Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * VMware vSockets Driver
0004  *
0005  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
0006  */
0007 
0008 /* Implementation notes:
0009  *
0010  * - There are two kinds of sockets: those created by user action (such as
0011  * calling socket(2)) and those created by incoming connection request packets.
0012  *
0013  * - There are two "global" tables, one for bound sockets (sockets that have
0014  * specified an address that they are responsible for) and one for connected
0015  * sockets (sockets that have established a connection with another socket).
0016  * These tables are "global" in that all sockets on the system are placed
0017  * within them. - Note, though, that the bound table contains an extra entry
0018  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
0019  * that list. The bound table is used solely for lookup of sockets when packets
0020  * are received and that's not necessary for SOCK_DGRAM sockets since we create
0021  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
0022  * sockets out of the bound hash buckets will reduce the chance of collisions
0023  * when looking for SOCK_STREAM sockets and prevents us from having to check the
0024  * socket type in the hash table lookups.
0025  *
0026  * - Sockets created by user action will either be "client" sockets that
0027  * initiate a connection or "server" sockets that listen for connections; we do
0028  * not support simultaneous connects (two "client" sockets connecting).
0029  *
0030  * - "Server" sockets are referred to as listener sockets throughout this
0031  * implementation because they are in the TCP_LISTEN state.  When a
0032  * connection request is received (the second kind of socket mentioned above),
0033  * we create a new socket and refer to it as a pending socket.  These pending
0034  * sockets are placed on the pending connection list of the listener socket.
0035  * When future packets are received for the address the listener socket is
0036  * bound to, we check if the source of the packet is from one that has an
0037  * existing pending connection.  If it does, we process the packet for the
0038  * pending socket.  When that socket reaches the connected state, it is removed
0039  * from the listener socket's pending list and enqueued in the listener
0040  * socket's accept queue.  Callers of accept(2) will accept connected sockets
0041  * from the listener socket's accept queue.  If the socket cannot be accepted
0042  * for some reason then it is marked rejected.  Once the connection is
0043  * accepted, it is owned by the user process and the responsibility for cleanup
0044  * falls with that user process.
0045  *
0046  * - It is possible that these pending sockets will never reach the connected
0047  * state; in fact, we may never receive another packet after the connection
0048  * request.  Because of this, we must schedule a cleanup function to run in the
0049  * future, after some amount of time passes where a connection should have been
0050  * established.  This function ensures that the socket is off all lists so it
0051  * cannot be retrieved, then drops all references to the socket so it is cleaned
0052  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
0053  * function will also cleanup rejected sockets, those that reach the connected
0054  * state but leave it before they have been accepted.
0055  *
0056  * - Lock ordering for pending or accept queue sockets is:
0057  *
0058  *     lock_sock(listener);
0059  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
0060  *
0061  * Using explicit nested locking keeps lockdep happy since normally only one
0062  * lock of a given class may be taken at a time.
0063  *
0064  * - Sockets created by user action will be cleaned up when the user process
0065  * calls close(2), causing our release implementation to be called. Our release
0066  * implementation will perform some cleanup then drop the last reference so our
0067  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
0068  * perform additional cleanup that's common for both types of sockets.
0069  *
0070  * - A socket's reference count is what ensures that the structure won't be
0071  * freed.  Each entry in a list (such as the "global" bound and connected tables
0072  * and the listener socket's pending list and connected queue) ensures a
0073  * reference.  When we defer work until process context and pass a socket as our
0074  * argument, we must ensure the reference count is increased to ensure the
0075  * socket isn't freed before the function is run; the deferred function will
0076  * then drop the reference.
0077  *
0078  * - sk->sk_state uses the TCP state constants because they are widely used by
0079  * other address families and exposed to userspace tools like ss(8):
0080  *
0081  *   TCP_CLOSE - unconnected
0082  *   TCP_SYN_SENT - connecting
0083  *   TCP_ESTABLISHED - connected
0084  *   TCP_CLOSING - disconnecting
0085  *   TCP_LISTEN - listening
0086  */
0087 
0088 #include <linux/compat.h>
0089 #include <linux/types.h>
0090 #include <linux/bitops.h>
0091 #include <linux/cred.h>
0092 #include <linux/init.h>
0093 #include <linux/io.h>
0094 #include <linux/kernel.h>
0095 #include <linux/sched/signal.h>
0096 #include <linux/kmod.h>
0097 #include <linux/list.h>
0098 #include <linux/miscdevice.h>
0099 #include <linux/module.h>
0100 #include <linux/mutex.h>
0101 #include <linux/net.h>
0102 #include <linux/poll.h>
0103 #include <linux/random.h>
0104 #include <linux/skbuff.h>
0105 #include <linux/smp.h>
0106 #include <linux/socket.h>
0107 #include <linux/stddef.h>
0108 #include <linux/unistd.h>
0109 #include <linux/wait.h>
0110 #include <linux/workqueue.h>
0111 #include <net/sock.h>
0112 #include <net/af_vsock.h>
0113 
0114 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
0115 static void vsock_sk_destruct(struct sock *sk);
0116 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
0117 
0118 /* Protocol family. */
0119 static struct proto vsock_proto = {
0120     .name = "AF_VSOCK",
0121     .owner = THIS_MODULE,
0122     .obj_size = sizeof(struct vsock_sock),
0123 };
0124 
0125 /* The default peer timeout indicates how long we will wait for a peer response
0126  * to a control message.
0127  */
0128 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
0129 
0130 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
0131 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
0132 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
0133 
0134 /* Transport used for host->guest communication */
0135 static const struct vsock_transport *transport_h2g;
0136 /* Transport used for guest->host communication */
0137 static const struct vsock_transport *transport_g2h;
0138 /* Transport used for DGRAM communication */
0139 static const struct vsock_transport *transport_dgram;
0140 /* Transport used for local communication */
0141 static const struct vsock_transport *transport_local;
0142 static DEFINE_MUTEX(vsock_register_mutex);
0143 
0144 /**** UTILS ****/
0145 
0146 /* Each bound VSocket is stored in the bind hash table and each connected
0147  * VSocket is stored in the connected hash table.
0148  *
0149  * Unbound sockets are all put on the same list attached to the end of the hash
0150  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
0151  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
0152  * represents the list that addr hashes to).
0153  *
0154  * Specifically, we initialize the vsock_bind_table array to a size of
0155  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
0156  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
0157  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
0158  * mods with VSOCK_HASH_SIZE to ensure this.
0159  */
0160 #define MAX_PORT_RETRIES        24
0161 
0162 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
0163 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
0164 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
0165 
0166 /* XXX This can probably be implemented in a better way. */
0167 #define VSOCK_CONN_HASH(src, dst)               \
0168     (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
0169 #define vsock_connected_sockets(src, dst)       \
0170     (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
0171 #define vsock_connected_sockets_vsk(vsk)                \
0172     vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
0173 
0174 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
0175 EXPORT_SYMBOL_GPL(vsock_bind_table);
0176 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
0177 EXPORT_SYMBOL_GPL(vsock_connected_table);
0178 DEFINE_SPINLOCK(vsock_table_lock);
0179 EXPORT_SYMBOL_GPL(vsock_table_lock);
0180 
0181 /* Autobind this socket to the local address if necessary. */
0182 static int vsock_auto_bind(struct vsock_sock *vsk)
0183 {
0184     struct sock *sk = sk_vsock(vsk);
0185     struct sockaddr_vm local_addr;
0186 
0187     if (vsock_addr_bound(&vsk->local_addr))
0188         return 0;
0189     vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
0190     return __vsock_bind(sk, &local_addr);
0191 }
0192 
0193 static void vsock_init_tables(void)
0194 {
0195     int i;
0196 
0197     for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
0198         INIT_LIST_HEAD(&vsock_bind_table[i]);
0199 
0200     for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
0201         INIT_LIST_HEAD(&vsock_connected_table[i]);
0202 }
0203 
0204 static void __vsock_insert_bound(struct list_head *list,
0205                  struct vsock_sock *vsk)
0206 {
0207     sock_hold(&vsk->sk);
0208     list_add(&vsk->bound_table, list);
0209 }
0210 
0211 static void __vsock_insert_connected(struct list_head *list,
0212                      struct vsock_sock *vsk)
0213 {
0214     sock_hold(&vsk->sk);
0215     list_add(&vsk->connected_table, list);
0216 }
0217 
0218 static void __vsock_remove_bound(struct vsock_sock *vsk)
0219 {
0220     list_del_init(&vsk->bound_table);
0221     sock_put(&vsk->sk);
0222 }
0223 
0224 static void __vsock_remove_connected(struct vsock_sock *vsk)
0225 {
0226     list_del_init(&vsk->connected_table);
0227     sock_put(&vsk->sk);
0228 }
0229 
0230 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
0231 {
0232     struct vsock_sock *vsk;
0233 
0234     list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
