Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
0004  *
0005  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
0006  * Copyright (c) 2012 Paolo Valente.
0007  */
0008 
0009 #include <linux/module.h>
0010 #include <linux/init.h>
0011 #include <linux/bitops.h>
0012 #include <linux/errno.h>
0013 #include <linux/netdevice.h>
0014 #include <linux/pkt_sched.h>
0015 #include <net/sch_generic.h>
0016 #include <net/pkt_sched.h>
0017 #include <net/pkt_cls.h>
0018 
0019 
0020 /*  Quick Fair Queueing Plus
0021     ========================
0022 
0023     Sources:
0024 
0025     [1] Paolo Valente,
0026     "Reducing the Execution Time of Fair-Queueing Schedulers."
0027     http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
0028 
0029     Sources for QFQ:
0030 
0031     [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
0032     Packet Scheduling with Tight Bandwidth Distribution Guarantees."
0033 
0034     See also:
0035     http://retis.sssup.it/~fabio/linux/qfq/
0036  */
0037 
0038 /*
0039 
0040   QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
0041   classes. Each aggregate is timestamped with a virtual start time S
0042   and a virtual finish time F, and scheduled according to its
0043   timestamps. S and F are computed as a function of a system virtual
0044   time function V. The classes within each aggregate are instead
0045   scheduled with DRR.
0046 
0047   To speed up operations, QFQ+ divides also aggregates into a limited
0048   number of groups. Which group a class belongs to depends on the
0049   ratio between the maximum packet length for the class and the weight
0050   of the class. Groups have their own S and F. In the end, QFQ+
0051   schedules groups, then aggregates within groups, then classes within
0052   aggregates. See [1] and [2] for a full description.
0053 
0054   Virtual time computations.
0055 
0056   S, F and V are all computed in fixed point arithmetic with
0057   FRAC_BITS decimal bits.
0058 
0059   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
0060     one bit per index.
0061   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
0062 
0063   The layout of the bits is as below:
0064 
0065                    [ MTU_SHIFT ][      FRAC_BITS    ]
0066                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
0067                  ^.__grp->index = 0
0068                  *.__grp->slot_shift
0069 
0070   where MIN_SLOT_SHIFT is derived by difference from the others.
0071 
0072   The max group index corresponds to Lmax/w_min, where
0073   Lmax=1<<MTU_SHIFT, w_min = 1 .
0074   From this, and knowing how many groups (MAX_INDEX) we want,
0075   we can derive the shift corresponding to each group.
0076 
0077   Because we often need to compute
0078     F = S + len/w_i  and V = V + len/wsum
0079   instead of storing w_i store the value
0080     inv_w = (1<<FRAC_BITS)/w_i
0081   so we can do F = S + len * inv_w * wsum.
0082   We use W_TOT in the formulas so we can easily move between
0083   static and adaptive weight sum.
0084 
0085   The per-scheduler-instance data contain all the data structures
0086   for the scheduler: bitmaps and bucket lists.
0087 
0088  */
0089 
0090 /*
0091  * Maximum number of consecutive slots occupied by backlogged classes
0092  * inside a group.
0093  */
0094 #define QFQ_MAX_SLOTS   32
0095 
0096 /*
0097  * Shifts used for aggregate<->group mapping.  We allow class weights that are
0098  * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
0099  * group with the smallest index that can support the L_i / r_i configured
0100  * for the classes in the aggregate.
0101  *
0102  * grp->index is the index of the group; and grp->slot_shift
0103  * is the shift for the corresponding (scaled) sigma_i.
0104  */
0105 #define QFQ_MAX_INDEX       24
0106 #define QFQ_MAX_WSHIFT      10
0107 
0108 #define QFQ_MAX_WEIGHT      (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
0109 #define QFQ_MAX_WSUM        (64*QFQ_MAX_WEIGHT)
0110 
0111 #define FRAC_BITS       30  /* fixed point arithmetic */
0112 #define ONE_FP          (1UL << FRAC_BITS)
0113 
0114 #define QFQ_MTU_SHIFT       16  /* to support TSO/GSO */
0115 #define QFQ_MIN_LMAX        512 /* see qfq_slot_insert */
0116 
0117 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
0118 
0119 /*
0120  * Possible group states.  These values are used as indexes for the bitmaps
0121  * array of struct qfq_queue.
0122  */
0123 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
0124 
0125 struct qfq_group;
0126 
0127 struct qfq_aggregate;
0128 
0129 struct qfq_class {
0130     struct Qdisc_class_common common;
0131 
0132     unsigned int filter_cnt;
0133 
0134     struct gnet_stats_basic_sync bstats;
0135     struct gnet_stats_queue qstats;
0136     struct net_rate_estimator __rcu *rate_est;
0137     struct Qdisc *qdisc;
0138     struct list_head alist;     /* Link for active-classes list. */
0139     struct qfq_aggregate *agg;  /* Parent aggregate. */
0140     int deficit;            /* DRR deficit counter. */
0141 };
0142 
0143 struct qfq_aggregate {
0144     struct hlist_node next; /* Link for the slot list. */
0145     u64 S, F;       /* flow timestamps (exact) */
0146 
0147     /* group we belong to. In principle we would need the index,
0148      * which is log_2(lmax/weight), but we never reference it
0149      * directly, only the group.
