0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053 #include <linux/module.h>
0054 #include <linux/types.h>
0055 #include <linux/kernel.h>
0056 #include <linux/jiffies.h>
0057 #include <linux/string.h>
0058 #include <linux/in.h>
0059 #include <linux/errno.h>
0060 #include <linux/init.h>
0061 #include <linux/skbuff.h>
0062 #include <linux/jhash.h>
0063 #include <linux/slab.h>
0064 #include <linux/vmalloc.h>
0065 #include <linux/reciprocal_div.h>
0066 #include <net/netlink.h>
0067 #include <linux/if_vlan.h>
0068 #include <net/pkt_sched.h>
0069 #include <net/pkt_cls.h>
0070 #include <net/tcp.h>
0071 #include <net/flow_dissector.h>
0072
0073 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
0074 #include <net/netfilter/nf_conntrack_core.h>
0075 #endif
0076
0077 #define CAKE_SET_WAYS (8)
0078 #define CAKE_MAX_TINS (8)
0079 #define CAKE_QUEUES (1024)
0080 #define CAKE_FLOW_MASK 63
0081 #define CAKE_FLOW_NAT_FLAG 64
0082
0083
0084
0085
0086
0087
0088
0089
0090 struct cobalt_params {
0091 u64 interval;
0092 u64 target;
0093 u64 mtu_time;
0094 u32 p_inc;
0095 u32 p_dec;
0096 };
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107 struct cobalt_vars {
0108 u32 count;
0109 u32 rec_inv_sqrt;
0110 ktime_t drop_next;
0111 ktime_t blue_timer;
0112 u32 p_drop;
0113 bool dropping;
0114 bool ecn_marked;
0115 };
0116
0117 enum {
0118 CAKE_SET_NONE = 0,
0119 CAKE_SET_SPARSE,
0120 CAKE_SET_SPARSE_WAIT,
0121 CAKE_SET_BULK,
0122 CAKE_SET_DECAYING
0123 };
0124
0125 struct cake_flow {
0126
0127 struct sk_buff *head;
0128 struct sk_buff *tail;
0129 struct list_head flowchain;
0130 s32 deficit;
0131 u32 dropped;
0132 struct cobalt_vars cvars;
0133 u16 srchost;
0134 u16 dsthost;
0135 u8 set;
0136 };
0137
0138 struct cake_host {
0139 u32 srchost_tag;
0140 u32 dsthost_tag;
0141 u16 srchost_bulk_flow_count;
0142 u16 dsthost_bulk_flow_count;
0143 };
0144
0145 struct cake_heap_entry {
0146 u16 t:3, b:10;
0147 };
0148
0149 struct cake_tin_data {
0150 struct cake_flow flows[CAKE_QUEUES];
0151 u32 backlogs[CAKE_QUEUES];
0152 u32 tags[CAKE_QUEUES];
0153 u16 overflow_idx[CAKE_QUEUES];
0154 struct cake_host hosts[CAKE_QUEUES];
0155 u16 flow_quantum;
0156
0157 struct cobalt_params cparams;
0158 u32 drop_overlimit;
0159 u16 bulk_flow_count;
0160 u16 sparse_flow_count;
0161 u16 decaying_flow_count;
0162 u16 unresponsive_flow_count;
0163
0164 u32 max_skblen;
0165
0166 struct list_head new_flows;
0167 struct list_head old_flows;
0168 struct list_head decaying_flows;
0169
0170
0171 ktime_t time_next_packet;
0172 u64 tin_rate_ns;
0173 u64 tin_rate_bps;
0174 u16 tin_rate_shft;
0175
0176 u16 tin_quantum;
0177 s32 tin_deficit;
0178 u32 tin_backlog;
0179 u32 tin_dropped;
0180 u32 tin_ecn_mark;
0181
0182 u32 packets;
0183 u64 bytes;
0184
0185 u32 ack_drops;
0186
0187
0188 u64 avge_delay;
0189 u64 peak_delay;
0190 u64 base_delay;
0191
0192
0193 u32 way_directs;
0194 u32 way_hits;
0195 u32 way_misses;
0196 u32 way_collisions;
0197 };
0198
0199 struct cake_sched_data {
0200 struct tcf_proto __rcu *filter_list;
0201 struct tcf_block *block;
0202 struct cake_tin_data *tins;
0203
0204 struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
0205 u16 overflow_timeout;
0206
0207 u16 tin_cnt;
0208 u8 tin_mode;
0209 u8 flow_mode;
0210 u8 ack_filter;
0211 u8 atm_mode;
0212
0213 u32 fwmark_mask;
0214 u16 fwmark_shft;
0215
0216
0217 u16 rate_shft;
0218 ktime_t time_next_packet;
0219 ktime_t failsafe_next_packet;
0220 u64 rate_ns;
0221 u64 rate_bps;
0222 u16 rate_flags;
0223 s16 rate_overhead;
0224 u16 rate_mpu;
0225 u64 interval;
0226 u64 target;
0227
0228
0229 u32 buffer_used;
0230 u32 buffer_max_used;
0231 u32 buffer_limit;
0232 u32 buffer_config_limit;
0233
0234
0235 u16 cur_tin;
0236 u16 cur_flow;
0237
0238 struct qdisc_watchdog watchdog;
0239 const u8 *tin_index;
0240 const u8 *tin_order;
0241
0242
0243 ktime_t last_packet_time;
0244 ktime_t avg_window_begin;
0245 u64 avg_packet_interval;
0246 u64 avg_window_bytes;
0247 u64 avg_peak_bandwidth;
0248 ktime_t last_reconfig_time;
0249
0250
0251 u32 avg_netoff;
0252 u16 max_netlen;
0253 u16 max_adjlen;
0254 u16 min_netlen;
0255 u16 min_adjlen;
0256 };
0257
0258 enum {
0259 CAKE_FLAG_OVERHEAD = BIT(0),
0260 CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
0261 CAKE_FLAG_INGRESS = BIT(2),
0262 CAKE_FLAG_WASH = BIT(3),
0263 CAKE_FLAG_SPLIT_GSO = BIT(4)
0264 };
0265
0266
0267
0268
0269
0270
0271
0272 struct cobalt_skb_cb {
0273 ktime_t enqueue_time;
0274 u32 adjusted_len;
0275 };
0276
0277 static u64 us_to_ns(u64 us)
0278 {
0279 return us * NSEC_PER_USEC;
0280 }
0281
0282 static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
0283 {
0284 qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
0285 return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
0286 }
0287
0288 static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
0289 {
0290 return get_cobalt_cb(skb)->enqueue_time;
0291 }
0292
0293 static void cobalt_set_enqueue_time(struct sk_buff *skb,
0294 ktime_t now)
0295 {
0296 get_cobalt_cb(skb)->enqueue_time = now;
0297 }
0298
0299 static u16 quantum_div[CAKE_QUEUES + 1] = {0};
0300
0301
0302
0303 static const u8 precedence[] = {
0304 0, 0, 0, 0, 0, 0, 0, 0,
0305 1, 1, 1, 1, 1, 1, 1, 1,
0306 2, 2, 2, 2, 2, 2, 2, 2,
0307 3, 3, 3, 3, 3, 3, 3, 3,
0308 4, 4, 4, 4, 4, 4, 4, 4,
0309 5, 5, 5, 5, 5, 5, 5, 5,
0310 6, 6, 6, 6, 6, 6, 6, 6,
0311 7, 7, 7, 7, 7, 7, 7, 7,
0312 };
0313
0314 static const u8 diffserv8[] = {
0315 2, 0, 1, 2, 4, 2, 2, 2,
0316 1, 2, 1, 2, 1, 2, 1, 2,
0317 5, 2, 4, 2, 4, 2, 4, 2,
0318 3, 2, 3, 2, 3, 2, 3, 2,
0319 6, 2, 3, 2, 3, 2, 3, 2,
0320 6, 2, 2, 2, 6, 2, 6, 2,
