Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * NET      An implementation of the SOCKET network access protocol.
0004  *
0005  * Version: @(#)socket.c    1.1.93  18/02/95
0006  *
0007  * Authors: Orest Zborowski, <obz@Kodak.COM>
0008  *      Ross Biro
0009  *      Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
0010  *
0011  * Fixes:
0012  *      Anonymous   :   NOTSOCK/BADF cleanup. Error fix in
0013  *                  shutdown()
0014  *      Alan Cox    :   verify_area() fixes
0015  *      Alan Cox    :   Removed DDI
0016  *      Jonathan Kamens :   SOCK_DGRAM reconnect bug
0017  *      Alan Cox    :   Moved a load of checks to the very
0018  *                  top level.
0019  *      Alan Cox    :   Move address structures to/from user
0020  *                  mode above the protocol layers.
0021  *      Rob Janssen :   Allow 0 length sends.
0022  *      Alan Cox    :   Asynchronous I/O support (cribbed from the
0023  *                  tty drivers).
0024  *      Niibe Yutaka    :   Asynchronous I/O for writes (4.4BSD style)
0025  *      Jeff Uphoff :   Made max number of sockets command-line
0026  *                  configurable.
0027  *      Matti Aarnio    :   Made the number of sockets dynamic,
0028  *                  to be allocated when needed, and mr.
0029  *                  Uphoff's max is used as max to be
0030  *                  allowed to allocate.
0031  *      Linus       :   Argh. removed all the socket allocation
0032  *                  altogether: it's in the inode now.
0033  *      Alan Cox    :   Made sock_alloc()/sock_release() public
0034  *                  for NetROM and future kernel nfsd type
0035  *                  stuff.
0036  *      Alan Cox    :   sendmsg/recvmsg basics.
0037  *      Tom Dyas    :   Export net symbols.
0038  *      Marcin Dalecki  :   Fixed problems with CONFIG_NET="n".
0039  *      Alan Cox    :   Added thread locking to sys_* calls
0040  *                  for sockets. May have errors at the
0041  *                  moment.
0042  *      Kevin Buhr  :   Fixed the dumb errors in the above.
0043  *      Andi Kleen  :   Some small cleanups, optimizations,
0044  *                  and fixed a copy_from_user() bug.
0045  *      Tigran Aivazian :   sys_send(args) calls sys_sendto(args, NULL, 0)
0046  *      Tigran Aivazian :   Made listen(2) backlog sanity checks
0047  *                  protocol-independent
0048  *
0049  *  This module is effectively the top level interface to the BSD socket
0050  *  paradigm.
0051  *
0052  *  Based upon Swansea University Computer Society NET3.039
0053  */
0054 
0055 #include <linux/bpf-cgroup.h>
0056 #include <linux/ethtool.h>
0057 #include <linux/mm.h>
0058 #include <linux/socket.h>
0059 #include <linux/file.h>
0060 #include <linux/net.h>
0061 #include <linux/interrupt.h>
0062 #include <linux/thread_info.h>
0063 #include <linux/rcupdate.h>
0064 #include <linux/netdevice.h>
0065 #include <linux/proc_fs.h>
0066 #include <linux/seq_file.h>
0067 #include <linux/mutex.h>
0068 #include <linux/if_bridge.h>
0069 #include <linux/if_vlan.h>
0070 #include <linux/ptp_classify.h>
0071 #include <linux/init.h>
0072 #include <linux/poll.h>
0073 #include <linux/cache.h>
0074 #include <linux/module.h>
0075 #include <linux/highmem.h>
0076 #include <linux/mount.h>
0077 #include <linux/pseudo_fs.h>
0078 #include <linux/security.h>
0079 #include <linux/syscalls.h>
0080 #include <linux/compat.h>
0081 #include <linux/kmod.h>
0082 #include <linux/audit.h>
0083 #include <linux/wireless.h>
0084 #include <linux/nsproxy.h>
0085 #include <linux/magic.h>
0086 #include <linux/slab.h>
0087 #include <linux/xattr.h>
0088 #include <linux/nospec.h>
0089 #include <linux/indirect_call_wrapper.h>
0090 
0091 #include <linux/uaccess.h>
0092 #include <asm/unistd.h>
0093 
0094 #include <net/compat.h>
0095 #include <net/wext.h>
0096 #include <net/cls_cgroup.h>
0097 
0098 #include <net/sock.h>
0099 #include <linux/netfilter.h>
0100 
0101 #include <linux/if_tun.h>
0102 #include <linux/ipv6_route.h>
0103 #include <linux/route.h>
0104 #include <linux/termios.h>
0105 #include <linux/sockios.h>
0106 #include <net/busy_poll.h>
0107 #include <linux/errqueue.h>
0108 #include <linux/ptp_clock_kernel.h>
0109 
0110 #ifdef CONFIG_NET_RX_BUSY_POLL
0111 unsigned int sysctl_net_busy_read __read_mostly;
0112 unsigned int sysctl_net_busy_poll __read_mostly;
0113 #endif
0114 
0115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
0116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
0117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
0118 
0119 static int sock_close(struct inode *inode, struct file *file);
0120 static __poll_t sock_poll(struct file *file,
0121                   struct poll_table_struct *wait);
0122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
0123 #ifdef CONFIG_COMPAT
0124 static long compat_sock_ioctl(struct file *file,
0125                   unsigned int cmd, unsigned long arg);
0126 #endif
0127 static int sock_fasync(int fd, struct file *filp, int on);
0128 static ssize_t sock_sendpage(struct file *file, struct page *page,
0129                  int offset, size_t size, loff_t *ppos, int more);
0130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
0131                 struct pipe_inode_info *pipe, size_t len,
0132                 unsigned int flags);
0133 
0134 #ifdef CONFIG_PROC_FS
0135 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
0136 {
0137     struct socket *sock = f->private_data;
0138 
0139     if (sock->ops->show_fdinfo)
0140         sock->ops->show_fdinfo(m, sock);
0141 }
0142 #else
0143 #define sock_show_fdinfo NULL
0144 #endif
0145 
0146 /*
0147  *  Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
0148  *  in the operation structures but are done directly via the socketcall() multiplexor.
0149  */
0150 
0151 static const struct file_operations socket_file_ops = {
0152     .owner =    THIS_MODULE,
0153     .llseek =   no_llseek,
0154     .read_iter =    sock_read_iter,
0155     .write_iter =   sock_write_iter,
0156     .poll =     sock_poll,
0157     .unlocked_ioctl = sock_ioctl,
0158 #ifdef CONFIG_COMPAT
0159     .compat_ioctl = compat_sock_ioctl,
0160 #endif
0161     .mmap =     sock_mmap,
0162     .release =  sock_close,
0163     .fasync =   sock_fasync,
0164     .sendpage = sock_sendpage,
0165     .splice_write = generic_splice_sendpage,
0166     .splice_read =  sock_splice_read,
0167     .show_fdinfo =  sock_show_fdinfo,
0168 };
0169 
0170 static const char * const pf_family_names[] = {
0171     [PF_UNSPEC] = "PF_UNSPEC",
0172     [PF_UNIX]   = "PF_UNIX/PF_LOCAL",
0173     [PF_INET]   = "PF_INET",
0174     [PF_AX25]   = "PF_AX25",
0175     [PF_IPX]    = "PF_IPX",
0176     [PF_APPLETALK]  = "PF_APPLETALK",
0177     [PF_NETROM] = "PF_NETROM",
0178     [PF_BRIDGE] = "PF_BRIDGE",
0179     [PF_ATMPVC] = "PF_ATMPVC",
0180     [PF_X25]    = "PF_X25",
0181     [PF_INET6]  = "PF_INET6",
0182     [PF_ROSE]   = "PF_ROSE",
0183     [PF_DECnet] = "PF_DECnet",
0184     [PF_NETBEUI]    = "PF_NETBEUI",
0185     [PF_SECURITY]   = "PF_SECURITY",
0186     [PF_KEY]    = "PF_KEY",
0187     [PF_NETLINK]    = "PF_NETLINK/PF_ROUTE",
0188     [PF_PACKET] = "PF_PACKET",
0189     [PF_ASH]    = "PF_ASH",
0190     [PF_ECONET] = "PF_ECONET",
0191     [PF_ATMSVC] = "PF_ATMSVC",
0192     [PF_RDS]    = "PF_RDS",
0193     [PF_SNA]    = "PF_SNA",
0194     [PF_IRDA]   = "PF_IRDA",
0195     [PF_PPPOX]  = "PF_PPPOX",
0196     [PF_WANPIPE]    = "PF_WANPIPE",
0197     [PF_LLC]    = "PF_LLC",
0198     [PF_IB]     = "PF_IB",
0199     [PF_MPLS]   = "PF_MPLS",
0200     [PF_CAN]    = "PF_CAN",
0201     [PF_TIPC]   = "PF_TIPC",
0202     [PF_BLUETOOTH]  = "PF_BLUETOOTH",
0203     [PF_IUCV]   = "PF_IUCV",
0204     [PF_RXRPC]  = "PF_RXRPC",
0205     [PF_ISDN]   = "PF_ISDN",
0206     [PF_PHONET] = "PF_PHONET",
0207     [PF_IEEE802154] = "PF_IEEE802154",
0208     [PF_CAIF]   = "PF_CAIF",
0209     [PF_ALG]    = "PF_ALG",
0210     [PF_NFC]    = "PF_NFC",
0211     [PF_VSOCK]  = "PF_VSOCK",
0212     [PF_KCM]    = "PF_KCM",
0213     [PF_QIPCRTR]    = "PF_QIPCRTR",
0214     [PF_SMC]    = "PF_SMC",
0215     [PF_XDP]    = "PF_XDP",
0216     [PF_MCTP]   = "PF_MCTP",
0217 };
0218 
0219 /*
0220  *  The protocol list. Each protocol is registered in here.
0221  */
0222 
0223 static DEFINE_SPINLOCK(net_family_lock);
0224 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
0225 
0226 /*
0227  * Support routines.
0228  * Move socket addresses back and forth across the kernel/user
0229  * divide and look after the messy bits.
0230  */
0231 
0232 /**
0233  *  move_addr_to_kernel -   copy a socket address into kernel space
0234  *  @uaddr: Address in user space
0235  *  @kaddr: Address in kernel space
0236  *  @ulen: Length in user space
0237  *
0238  *  The address is copied into kernel space. If the provided address is
0239  *  too long an error code of -EINVAL is returned. If the copy gives
0240  *  invalid addresses -EFAULT is returned. On a success 0 is returned.
0241  */
0242 
0243 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
0244 {
0245     if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
0246         return -EINVAL;
0247     if (ulen == 0)
0248         return 0;
0249     if (copy_from_user(kaddr, uaddr, ulen))
0250         return -EFAULT;
0251     return audit_sockaddr(ulen, kaddr);
0252 }
0253 
0254 /**
0255  *  move_addr_to_user   -   copy an address to user space
0256  *  @kaddr: kernel space address
0257  *  @klen: length of address in kernel
0258  *  @uaddr: user space address
0259  *  @ulen: pointer to user length field
0260  *
0261  *  The value pointed to by ulen on entry is the buffer length available.
0262  *  This is overwritten with the buffer space used. -EINVAL is returned
0263  *  if an overlong buffer is specified or a negative buffer size. -EFAULT
0264  *  is returned if either the buffer or the length field are not
0265  *  accessible.
0266  *  After copying the data up to the limit the user specifies, the true
0267  *  length of the data is written over the length limit the user
0268  *  specified. Zero is returned for a success.
0269  */
0270 
0271 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
0272                  void __user *uaddr, int __user *ulen)
0273 {
0274     int err;
0275     int len;
0276 
0277     BUG_ON(klen > sizeof(struct sockaddr_storage));
0278     err = get_user(len, ulen);
0279     if (err)
0280         return err;
0281     if (len > klen)
0282         len = klen;
0283     if (len < 0)
0284         return -EINVAL;
0285     if (len) {
0286         if (audit_sockaddr(klen, kaddr))
0287             return -ENOMEM;
0288         if (copy_to_user(uaddr, kaddr, len))
0289             return -EFAULT;
0290     }
0291     /*
0292      *      "fromlen shall refer to the value before truncation.."
0293      *                      1003.1g
0294      */
0295     return __put_user(klen, ulen);
0296 }
0297 
0298 static struct kmem_cache *sock_inode_cachep __ro_after_init;
0299 
0300 static struct inode *sock_alloc_inode(struct super_block *sb)
0301 {
0302     struct socket_alloc *ei;
0303 
0304     ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
0305     if (!ei)
0306         return NULL;
0307     init_waitqueue_head(&ei->socket.wq.wait);
0308     ei->socket.wq.fasync_list = NULL;
0309     ei->socket.wq.flags = 0;
0310 
0311     ei->socket.state = SS_UNCONNECTED;
0312     ei->socket.flags = 0;
0313     ei->socket.ops = NULL;
0314     ei->socket.sk = NULL;
0315     ei->socket.file = NULL;
0316 
0317     return &ei->vfs_inode;
0318 }
0319 
0320 static void sock_free_inode(struct inode *inode)
0321 {
0322     struct socket_alloc *ei;
0323 
0324     ei = container_of(inode, struct socket_alloc, vfs_inode);
0325     kmem_cache_free(sock_inode_cachep, ei);
0326 }
0327 
0328 static void init_once(void *foo)
0329 {
0330     struct socket_alloc *ei = (struct socket_alloc *)foo;
0331 
0332     inode_init_once(&ei->vfs_inode);
0333 }
0334 
0335 static void init_inodecache(void)
0336 {
0337     sock_inode_cachep = kmem_cache_create("sock_inode_cache",
0338                           sizeof(struct socket_alloc),
0339                           0,
0340                           (SLAB_HWCACHE_ALIGN |
0341                            SLAB_RECLAIM_ACCOUNT |
0342                            SLAB_MEM_SPREAD | SLAB_ACCOUNT),
0343                           init_once);
0344     BUG_ON(sock_inode_cachep == NULL);
0345 }
0346 
0347 static const struct super_operations sockfs_ops = {
0348     .alloc_inode    = sock_alloc_inode,
0349     .free_inode = sock_free_inode,
0350     .statfs     = simple_statfs,
0351 };
0352 
0353 /*
0354  * sockfs_dname() is called from d_path().
