Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
0004  *
0005  * Copyright (c) 2019, Ericsson AB
0006  * All rights reserved.
0007  *
0008  * Redistribution and use in source and binary forms, with or without
0009  * modification, are permitted provided that the following conditions are met:
0010  *
0011  * 1. Redistributions of source code must retain the above copyright
0012  *    notice, this list of conditions and the following disclaimer.
0013  * 2. Redistributions in binary form must reproduce the above copyright
0014  *    notice, this list of conditions and the following disclaimer in the
0015  *    documentation and/or other materials provided with the distribution.
0016  * 3. Neither the names of the copyright holders nor the names of its
0017  *    contributors may be used to endorse or promote products derived from
0018  *    this software without specific prior written permission.
0019  *
0020  * Alternatively, this software may be distributed under the terms of the
0021  * GNU General Public License ("GPL") version 2 as published by the Free
0022  * Software Foundation.
0023  *
0024  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
0025  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
0026  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
0027  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
0028  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
0029  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
0030  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
0031  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
0032  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
0033  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
0034  * POSSIBILITY OF SUCH DAMAGE.
0035  */
0036 
0037 #include <crypto/aead.h>
0038 #include <crypto/aes.h>
0039 #include <crypto/rng.h>
0040 #include "crypto.h"
0041 #include "msg.h"
0042 #include "bcast.h"
0043 
0044 #define TIPC_TX_GRACE_PERIOD    msecs_to_jiffies(5000) /* 5s */
0045 #define TIPC_TX_LASTING_TIME    msecs_to_jiffies(10000) /* 10s */
0046 #define TIPC_RX_ACTIVE_LIM  msecs_to_jiffies(3000) /* 3s */
0047 #define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(15000) /* 15s */
0048 
0049 #define TIPC_MAX_TFMS_DEF   10
0050 #define TIPC_MAX_TFMS_LIM   1000
0051 
0052 #define TIPC_REKEYING_INTV_DEF  (60 * 24) /* default: 1 day */
0053 
0054 /*
0055  * TIPC Key ids
0056  */
0057 enum {
0058     KEY_MASTER = 0,
0059     KEY_MIN = KEY_MASTER,
0060     KEY_1 = 1,
0061     KEY_2,
0062     KEY_3,
0063     KEY_MAX = KEY_3,
0064 };
0065 
0066 /*
0067  * TIPC Crypto statistics
0068  */
0069 enum {
0070     STAT_OK,
0071     STAT_NOK,
0072     STAT_ASYNC,
0073     STAT_ASYNC_OK,
0074     STAT_ASYNC_NOK,
0075     STAT_BADKEYS, /* tx only */
0076     STAT_BADMSGS = STAT_BADKEYS, /* rx only */
0077     STAT_NOKEYS,
0078     STAT_SWITCHES,
0079 
0080     MAX_STATS,
0081 };
0082 
0083 /* TIPC crypto statistics' header */
0084 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
0085                     "async_nok", "badmsgs", "nokeys",
0086                     "switches"};
0087 
0088 /* Max TFMs number per key */
0089 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
0090 /* Key exchange switch, default: on */
0091 int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
0092 
0093 /*
0094  * struct tipc_key - TIPC keys' status indicator
0095  *
0096  *         7     6     5     4     3     2     1     0
0097  *      +-----+-----+-----+-----+-----+-----+-----+-----+
0098  * key: | (reserved)|passive idx| active idx|pending idx|
0099  *      +-----+-----+-----+-----+-----+-----+-----+-----+
0100  */
0101 struct tipc_key {
0102 #define KEY_BITS (2)
0103 #define KEY_MASK ((1 << KEY_BITS) - 1)
0104     union {
0105         struct {
0106 #if defined(__LITTLE_ENDIAN_BITFIELD)
0107             u8 pending:2,
0108                active:2,
0109                passive:2, /* rx only */
0110                reserved:2;
0111 #elif defined(__BIG_ENDIAN_BITFIELD)
0112             u8 reserved:2,
0113                passive:2, /* rx only */
0114                active:2,
0115                pending:2;
0116 #else
0117 #error  "Please fix <asm/byteorder.h>"
0118 #endif
0119         } __packed;
0120         u8 keys;
0121     };
0122 };
0123 
0124 /**
0125  * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
0126  * @tfm: cipher handle/key
0127  * @list: linked list of TFMs
0128  */
0129 struct tipc_tfm {
0130     struct crypto_aead *tfm;
0131     struct list_head list;
0132 };
0133 
0134 /**
0135  * struct tipc_aead - TIPC AEAD key structure
0136  * @tfm_entry: per-cpu pointer to one entry in TFM list
0137  * @crypto: TIPC crypto owns this key
0138  * @cloned: reference to the source key in case cloning
0139  * @users: the number of the key users (TX/RX)
0140  * @salt: the key's SALT value
0141  * @authsize: authentication tag size (max = 16)
0142  * @mode: crypto mode is applied to the key
0143  * @hint: a hint for user key
0144  * @rcu: struct rcu_head
0145  * @key: the aead key
0146  * @gen: the key's generation
0147  * @seqno: the key seqno (cluster scope)
0148  * @refcnt: the key reference counter
0149  */
0150 struct tipc_aead {
0151 #define TIPC_AEAD_HINT_LEN (5)
0152     struct tipc_tfm * __percpu *tfm_entry;
0153     struct tipc_crypto *crypto;
0154     struct tipc_aead *cloned;
0155     atomic_t users;
0156     u32 salt;
0157     u8 authsize;
0158     u8 mode;
0159     char hint[2 * TIPC_AEAD_HINT_LEN + 1];
0160     struct rcu_head rcu;
0161     struct tipc_aead_key *key;
0162     u16 gen;
0163 
0164     atomic64_t seqno ____cacheline_aligned;
0165     refcount_t refcnt ____cacheline_aligned;
0166 
0167 } ____cacheline_aligned;
0168 
0169 /**
0170  * struct tipc_crypto_stats - TIPC Crypto statistics
0171  * @stat: array of crypto statistics
0172  */
0173 struct tipc_crypto_stats {
0174     unsigned int stat[MAX_STATS];
0175 };
0176 
0177 /**
0178  * struct tipc_crypto - TIPC TX/RX crypto structure
0179  * @net: struct net
0180  * @node: TIPC node (RX)
0181  * @aead: array of pointers to AEAD keys for encryption/decryption
0182  * @peer_rx_active: replicated peer RX active key index
0183  * @key_gen: TX/RX key generation
0184  * @key: the key states
0185  * @skey_mode: session key's mode
0186  * @skey: received session key
0187  * @wq: common workqueue on TX crypto
0188  * @work: delayed work sched for TX/RX
0189  * @key_distr: key distributing state
0190  * @rekeying_intv: rekeying interval (in minutes)
0191  * @stats: the crypto statistics
0192  * @name: the crypto name
0193  * @sndnxt: the per-peer sndnxt (TX)
0194  * @timer1: general timer 1 (jiffies)
0195  * @timer2: general timer 2 (jiffies)
0196  * @working: the crypto is working or not
0197  * @key_master: flag indicates if master key exists
0198  * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
0199  * @nokey: no key indication
0200  * @flags: combined flags field
0201  * @lock: tipc_key lock
0202  */
0203 struct tipc_crypto {
0204     struct net *net;
0205     struct tipc_node *node;
0206     struct tipc_aead __rcu *aead[KEY_MAX + 1];
0207     atomic_t peer_rx_active;
0208     u16 key_gen;
0209     struct tipc_key key;
0210     u8 skey_mode;
0211     struct tipc_aead_key *skey;
0212     struct workqueue_struct *wq;
0213     struct delayed_work work;
0214 #define KEY_DISTR_SCHED     1
0215 #define KEY_DISTR_COMPL     2
0216     atomic_t key_distr;
0217     u32 rekeying_intv;
0218 
0219     struct tipc_crypto_stats __percpu *stats;
0220     char name[48];
0221 
0222     atomic64_t sndnxt ____cacheline_aligned;
0223     unsigned long timer1;
0224     unsigned long timer2;
0225     union {
0226         struct {
0227             u8 working:1;
0228             u8 key_master:1;
0229             u8 legacy_user:1;
0230             u8 nokey: 1;
0231         };
0232         u8 flags;
0233     };
0234     spinlock_t lock; /* crypto lock */
0235 
0236 } ____cacheline_aligned;
0237 
0238 /* struct tipc_crypto_tx_ctx - TX context for callbacks */
0239 struct tipc_crypto_tx_ctx {
0240     struct tipc_aead *aead;
0241     struct tipc_bearer *bearer;
0242     struct tipc_media_addr dst;
0243 };
0244 
0245 /* struct tipc_crypto_rx_ctx - RX context for callbacks */
0246 struct tipc_crypto_rx_ctx {
0247     struct tipc_aead *aead;
0248     struct tipc_bearer *bearer;
0249 };
0250 
0251 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
0252 static inline void tipc_aead_put(struct tipc_aead *aead);
0253 static void tipc_aead_free(struct rcu_head *rp);
0254 static int tipc_aead_users(struct tipc_aead __rcu *aead);
0255 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
0256 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
0257 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
0258 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
0259 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
0260               u8 mode);
0261 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
0262 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
0263                  unsigned int crypto_ctx_size,
0264                  u8 **iv, struct aead_request **req,
0265                  struct scatterlist **sg, int nsg);
0266 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
0267                  struct tipc_bearer *b,
0268                  struct tipc_media_addr *dst,
0269                  struct tipc_node *__dnode);
0270 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
0271 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
0272                  struct sk_buff *skb, struct tipc_bearer *b);
0273 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
0274 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
0275 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
0276                u8 tx_key, struct sk_buff *skb,
0277                struct tipc_crypto *__rx);
0278 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
0279                          u8 new_passive,
0280                          u8 new_active,
0281                          u8 new_pending);
0282 static int tipc_crypto_key_attach(struct tipc_crypto *c,
0283                   struct tipc_aead *aead, u8 pos,
0284                   bool master_key);
0285 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
0286 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
0287                          struct tipc_crypto *rx,
0288                          struct sk_buff *skb,
0289                          u8 tx_key);
0290 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
0291 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
0292 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
0293                      struct tipc_bearer *b,
0294                      struct tipc_media_addr *dst,
