
2379     if (!wdev->netdev || !netif_running(wdev->netdev))
2380         goto wdev_inactive_unlock;
2381 
2382     for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2383         struct ieee80211_channel *chan;
2384 
2385         if (!wdev->valid_links && link > 0)
2386             break;
2387         if (!(wdev->valid_links & BIT(link)))
2388             continue;
2389         switch (iftype) {
2390         case NL80211_IFTYPE_AP:
2391         case NL80211_IFTYPE_P2P_GO:
2392         case NL80211_IFTYPE_MESH_POINT:
2393             if (!wdev->u.mesh.beacon_interval)
2394                 continue;
2395             chandef = wdev->u.mesh.chandef;
2396             break;
2397         case NL80211_IFTYPE_ADHOC:
2398             if (!wdev->u.ibss.ssid_len)
2399                 continue;
2400             chandef = wdev->u.ibss.chandef;
2401             break;
2402         case NL80211_IFTYPE_STATION:
2403         case NL80211_IFTYPE_P2P_CLIENT:
2404             /* Maybe we could consider disabling that link only? */
2405             if (!wdev->links[link].client.current_bss)
2406                 continue;
2407 
2408             chan = wdev->links[link].client.current_bss->pub.channel;
2409             if (!chan)
2410                 continue;
2411 
2412             if (!rdev->ops->get_channel ||
2413                 rdev_get_channel(rdev, wdev, link, &chandef))
2414                 cfg80211_chandef_create(&chandef, chan,
2415                             NL80211_CHAN_NO_HT);
2416             break;
2417         case NL80211_IFTYPE_MONITOR:
2418         case NL80211_IFTYPE_AP_VLAN:
2419         case NL80211_IFTYPE_P2P_DEVICE:
2420             /* no enforcement required */
2421             break;
2422         default:
2423             /* others not implemented for now */
2424             WARN_ON(1);
2425             break;
2426         }
2427 
2428         wdev_unlock(wdev);
2429 
2430         switch (iftype) {
2431         case NL80211_IFTYPE_AP:
2432         case NL80211_IFTYPE_P2P_GO:
2433         case NL80211_IFTYPE_ADHOC:
2434         case NL80211_IFTYPE_MESH_POINT:
2435             wiphy_lock(wiphy);
2436             ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2437                                 iftype);
2438             wiphy_unlock(wiphy);
2439 
2440             if (!ret)
2441                 return ret;
2442             break;
2443         case NL80211_IFTYPE_STATION:
2444         case NL80211_IFTYPE_P2P_CLIENT:
2445             ret = cfg80211_chandef_usable(wiphy, &chandef,
2446                               IEEE80211_CHAN_DISABLED);
2447             if (!ret)
2448                 return ret;
2449             break;
2450         default:
2451             break;
2452         }
2453 
2454         wdev_lock(wdev);
2455     }
2456 
2457     wdev_unlock(wdev);
2458 
2459     return true;
2460 
2461 wdev_inactive_unlock:
2462     wdev_unlock(wdev);
2463     return true;
2464 }
2465 
2466 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2467 {
2468     struct wireless_dev *wdev;
2469     struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2470 
2471     ASSERT_RTNL();
2472 
2473     list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2474         if (!reg_wdev_chan_valid(wiphy, wdev))
2475             cfg80211_leave(rdev, wdev);
2476 }
2477 
2478 static void reg_check_chans_work(struct work_struct *work)
2479 {
2480     struct cfg80211_registered_device *rdev;
2481 
2482     pr_debug("Verifying active interfaces after reg change\n");
2483     rtnl_lock();
2484 
2485     list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2486         if (!(rdev->wiphy.regulatory_flags &
2487               REGULATORY_IGNORE_STALE_KICKOFF))
2488             reg_leave_invalid_chans(&rdev->wiphy);
2489 
2490     rtnl_unlock();
2491 }
2492 
2493 static void reg_check_channels(void)
2494 {
2495     /*
2496      * Give usermode a chance to do something nicer (move to another
2497      * channel, orderly disconnection), before forcing a disconnection.
2498      */
2499     mod_delayed_work(system_power_efficient_wq,
2500              &reg_check_chans,
2501              msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2502 }
2503 
2504 static void wiphy_update_regulatory(struct wiphy *wiphy,
2505                     enum nl80211_reg_initiator initiator)
2506 {
2507     enum nl80211_band band;
2508     struct regulatory_request *lr = get_last_request();
2509 
2510     if (ignore_reg_update(wiphy, initiator)) {
2511         /*
2512          * Regulatory updates set by CORE are ignored for custom
2513          * regulatory cards. Let us notify the changes to the driver,
2514          * as some drivers used this to restore its orig_* reg domain.
2515          */
2516         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2517             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2518             !(wiphy->regulatory_flags &
2519               REGULATORY_WIPHY_SELF_MANAGED))
2520             reg_call_notifier(wiphy, lr);
2521         return;
2522     }
2523 
2524     lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2525 
2526     for (band = 0; band < NUM_NL80211_BANDS; band++)
2527         handle_band(wiphy, initiator, wiphy->bands[band]);
2528 
2529     reg_process_beacons(wiphy);
2530     reg_process_ht_flags(wiphy);
2531     reg_call_notifier(wiphy, lr);
2532 }
2533 
2534 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2535 {
2536     struct cfg80211_registered_device *rdev;
2537     struct wiphy *wiphy;
2538 
2539     ASSERT_RTNL();
2540 
2541     list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2542         wiphy = &rdev->wiphy;
2543         wiphy_update_regulatory(wiphy, initiator);
2544     }
2545 
2546     reg_check_channels();
2547 }
2548 
2549 static void handle_channel_custom(struct wiphy *wiphy,
2550                   struct ieee80211_channel *chan,
2551                   const struct ieee80211_regdomain *regd,
2552                   u32 min_bw)
2553 {
2554     u32 bw_flags = 0;
2555     const struct ieee80211_reg_rule *reg_rule = NULL;
2556     const struct ieee80211_power_rule *power_rule = NULL;
2557     u32 bw, center_freq_khz;
2558 
2559     center_freq_khz = ieee80211_channel_to_khz(chan);
2560     for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2561         reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2562         if (!IS_ERR(reg_rule))
2563             break;
2564     }
2565 
2566     if (IS_ERR_OR_NULL(reg_rule)) {
2567         pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2568              chan->center_freq, chan->freq_offset);
2569         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2570             chan->flags |= IEEE80211_CHAN_DISABLED;
2571         } else {
2572             chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2573             chan->flags = chan->orig_flags;
2574         }
2575         return;
2576     }
2577 
2578     power_rule = &reg_rule->power_rule;
2579     bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2580 
2581     chan->dfs_state_entered = jiffies;
2582     chan->dfs_state = NL80211_DFS_USABLE;
2583 
2584     chan->beacon_found = false;
2585 
2586     if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2587         chan->flags = chan->orig_flags | bw_flags |
2588                   map_regdom_flags(reg_rule->flags);
2589     else
2590         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2591 
2592     chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2593     chan->max_reg_power = chan->max_power =
2594         (int) MBM_TO_DBM(power_rule->max_eirp);
2595 
2596     if (chan->flags & IEEE80211_CHAN_RADAR) {
2597         if (reg_rule->dfs_cac_ms)
2598             chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2599         else
2600             chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2601     }
2602 
2603     chan->max_power = chan->max_reg_power;
2604 }
2605 
2606 static void handle_band_custom(struct wiphy *wiphy,
2607                    struct ieee80211_supported_band *sband,
2608                    const struct ieee80211_regdomain *regd)
2609 {
2610     unsigned int i;
2611 
2612     if (!sband)
2613         return;
2614 
2615     /*
2616      * We currently assume that you always want at least 20 MHz,
2617      * otherwise channel 12 might get enabled if this rule is
2618      * compatible to US, which permits 2402 - 2472 MHz.