0235         if (vsock_addr_equals_addr(addr, &vsk->local_addr))
0236             return sk_vsock(vsk);
0237 
0238         if (addr->svm_port == vsk->local_addr.svm_port &&
0239             (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
0240              addr->svm_cid == VMADDR_CID_ANY))
0241             return sk_vsock(vsk);
0242     }
0243 
0244     return NULL;
0245 }
0246 
0247 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
0248                           struct sockaddr_vm *dst)
0249 {
0250     struct vsock_sock *vsk;
0251 
0252     list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
0253                 connected_table) {
0254         if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
0255             dst->svm_port == vsk->local_addr.svm_port) {
0256             return sk_vsock(vsk);
0257         }
0258     }
0259 
0260     return NULL;
0261 }
0262 
0263 static void vsock_insert_unbound(struct vsock_sock *vsk)
0264 {
0265     spin_lock_bh(&vsock_table_lock);
0266     __vsock_insert_bound(vsock_unbound_sockets, vsk);
0267     spin_unlock_bh(&vsock_table_lock);
0268 }
0269 
0270 void vsock_insert_connected(struct vsock_sock *vsk)
0271 {
0272     struct list_head *list = vsock_connected_sockets(
0273         &vsk->remote_addr, &vsk->local_addr);
0274 
0275     spin_lock_bh(&vsock_table_lock);
0276     __vsock_insert_connected(list, vsk);
0277     spin_unlock_bh(&vsock_table_lock);
0278 }
0279 EXPORT_SYMBOL_GPL(vsock_insert_connected);
0280 
0281 void vsock_remove_bound(struct vsock_sock *vsk)
0282 {
0283     spin_lock_bh(&vsock_table_lock);
0284     if (__vsock_in_bound_table(vsk))
0285         __vsock_remove_bound(vsk);
0286     spin_unlock_bh(&vsock_table_lock);
0287 }
0288 EXPORT_SYMBOL_GPL(vsock_remove_bound);
0289 
0290 void vsock_remove_connected(struct vsock_sock *vsk)
0291 {
0292     spin_lock_bh(&vsock_table_lock);
0293     if (__vsock_in_connected_table(vsk))
0294         __vsock_remove_connected(vsk);
0295     spin_unlock_bh(&vsock_table_lock);
0296 }
0297 EXPORT_SYMBOL_GPL(vsock_remove_connected);
0298 
0299 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
0300 {
0301     struct sock *sk;
0302 
0303     spin_lock_bh(&vsock_table_lock);
0304     sk = __vsock_find_bound_socket(addr);
0305     if (sk)
0306         sock_hold(sk);
0307 
0308     spin_unlock_bh(&vsock_table_lock);
0309 
0310     return sk;
0311 }
0312 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
0313 
0314 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
0315                      struct sockaddr_vm *dst)
0316 {
0317     struct sock *sk;
0318 
0319     spin_lock_bh(&vsock_table_lock);
0320     sk = __vsock_find_connected_socket(src, dst);
0321     if (sk)
0322         sock_hold(sk);
0323 
0324     spin_unlock_bh(&vsock_table_lock);
0325 
0326     return sk;
0327 }
0328 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
0329 
0330 void vsock_remove_sock(struct vsock_sock *vsk)
0331 {
0332     vsock_remove_bound(vsk);
0333     vsock_remove_connected(vsk);
0334 }
0335 EXPORT_SYMBOL_GPL(vsock_remove_sock);
0336 
0337 void vsock_for_each_connected_socket(struct vsock_transport *transport,
0338                      void (*fn)(struct sock *sk))
0339 {
0340     int i;
0341 
0342     spin_lock_bh(&vsock_table_lock);
0343 
0344     for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
0345         struct vsock_sock *vsk;
0346         list_for_each_entry(vsk, &vsock_connected_table[i],
0347                     connected_table) {
0348             if (vsk->transport != transport)
0349                 continue;
0350 
0351             fn(sk_vsock(vsk));
0352         }
0353     }
0354 
0355     spin_unlock_bh(&vsock_table_lock);
0356 }
0357 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
0358 
0359 void vsock_add_pending(struct sock *listener, struct sock *pending)
0360 {
0361     struct vsock_sock *vlistener;
0362     struct vsock_sock *vpending;
0363 
0364     vlistener = vsock_sk(listener);
0365     vpending = vsock_sk(pending);
0366 
0367     sock_hold(pending);
0368     sock_hold(listener);
0369     list_add_tail(&vpending->pending_links, &vlistener->pending_links);
0370 }
0371 EXPORT_SYMBOL_GPL(vsock_add_pending);
0372 
0373 void vsock_remove_pending(struct sock *listener, struct sock *pending)
0374 {
0375     struct vsock_sock *vpending = vsock_sk(pending);
0376 
0377     list_del_init(&vpending->pending_links);
0378     sock_put(listener);
0379     sock_put(pending);
0380 }
0381 EXPORT_SYMBOL_GPL(vsock_remove_pending);
0382 
0383 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
0384 {
0385     struct vsock_sock *vlistener;
0386     struct vsock_sock *vconnected;
0387 
0388     vlistener = vsock_sk(listener);
0389     vconnected = vsock_sk(connected);
0390 
0391     sock_hold(connected);
0392     sock_hold(listener);
0393     list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
0394 }
0395 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
0396 
0397 static bool vsock_use_local_transport(unsigned int remote_cid)
0398 {
0399     if (!transport_local)
0400         return false;
0401 
0402     if (remote_cid == VMADDR_CID_LOCAL)
0403         return true;
0404 
0405     if (transport_g2h) {
0406         return remote_cid == transport_g2h->get_local_cid();
0407     } else {
0408         return remote_cid == VMADDR_CID_HOST;
0409     }
0410 }
0411 
0412 static void vsock_deassign_transport(struct vsock_sock *vsk)
0413 {
0414     if (!vsk->transport)
0415         return;
0416 
0417     vsk->transport->destruct(vsk);
0418     module_put(vsk->transport->module);
0419     vsk->transport = NULL;
0420 }
0421 
0422 /* Assign a transport to a socket and call the .init transport callback.
0423  *
0424  * Note: for connection oriented socket this must be called when vsk->remote_addr
0425  * is set (e.g. during the connect() or when a connection request on a listener
0426  * socket is received).
0427  * The vsk->remote_addr is used to decide which transport to use:
0428  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
0429  *    g2h is not loaded, will use local transport;
0430  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
0431  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
0432  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
0433  */
0434 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
0435 {
0436     const struct vsock_transport *new_transport;
0437     struct sock *sk = sk_vsock(vsk);
0438     unsigned int remote_cid = vsk->remote_addr.svm_cid;
0439     __u8 remote_flags;
0440     int ret;
0441 
0442     /* If the packet is coming with the source and destination CIDs higher
0443      * than VMADDR_CID_HOST, then a vsock channel where all the packets are
0444      * forwarded to the host should be established. Then the host will
0445      * need to forward the packets to the guest.
0446      *
0447      * The flag is set on the (listen) receive path (psk is not NULL). On
0448      * the connect path the flag can be set by the user space application.
0449      */
0450     if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
0451         vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
0452         vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
0453 
0454     remote_flags = vsk->remote_addr.svm_flags;
0455 
0456     switch (sk->sk_type) {
0457     case SOCK_DGRAM:
0458         new_transport = transport_dgram;
0459         break;
0460     case SOCK_STREAM:
0461     case SOCK_SEQPACKET:
0462         if (vsock_use_local_transport(remote_cid))
0463             new_transport = transport_local;
0464         else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
0465              (remote_flags & VMADDR_FLAG_TO_HOST))
0466             new_transport = transport_g2h;
0467         else
0468             new_transport = transport_h2g;
0469         break;
0470     default:
0471         return -ESOCKTNOSUPPORT;
0472     }
0473 
0474     if (vsk->transport) {
0475         if (vsk->transport == new_transport)
0476             return 0;
0477 
0478         /* transport->release() must be called with sock lock acquired.
0479          * This path can only be taken during vsock_connect(), where we
0480          * have already held the sock lock. In the other cases, this
0481          * function is called on a new socket which is not assigned to
0482          * any transport.
0483          */
0484         vsk->transport->release(vsk);
0485         vsock_deassign_transport(vsk);
0486     }
0487 
0488     /* We increase the module refcnt to prevent the transport unloading
0489      * while there are open sockets assigned to it.
0490      */
0491     if (!new_transport || !try_module_get(new_transport->module))
0492         return -ENODEV;
0493 
0494     if (sk->sk_type == SOCK_SEQPACKET) {
0495         if (!new_transport->seqpacket_allow ||
0496             !new_transport->seqpacket_allow(remote_cid)) {
0497             module_put(new_transport->module);
0498             return -ESOCKTNOSUPPORT;
0499         }
0500     }
0501 
0502     ret = new_transport->init(vsk, psk);
0503     if (ret) {
0504         module_put(new_transport->module);
0505         return ret;
0506     }
0507 
0508     vsk->transport = new_transport;
0509 
0510     return 0;
0511 }
0512 EXPORT_SYMBOL_GPL(vsock_assign_transport);
0513 
0514 bool vsock_find_cid(unsigned int cid)
0515 {
0516     if (transport_g2h && cid == transport_g2h->get_local_cid())
0517         return true;
0518 
0519     if (transport_h2g && cid == VMADDR_CID_HOST)
0520         return true;
0521 
0522     if (transport_local && cid == VMADDR_CID_LOCAL)
0523         return true;
0524 
0525     return false;
0526 }
0527 EXPORT_SYMBOL_GPL(vsock_find_cid);
0528 
0529 static struct sock *vsock_dequeue_accept(struct sock *listener)
0530 {
0531     struct vsock_sock *vlistener;
0532     struct vsock_sock *vconnected;
0533 
0534     vlistener = vsock_sk(listener);
0535 
0536     if (list_empty(&vlistener->accept_queue))
0537         return NULL;
0538 
0539     vconnected = list_entry(vlistener->accept_queue.next,
0540                 struct vsock_sock, accept_queue);
0541 
0542     list_del_init(&vconnected->accept_queue);
0543     sock_put(listener);
0544     /* The caller will need a reference on the connected socket so we let
0545      * it call sock_put().