0295                      struct tipc_node *__dnode, u8 type);
0296 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
0297                      struct tipc_bearer *b,
0298                      struct sk_buff **skb, int err);
0299 static void tipc_crypto_do_cmd(struct net *net, int cmd);
0300 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
0301 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
0302                   char *buf);
0303 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
0304                 u16 gen, u8 mode, u32 dnode);
0305 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
0306 static void tipc_crypto_work_tx(struct work_struct *work);
0307 static void tipc_crypto_work_rx(struct work_struct *work);
0308 static int tipc_aead_key_generate(struct tipc_aead_key *skey);
0309 
0310 #define is_tx(crypto) (!(crypto)->node)
0311 #define is_rx(crypto) (!is_tx(crypto))
0312 
0313 #define key_next(cur) ((cur) % KEY_MAX + 1)
0314 
0315 #define tipc_aead_rcu_ptr(rcu_ptr, lock)                \
0316     rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
0317 
0318 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)           \
0319 do {                                    \
0320     struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr),  \
0321                         lockdep_is_held(lock)); \
0322     rcu_assign_pointer((rcu_ptr), (ptr));               \
0323     tipc_aead_put(__tmp);                       \
0324 } while (0)
0325 
0326 #define tipc_crypto_key_detach(rcu_ptr, lock)               \
0327     tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
0328 
0329 /**
0330  * tipc_aead_key_validate - Validate a AEAD user key
0331  * @ukey: pointer to user key data
0332  * @info: netlink info pointer
0333  */
0334 int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
0335 {
0336     int keylen;
0337 
0338     /* Check if algorithm exists */
0339     if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
0340         GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
0341         return -ENODEV;
0342     }
0343 
0344     /* Currently, we only support the "gcm(aes)" cipher algorithm */
0345     if (strcmp(ukey->alg_name, "gcm(aes)")) {
0346         GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
0347         return -ENOTSUPP;
0348     }
0349 
0350     /* Check if key size is correct */
0351     keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
0352     if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
0353              keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
0354              keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
0355         GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
0356         return -EKEYREJECTED;
0357     }
0358 
0359     return 0;
0360 }
0361 
0362 /**
0363  * tipc_aead_key_generate - Generate new session key
0364  * @skey: input/output key with new content
0365  *
0366  * Return: 0 in case of success, otherwise < 0
0367  */
0368 static int tipc_aead_key_generate(struct tipc_aead_key *skey)
0369 {
0370     int rc = 0;
0371 
0372     /* Fill the key's content with a random value via RNG cipher */
0373     rc = crypto_get_default_rng();
0374     if (likely(!rc)) {
0375         rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
0376                       skey->keylen);
0377         crypto_put_default_rng();
0378     }
0379 
0380     return rc;
0381 }
0382 
0383 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
0384 {
0385     struct tipc_aead *tmp;
0386 
0387     rcu_read_lock();
0388     tmp = rcu_dereference(aead);
0389     if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
0390         tmp = NULL;
0391     rcu_read_unlock();
0392 
0393     return tmp;
0394 }
0395 
0396 static inline void tipc_aead_put(struct tipc_aead *aead)
0397 {
0398     if (aead && refcount_dec_and_test(&aead->refcnt))
0399         call_rcu(&aead->rcu, tipc_aead_free);
0400 }
0401 
0402 /**
0403  * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
0404  * @rp: rcu head pointer
0405  */
0406 static void tipc_aead_free(struct rcu_head *rp)
0407 {
0408     struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
0409     struct tipc_tfm *tfm_entry, *head, *tmp;
0410 
0411     if (aead->cloned) {
0412         tipc_aead_put(aead->cloned);
0413     } else {
0414         head = *get_cpu_ptr(aead->tfm_entry);
0415         put_cpu_ptr(aead->tfm_entry);
0416         list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
0417             crypto_free_aead(tfm_entry->tfm);
0418             list_del(&tfm_entry->list);
0419             kfree(tfm_entry);
0420         }
0421         /* Free the head */
0422         crypto_free_aead(head->tfm);
0423         list_del(&head->list);
0424         kfree(head);
0425     }
0426     free_percpu(aead->tfm_entry);
0427     kfree_sensitive(aead->key);
0428     kfree(aead);
0429 }
0430 
0431 static int tipc_aead_users(struct tipc_aead __rcu *aead)
0432 {
0433     struct tipc_aead *tmp;
0434     int users = 0;
0435 
0436     rcu_read_lock();
0437     tmp = rcu_dereference(aead);
0438     if (tmp)
0439         users = atomic_read(&tmp->users);
0440     rcu_read_unlock();
0441 
0442     return users;
0443 }
0444 
0445 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
0446 {
0447     struct tipc_aead *tmp;
0448 
0449     rcu_read_lock();
0450     tmp = rcu_dereference(aead);
0451     if (tmp)
0452         atomic_add_unless(&tmp->users, 1, lim);
0453     rcu_read_unlock();
0454 }
0455 
0456 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
0457 {
0458     struct tipc_aead *tmp;
0459 
0460     rcu_read_lock();
0461     tmp = rcu_dereference(aead);
0462     if (tmp)
0463         atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
0464     rcu_read_unlock();
0465 }
0466 
0467 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
0468 {
0469     struct tipc_aead *tmp;
0470     int cur;
0471 
0472     rcu_read_lock();
0473     tmp = rcu_dereference(aead);
0474     if (tmp) {
0475         do {
0476             cur = atomic_read(&tmp->users);
0477             if (cur == val)
0478                 break;
0479         } while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
0480     }
0481     rcu_read_unlock();
0482 }
0483 
0484 /**
0485  * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
0486  * @aead: the AEAD key pointer
0487  */
0488 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
0489 {
0490     struct tipc_tfm **tfm_entry;
0491     struct crypto_aead *tfm;
0492 
0493     tfm_entry = get_cpu_ptr(aead->tfm_entry);
0494     *tfm_entry = list_next_entry(*tfm_entry, list);
0495     tfm = (*tfm_entry)->tfm;
0496     put_cpu_ptr(tfm_entry);
0497 
0498     return tfm;
0499 }
0500 
0501 /**
0502  * tipc_aead_init - Initiate TIPC AEAD
0503  * @aead: returned new TIPC AEAD key handle pointer
0504  * @ukey: pointer to user key data
0505  * @mode: the key mode
0506  *
0507  * Allocate a (list of) new cipher transformation (TFM) with the specific user
0508  * key data if valid. The number of the allocated TFMs can be set via the sysfs
0509  * "net/tipc/max_tfms" first.
0510  * Also, all the other AEAD data are also initialized.
0511  *
0512  * Return: 0 if the initiation is successful, otherwise: < 0
0513  */
0514 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
0515               u8 mode)
0516 {
0517     struct tipc_tfm *tfm_entry, *head;
0518     struct crypto_aead *tfm;
0519     struct tipc_aead *tmp;
0520     int keylen, err, cpu;
0521     int tfm_cnt = 0;
0522 
0523     if (unlikely(*aead))
0524         return -EEXIST;
0525 
0526     /* Allocate a new AEAD */
0527     tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
0528     if (unlikely(!tmp))
0529         return -ENOMEM;
0530 
0531     /* The key consists of two parts: [AES-KEY][SALT] */
0532     keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
0533 
0534     /* Allocate per-cpu TFM entry pointer */
0535     tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
0536     if (!tmp->tfm_entry) {
0537         kfree_sensitive(tmp);
0538         return -ENOMEM;
0539     }
0540 
0541     /* Make a list of TFMs with the user key data */
0542     do {
0543         tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
0544         if (IS_ERR(tfm)) {
0545             err = PTR_ERR(tfm);
0546             break;
0547         }
0548 
0549         if (unlikely(!tfm_cnt &&
0550                  crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
0551             crypto_free_aead(tfm);
0552             err = -ENOTSUPP;
0553             break;
0554         }
0555 
0556         err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
0557         err |= crypto_aead_setkey(tfm, ukey->key, keylen);
0558         if (unlikely(err)) {
0559             crypto_free_aead(tfm);
0560             break;
0561         }
0562 
0563         tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
0564         if (unlikely(!tfm_entry)) {
0565             crypto_free_aead(tfm);
0566             err = -ENOMEM;
0567             break;
0568         }
0569         INIT_LIST_HEAD(&tfm_entry->list);
0570         tfm_entry->tfm = tfm;
0571 
0572         /* First entry? */
0573         if (!tfm_cnt) {
0574             head = tfm_entry;
0575             for_each_possible_cpu(cpu) {
0576                 *per_cpu_ptr(tmp->tfm_entry, cpu) = head;
0577             }
0578         } else {
0579             list_add_tail(&tfm_entry->list, &head->list);
0580         }
0581 
0582     } while (++tfm_cnt < sysctl_tipc_max_tfms);
0583 
0584     /* Not any TFM is allocated? */
0585     if (!tfm_cnt) {
0586         free_percpu(tmp->tfm_entry);
0587         kfree_sensitive(tmp);
0588         return err;
0589     }
0590 
0591     /* Form a hex string of some last bytes as the key's hint */
0592     bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
0593         TIPC_AEAD_HINT_LEN);
0594 
0595     /* Initialize the other data */
0596     tmp->mode = mode;
0597     tmp->cloned = NULL;
0598     tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
0599     tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
0600     if (!tmp->key) {
0601         tipc_aead_free(&tmp->rcu);
0602         return -ENOMEM;
0603     }
0604     memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
0605     atomic_set(&tmp->users, 0);
0606     atomic64_set(&tmp->seqno, 0);
0607     refcount_set(&tmp->refcnt, 1);
0608 
0609     *aead = tmp;
0610     return 0;
0611 }
0612 
0613 /**
0614  * tipc_aead_clone - Clone a TIPC AEAD key
0615  * @dst: dest key for the cloning
0616  * @src: source key to clone from
0617  *
0618  * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
0619  * common for the keys.