0321 7, 2, 2, 2, 2, 2, 2, 2,
0322 7, 2, 2, 2, 2, 2, 2, 2,
0323 };
0324
0325 static const u8 diffserv4[] = {
0326 0, 1, 0, 0, 2, 0, 0, 0,
0327 1, 0, 0, 0, 0, 0, 0, 0,
0328 2, 0, 2, 0, 2, 0, 2, 0,
0329 2, 0, 2, 0, 2, 0, 2, 0,
0330 3, 0, 2, 0, 2, 0, 2, 0,
0331 3, 0, 0, 0, 3, 0, 3, 0,
0332 3, 0, 0, 0, 0, 0, 0, 0,
0333 3, 0, 0, 0, 0, 0, 0, 0,
0334 };
0335
0336 static const u8 diffserv3[] = {
0337 0, 1, 0, 0, 2, 0, 0, 0,
0338 1, 0, 0, 0, 0, 0, 0, 0,
0339 0, 0, 0, 0, 0, 0, 0, 0,
0340 0, 0, 0, 0, 0, 0, 0, 0,
0341 0, 0, 0, 0, 0, 0, 0, 0,
0342 0, 0, 0, 0, 2, 0, 2, 0,
0343 2, 0, 0, 0, 0, 0, 0, 0,
0344 2, 0, 0, 0, 0, 0, 0, 0,
0345 };
0346
0347 static const u8 besteffort[] = {
0348 0, 0, 0, 0, 0, 0, 0, 0,
0349 0, 0, 0, 0, 0, 0, 0, 0,
0350 0, 0, 0, 0, 0, 0, 0, 0,
0351 0, 0, 0, 0, 0, 0, 0, 0,
0352 0, 0, 0, 0, 0, 0, 0, 0,
0353 0, 0, 0, 0, 0, 0, 0, 0,
0354 0, 0, 0, 0, 0, 0, 0, 0,
0355 0, 0, 0, 0, 0, 0, 0, 0,
0356 };
0357
0358
0359
0360 static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
0361 static const u8 bulk_order[] = {1, 0, 2, 3};
0362
0363 #define REC_INV_SQRT_CACHE (16)
0364 static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
0365
0366
0367
0368
0369
0370
0371
0372 static void cobalt_newton_step(struct cobalt_vars *vars)
0373 {
0374 u32 invsqrt, invsqrt2;
0375 u64 val;
0376
0377 invsqrt = vars->rec_inv_sqrt;
0378 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
0379 val = (3LL << 32) - ((u64)vars->count * invsqrt2);
0380
0381 val >>= 2;
0382 val = (val * invsqrt) >> (32 - 2 + 1);
0383
0384 vars->rec_inv_sqrt = val;
0385 }
0386
0387 static void cobalt_invsqrt(struct cobalt_vars *vars)
0388 {
0389 if (vars->count < REC_INV_SQRT_CACHE)
0390 vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
0391 else
0392 cobalt_newton_step(vars);
0393 }
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405 static void cobalt_cache_init(void)
0406 {
0407 struct cobalt_vars v;
0408
0409 memset(&v, 0, sizeof(v));
0410 v.rec_inv_sqrt = ~0U;
0411 cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
0412
0413 for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
0414 cobalt_newton_step(&v);
0415 cobalt_newton_step(&v);
0416 cobalt_newton_step(&v);
0417 cobalt_newton_step(&v);
0418
0419 cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
0420 }
0421 }
0422
0423 static void cobalt_vars_init(struct cobalt_vars *vars)
0424 {
0425 memset(vars, 0, sizeof(*vars));
0426
0427 if (!cobalt_rec_inv_sqrt_cache[0]) {
0428 cobalt_cache_init();
0429 cobalt_rec_inv_sqrt_cache[0] = ~0;
0430 }
0431 }
0432
0433
0434
0435
0436
0437 static ktime_t cobalt_control(ktime_t t,
0438 u64 interval,
0439 u32 rec_inv_sqrt)
0440 {
0441 return ktime_add_ns(t, reciprocal_scale(interval,
0442 rec_inv_sqrt));
0443 }
0444
0445
0446
0447
0448 static bool cobalt_queue_full(struct cobalt_vars *vars,
0449 struct cobalt_params *p,
0450 ktime_t now)
0451 {
0452 bool up = false;
0453
0454 if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
0455 up = !vars->p_drop;
0456 vars->p_drop += p->p_inc;
0457 if (vars->p_drop < p->p_inc)
0458 vars->p_drop = ~0;
0459 vars->blue_timer = now;
0460 }
0461 vars->dropping = true;
0462 vars->drop_next = now;
0463 if (!vars->count)
0464 vars->count = 1;
0465
0466 return up;
0467 }
0468
0469
0470
0471
0472 static bool cobalt_queue_empty(struct cobalt_vars *vars,
0473 struct cobalt_params *p,
0474 ktime_t now)
0475 {
0476 bool down = false;
0477
0478 if (vars->p_drop &&
0479 ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
0480 if (vars->p_drop < p->p_dec)
0481 vars->p_drop = 0;
0482 else
0483 vars->p_drop -= p->p_dec;
0484 vars->blue_timer = now;
0485 down = !vars->p_drop;
0486 }
0487 vars->dropping = false;
0488
0489 if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
0490 vars->count--;
0491 cobalt_invsqrt(vars);
0492 vars->drop_next = cobalt_control(vars->drop_next,
0493 p->interval,
0494 vars->rec_inv_sqrt);
0495 }
0496
0497 return down;
0498 }
0499
0500
0501
0502
0503 static bool cobalt_should_drop(struct cobalt_vars *vars,
0504 struct cobalt_params *p,
0505 ktime_t now,
0506 struct sk_buff *skb,
0507 u32 bulk_flows)
0508 {
0509 bool next_due, over_target, drop = false;
0510 ktime_t schedule;
0511 u64 sojourn;
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528 sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
0529 schedule = ktime_sub(now, vars->drop_next);
0530 over_target = sojourn > p->target &&
0531 sojourn > p->mtu_time * bulk_flows * 2 &&
0532 sojourn > p->mtu_time * 4;
0533 next_due = vars->count && ktime_to_ns(schedule) >= 0;
0534
0535 vars->ecn_marked = false;
0536
0537 if (over_target) {
0538 if (!vars->dropping) {
0539 vars->dropping = true;
0540 vars->drop_next = cobalt_control(now,
0541 p->interval,
0542 vars->rec_inv_sqrt);
0543 }
0544 if (!vars->count)
0545 vars->count = 1;
0546 } else if (vars->dropping) {
0547 vars->dropping = false;
0548 }
0549
0550 if (next_due && vars->dropping) {
0551
0552 drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
0553
0554 vars->count++;
0555 if (!vars->count)
0556 vars->count--;
0557 cobalt_invsqrt(vars);
0558 vars->drop_next = cobalt_control(vars->drop_next,
0559 p->interval,
0560 vars->rec_inv_sqrt);
0561 schedule = ktime_sub(now, vars->drop_next);
0562 } else {
0563 while (next_due) {
0564 vars->count--;
0565 cobalt_invsqrt(vars);
0566 vars->drop_next = cobalt_control(vars->drop_next,
0567 p->interval,
0568 vars->rec_inv_sqrt);
0569 schedule = ktime_sub(now, vars->drop_next);
0570 next_due = vars->count && ktime_to_ns(schedule) >= 0;
0571 }
0572 }
0573
0574
0575 if (vars->p_drop)
0576 drop |= (prandom_u32() < vars->p_drop);