0150      */
0151     struct qfq_group *grp;
0152 
0153     /* these are copied from the flowset. */
0154     u32 class_weight; /* Weight of each class in this aggregate. */
0155     /* Max pkt size for the classes in this aggregate, DRR quantum. */
0156     int lmax;
0157 
0158     u32 inv_w;      /* ONE_FP/(sum of weights of classes in aggr.). */
0159     u32 budgetmax;  /* Max budget for this aggregate. */
0160     u32 initial_budget, budget;     /* Initial and current budget. */
0161 
0162     int       num_classes;  /* Number of classes in this aggr. */
0163     struct list_head  active;   /* DRR queue of active classes. */
0164 
0165     struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
0166 };
0167 
0168 struct qfq_group {
0169     u64 S, F;           /* group timestamps (approx). */
0170     unsigned int slot_shift;    /* Slot shift. */
0171     unsigned int index;     /* Group index. */
0172     unsigned int front;     /* Index of the front slot. */
0173     unsigned long full_slots;   /* non-empty slots */
0174 
0175     /* Array of RR lists of active aggregates. */
0176     struct hlist_head slots[QFQ_MAX_SLOTS];
0177 };
0178 
0179 struct qfq_sched {
0180     struct tcf_proto __rcu *filter_list;
0181     struct tcf_block    *block;
0182     struct Qdisc_class_hash clhash;
0183 
0184     u64         oldV, V;    /* Precise virtual times. */
0185     struct qfq_aggregate    *in_serv_agg;   /* Aggregate being served. */
0186     u32         wsum;       /* weight sum */
0187     u32         iwsum;      /* inverse weight sum */
0188 
0189     unsigned long bitmaps[QFQ_MAX_STATE];       /* Group bitmaps. */
0190     struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
0191     u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
0192 
0193     u32 max_agg_classes;        /* Max number of classes per aggr. */
0194     struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
0195 };
0196 
0197 /*
0198  * Possible reasons why the timestamps of an aggregate are updated
0199  * enqueue: the aggregate switches from idle to active and must scheduled
0200  *      for service
0201  * requeue: the aggregate finishes its budget, so it stops being served and
0202  *      must be rescheduled for service
0203  */
0204 enum update_reason {enqueue, requeue};
0205 
0206 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
0207 {
0208     struct qfq_sched *q = qdisc_priv(sch);
0209     struct Qdisc_class_common *clc;
0210 
0211     clc = qdisc_class_find(&q->clhash, classid);
0212     if (clc == NULL)
0213         return NULL;
0214     return container_of(clc, struct qfq_class, common);
0215 }
0216 
0217 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
0218     [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
0219     [TCA_QFQ_LMAX] = { .type = NLA_U32 },
0220 };
0221 
0222 /*
0223  * Calculate a flow index, given its weight and maximum packet length.
0224  * index = log_2(maxlen/weight) but we need to apply the scaling.
0225  * This is used only once at flow creation.
0226  */
0227 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
0228 {
0229     u64 slot_size = (u64)maxlen * inv_w;
0230     unsigned long size_map;
0231     int index = 0;
0232 
0233     size_map = slot_size >> min_slot_shift;
0234     if (!size_map)
0235         goto out;
0236 
0237     index = __fls(size_map) + 1;    /* basically a log_2 */
0238     index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
0239 
0240     if (index < 0)
0241         index = 0;
0242 out:
0243     pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
0244          (unsigned long) ONE_FP/inv_w, maxlen, index);
0245 
0246     return index;
0247 }
0248 
0249 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
0250 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
0251                  enum update_reason);
0252 
0253 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
0254              u32 lmax, u32 weight)
0255 {
0256     INIT_LIST_HEAD(&agg->active);
0257     hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
0258 
0259     agg->lmax = lmax;
0260     agg->class_weight = weight;
0261 }
0262 
0263 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
0264                       u32 lmax, u32 weight)
0265 {
0266     struct qfq_aggregate *agg;
0267 
0268     hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
0269         if (agg->lmax == lmax && agg->class_weight == weight)
0270             return agg;
0271 
0272     return NULL;
0273 }
0274 
0275 
0276 /* Update aggregate as a function of the new number of classes. */
0277 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
0278                int new_num_classes)
0279 {
0280     u32 new_agg_weight;
0281 
0282     if (new_num_classes == q->max_agg_classes)
0283         hlist_del_init(&agg->nonfull_next);
0284 
0285     if (agg->num_classes > new_num_classes &&
0286         new_num_classes == q->max_agg_classes - 1) /* agg no more full */
0287         hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
0288 
0289     /* The next assignment may let
0290      * agg->initial_budget > agg->budgetmax
0291      * hold, we will take it into account in charge_actual_service().
0292      */
0293     agg->budgetmax = new_num_classes * agg->lmax;
0294     new_agg_weight = agg->class_weight * new_num_classes;
0295     agg->inv_w = ONE_FP/new_agg_weight;
0296 
0297     if (agg->grp == NULL) {
0298         int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
0299                        q->min_slot_shift);
0300         agg->grp = &q->groups[i];
0301     }
0302 
0303     q->wsum +=
0304         (int) agg->class_weight * (new_num_classes - agg->num_classes);
0305     q->iwsum = ONE_FP / q->wsum;
0306 
0307     agg->num_classes = new_num_classes;
0308 }
0309 
0310 /* Add class to aggregate. */
0311 static void qfq_add_to_agg(struct qfq_sched *q,
0312                struct qfq_aggregate *agg,
0313                struct qfq_class *cl)
0314 {
0315     cl->agg = agg;
0316 
0317     qfq_update_agg(q, agg, agg->num_classes+1);
0318     if (cl->qdisc->q.qlen > 0) { /* adding an active class */
0319         list_add_tail(&cl->alist, &agg->active);
0320         if (list_first_entry(&agg->active, struct qfq_class, alist) ==
0321             cl && q->in_serv_agg != agg) /* agg was inactive */
0322             qfq_activate_agg(q, agg, enqueue); /* schedule agg */
0323     }
0324 }
0325 
0326 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
0327 
0328 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
0329 {
0330     hlist_del_init(&agg->nonfull_next);
0331     q->wsum -= agg->class_weight;
0332     if (q->wsum != 0)
0333         q->iwsum = ONE_FP / q->wsum;
0334 
0335     if (q->in_serv_agg == agg)
0336         q->in_serv_agg = qfq_choose_next_agg(q);
0337     kfree(agg);
0338 }
0339 
0340 /* Deschedule class from within its parent aggregate. */
0341 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
0342 {
0343     struct qfq_aggregate *agg = cl->agg;
0344 
0345 