2619      */
2620     for (i = 0; i < sband->n_channels; i++)
2621         handle_channel_custom(wiphy, &sband->channels[i], regd,
2622                       MHZ_TO_KHZ(20));
2623 }
2624 
2625 /* Used by drivers prior to wiphy registration */
2626 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2627                    const struct ieee80211_regdomain *regd)
2628 {
2629     const struct ieee80211_regdomain *new_regd, *tmp;
2630     enum nl80211_band band;
2631     unsigned int bands_set = 0;
2632 
2633     WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2634          "wiphy should have REGULATORY_CUSTOM_REG\n");
2635     wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2636 
2637     for (band = 0; band < NUM_NL80211_BANDS; band++) {
2638         if (!wiphy->bands[band])
2639             continue;
2640         handle_band_custom(wiphy, wiphy->bands[band], regd);
2641         bands_set++;
2642     }
2643 
2644     /*
2645      * no point in calling this if it won't have any effect
2646      * on your device's supported bands.
2647      */
2648     WARN_ON(!bands_set);
2649     new_regd = reg_copy_regd(regd);
2650     if (IS_ERR(new_regd))
2651         return;
2652 
2653     rtnl_lock();
2654     wiphy_lock(wiphy);
2655 
2656     tmp = get_wiphy_regdom(wiphy);
2657     rcu_assign_pointer(wiphy->regd, new_regd);
2658     rcu_free_regdom(tmp);
2659 
2660     wiphy_unlock(wiphy);
2661     rtnl_unlock();
2662 }
2663 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2664 
2665 static void reg_set_request_processed(void)
2666 {
2667     bool need_more_processing = false;
2668     struct regulatory_request *lr = get_last_request();
2669 
2670     lr->processed = true;
2671 
2672     spin_lock(&reg_requests_lock);
2673     if (!list_empty(&reg_requests_list))
2674         need_more_processing = true;
2675     spin_unlock(&reg_requests_lock);
2676 
2677     cancel_crda_timeout();
2678 
2679     if (need_more_processing)
2680         schedule_work(&reg_work);
2681 }
2682 
2683 /**
2684  * reg_process_hint_core - process core regulatory requests
2685  * @core_request: a pending core regulatory request
2686  *
2687  * The wireless subsystem can use this function to process
2688  * a regulatory request issued by the regulatory core.
2689  */
2690 static enum reg_request_treatment
2691 reg_process_hint_core(struct regulatory_request *core_request)
2692 {
2693     if (reg_query_database(core_request)) {
2694         core_request->intersect = false;
2695         core_request->processed = false;
2696         reg_update_last_request(core_request);
2697         return REG_REQ_OK;
2698     }
2699 
2700     return REG_REQ_IGNORE;
2701 }
2702 
2703 static enum reg_request_treatment
2704 __reg_process_hint_user(struct regulatory_request *user_request)
2705 {
2706     struct regulatory_request *lr = get_last_request();
2707 
2708     if (reg_request_cell_base(user_request))
2709         return reg_ignore_cell_hint(user_request);
2710 
2711     if (reg_request_cell_base(lr))
2712         return REG_REQ_IGNORE;
2713 
2714     if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2715         return REG_REQ_INTERSECT;
2716     /*
2717      * If the user knows better the user should set the regdom
2718      * to their country before the IE is picked up
2719      */
2720     if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2721         lr->intersect)
2722         return REG_REQ_IGNORE;
2723     /*
2724      * Process user requests only after previous user/driver/core
2725      * requests have been processed
2726      */
2727     if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2728          lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2729          lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2730         regdom_changes(lr->alpha2))
2731         return REG_REQ_IGNORE;
2732 
2733     if (!regdom_changes(user_request->alpha2))
2734         return REG_REQ_ALREADY_SET;
2735 
2736     return REG_REQ_OK;
2737 }
2738 
2739 /**
2740  * reg_process_hint_user - process user regulatory requests
2741  * @user_request: a pending user regulatory request
2742  *
2743  * The wireless subsystem can use this function to process
2744  * a regulatory request initiated by userspace.
2745  */
2746 static enum reg_request_treatment
2747 reg_process_hint_user(struct regulatory_request *user_request)
2748 {
2749     enum reg_request_treatment treatment;
2750 
2751     treatment = __reg_process_hint_user(user_request);
2752     if (treatment == REG_REQ_IGNORE ||
2753         treatment == REG_REQ_ALREADY_SET)
2754         return REG_REQ_IGNORE;
2755 
2756     user_request->intersect = treatment == REG_REQ_INTERSECT;
2757     user_request->processed = false;
2758 
2759     if (reg_query_database(user_request)) {
2760         reg_update_last_request(user_request);
2761         user_alpha2[0] = user_request->alpha2[0];
2762         user_alpha2[1] = user_request->alpha2[1];
2763         return REG_REQ_OK;
2764     }
2765 
2766     return REG_REQ_IGNORE;
2767 }
2768 
2769 static enum reg_request_treatment
2770 __reg_process_hint_driver(struct regulatory_request *driver_request)
2771 {
2772     struct regulatory_request *lr = get_last_request();
2773 
2774     if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2775         if (regdom_changes(driver_request->alpha2))
2776             return REG_REQ_OK;
2777         return REG_REQ_ALREADY_SET;
2778     }
2779 
2780     /*
2781      * This would happen if you unplug and plug your card
2782      * back in or if you add a new device for which the previously
2783      * loaded card also agrees on the regulatory domain.
2784      */
2785     if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2786         !regdom_changes(driver_request->alpha2))
2787         return REG_REQ_ALREADY_SET;
2788 
2789     return REG_REQ_INTERSECT;
2790 }
2791 
2792 /**
2793  * reg_process_hint_driver - process driver regulatory requests
2794  * @wiphy: the wireless device for the regulatory request
2795  * @driver_request: a pending driver regulatory request
2796  *
2797  * The wireless subsystem can use this function to process
2798  * a regulatory request issued by an 802.11 driver.
2799  *
2800  * Returns one of the different reg request treatment values.
2801  */
2802 static enum reg_request_treatment
2803 reg_process_hint_driver(struct wiphy *wiphy,
2804             struct regulatory_request *driver_request)
2805 {
2806     const struct ieee80211_regdomain *regd, *tmp;
2807     enum reg_request_treatment treatment;
2808 
2809     treatment = __reg_process_hint_driver(driver_request);
2810 
2811     switch (treatment) {
2812     case REG_REQ_OK:
2813         break;
2814     case REG_REQ_IGNORE:
2815         return REG_REQ_IGNORE;
2816     case REG_REQ_INTERSECT:
2817     case REG_REQ_ALREADY_SET:
2818         regd = reg_copy_regd(get_cfg80211_regdom());
2819         if (IS_ERR(regd))
2820             return REG_REQ_IGNORE;
2821 
2822         tmp = get_wiphy_regdom(wiphy);
2823         ASSERT_RTNL();
2824         wiphy_lock(wiphy);
2825         rcu_assign_pointer(wiphy->regd, regd);
2826         wiphy_unlock(wiphy);
2827         rcu_free_regdom(tmp);
2828     }
2829 
2830 
2831     driver_request->intersect = treatment == REG_REQ_INTERSECT;
2832     driver_request->processed = false;
2833 
2834     /*
2835      * Since CRDA will not be called in this case as we already
2836      * have applied the requested regulatory domain before we just
2837      * inform userspace we have processed the request
2838      */
2839     if (treatment == REG_REQ_ALREADY_SET) {
2840         nl80211_send_reg_change_event(driver_request);
2841         reg_update_last_request(driver_request);
2842         reg_set_request_processed();
2843         return REG_REQ_ALREADY_SET;
2844     }
2845 
2846     if (reg_query_database(driver_request)) {
2847         reg_update_last_request(driver_request);
2848         return REG_REQ_OK;
2849     }
2850 
2851     return REG_REQ_IGNORE;
2852 }
2853 
2854 static enum reg_request_treatment
2855 __reg_process_hint_country_ie(struct wiphy *wiphy,
2856                   struct regulatory_request *country_ie_request)
2857 {
2858     struct wiphy *last_wiphy = NULL;
2859     struct regulatory_request *lr = get_last_request();
2860 
2861     if (reg_request_cell_base(lr)) {
2862         /* Trust a Cell base station over the AP's country IE */
2863         if (regdom_changes(country_ie_request->alpha2))
2864             return REG_REQ_IGNORE;
2865         return REG_REQ_ALREADY_SET;
2866     } else {
2867         if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2868             return REG_REQ_IGNORE;
2869     }
2870 
2871     if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2872         return -EINVAL;
2873 
2874     if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2875         return REG_REQ_OK;
2876 
2877     last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2878 
2879     if (last_wiphy != wiphy) {
2880         /*
2881          * Two cards with two APs claiming different
2882          * Country IE alpha2s. We could
2883          * intersect them, but that seems unlikely
2884          * to be correct. Reject second one for now.