0577
0578
0579 if (!vars->count)
0580 vars->drop_next = ktime_add_ns(now, p->interval);
0581 else if (ktime_to_ns(schedule) > 0 && !drop)
0582 vars->drop_next = now;
0583
0584 return drop;
0585 }
0586
0587 static bool cake_update_flowkeys(struct flow_keys *keys,
0588 const struct sk_buff *skb)
0589 {
0590 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
0591 struct nf_conntrack_tuple tuple = {};
0592 bool rev = !skb->_nfct, upd = false;
0593 __be32 ip;
0594
0595 if (skb_protocol(skb, true) != htons(ETH_P_IP))
0596 return false;
0597
0598 if (!nf_ct_get_tuple_skb(&tuple, skb))
0599 return false;
0600
0601 ip = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
0602 if (ip != keys->addrs.v4addrs.src) {
0603 keys->addrs.v4addrs.src = ip;
0604 upd = true;
0605 }
0606 ip = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
0607 if (ip != keys->addrs.v4addrs.dst) {
0608 keys->addrs.v4addrs.dst = ip;
0609 upd = true;
0610 }
0611
0612 if (keys->ports.ports) {
0613 __be16 port;
0614
0615 port = rev ? tuple.dst.u.all : tuple.src.u.all;
0616 if (port != keys->ports.src) {
0617 keys->ports.src = port;
0618 upd = true;
0619 }
0620 port = rev ? tuple.src.u.all : tuple.dst.u.all;
0621 if (port != keys->ports.dst) {
0622 port = keys->ports.dst;
0623 upd = true;
0624 }
0625 }
0626 return upd;
0627 #else
0628 return false;
0629 #endif
0630 }
0631
0632
0633
0634
0635
0636 static bool cake_dsrc(int flow_mode)
0637 {
0638 return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
0639 }
0640
0641 static bool cake_ddst(int flow_mode)
0642 {
0643 return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
0644 }
0645
0646 static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
0647 int flow_mode, u16 flow_override, u16 host_override)
0648 {
0649 bool hash_flows = (!flow_override && !!(flow_mode & CAKE_FLOW_FLOWS));
0650 bool hash_hosts = (!host_override && !!(flow_mode & CAKE_FLOW_HOSTS));
0651 bool nat_enabled = !!(flow_mode & CAKE_FLOW_NAT_FLAG);
0652 u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
0653 u16 reduced_hash, srchost_idx, dsthost_idx;
0654 struct flow_keys keys, host_keys;
0655 bool use_skbhash = skb->l4_hash;
0656
0657 if (unlikely(flow_mode == CAKE_FLOW_NONE))
0658 return 0;
0659
0660
0661
0662
0663
0664 if ((!hash_flows || (use_skbhash && !nat_enabled)) && !hash_hosts)
0665 goto skip_hash;
0666
0667 skb_flow_dissect_flow_keys(skb, &keys,
0668 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
0669
0670
0671 if (nat_enabled && cake_update_flowkeys(&keys, skb))
0672 use_skbhash = false;
0673
0674
0675
0676
0677 if (use_skbhash && !hash_hosts)
0678 goto skip_hash;
0679
0680
0681
0682
0683
0684 host_keys = keys;
0685 host_keys.ports.ports = 0;
0686 host_keys.basic.ip_proto = 0;
0687 host_keys.keyid.keyid = 0;
0688 host_keys.tags.flow_label = 0;
0689
0690 switch (host_keys.control.addr_type) {
0691 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
0692 host_keys.addrs.v4addrs.src = 0;
0693 dsthost_hash = flow_hash_from_keys(&host_keys);
0694 host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
0695 host_keys.addrs.v4addrs.dst = 0;
0696 srchost_hash = flow_hash_from_keys(&host_keys);
0697 break;
0698
0699 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
0700 memset(&host_keys.addrs.v6addrs.src, 0,
0701 sizeof(host_keys.addrs.v6addrs.src));
0702 dsthost_hash = flow_hash_from_keys(&host_keys);
0703 host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
0704 memset(&host_keys.addrs.v6addrs.dst, 0,
0705 sizeof(host_keys.addrs.v6addrs.dst));
0706 srchost_hash = flow_hash_from_keys(&host_keys);
0707 break;
0708
0709 default:
0710 dsthost_hash = 0;
0711 srchost_hash = 0;
0712 }
0713
0714
0715
0716
0717 if (hash_flows && !use_skbhash)
0718 flow_hash = flow_hash_from_keys(&keys);
0719
0720 skip_hash:
0721 if (flow_override)
0722 flow_hash = flow_override - 1;
0723 else if (use_skbhash && (flow_mode & CAKE_FLOW_FLOWS))
0724 flow_hash = skb->hash;
0725 if (host_override) {
0726 dsthost_hash = host_override - 1;
0727 srchost_hash = host_override - 1;
0728 }
0729
0730 if (!(flow_mode & CAKE_FLOW_FLOWS)) {
0731 if (flow_mode & CAKE_FLOW_SRC_IP)
0732 flow_hash ^= srchost_hash;
0733
0734 if (flow_mode & CAKE_FLOW_DST_IP)
0735 flow_hash ^= dsthost_hash;
0736 }
0737
0738 reduced_hash = flow_hash % CAKE_QUEUES;
0739
0740
0741
0742 if (likely(q->tags[reduced_hash] == flow_hash &&
0743 q->flows[reduced_hash].set)) {
0744 q->way_directs++;
0745 } else {
0746 u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
0747 u32 outer_hash = reduced_hash - inner_hash;
0748 bool allocate_src = false;
0749 bool allocate_dst = false;
0750 u32 i, k;
0751
0752
0753
0754
0755 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
0756 i++, k = (k + 1) % CAKE_SET_WAYS) {
0757 if (q->tags[outer_hash + k] == flow_hash) {
0758 if (i)
0759 q->way_hits++;
0760
0761 if (!q->flows[outer_hash + k].set) {
0762
0763 allocate_src = cake_dsrc(flow_mode);
0764 allocate_dst = cake_ddst(flow_mode);
0765 }
0766
0767 goto found;
0768 }
0769 }
0770
0771
0772
0773
0774 for (i = 0; i < CAKE_SET_WAYS;
0775 i++, k = (k + 1) % CAKE_SET_WAYS) {
0776 if (!q->flows[outer_hash + k].set) {
0777 q->way_misses++;
0778 allocate_src = cake_dsrc(flow_mode);
0779 allocate_dst = cake_ddst(flow_mode);
0780 goto found;
0781 }
0782 }
0783
0784
0785
0786
0787 q->way_collisions++;
0788 if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
0789 q->hosts[q->flows[reduced_hash].srchost].srchost_bulk_flow_count--;
0790 q->hosts[q->flows[reduced_hash].dsthost].dsthost_bulk_flow_count--;
0791 }
0792 allocate_src = cake_dsrc(flow_mode);