0346     list_del(&cl->alist); /* remove from RR queue of the aggregate */
0347     if (list_empty(&agg->active)) /* agg is now inactive */
0348         qfq_deactivate_agg(q, agg);
0349 }
0350 
0351 /* Remove class from its parent aggregate. */
0352 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
0353 {
0354     struct qfq_aggregate *agg = cl->agg;
0355 
0356     cl->agg = NULL;
0357     if (agg->num_classes == 1) { /* agg being emptied, destroy it */
0358         qfq_destroy_agg(q, agg);
0359         return;
0360     }
0361     qfq_update_agg(q, agg, agg->num_classes-1);
0362 }
0363 
0364 /* Deschedule class and remove it from its parent aggregate. */
0365 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
0366 {
0367     if (cl->qdisc->q.qlen > 0) /* class is active */
0368         qfq_deactivate_class(q, cl);
0369 
0370     qfq_rm_from_agg(q, cl);
0371 }
0372 
0373 /* Move class to a new aggregate, matching the new class weight and/or lmax */
0374 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
0375                u32 lmax)
0376 {
0377     struct qfq_sched *q = qdisc_priv(sch);
0378     struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
0379 
0380     if (new_agg == NULL) { /* create new aggregate */
0381         new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
0382         if (new_agg == NULL)
0383             return -ENOBUFS;
0384         qfq_init_agg(q, new_agg, lmax, weight);
0385     }
0386     qfq_deact_rm_from_agg(q, cl);
0387     qfq_add_to_agg(q, new_agg, cl);
0388 
0389     return 0;
0390 }
0391 
0392 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
0393                 struct nlattr **tca, unsigned long *arg,
0394                 struct netlink_ext_ack *extack)
0395 {
0396     struct qfq_sched *q = qdisc_priv(sch);
0397     struct qfq_class *cl = (struct qfq_class *)*arg;
0398     bool existing = false;
0399     struct nlattr *tb[TCA_QFQ_MAX + 1];
0400     struct qfq_aggregate *new_agg = NULL;
0401     u32 weight, lmax, inv_w;
0402     int err;
0403     int delta_w;
0404 
0405     if (tca[TCA_OPTIONS] == NULL) {
0406         pr_notice("qfq: no options\n");
0407         return -EINVAL;
0408     }
0409 
0410     err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS],
0411                       qfq_policy, NULL);
0412     if (err < 0)
0413         return err;
0414 
0415     if (tb[TCA_QFQ_WEIGHT]) {
0416         weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
0417         if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
0418             pr_notice("qfq: invalid weight %u\n", weight);
0419             return -EINVAL;
0420         }
0421     } else
0422         weight = 1;
0423 
0424     if (tb[TCA_QFQ_LMAX]) {
0425         lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
0426         if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
0427             pr_notice("qfq: invalid max length %u\n", lmax);
0428             return -EINVAL;
0429         }
0430     } else
0431         lmax = psched_mtu(qdisc_dev(sch));
0432 
0433     inv_w = ONE_FP / weight;
0434     weight = ONE_FP / inv_w;
0435 
0436     if (cl != NULL &&
0437         lmax == cl->agg->lmax &&
0438         weight == cl->agg->class_weight)
0439         return 0; /* nothing to change */
0440 
0441     delta_w = weight - (cl ? cl->agg->class_weight : 0);
0442 
0443     if (q->wsum + delta_w > QFQ_MAX_WSUM) {
0444         pr_notice("qfq: total weight out of range (%d + %u)\n",
0445               delta_w, q->wsum);
0446         return -EINVAL;
0447     }
0448 
0449     if (cl != NULL) { /* modify existing class */
0450         if (tca[TCA_RATE]) {
0451             err = gen_replace_estimator(&cl->bstats, NULL,
0452                             &cl->rate_est,
0453                             NULL,
0454                             true,
0455                             tca[TCA_RATE]);
0456             if (err)
0457                 return err;
0458         }
0459         existing = true;
0460         goto set_change_agg;
0461     }
0462 
0463     /* create and init new class */
0464     cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
0465     if (cl == NULL)
0466         return -ENOBUFS;
0467 
0468     gnet_stats_basic_sync_init(&cl->bstats);
0469     cl->common.classid = classid;
0470     cl->deficit = lmax;
0471 
0472     cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
0473                       classid, NULL);
0474     if (cl->qdisc == NULL)
0475         cl->qdisc = &noop_qdisc;
0476 
0477     if (tca[TCA_RATE]) {
0478         err = gen_new_estimator(&cl->bstats, NULL,
0479                     &cl->rate_est,
0480                     NULL,
0481                     true,
0482                     tca[TCA_RATE]);
0483         if (err)
0484             goto destroy_class;
0485     }
0486 
0487     if (cl->qdisc != &noop_qdisc)
0488         qdisc_hash_add(cl->qdisc, true);
0489 
0490 set_change_agg:
0491     sch_tree_lock(sch);
0492     new_agg = qfq_find_agg(q, lmax, weight);
0493     if (new_agg == NULL) { /* create new aggregate */
0494         sch_tree_unlock(sch);
0495         new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
0496         if (new_agg == NULL) {
0497             err = -ENOBUFS;
0498             gen_kill_estimator(&cl->rate_est);
0499             goto destroy_class;
0500         }
0501         sch_tree_lock(sch);
0502         qfq_init_agg(q, new_agg, lmax, weight);
0503     }
0504     if (existing)
0505         qfq_deact_rm_from_agg(q, cl);
0506     else
0507         qdisc_class_hash_insert(&q->clhash, &cl->common);
0508     qfq_add_to_agg(q, new_agg, cl);
0509     sch_tree_unlock(sch);
0510     qdisc_class_hash_grow(sch, &q->clhash);
0511 
0512     *arg = (unsigned long)cl;
0513     return 0;
0514 
0515 destroy_class:
0516     qdisc_put(cl->qdisc);
0517     kfree(cl);
0518     return err;
0519 }
0520 
0521 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
0522 {
0523     struct qfq_sched *q = qdisc_priv(sch);
0524 
0525     qfq_rm_from_agg(q, cl);
0526     gen_kill_estimator(&cl->rate_est);
0527     qdisc_put(cl->qdisc);
0528     kfree(cl);
0529 }
0530 
0531 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg,
0532                 struct netlink_ext_ack *extack)
0533 {
0534     struct qfq_sched *q = qdisc_priv(sch);
0535     struct qfq_class *cl = (struct qfq_class *)arg;
0536 
0537     if (cl->filter_cnt > 0)
0538         return -EBUSY;
0539 
0540     sch_tree_lock(sch);
0541 
0542     qdisc_purge_queue(cl->qdisc);
0543     qdisc_class_hash_remove(&q->clhash, &cl->common);
0544 
0545     sch_tree_unlock(sch);
0546 
0547     qfq_destroy_class(sch, cl);
0548     return 0;
0549 }
0550 
0551 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
0552 {
0553     return (unsigned long)qfq_find_class(sch, classid);
0554 }
0555 
0556 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
0557                        struct netlink_ext_ack *extack)
0558 {
0559     struct qfq_sched *q = qdisc_priv(sch);
0560 
0561     if (cl)
0562         return NULL;
0563 
0564     return q->block;
0565 }
0566 