0546      */
0547 
0548     return sk_vsock(vconnected);
0549 }
0550 
0551 static bool vsock_is_accept_queue_empty(struct sock *sk)
0552 {
0553     struct vsock_sock *vsk = vsock_sk(sk);
0554     return list_empty(&vsk->accept_queue);
0555 }
0556 
0557 static bool vsock_is_pending(struct sock *sk)
0558 {
0559     struct vsock_sock *vsk = vsock_sk(sk);
0560     return !list_empty(&vsk->pending_links);
0561 }
0562 
0563 static int vsock_send_shutdown(struct sock *sk, int mode)
0564 {
0565     struct vsock_sock *vsk = vsock_sk(sk);
0566 
0567     if (!vsk->transport)
0568         return -ENODEV;
0569 
0570     return vsk->transport->shutdown(vsk, mode);
0571 }
0572 
0573 static void vsock_pending_work(struct work_struct *work)
0574 {
0575     struct sock *sk;
0576     struct sock *listener;
0577     struct vsock_sock *vsk;
0578     bool cleanup;
0579 
0580     vsk = container_of(work, struct vsock_sock, pending_work.work);
0581     sk = sk_vsock(vsk);
0582     listener = vsk->listener;
0583     cleanup = true;
0584 
0585     lock_sock(listener);
0586     lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
0587 
0588     if (vsock_is_pending(sk)) {
0589         vsock_remove_pending(listener, sk);
0590 
0591         sk_acceptq_removed(listener);
0592     } else if (!vsk->rejected) {
0593         /* We are not on the pending list and accept() did not reject
0594          * us, so we must have been accepted by our user process.  We
0595          * just need to drop our references to the sockets and be on
0596          * our way.
0597          */
0598         cleanup = false;
0599         goto out;
0600     }
0601 
0602     /* We need to remove ourself from the global connected sockets list so
0603      * incoming packets can't find this socket, and to reduce the reference
0604      * count.
0605      */
0606     vsock_remove_connected(vsk);
0607 
0608     sk->sk_state = TCP_CLOSE;
0609 
0610 out:
0611     release_sock(sk);
0612     release_sock(listener);
0613     if (cleanup)
0614         sock_put(sk);
0615 
0616     sock_put(sk);
0617     sock_put(listener);
0618 }
0619 
0620 /**** SOCKET OPERATIONS ****/
0621 
0622 static int __vsock_bind_connectible(struct vsock_sock *vsk,
0623                     struct sockaddr_vm *addr)
0624 {
0625     static u32 port;
0626     struct sockaddr_vm new_addr;
0627 
0628     if (!port)
0629         port = LAST_RESERVED_PORT + 1 +
0630             prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
0631 
0632     vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
0633 
0634     if (addr->svm_port == VMADDR_PORT_ANY) {
0635         bool found = false;
0636         unsigned int i;
0637 
0638         for (i = 0; i < MAX_PORT_RETRIES; i++) {
0639             if (port <= LAST_RESERVED_PORT)
0640                 port = LAST_RESERVED_PORT + 1;
0641 
0642             new_addr.svm_port = port++;
0643 
0644             if (!__vsock_find_bound_socket(&new_addr)) {
0645                 found = true;
0646                 break;
0647             }
0648         }
0649 
0650         if (!found)
0651             return -EADDRNOTAVAIL;
0652     } else {
0653         /* If port is in reserved range, ensure caller
0654          * has necessary privileges.
0655          */
0656         if (addr->svm_port <= LAST_RESERVED_PORT &&
0657             !capable(CAP_NET_BIND_SERVICE)) {
0658             return -EACCES;
0659         }
0660 
0661         if (__vsock_find_bound_socket(&new_addr))
0662             return -EADDRINUSE;
0663     }
0664 
0665     vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
0666 
0667     /* Remove connection oriented sockets from the unbound list and add them
0668      * to the hash table for easy lookup by its address.  The unbound list
0669      * is simply an extra entry at the end of the hash table, a trick used
0670      * by AF_UNIX.
0671      */
0672     __vsock_remove_bound(vsk);
0673     __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
0674 
0675     return 0;
0676 }
0677 
0678 static int __vsock_bind_dgram(struct vsock_sock *vsk,
0679                   struct sockaddr_vm *addr)
0680 {
0681     return vsk->transport->dgram_bind(vsk, addr);
0682 }
0683 
0684 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
0685 {
0686     struct vsock_sock *vsk = vsock_sk(sk);
0687     int retval;
0688 
0689     /* First ensure this socket isn't already bound. */
0690     if (vsock_addr_bound(&vsk->local_addr))
0691         return -EINVAL;
0692 
0693     /* Now bind to the provided address or select appropriate values if
0694      * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
0695      * like AF_INET prevents binding to a non-local IP address (in most
0696      * cases), we only allow binding to a local CID.
0697      */
0698     if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
0699         return -EADDRNOTAVAIL;
0700 
0701     switch (sk->sk_socket->type) {
0702     case SOCK_STREAM:
0703     case SOCK_SEQPACKET:
0704         spin_lock_bh(&vsock_table_lock);
0705         retval = __vsock_bind_connectible(vsk, addr);
0706         spin_unlock_bh(&vsock_table_lock);
0707         break;
0708 
0709     case SOCK_DGRAM:
0710         retval = __vsock_bind_dgram(vsk, addr);
0711         break;
0712 
0713     default:
0714         retval = -EINVAL;
0715         break;
0716     }
0717 
0718     return retval;
0719 }
0720 
0721 static void vsock_connect_timeout(struct work_struct *work);
0722 
0723 static struct sock *__vsock_create(struct net *net,
0724                    struct socket *sock,
0725                    struct sock *parent,
0726                    gfp_t priority,
0727                    unsigned short type,
0728                    int kern)
0729 {
0730     struct sock *sk;
0731     struct vsock_sock *psk;
0732     struct vsock_sock *vsk;
0733 
0734     sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
0735     if (!sk)
0736         return NULL;
0737 
0738     sock_init_data(sock, sk);
0739 
0740     /* sk->sk_type is normally set in sock_init_data, but only if sock is
0741      * non-NULL. We make sure that our sockets always have a type by
0742      * setting it here if needed.
0743      */
0744     if (!sock)
0745         sk->sk_type = type;
0746 
0747     vsk = vsock_sk(sk);
0748     vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
0749     vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
0750 
0751     sk->sk_destruct = vsock_sk_destruct;
0752     sk->sk_backlog_rcv = vsock_queue_rcv_skb;
0753     sock_reset_flag(sk, SOCK_DONE);
0754 
0755     INIT_LIST_HEAD(&vsk->bound_table);
0756     INIT_LIST_HEAD(&vsk->connected_table);
0757     vsk->listener = NULL;
0758     INIT_LIST_HEAD(&vsk->pending_links);
0759     INIT_LIST_HEAD(&vsk->accept_queue);
0760     vsk->rejected = false;
0761     vsk->sent_request = false;
0762     vsk->ignore_connecting_rst = false;
0763     vsk->peer_shutdown = 0;
0764     INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
0765     INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
0766 
0767     psk = parent ? vsock_sk(parent) : NULL;
0768     if (parent) {
0769         vsk->trusted = psk->trusted;
0770         vsk->owner = get_cred(psk->owner);
0771         vsk->connect_timeout = psk->connect_timeout;
0772         vsk->buffer_size = psk->buffer_size;
0773         vsk->buffer_min_size = psk->buffer_min_size;
0774         vsk->buffer_max_size = psk->buffer_max_size;
0775         security_sk_clone(parent, sk);
0776     } else {
0777         vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
0778         vsk->owner = get_current_cred();
0779         vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
0780         vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
0781         vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
0782         vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
0783     }
0784 
0785     return sk;
0786 }
0787 
0788 static bool sock_type_connectible(u16 type)
0789 {
0790     return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
0791 }
0792 
0793 static void __vsock_release(struct sock *sk, int level)
0794 {
0795     if (sk) {
0796         struct sock *pending;
0797         struct vsock_sock *vsk;
0798 
0799         vsk = vsock_sk(sk);
0800         pending = NULL; /* Compiler warning. */
0801 
0802         /* When "level" is SINGLE_DEPTH_NESTING, use the nested
0803          * version to avoid the warning "possible recursive locking
0804          * detected". When "level" is 0, lock_sock_nested(sk, level)
0805          * is the same as lock_sock(sk).
0806          */
0807         lock_sock_nested(sk, level);
0808 
0809         if (vsk->transport)
0810             vsk->transport->release(vsk);
0811         else if (sock_type_connectible(sk->sk_type))
0812             vsock_remove_sock(vsk);
0813 
0814         sock_orphan(sk);
0815         sk->sk_shutdown = SHUTDOWN_MASK;
0816 
0817         skb_queue_purge(&sk->sk_receive_queue);
0818 
0819         /* Clean up any sockets that never were accepted. */
0820         while ((pending = vsock_dequeue_accept(sk)) != NULL) {
0821             __vsock_release(pending, SINGLE_DEPTH_NESTING);
0822             sock_put(pending);
0823         }
0824 
0825         release_sock(sk);
0826         sock_put(sk);
0827     }
0828 }
0829 
0830 static void vsock_sk_destruct(struct sock *sk)
0831 {
0832     struct vsock_sock *vsk = vsock_sk(sk);
0833 
0834     vsock_deassign_transport(vsk);
0835 
0836     /* When clearing these addresses, there's no need to set the family and
0837      * possibly register the address family with the kernel.