0793 allocate_dst = cake_ddst(flow_mode);
0794 found:
0795
0796 reduced_hash = outer_hash + k;
0797 q->tags[reduced_hash] = flow_hash;
0798
0799 if (allocate_src) {
0800 srchost_idx = srchost_hash % CAKE_QUEUES;
0801 inner_hash = srchost_idx % CAKE_SET_WAYS;
0802 outer_hash = srchost_idx - inner_hash;
0803 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
0804 i++, k = (k + 1) % CAKE_SET_WAYS) {
0805 if (q->hosts[outer_hash + k].srchost_tag ==
0806 srchost_hash)
0807 goto found_src;
0808 }
0809 for (i = 0; i < CAKE_SET_WAYS;
0810 i++, k = (k + 1) % CAKE_SET_WAYS) {
0811 if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
0812 break;
0813 }
0814 q->hosts[outer_hash + k].srchost_tag = srchost_hash;
0815 found_src:
0816 srchost_idx = outer_hash + k;
0817 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
0818 q->hosts[srchost_idx].srchost_bulk_flow_count++;
0819 q->flows[reduced_hash].srchost = srchost_idx;
0820 }
0821
0822 if (allocate_dst) {
0823 dsthost_idx = dsthost_hash % CAKE_QUEUES;
0824 inner_hash = dsthost_idx % CAKE_SET_WAYS;
0825 outer_hash = dsthost_idx - inner_hash;
0826 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
0827 i++, k = (k + 1) % CAKE_SET_WAYS) {
0828 if (q->hosts[outer_hash + k].dsthost_tag ==
0829 dsthost_hash)
0830 goto found_dst;
0831 }
0832 for (i = 0; i < CAKE_SET_WAYS;
0833 i++, k = (k + 1) % CAKE_SET_WAYS) {
0834 if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
0835 break;
0836 }
0837 q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
0838 found_dst:
0839 dsthost_idx = outer_hash + k;
0840 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
0841 q->hosts[dsthost_idx].dsthost_bulk_flow_count++;
0842 q->flows[reduced_hash].dsthost = dsthost_idx;
0843 }
0844 }
0845
0846 return reduced_hash;
0847 }
0848
0849
0850
0851
0852 static struct sk_buff *dequeue_head(struct cake_flow *flow)
0853 {
0854 struct sk_buff *skb = flow->head;
0855
0856 if (skb) {
0857 flow->head = skb->next;
0858 skb_mark_not_on_list(skb);
0859 }
0860
0861 return skb;
0862 }
0863
0864
0865
0866 static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
0867 {
0868 if (!flow->head)
0869 flow->head = skb;
0870 else
0871 flow->tail->next = skb;
0872 flow->tail = skb;
0873 skb->next = NULL;
0874 }
0875
0876 static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
0877 struct ipv6hdr *buf)
0878 {
0879 unsigned int offset = skb_network_offset(skb);
0880 struct iphdr *iph;
0881
0882 iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
0883
0884 if (!iph)
0885 return NULL;
0886
0887 if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
0888 return skb_header_pointer(skb, offset + iph->ihl * 4,
0889 sizeof(struct ipv6hdr), buf);
0890
0891 else if (iph->version == 4)
0892 return iph;
0893
0894 else if (iph->version == 6)
0895 return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
0896 buf);
0897
0898 return NULL;
0899 }
0900
0901 static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
0902 void *buf, unsigned int bufsize)
0903 {
0904 unsigned int offset = skb_network_offset(skb);
0905 const struct ipv6hdr *ipv6h;
0906 const struct tcphdr *tcph;
0907 const struct iphdr *iph;
0908 struct ipv6hdr _ipv6h;
0909 struct tcphdr _tcph;
0910
0911 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
0912
0913 if (!ipv6h)
0914 return NULL;
0915
0916 if (ipv6h->version == 4) {
0917 iph = (struct iphdr *)ipv6h;
0918 offset += iph->ihl * 4;
0919
0920
0921
0922
0923 if (iph->protocol == IPPROTO_IPV6) {
0924 ipv6h = skb_header_pointer(skb, offset,
0925 sizeof(_ipv6h), &_ipv6h);
0926
0927 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
0928 return NULL;
0929
0930 offset += sizeof(struct ipv6hdr);
0931
0932 } else if (iph->protocol != IPPROTO_TCP) {
0933 return NULL;
0934 }
0935
0936 } else if (ipv6h->version == 6) {
0937 if (ipv6h->nexthdr != IPPROTO_TCP)
0938 return NULL;
0939
0940 offset += sizeof(struct ipv6hdr);
0941 } else {
0942 return NULL;
0943 }
0944
0945 tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
0946 if (!tcph || tcph->doff < 5)
0947 return NULL;
0948
0949 return skb_header_pointer(skb, offset,
0950 min(__tcp_hdrlen(tcph), bufsize), buf);
0951 }
0952
0953 static const void *cake_get_tcpopt(const struct tcphdr *tcph,
0954 int code, int *oplen)
0955 {
0956
0957 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
0958 const u8 *ptr = (const u8 *)(tcph + 1);
0959
0960 while (length > 0) {
0961 int opcode = *ptr++;
0962 int opsize;
0963
0964 if (opcode == TCPOPT_EOL)
0965 break;
0966 if (opcode == TCPOPT_NOP) {
0967 length--;
0968 continue;
0969 }
0970 if (length < 2)
0971 break;
0972 opsize = *ptr++;
0973 if (opsize < 2 || opsize > length)
0974 break;
0975
0976 if (opcode == code) {
0977 *oplen = opsize;
0978 return ptr;
0979 }
0980
0981 ptr += opsize - 2;
0982 length -= opsize;
0983 }
0984
0985 return NULL;
0986 }
0987
0988
0989
0990
0991
0992
0993
0994
0995 static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
0996 const struct tcphdr *tcph_b)
0997 {
0998 const struct tcp_sack_block_wire *sack_a, *sack_b;
0999 u32 ack_seq_a = ntohl(tcph_a->ack_seq);
1000 u32 bytes_a = 0, bytes_b = 0;
1001 int oplen_a, oplen_b;
1002 bool first = true;
1003
1004 sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
1005 sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
1006
1007
1008 oplen_a -= TCPOLEN_SACK_BASE;
1009 oplen_b -= TCPOLEN_SACK_BASE;
1010
1011 if (sack_a && oplen_a >= sizeof(*sack_a) &&
1012 (!sack_b || oplen_b < sizeof(*sack_b)))
1013 return -1;
1014 else if (sack_b && oplen_b >= sizeof(*sack_b) &&
1015 (!sack_a || oplen_a < sizeof(*sack_a)))
1016 return 1;