0620  * A reference to the source is hold in the "cloned" pointer for the later
0621  * freeing purposes.
0622  *
0623  * Note: this must be done in cluster-key mode only!
0624  * Return: 0 in case of success, otherwise < 0
0625  */
0626 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
0627 {
0628     struct tipc_aead *aead;
0629     int cpu;
0630 
0631     if (!src)
0632         return -ENOKEY;
0633 
0634     if (src->mode != CLUSTER_KEY)
0635         return -EINVAL;
0636 
0637     if (unlikely(*dst))
0638         return -EEXIST;
0639 
0640     aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
0641     if (unlikely(!aead))
0642         return -ENOMEM;
0643 
0644     aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
0645     if (unlikely(!aead->tfm_entry)) {
0646         kfree_sensitive(aead);
0647         return -ENOMEM;
0648     }
0649 
0650     for_each_possible_cpu(cpu) {
0651         *per_cpu_ptr(aead->tfm_entry, cpu) =
0652                 *per_cpu_ptr(src->tfm_entry, cpu);
0653     }
0654 
0655     memcpy(aead->hint, src->hint, sizeof(src->hint));
0656     aead->mode = src->mode;
0657     aead->salt = src->salt;
0658     aead->authsize = src->authsize;
0659     atomic_set(&aead->users, 0);
0660     atomic64_set(&aead->seqno, 0);
0661     refcount_set(&aead->refcnt, 1);
0662 
0663     WARN_ON(!refcount_inc_not_zero(&src->refcnt));
0664     aead->cloned = src;
0665 
0666     *dst = aead;
0667     return 0;
0668 }
0669 
0670 /**
0671  * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
0672  * @tfm: cipher handle to be registered with the request
0673  * @crypto_ctx_size: size of crypto context for callback
0674  * @iv: returned pointer to IV data
0675  * @req: returned pointer to AEAD request data
0676  * @sg: returned pointer to SG lists
0677  * @nsg: number of SG lists to be allocated
0678  *
0679  * Allocate memory to store the crypto context data, AEAD request, IV and SG
0680  * lists, the memory layout is as follows:
0681  * crypto_ctx || iv || aead_req || sg[]
0682  *
0683  * Return: the pointer to the memory areas in case of success, otherwise NULL
0684  */
0685 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
0686                  unsigned int crypto_ctx_size,
0687                  u8 **iv, struct aead_request **req,
0688                  struct scatterlist **sg, int nsg)
0689 {
0690     unsigned int iv_size, req_size;
0691     unsigned int len;
0692     u8 *mem;
0693 
0694     iv_size = crypto_aead_ivsize(tfm);
0695     req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
0696 
0697     len = crypto_ctx_size;
0698     len += iv_size;
0699     len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
0700     len = ALIGN(len, crypto_tfm_ctx_alignment());
0701     len += req_size;
0702     len = ALIGN(len, __alignof__(struct scatterlist));
0703     len += nsg * sizeof(**sg);
0704 
0705     mem = kmalloc(len, GFP_ATOMIC);
0706     if (!mem)
0707         return NULL;
0708 
0709     *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
0710                   crypto_aead_alignmask(tfm) + 1);
0711     *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
0712                         crypto_tfm_ctx_alignment());
0713     *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
0714                           __alignof__(struct scatterlist));
0715 
0716     return (void *)mem;
0717 }
0718 
0719 /**
0720  * tipc_aead_encrypt - Encrypt a message
0721  * @aead: TIPC AEAD key for the message encryption
0722  * @skb: the input/output skb
0723  * @b: TIPC bearer where the message will be delivered after the encryption
0724  * @dst: the destination media address
0725  * @__dnode: TIPC dest node if "known"
0726  *
0727  * Return:
0728  * * 0                   : if the encryption has completed
0729  * * -EINPROGRESS/-EBUSY : if a callback will be performed
0730  * * < 0                 : the encryption has failed
0731  */
0732 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
0733                  struct tipc_bearer *b,
0734                  struct tipc_media_addr *dst,
0735                  struct tipc_node *__dnode)
0736 {
0737     struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
0738     struct tipc_crypto_tx_ctx *tx_ctx;
0739     struct aead_request *req;
0740     struct sk_buff *trailer;
0741     struct scatterlist *sg;
0742     struct tipc_ehdr *ehdr;
0743     int ehsz, len, tailen, nsg, rc;
0744     void *ctx;
0745     u32 salt;
0746     u8 *iv;
0747 
0748     /* Make sure message len at least 4-byte aligned */
0749     len = ALIGN(skb->len, 4);
0750     tailen = len - skb->len + aead->authsize;
0751 
0752     /* Expand skb tail for authentication tag:
0753      * As for simplicity, we'd have made sure skb having enough tailroom
0754      * for authentication tag @skb allocation. Even when skb is nonlinear
0755      * but there is no frag_list, it should be still fine!
0756      * Otherwise, we must cow it to be a writable buffer with the tailroom.
0757      */
0758     SKB_LINEAR_ASSERT(skb);
0759     if (tailen > skb_tailroom(skb)) {
0760         pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
0761              skb_tailroom(skb), tailen);
0762     }
0763 
0764     nsg = skb_cow_data(skb, tailen, &trailer);
0765     if (unlikely(nsg < 0)) {
0766         pr_err("TX: skb_cow_data() returned %d\n", nsg);
0767         return nsg;
0768     }
0769 
0770     pskb_put(skb, trailer, tailen);
0771 
0772     /* Allocate memory for the AEAD operation */
0773     ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
0774     if (unlikely(!ctx))
0775         return -ENOMEM;
0776     TIPC_SKB_CB(skb)->crypto_ctx = ctx;
0777 
0778     /* Map skb to the sg lists */
0779     sg_init_table(sg, nsg);
0780     rc = skb_to_sgvec(skb, sg, 0, skb->len);
0781     if (unlikely(rc < 0)) {
0782         pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
0783         goto exit;
0784     }
0785 
0786     /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
0787      * In case we're in cluster-key mode, SALT is varied by xor-ing with
0788      * the source address (or w0 of id), otherwise with the dest address
0789      * if dest is known.
0790      */
0791     ehdr = (struct tipc_ehdr *)skb->data;
0792     salt = aead->salt;
0793     if (aead->mode == CLUSTER_KEY)
0794         salt ^= __be32_to_cpu(ehdr->addr);
0795     else if (__dnode)
0796         salt ^= tipc_node_get_addr(__dnode);
0797     memcpy(iv, &salt, 4);
0798     memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
0799 
0800     /* Prepare request */
0801     ehsz = tipc_ehdr_size(ehdr);
0802     aead_request_set_tfm(req, tfm);
0803     aead_request_set_ad(req, ehsz);
0804     aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
0805 
0806     /* Set callback function & data */
0807     aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
0808                   tipc_aead_encrypt_done, skb);
0809     tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
0810     tx_ctx->aead = aead;
0811     tx_ctx->bearer = b;
0812     memcpy(&tx_ctx->dst, dst, sizeof(*dst));
0813 
0814     /* Hold bearer */
0815     if (unlikely(!tipc_bearer_hold(b))) {
0816         rc = -ENODEV;
0817         goto exit;
0818     }
0819 
0820     /* Now, do encrypt */
0821     rc = crypto_aead_encrypt(req);
0822     if (rc == -EINPROGRESS || rc == -EBUSY)
0823         return rc;
0824 
0825     tipc_bearer_put(b);
0826 
0827 exit:
0828     kfree(ctx);
0829     TIPC_SKB_CB(skb)->crypto_ctx = NULL;
0830     return rc;
0831 }
0832 
0833 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
0834 {
0835     struct sk_buff *skb = base->data;
0836     struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
0837     struct tipc_bearer *b = tx_ctx->bearer;
0838     struct tipc_aead *aead = tx_ctx->aead;
0839     struct tipc_crypto *tx = aead->crypto;
0840     struct net *net = tx->net;
0841 
0842     switch (err) {
0843     case 0:
0844         this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
0845         rcu_read_lock();
0846         if (likely(test_bit(0, &b->up)))
0847             b->media->send_msg(net, skb, b, &tx_ctx->dst);
0848         else
0849             kfree_skb(skb);
0850         rcu_read_unlock();
0851         break;
0852     case -EINPROGRESS:
0853         return;
0854     default:
0855         this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
0856         kfree_skb(skb);
0857         break;
0858     }
0859 
0860     kfree(tx_ctx);
0861     tipc_bearer_put(b);
0862     tipc_aead_put(aead);
0863 }
0864 
0865 /**
0866  * tipc_aead_decrypt - Decrypt an encrypted message
0867  * @net: struct net
0868  * @aead: TIPC AEAD for the message decryption
0869  * @skb: the input/output skb
0870  * @b: TIPC bearer where the message has been received
0871  *
0872  * Return:
0873  * * 0                   : if the decryption has completed
0874  * * -EINPROGRESS/-EBUSY : if a callback will be performed
0875  * * < 0                 : the decryption has failed
0876  */
0877 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
0878                  struct sk_buff *skb, struct tipc_bearer *b)
0879 {
0880     struct tipc_crypto_rx_ctx *rx_ctx;
0881     struct aead_request *req;
0882     struct crypto_aead *tfm;
0883     struct sk_buff *unused;
0884     struct scatterlist *sg;
0885     struct tipc_ehdr *ehdr;
0886     int ehsz, nsg, rc;
0887     void *ctx;
0888     u32 salt;
0889     u8 *iv;
0890 
0891     if (unlikely(!aead))
0892         return -ENOKEY;
0893 
0894     nsg = skb_cow_data(skb, 0, &unused);
0895     if (unlikely(nsg < 0)) {
0896         pr_err("RX: skb_cow_data() returned %d\n", nsg);
0897         return nsg;
0898     }
0899 
0900     /* Allocate memory for the AEAD operation */
0901     tfm = tipc_aead_tfm_next(aead);
0902     ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
0903     if (unlikely(!ctx))
0904         return -ENOMEM;
0905     TIPC_SKB_CB(skb)->crypto_ctx = ctx;
0906 
0907     /* Map skb to the sg lists */
0908     sg_init_table(sg, nsg);
0909     rc = skb_to_sgvec(skb, sg, 0, skb->len);
0910     if (unlikely(rc < 0)) {
0911         pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
0912         goto exit;
0913     }
0914 
0915     /* Reconstruct IV: */
0916     ehdr = (struct tipc_ehdr *)skb->data;
0917     salt = aead->salt;
0918     if (aead->mode == CLUSTER_KEY)
0919         salt ^= __be32_to_cpu(ehdr->addr);
0920     else if (ehdr->destined)
0921         salt ^= tipc_own_addr(net);
0922     memcpy(iv, &salt, 4);
0923     memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