0567 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
0568                   u32 classid)
0569 {
0570     struct qfq_class *cl = qfq_find_class(sch, classid);
0571 
0572     if (cl != NULL)
0573         cl->filter_cnt++;
0574 
0575     return (unsigned long)cl;
0576 }
0577 
0578 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
0579 {
0580     struct qfq_class *cl = (struct qfq_class *)arg;
0581 
0582     cl->filter_cnt--;
0583 }
0584 
0585 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
0586                struct Qdisc *new, struct Qdisc **old,
0587                struct netlink_ext_ack *extack)
0588 {
0589     struct qfq_class *cl = (struct qfq_class *)arg;
0590 
0591     if (new == NULL) {
0592         new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
0593                     cl->common.classid, NULL);
0594         if (new == NULL)
0595             new = &noop_qdisc;
0596     }
0597 
0598     *old = qdisc_replace(sch, new, &cl->qdisc);
0599     return 0;
0600 }
0601 
0602 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
0603 {
0604     struct qfq_class *cl = (struct qfq_class *)arg;
0605 
0606     return cl->qdisc;
0607 }
0608 
0609 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
0610               struct sk_buff *skb, struct tcmsg *tcm)
0611 {
0612     struct qfq_class *cl = (struct qfq_class *)arg;
0613     struct nlattr *nest;
0614 
0615     tcm->tcm_parent = TC_H_ROOT;
0616     tcm->tcm_handle = cl->common.classid;
0617     tcm->tcm_info   = cl->qdisc->handle;
0618 
0619     nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
0620     if (nest == NULL)
0621         goto nla_put_failure;
0622     if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
0623         nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
0624         goto nla_put_failure;
0625     return nla_nest_end(skb, nest);
0626 
0627 nla_put_failure:
0628     nla_nest_cancel(skb, nest);
0629     return -EMSGSIZE;
0630 }
0631 
0632 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
0633                 struct gnet_dump *d)
0634 {
0635     struct qfq_class *cl = (struct qfq_class *)arg;
0636     struct tc_qfq_stats xstats;
0637 
0638     memset(&xstats, 0, sizeof(xstats));
0639 
0640     xstats.weight = cl->agg->class_weight;
0641     xstats.lmax = cl->agg->lmax;
0642 
0643     if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 ||
0644         gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
0645         qdisc_qstats_copy(d, cl->qdisc) < 0)
0646         return -1;
0647 
0648     return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
0649 }
0650 
0651 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
0652 {
0653     struct qfq_sched *q = qdisc_priv(sch);
0654     struct qfq_class *cl;
0655     unsigned int i;
0656 
0657     if (arg->stop)
0658         return;
0659 
0660     for (i = 0; i < q->clhash.hashsize; i++) {
0661         hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
0662             if (arg->count < arg->skip) {
0663                 arg->count++;
0664                 continue;
0665             }
0666             if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
0667                 arg->stop = 1;
0668                 return;
0669             }
0670             arg->count++;
0671         }
0672     }
0673 }
0674 
0675 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
0676                       int *qerr)
0677 {
0678     struct qfq_sched *q = qdisc_priv(sch);
0679     struct qfq_class *cl;
0680     struct tcf_result res;
0681     struct tcf_proto *fl;
0682     int result;
0683 
0684     if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
0685         pr_debug("qfq_classify: found %d\n", skb->priority);
0686         cl = qfq_find_class(sch, skb->priority);
0687         if (cl != NULL)
0688             return cl;
0689     }
0690 
0691     *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
0692     fl = rcu_dereference_bh(q->filter_list);
0693     result = tcf_classify(skb, NULL, fl, &res, false);
0694     if (result >= 0) {
0695 #ifdef CONFIG_NET_CLS_ACT
0696         switch (result) {
0697         case TC_ACT_QUEUED:
0698         case TC_ACT_STOLEN:
0699         case TC_ACT_TRAP:
0700             *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
0701             fallthrough;
0702         case TC_ACT_SHOT:
0703             return NULL;
0704         }
0705 #endif
0706         cl = (struct qfq_class *)res.class;
0707         if (cl == NULL)
0708             cl = qfq_find_class(sch, res.classid);
0709         return cl;
0710     }
0711 
0712     return NULL;
0713 }
0714 
0715 /* Generic comparison function, handling wraparound. */
0716 static inline int qfq_gt(u64 a, u64 b)
0717 {
0718     return (s64)(a - b) > 0;
0719 }
0720 
0721 /* Round a precise timestamp to its slotted value. */
0722 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
0723 {
0724     return ts & ~((1ULL << shift) - 1);
0725 }
0726 
0727 /* return the pointer to the group with lowest index in the bitmap */
0728 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
0729                     unsigned long bitmap)
0730 {
0731     int index = __ffs(bitmap);
0732     return &q->groups[index];
0733 }
0734 /* Calculate a mask to mimic what would be ffs_from(). */
0735 static inline unsigned long mask_from(unsigned long bitmap, int from)
0736 {
0737     return bitmap & ~((1UL << from) - 1);
0738 }
0739 
0740 /*
0741  * The state computation relies on ER=0, IR=1, EB=2, IB=3
0742  * First compute eligibility comparing grp->S, q->V,
0743  * then check if someone is blocking us and possibly add EB
0744  */
0745 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
0746 {
0747     /* if S > V we are not eligible */
0748     unsigned int state = qfq_gt(grp->S, q->V);
0749     unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
0750     struct qfq_group *next;
0751 
0752     if (mask) {
0753         next = qfq_ffs(q, mask);
0754         if (qfq_gt(grp->F, next->F))
0755             state |= EB;
0756     }
0757 
0758     return state;
0759 }
0760 
0761 
0762 /*
0763  * In principle
0764  *  q->bitmaps[dst] |= q->bitmaps[src] & mask;
0765  *  q->bitmaps[src] &= ~mask;
0766  * but we should make sure that src != dst
0767  */
0768 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
0769                    int src, int dst)
0770 {
0771     q->bitmaps[dst] |= q->bitmaps[src] & mask;
0772     q->bitmaps[src] &= ~mask;
0773 }
0774 
0775 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
0776 {
0777     unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
0778     struct qfq_group *next;
0779 
0780     if (mask) {
0781         next = qfq_ffs(q, mask);
0782         if (!qfq_gt(next->F, old_F))
0783             return;
0784     }
0785 
0786     mask = (1UL << index) - 1;
0787     qfq_move_groups(q, mask, EB, ER);
0788     qfq_move_groups(q, mask, IB, IR);
0789 }
0790 
0791 /*
0792  * perhaps
0793  *
0794     old_V ^= q->V;
0795     old_V >>= q->min_slot_shift;
0796     if (old_V) {
0797         ...