1017 else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
1018 (!sack_b || oplen_b < sizeof(*sack_b)))
1019 return 0;
1020
1021 while (oplen_a >= sizeof(*sack_a)) {
1022 const struct tcp_sack_block_wire *sack_tmp = sack_b;
1023 u32 start_a = get_unaligned_be32(&sack_a->start_seq);
1024 u32 end_a = get_unaligned_be32(&sack_a->end_seq);
1025 int oplen_tmp = oplen_b;
1026 bool found = false;
1027
1028
1029 if (before(start_a, ack_seq_a))
1030 return -1;
1031
1032 bytes_a += end_a - start_a;
1033
1034 while (oplen_tmp >= sizeof(*sack_tmp)) {
1035 u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
1036 u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
1037
1038
1039 if (first)
1040 bytes_b += end_b - start_b;
1041
1042 if (!after(start_b, start_a) && !before(end_b, end_a)) {
1043 found = true;
1044 if (!first)
1045 break;
1046 }
1047 oplen_tmp -= sizeof(*sack_tmp);
1048 sack_tmp++;
1049 }
1050
1051 if (!found)
1052 return -1;
1053
1054 oplen_a -= sizeof(*sack_a);
1055 sack_a++;
1056 first = false;
1057 }
1058
1059
1060
1061
1062 return bytes_b > bytes_a ? 1 : 0;
1063 }
1064
1065 static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1066 u32 *tsval, u32 *tsecr)
1067 {
1068 const u8 *ptr;
1069 int opsize;
1070
1071 ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1072
1073 if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1074 *tsval = get_unaligned_be32(ptr);
1075 *tsecr = get_unaligned_be32(ptr + 4);
1076 }
1077 }
1078
1079 static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1080 u32 tstamp_new, u32 tsecr_new)
1081 {
1082
1083 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1084 const u8 *ptr = (const u8 *)(tcph + 1);
1085 u32 tstamp, tsecr;
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095 if (((tcp_flag_word(tcph) &
1096 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1097 return false;
1098
1099 while (length > 0) {
1100 int opcode = *ptr++;
1101 int opsize;
1102
1103 if (opcode == TCPOPT_EOL)
1104 break;
1105 if (opcode == TCPOPT_NOP) {
1106 length--;
1107 continue;
1108 }
1109 if (length < 2)
1110 break;
1111 opsize = *ptr++;
1112 if (opsize < 2 || opsize > length)
1113 break;
1114
1115 switch (opcode) {
1116 case TCPOPT_MD5SIG:
1117 break;
1118
1119 case TCPOPT_SACK:
1120 if (opsize % 8 != 2)
1121 return false;
1122 break;
1123
1124 case TCPOPT_TIMESTAMP:
1125
1126 if (opsize != TCPOLEN_TIMESTAMP)
1127 return false;
1128 tstamp = get_unaligned_be32(ptr);
1129 tsecr = get_unaligned_be32(ptr + 4);
1130 if (after(tstamp, tstamp_new) ||
1131 after(tsecr, tsecr_new))
1132 return false;
1133 break;
1134
1135 case TCPOPT_MSS:
1136 case TCPOPT_WINDOW:
1137 case TCPOPT_SACK_PERM:
1138 case TCPOPT_FASTOPEN:
1139 case TCPOPT_EXP:
1140 default:
1141 return false;
1142 }
1143
1144 ptr += opsize - 2;
1145 length -= opsize;
1146 }
1147
1148 return true;
1149 }
1150
1151 static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1152 struct cake_flow *flow)
1153 {
1154 bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1155 struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1156 struct sk_buff *skb_check, *skb_prev = NULL;
1157 const struct ipv6hdr *ipv6h, *ipv6h_check;
1158 unsigned char _tcph[64], _tcph_check[64];
1159 const struct tcphdr *tcph, *tcph_check;
1160 const struct iphdr *iph, *iph_check;
1161 struct ipv6hdr _iph, _iph_check;
1162 const struct sk_buff *skb;
1163 int seglen, num_found = 0;
1164 u32 tstamp = 0, tsecr = 0;
1165 __be32 elig_flags = 0;
1166 int sack_comp;
1167
1168
1169 if (flow->head == flow->tail)
1170 return NULL;
1171
1172 skb = flow->tail;
1173 tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1174 iph = cake_get_iphdr(skb, &_iph);
1175 if (!tcph)
1176 return NULL;
1177
1178 cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1179
1180
1181
1182
1183 if ((tcp_flag_word(tcph) &
1184 (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1185 return NULL;
1186
1187
1188
1189
1190
1191
1192 for (skb_check = flow->head;
1193 skb_check && skb_check != skb;
1194 skb_prev = skb_check, skb_check = skb_check->next) {
1195 iph_check = cake_get_iphdr(skb_check, &_iph_check);
1196 tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1197 sizeof(_tcph_check));
1198
1199
1200
1201
1202 if (!tcph_check || iph->version != iph_check->version ||
1203 tcph_check->source != tcph->source ||
1204 tcph_check->dest != tcph->dest)
1205 continue;
1206
1207 if (iph_check->version == 4) {
1208 if (iph_check->saddr != iph->saddr ||
1209 iph_check->daddr != iph->daddr)
1210 continue;
1211
1212 seglen = ntohs(iph_check->tot_len) -
1213 (4 * iph_check->ihl);
1214 } else if (iph_check->version == 6) {
1215 ipv6h = (struct ipv6hdr *)iph;
1216 ipv6h_check = (struct ipv6hdr *)iph_check;
1217
1218 if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1219 ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1220 continue;
1221
1222 seglen = ntohs(ipv6h_check->payload_len);
1223 } else {
1224 WARN_ON(1);
1225 continue;
1226 }
1227
1228
1229
1230
1231
1232 if (elig_ack && (tcp_flag_word(tcph_check) &
1233 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1234 elig_ack = NULL;
1235 elig_ack_prev = NULL;
1236 num_found--;
1237 }
1238
1239
1240
1241
1242
1243
1244
1245 if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1246 (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1247 after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1248 continue;
1249
1250
1251
1252
1253
1254
1255
1256 sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1257
1258 if (sack_comp < 0 ||
1259 (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1260 sack_comp == 0))