0924 
0925     /* Prepare request */
0926     ehsz = tipc_ehdr_size(ehdr);
0927     aead_request_set_tfm(req, tfm);
0928     aead_request_set_ad(req, ehsz);
0929     aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
0930 
0931     /* Set callback function & data */
0932     aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
0933                   tipc_aead_decrypt_done, skb);
0934     rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
0935     rx_ctx->aead = aead;
0936     rx_ctx->bearer = b;
0937 
0938     /* Hold bearer */
0939     if (unlikely(!tipc_bearer_hold(b))) {
0940         rc = -ENODEV;
0941         goto exit;
0942     }
0943 
0944     /* Now, do decrypt */
0945     rc = crypto_aead_decrypt(req);
0946     if (rc == -EINPROGRESS || rc == -EBUSY)
0947         return rc;
0948 
0949     tipc_bearer_put(b);
0950 
0951 exit:
0952     kfree(ctx);
0953     TIPC_SKB_CB(skb)->crypto_ctx = NULL;
0954     return rc;
0955 }
0956 
0957 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
0958 {
0959     struct sk_buff *skb = base->data;
0960     struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
0961     struct tipc_bearer *b = rx_ctx->bearer;
0962     struct tipc_aead *aead = rx_ctx->aead;
0963     struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
0964     struct net *net = aead->crypto->net;
0965 
0966     switch (err) {
0967     case 0:
0968         this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
0969         break;
0970     case -EINPROGRESS:
0971         return;
0972     default:
0973         this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
0974         break;
0975     }
0976 
0977     kfree(rx_ctx);
0978     tipc_crypto_rcv_complete(net, aead, b, &skb, err);
0979     if (likely(skb)) {
0980         if (likely(test_bit(0, &b->up)))
0981             tipc_rcv(net, skb, b);
0982         else
0983             kfree_skb(skb);
0984     }
0985 
0986     tipc_bearer_put(b);
0987 }
0988 
0989 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
0990 {
0991     return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
0992 }
0993 
0994 /**
0995  * tipc_ehdr_validate - Validate an encryption message
0996  * @skb: the message buffer
0997  *
0998  * Return: "true" if this is a valid encryption message, otherwise "false"
0999  */
1000 bool tipc_ehdr_validate(struct sk_buff *skb)
1001 {
1002     struct tipc_ehdr *ehdr;
1003     int ehsz;
1004 
1005     if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
1006         return false;
1007 
1008     ehdr = (struct tipc_ehdr *)skb->data;
1009     if (unlikely(ehdr->version != TIPC_EVERSION))
1010         return false;
1011     ehsz = tipc_ehdr_size(ehdr);
1012     if (unlikely(!pskb_may_pull(skb, ehsz)))
1013         return false;
1014     if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
1015         return false;
1016 
1017     return true;
1018 }
1019 
1020 /**
1021  * tipc_ehdr_build - Build TIPC encryption message header
1022  * @net: struct net
1023  * @aead: TX AEAD key to be used for the message encryption
1024  * @tx_key: key id used for the message encryption
1025  * @skb: input/output message skb
1026  * @__rx: RX crypto handle if dest is "known"
1027  *
1028  * Return: the header size if the building is successful, otherwise < 0
1029  */
1030 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
1031                u8 tx_key, struct sk_buff *skb,
1032                struct tipc_crypto *__rx)
1033 {
1034     struct tipc_msg *hdr = buf_msg(skb);
1035     struct tipc_ehdr *ehdr;
1036     u32 user = msg_user(hdr);
1037     u64 seqno;
1038     int ehsz;
1039 
1040     /* Make room for encryption header */
1041     ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1042     WARN_ON(skb_headroom(skb) < ehsz);
1043     ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
1044 
1045     /* Obtain a seqno first:
1046      * Use the key seqno (= cluster wise) if dest is unknown or we're in
1047      * cluster key mode, otherwise it's better for a per-peer seqno!
1048      */
1049     if (!__rx || aead->mode == CLUSTER_KEY)
1050         seqno = atomic64_inc_return(&aead->seqno);
1051     else
1052         seqno = atomic64_inc_return(&__rx->sndnxt);
1053 
1054     /* Revoke the key if seqno is wrapped around */
1055     if (unlikely(!seqno))
1056         return tipc_crypto_key_revoke(net, tx_key);
1057 
1058     /* Word 1-2 */
1059     ehdr->seqno = cpu_to_be64(seqno);
1060 
1061     /* Words 0, 3- */
1062     ehdr->version = TIPC_EVERSION;
1063     ehdr->user = 0;
1064     ehdr->keepalive = 0;
1065     ehdr->tx_key = tx_key;
1066     ehdr->destined = (__rx) ? 1 : 0;
1067     ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1068     ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1069     ehdr->master_key = aead->crypto->key_master;
1070     ehdr->reserved_1 = 0;
1071     ehdr->reserved_2 = 0;
1072 
1073     switch (user) {
1074     case LINK_CONFIG:
1075         ehdr->user = LINK_CONFIG;
1076         memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1077         break;
1078     default:
1079         if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1080             ehdr->user = LINK_PROTOCOL;
1081             ehdr->keepalive = msg_is_keepalive(hdr);
1082         }
1083         ehdr->addr = hdr->hdr[3];
1084         break;
1085     }
1086 
1087     return ehsz;
1088 }
1089 
1090 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1091                          u8 new_passive,
1092                          u8 new_active,
1093                          u8 new_pending)
1094 {
1095     struct tipc_key old = c->key;
1096     char buf[32];
1097 
1098     c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1099               ((new_active  & KEY_MASK) << (KEY_BITS)) |
1100               ((new_pending & KEY_MASK));
1101 
1102     pr_debug("%s: key changing %s ::%pS\n", c->name,
1103          tipc_key_change_dump(old, c->key, buf),
1104          __builtin_return_address(0));
1105 }
1106 
1107 /**
1108  * tipc_crypto_key_init - Initiate a new user / AEAD key
1109  * @c: TIPC crypto to which new key is attached
1110  * @ukey: the user key
1111  * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1112  * @master_key: specify this is a cluster master key
1113  *
1114  * A new TIPC AEAD key will be allocated and initiated with the specified user
1115  * key, then attached to the TIPC crypto.
1116  *
1117  * Return: new key id in case of success, otherwise: < 0
1118  */
1119 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1120              u8 mode, bool master_key)
1121 {
1122     struct tipc_aead *aead = NULL;
1123     int rc = 0;
1124 
1125     /* Initiate with the new user key */
1126     rc = tipc_aead_init(&aead, ukey, mode);
1127 
1128     /* Attach it to the crypto */
1129     if (likely(!rc)) {
1130         rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1131         if (rc < 0)
1132             tipc_aead_free(&aead->rcu);
1133     }
1134 
1135     return rc;
1136 }
1137 
1138 /**
1139  * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1140  * @c: TIPC crypto to which the new AEAD key is attached
1141  * @aead: the new AEAD key pointer
1142  * @pos: desired slot in the crypto key array, = 0 if any!
1143  * @master_key: specify this is a cluster master key
1144  *
1145  * Return: new key id in case of success, otherwise: -EBUSY
1146  */
1147 static int tipc_crypto_key_attach(struct tipc_crypto *c,
1148                   struct tipc_aead *aead, u8 pos,
1149                   bool master_key)
1150 {
1151     struct tipc_key key;
1152     int rc = -EBUSY;
1153     u8 new_key;
1154 
1155     spin_lock_bh(&c->lock);
1156     key = c->key;
1157     if (master_key) {
1158         new_key = KEY_MASTER;
1159         goto attach;
1160     }
1161     if (key.active && key.passive)
1162         goto exit;
1163     if (key.pending) {
1164         if (tipc_aead_users(c->aead[key.pending]) > 0)
1165             goto exit;
1166         /* if (pos): ok with replacing, will be aligned when needed */
1167         /* Replace it */
1168         new_key = key.pending;
1169     } else {
1170         if (pos) {
1171             if (key.active && pos != key_next(key.active)) {
1172                 key.passive = pos;
1173                 new_key = pos;
1174                 goto attach;
1175             } else if (!key.active && !key.passive) {
1176                 key.pending = pos;
1177                 new_key = pos;
1178                 goto attach;
1179             }
1180         }
1181         key.pending = key_next(key.active ?: key.passive);
1182         new_key = key.pending;
1183     }
1184 
1185 attach:
1186     aead->crypto = c;
1187     aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1188     tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1189     if (likely(c->key.keys != key.keys))
1190         tipc_crypto_key_set_state(c, key.passive, key.active,
1191                       key.pending);
1192     c->working = 1;
1193     c->nokey = 0;
1194     c->key_master |= master_key;
1195     rc = new_key;
1196 
1197 exit:
1198     spin_unlock_bh(&c->lock);
1199     return rc;
1200 }
1201 
1202 void tipc_crypto_key_flush(struct tipc_crypto *c)
1203 {
1204     struct tipc_crypto *tx, *rx;
1205     int k;
1206 
1207     spin_lock_bh(&c->lock);
1208     if (is_rx(c)) {
1209         /* Try to cancel pending work */
1210         rx = c;
1211         tx = tipc_net(rx->net)->crypto_tx;
1212         if (cancel_delayed_work(&rx->work)) {
1213             kfree(rx->skey);
1214             rx->skey = NULL;
1215             atomic_xchg(&rx->key_distr, 0);
1216             tipc_node_put(rx->node);
1217         }
1218         /* RX stopping => decrease TX key users if any */
1219         k = atomic_xchg(&rx->peer_rx_active, 0);
1220         if (k) {
1221             tipc_aead_users_dec(tx->aead[k], 0);
1222             /* Mark the point TX key users changed */
1223             tx->timer1 = jiffies;
1224         }
1225     }
1226 
1227     c->flags = 0;
1228     tipc_crypto_key_set_state(c, 0, 0, 0);
1229     for (k = KEY_MIN; k <= KEY_MAX; k++)
1230         tipc_crypto_key_detach(c->aead[k], &c->lock);
1231     atomic64_set(&c->sndnxt, 0);
1232     spin_unlock_bh(&c->lock);
1233 }
1234 
1235 /**
1236  * tipc_crypto_key_try_align - Align RX keys if possible
1237  * @rx: RX crypto handle
1238  * @new_pending: new pending slot if aligned (= TX key from peer)
1239  *
1240  * Peer has used an unknown key slot, this only happens when peer has left and
1241  * rejoned, or we are newcomer.