0355  */
0356 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
0357 {
0358     return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
0359                 d_inode(dentry)->i_ino);
0360 }
0361 
0362 static const struct dentry_operations sockfs_dentry_operations = {
0363     .d_dname  = sockfs_dname,
0364 };
0365 
0366 static int sockfs_xattr_get(const struct xattr_handler *handler,
0367                 struct dentry *dentry, struct inode *inode,
0368                 const char *suffix, void *value, size_t size)
0369 {
0370     if (value) {
0371         if (dentry->d_name.len + 1 > size)
0372             return -ERANGE;
0373         memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
0374     }
0375     return dentry->d_name.len + 1;
0376 }
0377 
0378 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
0379 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
0380 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
0381 
0382 static const struct xattr_handler sockfs_xattr_handler = {
0383     .name = XATTR_NAME_SOCKPROTONAME,
0384     .get = sockfs_xattr_get,
0385 };
0386 
0387 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
0388                      struct user_namespace *mnt_userns,
0389                      struct dentry *dentry, struct inode *inode,
0390                      const char *suffix, const void *value,
0391                      size_t size, int flags)
0392 {
0393     /* Handled by LSM. */
0394     return -EAGAIN;
0395 }
0396 
0397 static const struct xattr_handler sockfs_security_xattr_handler = {
0398     .prefix = XATTR_SECURITY_PREFIX,
0399     .set = sockfs_security_xattr_set,
0400 };
0401 
0402 static const struct xattr_handler *sockfs_xattr_handlers[] = {
0403     &sockfs_xattr_handler,
0404     &sockfs_security_xattr_handler,
0405     NULL
0406 };
0407 
0408 static int sockfs_init_fs_context(struct fs_context *fc)
0409 {
0410     struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
0411     if (!ctx)
0412         return -ENOMEM;
0413     ctx->ops = &sockfs_ops;
0414     ctx->dops = &sockfs_dentry_operations;
0415     ctx->xattr = sockfs_xattr_handlers;
0416     return 0;
0417 }
0418 
0419 static struct vfsmount *sock_mnt __read_mostly;
0420 
0421 static struct file_system_type sock_fs_type = {
0422     .name =     "sockfs",
0423     .init_fs_context = sockfs_init_fs_context,
0424     .kill_sb =  kill_anon_super,
0425 };
0426 
0427 /*
0428  *  Obtains the first available file descriptor and sets it up for use.
0429  *
0430  *  These functions create file structures and maps them to fd space
0431  *  of the current process. On success it returns file descriptor
0432  *  and file struct implicitly stored in sock->file.
0433  *  Note that another thread may close file descriptor before we return
0434  *  from this function. We use the fact that now we do not refer
0435  *  to socket after mapping. If one day we will need it, this
0436  *  function will increment ref. count on file by 1.
0437  *
0438  *  In any case returned fd MAY BE not valid!
0439  *  This race condition is unavoidable
0440  *  with shared fd spaces, we cannot solve it inside kernel,
0441  *  but we take care of internal coherence yet.
0442  */
0443 
0444 /**
0445  *  sock_alloc_file - Bind a &socket to a &file
0446  *  @sock: socket
0447  *  @flags: file status flags
0448  *  @dname: protocol name
0449  *
0450  *  Returns the &file bound with @sock, implicitly storing it
0451  *  in sock->file. If dname is %NULL, sets to "".
0452  *  On failure the return is a ERR pointer (see linux/err.h).
0453  *  This function uses GFP_KERNEL internally.
0454  */
0455 
0456 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
0457 {
0458     struct file *file;
0459 
0460     if (!dname)
0461         dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
0462 
0463     file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
0464                 O_RDWR | (flags & O_NONBLOCK),
0465                 &socket_file_ops);
0466     if (IS_ERR(file)) {
0467         sock_release(sock);
0468         return file;
0469     }
0470 
0471     sock->file = file;
0472     file->private_data = sock;
0473     stream_open(SOCK_INODE(sock), file);
0474     return file;
0475 }
0476 EXPORT_SYMBOL(sock_alloc_file);
0477 
0478 static int sock_map_fd(struct socket *sock, int flags)
0479 {
0480     struct file *newfile;
0481     int fd = get_unused_fd_flags(flags);
0482     if (unlikely(fd < 0)) {
0483         sock_release(sock);
0484         return fd;
0485     }
0486 
0487     newfile = sock_alloc_file(sock, flags, NULL);
0488     if (!IS_ERR(newfile)) {
0489         fd_install(fd, newfile);
0490         return fd;
0491     }
0492 
0493     put_unused_fd(fd);
0494     return PTR_ERR(newfile);
0495 }
0496 
0497 /**
0498  *  sock_from_file - Return the &socket bounded to @file.
0499  *  @file: file
0500  *
0501  *  On failure returns %NULL.
0502  */
0503 
0504 struct socket *sock_from_file(struct file *file)
0505 {
0506     if (file->f_op == &socket_file_ops)
0507         return file->private_data;  /* set in sock_alloc_file */
0508 
0509     return NULL;
0510 }
0511 EXPORT_SYMBOL(sock_from_file);
0512 
0513 /**
0514  *  sockfd_lookup - Go from a file number to its socket slot
0515  *  @fd: file handle
0516  *  @err: pointer to an error code return
0517  *
0518  *  The file handle passed in is locked and the socket it is bound
0519  *  to is returned. If an error occurs the err pointer is overwritten
0520  *  with a negative errno code and NULL is returned. The function checks
0521  *  for both invalid handles and passing a handle which is not a socket.
0522  *
0523  *  On a success the socket object pointer is returned.
0524  */
0525 
0526 struct socket *sockfd_lookup(int fd, int *err)
0527 {
0528     struct file *file;
0529     struct socket *sock;
0530 
0531     file = fget(fd);
0532     if (!file) {
0533         *err = -EBADF;
0534         return NULL;
0535     }
0536 
0537     sock = sock_from_file(file);
0538     if (!sock) {
0539         *err = -ENOTSOCK;
0540         fput(file);
0541     }
0542     return sock;
0543 }
0544 EXPORT_SYMBOL(sockfd_lookup);
0545 
0546 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
0547 {
0548     struct fd f = fdget(fd);
0549     struct socket *sock;
0550 
0551     *err = -EBADF;
0552     if (f.file) {
0553         sock = sock_from_file(f.file);
0554         if (likely(sock)) {
0555             *fput_needed = f.flags & FDPUT_FPUT;
0556             return sock;
0557         }
0558         *err = -ENOTSOCK;
0559         fdput(f);
0560     }
0561     return NULL;
0562 }
0563 
0564 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
0565                 size_t size)
0566 {
0567     ssize_t len;
0568     ssize_t used = 0;
0569 
0570     len = security_inode_listsecurity(d_inode(dentry), buffer, size);
0571     if (len < 0)
0572         return len;
0573     used += len;
0574     if (buffer) {
0575         if (size < used)
0576             return -ERANGE;
0577         buffer += len;
0578     }
0579 
0580     len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
0581     used += len;
0582     if (buffer) {
0583         if (size < used)
0584             return -ERANGE;
0585         memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
0586         buffer += len;
0587     }
0588 
0589     return used;
0590 }
0591 
0592 static int sockfs_setattr(struct user_namespace *mnt_userns,
0593               struct dentry *dentry, struct iattr *iattr)
0594 {
0595     int err = simple_setattr(&init_user_ns, dentry, iattr);
0596 
0597     if (!err && (iattr->ia_valid & ATTR_UID)) {
0598         struct socket *sock = SOCKET_I(d_inode(dentry));
0599 
0600         if (sock->sk)
0601             sock->sk->sk_uid = iattr->ia_uid;
0602         else
0603             err = -ENOENT;
0604     }
0605 
0606     return err;
0607 }
0608 
0609 static const struct inode_operations sockfs_inode_ops = {
0610     .listxattr = sockfs_listxattr,
0611     .setattr = sockfs_setattr,
0612 };
0613 
0614 /**
0615  *  sock_alloc - allocate a socket
0616  *
0617  *  Allocate a new inode and socket object. The two are bound together
0618  *  and initialised. The socket is then returned. If we are out of inodes
0619  *  NULL is returned. This functions uses GFP_KERNEL internally.
0620  */
0621 
0622 struct socket *sock_alloc(void)
0623 {
0624     struct inode *inode;
0625     struct socket *sock;
0626 
0627     inode = new_inode_pseudo(sock_mnt->mnt_sb);
0628     if (!inode)
0629         return NULL;
0630 
0631     sock = SOCKET_I(inode);
0632 
0633     inode->i_ino = get_next_ino();
0634     inode->i_mode = S_IFSOCK | S_IRWXUGO;
0635     inode->i_uid = current_fsuid();
0636     inode->i_gid = current_fsgid();
0637     inode->i_op = &sockfs_inode_ops;
0638 
0639     return sock;
0640 }
0641 EXPORT_SYMBOL(sock_alloc);
0642 
0643 static void __sock_release(struct socket *sock, struct inode *inode)
0644 {
0645     if (sock->ops) {
0646         struct module *owner = sock->ops->owner;
0647 
0648         if (inode)
0649             inode_lock(inode);
0650         sock->ops->release(sock);
0651         sock->sk = NULL;
0652         if (inode)
0653             inode_unlock(inode);
0654         sock->ops = NULL;
0655         module_put(owner);
0656     }
0657 
0658     if (sock->wq.fasync_list)
0659         pr_err("%s: fasync list not empty!\n", __func__);
0660 
0661     if (!sock->file) {
0662         iput(SOCK_INODE(sock));
0663         return;
0664     }
0665     sock->file = NULL;
0666 }
0667 
0668 /**
0669  *  sock_release - close a socket
0670  *  @sock: socket to close
0671  *
0672  *  The socket is released from the protocol stack if it has a release
0673  *  callback, and the inode is then released if the socket is bound to
0674  *  an inode not a file.
0675  */
0676 void sock_release(struct socket *sock)
0677 {
0678     __sock_release(sock, NULL);
0679 }
0680 EXPORT_SYMBOL(sock_release);
0681 
0682 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
0683 {
0684     u8 flags = *tx_flags;
0685 
0686     if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
0687         flags |= SKBTX_HW_TSTAMP;
0688 
0689         /* PTP hardware clocks can provide a free running cycle counter
0690          * as a time base for virtual clocks. Tell driver to use the
0691          * free running cycle counter for timestamp if socket is bound
0692          * to virtual clock.
0693          */
0694         if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
0695             flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
0696     }
0697 
0698     if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
0699         flags |= SKBTX_SW_TSTAMP;
0700 
0701     if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
0702         flags |= SKBTX_SCHED_TSTAMP;
0703 
0704     *tx_flags = flags;
0705 }
0706 EXPORT_SYMBOL(__sock_tx_timestamp);
0707 
0708 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
0709                        size_t));
0710 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
0711                         size_t));
0712 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
0713 {
0714     int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
0715                      inet_sendmsg, sock, msg,
0716                      msg_data_left(msg));
0717     BUG_ON(ret == -EIOCBQUEUED);
0718     return ret;
0719 }
0720 
0721 /**
0722  *  sock_sendmsg - send a message through @sock
0723  *  @sock: socket
0724  *  @msg: message to send
0725  *
0726  *  Sends @msg through @sock, passing through LSM.
0727  *  Returns the number of bytes sent, or an error code.
0728  */
0729 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
0730 {
0731     int err = security_socket_sendmsg(sock, msg,
0732                       msg_data_left(msg));
0733 
0734     return err ?: sock_sendmsg_nosec(sock, msg);
0735 }
0736 EXPORT_SYMBOL(sock_sendmsg);
0737 
0738 /**
0739  *  kernel_sendmsg - send a message through @sock (kernel-space)
0740  *  @sock: socket
0741  *  @msg: message header
0742  *  @vec: kernel vec
0743  *  @num: vec array length
0744  *  @size: total message data size
0745  *
0746  *  Builds the message data with @vec and sends it through @sock.
0747  *  Returns the number of bytes sent, or an error code.
0748  */
0749 
0750 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
0751            struct kvec *vec, size_t num, size_t size)
0752 {
0753     iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
0754     return sock_sendmsg(sock, msg);
0755 }
0756 EXPORT_SYMBOL(kernel_sendmsg);
0757 
0758 /**
0759  *  kernel_sendmsg_locked - send a message through @sock (kernel-space)
0760  *  @sk: sock
0761  *  @msg: message header
0762  *  @vec: output s/g array
0763  *  @num: output s/g array length
0764  *  @size: total message data size
0765  *
0766  *  Builds the message data with @vec and sends it through @sock.
0767  *  Returns the number of bytes sent, or an error code.
0768  *  Caller must hold @sk.
0769  */
0770 
0771 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
0772               struct kvec *vec, size_t num, size_t size)
0773 {
0774     struct socket *sock = sk->sk_socket;
0775 
0776     if (!sock->ops->sendmsg_locked)
0777         return sock_no_sendmsg_locked(sk, msg, size);
0778 
0779     iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
0780 
0781     return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
0782 }
0783 EXPORT_SYMBOL(kernel_sendmsg_locked);
0784 
0785 static bool skb_is_err_queue(const struct sk_buff *skb)
0786 {
0787     /* pkt_type of skbs enqueued on the error queue are set to
0788      * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
0789      * in recvmsg, since skbs received on a local socket will never
0790      * have a pkt_type of PACKET_OUTGOING.
0791      */
0792     return skb->pkt_type == PACKET_OUTGOING;
0793 }
0794 
0795 /* On transmit, software and hardware timestamps are returned independently.
0796  * As the two skb clones share the hardware timestamp, which may be updated
0797  * before the software timestamp is received, a hardware TX timestamp may be
0798  * returned only if there is no software TX timestamp. Ignore false software
0799  * timestamps, which may be made in the __sock_recv_timestamp() call when the
0800  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
0801  * hardware timestamp.