0838      */
0839     vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
0840     vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
0841 
0842     put_cred(vsk->owner);
0843 }
0844 
0845 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
0846 {
0847     int err;
0848 
0849     err = sock_queue_rcv_skb(sk, skb);
0850     if (err)
0851         kfree_skb(skb);
0852 
0853     return err;
0854 }
0855 
0856 struct sock *vsock_create_connected(struct sock *parent)
0857 {
0858     return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
0859                   parent->sk_type, 0);
0860 }
0861 EXPORT_SYMBOL_GPL(vsock_create_connected);
0862 
0863 s64 vsock_stream_has_data(struct vsock_sock *vsk)
0864 {
0865     return vsk->transport->stream_has_data(vsk);
0866 }
0867 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
0868 
0869 static s64 vsock_connectible_has_data(struct vsock_sock *vsk)
0870 {
0871     struct sock *sk = sk_vsock(vsk);
0872 
0873     if (sk->sk_type == SOCK_SEQPACKET)
0874         return vsk->transport->seqpacket_has_data(vsk);
0875     else
0876         return vsock_stream_has_data(vsk);
0877 }
0878 
0879 s64 vsock_stream_has_space(struct vsock_sock *vsk)
0880 {
0881     return vsk->transport->stream_has_space(vsk);
0882 }
0883 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
0884 
0885 static int vsock_release(struct socket *sock)
0886 {
0887     __vsock_release(sock->sk, 0);
0888     sock->sk = NULL;
0889     sock->state = SS_FREE;
0890 
0891     return 0;
0892 }
0893 
0894 static int
0895 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
0896 {
0897     int err;
0898     struct sock *sk;
0899     struct sockaddr_vm *vm_addr;
0900 
0901     sk = sock->sk;
0902 
0903     if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
0904         return -EINVAL;
0905 
0906     lock_sock(sk);
0907     err = __vsock_bind(sk, vm_addr);
0908     release_sock(sk);
0909 
0910     return err;
0911 }
0912 
0913 static int vsock_getname(struct socket *sock,
0914              struct sockaddr *addr, int peer)
0915 {
0916     int err;
0917     struct sock *sk;
0918     struct vsock_sock *vsk;
0919     struct sockaddr_vm *vm_addr;
0920 
0921     sk = sock->sk;
0922     vsk = vsock_sk(sk);
0923     err = 0;
0924 
0925     lock_sock(sk);
0926 
0927     if (peer) {
0928         if (sock->state != SS_CONNECTED) {
0929             err = -ENOTCONN;
0930             goto out;
0931         }
0932         vm_addr = &vsk->remote_addr;
0933     } else {
0934         vm_addr = &vsk->local_addr;
0935     }
0936 
0937     if (!vm_addr) {
0938         err = -EINVAL;
0939         goto out;
0940     }
0941 
0942     /* sys_getsockname() and sys_getpeername() pass us a
0943      * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
0944      * that macro is defined in socket.c instead of .h, so we hardcode its
0945      * value here.
0946      */
0947     BUILD_BUG_ON(sizeof(*vm_addr) > 128);
0948     memcpy(addr, vm_addr, sizeof(*vm_addr));
0949     err = sizeof(*vm_addr);
0950 
0951 out:
0952     release_sock(sk);
0953     return err;
0954 }
0955 
0956 static int vsock_shutdown(struct socket *sock, int mode)
0957 {
0958     int err;
0959     struct sock *sk;
0960 
0961     /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
0962      * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
0963      * here like the other address families do.  Note also that the
0964      * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
0965      * which is what we want.
0966      */
0967     mode++;
0968 
0969     if ((mode & ~SHUTDOWN_MASK) || !mode)
0970         return -EINVAL;
0971 
0972     /* If this is a connection oriented socket and it is not connected then
0973      * bail out immediately.  If it is a DGRAM socket then we must first
0974      * kick the socket so that it wakes up from any sleeping calls, for
0975      * example recv(), and then afterwards return the error.
0976      */
0977 
0978     sk = sock->sk;
0979 
0980     lock_sock(sk);
0981     if (sock->state == SS_UNCONNECTED) {
0982         err = -ENOTCONN;
0983         if (sock_type_connectible(sk->sk_type))
0984             goto out;
0985     } else {
0986         sock->state = SS_DISCONNECTING;
0987         err = 0;
0988     }
0989 
0990     /* Receive and send shutdowns are treated alike. */
0991     mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
0992     if (mode) {
0993         sk->sk_shutdown |= mode;
0994         sk->sk_state_change(sk);
0995 
0996         if (sock_type_connectible(sk->sk_type)) {
0997             sock_reset_flag(sk, SOCK_DONE);
0998             vsock_send_shutdown(sk, mode);
0999         }
1000     }
1001 
1002 out:
1003     release_sock(sk);
1004     return err;
1005 }
1006 
1007 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1008                    poll_table *wait)
1009 {
1010     struct sock *sk;
1011     __poll_t mask;
1012     struct vsock_sock *vsk;
1013 
1014     sk = sock->sk;
1015     vsk = vsock_sk(sk);
1016 
1017     poll_wait(file, sk_sleep(sk), wait);
1018     mask = 0;
1019 
1020     if (sk->sk_err)
1021         /* Signify that there has been an error on this socket. */
1022         mask |= EPOLLERR;
1023 
1024     /* INET sockets treat local write shutdown and peer write shutdown as a
1025      * case of EPOLLHUP set.
1026      */
1027     if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1028         ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1029          (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1030         mask |= EPOLLHUP;
1031     }
1032 
1033     if (sk->sk_shutdown & RCV_SHUTDOWN ||
1034         vsk->peer_shutdown & SEND_SHUTDOWN) {
1035         mask |= EPOLLRDHUP;
1036     }
1037 
1038     if (sock->type == SOCK_DGRAM) {
1039         /* For datagram sockets we can read if there is something in
1040          * the queue and write as long as the socket isn't shutdown for
1041          * sending.
1042          */
1043         if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1044             (sk->sk_shutdown & RCV_SHUTDOWN)) {
1045             mask |= EPOLLIN | EPOLLRDNORM;
1046         }
1047 
1048         if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1049             mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1050 
1051     } else if (sock_type_connectible(sk->sk_type)) {
1052         const struct vsock_transport *transport;
1053 
1054         lock_sock(sk);
1055 
1056         transport = vsk->transport;
1057 
1058         /* Listening sockets that have connections in their accept
1059          * queue can be read.
1060          */
1061         if (sk->sk_state == TCP_LISTEN
1062             && !vsock_is_accept_queue_empty(sk))
1063             mask |= EPOLLIN | EPOLLRDNORM;
1064 
1065         /* If there is something in the queue then we can read. */
1066         if (transport && transport->stream_is_active(vsk) &&
1067             !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1068             bool data_ready_now = false;
1069             int ret = transport->notify_poll_in(
1070                     vsk, 1, &data_ready_now);
1071             if (ret < 0) {
1072                 mask |= EPOLLERR;
1073             } else {
1074                 if (data_ready_now)
1075                     mask |= EPOLLIN | EPOLLRDNORM;
1076 
1077             }
1078         }
1079 
1080         /* Sockets whose connections have been closed, reset, or
1081          * terminated should also be considered read, and we check the
1082          * shutdown flag for that.
1083          */
1084         if (sk->sk_shutdown & RCV_SHUTDOWN ||
1085             vsk->peer_shutdown & SEND_SHUTDOWN) {
1086             mask |= EPOLLIN | EPOLLRDNORM;
1087         }
1088 
1089         /* Connected sockets that can produce data can be written. */
1090         if (transport && sk->sk_state == TCP_ESTABLISHED) {
1091             if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1092                 bool space_avail_now = false;
1093                 int ret = transport->notify_poll_out(
1094                         vsk, 1, &space_avail_now);
1095                 if (ret < 0) {
1096                     mask |= EPOLLERR;
1097                 } else {
1098                     if (space_avail_now)
1099                         /* Remove EPOLLWRBAND since INET
1100                          * sockets are not setting it.
1101                          */
1102                         mask |= EPOLLOUT | EPOLLWRNORM;
1103 
1104                 }
1105             }
1106         }
1107 
1108         /* Simulate INET socket poll behaviors, which sets
1109          * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1110          * but local send is not shutdown.
1111          */
1112         if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1113             if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1114                 mask |= EPOLLOUT | EPOLLWRNORM;
1115 
1116         }
1117 
1118         release_sock(sk);
1119     }
1120 
1121     return mask;
1122 }
1123 
1124 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1125                    size_t len)
1126 {
1127     int err;
1128     struct sock *sk;
1129     struct vsock_sock *vsk;
1130     struct sockaddr_vm *remote_addr;
1131     const struct vsock_transport *transport;
1132 
1133     if (msg->msg_flags & MSG_OOB)
1134         return -EOPNOTSUPP;
1135 
1136     /* For now, MSG_DONTWAIT is always assumed... */
1137     err = 0;
1138     sk = sock->sk;
1139     vsk = vsock_sk(sk);
1140 
1141     lock_sock(sk);
1142 
1143     transport = vsk->transport;
1144 
1145     err = vsock_auto_bind(vsk);
1146     if (err)
1147         goto out;
1148 
1149 
1150     /* If the provided message contains an address, use that.  Otherwise
1151      * fall back on the socket's remote handle (if it has been connected).