1242  * That means, there must be no active key but a pending key at unaligned slot.
1243  * If so, we try to move the pending key to the new slot.
1244  * Note: A potential passive key can exist, it will be shifted correspondingly!
1245  *
1246  * Return: "true" if key is successfully aligned, otherwise "false"
1247  */
1248 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1249 {
1250     struct tipc_aead *tmp1, *tmp2 = NULL;
1251     struct tipc_key key;
1252     bool aligned = false;
1253     u8 new_passive = 0;
1254     int x;
1255 
1256     spin_lock(&rx->lock);
1257     key = rx->key;
1258     if (key.pending == new_pending) {
1259         aligned = true;
1260         goto exit;
1261     }
1262     if (key.active)
1263         goto exit;
1264     if (!key.pending)
1265         goto exit;
1266     if (tipc_aead_users(rx->aead[key.pending]) > 0)
1267         goto exit;
1268 
1269     /* Try to "isolate" this pending key first */
1270     tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1271     if (!refcount_dec_if_one(&tmp1->refcnt))
1272         goto exit;
1273     rcu_assign_pointer(rx->aead[key.pending], NULL);
1274 
1275     /* Move passive key if any */
1276     if (key.passive) {
1277         tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1278         x = (key.passive - key.pending + new_pending) % KEY_MAX;
1279         new_passive = (x <= 0) ? x + KEY_MAX : x;
1280     }
1281 
1282     /* Re-allocate the key(s) */
1283     tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1284     rcu_assign_pointer(rx->aead[new_pending], tmp1);
1285     if (new_passive)
1286         rcu_assign_pointer(rx->aead[new_passive], tmp2);
1287     refcount_set(&tmp1->refcnt, 1);
1288     aligned = true;
1289     pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
1290                 new_pending);
1291 
1292 exit:
1293     spin_unlock(&rx->lock);
1294     return aligned;
1295 }
1296 
1297 /**
1298  * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1299  * @tx: TX crypto handle
1300  * @rx: RX crypto handle (can be NULL)
1301  * @skb: the message skb which will be decrypted later
1302  * @tx_key: peer TX key id
1303  *
1304  * This function looks up the existing TX keys and pick one which is suitable
1305  * for the message decryption, that must be a cluster key and not used before
1306  * on the same message (i.e. recursive).
1307  *
1308  * Return: the TX AEAD key handle in case of success, otherwise NULL
1309  */
1310 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1311                          struct tipc_crypto *rx,
1312                          struct sk_buff *skb,
1313                          u8 tx_key)
1314 {
1315     struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1316     struct tipc_aead *aead = NULL;
1317     struct tipc_key key = tx->key;
1318     u8 k, i = 0;
1319 
1320     /* Initialize data if not yet */
1321     if (!skb_cb->tx_clone_deferred) {
1322         skb_cb->tx_clone_deferred = 1;
1323         memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1324     }
1325 
1326     skb_cb->tx_clone_ctx.rx = rx;
1327     if (++skb_cb->tx_clone_ctx.recurs > 2)
1328         return NULL;
1329 
1330     /* Pick one TX key */
1331     spin_lock(&tx->lock);
1332     if (tx_key == KEY_MASTER) {
1333         aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
1334         goto done;
1335     }
1336     do {
1337         k = (i == 0) ? key.pending :
1338             ((i == 1) ? key.active : key.passive);
1339         if (!k)
1340             continue;
1341         aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1342         if (!aead)
1343             continue;
1344         if (aead->mode != CLUSTER_KEY ||
1345             aead == skb_cb->tx_clone_ctx.last) {
1346             aead = NULL;
1347             continue;
1348         }
1349         /* Ok, found one cluster key */
1350         skb_cb->tx_clone_ctx.last = aead;
1351         WARN_ON(skb->next);
1352         skb->next = skb_clone(skb, GFP_ATOMIC);
1353         if (unlikely(!skb->next))
1354             pr_warn("Failed to clone skb for next round if any\n");
1355         break;
1356     } while (++i < 3);
1357 
1358 done:
1359     if (likely(aead))
1360         WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1361     spin_unlock(&tx->lock);
1362 
1363     return aead;
1364 }
1365 
1366 /**
1367  * tipc_crypto_key_synch: Synch own key data according to peer key status
1368  * @rx: RX crypto handle
1369  * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
1370  *
1371  * This function updates the peer node related data as the peer RX active key
1372  * has changed, so the number of TX keys' users on this node are increased and
1373  * decreased correspondingly.
1374  *
1375  * It also considers if peer has no key, then we need to make own master key
1376  * (if any) taking over i.e. starting grace period and also trigger key
1377  * distributing process.
1378  *
1379  * The "per-peer" sndnxt is also reset when the peer key has switched.
1380  */
1381 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
1382 {
1383     struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
1384     struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
1385     struct tipc_msg *hdr = buf_msg(skb);
1386     u32 self = tipc_own_addr(rx->net);
1387     u8 cur, new;
1388     unsigned long delay;
1389 
1390     /* Update RX 'key_master' flag according to peer, also mark "legacy" if
1391      * a peer has no master key.
1392      */
1393     rx->key_master = ehdr->master_key;
1394     if (!rx->key_master)
1395         tx->legacy_user = 1;
1396 
1397     /* For later cases, apply only if message is destined to this node */
1398     if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1399         return;
1400 
1401     /* Case 1: Peer has no keys, let's make master key take over */
1402     if (ehdr->rx_nokey) {
1403         /* Set or extend grace period */
1404         tx->timer2 = jiffies;
1405         /* Schedule key distributing for the peer if not yet */
1406         if (tx->key.keys &&
1407             !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
1408             get_random_bytes(&delay, 2);
1409             delay %= 5;
1410             delay = msecs_to_jiffies(500 * ++delay);
1411             if (queue_delayed_work(tx->wq, &rx->work, delay))
1412                 tipc_node_get(rx->node);
1413         }
1414     } else {
1415         /* Cancel a pending key distributing if any */
1416         atomic_xchg(&rx->key_distr, 0);
1417     }
1418 
1419     /* Case 2: Peer RX active key has changed, let's update own TX users */
1420     cur = atomic_read(&rx->peer_rx_active);
1421     new = ehdr->rx_key_active;
1422     if (tx->key.keys &&
1423         cur != new &&
1424         atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
1425         if (new)
1426             tipc_aead_users_inc(tx->aead[new], INT_MAX);
1427         if (cur)
1428             tipc_aead_users_dec(tx->aead[cur], 0);
1429 
1430         atomic64_set(&rx->sndnxt, 0);
1431         /* Mark the point TX key users changed */
1432         tx->timer1 = jiffies;
1433 
1434         pr_debug("%s: key users changed %d-- %d++, peer %s\n",
1435              tx->name, cur, new, rx->name);
1436     }
1437 }
1438 
1439 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1440 {
1441     struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1442     struct tipc_key key;
1443 
1444     spin_lock(&tx->lock);
1445     key = tx->key;
1446     WARN_ON(!key.active || tx_key != key.active);
1447 
1448     /* Free the active key */
1449     tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1450     tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1451     spin_unlock(&tx->lock);
1452 
1453     pr_warn("%s: key is revoked\n", tx->name);
1454     return -EKEYREVOKED;
1455 }
1456 
1457 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1458               struct tipc_node *node)
1459 {
1460     struct tipc_crypto *c;
1461 
1462     if (*crypto)
1463         return -EEXIST;
1464 
1465     /* Allocate crypto */
1466     c = kzalloc(sizeof(*c), GFP_ATOMIC);
1467     if (!c)
1468         return -ENOMEM;
1469 
1470     /* Allocate workqueue on TX */
1471     if (!node) {
1472         c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
1473         if (!c->wq) {
1474             kfree(c);
1475             return -ENOMEM;
1476         }
1477     }
1478 
1479     /* Allocate statistic structure */
1480     c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1481     if (!c->stats) {
1482         if (c->wq)
1483             destroy_workqueue(c->wq);
1484         kfree_sensitive(c);
1485         return -ENOMEM;
1486     }
1487 
1488     c->flags = 0;
1489     c->net = net;
1490     c->node = node;
1491     get_random_bytes(&c->key_gen, 2);
1492     tipc_crypto_key_set_state(c, 0, 0, 0);
1493     atomic_set(&c->key_distr, 0);
1494     atomic_set(&c->peer_rx_active, 0);
1495     atomic64_set(&c->sndnxt, 0);
1496     c->timer1 = jiffies;
1497     c->timer2 = jiffies;
1498     c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1499     spin_lock_init(&c->lock);
1500     scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
1501           (is_rx(c)) ? tipc_node_get_id_str(c->node) :
1502                    tipc_own_id_string(c->net));
1503 
1504     if (is_rx(c))
1505         INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1506     else
1507         INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1508 
1509     *crypto = c;
1510     return 0;
1511 }
1512 
1513 void tipc_crypto_stop(struct tipc_crypto **crypto)
1514 {
1515     struct tipc_crypto *c = *crypto;
1516     u8 k;
1517 
1518     if (!c)
1519         return;
1520 
1521     /* Flush any queued works & destroy wq */
1522     if (is_tx(c)) {
1523         c->rekeying_intv = 0;
1524         cancel_delayed_work_sync(&c->work);
1525         destroy_workqueue(c->wq);
1526     }
1527 
1528     /* Release AEAD keys */
1529     rcu_read_lock();
1530     for (k = KEY_MIN; k <= KEY_MAX; k++)
1531         tipc_aead_put(rcu_dereference(c->aead[k]));
1532     rcu_read_unlock();
1533     pr_debug("%s: has been stopped\n", c->name);
1534 
1535     /* Free this crypto statistics */
1536     free_percpu(c->stats);
1537 
1538     *crypto = NULL;
1539     kfree_sensitive(c);
1540 }
1541 
1542 void tipc_crypto_timeout(struct tipc_crypto *rx)
1543 {
1544     struct tipc_net *tn = tipc_net(rx->net);
1545     struct tipc_crypto *tx = tn->crypto_tx;
1546     struct tipc_key key;
1547     int cmd;
1548 
1549     /* TX pending: taking all users & stable -> active */
1550     spin_lock(&tx->lock);
1551     key = tx->key;
1552     if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1553         goto s1;
1554     if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1555         goto s1;
1556     if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1557         goto s1;
1558 
1559     tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1560     if (key.active)
1561         tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1562     this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1563     pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
1564 
1565 s1:
1566     spin_unlock(&tx->lock);
1567 
1568     /* RX pending: having user -> active */
1569     spin_lock(&rx->lock);
1570     key = rx->key;
1571     if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1572         goto s2;
1573 
1574     if (key.active)
1575         key.passive = key.active;
1576     key.active = key.pending;
1577     rx->timer2 = jiffies;
1578     tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1579     this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1580     pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
1581     goto s5;
1582 
1583 s2:
1584     /* RX pending: not working -> remove */
1585     if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
1586         goto s3;
1587 
1588     tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1589     tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
1590     pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1591     goto s5;
1592 
1593 s3:
1594     /* RX active: timed out or no user -> pending */
1595     if (!key.active)
1596         goto s4;
1597     if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
1598         tipc_aead_users(rx->aead[key.active]) > 0)
1599         goto s4;
1600 
1601     if (key.pending)
1602         key.passive = key.active;
1603     else
1604         key.pending = key.active;
1605     rx->timer2 = jiffies;
1606     tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
1607     tipc_aead_users_set(rx->aead[key.pending], 0);
1608     pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1609     goto s5;
1610 
1611 s4:
1612     /* RX passive: outdated or not working -> free */
1613     if (!key.passive)
1614         goto s5;
1615     if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
1616         tipc_aead_users(rx->aead[key.passive]) > -10)
1617         goto s5;
1618 
1619     tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1620     tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1621     pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
1622 
1623 s5:
1624     spin_unlock(&rx->lock);
1625 
1626     /* Relax it here, the flag will be set again if it really is, but only
1627      * when we are not in grace period for safety!