1261 continue;
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272 if (!elig_ack) {
1273 elig_ack = skb_check;
1274 elig_ack_prev = skb_prev;
1275 elig_flags = (tcp_flag_word(tcph_check)
1276 & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1277 }
1278
1279 if (num_found++ > 0)
1280 goto found;
1281 }
1282
1283
1284
1285
1286
1287
1288
1289 if (elig_ack && aggressive && elig_ack->next == skb &&
1290 (elig_flags == (tcp_flag_word(tcph) &
1291 (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1292 goto found;
1293
1294 return NULL;
1295
1296 found:
1297 if (elig_ack_prev)
1298 elig_ack_prev->next = elig_ack->next;
1299 else
1300 flow->head = elig_ack->next;
1301
1302 skb_mark_not_on_list(elig_ack);
1303
1304 return elig_ack;
1305 }
1306
1307 static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1308 {
1309 avg -= avg >> shift;
1310 avg += sample >> shift;
1311 return avg;
1312 }
1313
1314 static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1315 {
1316 if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1317 len -= off;
1318
1319 if (q->max_netlen < len)
1320 q->max_netlen = len;
1321 if (q->min_netlen > len)
1322 q->min_netlen = len;
1323
1324 len += q->rate_overhead;
1325
1326 if (len < q->rate_mpu)
1327 len = q->rate_mpu;
1328
1329 if (q->atm_mode == CAKE_ATM_ATM) {
1330 len += 47;
1331 len /= 48;
1332 len *= 53;
1333 } else if (q->atm_mode == CAKE_ATM_PTM) {
1334
1335
1336
1337
1338 len += (len + 63) / 64;
1339 }
1340
1341 if (q->max_adjlen < len)
1342 q->max_adjlen = len;
1343 if (q->min_adjlen > len)
1344 q->min_adjlen = len;
1345
1346 return len;
1347 }
1348
1349 static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1350 {
1351 const struct skb_shared_info *shinfo = skb_shinfo(skb);
1352 unsigned int hdr_len, last_len = 0;
1353 u32 off = skb_network_offset(skb);
1354 u32 len = qdisc_pkt_len(skb);
1355 u16 segs = 1;
1356
1357 q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1358
1359 if (!shinfo->gso_size)
1360 return cake_calc_overhead(q, len, off);
1361
1362
1363 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
1364
1365
1366 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1367 SKB_GSO_TCPV6))) {
1368 const struct tcphdr *th;
1369 struct tcphdr _tcphdr;
1370
1371 th = skb_header_pointer(skb, skb_transport_offset(skb),
1372 sizeof(_tcphdr), &_tcphdr);
1373 if (likely(th))
1374 hdr_len += __tcp_hdrlen(th);
1375 } else {
1376 struct udphdr _udphdr;
1377
1378 if (skb_header_pointer(skb, skb_transport_offset(skb),
1379 sizeof(_udphdr), &_udphdr))
1380 hdr_len += sizeof(struct udphdr);
1381 }
1382
1383 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
1384 segs = DIV_ROUND_UP(skb->len - hdr_len,
1385 shinfo->gso_size);
1386 else
1387 segs = shinfo->gso_segs;
1388
1389 len = shinfo->gso_size + hdr_len;
1390 last_len = skb->len - shinfo->gso_size * (segs - 1);
1391
1392 return (cake_calc_overhead(q, len, off) * (segs - 1) +
1393 cake_calc_overhead(q, last_len, off));
1394 }
1395
1396 static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1397 {
1398 struct cake_heap_entry ii = q->overflow_heap[i];
1399 struct cake_heap_entry jj = q->overflow_heap[j];
1400
1401 q->overflow_heap[i] = jj;
1402 q->overflow_heap[j] = ii;
1403
1404 q->tins[ii.t].overflow_idx[ii.b] = j;
1405 q->tins[jj.t].overflow_idx[jj.b] = i;
1406 }
1407
1408 static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1409 {
1410 struct cake_heap_entry ii = q->overflow_heap[i];
1411
1412 return q->tins[ii.t].backlogs[ii.b];
1413 }
1414
1415 static void cake_heapify(struct cake_sched_data *q, u16 i)
1416 {
1417 static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1418 u32 mb = cake_heap_get_backlog(q, i);
1419 u32 m = i;
1420
1421 while (m < a) {
1422 u32 l = m + m + 1;
1423 u32 r = l + 1;
1424
1425 if (l < a) {
1426 u32 lb = cake_heap_get_backlog(q, l);
1427
1428 if (lb > mb) {
1429 m = l;
1430 mb = lb;
1431 }
1432 }
1433
1434 if (r < a) {
1435 u32 rb = cake_heap_get_backlog(q, r);
1436
1437 if (rb > mb) {
1438 m = r;
1439 mb = rb;
1440 }
1441 }
1442
1443 if (m != i) {
1444 cake_heap_swap(q, i, m);
1445 i = m;
1446 } else {
1447 break;
1448 }
1449 }
1450 }
1451
1452 static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1453 {
1454 while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1455 u16 p = (i - 1) >> 1;
1456 u32 ib = cake_heap_get_backlog(q, i);
1457 u32 pb = cake_heap_get_backlog(q, p);
1458
1459 if (ib > pb) {
1460 cake_heap_swap(q, i, p);
1461 i = p;
1462 } else {
1463 break;
1464 }
1465 }
1466 }
1467
1468 static int cake_advance_shaper(struct cake_sched_data *q,
1469 struct cake_tin_data *b,
1470 struct sk_buff *skb,
1471 ktime_t now, bool drop)
1472 {
1473 u32 len = get_cobalt_cb(skb)->adjusted_len;
1474
1475
1476
1477
1478 if (q->rate_ns) {
1479 u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1480 u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1481 u64 failsafe_dur = global_dur + (global_dur >> 1);
1482
1483 if (ktime_before(b->time_next_packet, now))
1484 b->time_next_packet = ktime_add_ns(b->time_next_packet,
1485 tin_dur);
1486
1487 else if (ktime_before(b->time_next_packet,
1488 ktime_add_ns(now, tin_dur)))
1489 b->time_next_packet = ktime_add_ns(now, tin_dur);
1490
1491 q->time_next_packet = ktime_add_ns(q->time_next_packet,
1492 global_dur);
1493 if (!drop)
1494 q->failsafe_next_packet = \
1495 ktime_add_ns(q->failsafe_next_packet,
1496 failsafe_dur);
1497 }
1498 return len;
1499 }
1500
1501 static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1502 {
1503 struct cake_sched_data *q = qdisc_priv(sch);
1504 ktime_t now = ktime_get();