0798     }
0799  *
0800  */
0801 static void qfq_make_eligible(struct qfq_sched *q)
0802 {
0803     unsigned long vslot = q->V >> q->min_slot_shift;
0804     unsigned long old_vslot = q->oldV >> q->min_slot_shift;
0805 
0806     if (vslot != old_vslot) {
0807         unsigned long mask;
0808         int last_flip_pos = fls(vslot ^ old_vslot);
0809 
0810         if (last_flip_pos > 31) /* higher than the number of groups */
0811             mask = ~0UL;    /* make all groups eligible */
0812         else
0813             mask = (1UL << last_flip_pos) - 1;
0814 
0815         qfq_move_groups(q, mask, IR, ER);
0816         qfq_move_groups(q, mask, IB, EB);
0817     }
0818 }
0819 
0820 /*
0821  * The index of the slot in which the input aggregate agg is to be
0822  * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
0823  * and not a '-1' because the start time of the group may be moved
0824  * backward by one slot after the aggregate has been inserted, and
0825  * this would cause non-empty slots to be right-shifted by one
0826  * position.
0827  *
0828  * QFQ+ fully satisfies this bound to the slot index if the parameters
0829  * of the classes are not changed dynamically, and if QFQ+ never
0830  * happens to postpone the service of agg unjustly, i.e., it never
0831  * happens that the aggregate becomes backlogged and eligible, or just
0832  * eligible, while an aggregate with a higher approximated finish time
0833  * is being served. In particular, in this case QFQ+ guarantees that
0834  * the timestamps of agg are low enough that the slot index is never
0835  * higher than 2. Unfortunately, QFQ+ cannot provide the same
0836  * guarantee if it happens to unjustly postpone the service of agg, or
0837  * if the parameters of some class are changed.
0838  *
0839  * As for the first event, i.e., an out-of-order service, the
0840  * upper bound to the slot index guaranteed by QFQ+ grows to
0841  * 2 +
0842  * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
0843  * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
0844  *
0845  * The following function deals with this problem by backward-shifting
0846  * the timestamps of agg, if needed, so as to guarantee that the slot
0847  * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
0848  * cause the service of other aggregates to be postponed, yet the
0849  * worst-case guarantees of these aggregates are not violated.  In
0850  * fact, in case of no out-of-order service, the timestamps of agg
0851  * would have been even lower than they are after the backward shift,
0852  * because QFQ+ would have guaranteed a maximum value equal to 2 for
0853  * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
0854  * service is postponed because of the backward-shift would have
0855  * however waited for the service of agg before being served.
0856  *
0857  * The other event that may cause the slot index to be higher than 2
0858  * for agg is a recent change of the parameters of some class. If the
0859  * weight of a class is increased or the lmax (max_pkt_size) of the
0860  * class is decreased, then a new aggregate with smaller slot size
0861  * than the original parent aggregate of the class may happen to be
0862  * activated. The activation of this aggregate should be properly
0863  * delayed to when the service of the class has finished in the ideal
0864  * system tracked by QFQ+. If the activation of the aggregate is not
0865  * delayed to this reference time instant, then this aggregate may be
0866  * unjustly served before other aggregates waiting for service. This
0867  * may cause the above bound to the slot index to be violated for some
0868  * of these unlucky aggregates.
0869  *
0870  * Instead of delaying the activation of the new aggregate, which is
0871  * quite complex, the above-discussed capping of the slot index is
0872  * used to handle also the consequences of a change of the parameters
0873  * of a class.
0874  */
0875 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
0876                 u64 roundedS)
0877 {
0878     u64 slot = (roundedS - grp->S) >> grp->slot_shift;
0879     unsigned int i; /* slot index in the bucket list */
0880 
0881     if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
0882         u64 deltaS = roundedS - grp->S -
0883             ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
0884         agg->S -= deltaS;
0885         agg->F -= deltaS;
0886         slot = QFQ_MAX_SLOTS - 2;
0887     }
0888 
0889     i = (grp->front + slot) % QFQ_MAX_SLOTS;
0890 
0891     hlist_add_head(&agg->next, &grp->slots[i]);
0892     __set_bit(slot, &grp->full_slots);
0893 }
0894 
0895 /* Maybe introduce hlist_first_entry?? */
0896 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
0897 {
0898     return hlist_entry(grp->slots[grp->front].first,
0899                struct qfq_aggregate, next);
0900 }
0901 
0902 /*
0903  * remove the entry from the slot
0904  */
0905 static void qfq_front_slot_remove(struct qfq_group *grp)
0906 {
0907     struct qfq_aggregate *agg = qfq_slot_head(grp);
0908 
0909     BUG_ON(!agg);
0910     hlist_del(&agg->next);
0911     if (hlist_empty(&grp->slots[grp->front]))
0912         __clear_bit(0, &grp->full_slots);
0913 }
0914 
0915 /*
0916  * Returns the first aggregate in the first non-empty bucket of the
0917  * group. As a side effect, adjusts the bucket list so the first
0918  * non-empty bucket is at position 0 in full_slots.
0919  */
0920 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
0921 {
0922     unsigned int i;
0923 
0924     pr_debug("qfq slot_scan: grp %u full %#lx\n",
0925          grp->index, grp->full_slots);
0926 
0927     if (grp->full_slots == 0)
0928         return NULL;
0929 
0930     i = __ffs(grp->full_slots);  /* zero based */
0931     if (i > 0) {
0932         grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
0933         grp->full_slots >>= i;
0934     }
0935 
0936     return qfq_slot_head(grp);
0937 }
0938 
0939 /*
0940  * adjust the bucket list. When the start time of a group decreases,
0941  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
0942  * move the objects. The mask of occupied slots must be shifted
0943  * because we use ffs() to find the first non-empty slot.
0944  * This covers decreases in the group's start time, but what about
0945  * increases of the start time ?