1152      */
1153     if (msg->msg_name &&
1154         vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1155                 &remote_addr) == 0) {
1156         /* Ensure this address is of the right type and is a valid
1157          * destination.
1158          */
1159 
1160         if (remote_addr->svm_cid == VMADDR_CID_ANY)
1161             remote_addr->svm_cid = transport->get_local_cid();
1162 
1163         if (!vsock_addr_bound(remote_addr)) {
1164             err = -EINVAL;
1165             goto out;
1166         }
1167     } else if (sock->state == SS_CONNECTED) {
1168         remote_addr = &vsk->remote_addr;
1169 
1170         if (remote_addr->svm_cid == VMADDR_CID_ANY)
1171             remote_addr->svm_cid = transport->get_local_cid();
1172 
1173         /* XXX Should connect() or this function ensure remote_addr is
1174          * bound?
1175          */
1176         if (!vsock_addr_bound(&vsk->remote_addr)) {
1177             err = -EINVAL;
1178             goto out;
1179         }
1180     } else {
1181         err = -EINVAL;
1182         goto out;
1183     }
1184 
1185     if (!transport->dgram_allow(remote_addr->svm_cid,
1186                     remote_addr->svm_port)) {
1187         err = -EINVAL;
1188         goto out;
1189     }
1190 
1191     err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1192 
1193 out:
1194     release_sock(sk);
1195     return err;
1196 }
1197 
1198 static int vsock_dgram_connect(struct socket *sock,
1199                    struct sockaddr *addr, int addr_len, int flags)
1200 {
1201     int err;
1202     struct sock *sk;
1203     struct vsock_sock *vsk;
1204     struct sockaddr_vm *remote_addr;
1205 
1206     sk = sock->sk;
1207     vsk = vsock_sk(sk);
1208 
1209     err = vsock_addr_cast(addr, addr_len, &remote_addr);
1210     if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1211         lock_sock(sk);
1212         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1213                 VMADDR_PORT_ANY);
1214         sock->state = SS_UNCONNECTED;
1215         release_sock(sk);
1216         return 0;
1217     } else if (err != 0)
1218         return -EINVAL;
1219 
1220     lock_sock(sk);
1221 
1222     err = vsock_auto_bind(vsk);
1223     if (err)
1224         goto out;
1225 
1226     if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1227                      remote_addr->svm_port)) {
1228         err = -EINVAL;
1229         goto out;
1230     }
1231 
1232     memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1233     sock->state = SS_CONNECTED;
1234 
1235 out:
1236     release_sock(sk);
1237     return err;
1238 }
1239 
1240 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1241                    size_t len, int flags)
1242 {
1243     struct vsock_sock *vsk = vsock_sk(sock->sk);
1244 
1245     return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1246 }
1247 
1248 static const struct proto_ops vsock_dgram_ops = {
1249     .family = PF_VSOCK,
1250     .owner = THIS_MODULE,
1251     .release = vsock_release,
1252     .bind = vsock_bind,
1253     .connect = vsock_dgram_connect,
1254     .socketpair = sock_no_socketpair,
1255     .accept = sock_no_accept,
1256     .getname = vsock_getname,
1257     .poll = vsock_poll,
1258     .ioctl = sock_no_ioctl,
1259     .listen = sock_no_listen,
1260     .shutdown = vsock_shutdown,
1261     .sendmsg = vsock_dgram_sendmsg,
1262     .recvmsg = vsock_dgram_recvmsg,
1263     .mmap = sock_no_mmap,
1264     .sendpage = sock_no_sendpage,
1265 };
1266 
1267 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1268 {
1269     const struct vsock_transport *transport = vsk->transport;
1270 
1271     if (!transport || !transport->cancel_pkt)
1272         return -EOPNOTSUPP;
1273 
1274     return transport->cancel_pkt(vsk);
1275 }
1276 
1277 static void vsock_connect_timeout(struct work_struct *work)
1278 {
1279     struct sock *sk;
1280     struct vsock_sock *vsk;
1281 
1282     vsk = container_of(work, struct vsock_sock, connect_work.work);
1283     sk = sk_vsock(vsk);
1284 
1285     lock_sock(sk);
1286     if (sk->sk_state == TCP_SYN_SENT &&
1287         (sk->sk_shutdown != SHUTDOWN_MASK)) {
1288         sk->sk_state = TCP_CLOSE;
1289         sk->sk_socket->state = SS_UNCONNECTED;
1290         sk->sk_err = ETIMEDOUT;
1291         sk_error_report(sk);
1292         vsock_transport_cancel_pkt(vsk);
1293     }
1294     release_sock(sk);
1295 
1296     sock_put(sk);
1297 }
1298 
1299 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1300              int addr_len, int flags)
1301 {
1302     int err;
1303     struct sock *sk;
1304     struct vsock_sock *vsk;
1305     const struct vsock_transport *transport;
1306     struct sockaddr_vm *remote_addr;
1307     long timeout;
1308     DEFINE_WAIT(wait);
1309 
1310     err = 0;
1311     sk = sock->sk;
1312     vsk = vsock_sk(sk);
1313 
1314     lock_sock(sk);
1315 
1316     /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1317     switch (sock->state) {
1318     case SS_CONNECTED:
1319         err = -EISCONN;
1320         goto out;
1321     case SS_DISCONNECTING:
1322         err = -EINVAL;
1323         goto out;
1324     case SS_CONNECTING:
1325         /* This continues on so we can move sock into the SS_CONNECTED
1326          * state once the connection has completed (at which point err
1327          * will be set to zero also).  Otherwise, we will either wait
1328          * for the connection or return -EALREADY should this be a
1329          * non-blocking call.
1330          */
1331         err = -EALREADY;
1332         if (flags & O_NONBLOCK)
1333             goto out;
1334         break;
1335     default:
1336         if ((sk->sk_state == TCP_LISTEN) ||
1337             vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1338             err = -EINVAL;
1339             goto out;
1340         }
1341 
1342         /* Set the remote address that we are connecting to. */
1343         memcpy(&vsk->remote_addr, remote_addr,
1344                sizeof(vsk->remote_addr));
1345 
1346         err = vsock_assign_transport(vsk, NULL);
1347         if (err)
1348             goto out;
1349 
1350         transport = vsk->transport;
1351 
1352         /* The hypervisor and well-known contexts do not have socket
1353          * endpoints.
1354          */
1355         if (!transport ||
1356             !transport->stream_allow(remote_addr->svm_cid,
1357                          remote_addr->svm_port)) {
1358             err = -ENETUNREACH;
1359             goto out;
1360         }
1361 
1362         err = vsock_auto_bind(vsk);
1363         if (err)
1364             goto out;
1365 
1366         sk->sk_state = TCP_SYN_SENT;
1367 
1368         err = transport->connect(vsk);
1369         if (err < 0)
1370             goto out;
1371 
1372         /* Mark sock as connecting and set the error code to in
1373          * progress in case this is a non-blocking connect.
1374          */
1375         sock->state = SS_CONNECTING;
1376         err = -EINPROGRESS;
1377     }
1378 
1379     /* The receive path will handle all communication until we are able to
1380      * enter the connected state.  Here we wait for the connection to be
1381      * completed or a notification of an error.
1382      */
1383     timeout = vsk->connect_timeout;
1384     prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1385 
1386     while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1387         if (flags & O_NONBLOCK) {
1388             /* If we're not going to block, we schedule a timeout
1389              * function to generate a timeout on the connection
1390              * attempt, in case the peer doesn't respond in a
1391              * timely manner. We hold on to the socket until the
1392              * timeout fires.
1393              */
1394             sock_hold(sk);
1395 
1396             /* If the timeout function is already scheduled,
1397              * reschedule it, then ungrab the socket refcount to
1398              * keep it balanced.
1399              */
1400             if (mod_delayed_work(system_wq, &vsk->connect_work,
1401                          timeout))
1402                 sock_put(sk);
1403 
1404             /* Skip ahead to preserve error code set above. */
1405             goto out_wait;
1406         }
1407 
1408         release_sock(sk);
1409         timeout = schedule_timeout(timeout);
1410         lock_sock(sk);
1411 
1412         if (signal_pending(current)) {
1413             err = sock_intr_errno(timeout);
1414             sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1415             sock->state = SS_UNCONNECTED;
1416             vsock_transport_cancel_pkt(vsk);
1417             vsock_remove_connected(vsk);
1418             goto out_wait;
1419         } else if (timeout == 0) {
1420             err = -ETIMEDOUT;
1421             sk->sk_state = TCP_CLOSE;
1422             sock->state = SS_UNCONNECTED;
1423             vsock_transport_cancel_pkt(vsk);
1424             goto out_wait;
1425         }
1426 
1427         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1428     }
1429 
1430     if (sk->sk_err) {
1431         err = -sk->sk_err;
1432         sk->sk_state = TCP_CLOSE;
1433         sock->state = SS_UNCONNECTED;
1434     } else {
1435         err = 0;
1436     }
1437 
1438 out_wait:
1439     finish_wait(sk_sleep(sk), &wait);
1440 out:
1441     release_sock(sk);
1442     return err;
1443 }
1444 
1445 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1446             bool kern)
1447 {
1448     struct sock *listener;
1449     int err;
1450     struct sock *connected;
1451     struct vsock_sock *vconnected;
1452     long timeout;
1453     DEFINE_WAIT(wait);
1454 
1455     err = 0;
1456     listener = sock->sk;
1457 
1458     lock_sock(listener);
1459 
1460     if (!sock_type_connectible(sock->type)) {
1461         err = -EOPNOTSUPP;
1462         goto out;
1463     }
1464 
1465     if (listener->sk_state != TCP_LISTEN) {
1466         err = -EINVAL;
1467         goto out;
1468     }
1469 
1470     /* Wait for children sockets to appear; these are the new sockets
1471      * created upon connection establishment.