1628      */
1629     if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
1630         tx->legacy_user = 0;
1631 
1632     /* Limit max_tfms & do debug commands if needed */
1633     if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1634         return;
1635 
1636     cmd = sysctl_tipc_max_tfms;
1637     sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1638     tipc_crypto_do_cmd(rx->net, cmd);
1639 }
1640 
1641 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
1642                      struct tipc_bearer *b,
1643                      struct tipc_media_addr *dst,
1644                      struct tipc_node *__dnode, u8 type)
1645 {
1646     struct sk_buff *skb;
1647 
1648     skb = skb_clone(_skb, GFP_ATOMIC);
1649     if (skb) {
1650         TIPC_SKB_CB(skb)->xmit_type = type;
1651         tipc_crypto_xmit(net, &skb, b, dst, __dnode);
1652         if (skb)
1653             b->media->send_msg(net, skb, b, dst);
1654     }
1655 }
1656 
1657 /**
1658  * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1659  * @net: struct net
1660  * @skb: input/output message skb pointer
1661  * @b: bearer used for xmit later
1662  * @dst: destination media address
1663  * @__dnode: destination node for reference if any
1664  *
1665  * First, build an encryption message header on the top of the message, then
1666  * encrypt the original TIPC message by using the pending, master or active
1667  * key with this preference order.
1668  * If the encryption is successful, the encrypted skb is returned directly or
1669  * via the callback.
1670  * Otherwise, the skb is freed!
1671  *
1672  * Return:
1673  * * 0                   : the encryption has succeeded (or no encryption)
1674  * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1675  * * -ENOKEK             : the encryption has failed due to no key
1676  * * -EKEYREVOKED        : the encryption has failed due to key revoked
1677  * * -ENOMEM             : the encryption has failed due to no memory
1678  * * < 0                 : the encryption has failed due to other reasons
1679  */
1680 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1681              struct tipc_bearer *b, struct tipc_media_addr *dst,
1682              struct tipc_node *__dnode)
1683 {
1684     struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1685     struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1686     struct tipc_crypto_stats __percpu *stats = tx->stats;
1687     struct tipc_msg *hdr = buf_msg(*skb);
1688     struct tipc_key key = tx->key;
1689     struct tipc_aead *aead = NULL;
1690     u32 user = msg_user(hdr);
1691     u32 type = msg_type(hdr);
1692     int rc = -ENOKEY;
1693     u8 tx_key = 0;
1694 
1695     /* No encryption? */
1696     if (!tx->working)
1697         return 0;
1698 
1699     /* Pending key if peer has active on it or probing time */
1700     if (unlikely(key.pending)) {
1701         tx_key = key.pending;
1702         if (!tx->key_master && !key.active)
1703             goto encrypt;
1704         if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1705             goto encrypt;
1706         if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1707             pr_debug("%s: probing for key[%d]\n", tx->name,
1708                  key.pending);
1709             goto encrypt;
1710         }
1711         if (user == LINK_CONFIG || user == LINK_PROTOCOL)
1712             tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
1713                           SKB_PROBING);
1714     }
1715 
1716     /* Master key if this is a *vital* message or in grace period */
1717     if (tx->key_master) {
1718         tx_key = KEY_MASTER;
1719         if (!key.active)
1720             goto encrypt;
1721         if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
1722             pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
1723                  user, type);
1724             goto encrypt;
1725         }
1726         if (user == LINK_CONFIG ||
1727             (user == LINK_PROTOCOL && type == RESET_MSG) ||
1728             (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1729             time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
1730             if (__rx && __rx->key_master &&
1731                 !atomic_read(&__rx->peer_rx_active))
1732                 goto encrypt;
1733             if (!__rx) {
1734                 if (likely(!tx->legacy_user))
1735                     goto encrypt;
1736                 tipc_crypto_clone_msg(net, *skb, b, dst,
1737                               __dnode, SKB_GRACING);
1738             }
1739         }
1740     }
1741 
1742     /* Else, use the active key if any */
1743     if (likely(key.active)) {
1744         tx_key = key.active;
1745         goto encrypt;
1746     }
1747 
1748     goto exit;
1749 
1750 encrypt:
1751     aead = tipc_aead_get(tx->aead[tx_key]);
1752     if (unlikely(!aead))
1753         goto exit;
1754     rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1755     if (likely(rc > 0))
1756         rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1757 
1758 exit:
1759     switch (rc) {
1760     case 0:
1761         this_cpu_inc(stats->stat[STAT_OK]);
1762         break;
1763     case -EINPROGRESS:
1764     case -EBUSY:
1765         this_cpu_inc(stats->stat[STAT_ASYNC]);
1766         *skb = NULL;
1767         return rc;
1768     default:
1769         this_cpu_inc(stats->stat[STAT_NOK]);
1770         if (rc == -ENOKEY)
1771             this_cpu_inc(stats->stat[STAT_NOKEYS]);
1772         else if (rc == -EKEYREVOKED)
1773             this_cpu_inc(stats->stat[STAT_BADKEYS]);
1774         kfree_skb(*skb);
1775         *skb = NULL;
1776         break;
1777     }
1778 
1779     tipc_aead_put(aead);
1780     return rc;
1781 }
1782 
1783 /**
1784  * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1785  * @net: struct net
1786  * @rx: RX crypto handle
1787  * @skb: input/output message skb pointer
1788  * @b: bearer where the message has been received
1789  *
1790  * If the decryption is successful, the decrypted skb is returned directly or
1791  * as the callback, the encryption header and auth tag will be trimed out
1792  * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1793  * Otherwise, the skb will be freed!
1794  * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1795  * cluster key(s) can be taken for decryption (- recursive).
1796  *
1797  * Return:
1798  * * 0                   : the decryption has successfully completed
1799  * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1800  * * -ENOKEY             : the decryption has failed due to no key
1801  * * -EBADMSG            : the decryption has failed due to bad message
1802  * * -ENOMEM             : the decryption has failed due to no memory
1803  * * < 0                 : the decryption has failed due to other reasons
1804  */
1805 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1806             struct sk_buff **skb, struct tipc_bearer *b)
1807 {
1808     struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1809     struct tipc_crypto_stats __percpu *stats;
1810     struct tipc_aead *aead = NULL;
1811     struct tipc_key key;
1812     int rc = -ENOKEY;
1813     u8 tx_key, n;
1814 
1815     tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1816 
1817     /* New peer?