0946  * Here too we should make sure that i is less than 32
0947  */
0948 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
0949 {
0950     unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
0951 
0952     grp->full_slots <<= i;
0953     grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
0954 }
0955 
0956 static void qfq_update_eligible(struct qfq_sched *q)
0957 {
0958     struct qfq_group *grp;
0959     unsigned long ineligible;
0960 
0961     ineligible = q->bitmaps[IR] | q->bitmaps[IB];
0962     if (ineligible) {
0963         if (!q->bitmaps[ER]) {
0964             grp = qfq_ffs(q, ineligible);
0965             if (qfq_gt(grp->S, q->V))
0966                 q->V = grp->S;
0967         }
0968         qfq_make_eligible(q);
0969     }
0970 }
0971 
0972 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
0973 static void agg_dequeue(struct qfq_aggregate *agg,
0974             struct qfq_class *cl, unsigned int len)
0975 {
0976     qdisc_dequeue_peeked(cl->qdisc);
0977 
0978     cl->deficit -= (int) len;
0979 
0980     if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
0981         list_del(&cl->alist);
0982     else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
0983         cl->deficit += agg->lmax;
0984         list_move_tail(&cl->alist, &agg->active);
0985     }
0986 }
0987 
0988 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
0989                        struct qfq_class **cl,
0990                        unsigned int *len)
0991 {
0992     struct sk_buff *skb;
0993 
0994     *cl = list_first_entry(&agg->active, struct qfq_class, alist);
0995     skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
0996     if (skb == NULL)
0997         WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
0998     else
0999         *len = qdisc_pkt_len(skb);
1000 
1001     return skb;
1002 }
1003 
1004 /* Update F according to the actual service received by the aggregate. */
1005 static inline void charge_actual_service(struct qfq_aggregate *agg)
1006 {
1007     /* Compute the service received by the aggregate, taking into
1008      * account that, after decreasing the number of classes in
1009      * agg, it may happen that
1010      * agg->initial_budget - agg->budget > agg->bugdetmax
1011      */
1012     u32 service_received = min(agg->budgetmax,
1013                    agg->initial_budget - agg->budget);
1014 
1015     agg->F = agg->S + (u64)service_received * agg->inv_w;
1016 }
1017 
1018 /* Assign a reasonable start time for a new aggregate in group i.
1019  * Admissible values for \hat(F) are multiples of \sigma_i
1020  * no greater than V+\sigma_i . Larger values mean that
1021  * we had a wraparound so we consider the timestamp to be stale.
1022  *
1023  * If F is not stale and F >= V then we set S = F.
1024  * Otherwise we should assign S = V, but this may violate
1025  * the ordering in EB (see [2]). So, if we have groups in ER,
1026  * set S to the F_j of the first group j which would be blocking us.
1027  * We are guaranteed not to move S backward because
1028  * otherwise our group i would still be blocked.
1029  */
1030 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1031 {
1032     unsigned long mask;
1033     u64 limit, roundedF;
1034     int slot_shift = agg->grp->slot_shift;
1035 
1036     roundedF = qfq_round_down(agg->F, slot_shift);
1037     limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1038 
1039     if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1040         /* timestamp was stale */
1041         mask = mask_from(q->bitmaps[ER], agg->grp->index);
1042         if (mask) {
1043             struct qfq_group *next = qfq_ffs(q, mask);
1044             if (qfq_gt(roundedF, next->F)) {
1045                 if (qfq_gt(limit, next->F))
1046                     agg->S = next->F;
1047                 else /* preserve timestamp correctness */
1048                     agg->S = limit;
1049                 return;
1050             }
1051         }
1052         agg->S = q->V;
1053     } else  /* timestamp is not stale */
1054         agg->S = agg->F;
1055 }
1056 
1057 /* Update the timestamps of agg before scheduling/rescheduling it for
1058  * service.  In particular, assign to agg->F its maximum possible
1059  * value, i.e., the virtual finish time with which the aggregate
1060  * should be labeled if it used all its budget once in service.
1061  */
1062 static inline void
1063 qfq_update_agg_ts(struct qfq_sched *q,
1064             struct qfq_aggregate *agg, enum update_reason reason)
1065 {
1066     if (reason != requeue)
1067         qfq_update_start(q, agg);
1068     else /* just charge agg for the service received */
1069         agg->S = agg->F;
1070 
1071     agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1072 }
1073 
1074 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1075 
1076 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1077 {
1078     struct qfq_sched *q = qdisc_priv(sch);
1079     struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1080     struct qfq_class *cl;
1081     struct sk_buff *skb = NULL;
1082     /* next-packet len, 0 means no more active classes in in-service agg */
1083     unsigned int len = 0;
1084 
1085     if (in_serv_agg == NULL)
1086         return NULL;
1087 
1088     if (!list_empty(&in_serv_agg->active))
1089         skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1090 
1091     /*
1092      * If there are no active classes in the in-service aggregate,
1093      * or if the aggregate has not enough budget to serve its next
1094      * class, then choose the next aggregate to serve.
1095      */
1096     if (len == 0 || in_serv_agg->budget < len) {
1097         charge_actual_service(in_serv_agg);
1098 
1099         /* recharge the budget of the aggregate */
1100         in_serv_agg->initial_budget = in_serv_agg->budget =
1101             in_serv_agg->budgetmax;
1102 
1103         if (!list_empty(&in_serv_agg->active)) {
1104             /*
1105              * Still active: reschedule for
1106              * service. Possible optimization: if no other
1107              * aggregate is active, then there is no point
1108              * in rescheduling this aggregate, and we can
1109              * just keep it as the in-service one. This
1110              * should be however a corner case, and to
1111              * handle it, we would need to maintain an
1112              * extra num_active_aggs field.
1113             */
1114             qfq_update_agg_ts(q, in_serv_agg, requeue);
1115             qfq_schedule_agg(q, in_serv_agg);
1116         } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1117             q->in_serv_agg = NULL;
1118             return NULL;
1119         }
1120 
1121         /*
1122          * If we get here, there are other aggregates queued:
1123          * choose the new aggregate to serve.
1124          */
1125         in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1126         skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1127     }
1128     if (!skb)
1129         return NULL;
1130 
1131     qdisc_qstats_backlog_dec(sch, skb);
1132     sch->q.qlen--;
1133     qdisc_bstats_update(sch, skb);
1134 
1135     agg_dequeue(in_serv_agg, cl, len);
1136     /* If lmax is lowered, through qfq_change_class, for a class
1137      * owning pending packets with larger size than the new value
1138      * of lmax, then the following condition may hold.