2885          */
2886         if (regdom_changes(country_ie_request->alpha2))
2887             return REG_REQ_IGNORE;
2888         return REG_REQ_ALREADY_SET;
2889     }
2890 
2891     if (regdom_changes(country_ie_request->alpha2))
2892         return REG_REQ_OK;
2893     return REG_REQ_ALREADY_SET;
2894 }
2895 
2896 /**
2897  * reg_process_hint_country_ie - process regulatory requests from country IEs
2898  * @wiphy: the wireless device for the regulatory request
2899  * @country_ie_request: a regulatory request from a country IE
2900  *
2901  * The wireless subsystem can use this function to process
2902  * a regulatory request issued by a country Information Element.
2903  *
2904  * Returns one of the different reg request treatment values.
2905  */
2906 static enum reg_request_treatment
2907 reg_process_hint_country_ie(struct wiphy *wiphy,
2908                 struct regulatory_request *country_ie_request)
2909 {
2910     enum reg_request_treatment treatment;
2911 
2912     treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2913 
2914     switch (treatment) {
2915     case REG_REQ_OK:
2916         break;
2917     case REG_REQ_IGNORE:
2918         return REG_REQ_IGNORE;
2919     case REG_REQ_ALREADY_SET:
2920         reg_free_request(country_ie_request);
2921         return REG_REQ_ALREADY_SET;
2922     case REG_REQ_INTERSECT:
2923         /*
2924          * This doesn't happen yet, not sure we
2925          * ever want to support it for this case.
2926          */
2927         WARN_ONCE(1, "Unexpected intersection for country elements");
2928         return REG_REQ_IGNORE;
2929     }
2930 
2931     country_ie_request->intersect = false;
2932     country_ie_request->processed = false;
2933 
2934     if (reg_query_database(country_ie_request)) {
2935         reg_update_last_request(country_ie_request);
2936         return REG_REQ_OK;
2937     }
2938 
2939     return REG_REQ_IGNORE;
2940 }
2941 
2942 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2943 {
2944     const struct ieee80211_regdomain *wiphy1_regd = NULL;
2945     const struct ieee80211_regdomain *wiphy2_regd = NULL;
2946     const struct ieee80211_regdomain *cfg80211_regd = NULL;
2947     bool dfs_domain_same;
2948 
2949     rcu_read_lock();
2950 
2951     cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2952     wiphy1_regd = rcu_dereference(wiphy1->regd);
2953     if (!wiphy1_regd)
2954         wiphy1_regd = cfg80211_regd;
2955 
2956     wiphy2_regd = rcu_dereference(wiphy2->regd);
2957     if (!wiphy2_regd)
2958         wiphy2_regd = cfg80211_regd;
2959 
2960     dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2961 
2962     rcu_read_unlock();
2963 
2964     return dfs_domain_same;
2965 }
2966 
2967 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2968                     struct ieee80211_channel *src_chan)
2969 {
2970     if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2971         !(src_chan->flags & IEEE80211_CHAN_RADAR))
2972         return;
2973 
2974     if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2975         src_chan->flags & IEEE80211_CHAN_DISABLED)
2976         return;
2977 
2978     if (src_chan->center_freq == dst_chan->center_freq &&
2979         dst_chan->dfs_state == NL80211_DFS_USABLE) {
2980         dst_chan->dfs_state = src_chan->dfs_state;
2981         dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2982     }
2983 }
2984 
2985 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2986                        struct wiphy *src_wiphy)
2987 {
2988     struct ieee80211_supported_band *src_sband, *dst_sband;
2989     struct ieee80211_channel *src_chan, *dst_chan;
2990     int i, j, band;
2991 
2992     if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2993         return;
2994 
2995     for (band = 0; band < NUM_NL80211_BANDS; band++) {
2996         dst_sband = dst_wiphy->bands[band];
2997         src_sband = src_wiphy->bands[band];
2998         if (!dst_sband || !src_sband)
2999             continue;
3000 
3001         for (i = 0; i < dst_sband->n_channels; i++) {
3002             dst_chan = &dst_sband->channels[i];
3003             for (j = 0; j < src_sband->n_channels; j++) {
3004                 src_chan = &src_sband->channels[j];
3005                 reg_copy_dfs_chan_state(dst_chan, src_chan);
3006             }
3007         }
3008     }
3009 }
3010 
3011 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3012 {
3013     struct cfg80211_registered_device *rdev;
3014 
3015     ASSERT_RTNL();
3016 
3017     list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3018         if (wiphy == &rdev->wiphy)
3019             continue;
3020         wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3021     }
3022 }
3023 
3024 /* This processes *all* regulatory hints */
3025 static void reg_process_hint(struct regulatory_request *reg_request)
3026 {
3027     struct wiphy *wiphy = NULL;
3028     enum reg_request_treatment treatment;
3029     enum nl80211_reg_initiator initiator = reg_request->initiator;
3030 
3031     if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3032         wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3033 
3034     switch (initiator) {
3035     case NL80211_REGDOM_SET_BY_CORE:
3036         treatment = reg_process_hint_core(reg_request);
3037         break;
3038     case NL80211_REGDOM_SET_BY_USER:
3039         treatment = reg_process_hint_user(reg_request);
3040         break;
3041     case NL80211_REGDOM_SET_BY_DRIVER:
3042         if (!wiphy)
3043             goto out_free;
3044         treatment = reg_process_hint_driver(wiphy, reg_request);
3045         break;
3046     case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3047         if (!wiphy)
3048             goto out_free;
3049         treatment = reg_process_hint_country_ie(wiphy, reg_request);
3050         break;
3051     default:
3052         WARN(1, "invalid initiator %d\n", initiator);
3053         goto out_free;
3054     }
3055 
3056     if (treatment == REG_REQ_IGNORE)
3057         goto out_free;
3058 
3059     WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3060          "unexpected treatment value %d\n", treatment);
3061 
3062     /* This is required so that the orig_* parameters are saved.
3063      * NOTE: treatment must be set for any case that reaches here!
3064      */
3065     if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3066         wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3067         wiphy_update_regulatory(wiphy, initiator);
3068         wiphy_all_share_dfs_chan_state(wiphy);
3069         reg_check_channels();
3070     }
3071 
3072     return;
3073 
3074 out_free:
3075     reg_free_request(reg_request);
3076 }
3077 
3078 static void notify_self_managed_wiphys(struct regulatory_request *request)
3079 {
3080     struct cfg80211_registered_device *rdev;
3081     struct wiphy *wiphy;
3082 
3083     list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3084         wiphy = &rdev->wiphy;
3085         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3086             request->initiator == NL80211_REGDOM_SET_BY_USER)
3087             reg_call_notifier(wiphy, request);
3088     }
3089 }
3090 
3091 /*
3092  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3093  * Regulatory hints come on a first come first serve basis and we
3094  * must process each one atomically.