0802  */
0803 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
0804 {
0805     return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
0806 }
0807 
0808 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
0809 {
0810     bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
0811     struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
0812     struct net_device *orig_dev;
0813     ktime_t hwtstamp;
0814 
0815     rcu_read_lock();
0816     orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
0817     if (orig_dev) {
0818         *if_index = orig_dev->ifindex;
0819         hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
0820     } else {
0821         hwtstamp = shhwtstamps->hwtstamp;
0822     }
0823     rcu_read_unlock();
0824 
0825     return hwtstamp;
0826 }
0827 
0828 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
0829                int if_index)
0830 {
0831     struct scm_ts_pktinfo ts_pktinfo;
0832     struct net_device *orig_dev;
0833 
0834     if (!skb_mac_header_was_set(skb))
0835         return;
0836 
0837     memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
0838 
0839     if (!if_index) {
0840         rcu_read_lock();
0841         orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
0842         if (orig_dev)
0843             if_index = orig_dev->ifindex;
0844         rcu_read_unlock();
0845     }
0846     ts_pktinfo.if_index = if_index;
0847 
0848     ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
0849     put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
0850          sizeof(ts_pktinfo), &ts_pktinfo);
0851 }
0852 
0853 /*
0854  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
0855  */
0856 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
0857     struct sk_buff *skb)
0858 {
0859     int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
0860     int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
0861     struct scm_timestamping_internal tss;
0862 
0863     int empty = 1, false_tstamp = 0;
0864     struct skb_shared_hwtstamps *shhwtstamps =
0865         skb_hwtstamps(skb);
0866     int if_index;
0867     ktime_t hwtstamp;
0868 
0869     /* Race occurred between timestamp enabling and packet
0870        receiving.  Fill in the current time for now. */
0871     if (need_software_tstamp && skb->tstamp == 0) {
0872         __net_timestamp(skb);
0873         false_tstamp = 1;
0874     }
0875 
0876     if (need_software_tstamp) {
0877         if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
0878             if (new_tstamp) {
0879                 struct __kernel_sock_timeval tv;
0880 
0881                 skb_get_new_timestamp(skb, &tv);
0882                 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
0883                      sizeof(tv), &tv);
0884             } else {
0885                 struct __kernel_old_timeval tv;
0886 
0887                 skb_get_timestamp(skb, &tv);
0888                 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
0889                      sizeof(tv), &tv);
0890             }
0891         } else {
0892             if (new_tstamp) {
0893                 struct __kernel_timespec ts;
0894 
0895                 skb_get_new_timestampns(skb, &ts);
0896                 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
0897                      sizeof(ts), &ts);
0898             } else {
0899                 struct __kernel_old_timespec ts;
0900 
0901                 skb_get_timestampns(skb, &ts);
0902                 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
0903                      sizeof(ts), &ts);
0904             }
0905         }
0906     }
0907 
0908     memset(&tss, 0, sizeof(tss));
0909     if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
0910         ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
0911         empty = 0;
0912     if (shhwtstamps &&
0913         (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
0914         !skb_is_swtx_tstamp(skb, false_tstamp)) {
0915         if_index = 0;
0916         if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
0917             hwtstamp = get_timestamp(sk, skb, &if_index);
0918         else
0919             hwtstamp = shhwtstamps->hwtstamp;
0920 
0921         if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
0922             hwtstamp = ptp_convert_timestamp(&hwtstamp,
0923                              sk->sk_bind_phc);
0924 
0925         if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
0926             empty = 0;
0927 
0928             if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
0929                 !skb_is_err_queue(skb))
0930                 put_ts_pktinfo(msg, skb, if_index);
0931         }
0932     }
0933     if (!empty) {
0934         if (sock_flag(sk, SOCK_TSTAMP_NEW))
0935             put_cmsg_scm_timestamping64(msg, &tss);
0936         else
0937             put_cmsg_scm_timestamping(msg, &tss);
0938 
0939         if (skb_is_err_queue(skb) && skb->len &&
0940             SKB_EXT_ERR(skb)->opt_stats)
0941             put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
0942                  skb->len, skb->data);
0943     }
0944 }
0945 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
0946 
0947 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
0948     struct sk_buff *skb)
0949 {
0950     int ack;
0951 
0952     if (!sock_flag(sk, SOCK_WIFI_STATUS))
0953         return;
0954     if (!skb->wifi_acked_valid)
0955         return;
0956 
0957     ack = skb->wifi_acked;
0958 
0959     put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
0960 }
0961 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
0962 
0963 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
0964                    struct sk_buff *skb)
0965 {
0966     if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
0967         put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
0968             sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
0969 }
0970 
0971 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
0972                struct sk_buff *skb)
0973 {
0974     if (sock_flag(sk, SOCK_RCVMARK) && skb)
0975         put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32),
0976              &skb->mark);
0977 }
0978 
0979 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
0980                struct sk_buff *skb)
0981 {
0982     sock_recv_timestamp(msg, sk, skb);
0983     sock_recv_drops(msg, sk, skb);
0984     sock_recv_mark(msg, sk, skb);
0985 }
0986 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
0987 
0988 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
0989                        size_t, int));
0990 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
0991                         size_t, int));
0992 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
0993                      int flags)
0994 {
0995     return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
0996                   inet_recvmsg, sock, msg, msg_data_left(msg),
0997                   flags);
0998 }
0999 
1000 /**
1001  *  sock_recvmsg - receive a message from @sock
1002  *  @sock: socket
1003  *  @msg: message to receive
1004  *  @flags: message flags
1005  *
1006  *  Receives @msg from @sock, passing through LSM. Returns the total number
1007  *  of bytes received, or an error.
1008  */
1009 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1010 {
1011     int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1012 
1013     return err ?: sock_recvmsg_nosec(sock, msg, flags);
1014 }
1015 EXPORT_SYMBOL(sock_recvmsg);
1016 
1017 /**
1018  *  kernel_recvmsg - Receive a message from a socket (kernel space)
1019  *  @sock: The socket to receive the message from
1020  *  @msg: Received message
1021  *  @vec: Input s/g array for message data
1022  *  @num: Size of input s/g array
1023  *  @size: Number of bytes to read
1024  *  @flags: Message flags (MSG_DONTWAIT, etc...)
1025  *
1026  *  On return the msg structure contains the scatter/gather array passed in the
1027  *  vec argument. The array is modified so that it consists of the unfilled
1028  *  portion of the original array.
1029  *
1030  *  The returned value is the total number of bytes received, or an error.
1031  */
1032 
1033 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1034            struct kvec *vec, size_t num, size_t size, int flags)
1035 {
1036     msg->msg_control_is_user = false;
1037     iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
1038     return sock_recvmsg(sock, msg, flags);
1039 }
1040 EXPORT_SYMBOL(kernel_recvmsg);
1041 
1042 static ssize_t sock_sendpage(struct file *file, struct page *page,
1043                  int offset, size_t size, loff_t *ppos, int more)
1044 {
1045     struct socket *sock;
1046     int flags;
1047 
1048     sock = file->private_data;
1049 
1050     flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1051     /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1052     flags |= more;
1053 
1054     return kernel_sendpage(sock, page, offset, size, flags);
1055 }
1056 
1057 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1058                 struct pipe_inode_info *pipe, size_t len,
1059                 unsigned int flags)
1060 {
1061     struct socket *sock = file->private_data;
1062 
1063     if (unlikely(!sock->ops->splice_read))
1064         return generic_file_splice_read(file, ppos, pipe, len, flags);
1065 
1066     return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1067 }
1068 
1069 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1070 {
1071     struct file *file = iocb->ki_filp;
1072     struct socket *sock = file->private_data;
1073     struct msghdr msg = {.msg_iter = *to,
1074                  .msg_iocb = iocb};
1075     ssize_t res;
1076 
1077     if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1078         msg.msg_flags = MSG_DONTWAIT;
1079 
1080     if (iocb->ki_pos != 0)
1081         return -ESPIPE;
1082 
1083     if (!iov_iter_count(to))    /* Match SYS5 behaviour */
1084         return 0;
1085 
1086     res = sock_recvmsg(sock, &msg, msg.msg_flags);
1087     *to = msg.msg_iter;
1088     return res;
1089 }
1090 
1091 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1092 {
1093     struct file *file = iocb->ki_filp;
1094     struct socket *sock = file->private_data;
1095     struct msghdr msg = {.msg_iter = *from,
1096                  .msg_iocb = iocb};
1097     ssize_t res;
1098 
1099     if (iocb->ki_pos != 0)
1100         return -ESPIPE;
1101 
1102     if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1103         msg.msg_flags = MSG_DONTWAIT;
1104 
1105     if (sock->type == SOCK_SEQPACKET)
1106         msg.msg_flags |= MSG_EOR;
1107 
1108     res = sock_sendmsg(sock, &msg);
1109     *from = msg.msg_iter;
1110     return res;
1111 }
1112 
1113 /*
1114  * Atomic setting of ioctl hooks to avoid race
1115  * with module unload.
1116  */
1117 
1118 static DEFINE_MUTEX(br_ioctl_mutex);
1119 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1120                 unsigned int cmd, struct ifreq *ifr,
1121                 void __user *uarg);
1122 
1123 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1124                  unsigned int cmd, struct ifreq *ifr,
1125                  void __user *uarg))
1126 {
1127     mutex_lock(&br_ioctl_mutex);
1128     br_ioctl_hook = hook;
1129     mutex_unlock(&br_ioctl_mutex);
1130 }
1131 EXPORT_SYMBOL(brioctl_set);
1132 
1133 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1134           struct ifreq *ifr, void __user *uarg)
1135 {
1136     int err = -ENOPKG;
1137 
1138     if (!br_ioctl_hook)
1139         request_module("bridge");
1140 
1141     mutex_lock(&br_ioctl_mutex);
1142     if (br_ioctl_hook)
1143         err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1144     mutex_unlock(&br_ioctl_mutex);
1145 
1146     return err;
1147 }
1148 
1149 static DEFINE_MUTEX(vlan_ioctl_mutex);
1150 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1151 
1152 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1153 {
1154     mutex_lock(&vlan_ioctl_mutex);
1155     vlan_ioctl_hook = hook;
1156     mutex_unlock(&vlan_ioctl_mutex);
1157 }
1158 EXPORT_SYMBOL(vlan_ioctl_set);
1159 
1160 static long sock_do_ioctl(struct net *net, struct socket *sock,
1161               unsigned int cmd, unsigned long arg)
1162 {
1163     struct ifreq ifr;
1164     bool need_copyout;
1165     int err;
1166     void __user *argp = (void __user *)arg;
1167     void __user *data;
1168 
1169     err = sock->ops->ioctl(sock, cmd, arg);
1170 
1171     /*
1172      * If this ioctl is unknown try to hand it down
1173      * to the NIC driver.
1174      */
1175     if (err != -ENOIOCTLCMD)
1176         return err;
1177 
1178     if (!is_socket_ioctl_cmd(cmd))
1179         return -ENOTTY;
1180 
1181     if (get_user_ifreq(&ifr, &data, argp))
1182         return -EFAULT;
1183     err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1184     if (!err && need_copyout)
1185         if (put_user_ifreq(&ifr, argp))
1186             return -EFAULT;
1187 
1188     return err;
1189 }
1190 
1191 /*
1192  *  With an ioctl, arg may well be a user mode pointer, but we don't know
1193  *  what to do with it - that's up to the protocol still.
1194  */
1195 
1196 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1197 {
1198     struct socket *sock;
1199     struct sock *sk;
1200     void __user *argp = (void __user *)arg;
1201     int pid, err;
1202     struct net *net;
1203 
1204     sock = file->private_data;
1205     sk = sock->sk;
1206     net = sock_net(sk);
1207     if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1208         struct ifreq ifr;
1209         void __user *data;
1210         bool need_copyout;
1211         if (get_user_ifreq(&ifr, &data, argp))
1212             return -EFAULT;
1213         err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1214         if (!err && need_copyout)
1215             if (put_user_ifreq(&ifr, argp))
1216                 return -EFAULT;
1217     } else
1218 #ifdef CONFIG_WEXT_CORE
1219     if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1220         err = wext_handle_ioctl(net, cmd, argp);
1221     } else
1222 #endif
1223         switch (cmd) {
1224         case FIOSETOWN:
1225         case SIOCSPGRP:
1226             err = -EFAULT;
1227             if (get_user(pid, (int __user *)argp))
1228                 break;
1229             err = f_setown(sock->file, pid, 1);
1230             break;
1231         case FIOGETOWN:
1232         case SIOCGPGRP:
1233             err = put_user(f_getown(sock->file),
1234                        (int __user *)argp);
1235             break;
1236         case SIOCGIFBR:
1237         case SIOCSIFBR:
1238         case SIOCBRADDBR:
1239         case SIOCBRDELBR:
1240             err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1241             break;
1242         case SIOCGIFVLAN:
1243         case SIOCSIFVLAN:
1244             err = -ENOPKG;
1245             if (!vlan_ioctl_hook)
1246                 request_module("8021q");
1247 
1248             mutex_lock(&vlan_ioctl_mutex);
1249             if (vlan_ioctl_hook)
1250                 err = vlan_ioctl_hook(net, argp);
1251             mutex_unlock(&vlan_ioctl_mutex);
1252             break;
1253         case SIOCGSKNS:
1254             err = -EPERM;
1255             if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1256                 break;
1257 
1258             err = open_related_ns(&net->ns, get_net_ns);
1259             break;
1260         case SIOCGSTAMP_OLD:
1261         case SIOCGSTAMPNS_OLD:
1262             if (!sock->ops->gettstamp) {
1263                 err = -ENOIOCTLCMD;
1264                 break;
1265             }
1266             err = sock->ops->gettstamp(sock, argp,
1267                            cmd == SIOCGSTAMP_OLD,
1268                            !IS_ENABLED(CONFIG_64BIT));
1269             break;
1270         case SIOCGSTAMP_NEW:
1271         case SIOCGSTAMPNS_NEW:
1272             if (!sock->ops->gettstamp) {
1273                 err = -ENOIOCTLCMD;
1274                 break;
1275             }
1276             err = sock->ops->gettstamp(sock, argp,
1277                            cmd == SIOCGSTAMP_NEW,
1278                            false);
1279             break;
1280 
1281         case SIOCGIFCONF:
1282             err = dev_ifconf(net, argp);
1283             break;
1284 
1285         default:
1286             err = sock_do_ioctl(net, sock, cmd, arg);
1287             break;
1288         }
1289     return err;
1290 }
1291 
1292 /**
1293  *  sock_create_lite - creates a socket
1294  *  @family: protocol family (AF_INET, ...)