1139      */
1140     if (unlikely(in_serv_agg->budget < len))
1141         in_serv_agg->budget = 0;
1142     else
1143         in_serv_agg->budget -= len;
1144 
1145     q->V += (u64)len * q->iwsum;
1146     pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1147          len, (unsigned long long) in_serv_agg->F,
1148          (unsigned long long) q->V);
1149 
1150     return skb;
1151 }
1152 
1153 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1154 {
1155     struct qfq_group *grp;
1156     struct qfq_aggregate *agg, *new_front_agg;
1157     u64 old_F;
1158 
1159     qfq_update_eligible(q);
1160     q->oldV = q->V;
1161 
1162     if (!q->bitmaps[ER])
1163         return NULL;
1164 
1165     grp = qfq_ffs(q, q->bitmaps[ER]);
1166     old_F = grp->F;
1167 
1168     agg = qfq_slot_head(grp);
1169 
1170     /* agg starts to be served, remove it from schedule */
1171     qfq_front_slot_remove(grp);
1172 
1173     new_front_agg = qfq_slot_scan(grp);
1174 
1175     if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1176         __clear_bit(grp->index, &q->bitmaps[ER]);
1177     else {
1178         u64 roundedS = qfq_round_down(new_front_agg->S,
1179                           grp->slot_shift);
1180         unsigned int s;
1181 
1182         if (grp->S == roundedS)
1183             return agg;
1184         grp->S = roundedS;
1185         grp->F = roundedS + (2ULL << grp->slot_shift);
1186         __clear_bit(grp->index, &q->bitmaps[ER]);
1187         s = qfq_calc_state(q, grp);
1188         __set_bit(grp->index, &q->bitmaps[s]);
1189     }
1190 
1191     qfq_unblock_groups(q, grp->index, old_F);
1192 
1193     return agg;
1194 }
1195 
1196 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1197                struct sk_buff **to_free)
1198 {
1199     unsigned int len = qdisc_pkt_len(skb), gso_segs;
1200     struct qfq_sched *q = qdisc_priv(sch);
1201     struct qfq_class *cl;
1202     struct qfq_aggregate *agg;
1203     int err = 0;
1204     bool first;
1205 
1206     cl = qfq_classify(skb, sch, &err);
1207     if (cl == NULL) {
1208         if (err & __NET_XMIT_BYPASS)
1209             qdisc_qstats_drop(sch);
1210         __qdisc_drop(skb, to_free);
1211         return err;
1212     }
1213     pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1214 
1215     if (unlikely(cl->agg->lmax < len)) {
1216         pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1217              cl->agg->lmax, len, cl->common.classid);
1218         err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
1219         if (err) {
1220             cl->qstats.drops++;
1221             return qdisc_drop(skb, sch, to_free);
1222         }
1223     }
1224 
1225     gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
1226     first = !cl->qdisc->q.qlen;
1227     err = qdisc_enqueue(skb, cl->qdisc, to_free);
1228     if (unlikely(err != NET_XMIT_SUCCESS)) {
1229         pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1230         if (net_xmit_drop_count(err)) {
1231             cl->qstats.drops++;
1232             qdisc_qstats_drop(sch);
1233         }
1234         return err;
1235     }
1236 
1237     _bstats_update(&cl->bstats, len, gso_segs);
1238     sch->qstats.backlog += len;
1239     ++sch->q.qlen;
1240 
1241     agg = cl->agg;
1242     /* if the queue was not empty, then done here */
1243     if (!first) {
1244         if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1245             list_first_entry(&agg->active, struct qfq_class, alist)
1246             == cl && cl->deficit < len)
1247             list_move_tail(&cl->alist, &agg->active);
1248 
1249         return err;
1250     }
1251 
1252     /* schedule class for service within the aggregate */
1253     cl->deficit = agg->lmax;
1254     list_add_tail(&cl->alist, &agg->active);
1255 
1256     if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1257         q->in_serv_agg == agg)
1258         return err; /* non-empty or in service, nothing else to do */
1259 
1260     qfq_activate_agg(q, agg, enqueue);
1261 
1262     return err;
1263 }
1264 
1265 /*
1266  * Schedule aggregate according to its timestamps.
1267  */
1268 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1269 {
1270     struct qfq_group *grp = agg->grp;
1271     u64 roundedS;
1272     int s;
1273 
1274     roundedS = qfq_round_down(agg->S, grp->slot_shift);
1275 
1276     /*
1277      * Insert agg in the correct bucket.
1278      * If agg->S >= grp->S we don't need to adjust the
1279      * bucket list and simply go to the insertion phase.
1280      * Otherwise grp->S is decreasing, we must make room
1281      * in the bucket list, and also recompute the group state.
1282      * Finally, if there were no flows in this group and nobody
1283      * was in ER make sure to adjust V.
1284      */
1285     if (grp->full_slots) {
1286         if (!qfq_gt(grp->S, agg->S))
1287             goto skip_update;
1288 
1289         /* create a slot for this agg->S */
1290         qfq_slot_rotate(grp, roundedS);
1291         /* group was surely ineligible, remove */
1292         __clear_bit(grp->index, &q->bitmaps[IR]);
1293         __clear_bit(grp->index, &q->bitmaps[IB]);
1294     } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1295            q->in_serv_agg == NULL)
1296         q->V = roundedS;
1297 
1298     grp->S = roundedS;
1299     grp->F = roundedS + (2ULL << grp->slot_shift);
1300     s = qfq_calc_state(q, grp);
1301     __set_bit(grp->index, &q->bitmaps[s]);
1302 
1303     pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1304          s, q->bitmaps[s],
1305          (unsigned long long) agg->S,
1306          (unsigned long long) agg->F,
1307          (unsigned long long) q->V);
1308 
1309 skip_update:
1310     qfq_slot_insert(grp, agg, roundedS);
1311 }
1312 
1313 
1314 /* Update agg ts and schedule agg for service */
1315 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1316                  enum update_reason reason)
1317 {
1318     agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1319 
1320     qfq_update_agg_ts(q, agg, reason);
1321     if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1322         q->in_serv_agg = agg; /* start serving this aggregate */
1323          /* update V: to be in service, agg must be eligible */
1324         q->oldV = q->V = agg->S;
1325     } else if (agg != q->in_serv_agg)
1326         qfq_schedule_agg(q, agg);
1327 }
1328 
1329 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1330                 struct qfq_aggregate *agg)
1331 {
1332     unsigned int i, offset;
1333     u64 roundedS;
1334 
1335     roundedS = qfq_round_down(agg->S, grp->slot_shift);
1336     offset = (roundedS - grp->S) >> grp->slot_shift;
1337 
1338     i = (grp->front + offset) % QFQ_MAX_SLOTS;
1339 
1340     hlist_del(&agg->next);
1341     if (hlist_empty(&grp->slots[i]))
1342         __clear_bit(offset, &grp->full_slots);
1343 }
1344 
1345 /*
1346  * Called to forcibly deschedule an aggregate.  If the aggregate is
1347  * not in the front bucket, or if the latter has other aggregates in
1348  * the front bucket, we can simply remove the aggregate with no other
1349  * side effects.