3095  */
3096 static void reg_process_pending_hints(void)
3097 {
3098     struct regulatory_request *reg_request, *lr;
3099 
3100     lr = get_last_request();
3101 
3102     /* When last_request->processed becomes true this will be rescheduled */
3103     if (lr && !lr->processed) {
3104         pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3105         return;
3106     }
3107 
3108     spin_lock(&reg_requests_lock);
3109 
3110     if (list_empty(&reg_requests_list)) {
3111         spin_unlock(&reg_requests_lock);
3112         return;
3113     }
3114 
3115     reg_request = list_first_entry(&reg_requests_list,
3116                        struct regulatory_request,
3117                        list);
3118     list_del_init(&reg_request->list);
3119 
3120     spin_unlock(&reg_requests_lock);
3121 
3122     notify_self_managed_wiphys(reg_request);
3123 
3124     reg_process_hint(reg_request);
3125 
3126     lr = get_last_request();
3127 
3128     spin_lock(&reg_requests_lock);
3129     if (!list_empty(&reg_requests_list) && lr && lr->processed)
3130         schedule_work(&reg_work);
3131     spin_unlock(&reg_requests_lock);
3132 }
3133 
3134 /* Processes beacon hints -- this has nothing to do with country IEs */
3135 static void reg_process_pending_beacon_hints(void)
3136 {
3137     struct cfg80211_registered_device *rdev;
3138     struct reg_beacon *pending_beacon, *tmp;
3139 
3140     /* This goes through the _pending_ beacon list */
3141     spin_lock_bh(&reg_pending_beacons_lock);
3142 
3143     list_for_each_entry_safe(pending_beacon, tmp,
3144                  &reg_pending_beacons, list) {
3145         list_del_init(&pending_beacon->list);
3146 
3147         /* Applies the beacon hint to current wiphys */
3148         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3149             wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3150 
3151         /* Remembers the beacon hint for new wiphys or reg changes */
3152         list_add_tail(&pending_beacon->list, &reg_beacon_list);
3153     }
3154 
3155     spin_unlock_bh(&reg_pending_beacons_lock);
3156 }
3157 
3158 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3159 {
3160     struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3161     const struct ieee80211_regdomain *tmp;
3162     const struct ieee80211_regdomain *regd;
3163     enum nl80211_band band;
3164     struct regulatory_request request = {};
3165 
3166     ASSERT_RTNL();
3167     lockdep_assert_wiphy(wiphy);
3168 
3169     spin_lock(&reg_requests_lock);
3170     regd = rdev->requested_regd;
3171     rdev->requested_regd = NULL;
3172     spin_unlock(&reg_requests_lock);
3173 
3174     if (!regd)
3175         return;
3176 
3177     tmp = get_wiphy_regdom(wiphy);
3178     rcu_assign_pointer(wiphy->regd, regd);
3179     rcu_free_regdom(tmp);
3180 
3181     for (band = 0; band < NUM_NL80211_BANDS; band++)
3182         handle_band_custom(wiphy, wiphy->bands[band], regd);
3183 
3184     reg_process_ht_flags(wiphy);
3185 
3186     request.wiphy_idx = get_wiphy_idx(wiphy);
3187     request.alpha2[0] = regd->alpha2[0];
3188     request.alpha2[1] = regd->alpha2[1];
3189     request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3190 
3191     nl80211_send_wiphy_reg_change_event(&request);
3192 }
3193 
3194 static void reg_process_self_managed_hints(void)
3195 {
3196     struct cfg80211_registered_device *rdev;
3197 
3198     ASSERT_RTNL();
3199 
3200     list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3201         wiphy_lock(&rdev->wiphy);
3202         reg_process_self_managed_hint(&rdev->wiphy);
3203         wiphy_unlock(&rdev->wiphy);
3204     }
3205 
3206     reg_check_channels();
3207 }
3208 
3209 static void reg_todo(struct work_struct *work)
3210 {
3211     rtnl_lock();
3212     reg_process_pending_hints();
3213     reg_process_pending_beacon_hints();
3214     reg_process_self_managed_hints();
3215     rtnl_unlock();
3216 }
3217 
3218 static void queue_regulatory_request(struct regulatory_request *request)
3219 {
3220     request->alpha2[0] = toupper(request->alpha2[0]);
3221     request->alpha2[1] = toupper(request->alpha2[1]);
3222 
3223     spin_lock(&reg_requests_lock);
3224     list_add_tail(&request->list, &reg_requests_list);
3225     spin_unlock(&reg_requests_lock);
3226 
3227     schedule_work(&reg_work);
3228 }
3229 
3230 /*
3231  * Core regulatory hint -- happens during cfg80211_init()
3232  * and when we restore regulatory settings.
3233  */
3234 static int regulatory_hint_core(const char *alpha2)
3235 {
3236     struct regulatory_request *request;
3237 
3238     request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3239     if (!request)
3240         return -ENOMEM;
3241 
3242     request->alpha2[0] = alpha2[0];
3243     request->alpha2[1] = alpha2[1];
3244     request->initiator = NL80211_REGDOM_SET_BY_CORE;
3245     request->wiphy_idx = WIPHY_IDX_INVALID;
3246 
3247     queue_regulatory_request(request);
3248 
3249     return 0;
3250 }
3251 
3252 /* User hints */
3253 int regulatory_hint_user(const char *alpha2,
3254              enum nl80211_user_reg_hint_type user_reg_hint_type)
3255 {
3256     struct regulatory_request *request;
3257 
3258     if (WARN_ON(!alpha2))
3259         return -EINVAL;
3260 
3261     if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3262         return -EINVAL;
3263 
3264     request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3265     if (!request)
3266         return -ENOMEM;
3267 
3268     request->wiphy_idx = WIPHY_IDX_INVALID;
3269     request->alpha2[0] = alpha2[0];
3270     request->alpha2[1] = alpha2[1];
3271     request->initiator = NL80211_REGDOM_SET_BY_USER;
3272     request->user_reg_hint_type = user_reg_hint_type;
3273 
3274     /* Allow calling CRDA again */
3275     reset_crda_timeouts();
3276 
3277     queue_regulatory_request(request);
3278 
3279     return 0;
3280 }
3281 
3282 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3283 {
3284     spin_lock(&reg_indoor_lock);
3285 
3286     /* It is possible that more than one user space process is trying to
3287      * configure the indoor setting. To handle such cases, clear the indoor
3288      * setting in case that some process does not think that the device
3289      * is operating in an indoor environment. In addition, if a user space
3290      * process indicates that it is controlling the indoor setting, save its
3291      * portid, i.e., make it the owner.
3292      */
3293     reg_is_indoor = is_indoor;
3294     if (reg_is_indoor) {
3295         if (!reg_is_indoor_portid)
3296             reg_is_indoor_portid = portid;
3297     } else {
3298         reg_is_indoor_portid = 0;
3299     }
3300 
3301     spin_unlock(&reg_indoor_lock);
3302 
3303     if (!is_indoor)
3304         reg_check_channels();
3305 
3306     return 0;
3307 }
3308 
3309 void regulatory_netlink_notify(u32 portid)
3310 {
3311     spin_lock(&reg_indoor_lock);
3312 
3313     if (reg_is_indoor_portid != portid) {
3314         spin_unlock(&reg_indoor_lock);
3315         return;
3316     }
3317 
3318     reg_is_indoor = false;
3319     reg_is_indoor_portid = 0;
3320 
3321     spin_unlock(&reg_indoor_lock);
3322 
3323     reg_check_channels();
3324 }
3325 
3326 /* Driver hints */
3327 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3328 {
3329     struct regulatory_request *request;
3330 
3331     if (WARN_ON(!alpha2 || !wiphy))
3332         return -EINVAL;
3333 
3334     wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3335 
3336     request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3337     if (!request)
3338         return -ENOMEM;
3339 
3340     request->wiphy_idx = get_wiphy_idx(wiphy);
3341 
3342     request->alpha2[0] = alpha2[0];
3343     request->alpha2[1] = alpha2[1];
3344     request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3345 
3346     /* Allow calling CRDA again */
3347     reset_crda_timeouts();
3348 
3349     queue_regulatory_request(request);
3350 
3351     return 0;
3352 }
3353 EXPORT_SYMBOL(regulatory_hint);
3354 
3355 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3356                 const u8 *country_ie, u8 country_ie_len)
3357 {
3358     char alpha2[2];
3359     enum environment_cap env = ENVIRON_ANY;
3360     struct regulatory_request *request = NULL, *lr;
3361 
3362     /* IE len must be evenly divisible by 2 */
3363     if (country_ie_len & 0x01)
3364         return;
3365 
3366     if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3367         return;
3368 
3369     request = kzalloc(sizeof(*request), GFP_KERNEL);
3370     if (!request)
3371         return;
3372 
3373     alpha2[0] = country_ie[0];
3374     alpha2[1] = country_ie[1];
3375 
3376     if (country_ie[2] == 'I')
3377         env = ENVIRON_INDOOR;
3378     else if (country_ie[2] == 'O')
3379         env = ENVIRON_OUTDOOR;
3380 
3381     rcu_read_lock();
3382     lr = get_last_request();
3383 
3384     if (unlikely(!lr))
3385         goto out;
3386 
3387     /*
3388      * We will run this only upon a successful connection on cfg80211.