1818      * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1819      */
1820     if (unlikely(!rx || tx_key == KEY_MASTER))
1821         goto pick_tx;
1822 
1823     /* Pick RX key according to TX key if any */
1824     key = rx->key;
1825     if (tx_key == key.active || tx_key == key.pending ||
1826         tx_key == key.passive)
1827         goto decrypt;
1828 
1829     /* Unknown key, let's try to align RX key(s) */
1830     if (tipc_crypto_key_try_align(rx, tx_key))
1831         goto decrypt;
1832 
1833 pick_tx:
1834     /* No key suitable? Try to pick one from TX... */
1835     aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1836     if (aead)
1837         goto decrypt;
1838     goto exit;
1839 
1840 decrypt:
1841     rcu_read_lock();
1842     if (!aead)
1843         aead = tipc_aead_get(rx->aead[tx_key]);
1844     rc = tipc_aead_decrypt(net, aead, *skb, b);
1845     rcu_read_unlock();
1846 
1847 exit:
1848     stats = ((rx) ?: tx)->stats;
1849     switch (rc) {
1850     case 0:
1851         this_cpu_inc(stats->stat[STAT_OK]);
1852         break;
1853     case -EINPROGRESS:
1854     case -EBUSY:
1855         this_cpu_inc(stats->stat[STAT_ASYNC]);
1856         *skb = NULL;
1857         return rc;
1858     default:
1859         this_cpu_inc(stats->stat[STAT_NOK]);
1860         if (rc == -ENOKEY) {
1861             kfree_skb(*skb);
1862             *skb = NULL;
1863             if (rx) {
1864                 /* Mark rx->nokey only if we dont have a
1865                  * pending received session key, nor a newer
1866                  * one i.e. in the next slot.
1867                  */
1868                 n = key_next(tx_key);
1869                 rx->nokey = !(rx->skey ||
1870                           rcu_access_pointer(rx->aead[n]));
1871                 pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
1872                              rx->name, rx->nokey,
1873                              tx_key, rx->key.keys);
1874                 tipc_node_put(rx->node);
1875             }
1876             this_cpu_inc(stats->stat[STAT_NOKEYS]);
1877             return rc;
1878         } else if (rc == -EBADMSG) {
1879             this_cpu_inc(stats->stat[STAT_BADMSGS]);
1880         }
1881         break;
1882     }
1883 
1884     tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1885     return rc;
1886 }
1887 
1888 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1889                      struct tipc_bearer *b,
1890                      struct sk_buff **skb, int err)
1891 {
1892     struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1893     struct tipc_crypto *rx = aead->crypto;
1894     struct tipc_aead *tmp = NULL;
1895     struct tipc_ehdr *ehdr;
1896     struct tipc_node *n;
1897 
1898     /* Is this completed by TX? */
1899     if (unlikely(is_tx(aead->crypto))) {
1900         rx = skb_cb->tx_clone_ctx.rx;
1901         pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1902              (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1903              (*skb)->next, skb_cb->flags);
1904         pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1905              skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1906              aead->crypto->aead[1], aead->crypto->aead[2],
1907              aead->crypto->aead[3]);
1908         if (unlikely(err)) {
1909             if (err == -EBADMSG && (*skb)->next)
1910                 tipc_rcv(net, (*skb)->next, b);
1911             goto free_skb;
1912         }
1913 
1914         if (likely((*skb)->next)) {
1915             kfree_skb((*skb)->next);
1916             (*skb)->next = NULL;
1917         }
1918         ehdr = (struct tipc_ehdr *)(*skb)->data;
1919         if (!rx) {
1920             WARN_ON(ehdr->user != LINK_CONFIG);
1921             n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1922                          true);
1923             rx = tipc_node_crypto_rx(n);
1924             if (unlikely(!rx))
1925                 goto free_skb;
1926         }
1927 
1928         /* Ignore cloning if it was TX master key */
1929         if (ehdr->tx_key == KEY_MASTER)
1930             goto rcv;
1931         if (tipc_aead_clone(&tmp, aead) < 0)
1932             goto rcv;
1933         WARN_ON(!refcount_inc_not_zero(&tmp->refcnt));
1934         if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1935             tipc_aead_free(&tmp->rcu);
1936             goto rcv;
1937         }
1938         tipc_aead_put(aead);
1939         aead = tmp;
1940     }
1941 
1942     if (unlikely(err)) {
1943         tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN);
1944         goto free_skb;
1945     }
1946 
1947     /* Set the RX key's user */
1948     tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1);
1949 
1950     /* Mark this point, RX works */
1951     rx->timer1 = jiffies;
1952 
1953 rcv:
1954     /* Remove ehdr & auth. tag prior to tipc_rcv() */
1955     ehdr = (struct tipc_ehdr *)(*skb)->data;
1956 
1957     /* Mark this point, RX passive still works */
1958     if (rx->key.passive && ehdr->tx_key == rx->key.passive)
1959         rx->timer2 = jiffies;
1960 
1961     skb_reset_network_header(*skb);
1962     skb_pull(*skb, tipc_ehdr_size(ehdr));
1963     pskb_trim(*skb, (*skb)->len - aead->authsize);
1964 
1965     /* Validate TIPCv2 message */
1966     if (unlikely(!tipc_msg_validate(skb))) {
1967         pr_err_ratelimited("Packet dropped after decryption!\n");
1968         goto free_skb;
1969     }
1970 
1971     /* Ok, everything's fine, try to synch own keys according to peers' */
1972     tipc_crypto_key_synch(rx, *skb);
1973 
1974     /* Mark skb decrypted */
1975     skb_cb->decrypted = 1;
1976 
1977     /* Clear clone cxt if any */
1978     if (likely(!skb_cb->tx_clone_deferred))
1979         goto exit;
1980     skb_cb->tx_clone_deferred = 0;
1981     memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1982     goto exit;
1983 
1984 free_skb:
1985     kfree_skb(*skb);
1986     *skb = NULL;
1987 
1988 exit:
1989     tipc_aead_put(aead);
1990     if (rx)
1991         tipc_node_put(rx->node);
1992 }
1993 
1994 static void tipc_crypto_do_cmd(struct net *net, int cmd)
1995 {
1996     struct tipc_net *tn = tipc_net(net);
1997     struct tipc_crypto *tx = tn->crypto_tx, *rx;
1998     struct list_head *p;
1999     unsigned int stat;
2000     int i, j, cpu;
2001     char buf[200];
2002 
2003     /* Currently only one command is supported */
2004     switch (cmd) {
2005     case 0xfff1:
2006         goto print_stats;
2007     default:
2008         return;
2009     }
2010 
2011 print_stats:
2012     /* Print a header */
2013     pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
2014 
2015     /* Print key status */
2016     pr_info("Key status:\n");
2017     pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
2018         tipc_crypto_key_dump(tx, buf));
2019 
2020     rcu_read_lock();
2021     for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2022         rx = tipc_node_crypto_rx_by_list(p);
2023         pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
2024             tipc_crypto_key_dump(rx, buf));
2025     }
2026     rcu_read_unlock();
2027 
2028     /* Print crypto statistics */
2029     for (i = 0, j = 0; i < MAX_STATS; i++)
2030         j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2031     pr_info("Counter     %s", buf);
2032 
2033     memset(buf, '-', 115);
2034     buf[115] = '\0';
2035     pr_info("%s\n", buf);
2036 
2037     j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
2038     for_each_possible_cpu(cpu) {
2039         for (i = 0; i < MAX_STATS; i++) {
2040             stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
2041             j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
2042         }
2043         pr_info("%s", buf);
2044         j = scnprintf(buf, 200, "%12s", " ");
2045     }
2046 
2047     rcu_read_lock();
2048     for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2049         rx = tipc_node_crypto_rx_by_list(p);
2050         j = scnprintf(buf, 200, "RX(%7.7s) ",
2051                   tipc_node_get_id_str(rx->node));
2052         for_each_possible_cpu(cpu) {
2053             for (i = 0; i < MAX_STATS; i++) {
2054                 stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
2055                 j += scnprintf(buf + j, 200 - j, "|%11d ",
2056                            stat);
2057             }
2058             pr_info("%s", buf);
2059             j = scnprintf(buf, 200, "%12s", " ");
2060         }
2061     }
2062     rcu_read_unlock();
2063 
2064     pr_info("\n======================== Done ========================\n");
2065 }
2066 
2067 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
2068 {
2069     struct tipc_key key = c->key;
2070     struct tipc_aead *aead;
2071     int k, i = 0;
2072     char *s;
2073 
2074     for (k = KEY_MIN; k <= KEY_MAX; k++) {
2075         if (k == KEY_MASTER) {
2076             if (is_rx(c))
2077                 continue;
2078             if (time_before(jiffies,
2079                     c->timer2 + TIPC_TX_GRACE_PERIOD))
2080                 s = "ACT";
2081             else
2082                 s = "PAS";
2083         } else {
2084             if (k == key.passive)
2085                 s = "PAS";
2086             else if (k == key.active)
2087                 s = "ACT";
2088             else if (k == key.pending)
2089                 s = "PEN";
2090             else
2091                 s = "-";
2092         }
2093         i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
2094 
2095         rcu_read_lock();
2096         aead = rcu_dereference(c->aead[k]);
2097         if (aead)
2098             i += scnprintf(buf + i, 200 - i,
2099                        "{\"0x...%s\", \"%s\"}/%d:%d",
2100                        aead->hint,
2101                        (aead->mode == CLUSTER_KEY) ? "c" : "p",
2102                        atomic_read(&aead->users),
2103                        refcount_read(&aead->refcnt));
2104         rcu_read_unlock();
2105         i += scnprintf(buf + i, 200 - i, "\n");
2106     }
2107 
2108     if (is_rx(c))
2109         i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
2110                    atomic_read(&c->peer_rx_active));
2111 
2112     return buf;
2113 }
2114 
2115 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
2116                   char *buf)
2117 {
2118     struct tipc_key *key = &old;
2119     int k, i = 0;
2120     char *s;
2121 
2122     /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
2123 again:
2124     i += scnprintf(buf + i, 32 - i, "[");
2125     for (k = KEY_1; k <= KEY_3; k++) {
2126         if (k == key->passive)
2127             s = "pas";
2128         else if (k == key->active)
2129             s = "act";
2130         else if (k == key->pending)
2131             s = "pen";
2132         else
2133             s = "-";
2134         i += scnprintf(buf + i, 32 - i,
2135                    (k != KEY_3) ? "%s " : "%s", s);
2136     }
2137     if (key != &new) {
2138         i += scnprintf(buf + i, 32 - i, "] -> ");
2139         key = &new;
2140         goto again;
2141     }
2142     i += scnprintf(buf + i, 32 - i, "]");
2143     return buf;
2144 }
2145 
2146 /**
2147  * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
2148  * @net: the struct net
2149  * @skb: the receiving message buffer
2150  */
2151 void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
2152 {
2153     struct tipc_crypto *rx;
2154     struct tipc_msg *hdr;
2155 
2156     if (unlikely(skb_linearize(skb)))
2157         goto exit;
2158 
2159     hdr = buf_msg(skb);
2160     rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
2161     if (unlikely(!rx))
2162         goto exit;
2163 
2164     switch (msg_type(hdr)) {
2165     case KEY_DISTR_MSG:
2166         if (tipc_crypto_key_rcv(rx, hdr))
2167             goto exit;
2168         break;
2169     default:
2170         break;
2171     }
2172 
2173     tipc_node_put(rx->node);
2174 
2175 exit:
2176     kfree_skb(skb);
2177 }
2178 
2179 /**
2180  * tipc_crypto_key_distr - Distribute a TX key
2181  * @tx: the TX crypto
2182  * @key: the key's index
2183  * @dest: the destination tipc node, = NULL if distributing to all nodes
2184  *
2185  * Return: 0 in case of success, otherwise < 0
2186  */
2187 int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
2188               struct tipc_node *dest)
2189 {
2190     struct tipc_aead *aead;
2191     u32 dnode = tipc_node_get_addr(dest);
2192     int rc = -ENOKEY;
2193 
2194     if (!sysctl_tipc_key_exchange_enabled)
2195         return 0;
2196 
2197     if (key) {
2198         rcu_read_lock();
2199         aead = tipc_aead_get(tx->aead[key]);
2200         if (likely(aead)) {
2201             rc = tipc_crypto_key_xmit(tx->net, aead->key,
2202                           aead->gen, aead->mode,
2203                           dnode);
2204             tipc_aead_put(aead);
2205         }
2206         rcu_read_unlock();
2207     }
2208 
2209     return rc;
2210 }
2211 
2212 /**
2213  * tipc_crypto_key_xmit - Send a session key
2214  * @net: the struct net
2215  * @skey: the session key to be sent
2216  * @gen: the key's generation
2217  * @mode: the key's mode
2218  * @dnode: the destination node address, = 0 if broadcasting to all nodes
2219  *
2220  * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
2221  * as its data section, then xmit-ed through the uc/bc link.