1295  *  @type: communication type (SOCK_STREAM, ...)
1296  *  @protocol: protocol (0, ...)
1297  *  @res: new socket
1298  *
1299  *  Creates a new socket and assigns it to @res, passing through LSM.
1300  *  The new socket initialization is not complete, see kernel_accept().
1301  *  Returns 0 or an error. On failure @res is set to %NULL.
1302  *  This function internally uses GFP_KERNEL.
1303  */
1304 
1305 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1306 {
1307     int err;
1308     struct socket *sock = NULL;
1309 
1310     err = security_socket_create(family, type, protocol, 1);
1311     if (err)
1312         goto out;
1313 
1314     sock = sock_alloc();
1315     if (!sock) {
1316         err = -ENOMEM;
1317         goto out;
1318     }
1319 
1320     sock->type = type;
1321     err = security_socket_post_create(sock, family, type, protocol, 1);
1322     if (err)
1323         goto out_release;
1324 
1325 out:
1326     *res = sock;
1327     return err;
1328 out_release:
1329     sock_release(sock);
1330     sock = NULL;
1331     goto out;
1332 }
1333 EXPORT_SYMBOL(sock_create_lite);
1334 
1335 /* No kernel lock held - perfect */
1336 static __poll_t sock_poll(struct file *file, poll_table *wait)
1337 {
1338     struct socket *sock = file->private_data;
1339     __poll_t events = poll_requested_events(wait), flag = 0;
1340 
1341     if (!sock->ops->poll)
1342         return 0;
1343 
1344     if (sk_can_busy_loop(sock->sk)) {
1345         /* poll once if requested by the syscall */
1346         if (events & POLL_BUSY_LOOP)
1347             sk_busy_loop(sock->sk, 1);
1348 
1349         /* if this socket can poll_ll, tell the system call */
1350         flag = POLL_BUSY_LOOP;
1351     }
1352 
1353     return sock->ops->poll(file, sock, wait) | flag;
1354 }
1355 
1356 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1357 {
1358     struct socket *sock = file->private_data;
1359 
1360     return sock->ops->mmap(file, sock, vma);
1361 }
1362 
1363 static int sock_close(struct inode *inode, struct file *filp)
1364 {
1365     __sock_release(SOCKET_I(inode), inode);
1366     return 0;
1367 }
1368 
1369 /*
1370  *  Update the socket async list
1371  *
1372  *  Fasync_list locking strategy.
1373  *
1374  *  1. fasync_list is modified only under process context socket lock
1375  *     i.e. under semaphore.
1376  *  2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1377  *     or under socket lock
1378  */
1379 
1380 static int sock_fasync(int fd, struct file *filp, int on)
1381 {
1382     struct socket *sock = filp->private_data;
1383     struct sock *sk = sock->sk;
1384     struct socket_wq *wq = &sock->wq;
1385 
1386     if (sk == NULL)
1387         return -EINVAL;
1388 
1389     lock_sock(sk);
1390     fasync_helper(fd, filp, on, &wq->fasync_list);
1391 
1392     if (!wq->fasync_list)
1393         sock_reset_flag(sk, SOCK_FASYNC);
1394     else
1395         sock_set_flag(sk, SOCK_FASYNC);
1396 
1397     release_sock(sk);
1398     return 0;
1399 }
1400 
1401 /* This function may be called only under rcu_lock */
1402 
1403 int sock_wake_async(struct socket_wq *wq, int how, int band)
1404 {
1405     if (!wq || !wq->fasync_list)
1406         return -1;
1407 
1408     switch (how) {
1409     case SOCK_WAKE_WAITD:
1410         if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1411             break;
1412         goto call_kill;
1413     case SOCK_WAKE_SPACE:
1414         if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1415             break;
1416         fallthrough;
1417     case SOCK_WAKE_IO:
1418 call_kill:
1419         kill_fasync(&wq->fasync_list, SIGIO, band);
1420         break;
1421     case SOCK_WAKE_URG:
1422         kill_fasync(&wq->fasync_list, SIGURG, band);
1423     }
1424 
1425     return 0;
1426 }
1427 EXPORT_SYMBOL(sock_wake_async);
1428 
1429 /**
1430  *  __sock_create - creates a socket
1431  *  @net: net namespace
1432  *  @family: protocol family (AF_INET, ...)
1433  *  @type: communication type (SOCK_STREAM, ...)
1434  *  @protocol: protocol (0, ...)
1435  *  @res: new socket
1436  *  @kern: boolean for kernel space sockets
1437  *
1438  *  Creates a new socket and assigns it to @res, passing through LSM.
1439  *  Returns 0 or an error. On failure @res is set to %NULL. @kern must
1440  *  be set to true if the socket resides in kernel space.
1441  *  This function internally uses GFP_KERNEL.
1442  */
1443 
1444 int __sock_create(struct net *net, int family, int type, int protocol,
1445              struct socket **res, int kern)
1446 {
1447     int err;
1448     struct socket *sock;
1449     const struct net_proto_family *pf;
1450 
1451     /*
1452      *      Check protocol is in range
1453      */
1454     if (family < 0 || family >= NPROTO)
1455         return -EAFNOSUPPORT;
1456     if (type < 0 || type >= SOCK_MAX)
1457         return -EINVAL;
1458 
1459     /* Compatibility.
1460 
1461        This uglymoron is moved from INET layer to here to avoid
1462        deadlock in module load.
1463      */
1464     if (family == PF_INET && type == SOCK_PACKET) {
1465         pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1466                  current->comm);
1467         family = PF_PACKET;
1468     }
1469 
1470     err = security_socket_create(family, type, protocol, kern);
1471     if (err)
1472         return err;
1473 
1474     /*
1475      *  Allocate the socket and allow the family to set things up. if
1476      *  the protocol is 0, the family is instructed to select an appropriate
1477      *  default.
1478      */
1479     sock = sock_alloc();
1480     if (!sock) {
1481         net_warn_ratelimited("socket: no more sockets\n");
1482         return -ENFILE; /* Not exactly a match, but its the
1483                    closest posix thing */
1484     }
1485 
1486     sock->type = type;
1487 
1488 #ifdef CONFIG_MODULES
1489     /* Attempt to load a protocol module if the find failed.
1490      *
1491      * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1492      * requested real, full-featured networking support upon configuration.
1493      * Otherwise module support will break!
1494      */
1495     if (rcu_access_pointer(net_families[family]) == NULL)
1496         request_module("net-pf-%d", family);
1497 #endif
1498 
1499     rcu_read_lock();
1500     pf = rcu_dereference(net_families[family]);
1501     err = -EAFNOSUPPORT;
1502     if (!pf)
1503         goto out_release;
1504 
1505     /*
1506      * We will call the ->create function, that possibly is in a loadable
1507      * module, so we have to bump that loadable module refcnt first.
1508      */
1509     if (!try_module_get(pf->owner))
1510         goto out_release;
1511 
1512     /* Now protected by module ref count */
1513     rcu_read_unlock();
1514 
1515     err = pf->create(net, sock, protocol, kern);
1516     if (err < 0)
1517         goto out_module_put;
1518 
1519     /*
1520      * Now to bump the refcnt of the [loadable] module that owns this
1521      * socket at sock_release time we decrement its refcnt.
1522      */
1523     if (!try_module_get(sock->ops->owner))
1524         goto out_module_busy;
1525 
1526     /*
1527      * Now that we're done with the ->create function, the [loadable]
1528      * module can have its refcnt decremented
1529      */
1530     module_put(pf->owner);
1531     err = security_socket_post_create(sock, family, type, protocol, kern);
1532     if (err)
1533         goto out_sock_release;
1534     *res = sock;
1535 
1536     return 0;
1537 
1538 out_module_busy:
1539     err = -EAFNOSUPPORT;
1540 out_module_put:
1541     sock->ops = NULL;
1542     module_put(pf->owner);
1543 out_sock_release:
1544     sock_release(sock);
1545     return err;
1546 
1547 out_release:
1548     rcu_read_unlock();
1549     goto out_sock_release;
1550 }
1551 EXPORT_SYMBOL(__sock_create);
1552 
1553 /**
1554  *  sock_create - creates a socket
1555  *  @family: protocol family (AF_INET, ...)
1556  *  @type: communication type (SOCK_STREAM, ...)
1557  *  @protocol: protocol (0, ...)
1558  *  @res: new socket
1559  *
1560  *  A wrapper around __sock_create().
1561  *  Returns 0 or an error. This function internally uses GFP_KERNEL.
1562  */
1563 
1564 int sock_create(int family, int type, int protocol, struct socket **res)
1565 {
1566     return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1567 }
1568 EXPORT_SYMBOL(sock_create);
1569 
1570 /**
1571  *  sock_create_kern - creates a socket (kernel space)
1572  *  @net: net namespace
1573  *  @family: protocol family (AF_INET, ...)
1574  *  @type: communication type (SOCK_STREAM, ...)
1575  *  @protocol: protocol (0, ...)
1576  *  @res: new socket
1577  *
1578  *  A wrapper around __sock_create().
1579  *  Returns 0 or an error. This function internally uses GFP_KERNEL.
1580  */
1581 
1582 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1583 {
1584     return __sock_create(net, family, type, protocol, res, 1);
1585 }
1586 EXPORT_SYMBOL(sock_create_kern);
1587 
1588 static struct socket *__sys_socket_create(int family, int type, int protocol)
1589 {
1590     struct socket *sock;
1591     int retval;
1592 
1593     /* Check the SOCK_* constants for consistency.  */
1594     BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1595     BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1596     BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1597     BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1598 
1599     if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1600         return ERR_PTR(-EINVAL);
1601     type &= SOCK_TYPE_MASK;
1602 
1603     retval = sock_create(family, type, protocol, &sock);
1604     if (retval < 0)
1605         return ERR_PTR(retval);
1606 
1607     return sock;
1608 }
1609 
1610 struct file *__sys_socket_file(int family, int type, int protocol)
1611 {
1612     struct socket *sock;
1613     struct file *file;
1614     int flags;
1615 
1616     sock = __sys_socket_create(family, type, protocol);
1617     if (IS_ERR(sock))
1618         return ERR_CAST(sock);
1619 
1620     flags = type & ~SOCK_TYPE_MASK;
1621     if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1622         flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1623 
1624     file = sock_alloc_file(sock, flags, NULL);
1625     if (IS_ERR(file))
1626         sock_release(sock);
1627 
1628     return file;
1629 }
1630 
1631 int __sys_socket(int family, int type, int protocol)
1632 {
1633     struct socket *sock;
1634     int flags;
1635 
1636     sock = __sys_socket_create(family, type, protocol);
1637     if (IS_ERR(sock))
1638         return PTR_ERR(sock);
1639 
1640     flags = type & ~SOCK_TYPE_MASK;
1641     if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1642         flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1643 
1644     return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1645 }
1646 
1647 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1648 {
1649     return __sys_socket(family, type, protocol);
1650 }
1651 
1652 /*
1653  *  Create a pair of connected sockets.
1654  */
1655 
1656 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1657 {
1658     struct socket *sock1, *sock2;
1659     int fd1, fd2, err;
1660     struct file *newfile1, *newfile2;
1661     int flags;
1662 
1663     flags = type & ~SOCK_TYPE_MASK;
1664     if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1665         return -EINVAL;
1666     type &= SOCK_TYPE_MASK;
1667 
1668     if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1669         flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1670 
1671     /*
1672      * reserve descriptors and make sure we won't fail
1673      * to return them to userland.
1674      */
1675     fd1 = get_unused_fd_flags(flags);
1676     if (unlikely(fd1 < 0))
1677         return fd1;
1678 
1679     fd2 = get_unused_fd_flags(flags);
1680     if (unlikely(fd2 < 0)) {
1681         put_unused_fd(fd1);
1682         return fd2;
1683     }
1684 
1685     err = put_user(fd1, &usockvec[0]);
1686     if (err)
1687         goto out;
1688 
1689     err = put_user(fd2, &usockvec[1]);
1690     if (err)
1691         goto out;
1692 
1693     /*
1694      * Obtain the first socket and check if the underlying protocol
1695      * supports the socketpair call.
1696      */
1697 
1698     err = sock_create(family, type, protocol, &sock1);
1699     if (unlikely(err < 0))
1700         goto out;
1701 
1702     err = sock_create(family, type, protocol, &sock2);
1703     if (unlikely(err < 0)) {
1704         sock_release(sock1);
1705         goto out;
1706     }
1707 
1708     err = security_socket_socketpair(sock1, sock2);
1709     if (unlikely(err)) {
1710         sock_release(sock2);
1711         sock_release(sock1);
1712         goto out;
1713     }
1714 
1715     err = sock1->ops->socketpair(sock1, sock2);
1716     if (unlikely(err < 0)) {
1717         sock_release(sock2);
1718         sock_release(sock1);
1719         goto out;
1720     }
1721 
1722     newfile1 = sock_alloc_file(sock1, flags, NULL);
1723     if (IS_ERR(newfile1)) {
1724         err = PTR_ERR(newfile1);
1725         sock_release(sock2);
1726         goto out;
1727     }
1728 
1729     newfile2 = sock_alloc_file(sock2, flags, NULL);
1730     if (IS_ERR(newfile2)) {
1731         err = PTR_ERR(newfile2);
1732         fput(newfile1);
1733         goto out;
1734     }
1735 
1736     audit_fd_pair(fd1, fd2);
1737 
1738     fd_install(fd1, newfile1);
1739     fd_install(fd2, newfile2);
1740     return 0;
1741 
1742 out:
1743     put_unused_fd(fd2);
1744     put_unused_fd(fd1);
1745     return err;
1746 }
1747 
1748 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1749         int __user *, usockvec)
1750 {
1751     return __sys_socketpair(family, type, protocol, usockvec);
1752 }
1753 
1754 /*
1755  *  Bind a name to a socket. Nothing much to do here since it's
1756  *  the protocol's responsibility to handle the local address.