3389      * We leave conflict resolution to the workqueue, where can hold
3390      * the RTNL.
3391      */
3392     if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3393         lr->wiphy_idx != WIPHY_IDX_INVALID)
3394         goto out;
3395 
3396     request->wiphy_idx = get_wiphy_idx(wiphy);
3397     request->alpha2[0] = alpha2[0];
3398     request->alpha2[1] = alpha2[1];
3399     request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3400     request->country_ie_env = env;
3401 
3402     /* Allow calling CRDA again */
3403     reset_crda_timeouts();
3404 
3405     queue_regulatory_request(request);
3406     request = NULL;
3407 out:
3408     kfree(request);
3409     rcu_read_unlock();
3410 }
3411 
3412 static void restore_alpha2(char *alpha2, bool reset_user)
3413 {
3414     /* indicates there is no alpha2 to consider for restoration */
3415     alpha2[0] = '9';
3416     alpha2[1] = '7';
3417 
3418     /* The user setting has precedence over the module parameter */
3419     if (is_user_regdom_saved()) {
3420         /* Unless we're asked to ignore it and reset it */
3421         if (reset_user) {
3422             pr_debug("Restoring regulatory settings including user preference\n");
3423             user_alpha2[0] = '9';
3424             user_alpha2[1] = '7';
3425 
3426             /*
3427              * If we're ignoring user settings, we still need to
3428              * check the module parameter to ensure we put things
3429              * back as they were for a full restore.
3430              */
3431             if (!is_world_regdom(ieee80211_regdom)) {
3432                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3433                      ieee80211_regdom[0], ieee80211_regdom[1]);
3434                 alpha2[0] = ieee80211_regdom[0];
3435                 alpha2[1] = ieee80211_regdom[1];
3436             }
3437         } else {
3438             pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3439                  user_alpha2[0], user_alpha2[1]);
3440             alpha2[0] = user_alpha2[0];
3441             alpha2[1] = user_alpha2[1];
3442         }
3443     } else if (!is_world_regdom(ieee80211_regdom)) {
3444         pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3445              ieee80211_regdom[0], ieee80211_regdom[1]);
3446         alpha2[0] = ieee80211_regdom[0];
3447         alpha2[1] = ieee80211_regdom[1];
3448     } else
3449         pr_debug("Restoring regulatory settings\n");
3450 }
3451 
3452 static void restore_custom_reg_settings(struct wiphy *wiphy)
3453 {
3454     struct ieee80211_supported_band *sband;
3455     enum nl80211_band band;
3456     struct ieee80211_channel *chan;
3457     int i;
3458 
3459     for (band = 0; band < NUM_NL80211_BANDS; band++) {
3460         sband = wiphy->bands[band];
3461         if (!sband)
3462             continue;
3463         for (i = 0; i < sband->n_channels; i++) {
3464             chan = &sband->channels[i];
3465             chan->flags = chan->orig_flags;
3466             chan->max_antenna_gain = chan->orig_mag;
3467             chan->max_power = chan->orig_mpwr;
3468             chan->beacon_found = false;
3469         }
3470     }
3471 }
3472 
3473 /*
3474  * Restoring regulatory settings involves ignoring any
3475  * possibly stale country IE information and user regulatory
3476  * settings if so desired, this includes any beacon hints
3477  * learned as we could have traveled outside to another country
3478  * after disconnection. To restore regulatory settings we do
3479  * exactly what we did at bootup:
3480  *
3481  *   - send a core regulatory hint
3482  *   - send a user regulatory hint if applicable
3483  *
3484  * Device drivers that send a regulatory hint for a specific country
3485  * keep their own regulatory domain on wiphy->regd so that does
3486  * not need to be remembered.
3487  */
3488 static void restore_regulatory_settings(bool reset_user, bool cached)
3489 {
3490     char alpha2[2];
3491     char world_alpha2[2];
3492     struct reg_beacon *reg_beacon, *btmp;
3493     LIST_HEAD(tmp_reg_req_list);
3494     struct cfg80211_registered_device *rdev;
3495 
3496     ASSERT_RTNL();
3497 
3498     /*
3499      * Clear the indoor setting in case that it is not controlled by user
3500      * space, as otherwise there is no guarantee that the device is still
3501      * operating in an indoor environment.
3502      */
3503     spin_lock(&reg_indoor_lock);
3504     if (reg_is_indoor && !reg_is_indoor_portid) {
3505         reg_is_indoor = false;
3506         reg_check_channels();
3507     }
3508     spin_unlock(&reg_indoor_lock);
3509 
3510     reset_regdomains(true, &world_regdom);
3511     restore_alpha2(alpha2, reset_user);
3512 
3513     /*
3514      * If there's any pending requests we simply
3515      * stash them to a temporary pending queue and
3516      * add then after we've restored regulatory
3517      * settings.
3518      */
3519     spin_lock(&reg_requests_lock);
3520     list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3521     spin_unlock(&reg_requests_lock);
3522 
3523     /* Clear beacon hints */
3524     spin_lock_bh(&reg_pending_beacons_lock);
3525     list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3526         list_del(&reg_beacon->list);
3527         kfree(reg_beacon);
3528     }
3529     spin_unlock_bh(&reg_pending_beacons_lock);
3530 
3531     list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3532         list_del(&reg_beacon->list);
3533         kfree(reg_beacon);
3534     }
3535 
3536     /* First restore to the basic regulatory settings */
3537     world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3538     world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3539 
3540     list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3541         if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3542             continue;
3543         if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3544             restore_custom_reg_settings(&rdev->wiphy);
3545     }
3546 
3547     if (cached && (!is_an_alpha2(alpha2) ||
3548                !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3549         reset_regdomains(false, cfg80211_world_regdom);
3550         update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3551         print_regdomain(get_cfg80211_regdom());
3552         nl80211_send_reg_change_event(&core_request_world);
3553         reg_set_request_processed();
3554 
3555         if (is_an_alpha2(alpha2) &&
3556             !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3557             struct regulatory_request *ureq;
3558 
3559             spin_lock(&reg_requests_lock);
3560             ureq = list_last_entry(&reg_requests_list,
3561                            struct regulatory_request,
3562                            list);
3563             list_del(&ureq->list);
3564             spin_unlock(&reg_requests_lock);
3565 
3566             notify_self_managed_wiphys(ureq);
3567             reg_update_last_request(ureq);
3568             set_regdom(reg_copy_regd(cfg80211_user_regdom),
3569                    REGD_SOURCE_CACHED);
3570         }
3571     } else {
3572         regulatory_hint_core(world_alpha2);
3573 
3574         /*
3575          * This restores the ieee80211_regdom module parameter
3576          * preference or the last user requested regulatory
3577          * settings, user regulatory settings takes precedence.