1472      */
1473     timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1474     prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1475 
1476     while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1477            listener->sk_err == 0) {
1478         release_sock(listener);
1479         timeout = schedule_timeout(timeout);
1480         finish_wait(sk_sleep(listener), &wait);
1481         lock_sock(listener);
1482 
1483         if (signal_pending(current)) {
1484             err = sock_intr_errno(timeout);
1485             goto out;
1486         } else if (timeout == 0) {
1487             err = -EAGAIN;
1488             goto out;
1489         }
1490 
1491         prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1492     }
1493     finish_wait(sk_sleep(listener), &wait);
1494 
1495     if (listener->sk_err)
1496         err = -listener->sk_err;
1497 
1498     if (connected) {
1499         sk_acceptq_removed(listener);
1500 
1501         lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1502         vconnected = vsock_sk(connected);
1503 
1504         /* If the listener socket has received an error, then we should
1505          * reject this socket and return.  Note that we simply mark the
1506          * socket rejected, drop our reference, and let the cleanup
1507          * function handle the cleanup; the fact that we found it in
1508          * the listener's accept queue guarantees that the cleanup
1509          * function hasn't run yet.
1510          */
1511         if (err) {
1512             vconnected->rejected = true;
1513         } else {
1514             newsock->state = SS_CONNECTED;
1515             sock_graft(connected, newsock);
1516         }
1517 
1518         release_sock(connected);
1519         sock_put(connected);
1520     }
1521 
1522 out:
1523     release_sock(listener);
1524     return err;
1525 }
1526 
1527 static int vsock_listen(struct socket *sock, int backlog)
1528 {
1529     int err;
1530     struct sock *sk;
1531     struct vsock_sock *vsk;
1532 
1533     sk = sock->sk;
1534 
1535     lock_sock(sk);
1536 
1537     if (!sock_type_connectible(sk->sk_type)) {
1538         err = -EOPNOTSUPP;
1539         goto out;
1540     }
1541 
1542     if (sock->state != SS_UNCONNECTED) {
1543         err = -EINVAL;
1544         goto out;
1545     }
1546 
1547     vsk = vsock_sk(sk);
1548 
1549     if (!vsock_addr_bound(&vsk->local_addr)) {
1550         err = -EINVAL;
1551         goto out;
1552     }
1553 
1554     sk->sk_max_ack_backlog = backlog;
1555     sk->sk_state = TCP_LISTEN;
1556 
1557     err = 0;
1558 
1559 out:
1560     release_sock(sk);
1561     return err;
1562 }
1563 
1564 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1565                      const struct vsock_transport *transport,
1566                      u64 val)
1567 {
1568     if (val > vsk->buffer_max_size)
1569         val = vsk->buffer_max_size;
1570 
1571     if (val < vsk->buffer_min_size)
1572         val = vsk->buffer_min_size;
1573 
1574     if (val != vsk->buffer_size &&
1575         transport && transport->notify_buffer_size)
1576         transport->notify_buffer_size(vsk, &val);
1577 
1578     vsk->buffer_size = val;
1579 }
1580 
1581 static int vsock_connectible_setsockopt(struct socket *sock,
1582                     int level,
1583                     int optname,
1584                     sockptr_t optval,
1585                     unsigned int optlen)
1586 {
1587     int err;
1588     struct sock *sk;
1589     struct vsock_sock *vsk;
1590     const struct vsock_transport *transport;
1591     u64 val;
1592 
1593     if (level != AF_VSOCK)
1594         return -ENOPROTOOPT;
1595 
1596 #define COPY_IN(_v)                                       \
1597     do {                          \
1598         if (optlen < sizeof(_v)) {        \
1599             err = -EINVAL;            \
1600             goto exit;            \
1601         }                     \
1602         if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {  \
1603             err = -EFAULT;                  \
1604             goto exit;                  \
1605         }                           \
1606     } while (0)
1607 
1608     err = 0;
1609     sk = sock->sk;
1610     vsk = vsock_sk(sk);
1611 
1612     lock_sock(sk);
1613 
1614     transport = vsk->transport;
1615 
1616     switch (optname) {
1617     case SO_VM_SOCKETS_BUFFER_SIZE:
1618         COPY_IN(val);
1619         vsock_update_buffer_size(vsk, transport, val);
1620         break;
1621 
1622     case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1623         COPY_IN(val);
1624         vsk->buffer_max_size = val;
1625         vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1626         break;
1627 
1628     case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1629         COPY_IN(val);
1630         vsk->buffer_min_size = val;
1631         vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1632         break;
1633 
1634     case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1635     case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1636         struct __kernel_sock_timeval tv;
1637 
1638         err = sock_copy_user_timeval(&tv, optval, optlen,
1639                          optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1640         if (err)
1641             break;
1642         if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1643             tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1644             vsk->connect_timeout = tv.tv_sec * HZ +
1645                 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1646             if (vsk->connect_timeout == 0)
1647                 vsk->connect_timeout =
1648                     VSOCK_DEFAULT_CONNECT_TIMEOUT;
1649 
1650         } else {
1651             err = -ERANGE;
1652         }
1653         break;
1654     }
1655 
1656     default:
1657         err = -ENOPROTOOPT;
1658         break;
1659     }
1660 
1661 #undef COPY_IN
1662 
1663 exit:
1664     release_sock(sk);
1665     return err;
1666 }
1667 
1668 static int vsock_connectible_getsockopt(struct socket *sock,
1669                     int level, int optname,
1670                     char __user *optval,
1671                     int __user *optlen)
1672 {
1673     struct sock *sk = sock->sk;
1674     struct vsock_sock *vsk = vsock_sk(sk);
1675 
1676     union {
1677         u64 val64;
1678         struct old_timeval32 tm32;
1679         struct __kernel_old_timeval tm;
1680         struct  __kernel_sock_timeval stm;
1681     } v;
1682 
1683     int lv = sizeof(v.val64);
1684     int len;
1685 
1686     if (level != AF_VSOCK)
1687         return -ENOPROTOOPT;
1688 
1689     if (get_user(len, optlen))
1690         return -EFAULT;
1691 
1692     memset(&v, 0, sizeof(v));
1693 
1694     switch (optname) {
1695     case SO_VM_SOCKETS_BUFFER_SIZE:
1696         v.val64 = vsk->buffer_size;
1697         break;
1698 
1699     case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1700         v.val64 = vsk->buffer_max_size;
1701         break;
1702 
1703     case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1704         v.val64 = vsk->buffer_min_size;
1705         break;
1706 
1707     case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1708     case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1709         lv = sock_get_timeout(vsk->connect_timeout, &v,
1710                       optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1711         break;
1712 
1713     default:
1714         return -ENOPROTOOPT;
1715     }
1716 
1717     if (len < lv)
1718         return -EINVAL;
1719     if (len > lv)
1720         len = lv;
1721     if (copy_to_user(optval, &v, len))
1722         return -EFAULT;
1723 
1724     if (put_user(len, optlen))
1725         return -EFAULT;
1726 
1727     return 0;
1728 }
1729 
1730 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1731                      size_t len)
1732 {
1733     struct sock *sk;
1734     struct vsock_sock *vsk;
1735     const struct vsock_transport *transport;
1736     ssize_t total_written;
1737     long timeout;
1738     int err;
1739     struct vsock_transport_send_notify_data send_data;
1740     DEFINE_WAIT_FUNC(wait, woken_wake_function);
1741 
1742     sk = sock->sk;
1743     vsk = vsock_sk(sk);
1744     total_written = 0;
1745     err = 0;
1746 
1747     if (msg->msg_flags & MSG_OOB)
1748         return -EOPNOTSUPP;
1749 
1750     lock_sock(sk);
1751 
1752     transport = vsk->transport;
1753 
1754     /* Callers should not provide a destination with connection oriented
1755      * sockets.