1757  *
1758  *  We move the socket address to kernel space before we call
1759  *  the protocol layer (having also checked the address is ok).
1760  */
1761 
1762 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1763 {
1764     struct socket *sock;
1765     struct sockaddr_storage address;
1766     int err, fput_needed;
1767 
1768     sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769     if (sock) {
1770         err = move_addr_to_kernel(umyaddr, addrlen, &address);
1771         if (!err) {
1772             err = security_socket_bind(sock,
1773                            (struct sockaddr *)&address,
1774                            addrlen);
1775             if (!err)
1776                 err = sock->ops->bind(sock,
1777                               (struct sockaddr *)
1778                               &address, addrlen);
1779         }
1780         fput_light(sock->file, fput_needed);
1781     }
1782     return err;
1783 }
1784 
1785 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1786 {
1787     return __sys_bind(fd, umyaddr, addrlen);
1788 }
1789 
1790 /*
1791  *  Perform a listen. Basically, we allow the protocol to do anything
1792  *  necessary for a listen, and if that works, we mark the socket as
1793  *  ready for listening.
1794  */
1795 
1796 int __sys_listen(int fd, int backlog)
1797 {
1798     struct socket *sock;
1799     int err, fput_needed;
1800     int somaxconn;
1801 
1802     sock = sockfd_lookup_light(fd, &err, &fput_needed);
1803     if (sock) {
1804         somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1805         if ((unsigned int)backlog > somaxconn)
1806             backlog = somaxconn;
1807 
1808         err = security_socket_listen(sock, backlog);
1809         if (!err)
1810             err = sock->ops->listen(sock, backlog);
1811 
1812         fput_light(sock->file, fput_needed);
1813     }
1814     return err;
1815 }
1816 
1817 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1818 {
1819     return __sys_listen(fd, backlog);
1820 }
1821 
1822 struct file *do_accept(struct file *file, unsigned file_flags,
1823                struct sockaddr __user *upeer_sockaddr,
1824                int __user *upeer_addrlen, int flags)
1825 {
1826     struct socket *sock, *newsock;
1827     struct file *newfile;
1828     int err, len;
1829     struct sockaddr_storage address;
1830 
1831     sock = sock_from_file(file);
1832     if (!sock)
1833         return ERR_PTR(-ENOTSOCK);
1834 
1835     newsock = sock_alloc();
1836     if (!newsock)
1837         return ERR_PTR(-ENFILE);
1838 
1839     newsock->type = sock->type;
1840     newsock->ops = sock->ops;
1841 
1842     /*
1843      * We don't need try_module_get here, as the listening socket (sock)
1844      * has the protocol module (sock->ops->owner) held.
1845      */
1846     __module_get(newsock->ops->owner);
1847 
1848     newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1849     if (IS_ERR(newfile))
1850         return newfile;
1851 
1852     err = security_socket_accept(sock, newsock);
1853     if (err)
1854         goto out_fd;
1855 
1856     err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1857                     false);
1858     if (err < 0)
1859         goto out_fd;
1860 
1861     if (upeer_sockaddr) {
1862         len = newsock->ops->getname(newsock,
1863                     (struct sockaddr *)&address, 2);
1864         if (len < 0) {
1865             err = -ECONNABORTED;
1866             goto out_fd;
1867         }
1868         err = move_addr_to_user(&address,
1869                     len, upeer_sockaddr, upeer_addrlen);
1870         if (err < 0)
1871             goto out_fd;
1872     }
1873 
1874     /* File flags are not inherited via accept() unlike another OSes. */
1875     return newfile;
1876 out_fd:
1877     fput(newfile);
1878     return ERR_PTR(err);
1879 }
1880 
1881 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1882                   int __user *upeer_addrlen, int flags)
1883 {
1884     struct file *newfile;
1885     int newfd;
1886 
1887     if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1888         return -EINVAL;
1889 
1890     if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1891         flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1892 
1893     newfd = get_unused_fd_flags(flags);
1894     if (unlikely(newfd < 0))
1895         return newfd;
1896 
1897     newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1898                 flags);
1899     if (IS_ERR(newfile)) {
1900         put_unused_fd(newfd);
1901         return PTR_ERR(newfile);
1902     }
1903     fd_install(newfd, newfile);
1904     return newfd;
1905 }
1906 
1907 /*
1908  *  For accept, we attempt to create a new socket, set up the link
1909  *  with the client, wake up the client, then return the new
1910  *  connected fd. We collect the address of the connector in kernel
1911  *  space and move it to user at the very end. This is unclean because
1912  *  we open the socket then return an error.
1913  *
1914  *  1003.1g adds the ability to recvmsg() to query connection pending
1915  *  status to recvmsg. We need to add that support in a way thats
1916  *  clean when we restructure accept also.
1917  */
1918 
1919 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1920           int __user *upeer_addrlen, int flags)
1921 {
1922     int ret = -EBADF;
1923     struct fd f;
1924 
1925     f = fdget(fd);
1926     if (f.file) {
1927         ret = __sys_accept4_file(f.file, upeer_sockaddr,
1928                      upeer_addrlen, flags);
1929         fdput(f);
1930     }
1931 
1932     return ret;
1933 }
1934 
1935 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1936         int __user *, upeer_addrlen, int, flags)
1937 {
1938     return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1939 }
1940 
1941 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1942         int __user *, upeer_addrlen)
1943 {
1944     return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1945 }
1946 
1947 /*
1948  *  Attempt to connect to a socket with the server address.  The address
1949  *  is in user space so we verify it is OK and move it to kernel space.
1950  *
1951  *  For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1952  *  break bindings
1953  *
1954  *  NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1955  *  other SEQPACKET protocols that take time to connect() as it doesn't
1956  *  include the -EINPROGRESS status for such sockets.
1957  */
1958 
1959 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1960                int addrlen, int file_flags)
1961 {
1962     struct socket *sock;
1963     int err;
1964 
1965     sock = sock_from_file(file);
1966     if (!sock) {
1967         err = -ENOTSOCK;
1968         goto out;
1969     }
1970 
1971     err =
1972         security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1973     if (err)
1974         goto out;
1975 
1976     err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1977                  sock->file->f_flags | file_flags);
1978 out:
1979     return err;
1980 }
1981 
1982 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1983 {
1984     int ret = -EBADF;
1985     struct fd f;
1986 
1987     f = fdget(fd);
1988     if (f.file) {
1989         struct sockaddr_storage address;
1990 
1991         ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1992         if (!ret)
1993             ret = __sys_connect_file(f.file, &address, addrlen, 0);
1994         fdput(f);
1995     }
1996 
1997     return ret;
1998 }
1999 
2000 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2001         int, addrlen)
2002 {
2003     return __sys_connect(fd, uservaddr, addrlen);
2004 }
2005 
2006 /*
2007  *  Get the local address ('name') of a socket object. Move the obtained
2008  *  name to user space.
2009  */
2010 
2011 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2012               int __user *usockaddr_len)
2013 {
2014     struct socket *sock;
2015     struct sockaddr_storage address;
2016     int err, fput_needed;
2017 
2018     sock = sockfd_lookup_light(fd, &err, &fput_needed);
2019     if (!sock)
2020         goto out;
2021 
2022     err = security_socket_getsockname(sock);
2023     if (err)
2024         goto out_put;
2025 
2026     err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2027     if (err < 0)
2028         goto out_put;
2029     /* "err" is actually length in this case */
2030     err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2031 
2032 out_put:
2033     fput_light(sock->file, fput_needed);
2034 out:
2035     return err;
2036 }
2037 
2038 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2039         int __user *, usockaddr_len)
2040 {
2041     return __sys_getsockname(fd, usockaddr, usockaddr_len);
2042 }
2043 
2044 /*
2045  *  Get the remote address ('name') of a socket object. Move the obtained
2046  *  name to user space.
2047  */
2048 
2049 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2050               int __user *usockaddr_len)
2051 {
2052     struct socket *sock;
2053     struct sockaddr_storage address;
2054     int err, fput_needed;
2055 
2056     sock = sockfd_lookup_light(fd, &err, &fput_needed);
2057     if (sock != NULL) {
2058         err = security_socket_getpeername(sock);
2059         if (err) {
2060             fput_light(sock->file, fput_needed);
2061             return err;
2062         }
2063 
2064         err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2065         if (err >= 0)
2066             /* "err" is actually length in this case */
2067             err = move_addr_to_user(&address, err, usockaddr,
2068                         usockaddr_len);
2069         fput_light(sock->file, fput_needed);
2070     }
2071     return err;
2072 }
2073 
2074 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2075         int __user *, usockaddr_len)
2076 {
2077     return __sys_getpeername(fd, usockaddr, usockaddr_len);
2078 }
2079 
2080 /*
2081  *  Send a datagram to a given address. We move the address into kernel
2082  *  space and check the user space data area is readable before invoking
2083  *  the protocol.
2084  */
2085 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2086          struct sockaddr __user *addr,  int addr_len)
2087 {
2088     struct socket *sock;
2089     struct sockaddr_storage address;
2090     int err;
2091     struct msghdr msg;
2092     struct iovec iov;
2093     int fput_needed;
2094 
2095     err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2096     if (unlikely(err))
2097         return err;
2098     sock = sockfd_lookup_light(fd, &err, &fput_needed);
2099     if (!sock)
2100         goto out;
2101 
2102     msg.msg_name = NULL;
2103     msg.msg_control = NULL;
2104     msg.msg_controllen = 0;
2105     msg.msg_namelen = 0;
2106     msg.msg_ubuf = NULL;
2107     if (addr) {
2108         err = move_addr_to_kernel(addr, addr_len, &address);
2109         if (err < 0)
2110             goto out_put;
2111         msg.msg_name = (struct sockaddr *)&address;
2112         msg.msg_namelen = addr_len;
2113     }
2114     if (sock->file->f_flags & O_NONBLOCK)
2115         flags |= MSG_DONTWAIT;
2116     msg.msg_flags = flags;
2117     err = sock_sendmsg(sock, &msg);
2118 
2119 out_put:
2120     fput_light(sock->file, fput_needed);
2121 out:
2122     return err;
2123 }
2124 
2125 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2126         unsigned int, flags, struct sockaddr __user *, addr,
2127         int, addr_len)
2128 {
2129     return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2130 }
2131 
2132 /*
2133  *  Send a datagram down a socket.
2134  */
2135 
2136 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2137         unsigned int, flags)
2138 {
2139     return __sys_sendto(fd, buff, len, flags, NULL, 0);
2140 }
2141 
2142 /*
2143  *  Receive a frame from the socket and optionally record the address of the
2144  *  sender. We verify the buffers are writable and if needed move the
2145  *  sender address from kernel to user space.
2146  */
2147 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2148            struct sockaddr __user *addr, int __user *addr_len)
2149 {
2150     struct sockaddr_storage address;
2151     struct msghdr msg = {
2152         /* Save some cycles and don't copy the address if not needed */
2153         .msg_name = addr ? (struct sockaddr *)&address : NULL,
2154     };
2155     struct socket *sock;
2156     struct iovec iov;
2157     int err, err2;
2158     int fput_needed;
2159 
2160     err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2161     if (unlikely(err))
2162         return err;
2163     sock = sockfd_lookup_light(fd, &err, &fput_needed);
2164     if (!sock)
2165         goto out;
2166 
2167     if (sock->file->f_flags & O_NONBLOCK)
2168         flags |= MSG_DONTWAIT;
2169     err = sock_recvmsg(sock, &msg, flags);
2170 
2171     if (err >= 0 && addr != NULL) {
2172         err2 = move_addr_to_user(&address,
2173                      msg.msg_namelen, addr, addr_len);
2174         if (err2 < 0)
2175             err = err2;
2176     }
2177 
2178     fput_light(sock->file, fput_needed);
2179 out:
2180     return err;
2181 }
2182 
2183 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2184         unsigned int, flags, struct sockaddr __user *, addr,
2185         int __user *, addr_len)
2186 {
2187     return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2188 }
2189 
2190 /*
2191  *  Receive a datagram from a socket.
2192  */
2193 
2194 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2195         unsigned int, flags)
2196 {
2197     return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2198 }
2199 
2200 static bool sock_use_custom_sol_socket(const struct socket *sock)
2201 {
2202     const struct sock *sk = sock->sk;
2203 
2204     /* Use sock->ops->setsockopt() for MPTCP */
2205     return IS_ENABLED(CONFIG_MPTCP) &&
2206            sk->sk_protocol == IPPROTO_MPTCP &&
2207            sk->sk_type == SOCK_STREAM &&
2208            (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2209 }
2210 
2211 /*
2212  *  Set a socket option. Because we don't know the option lengths we have
2213  *  to pass the user mode parameter for the protocols to sort out.
2214  */
2215 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2216         int optlen)
2217 {
2218     sockptr_t optval = USER_SOCKPTR(user_optval);
2219     char *kernel_optval = NULL;
2220     int err, fput_needed;
2221     struct socket *sock;
2222 
2223     if (optlen < 0)
2224         return -EINVAL;
2225 
2226     sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227     if (!sock)
2228         return err;
2229 
2230     err = security_socket_setsockopt(sock, level, optname);
2231     if (err)
2232         goto out_put;
2233 
2234     if (!in_compat_syscall())
2235         err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2236                              user_optval, &optlen,
2237                              &kernel_optval);
2238     if (err < 0)
2239         goto out_put;
2240     if (err > 0) {
2241         err = 0;
2242         goto out_put;
2243     }
2244 
2245     if (kernel_optval)
2246         optval = KERNEL_SOCKPTR(kernel_optval);
2247     if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2248         err = sock_setsockopt(sock, level, optname, optval, optlen);
2249     else if (unlikely(!sock->ops->setsockopt))
2250         err = -EOPNOTSUPP;
2251     else
2252         err = sock->ops->setsockopt(sock, level, optname, optval,
2253                         optlen);
2254     kfree(kernel_optval);
2255 out_put:
2256     fput_light(sock->file, fput_needed);
2257     return err;
2258 }
2259 
2260 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2261         char __user *, optval, int, optlen)
2262 {
2263     return __sys_setsockopt(fd, level, optname, optval, optlen);
2264 }
2265 
2266 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2267                              int optname));
2268 
2269 /*
2270  *  Get a socket option. Because we don't know the option lengths we have
2271  *  to pass a user mode parameter for the protocols to sort out.