1350  * Otherwise we must propagate the event up.
1351  */
1352 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1353 {
1354     struct qfq_group *grp = agg->grp;
1355     unsigned long mask;
1356     u64 roundedS;
1357     int s;
1358 
1359     if (agg == q->in_serv_agg) {
1360         charge_actual_service(agg);
1361         q->in_serv_agg = qfq_choose_next_agg(q);
1362         return;
1363     }
1364 
1365     agg->F = agg->S;
1366     qfq_slot_remove(q, grp, agg);
1367 
1368     if (!grp->full_slots) {
1369         __clear_bit(grp->index, &q->bitmaps[IR]);
1370         __clear_bit(grp->index, &q->bitmaps[EB]);
1371         __clear_bit(grp->index, &q->bitmaps[IB]);
1372 
1373         if (test_bit(grp->index, &q->bitmaps[ER]) &&
1374             !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1375             mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1376             if (mask)
1377                 mask = ~((1UL << __fls(mask)) - 1);
1378             else
1379                 mask = ~0UL;
1380             qfq_move_groups(q, mask, EB, ER);
1381             qfq_move_groups(q, mask, IB, IR);
1382         }
1383         __clear_bit(grp->index, &q->bitmaps[ER]);
1384     } else if (hlist_empty(&grp->slots[grp->front])) {
1385         agg = qfq_slot_scan(grp);
1386         roundedS = qfq_round_down(agg->S, grp->slot_shift);
1387         if (grp->S != roundedS) {
1388             __clear_bit(grp->index, &q->bitmaps[ER]);
1389             __clear_bit(grp->index, &q->bitmaps[IR]);
1390             __clear_bit(grp->index, &q->bitmaps[EB]);
1391             __clear_bit(grp->index, &q->bitmaps[IB]);
1392             grp->S = roundedS;
1393             grp->F = roundedS + (2ULL << grp->slot_shift);
1394             s = qfq_calc_state(q, grp);
1395             __set_bit(grp->index, &q->bitmaps[s]);
1396         }
1397     }
1398 }
1399 
1400 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1401 {
1402     struct qfq_sched *q = qdisc_priv(sch);
1403     struct qfq_class *cl = (struct qfq_class *)arg;
1404 
1405     qfq_deactivate_class(q, cl);
1406 }
1407 
1408 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1409               struct netlink_ext_ack *extack)
1410 {
1411     struct qfq_sched *q = qdisc_priv(sch);
1412     struct qfq_group *grp;
1413     int i, j, err;
1414     u32 max_cl_shift, maxbudg_shift, max_classes;
1415 
1416     err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
1417     if (err)
1418         return err;
1419 
1420     err = qdisc_class_hash_init(&q->clhash);
1421     if (err < 0)
1422         return err;
1423 
1424     max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1,
1425                 QFQ_MAX_AGG_CLASSES);
1426     /* max_cl_shift = floor(log_2(max_classes)) */
1427     max_cl_shift = __fls(max_classes);
1428     q->max_agg_classes = 1<<max_cl_shift;
1429 
1430     /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1431     maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1432     q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1433 
1434     for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1435         grp = &q->groups[i];
1436         grp->index = i;
1437         grp->slot_shift = q->min_slot_shift + i;
1438         for (j = 0; j < QFQ_MAX_SLOTS; j++)
1439             INIT_HLIST_HEAD(&grp->slots[j]);
1440     }
1441 
1442     INIT_HLIST_HEAD(&q->nonfull_aggs);
1443 
1444     return 0;
1445 }
1446 
1447 static void qfq_reset_qdisc(struct Qdisc *sch)
1448 {
1449     struct qfq_sched *q = qdisc_priv(sch);
1450     struct qfq_class *cl;
1451     unsigned int i;
1452 
1453     for (i = 0; i < q->clhash.hashsize; i++) {
1454         hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1455             if (cl->qdisc->q.qlen > 0)
1456                 qfq_deactivate_class(q, cl);
1457 
1458             qdisc_reset(cl->qdisc);
1459         }
1460     }
1461     sch->qstats.backlog = 0;
1462     sch->q.qlen = 0;
1463 }
1464 
1465 static void qfq_destroy_qdisc(struct Qdisc *sch)
1466 {
1467     struct qfq_sched *q = qdisc_priv(sch);
1468     struct qfq_class *cl;
1469     struct hlist_node *next;
1470     unsigned int i;
1471 
1472     tcf_block_put(q->block);
1473 
1474     for (i = 0; i < q->clhash.hashsize; i++) {
1475         hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1476                       common.hnode) {
1477             qfq_destroy_class(sch, cl);
1478         }
1479     }
1480     qdisc_class_hash_destroy(&q->clhash);
1481 }
1482 
1483 static const struct Qdisc_class_ops qfq_class_ops = {
1484     .change     = qfq_change_class,
1485     .delete     = qfq_delete_class,
1486     .find       = qfq_search_class,
1487     .tcf_block  = qfq_tcf_block,
1488     .bind_tcf   = qfq_bind_tcf,
1489     .unbind_tcf = qfq_unbind_tcf,
1490     .graft      = qfq_graft_class,
1491     .leaf       = qfq_class_leaf,
1492     .qlen_notify    = qfq_qlen_notify,
1493     .dump       = qfq_dump_class,
1494     .dump_stats = qfq_dump_class_stats,
1495     .walk       = qfq_walk,
1496 };
1497 
1498 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1499     .cl_ops     = &qfq_class_ops,
1500     .id     = "qfq",
1501     .priv_size  = sizeof(struct qfq_sched),
1502     .enqueue    = qfq_enqueue,
1503     .dequeue    = qfq_dequeue,
1504     .peek       = qdisc_peek_dequeued,
1505     .init       = qfq_init_qdisc,
1506     .reset      = qfq_reset_qdisc,
1507     .destroy    = qfq_destroy_qdisc,
1508     .owner      = THIS_MODULE,
1509 };
1510 
1511 static int __init qfq_init(void)
1512 {
1513     return register_qdisc(&qfq_qdisc_ops);
1514 }
1515 
1516 static void __exit qfq_exit(void)
1517 {
1518     unregister_qdisc(&qfq_qdisc_ops);
1519 }
1520 
1521 module_init(qfq_init);
1522 module_exit(qfq_exit);
1523 MODULE_LICENSE("GPL");