1756      */
1757     if (msg->msg_namelen) {
1758         err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1759         goto out;
1760     }
1761 
1762     /* Send data only if both sides are not shutdown in the direction. */
1763     if (sk->sk_shutdown & SEND_SHUTDOWN ||
1764         vsk->peer_shutdown & RCV_SHUTDOWN) {
1765         err = -EPIPE;
1766         goto out;
1767     }
1768 
1769     if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1770         !vsock_addr_bound(&vsk->local_addr)) {
1771         err = -ENOTCONN;
1772         goto out;
1773     }
1774 
1775     if (!vsock_addr_bound(&vsk->remote_addr)) {
1776         err = -EDESTADDRREQ;
1777         goto out;
1778     }
1779 
1780     /* Wait for room in the produce queue to enqueue our user's data. */
1781     timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1782 
1783     err = transport->notify_send_init(vsk, &send_data);
1784     if (err < 0)
1785         goto out;
1786 
1787     while (total_written < len) {
1788         ssize_t written;
1789 
1790         add_wait_queue(sk_sleep(sk), &wait);
1791         while (vsock_stream_has_space(vsk) == 0 &&
1792                sk->sk_err == 0 &&
1793                !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1794                !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1795 
1796             /* Don't wait for non-blocking sockets. */
1797             if (timeout == 0) {
1798                 err = -EAGAIN;
1799                 remove_wait_queue(sk_sleep(sk), &wait);
1800                 goto out_err;
1801             }
1802 
1803             err = transport->notify_send_pre_block(vsk, &send_data);
1804             if (err < 0) {
1805                 remove_wait_queue(sk_sleep(sk), &wait);
1806                 goto out_err;
1807             }
1808 
1809             release_sock(sk);
1810             timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1811             lock_sock(sk);
1812             if (signal_pending(current)) {
1813                 err = sock_intr_errno(timeout);
1814                 remove_wait_queue(sk_sleep(sk), &wait);
1815                 goto out_err;
1816             } else if (timeout == 0) {
1817                 err = -EAGAIN;
1818                 remove_wait_queue(sk_sleep(sk), &wait);
1819                 goto out_err;
1820             }
1821         }
1822         remove_wait_queue(sk_sleep(sk), &wait);
1823 
1824         /* These checks occur both as part of and after the loop
1825          * conditional since we need to check before and after
1826          * sleeping.
1827          */
1828         if (sk->sk_err) {
1829             err = -sk->sk_err;
1830             goto out_err;
1831         } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1832                (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1833             err = -EPIPE;
1834             goto out_err;
1835         }
1836 
1837         err = transport->notify_send_pre_enqueue(vsk, &send_data);
1838         if (err < 0)
1839             goto out_err;
1840 
1841         /* Note that enqueue will only write as many bytes as are free
1842          * in the produce queue, so we don't need to ensure len is
1843          * smaller than the queue size.  It is the caller's
1844          * responsibility to check how many bytes we were able to send.
1845          */
1846 
1847         if (sk->sk_type == SOCK_SEQPACKET) {
1848             written = transport->seqpacket_enqueue(vsk,
1849                         msg, len - total_written);
1850         } else {
1851             written = transport->stream_enqueue(vsk,
1852                     msg, len - total_written);
1853         }
1854         if (written < 0) {
1855             err = -ENOMEM;
1856             goto out_err;
1857         }
1858 
1859         total_written += written;
1860 
1861         err = transport->notify_send_post_enqueue(
1862                 vsk, written, &send_data);
1863         if (err < 0)
1864             goto out_err;
1865 
1866     }
1867 
1868 out_err:
1869     if (total_written > 0) {
1870         /* Return number of written bytes only if:
1871          * 1) SOCK_STREAM socket.
1872          * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1873          */
1874         if (sk->sk_type == SOCK_STREAM || total_written == len)
1875             err = total_written;
1876     }
1877 out:
1878     release_sock(sk);
1879     return err;
1880 }
1881 
1882 static int vsock_connectible_wait_data(struct sock *sk,
1883                        struct wait_queue_entry *wait,
1884                        long timeout,
1885                        struct vsock_transport_recv_notify_data *recv_data,
1886                        size_t target)
1887 {
1888     const struct vsock_transport *transport;
1889     struct vsock_sock *vsk;
1890     s64 data;
1891     int err;
1892 
1893     vsk = vsock_sk(sk);
1894     err = 0;
1895     transport = vsk->transport;
1896 
1897     while ((data = vsock_connectible_has_data(vsk)) == 0) {
1898         prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1899 
1900         if (sk->sk_err != 0 ||
1901             (sk->sk_shutdown & RCV_SHUTDOWN) ||
1902             (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1903             break;
1904         }
1905 
1906         /* Don't wait for non-blocking sockets. */
1907         if (timeout == 0) {
1908             err = -EAGAIN;
1909             break;
1910         }
1911 
1912         if (recv_data) {
1913             err = transport->notify_recv_pre_block(vsk, target, recv_data);
1914             if (err < 0)
1915                 break;
1916         }
1917 
1918         release_sock(sk);
1919         timeout = schedule_timeout(timeout);
1920         lock_sock(sk);
1921 
1922         if (signal_pending(current)) {
1923             err = sock_intr_errno(timeout);
1924             break;
1925         } else if (timeout == 0) {
1926             err = -EAGAIN;
1927             break;
1928         }
1929     }
1930 
1931     finish_wait(sk_sleep(sk), wait);
1932 
1933     if (err)
1934         return err;
1935 
1936     /* Internal transport error when checking for available
1937      * data. XXX This should be changed to a connection
1938      * reset in a later change.
1939      */
1940     if (data < 0)
1941         return -ENOMEM;
1942 
1943     return data;
1944 }
1945 
1946 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
1947                   size_t len, int flags)
1948 {
1949     struct vsock_transport_recv_notify_data recv_data;
1950     const struct vsock_transport *transport;
1951     struct vsock_sock *vsk;
1952     ssize_t copied;
1953     size_t target;
1954     long timeout;
1955     int err;
1956 
1957     DEFINE_WAIT(wait);
1958 
1959     vsk = vsock_sk(sk);
1960     transport = vsk->transport;
1961 
1962     /* We must not copy less than target bytes into the user's buffer
1963      * before returning successfully, so we wait for the consume queue to
1964      * have that much data to consume before dequeueing.  Note that this
1965      * makes it impossible to handle cases where target is greater than the
1966      * queue size.
1967      */
1968     target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1969     if (target >= transport->stream_rcvhiwat(vsk)) {
1970         err = -ENOMEM;
1971         goto out;
1972     }
1973     timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1974     copied = 0;
1975 
1976     err = transport->notify_recv_init(vsk, target, &recv_data);
1977     if (err < 0)
1978         goto out;
1979 
1980 
1981     while (1) {
1982         ssize_t read;
1983 
1984         err = vsock_connectible_wait_data(sk, &wait, timeout,
1985                           &recv_data, target);
1986         if (err <= 0)
1987             break;
1988 
1989         err = transport->notify_recv_pre_dequeue(vsk, target,
1990                              &recv_data);
1991         if (err < 0)
1992             break;
1993 
1994         read = transport->stream_dequeue(vsk, msg, len - copied, flags);
1995         if (read < 0) {
1996             err = -ENOMEM;
1997             break;
1998         }
1999 
2000         copied += read;
2001 
2002         err = transport->notify_recv_post_dequeue(vsk, target, read,
2003                         !(flags & MSG_PEEK), &recv_data);
2004         if (err < 0)
2005             goto out;
2006 
2007         if (read >= target || flags & MSG_PEEK)
2008             break;
2009 
2010         target -= read;
2011     }
2012 
2013     if (sk->sk_err)
2014         err = -sk->sk_err;
2015     else if (sk->sk_shutdown & RCV_SHUTDOWN)
2016         err = 0;
2017 
2018     if (copied > 0)
2019         err = copied;
2020 
2021 out:
2022     return err;
2023 }
2024 
2025 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2026                      size_t len, int flags)
2027 {
2028     const struct vsock_transport *transport;
2029     struct vsock_sock *vsk;
2030     ssize_t msg_len;
2031     long timeout;
2032     int err = 0;
2033     DEFINE_WAIT(wait);
2034 
2035     vsk = vsock_sk(sk);
2036     transport = vsk->transport;
2037 
2038     timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2039 
2040     err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2041     if (err <= 0)
2042         goto out;
2043 
2044     msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2045 
2046     if (msg_len < 0) {
2047         err = -ENOMEM;
2048         goto out;
2049     }
2050 
2051     if (sk->sk_err) {
2052         err = -sk->sk_err;
2053     } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2054         err = 0;
2055     } else {
2056         /* User sets MSG_TRUNC, so return real length of
2057          * packet.
2058          */
2059         if (flags & MSG_TRUNC)
2060             err = msg_len;
2061         else
2062             err = len - msg_data_left(msg);
2063 
2064         /* Always set MSG_TRUNC if real length of packet is
2065          * bigger than user's buffer.
2066          */
2067         if (msg_len > len)
2068             msg->msg_flags |= MSG_TRUNC;
2069     }
2070 
2071 out:
2072     return err;
2073 }
2074 
2075 static int
2076 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2077               int flags)
2078 {
2079     struct sock *sk;
2080     struct vsock_sock *vsk;
2081     const struct vsock_transport *transport;
2082     int err;
2083 
2084     DEFINE_WAIT(wait);
2085 
2086     sk = sock->sk;
2087     vsk = vsock_sk(sk);
2088     err = 0;
2089 
2090     lock_sock(sk);
2091 
2092     transport = vsk->transport;
2093 
2094     if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2095         /* Recvmsg is supposed to return 0 if a peer performs an
2096          * orderly shutdown. Differentiate between that case and when a
2097          * peer has not connected or a local shutdown occurred with the
2098          * SOCK_DONE flag.
2099          */
2100         if (sock_flag(sk, SOCK_DONE))
2101             err = 0;
2102         else
2103             err = -ENOTCONN;
2104 
2105         goto out;
2106     }
2107 
2108     if (flags & MSG_OOB) {
2109         err = -EOPNOTSUPP;
2110         goto out;
2111     }
2112 
2113     /* We don't check peer_shutdown flag here since peer may actually shut
2114      * down, but there can be data in the queue that a local socket can
2115      * receive.
2116      */
2117     if (sk->sk_shutdown & RCV_SHUTDOWN) {
2118         err = 0;
2119         goto out;
2120     }
2121 
2122     /* It is valid on Linux to pass in a zero-length receive buffer.  This
2123      * is not an error.  We may as well bail out now.