2272  */
2273 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2274         int __user *optlen)
2275 {
2276     int err, fput_needed;
2277     struct socket *sock;
2278     int max_optlen;
2279 
2280     sock = sockfd_lookup_light(fd, &err, &fput_needed);
2281     if (!sock)
2282         return err;
2283 
2284     err = security_socket_getsockopt(sock, level, optname);
2285     if (err)
2286         goto out_put;
2287 
2288     if (!in_compat_syscall())
2289         max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2290 
2291     if (level == SOL_SOCKET)
2292         err = sock_getsockopt(sock, level, optname, optval, optlen);
2293     else if (unlikely(!sock->ops->getsockopt))
2294         err = -EOPNOTSUPP;
2295     else
2296         err = sock->ops->getsockopt(sock, level, optname, optval,
2297                         optlen);
2298 
2299     if (!in_compat_syscall())
2300         err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2301                              optval, optlen, max_optlen,
2302                              err);
2303 out_put:
2304     fput_light(sock->file, fput_needed);
2305     return err;
2306 }
2307 
2308 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2309         char __user *, optval, int __user *, optlen)
2310 {
2311     return __sys_getsockopt(fd, level, optname, optval, optlen);
2312 }
2313 
2314 /*
2315  *  Shutdown a socket.
2316  */
2317 
2318 int __sys_shutdown_sock(struct socket *sock, int how)
2319 {
2320     int err;
2321 
2322     err = security_socket_shutdown(sock, how);
2323     if (!err)
2324         err = sock->ops->shutdown(sock, how);
2325 
2326     return err;
2327 }
2328 
2329 int __sys_shutdown(int fd, int how)
2330 {
2331     int err, fput_needed;
2332     struct socket *sock;
2333 
2334     sock = sockfd_lookup_light(fd, &err, &fput_needed);
2335     if (sock != NULL) {
2336         err = __sys_shutdown_sock(sock, how);
2337         fput_light(sock->file, fput_needed);
2338     }
2339     return err;
2340 }
2341 
2342 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2343 {
2344     return __sys_shutdown(fd, how);
2345 }
2346 
2347 /* A couple of helpful macros for getting the address of the 32/64 bit
2348  * fields which are the same type (int / unsigned) on our platforms.
2349  */
2350 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2351 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2352 #define COMPAT_FLAGS(msg)   COMPAT_MSG(msg, msg_flags)
2353 
2354 struct used_address {
2355     struct sockaddr_storage name;
2356     unsigned int name_len;
2357 };
2358 
2359 int __copy_msghdr(struct msghdr *kmsg,
2360           struct user_msghdr *msg,
2361           struct sockaddr __user **save_addr)
2362 {
2363     ssize_t err;
2364 
2365     kmsg->msg_control_is_user = true;
2366     kmsg->msg_get_inq = 0;
2367     kmsg->msg_control_user = msg->msg_control;
2368     kmsg->msg_controllen = msg->msg_controllen;
2369     kmsg->msg_flags = msg->msg_flags;
2370 
2371     kmsg->msg_namelen = msg->msg_namelen;
2372     if (!msg->msg_name)
2373         kmsg->msg_namelen = 0;
2374 
2375     if (kmsg->msg_namelen < 0)
2376         return -EINVAL;
2377 
2378     if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2379         kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2380 
2381     if (save_addr)
2382         *save_addr = msg->msg_name;
2383 
2384     if (msg->msg_name && kmsg->msg_namelen) {
2385         if (!save_addr) {
2386             err = move_addr_to_kernel(msg->msg_name,
2387                           kmsg->msg_namelen,
2388                           kmsg->msg_name);
2389             if (err < 0)
2390                 return err;
2391         }
2392     } else {
2393         kmsg->msg_name = NULL;
2394         kmsg->msg_namelen = 0;
2395     }
2396 
2397     if (msg->msg_iovlen > UIO_MAXIOV)
2398         return -EMSGSIZE;
2399 
2400     kmsg->msg_iocb = NULL;
2401     kmsg->msg_ubuf = NULL;
2402     return 0;
2403 }
2404 
2405 static int copy_msghdr_from_user(struct msghdr *kmsg,
2406                  struct user_msghdr __user *umsg,
2407                  struct sockaddr __user **save_addr,
2408                  struct iovec **iov)
2409 {
2410     struct user_msghdr msg;
2411     ssize_t err;
2412 
2413     if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2414         return -EFAULT;
2415 
2416     err = __copy_msghdr(kmsg, &msg, save_addr);
2417     if (err)
2418         return err;
2419 
2420     err = import_iovec(save_addr ? READ : WRITE,
2421                 msg.msg_iov, msg.msg_iovlen,
2422                 UIO_FASTIOV, iov, &kmsg->msg_iter);
2423     return err < 0 ? err : 0;
2424 }
2425 
2426 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2427                unsigned int flags, struct used_address *used_address,
2428                unsigned int allowed_msghdr_flags)
2429 {
2430     unsigned char ctl[sizeof(struct cmsghdr) + 20]
2431                 __aligned(sizeof(__kernel_size_t));
2432     /* 20 is size of ipv6_pktinfo */
2433     unsigned char *ctl_buf = ctl;
2434     int ctl_len;
2435     ssize_t err;
2436 
2437     err = -ENOBUFS;
2438 
2439     if (msg_sys->msg_controllen > INT_MAX)
2440         goto out;
2441     flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2442     ctl_len = msg_sys->msg_controllen;
2443     if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2444         err =
2445             cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2446                              sizeof(ctl));
2447         if (err)
2448             goto out;
2449         ctl_buf = msg_sys->msg_control;
2450         ctl_len = msg_sys->msg_controllen;
2451     } else if (ctl_len) {
2452         BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2453                  CMSG_ALIGN(sizeof(struct cmsghdr)));
2454         if (ctl_len > sizeof(ctl)) {
2455             ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2456             if (ctl_buf == NULL)
2457                 goto out;
2458         }
2459         err = -EFAULT;
2460         if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2461             goto out_freectl;
2462         msg_sys->msg_control = ctl_buf;
2463         msg_sys->msg_control_is_user = false;
2464     }
2465     msg_sys->msg_flags = flags;
2466 
2467     if (sock->file->f_flags & O_NONBLOCK)
2468         msg_sys->msg_flags |= MSG_DONTWAIT;
2469     /*
2470      * If this is sendmmsg() and current destination address is same as
2471      * previously succeeded address, omit asking LSM's decision.
2472      * used_address->name_len is initialized to UINT_MAX so that the first
2473      * destination address never matches.
2474      */
2475     if (used_address && msg_sys->msg_name &&
2476         used_address->name_len == msg_sys->msg_namelen &&
2477         !memcmp(&used_address->name, msg_sys->msg_name,
2478             used_address->name_len)) {
2479         err = sock_sendmsg_nosec(sock, msg_sys);
2480         goto out_freectl;
2481     }
2482     err = sock_sendmsg(sock, msg_sys);
2483     /*
2484      * If this is sendmmsg() and sending to current destination address was
2485      * successful, remember it.
2486      */
2487     if (used_address && err >= 0) {
2488         used_address->name_len = msg_sys->msg_namelen;
2489         if (msg_sys->msg_name)
2490             memcpy(&used_address->name, msg_sys->msg_name,
2491                    used_address->name_len);
2492     }
2493 
2494 out_freectl:
2495     if (ctl_buf != ctl)
2496         sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2497 out:
2498     return err;
2499 }
2500 
2501 int sendmsg_copy_msghdr(struct msghdr *msg,
2502             struct user_msghdr __user *umsg, unsigned flags,
2503             struct iovec **iov)
2504 {
2505     int err;
2506 
2507     if (flags & MSG_CMSG_COMPAT) {
2508         struct compat_msghdr __user *msg_compat;
2509 
2510         msg_compat = (struct compat_msghdr __user *) umsg;
2511         err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2512     } else {
2513         err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2514     }
2515     if (err < 0)
2516         return err;
2517 
2518     return 0;
2519 }
2520 
2521 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2522              struct msghdr *msg_sys, unsigned int flags,
2523              struct used_address *used_address,
2524              unsigned int allowed_msghdr_flags)
2525 {
2526     struct sockaddr_storage address;
2527     struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2528     ssize_t err;
2529 
2530     msg_sys->msg_name = &address;
2531 
2532     err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2533     if (err < 0)
2534         return err;
2535 
2536     err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2537                 allowed_msghdr_flags);
2538     kfree(iov);
2539     return err;
2540 }
2541 
2542 /*
2543  *  BSD sendmsg interface
2544  */
2545 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2546             unsigned int flags)
2547 {
2548     return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2549 }
2550 
2551 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2552            bool forbid_cmsg_compat)
2553 {
2554     int fput_needed, err;
2555     struct msghdr msg_sys;
2556     struct socket *sock;
2557 
2558     if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2559         return -EINVAL;
2560 
2561     sock = sockfd_lookup_light(fd, &err, &fput_needed);
2562     if (!sock)
2563         goto out;
2564 
2565     err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2566 
2567     fput_light(sock->file, fput_needed);
2568 out:
2569     return err;
2570 }
2571 
2572 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2573 {
2574     return __sys_sendmsg(fd, msg, flags, true);
2575 }
2576 
2577 /*
2578  *  Linux sendmmsg interface
2579  */
2580 
2581 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2582            unsigned int flags, bool forbid_cmsg_compat)
2583 {
2584     int fput_needed, err, datagrams;
2585     struct socket *sock;
2586     struct mmsghdr __user *entry;
2587     struct compat_mmsghdr __user *compat_entry;
2588     struct msghdr msg_sys;
2589     struct used_address used_address;
2590     unsigned int oflags = flags;
2591 
2592     if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2593         return -EINVAL;
2594 
2595     if (vlen > UIO_MAXIOV)
2596         vlen = UIO_MAXIOV;
2597 
2598     datagrams = 0;
2599 
2600     sock = sockfd_lookup_light(fd, &err, &fput_needed);
2601     if (!sock)
2602         return err;
2603 
2604     used_address.name_len = UINT_MAX;
2605     entry = mmsg;
2606     compat_entry = (struct compat_mmsghdr __user *)mmsg;
2607     err = 0;
2608     flags |= MSG_BATCH;
2609 
2610     while (datagrams < vlen) {
2611         if (datagrams == vlen - 1)
2612             flags = oflags;
2613 
2614         if (MSG_CMSG_COMPAT & flags) {
2615             err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2616                          &msg_sys, flags, &used_address, MSG_EOR);
2617             if (err < 0)
2618                 break;
2619             err = __put_user(err, &compat_entry->msg_len);
2620             ++compat_entry;
2621         } else {
2622             err = ___sys_sendmsg(sock,
2623                          (struct user_msghdr __user *)entry,
2624                          &msg_sys, flags, &used_address, MSG_EOR);
2625             if (err < 0)
2626                 break;
2627             err = put_user(err, &entry->msg_len);
2628             ++entry;
2629         }
2630 
2631         if (err)
2632             break;
2633         ++datagrams;
2634         if (msg_data_left(&msg_sys))
2635             break;
2636         cond_resched();
2637     }
2638 
2639     fput_light(sock->file, fput_needed);
2640 
2641     /* We only return an error if no datagrams were able to be sent */
2642     if (datagrams != 0)
2643         return datagrams;
2644 
2645     return err;
2646 }
2647 
2648 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2649         unsigned int, vlen, unsigned int, flags)
2650 {
2651     return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2652 }
2653 
2654 int recvmsg_copy_msghdr(struct msghdr *msg,
2655             struct user_msghdr __user *umsg, unsigned flags,
2656             struct sockaddr __user **uaddr,
2657             struct iovec **iov)
2658 {
2659     ssize_t err;
2660 
2661     if (MSG_CMSG_COMPAT & flags) {
2662         struct compat_msghdr __user *msg_compat;
2663 
2664         msg_compat = (struct compat_msghdr __user *) umsg;
2665         err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2666     } else {
2667         err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2668     }
2669     if (err < 0)
2670         return err;
2671 
2672     return 0;
2673 }
2674 
2675 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2676                struct user_msghdr __user *msg,
2677                struct sockaddr __user *uaddr,
2678                unsigned int flags, int nosec)
2679 {
2680     struct compat_msghdr __user *msg_compat =
2681                     (struct compat_msghdr __user *) msg;
2682     int __user *uaddr_len = COMPAT_NAMELEN(msg);
2683     struct sockaddr_storage addr;
2684     unsigned long cmsg_ptr;
2685     int len;
2686     ssize_t err;
2687 
2688     msg_sys->msg_name = &addr;
2689     cmsg_ptr = (unsigned long)msg_sys->msg_control;
2690     msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2691 
2692     /* We assume all kernel code knows the size of sockaddr_storage */
2693     msg_sys->msg_namelen = 0;
2694 
2695     if (sock->file->f_flags & O_NONBLOCK)
2696         flags |= MSG_DONTWAIT;
2697 
2698     if (unlikely(nosec))
2699         err = sock_recvmsg_nosec(sock, msg_sys, flags);
2700     else
2701         err = sock_recvmsg(sock, msg_sys, flags);
2702 
2703     if (err < 0)
2704         goto out;
2705     len = err;
2706 
2707     if (uaddr != NULL) {
2708         err = move_addr_to_user(&addr,
2709                     msg_sys->msg_namelen, uaddr,
2710                     uaddr_len);
2711         if (err < 0)
2712             goto out;
2713     }
2714     err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2715              COMPAT_FLAGS(msg));
2716     if (err)
2717         goto out;
2718     if (MSG_CMSG_COMPAT & flags)
2719         err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2720                  &msg_compat->msg_controllen);
2721     else
2722         err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2723                  &msg->msg_controllen);
2724     if (err)
2725         goto out;
2726     err = len;
2727 out:
2728     return err;
2729 }
2730 
2731 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2732              struct msghdr *msg_sys, unsigned int flags, int nosec)
2733 {
2734     struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2735     /* user mode address pointers */
2736     struct sockaddr __user *uaddr;
2737     ssize_t err;
2738 
2739     err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2740     if (err < 0)
2741         return err;
2742 
2743     err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2744     kfree(iov);
2745     return err;
2746 }
2747 
2748 /*
2749  *  BSD recvmsg interface
2750  */
2751 
2752 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2753             struct user_msghdr __user *umsg,
2754             struct sockaddr __user *uaddr, unsigned int flags)
2755 {
2756     return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2757 }
2758 
2759 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2760            bool forbid_cmsg_compat)
2761 {
2762     int fput_needed, err;
2763     struct msghdr msg_sys;
2764     struct socket *sock;
2765 
2766     if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2767         return -EINVAL;
2768 
2769     sock = sockfd_lookup_light(fd, &err, &fput_needed);
2770     if (!sock)
2771         goto out;
2772 
2773     err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2774 
2775     fput_light(sock->file, fput_needed);
2776 out:
2777     return err;
2778 }
2779 
2780 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2781         unsigned int, flags)
2782 {
2783     return __sys_recvmsg(fd, msg, flags, true);
2784 }
2785 
2786 /*
2787  *     Linux recvmmsg interface
2788  */
2789 
2790 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2791               unsigned int vlen, unsigned int flags,
2792               struct timespec64 *timeout)
2793 {
2794     int fput_needed, err, datagrams;
2795     struct socket *sock;
2796     struct mmsghdr __user *entry;
2797     struct compat_mmsghdr __user *compat_entry;
2798     struct msghdr msg_sys;
2799     struct timespec64 end_time;
2800     struct timespec64 timeout64;
2801 
2802     if (timeout &&
2803         poll_select_set_timeout(&end_time, timeout->tv_sec,
2804                     timeout->tv_nsec))
2805         return -EINVAL;
2806 
2807     datagrams = 0;
2808 
2809     sock = sockfd_lookup_light(fd, &err, &fput_needed);
2810     if (!sock)
2811         return err;
2812 
2813     if (likely(!(flags & MSG_ERRQUEUE))) {
2814         err = sock_error(sock->sk);
2815         if (err) {
2816             datagrams = err;
2817             goto out_put;
2818         }
2819     }
2820 
2821     entry = mmsg;
2822     compat_entry = (struct compat_mmsghdr __user *)mmsg;
2823 
2824     while (datagrams < vlen) {
2825         /*
2826          * No need to ask LSM for more than the first datagram.