1505 u32 idx = 0, tin = 0, len;
1506 struct cake_heap_entry qq;
1507 struct cake_tin_data *b;
1508 struct cake_flow *flow;
1509 struct sk_buff *skb;
1510
1511 if (!q->overflow_timeout) {
1512 int i;
1513
1514 for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
1515 cake_heapify(q, i);
1516 }
1517 q->overflow_timeout = 65535;
1518
1519
1520 qq = q->overflow_heap[0];
1521 tin = qq.t;
1522 idx = qq.b;
1523
1524 b = &q->tins[tin];
1525 flow = &b->flows[idx];
1526 skb = dequeue_head(flow);
1527 if (unlikely(!skb)) {
1528
1529 q->overflow_timeout = 0;
1530 return idx + (tin << 16);
1531 }
1532
1533 if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1534 b->unresponsive_flow_count++;
1535
1536 len = qdisc_pkt_len(skb);
1537 q->buffer_used -= skb->truesize;
1538 b->backlogs[idx] -= len;
1539 b->tin_backlog -= len;
1540 sch->qstats.backlog -= len;
1541 qdisc_tree_reduce_backlog(sch, 1, len);
1542
1543 flow->dropped++;
1544 b->tin_dropped++;
1545 sch->qstats.drops++;
1546
1547 if (q->rate_flags & CAKE_FLAG_INGRESS)
1548 cake_advance_shaper(q, b, skb, now, true);
1549
1550 __qdisc_drop(skb, to_free);
1551 sch->q.qlen--;
1552
1553 cake_heapify(q, 0);
1554
1555 return idx + (tin << 16);
1556 }
1557
1558 static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash)
1559 {
1560 const int offset = skb_network_offset(skb);
1561 u16 *buf, buf_;
1562 u8 dscp;
1563
1564 switch (skb_protocol(skb, true)) {
1565 case htons(ETH_P_IP):
1566 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1567 if (unlikely(!buf))
1568 return 0;
1569
1570
1571 dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2;
1572
1573 if (wash && dscp) {
1574 const int wlen = offset + sizeof(struct iphdr);
1575
1576 if (!pskb_may_pull(skb, wlen) ||
1577 skb_try_make_writable(skb, wlen))
1578 return 0;
1579
1580 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1581 }
1582
1583 return dscp;
1584
1585 case htons(ETH_P_IPV6):
1586 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1587 if (unlikely(!buf))
1588 return 0;
1589
1590
1591 dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2;
1592
1593 if (wash && dscp) {
1594 const int wlen = offset + sizeof(struct ipv6hdr);
1595
1596 if (!pskb_may_pull(skb, wlen) ||
1597 skb_try_make_writable(skb, wlen))
1598 return 0;
1599
1600 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1601 }
1602
1603 return dscp;
1604
1605 case htons(ETH_P_ARP):
1606 return 0x38;
1607
1608 default:
1609
1610 return 0;
1611 }
1612 }
1613
1614 static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1615 struct sk_buff *skb)
1616 {
1617 struct cake_sched_data *q = qdisc_priv(sch);
1618 u32 tin, mark;
1619 bool wash;
1620 u8 dscp;
1621
1622
1623
1624
1625
1626 mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
1627 wash = !!(q->rate_flags & CAKE_FLAG_WASH);
1628 if (wash)
1629 dscp = cake_handle_diffserv(skb, wash);
1630
1631 if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
1632 tin = 0;
1633
1634 else if (mark && mark <= q->tin_cnt)
1635 tin = q->tin_order[mark - 1];
1636
1637 else if (TC_H_MAJ(skb->priority) == sch->handle &&
1638 TC_H_MIN(skb->priority) > 0 &&
1639 TC_H_MIN(skb->priority) <= q->tin_cnt)
1640 tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
1641
1642 else {
1643 if (!wash)
1644 dscp = cake_handle_diffserv(skb, wash);
1645 tin = q->tin_index[dscp];
1646
1647 if (unlikely(tin >= q->tin_cnt))
1648 tin = 0;
1649 }
1650
1651 return &q->tins[tin];
1652 }
1653
1654 static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
1655 struct sk_buff *skb, int flow_mode, int *qerr)
1656 {
1657 struct cake_sched_data *q = qdisc_priv(sch);
1658 struct tcf_proto *filter;
1659 struct tcf_result res;
1660 u16 flow = 0, host = 0;
1661 int result;
1662
1663 filter = rcu_dereference_bh(q->filter_list);
1664 if (!filter)
1665 goto hash;
1666
1667 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1668 result = tcf_classify(skb, NULL, filter, &res, false);
1669
1670 if (result >= 0) {
1671 #ifdef CONFIG_NET_CLS_ACT
1672 switch (result) {
1673 case TC_ACT_STOLEN:
1674 case TC_ACT_QUEUED:
1675 case TC_ACT_TRAP:
1676 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1677 fallthrough;
1678 case TC_ACT_SHOT:
1679 return 0;
1680 }
1681 #endif
1682 if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
1683 flow = TC_H_MIN(res.classid);
1684 if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1685 host = TC_H_MAJ(res.classid) >> 16;
1686 }
1687 hash:
1688 *t = cake_select_tin(sch, skb);
1689 return cake_hash(*t, skb, flow_mode, flow, host) + 1;
1690 }
1691
1692 static void cake_reconfigure(struct Qdisc *sch);
1693
1694 static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1695 struct sk_buff **to_free)
1696 {
1697 struct cake_sched_data *q = qdisc_priv(sch);
1698 int len = qdisc_pkt_len(skb);
1699 int ret;
1700 struct sk_buff *ack = NULL;
1701 ktime_t now = ktime_get();
1702 struct cake_tin_data *b;
1703 struct cake_flow *flow;
1704 u32 idx;
1705
1706
1707 idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
1708 if (idx == 0) {
1709 if (ret & __NET_XMIT_BYPASS)
1710 qdisc_qstats_drop(sch);
1711 __qdisc_drop(skb, to_free);
1712 return ret;
1713 }
1714 idx--;
1715 flow = &b->flows[idx];
1716
1717
1718 if (!b->tin_backlog) {
1719 if (ktime_before(b->time_next_packet, now))
1720 b->time_next_packet = now;
1721
1722 if (!sch->q.qlen) {
1723 if (ktime_before(q->time_next_packet, now)) {
1724 q->failsafe_next_packet = now;
1725 q->time_next_packet = now;
1726 } else if (ktime_after(q->time_next_packet, now) &&
1727 ktime_after(q->failsafe_next_packet, now)) {
1728 u64 next = \