3578          */
3579         if (is_an_alpha2(alpha2))
3580             regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3581     }
3582 
3583     spin_lock(&reg_requests_lock);
3584     list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3585     spin_unlock(&reg_requests_lock);
3586 
3587     pr_debug("Kicking the queue\n");
3588 
3589     schedule_work(&reg_work);
3590 }
3591 
3592 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3593 {
3594     struct cfg80211_registered_device *rdev;
3595     struct wireless_dev *wdev;
3596 
3597     list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3598         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3599             wdev_lock(wdev);
3600             if (!(wdev->wiphy->regulatory_flags & flag)) {
3601                 wdev_unlock(wdev);
3602                 return false;
3603             }
3604             wdev_unlock(wdev);
3605         }
3606     }
3607 
3608     return true;
3609 }
3610 
3611 void regulatory_hint_disconnect(void)
3612 {
3613     /* Restore of regulatory settings is not required when wiphy(s)
3614      * ignore IE from connected access point but clearance of beacon hints
3615      * is required when wiphy(s) supports beacon hints.
3616      */
3617     if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3618         struct reg_beacon *reg_beacon, *btmp;
3619 
3620         if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3621             return;
3622 
3623         spin_lock_bh(&reg_pending_beacons_lock);
3624         list_for_each_entry_safe(reg_beacon, btmp,
3625                      &reg_pending_beacons, list) {
3626             list_del(&reg_beacon->list);
3627             kfree(reg_beacon);
3628         }
3629         spin_unlock_bh(&reg_pending_beacons_lock);
3630 
3631         list_for_each_entry_safe(reg_beacon, btmp,
3632                      &reg_beacon_list, list) {
3633             list_del(&reg_beacon->list);
3634             kfree(reg_beacon);
3635         }
3636 
3637         return;
3638     }
3639 
3640     pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3641     restore_regulatory_settings(false, true);
3642 }
3643 
3644 static bool freq_is_chan_12_13_14(u32 freq)
3645 {
3646     if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3647         freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3648         freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3649         return true;
3650     return false;
3651 }
3652 
3653 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3654 {
3655     struct reg_beacon *pending_beacon;
3656 
3657     list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3658         if (ieee80211_channel_equal(beacon_chan,
3659                         &pending_beacon->chan))
3660             return true;
3661     return false;
3662 }
3663 
3664 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3665                  struct ieee80211_channel *beacon_chan,
3666                  gfp_t gfp)
3667 {
3668     struct reg_beacon *reg_beacon;
3669     bool processing;
3670 
3671     if (beacon_chan->beacon_found ||
3672         beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3673         (beacon_chan->band == NL80211_BAND_2GHZ &&
3674          !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3675         return 0;
3676 
3677     spin_lock_bh(&reg_pending_beacons_lock);
3678     processing = pending_reg_beacon(beacon_chan);
3679     spin_unlock_bh(&reg_pending_beacons_lock);
3680 
3681     if (processing)
3682         return 0;
3683 
3684     reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3685     if (!reg_beacon)
3686         return -ENOMEM;
3687 
3688     pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3689          beacon_chan->center_freq, beacon_chan->freq_offset,
3690          ieee80211_freq_khz_to_channel(
3691              ieee80211_channel_to_khz(beacon_chan)),
3692          wiphy_name(wiphy));
3693 
3694     memcpy(&reg_beacon->chan, beacon_chan,
3695            sizeof(struct ieee80211_channel));
3696 
3697     /*
3698      * Since we can be called from BH or and non-BH context
3699      * we must use spin_lock_bh()
3700      */
3701     spin_lock_bh(&reg_pending_beacons_lock);
3702     list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3703     spin_unlock_bh(&reg_pending_beacons_lock);
3704 
3705     schedule_work(&reg_work);
3706 
3707     return 0;
3708 }
3709 
3710 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3711 {
3712     unsigned int i;
3713     const struct ieee80211_reg_rule *reg_rule = NULL;
3714     const struct ieee80211_freq_range *freq_range = NULL;
3715     const struct ieee80211_power_rule *power_rule = NULL;
3716     char bw[32], cac_time[32];
3717 
3718     pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3719 
3720     for (i = 0; i < rd->n_reg_rules; i++) {
3721         reg_rule = &rd->reg_rules[i];
3722         freq_range = &reg_rule->freq_range;
3723         power_rule = &reg_rule->power_rule;
3724 
3725         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3726             snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3727                  freq_range->max_bandwidth_khz,
3728                  reg_get_max_bandwidth(rd, reg_rule));
3729         else
3730             snprintf(bw, sizeof(bw), "%d KHz",
3731                  freq_range->max_bandwidth_khz);
3732 
3733         if (reg_rule->flags & NL80211_RRF_DFS)
3734             scnprintf(cac_time, sizeof(cac_time), "%u s",
3735                   reg_rule->dfs_cac_ms/1000);
3736         else
3737             scnprintf(cac_time, sizeof(cac_time), "N/A");
3738 
3739 
3740         /*
3741          * There may not be documentation for max antenna gain
3742          * in certain regions
3743          */
3744         if (power_rule->max_antenna_gain)
3745             pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3746                 freq_range->start_freq_khz,
3747                 freq_range->end_freq_khz,
3748                 bw,
3749                 power_rule->max_antenna_gain,
3750                 power_rule->max_eirp,
3751                 cac_time);
3752         else
3753             pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3754                 freq_range->start_freq_khz,
3755                 freq_range->end_freq_khz,
3756                 bw,
3757                 power_rule->max_eirp,
3758                 cac_time);
3759     }
3760 }
3761 
3762 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3763 {
3764     switch (dfs_region) {
3765     case NL80211_DFS_UNSET:
3766     case NL80211_DFS_FCC:
3767     case NL80211_DFS_ETSI:
3768     case NL80211_DFS_JP:
3769         return true;
3770     default:
3771         pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3772         return false;
3773     }
3774 }
3775 
3776 static void print_regdomain(const struct ieee80211_regdomain *rd)
3777 {
3778     struct regulatory_request *lr = get_last_request();
3779 
3780     if (is_intersected_alpha2(rd->alpha2)) {
3781         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3782             struct cfg80211_registered_device *rdev;
3783             rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3784             if (rdev) {
3785                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3786                     rdev->country_ie_alpha2[0],
3787                     rdev->country_ie_alpha2[1]);
3788             } else
3789                 pr_debug("Current regulatory domain intersected:\n");
3790         } else
3791             pr_debug("Current regulatory domain intersected:\n");
3792     } else if (is_world_regdom(rd->alpha2)) {
3793         pr_debug("World regulatory domain updated:\n");
3794     } else {
3795         if (is_unknown_alpha2(rd->alpha2))
3796             pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3797         else {
3798             if (reg_request_cell_base(lr))
3799                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3800                     rd->alpha2[0], rd->alpha2[1]);
3801             else
3802                 pr_debug("Regulatory domain changed to country: %c%c\n",
3803                     rd->alpha2[0], rd->alpha2[1]);
3804         }
3805     }
3806 
3807     pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3808     print_rd_rules(rd);
3809 }
3810 
3811 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3812 {
3813     pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3814     print_rd_rules(rd);
3815 }
3816 
3817 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3818 {
3819     if (!is_world_regdom(rd->alpha2))
3820         return -EINVAL;
3821     update_world_regdomain(rd);
3822     return 0;
3823 }
3824 
3825 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3826                struct regulatory_request *user_request)
3827 {
3828     const struct ieee80211_regdomain *intersected_rd = NULL;
3829 
3830     if (!regdom_changes(rd->alpha2))
3831         return -EALREADY;
3832 
3833     if (!is_valid_rd(rd)) {
3834         pr_err("Invalid regulatory domain detected: %c%c\n",
3835                rd->alpha2[0], rd->alpha2[1]);
3836         print_regdomain_info(rd);
3837         return -EINVAL;
3838     }
3839 
3840     if (!user_request->intersect) {
3841         reset_regdomains(false, rd);
3842         return 0;
3843     }
3844 
3845     intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3846     if (!intersected_rd)
3847         return -EINVAL;
3848 
3849     kfree(rd);
3850     rd = NULL;
3851     reset_regdomains(false, intersected_rd);
3852 
3853     return 0;
3854 }
3855 
3856 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3857                  struct regulatory_request *driver_request)
3858 {
3859     const struct ieee80211_regdomain *regd;
3860     const struct ieee80211_regdomain *intersected_rd = NULL;
3861     const struct ieee80211_regdomain *tmp;
3862     struct wiphy *request_wiphy;
3863 
3864     if (is_world_regdom(rd->alpha2))
3865         return -EINVAL;
3866 
3867     if (!regdom_changes(rd->alpha2))
3868         return -EALREADY;
3869 
3870     if (!is_valid_rd(rd)) {
3871         pr_err("Invalid regulatory domain detected: %c%c\n",
3872                rd->alpha2[0], rd->alpha2[1]);
3873         print_regdomain_info(rd);
3874         return -EINVAL;
3875     }
3876 
3877     request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3878     if (!request_wiphy)
3879         return -ENODEV;
3880 
3881     if (!driver_request->intersect) {
3882         ASSERT_RTNL();
3883         wiphy_lock(request_wiphy);
3884         if (request_wiphy->regd) {
3885             wiphy_unlock(request_wiphy);
3886             return -EALREADY;
3887         }
3888 
3889         regd = reg_copy_regd(rd);
3890         if (IS_ERR(regd)) {
3891             wiphy_unlock(request_wiphy);
3892             return PTR_ERR(regd);
3893         }
3894 
3895         rcu_assign_pointer(request_wiphy->regd, regd);
3896         wiphy_unlock(request_wiphy);
3897         reset_regdomains(false, rd);
3898         return 0;
3899     }
3900 
3901     intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3902     if (!intersected_rd)
3903         return -EINVAL;
3904 
3905     /*
3906      * We can trash what CRDA provided now.