2827          */
2828         if (MSG_CMSG_COMPAT & flags) {
2829             err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2830                          &msg_sys, flags & ~MSG_WAITFORONE,
2831                          datagrams);
2832             if (err < 0)
2833                 break;
2834             err = __put_user(err, &compat_entry->msg_len);
2835             ++compat_entry;
2836         } else {
2837             err = ___sys_recvmsg(sock,
2838                          (struct user_msghdr __user *)entry,
2839                          &msg_sys, flags & ~MSG_WAITFORONE,
2840                          datagrams);
2841             if (err < 0)
2842                 break;
2843             err = put_user(err, &entry->msg_len);
2844             ++entry;
2845         }
2846 
2847         if (err)
2848             break;
2849         ++datagrams;
2850 
2851         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2852         if (flags & MSG_WAITFORONE)
2853             flags |= MSG_DONTWAIT;
2854 
2855         if (timeout) {
2856             ktime_get_ts64(&timeout64);
2857             *timeout = timespec64_sub(end_time, timeout64);
2858             if (timeout->tv_sec < 0) {
2859                 timeout->tv_sec = timeout->tv_nsec = 0;
2860                 break;
2861             }
2862 
2863             /* Timeout, return less than vlen datagrams */
2864             if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2865                 break;
2866         }
2867 
2868         /* Out of band data, return right away */
2869         if (msg_sys.msg_flags & MSG_OOB)
2870             break;
2871         cond_resched();
2872     }
2873 
2874     if (err == 0)
2875         goto out_put;
2876 
2877     if (datagrams == 0) {
2878         datagrams = err;
2879         goto out_put;
2880     }
2881 
2882     /*
2883      * We may return less entries than requested (vlen) if the
2884      * sock is non block and there aren't enough datagrams...
2885      */
2886     if (err != -EAGAIN) {
2887         /*
2888          * ... or  if recvmsg returns an error after we
2889          * received some datagrams, where we record the
2890          * error to return on the next call or if the
2891          * app asks about it using getsockopt(SO_ERROR).
2892          */
2893         sock->sk->sk_err = -err;
2894     }
2895 out_put:
2896     fput_light(sock->file, fput_needed);
2897 
2898     return datagrams;
2899 }
2900 
2901 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2902            unsigned int vlen, unsigned int flags,
2903            struct __kernel_timespec __user *timeout,
2904            struct old_timespec32 __user *timeout32)
2905 {
2906     int datagrams;
2907     struct timespec64 timeout_sys;
2908 
2909     if (timeout && get_timespec64(&timeout_sys, timeout))
2910         return -EFAULT;
2911 
2912     if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2913         return -EFAULT;
2914 
2915     if (!timeout && !timeout32)
2916         return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2917 
2918     datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2919 
2920     if (datagrams <= 0)
2921         return datagrams;
2922 
2923     if (timeout && put_timespec64(&timeout_sys, timeout))
2924         datagrams = -EFAULT;
2925 
2926     if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2927         datagrams = -EFAULT;
2928 
2929     return datagrams;
2930 }
2931 
2932 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2933         unsigned int, vlen, unsigned int, flags,
2934         struct __kernel_timespec __user *, timeout)
2935 {
2936     if (flags & MSG_CMSG_COMPAT)
2937         return -EINVAL;
2938 
2939     return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2940 }
2941 
2942 #ifdef CONFIG_COMPAT_32BIT_TIME
2943 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2944         unsigned int, vlen, unsigned int, flags,
2945         struct old_timespec32 __user *, timeout)
2946 {
2947     if (flags & MSG_CMSG_COMPAT)
2948         return -EINVAL;
2949 
2950     return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2951 }
2952 #endif
2953 
2954 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2955 /* Argument list sizes for sys_socketcall */
2956 #define AL(x) ((x) * sizeof(unsigned long))
2957 static const unsigned char nargs[21] = {
2958     AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2959     AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2960     AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2961     AL(4), AL(5), AL(4)
2962 };
2963 
2964 #undef AL
2965 
2966 /*
2967  *  System call vectors.
2968  *
2969  *  Argument checking cleaned up. Saved 20% in size.
2970  *  This function doesn't need to set the kernel lock because
2971  *  it is set by the callees.
2972  */
2973 
2974 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2975 {
2976     unsigned long a[AUDITSC_ARGS];
2977     unsigned long a0, a1;
2978     int err;
2979     unsigned int len;
2980 
2981     if (call < 1 || call > SYS_SENDMMSG)
2982         return -EINVAL;
2983     call = array_index_nospec(call, SYS_SENDMMSG + 1);
2984 
2985     len = nargs[call];
2986     if (len > sizeof(a))
2987         return -EINVAL;
2988 
2989     /* copy_from_user should be SMP safe. */
2990     if (copy_from_user(a, args, len))
2991         return -EFAULT;
2992 
2993     err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2994     if (err)
2995         return err;
2996 
2997     a0 = a[0];
2998     a1 = a[1];
2999 
3000     switch (call) {
3001     case SYS_SOCKET:
3002         err = __sys_socket(a0, a1, a[2]);
3003         break;
3004     case SYS_BIND:
3005         err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3006         break;
3007     case SYS_CONNECT:
3008         err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3009         break;
3010     case SYS_LISTEN:
3011         err = __sys_listen(a0, a1);
3012         break;
3013     case SYS_ACCEPT:
3014         err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3015                     (int __user *)a[2], 0);
3016         break;
3017     case SYS_GETSOCKNAME:
3018         err =
3019             __sys_getsockname(a0, (struct sockaddr __user *)a1,
3020                       (int __user *)a[2]);
3021         break;
3022     case SYS_GETPEERNAME:
3023         err =
3024             __sys_getpeername(a0, (struct sockaddr __user *)a1,
3025                       (int __user *)a[2]);
3026         break;
3027     case SYS_SOCKETPAIR:
3028         err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3029         break;
3030     case SYS_SEND:
3031         err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3032                    NULL, 0);
3033         break;
3034     case SYS_SENDTO:
3035         err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3036                    (struct sockaddr __user *)a[4], a[5]);
3037         break;
3038     case SYS_RECV:
3039         err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3040                      NULL, NULL);
3041         break;
3042     case SYS_RECVFROM:
3043         err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3044                      (struct sockaddr __user *)a[4],
3045                      (int __user *)a[5]);
3046         break;
3047     case SYS_SHUTDOWN:
3048         err = __sys_shutdown(a0, a1);
3049         break;
3050     case SYS_SETSOCKOPT:
3051         err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3052                        a[4]);
3053         break;
3054     case SYS_GETSOCKOPT:
3055         err =
3056             __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3057                      (int __user *)a[4]);
3058         break;
3059     case SYS_SENDMSG:
3060         err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3061                     a[2], true);
3062         break;
3063     case SYS_SENDMMSG:
3064         err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3065                      a[3], true);
3066         break;
3067     case SYS_RECVMSG:
3068         err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3069                     a[2], true);
3070         break;
3071     case SYS_RECVMMSG:
3072         if (IS_ENABLED(CONFIG_64BIT))
3073             err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3074                          a[2], a[3],
3075                          (struct __kernel_timespec __user *)a[4],
3076                          NULL);
3077         else
3078             err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3079                          a[2], a[3], NULL,
3080                          (struct old_timespec32 __user *)a[4]);
3081         break;
3082     case SYS_ACCEPT4:
3083         err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3084                     (int __user *)a[2], a[3]);
3085         break;
3086     default:
3087         err = -EINVAL;
3088         break;
3089     }
3090     return err;
3091 }
3092 
3093 #endif              /* __ARCH_WANT_SYS_SOCKETCALL */
3094 
3095 /**
3096  *  sock_register - add a socket protocol handler
3097  *  @ops: description of protocol
3098  *
3099  *  This function is called by a protocol handler that wants to
3100  *  advertise its address family, and have it linked into the
3101  *  socket interface. The value ops->family corresponds to the
3102  *  socket system call protocol family.
3103  */
3104 int sock_register(const struct net_proto_family *ops)
3105 {
3106     int err;
3107 
3108     if (ops->family >= NPROTO) {
3109         pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3110         return -ENOBUFS;
3111     }
3112 
3113     spin_lock(&net_family_lock);
3114     if (rcu_dereference_protected(net_families[ops->family],
3115                       lockdep_is_held(&net_family_lock)))
3116         err = -EEXIST;
3117     else {
3118         rcu_assign_pointer(net_families[ops->family], ops);
3119         err = 0;
3120     }
3121     spin_unlock(&net_family_lock);
3122 
3123     pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3124     return err;
3125 }
3126 EXPORT_SYMBOL(sock_register);
3127 
3128 /**
3129  *  sock_unregister - remove a protocol handler
3130  *  @family: protocol family to remove
3131  *
3132  *  This function is called by a protocol handler that wants to
3133  *  remove its address family, and have it unlinked from the
3134  *  new socket creation.
3135  *
3136  *  If protocol handler is a module, then it can use module reference
3137  *  counts to protect against new references. If protocol handler is not
3138  *  a module then it needs to provide its own protection in
3139  *  the ops->create routine.
3140  */
3141 void sock_unregister(int family)
3142 {
3143     BUG_ON(family < 0 || family >= NPROTO);
3144 
3145     spin_lock(&net_family_lock);
3146     RCU_INIT_POINTER(net_families[family], NULL);
3147     spin_unlock(&net_family_lock);
3148 
3149     synchronize_rcu();
3150 
3151     pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3152 }
3153 EXPORT_SYMBOL(sock_unregister);
3154 
3155 bool sock_is_registered(int family)
3156 {
3157     return family < NPROTO && rcu_access_pointer(net_families[family]);
3158 }
3159 
3160 static int __init sock_init(void)
3161 {
3162     int err;
3163     /*
3164      *      Initialize the network sysctl infrastructure.
3165      */
3166     err = net_sysctl_init();
3167     if (err)
3168         goto out;
3169 
3170     /*
3171      *      Initialize skbuff SLAB cache
3172      */
3173     skb_init();
3174 
3175     /*
3176      *      Initialize the protocols module.
3177      */
3178 
3179     init_inodecache();
3180 
3181     err = register_filesystem(&sock_fs_type);
3182     if (err)
3183         goto out;
3184     sock_mnt = kern_mount(&sock_fs_type);
3185     if (IS_ERR(sock_mnt)) {
3186         err = PTR_ERR(sock_mnt);
3187         goto out_mount;
3188     }
3189 
3190     /* The real protocol initialization is performed in later initcalls.
3191      */
3192 
3193 #ifdef CONFIG_NETFILTER
3194     err = netfilter_init();
3195     if (err)
3196         goto out;
3197 #endif
3198 
3199     ptp_classifier_init();
3200 
3201 out:
3202     return err;
3203 
3204 out_mount:
3205     unregister_filesystem(&sock_fs_type);
3206     goto out;
3207 }
3208 
3209 core_initcall(sock_init);   /* early initcall */
3210 
3211 #ifdef CONFIG_PROC_FS
3212 void socket_seq_show(struct seq_file *seq)
3213 {
3214     seq_printf(seq, "sockets: used %d\n",
3215            sock_inuse_get(seq->private));
3216 }
3217 #endif              /* CONFIG_PROC_FS */
3218 
3219 /* Handle the fact that while struct ifreq has the same *layout* on
3220  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3221  * which are handled elsewhere, it still has different *size* due to
3222  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3223  * resulting in struct ifreq being 32 and 40 bytes respectively).