2222  *
2223  * Return: 0 in case of success, otherwise < 0
2224  */
2225 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
2226                 u16 gen, u8 mode, u32 dnode)
2227 {
2228     struct sk_buff_head pkts;
2229     struct tipc_msg *hdr;
2230     struct sk_buff *skb;
2231     u16 size, cong_link_cnt;
2232     u8 *data;
2233     int rc;
2234 
2235     size = tipc_aead_key_size(skey);
2236     skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
2237     if (!skb)
2238         return -ENOMEM;
2239 
2240     hdr = buf_msg(skb);
2241     tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
2242               INT_H_SIZE, dnode);
2243     msg_set_size(hdr, INT_H_SIZE + size);
2244     msg_set_key_gen(hdr, gen);
2245     msg_set_key_mode(hdr, mode);
2246 
2247     data = msg_data(hdr);
2248     *((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
2249     memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
2250     memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
2251            skey->keylen);
2252 
2253     __skb_queue_head_init(&pkts);
2254     __skb_queue_tail(&pkts, skb);
2255     if (dnode)
2256         rc = tipc_node_xmit(net, &pkts, dnode, 0);
2257     else
2258         rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
2259 
2260     return rc;
2261 }
2262 
2263 /**
2264  * tipc_crypto_key_rcv - Receive a session key
2265  * @rx: the RX crypto
2266  * @hdr: the TIPC v2 message incl. the receiving session key in its data
2267  *
2268  * This function retrieves the session key in the message from peer, then
2269  * schedules a RX work to attach the key to the corresponding RX crypto.
2270  *
2271  * Return: "true" if the key has been scheduled for attaching, otherwise
2272  * "false".
2273  */
2274 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
2275 {
2276     struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2277     struct tipc_aead_key *skey = NULL;
2278     u16 key_gen = msg_key_gen(hdr);
2279     u32 size = msg_data_sz(hdr);
2280     u8 *data = msg_data(hdr);
2281     unsigned int keylen;
2282 
2283     /* Verify whether the size can exist in the packet */
2284     if (unlikely(size < sizeof(struct tipc_aead_key) + TIPC_AEAD_KEYLEN_MIN)) {
2285         pr_debug("%s: message data size is too small\n", rx->name);
2286         goto exit;
2287     }
2288 
2289     keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
2290 
2291     /* Verify the supplied size values */
2292     if (unlikely(size != keylen + sizeof(struct tipc_aead_key) ||
2293              keylen > TIPC_AEAD_KEY_SIZE_MAX)) {
2294         pr_debug("%s: invalid MSG_CRYPTO key size\n", rx->name);
2295         goto exit;
2296     }
2297 
2298     spin_lock(&rx->lock);
2299     if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
2300         pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
2301                rx->skey, key_gen, rx->key_gen);
2302         goto exit_unlock;
2303     }
2304 
2305     /* Allocate memory for the key */
2306     skey = kmalloc(size, GFP_ATOMIC);
2307     if (unlikely(!skey)) {
2308         pr_err("%s: unable to allocate memory for skey\n", rx->name);
2309         goto exit_unlock;
2310     }
2311 
2312     /* Copy key from msg data */
2313     skey->keylen = keylen;
2314     memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
2315     memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
2316            skey->keylen);
2317 
2318     rx->key_gen = key_gen;
2319     rx->skey_mode = msg_key_mode(hdr);
2320     rx->skey = skey;
2321     rx->nokey = 0;
2322     mb(); /* for nokey flag */
2323 
2324 exit_unlock:
2325     spin_unlock(&rx->lock);
2326 
2327 exit:
2328     /* Schedule the key attaching on this crypto */
2329     if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
2330         return true;
2331 
2332     return false;
2333 }
2334 
2335 /**
2336  * tipc_crypto_work_rx - Scheduled RX works handler
2337  * @work: the struct RX work
2338  *
2339  * The function processes the previous scheduled works i.e. distributing TX key
2340  * or attaching a received session key on RX crypto.
2341  */
2342 static void tipc_crypto_work_rx(struct work_struct *work)
2343 {
2344     struct delayed_work *dwork = to_delayed_work(work);
2345     struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
2346     struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2347     unsigned long delay = msecs_to_jiffies(5000);
2348     bool resched = false;
2349     u8 key;
2350     int rc;
2351 
2352     /* Case 1: Distribute TX key to peer if scheduled */
2353     if (atomic_cmpxchg(&rx->key_distr,
2354                KEY_DISTR_SCHED,
2355                KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
2356         /* Always pick the newest one for distributing */
2357         key = tx->key.pending ?: tx->key.active;
2358         rc = tipc_crypto_key_distr(tx, key, rx->node);
2359         if (unlikely(rc))
2360             pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
2361                 tx->name, key, tipc_node_get_id_str(rx->node),
2362                 rc);
2363 
2364         /* Sched for key_distr releasing */
2365         resched = true;
2366     } else {
2367         atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
2368     }
2369 
2370     /* Case 2: Attach a pending received session key from peer if any */
2371     if (rx->skey) {
2372         rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
2373         if (unlikely(rc < 0))
2374             pr_warn("%s: unable to attach received skey, err %d\n",
2375                 rx->name, rc);
2376         switch (rc) {
2377         case -EBUSY:
2378         case -ENOMEM:
2379             /* Resched the key attaching */
2380             resched = true;
2381             break;
2382         default:
2383             synchronize_rcu();
2384             kfree(rx->skey);
2385             rx->skey = NULL;
2386             break;
2387         }
2388     }
2389 
2390     if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
2391         return;
2392 
2393     tipc_node_put(rx->node);
2394 }
2395 
2396 /**
2397  * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
2398  * @tx: TX crypto
2399  * @changed: if the rekeying needs to be rescheduled with new interval
2400  * @new_intv: new rekeying interval (when "changed" = true)
2401  */
2402 void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
2403                 u32 new_intv)
2404 {
2405     unsigned long delay;
2406     bool now = false;
2407 
2408     if (changed) {
2409         if (new_intv == TIPC_REKEYING_NOW)
2410             now = true;
2411         else
2412             tx->rekeying_intv = new_intv;
2413         cancel_delayed_work_sync(&tx->work);
2414     }
2415 
2416     if (tx->rekeying_intv || now) {
2417         delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
2418         queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
2419     }
2420 }
2421 
2422 /**
2423  * tipc_crypto_work_tx - Scheduled TX works handler
2424  * @work: the struct TX work
2425  *
2426  * The function processes the previous scheduled work, i.e. key rekeying, by
2427  * generating a new session key based on current one, then attaching it to the
2428  * TX crypto and finally distributing it to peers. It also re-schedules the
2429  * rekeying if needed.
2430  */
2431 static void tipc_crypto_work_tx(struct work_struct *work)
2432 {
2433     struct delayed_work *dwork = to_delayed_work(work);
2434     struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
2435     struct tipc_aead_key *skey = NULL;
2436     struct tipc_key key = tx->key;
2437     struct tipc_aead *aead;
2438     int rc = -ENOMEM;
2439 
2440     if (unlikely(key.pending))
2441         goto resched;
2442 
2443     /* Take current key as a template */
2444     rcu_read_lock();
2445     aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
2446     if (unlikely(!aead)) {
2447         rcu_read_unlock();
2448         /* At least one key should exist for securing */
2449         return;
2450     }
2451 
2452     /* Lets duplicate it first */
2453     skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
2454     rcu_read_unlock();
2455 
2456     /* Now, generate new key, initiate & distribute it */
2457     if (likely(skey)) {
2458         rc = tipc_aead_key_generate(skey) ?:
2459              tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
2460         if (likely(rc > 0))
2461             rc = tipc_crypto_key_distr(tx, rc, NULL);
2462         kfree_sensitive(skey);
2463     }
2464 
2465     if (unlikely(rc))
2466         pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
2467 
2468 resched:
2469     /* Re-schedule rekeying if any */
2470     tipc_crypto_rekeying_sched(tx, false, 0);
2471 }