3907      * However if a driver requested this specific regulatory
3908      * domain we keep it for its private use
3909      */
3910     tmp = get_wiphy_regdom(request_wiphy);
3911     rcu_assign_pointer(request_wiphy->regd, rd);
3912     rcu_free_regdom(tmp);
3913 
3914     rd = NULL;
3915 
3916     reset_regdomains(false, intersected_rd);
3917 
3918     return 0;
3919 }
3920 
3921 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3922                  struct regulatory_request *country_ie_request)
3923 {
3924     struct wiphy *request_wiphy;
3925 
3926     if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3927         !is_unknown_alpha2(rd->alpha2))
3928         return -EINVAL;
3929 
3930     /*
3931      * Lets only bother proceeding on the same alpha2 if the current
3932      * rd is non static (it means CRDA was present and was used last)
3933      * and the pending request came in from a country IE
3934      */
3935 
3936     if (!is_valid_rd(rd)) {
3937         pr_err("Invalid regulatory domain detected: %c%c\n",
3938                rd->alpha2[0], rd->alpha2[1]);
3939         print_regdomain_info(rd);
3940         return -EINVAL;
3941     }
3942 
3943     request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3944     if (!request_wiphy)
3945         return -ENODEV;
3946 
3947     if (country_ie_request->intersect)
3948         return -EINVAL;
3949 
3950     reset_regdomains(false, rd);
3951     return 0;
3952 }
3953 
3954 /*
3955  * Use this call to set the current regulatory domain. Conflicts with
3956  * multiple drivers can be ironed out later. Caller must've already
3957  * kmalloc'd the rd structure.
3958  */
3959 int set_regdom(const struct ieee80211_regdomain *rd,
3960            enum ieee80211_regd_source regd_src)
3961 {
3962     struct regulatory_request *lr;
3963     bool user_reset = false;
3964     int r;
3965 
3966     if (IS_ERR_OR_NULL(rd))
3967         return -ENODATA;
3968 
3969     if (!reg_is_valid_request(rd->alpha2)) {
3970         kfree(rd);
3971         return -EINVAL;
3972     }
3973 
3974     if (regd_src == REGD_SOURCE_CRDA)
3975         reset_crda_timeouts();
3976 
3977     lr = get_last_request();
3978 
3979     /* Note that this doesn't update the wiphys, this is done below */
3980     switch (lr->initiator) {
3981     case NL80211_REGDOM_SET_BY_CORE:
3982         r = reg_set_rd_core(rd);
3983         break;
3984     case NL80211_REGDOM_SET_BY_USER:
3985         cfg80211_save_user_regdom(rd);
3986         r = reg_set_rd_user(rd, lr);
3987         user_reset = true;
3988         break;
3989     case NL80211_REGDOM_SET_BY_DRIVER:
3990         r = reg_set_rd_driver(rd, lr);
3991         break;
3992     case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3993         r = reg_set_rd_country_ie(rd, lr);
3994         break;
3995     default:
3996         WARN(1, "invalid initiator %d\n", lr->initiator);
3997         kfree(rd);
3998         return -EINVAL;
3999     }
4000 
4001     if (r) {
4002         switch (r) {
4003         case -EALREADY:
4004             reg_set_request_processed();
4005             break;
4006         default:
4007             /* Back to world regulatory in case of errors */
4008             restore_regulatory_settings(user_reset, false);
4009         }
4010 
4011         kfree(rd);
4012         return r;
4013     }
4014 
4015     /* This would make this whole thing pointless */
4016     if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4017         return -EINVAL;
4018 
4019     /* update all wiphys now with the new established regulatory domain */
4020     update_all_wiphy_regulatory(lr->initiator);
4021 
4022     print_regdomain(get_cfg80211_regdom());
4023 
4024     nl80211_send_reg_change_event(lr);
4025 
4026     reg_set_request_processed();
4027 
4028     return 0;
4029 }
4030 
4031 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4032                        struct ieee80211_regdomain *rd)
4033 {
4034     const struct ieee80211_regdomain *regd;
4035     const struct ieee80211_regdomain *prev_regd;
4036     struct cfg80211_registered_device *rdev;
4037 
4038     if (WARN_ON(!wiphy || !rd))
4039         return -EINVAL;
4040 
4041     if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4042          "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4043         return -EPERM;
4044 
4045     if (WARN(!is_valid_rd(rd),
4046          "Invalid regulatory domain detected: %c%c\n",
4047          rd->alpha2[0], rd->alpha2[1])) {
4048         print_regdomain_info(rd);
4049         return -EINVAL;
4050     }
4051 
4052     regd = reg_copy_regd(rd);
4053     if (IS_ERR(regd))
4054         return PTR_ERR(regd);
4055 
4056     rdev = wiphy_to_rdev(wiphy);
4057 
4058     spin_lock(&reg_requests_lock);
4059     prev_regd = rdev->requested_regd;
4060     rdev->requested_regd = regd;
4061     spin_unlock(&reg_requests_lock);
4062 
4063     kfree(prev_regd);
4064     return 0;
4065 }
4066 
4067 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4068                   struct ieee80211_regdomain *rd)
4069 {
4070     int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4071 
4072     if (ret)
4073         return ret;
4074 
4075     schedule_work(&reg_work);
4076     return 0;
4077 }
4078 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4079 
4080 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4081                    struct ieee80211_regdomain *rd)
4082 {
4083     int ret;
4084 
4085     ASSERT_RTNL();
4086 
4087     ret = __regulatory_set_wiphy_regd(wiphy, rd);
4088     if (ret)
4089         return ret;
4090 
4091     /* process the request immediately */
4092     reg_process_self_managed_hint(wiphy);
4093     reg_check_channels();
4094     return 0;
4095 }
4096 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4097 
4098 void wiphy_regulatory_register(struct wiphy *wiphy)
4099 {
4100     struct regulatory_request *lr = get_last_request();
4101 
4102     /* self-managed devices ignore beacon hints and country IE */
4103     if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4104         wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4105                        REGULATORY_COUNTRY_IE_IGNORE;
4106 
4107         /*
4108          * The last request may have been received before this
4109          * registration call. Call the driver notifier if
4110          * initiator is USER.