3224  * As a result, if the struct happens to be at the end of a page and
3225  * the next page isn't readable/writable, we get a fault. To prevent
3226  * that, copy back and forth to the full size.
3227  */
3228 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3229 {
3230     if (in_compat_syscall()) {
3231         struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3232 
3233         memset(ifr, 0, sizeof(*ifr));
3234         if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3235             return -EFAULT;
3236 
3237         if (ifrdata)
3238             *ifrdata = compat_ptr(ifr32->ifr_data);
3239 
3240         return 0;
3241     }
3242 
3243     if (copy_from_user(ifr, arg, sizeof(*ifr)))
3244         return -EFAULT;
3245 
3246     if (ifrdata)
3247         *ifrdata = ifr->ifr_data;
3248 
3249     return 0;
3250 }
3251 EXPORT_SYMBOL(get_user_ifreq);
3252 
3253 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3254 {
3255     size_t size = sizeof(*ifr);
3256 
3257     if (in_compat_syscall())
3258         size = sizeof(struct compat_ifreq);
3259 
3260     if (copy_to_user(arg, ifr, size))
3261         return -EFAULT;
3262 
3263     return 0;
3264 }
3265 EXPORT_SYMBOL(put_user_ifreq);
3266 
3267 #ifdef CONFIG_COMPAT
3268 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3269 {
3270     compat_uptr_t uptr32;
3271     struct ifreq ifr;
3272     void __user *saved;
3273     int err;
3274 
3275     if (get_user_ifreq(&ifr, NULL, uifr32))
3276         return -EFAULT;
3277 
3278     if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3279         return -EFAULT;
3280 
3281     saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3282     ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3283 
3284     err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3285     if (!err) {
3286         ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3287         if (put_user_ifreq(&ifr, uifr32))
3288             err = -EFAULT;
3289     }
3290     return err;
3291 }
3292 
3293 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3294 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3295                  struct compat_ifreq __user *u_ifreq32)
3296 {
3297     struct ifreq ifreq;
3298     void __user *data;
3299 
3300     if (!is_socket_ioctl_cmd(cmd))
3301         return -ENOTTY;
3302     if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3303         return -EFAULT;
3304     ifreq.ifr_data = data;
3305 
3306     return dev_ioctl(net, cmd, &ifreq, data, NULL);
3307 }
3308 
3309 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3310              unsigned int cmd, unsigned long arg)
3311 {
3312     void __user *argp = compat_ptr(arg);
3313     struct sock *sk = sock->sk;
3314     struct net *net = sock_net(sk);
3315 
3316     if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3317         return sock_ioctl(file, cmd, (unsigned long)argp);
3318 
3319     switch (cmd) {
3320     case SIOCWANDEV:
3321         return compat_siocwandev(net, argp);
3322     case SIOCGSTAMP_OLD:
3323     case SIOCGSTAMPNS_OLD:
3324         if (!sock->ops->gettstamp)
3325             return -ENOIOCTLCMD;
3326         return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3327                         !COMPAT_USE_64BIT_TIME);
3328 
3329     case SIOCETHTOOL:
3330     case SIOCBONDSLAVEINFOQUERY:
3331     case SIOCBONDINFOQUERY:
3332     case SIOCSHWTSTAMP:
3333     case SIOCGHWTSTAMP:
3334         return compat_ifr_data_ioctl(net, cmd, argp);
3335 
3336     case FIOSETOWN:
3337     case SIOCSPGRP:
3338     case FIOGETOWN:
3339     case SIOCGPGRP:
3340     case SIOCBRADDBR:
3341     case SIOCBRDELBR:
3342     case SIOCGIFVLAN:
3343     case SIOCSIFVLAN:
3344     case SIOCGSKNS:
3345     case SIOCGSTAMP_NEW:
3346     case SIOCGSTAMPNS_NEW:
3347     case SIOCGIFCONF:
3348     case SIOCSIFBR:
3349     case SIOCGIFBR:
3350         return sock_ioctl(file, cmd, arg);
3351 
3352     case SIOCGIFFLAGS:
3353     case SIOCSIFFLAGS:
3354     case SIOCGIFMAP:
3355     case SIOCSIFMAP:
3356     case SIOCGIFMETRIC:
3357     case SIOCSIFMETRIC:
3358     case SIOCGIFMTU:
3359     case SIOCSIFMTU:
3360     case SIOCGIFMEM:
3361     case SIOCSIFMEM:
3362     case SIOCGIFHWADDR:
3363     case SIOCSIFHWADDR:
3364     case SIOCADDMULTI:
3365     case SIOCDELMULTI:
3366     case SIOCGIFINDEX:
3367     case SIOCGIFADDR:
3368     case SIOCSIFADDR:
3369     case SIOCSIFHWBROADCAST:
3370     case SIOCDIFADDR:
3371     case SIOCGIFBRDADDR:
3372     case SIOCSIFBRDADDR:
3373     case SIOCGIFDSTADDR:
3374     case SIOCSIFDSTADDR:
3375     case SIOCGIFNETMASK:
3376     case SIOCSIFNETMASK:
3377     case SIOCSIFPFLAGS:
3378     case SIOCGIFPFLAGS:
3379     case SIOCGIFTXQLEN:
3380     case SIOCSIFTXQLEN:
3381     case SIOCBRADDIF:
3382     case SIOCBRDELIF:
3383     case SIOCGIFNAME:
3384     case SIOCSIFNAME:
3385     case SIOCGMIIPHY:
3386     case SIOCGMIIREG:
3387     case SIOCSMIIREG:
3388     case SIOCBONDENSLAVE:
3389     case SIOCBONDRELEASE:
3390     case SIOCBONDSETHWADDR:
3391     case SIOCBONDCHANGEACTIVE:
3392     case SIOCSARP:
3393     case SIOCGARP:
3394     case SIOCDARP:
3395     case SIOCOUTQ:
3396     case SIOCOUTQNSD:
3397     case SIOCATMARK:
3398         return sock_do_ioctl(net, sock, cmd, arg);
3399     }
3400 
3401     return -ENOIOCTLCMD;
3402 }
3403 
3404 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3405                   unsigned long arg)
3406 {
3407     struct socket *sock = file->private_data;
3408     int ret = -ENOIOCTLCMD;
3409     struct sock *sk;
3410     struct net *net;
3411 
3412     sk = sock->sk;
3413     net = sock_net(sk);
3414 
3415     if (sock->ops->compat_ioctl)
3416         ret = sock->ops->compat_ioctl(sock, cmd, arg);
3417 
3418     if (ret == -ENOIOCTLCMD &&
3419         (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3420         ret = compat_wext_handle_ioctl(net, cmd, arg);
3421 
3422     if (ret == -ENOIOCTLCMD)
3423         ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3424 
3425     return ret;
3426 }
3427 #endif
3428 
3429 /**
3430  *  kernel_bind - bind an address to a socket (kernel space)
3431  *  @sock: socket
3432  *  @addr: address
3433  *  @addrlen: length of address
3434  *
3435  *  Returns 0 or an error.
3436  */
3437 
3438 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3439 {
3440     return sock->ops->bind(sock, addr, addrlen);
3441 }
3442 EXPORT_SYMBOL(kernel_bind);
3443 
3444 /**
3445  *  kernel_listen - move socket to listening state (kernel space)
3446  *  @sock: socket
3447  *  @backlog: pending connections queue size
3448  *
3449  *  Returns 0 or an error.
3450  */
3451 
3452 int kernel_listen(struct socket *sock, int backlog)
3453 {
3454     return sock->ops->listen(sock, backlog);
3455 }
3456 EXPORT_SYMBOL(kernel_listen);
3457 
3458 /**
3459  *  kernel_accept - accept a connection (kernel space)
3460  *  @sock: listening socket
3461  *  @newsock: new connected socket
3462  *  @flags: flags
3463  *
3464  *  @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3465  *  If it fails, @newsock is guaranteed to be %NULL.
3466  *  Returns 0 or an error.
3467  */
3468 
3469 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3470 {
3471     struct sock *sk = sock->sk;
3472     int err;
3473 
3474     err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3475                    newsock);
3476     if (err < 0)
3477         goto done;
3478 
3479     err = sock->ops->accept(sock, *newsock, flags, true);
3480     if (err < 0) {
3481         sock_release(*newsock);
3482         *newsock = NULL;
3483         goto done;
3484     }
3485 
3486     (*newsock)->ops = sock->ops;
3487     __module_get((*newsock)->ops->owner);
3488 
3489 done:
3490     return err;
3491 }
3492 EXPORT_SYMBOL(kernel_accept);
3493 
3494 /**
3495  *  kernel_connect - connect a socket (kernel space)
3496  *  @sock: socket
3497  *  @addr: address
3498  *  @addrlen: address length
3499  *  @flags: flags (O_NONBLOCK, ...)
3500  *
3501  *  For datagram sockets, @addr is the address to which datagrams are sent
3502  *  by default, and the only address from which datagrams are received.
3503  *  For stream sockets, attempts to connect to @addr.
3504  *  Returns 0 or an error code.
3505  */
3506 
3507 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3508            int flags)
3509 {
3510     return sock->ops->connect(sock, addr, addrlen, flags);
3511 }
3512 EXPORT_SYMBOL(kernel_connect);
3513 
3514 /**
3515  *  kernel_getsockname - get the address which the socket is bound (kernel space)
3516  *  @sock: socket
3517  *  @addr: address holder
3518  *
3519  *  Fills the @addr pointer with the address which the socket is bound.
3520  *  Returns the length of the address in bytes or an error code.
3521  */
3522 
3523 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3524 {
3525     return sock->ops->getname(sock, addr, 0);
3526 }
3527 EXPORT_SYMBOL(kernel_getsockname);
3528 
3529 /**
3530  *  kernel_getpeername - get the address which the socket is connected (kernel space)
3531  *  @sock: socket
3532  *  @addr: address holder
3533  *
3534  *  Fills the @addr pointer with the address which the socket is connected.
3535  *  Returns the length of the address in bytes or an error code.
3536  */
3537 
3538 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3539 {
3540     return sock->ops->getname(sock, addr, 1);
3541 }
3542 EXPORT_SYMBOL(kernel_getpeername);
3543 
3544 /**
3545  *  kernel_sendpage - send a &page through a socket (kernel space)
3546  *  @sock: socket
3547  *  @page: page
3548  *  @offset: page offset
3549  *  @size: total size in bytes
3550  *  @flags: flags (MSG_DONTWAIT, ...)
3551  *
3552  *  Returns the total amount sent in bytes or an error.
3553  */
3554 
3555 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3556             size_t size, int flags)
3557 {
3558     if (sock->ops->sendpage) {
3559         /* Warn in case the improper page to zero-copy send */
3560         WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3561         return sock->ops->sendpage(sock, page, offset, size, flags);
3562     }
3563     return sock_no_sendpage(sock, page, offset, size, flags);
3564 }
3565 EXPORT_SYMBOL(kernel_sendpage);
3566 
3567 /**
3568  *  kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3569  *  @sk: sock
3570  *  @page: page
3571  *  @offset: page offset
3572  *  @size: total size in bytes
3573  *  @flags: flags (MSG_DONTWAIT, ...)
3574  *
3575  *  Returns the total amount sent in bytes or an error.
3576  *  Caller must hold @sk.
3577  */
3578 
3579 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3580                size_t size, int flags)
3581 {
3582     struct socket *sock = sk->sk_socket;
3583 
3584     if (sock->ops->sendpage_locked)
3585         return sock->ops->sendpage_locked(sk, page, offset, size,
3586                           flags);
3587 
3588     return sock_no_sendpage_locked(sk, page, offset, size, flags);
3589 }
3590 EXPORT_SYMBOL(kernel_sendpage_locked);
3591 
3592 /**
3593  *  kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3594  *  @sock: socket
3595  *  @how: connection part
3596  *
3597  *  Returns 0 or an error.
3598  */
3599 
3600 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3601 {
3602     return sock->ops->shutdown(sock, how);
3603 }
3604 EXPORT_SYMBOL(kernel_sock_shutdown);
3605 
3606 /**
3607  *  kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3608  *  @sk: socket
3609  *
3610  *  This routine returns the IP overhead imposed by a socket i.e.
3611  *  the length of the underlying IP header, depending on whether
3612  *  this is an IPv4 or IPv6 socket and the length from IP options turned
3613  *  on at the socket. Assumes that the caller has a lock on the socket.
3614  */
3615 
3616 u32 kernel_sock_ip_overhead(struct sock *sk)
3617 {
3618     struct inet_sock *inet;
3619     struct ip_options_rcu *opt;
3620     u32 overhead = 0;
3621 #if IS_ENABLED(CONFIG_IPV6)
3622     struct ipv6_pinfo *np;
3623     struct ipv6_txoptions *optv6 = NULL;
3624 #endif /* IS_ENABLED(CONFIG_IPV6) */
3625 
3626     if (!sk)
3627         return overhead;
3628 
3629     switch (sk->sk_family) {
3630     case AF_INET:
3631         inet = inet_sk(sk);
3632         overhead += sizeof(struct iphdr);
3633         opt = rcu_dereference_protected(inet->inet_opt,
3634                         sock_owned_by_user(sk));
3635         if (opt)
3636             overhead += opt->opt.optlen;
3637         return overhead;
3638 #if IS_ENABLED(CONFIG_IPV6)
3639     case AF_INET6:
3640         np = inet6_sk(sk);
3641         overhead += sizeof(struct ipv6hdr);
3642         if (np)
3643             optv6 = rcu_dereference_protected(np->opt,
3644                               sock_owned_by_user(sk));
3645         if (optv6)
3646             overhead += (optv6->opt_flen + optv6->opt_nflen);
3647         return overhead;
3648 #endif /* IS_ENABLED(CONFIG_IPV6) */
3649     default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3650         return overhead;
3651     }
3652 }
3653 EXPORT_SYMBOL(kernel_sock_ip_overhead);