2124      */
2125     if (!len) {
2126         err = 0;
2127         goto out;
2128     }
2129 
2130     if (sk->sk_type == SOCK_STREAM)
2131         err = __vsock_stream_recvmsg(sk, msg, len, flags);
2132     else
2133         err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2134 
2135 out:
2136     release_sock(sk);
2137     return err;
2138 }
2139 
2140 static const struct proto_ops vsock_stream_ops = {
2141     .family = PF_VSOCK,
2142     .owner = THIS_MODULE,
2143     .release = vsock_release,
2144     .bind = vsock_bind,
2145     .connect = vsock_connect,
2146     .socketpair = sock_no_socketpair,
2147     .accept = vsock_accept,
2148     .getname = vsock_getname,
2149     .poll = vsock_poll,
2150     .ioctl = sock_no_ioctl,
2151     .listen = vsock_listen,
2152     .shutdown = vsock_shutdown,
2153     .setsockopt = vsock_connectible_setsockopt,
2154     .getsockopt = vsock_connectible_getsockopt,
2155     .sendmsg = vsock_connectible_sendmsg,
2156     .recvmsg = vsock_connectible_recvmsg,
2157     .mmap = sock_no_mmap,
2158     .sendpage = sock_no_sendpage,
2159 };
2160 
2161 static const struct proto_ops vsock_seqpacket_ops = {
2162     .family = PF_VSOCK,
2163     .owner = THIS_MODULE,
2164     .release = vsock_release,
2165     .bind = vsock_bind,
2166     .connect = vsock_connect,
2167     .socketpair = sock_no_socketpair,
2168     .accept = vsock_accept,
2169     .getname = vsock_getname,
2170     .poll = vsock_poll,
2171     .ioctl = sock_no_ioctl,
2172     .listen = vsock_listen,
2173     .shutdown = vsock_shutdown,
2174     .setsockopt = vsock_connectible_setsockopt,
2175     .getsockopt = vsock_connectible_getsockopt,
2176     .sendmsg = vsock_connectible_sendmsg,
2177     .recvmsg = vsock_connectible_recvmsg,
2178     .mmap = sock_no_mmap,
2179     .sendpage = sock_no_sendpage,
2180 };
2181 
2182 static int vsock_create(struct net *net, struct socket *sock,
2183             int protocol, int kern)
2184 {
2185     struct vsock_sock *vsk;
2186     struct sock *sk;
2187     int ret;
2188 
2189     if (!sock)
2190         return -EINVAL;
2191 
2192     if (protocol && protocol != PF_VSOCK)
2193         return -EPROTONOSUPPORT;
2194 
2195     switch (sock->type) {
2196     case SOCK_DGRAM:
2197         sock->ops = &vsock_dgram_ops;
2198         break;
2199     case SOCK_STREAM:
2200         sock->ops = &vsock_stream_ops;
2201         break;
2202     case SOCK_SEQPACKET:
2203         sock->ops = &vsock_seqpacket_ops;
2204         break;
2205     default:
2206         return -ESOCKTNOSUPPORT;
2207     }
2208 
2209     sock->state = SS_UNCONNECTED;
2210 
2211     sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2212     if (!sk)
2213         return -ENOMEM;
2214 
2215     vsk = vsock_sk(sk);
2216 
2217     if (sock->type == SOCK_DGRAM) {
2218         ret = vsock_assign_transport(vsk, NULL);
2219         if (ret < 0) {
2220             sock_put(sk);
2221             return ret;
2222         }
2223     }
2224 
2225     vsock_insert_unbound(vsk);
2226 
2227     return 0;
2228 }
2229 
2230 static const struct net_proto_family vsock_family_ops = {
2231     .family = AF_VSOCK,
2232     .create = vsock_create,
2233     .owner = THIS_MODULE,
2234 };
2235 
2236 static long vsock_dev_do_ioctl(struct file *filp,
2237                    unsigned int cmd, void __user *ptr)
2238 {
2239     u32 __user *p = ptr;
2240     u32 cid = VMADDR_CID_ANY;
2241     int retval = 0;
2242 
2243     switch (cmd) {
2244     case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2245         /* To be compatible with the VMCI behavior, we prioritize the
2246          * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2247          */
2248         if (transport_g2h)
2249             cid = transport_g2h->get_local_cid();
2250         else if (transport_h2g)
2251             cid = transport_h2g->get_local_cid();
2252 
2253         if (put_user(cid, p) != 0)
2254             retval = -EFAULT;
2255         break;
2256 
2257     default:
2258         retval = -ENOIOCTLCMD;
2259     }
2260 
2261     return retval;
2262 }
2263 
2264 static long vsock_dev_ioctl(struct file *filp,
2265                 unsigned int cmd, unsigned long arg)
2266 {
2267     return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2268 }
2269 
2270 #ifdef CONFIG_COMPAT
2271 static long vsock_dev_compat_ioctl(struct file *filp,
2272                    unsigned int cmd, unsigned long arg)
2273 {
2274     return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2275 }
2276 #endif
2277 
2278 static const struct file_operations vsock_device_ops = {
2279     .owner      = THIS_MODULE,
2280     .unlocked_ioctl = vsock_dev_ioctl,
2281 #ifdef CONFIG_COMPAT
2282     .compat_ioctl   = vsock_dev_compat_ioctl,
2283 #endif
2284     .open       = nonseekable_open,
2285 };
2286 
2287 static struct miscdevice vsock_device = {
2288     .name       = "vsock",
2289     .fops       = &vsock_device_ops,
2290 };
2291 
2292 static int __init vsock_init(void)
2293 {
2294     int err = 0;
2295 
2296     vsock_init_tables();
2297 
2298     vsock_proto.owner = THIS_MODULE;
2299     vsock_device.minor = MISC_DYNAMIC_MINOR;
2300     err = misc_register(&vsock_device);
2301     if (err) {
2302         pr_err("Failed to register misc device\n");
2303         goto err_reset_transport;
2304     }
2305 
2306     err = proto_register(&vsock_proto, 1);  /* we want our slab */
2307     if (err) {
2308         pr_err("Cannot register vsock protocol\n");
2309         goto err_deregister_misc;
2310     }
2311 
2312     err = sock_register(&vsock_family_ops);
2313     if (err) {
2314         pr_err("could not register af_vsock (%d) address family: %d\n",
2315                AF_VSOCK, err);
2316         goto err_unregister_proto;
2317     }
2318 
2319     return 0;
2320 
2321 err_unregister_proto:
2322     proto_unregister(&vsock_proto);
2323 err_deregister_misc:
2324     misc_deregister(&vsock_device);
2325 err_reset_transport:
2326     return err;
2327 }
2328 
2329 static void __exit vsock_exit(void)
2330 {
2331     misc_deregister(&vsock_device);
2332     sock_unregister(AF_VSOCK);
2333     proto_unregister(&vsock_proto);
2334 }
2335 
2336 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2337 {
2338     return vsk->transport;
2339 }
2340 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2341 
2342 int vsock_core_register(const struct vsock_transport *t, int features)
2343 {
2344     const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2345     int err = mutex_lock_interruptible(&vsock_register_mutex);
2346 
2347     if (err)
2348         return err;
2349 
2350     t_h2g = transport_h2g;
2351     t_g2h = transport_g2h;
2352     t_dgram = transport_dgram;
2353     t_local = transport_local;
2354 
2355     if (features & VSOCK_TRANSPORT_F_H2G) {
2356         if (t_h2g) {
2357             err = -EBUSY;
2358             goto err_busy;
2359         }
2360         t_h2g = t;
2361     }
2362 
2363     if (features & VSOCK_TRANSPORT_F_G2H) {
2364         if (t_g2h) {
2365             err = -EBUSY;
2366             goto err_busy;
2367         }
2368         t_g2h = t;
2369     }
2370 
2371     if (features & VSOCK_TRANSPORT_F_DGRAM) {
2372         if (t_dgram) {
2373             err = -EBUSY;
2374             goto err_busy;
2375         }
2376         t_dgram = t;
2377     }
2378 
2379     if (features & VSOCK_TRANSPORT_F_LOCAL) {
2380         if (t_local) {
2381             err = -EBUSY;
2382             goto err_busy;
2383         }
2384         t_local = t;
2385     }
2386 
2387     transport_h2g = t_h2g;
2388     transport_g2h = t_g2h;
2389     transport_dgram = t_dgram;
2390     transport_local = t_local;
2391 
2392 err_busy:
2393     mutex_unlock(&vsock_register_mutex);
2394     return err;
2395 }
2396 EXPORT_SYMBOL_GPL(vsock_core_register);
2397 
2398 void vsock_core_unregister(const struct vsock_transport *t)
2399 {
2400     mutex_lock(&vsock_register_mutex);
2401 
2402     if (transport_h2g == t)
2403         transport_h2g = NULL;
2404 
2405     if (transport_g2h == t)
2406         transport_g2h = NULL;
2407 
2408     if (transport_dgram == t)
2409         transport_dgram = NULL;
2410 
2411     if (transport_local == t)
2412         transport_local = NULL;
2413 
2414     mutex_unlock(&vsock_register_mutex);
2415 }
2416 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2417 
2418 module_init(vsock_init);
2419 module_exit(vsock_exit);
2420 
2421 MODULE_AUTHOR("VMware, Inc.");
2422 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2423 MODULE_VERSION("1.0.2.0-k");
2424 MODULE_LICENSE("GPL v2");