4111          */
4112         if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4113             reg_call_notifier(wiphy, lr);
4114     }
4115 
4116     if (!reg_dev_ignore_cell_hint(wiphy))
4117         reg_num_devs_support_basehint++;
4118 
4119     wiphy_update_regulatory(wiphy, lr->initiator);
4120     wiphy_all_share_dfs_chan_state(wiphy);
4121     reg_process_self_managed_hints();
4122 }
4123 
4124 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4125 {
4126     struct wiphy *request_wiphy = NULL;
4127     struct regulatory_request *lr;
4128 
4129     lr = get_last_request();
4130 
4131     if (!reg_dev_ignore_cell_hint(wiphy))
4132         reg_num_devs_support_basehint--;
4133 
4134     rcu_free_regdom(get_wiphy_regdom(wiphy));
4135     RCU_INIT_POINTER(wiphy->regd, NULL);
4136 
4137     if (lr)
4138         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4139 
4140     if (!request_wiphy || request_wiphy != wiphy)
4141         return;
4142 
4143     lr->wiphy_idx = WIPHY_IDX_INVALID;
4144     lr->country_ie_env = ENVIRON_ANY;
4145 }
4146 
4147 /*
4148  * See FCC notices for UNII band definitions
4149  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4150  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4151  */
4152 int cfg80211_get_unii(int freq)
4153 {
4154     /* UNII-1 */
4155     if (freq >= 5150 && freq <= 5250)
4156         return 0;
4157 
4158     /* UNII-2A */
4159     if (freq > 5250 && freq <= 5350)
4160         return 1;
4161 
4162     /* UNII-2B */
4163     if (freq > 5350 && freq <= 5470)
4164         return 2;
4165 
4166     /* UNII-2C */
4167     if (freq > 5470 && freq <= 5725)
4168         return 3;
4169 
4170     /* UNII-3 */
4171     if (freq > 5725 && freq <= 5825)
4172         return 4;
4173 
4174     /* UNII-5 */
4175     if (freq > 5925 && freq <= 6425)
4176         return 5;
4177 
4178     /* UNII-6 */
4179     if (freq > 6425 && freq <= 6525)
4180         return 6;
4181 
4182     /* UNII-7 */
4183     if (freq > 6525 && freq <= 6875)
4184         return 7;
4185 
4186     /* UNII-8 */
4187     if (freq > 6875 && freq <= 7125)
4188         return 8;
4189 
4190     return -EINVAL;
4191 }
4192 
4193 bool regulatory_indoor_allowed(void)
4194 {
4195     return reg_is_indoor;
4196 }
4197 
4198 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4199 {
4200     const struct ieee80211_regdomain *regd = NULL;
4201     const struct ieee80211_regdomain *wiphy_regd = NULL;
4202     bool pre_cac_allowed = false;
4203 
4204     rcu_read_lock();
4205 
4206     regd = rcu_dereference(cfg80211_regdomain);
4207     wiphy_regd = rcu_dereference(wiphy->regd);
4208     if (!wiphy_regd) {
4209         if (regd->dfs_region == NL80211_DFS_ETSI)
4210             pre_cac_allowed = true;
4211 
4212         rcu_read_unlock();
4213 
4214         return pre_cac_allowed;
4215     }
4216 
4217     if (regd->dfs_region == wiphy_regd->dfs_region &&
4218         wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4219         pre_cac_allowed = true;
4220 
4221     rcu_read_unlock();
4222 
4223     return pre_cac_allowed;
4224 }
4225 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4226 
4227 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4228 {
4229     struct wireless_dev *wdev;
4230     /* If we finished CAC or received radar, we should end any
4231      * CAC running on the same channels.
4232      * the check !cfg80211_chandef_dfs_usable contain 2 options:
4233      * either all channels are available - those the CAC_FINISHED
4234      * event has effected another wdev state, or there is a channel
4235      * in unavailable state in wdev chandef - those the RADAR_DETECTED
4236      * event has effected another wdev state.
4237      * In both cases we should end the CAC on the wdev.
4238      */
4239     list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4240         struct cfg80211_chan_def *chandef;
4241 
4242         if (!wdev->cac_started)
4243             continue;
4244 
4245         /* FIXME: radar detection is tied to link 0 for now */
4246         chandef = wdev_chandef(wdev, 0);
4247         if (!chandef)
4248             continue;
4249 
4250         if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4251             rdev_end_cac(rdev, wdev->netdev);
4252     }
4253 }
4254 
4255 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4256                     struct cfg80211_chan_def *chandef,
4257                     enum nl80211_dfs_state dfs_state,
4258                     enum nl80211_radar_event event)
4259 {
4260     struct cfg80211_registered_device *rdev;
4261 
4262     ASSERT_RTNL();
4263 
4264     if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4265         return;
4266 
4267     list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4268         if (wiphy == &rdev->wiphy)
4269             continue;
4270 
4271         if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4272             continue;
4273 
4274         if (!ieee80211_get_channel(&rdev->wiphy,
4275                        chandef->chan->center_freq))
4276             continue;
4277 
4278         cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4279 
4280         if (event == NL80211_RADAR_DETECTED ||
4281             event == NL80211_RADAR_CAC_FINISHED) {
4282             cfg80211_sched_dfs_chan_update(rdev);
4283             cfg80211_check_and_end_cac(rdev);
4284         }
4285 
4286         nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4287     }
4288 }
4289 
4290 static int __init regulatory_init_db(void)
4291 {
4292     int err;
4293 
4294     /*
4295      * It's possible that - due to other bugs/issues - cfg80211
4296      * never called regulatory_init() below, or that it failed;
4297      * in that case, don't try to do any further work here as
4298      * it's doomed to lead to crashes.
4299      */
4300     if (IS_ERR_OR_NULL(reg_pdev))
4301         return -EINVAL;
4302 
4303     err = load_builtin_regdb_keys();
4304     if (err)
4305         return err;
4306 
4307     /* We always try to get an update for the static regdomain */
4308     err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4309     if (err) {
4310         if (err == -ENOMEM) {
4311             platform_device_unregister(reg_pdev);
4312             return err;
4313         }
4314         /*
4315          * N.B. kobject_uevent_env() can fail mainly for when we're out
4316          * memory which is handled and propagated appropriately above
4317          * but it can also fail during a netlink_broadcast() or during
4318          * early boot for call_usermodehelper(). For now treat these
4319          * errors as non-fatal.
4320          */
4321         pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4322     }
4323 
4324     /*
4325      * Finally, if the user set the module parameter treat it
4326      * as a user hint.
4327      */
4328     if (!is_world_regdom(ieee80211_regdom))
4329         regulatory_hint_user(ieee80211_regdom,
4330                      NL80211_USER_REG_HINT_USER);
4331 
4332     return 0;
4333 }
4334 #ifndef MODULE
4335 late_initcall(regulatory_init_db);
4336 #endif
4337 
4338 int __init regulatory_init(void)
4339 {
4340     reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4341     if (IS_ERR(reg_pdev))
4342         return PTR_ERR(reg_pdev);
4343 
4344     rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4345 
4346     user_alpha2[0] = '9';
4347     user_alpha2[1] = '7';
4348 
4349 #ifdef MODULE
4350     return regulatory_init_db();
4351 #else
4352     return 0;
4353 #endif
4354 }
4355 
4356 void regulatory_exit(void)
4357 {
4358     struct regulatory_request *reg_request, *tmp;
4359     struct reg_beacon *reg_beacon, *btmp;
4360 
4361     cancel_work_sync(&reg_work);
4362     cancel_crda_timeout_sync();
4363     cancel_delayed_work_sync(&reg_check_chans);
4364 
4365     /* Lock to suppress warnings */
4366     rtnl_lock();
4367     reset_regdomains(true, NULL);
4368     rtnl_unlock();
4369 
4370     dev_set_uevent_suppress(&reg_pdev->dev, true);
4371 
4372     platform_device_unregister(reg_pdev);
4373 
4374     list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4375         list_del(&reg_beacon->list);
4376         kfree(reg_beacon);
4377     }
4378 
4379     list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4380         list_del(&reg_beacon->list);
4381         kfree(reg_beacon);
4382     }
4383 
4384     list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4385         list_del(&reg_request->list);
4386         kfree(reg_request);
4387     }
4388 
4389     if (!IS_ERR_OR_NULL(regdb))
4390         kfree(regdb);
4391     if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4392         kfree(cfg80211_user_regdom);
4393 
4394     free_regdb_keyring();
4395 }