1729 min(ktime_to_ns(q->time_next_packet),
1730 ktime_to_ns(
1731 q->failsafe_next_packet));
1732 sch->qstats.overlimits++;
1733 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1734 }
1735 }
1736 }
1737
1738 if (unlikely(len > b->max_skblen))
1739 b->max_skblen = len;
1740
1741 if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1742 struct sk_buff *segs, *nskb;
1743 netdev_features_t features = netif_skb_features(skb);
1744 unsigned int slen = 0, numsegs = 0;
1745
1746 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1747 if (IS_ERR_OR_NULL(segs))
1748 return qdisc_drop(skb, sch, to_free);
1749
1750 skb_list_walk_safe(segs, segs, nskb) {
1751 skb_mark_not_on_list(segs);
1752 qdisc_skb_cb(segs)->pkt_len = segs->len;
1753 cobalt_set_enqueue_time(segs, now);
1754 get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1755 segs);
1756 flow_queue_add(flow, segs);
1757
1758 sch->q.qlen++;
1759 numsegs++;
1760 slen += segs->len;
1761 q->buffer_used += segs->truesize;
1762 b->packets++;
1763 }
1764
1765
1766 b->bytes += slen;
1767 b->backlogs[idx] += slen;
1768 b->tin_backlog += slen;
1769 sch->qstats.backlog += slen;
1770 q->avg_window_bytes += slen;
1771
1772 qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
1773 consume_skb(skb);
1774 } else {
1775
1776 cobalt_set_enqueue_time(skb, now);
1777 get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1778 flow_queue_add(flow, skb);
1779
1780 if (q->ack_filter)
1781 ack = cake_ack_filter(q, flow);
1782
1783 if (ack) {
1784 b->ack_drops++;
1785 sch->qstats.drops++;
1786 b->bytes += qdisc_pkt_len(ack);
1787 len -= qdisc_pkt_len(ack);
1788 q->buffer_used += skb->truesize - ack->truesize;
1789 if (q->rate_flags & CAKE_FLAG_INGRESS)
1790 cake_advance_shaper(q, b, ack, now, true);
1791
1792 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1793 consume_skb(ack);
1794 } else {
1795 sch->q.qlen++;
1796 q->buffer_used += skb->truesize;
1797 }
1798
1799
1800 b->packets++;
1801 b->bytes += len;
1802 b->backlogs[idx] += len;
1803 b->tin_backlog += len;
1804 sch->qstats.backlog += len;
1805 q->avg_window_bytes += len;
1806 }
1807
1808 if (q->overflow_timeout)
1809 cake_heapify_up(q, b->overflow_idx[idx]);
1810
1811
1812 if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1813 u64 packet_interval = \
1814 ktime_to_ns(ktime_sub(now, q->last_packet_time));
1815
1816 if (packet_interval > NSEC_PER_SEC)
1817 packet_interval = NSEC_PER_SEC;
1818
1819
1820 q->avg_packet_interval = \
1821 cake_ewma(q->avg_packet_interval,
1822 packet_interval,
1823 (packet_interval > q->avg_packet_interval ?
1824 2 : 8));
1825
1826 q->last_packet_time = now;
1827
1828 if (packet_interval > q->avg_packet_interval) {
1829 u64 window_interval = \
1830 ktime_to_ns(ktime_sub(now,
1831 q->avg_window_begin));
1832 u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1833
1834 b = div64_u64(b, window_interval);
1835 q->avg_peak_bandwidth =
1836 cake_ewma(q->avg_peak_bandwidth, b,
1837 b > q->avg_peak_bandwidth ? 2 : 8);
1838 q->avg_window_bytes = 0;
1839 q->avg_window_begin = now;
1840
1841 if (ktime_after(now,
1842 ktime_add_ms(q->last_reconfig_time,
1843 250))) {
1844 q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1845 cake_reconfigure(sch);
1846 }
1847 }
1848 } else {
1849 q->avg_window_bytes = 0;
1850 q->last_packet_time = now;
1851 }
1852
1853
1854 if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1855 struct cake_host *srchost = &b->hosts[flow->srchost];
1856 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1857 u16 host_load = 1;
1858
1859 if (!flow->set) {
1860 list_add_tail(&flow->flowchain, &b->new_flows);
1861 } else {
1862 b->decaying_flow_count--;
1863 list_move_tail(&flow->flowchain, &b->new_flows);
1864 }
1865 flow->set = CAKE_SET_SPARSE;
1866 b->sparse_flow_count++;
1867
1868 if (cake_dsrc(q->flow_mode))
1869 host_load = max(host_load, srchost->srchost_bulk_flow_count);
1870
1871 if (cake_ddst(q->flow_mode))
1872 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
1873
1874 flow->deficit = (b->flow_quantum *
1875 quantum_div[host_load]) >> 16;
1876 } else if (flow->set == CAKE_SET_SPARSE_WAIT) {
1877 struct cake_host *srchost = &b->hosts[flow->srchost];
1878 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1879
1880
1881
1882
1883 flow->set = CAKE_SET_BULK;
1884 b->sparse_flow_count--;
1885 b->bulk_flow_count++;
1886
1887 if (cake_dsrc(q->flow_mode))
1888 srchost->srchost_bulk_flow_count++;
1889
1890 if (cake_ddst(q->flow_mode))
1891 dsthost->dsthost_bulk_flow_count++;
1892
1893 }
1894
1895 if (q->buffer_used > q->buffer_max_used)
1896 q->buffer_max_used = q->buffer_used;
1897
1898 if (q->buffer_used > q->buffer_limit) {
1899 u32 dropped = 0;
1900
1901 while (q->buffer_used > q->buffer_limit) {
1902 dropped++;
1903 cake_drop(sch, to_free);
1904 }
1905 b->drop_overlimit += dropped;
1906 }
1907 return NET_XMIT_SUCCESS;
1908 }
1909
1910 static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1911 {
1912 struct cake_sched_data *q = qdisc_priv(sch);
1913 struct cake_tin_data *b = &q->tins[q->cur_tin];
1914 struct cake_flow *flow = &b->flows[q->cur_flow];
1915 struct sk_buff *skb = NULL;
1916 u32 len;
1917
1918 if (flow->head) {
1919 skb = dequeue_head(flow);
1920 len = qdisc_pkt_len(skb);
1921 b->backlogs[q->cur_flow] -= len;
1922 b->tin_backlog -= len;
1923 sch->qstats.backlog -= len;
1924 q->buffer_used -= skb->truesize;
1925 sch->q.qlen--;
1926
1927 if (q->overflow_timeout)
1928 cake_heapify(q, b->overflow_idx[q->cur_flow]);
1929 }
1930 return skb;
1931 }
1932
1933
1934 static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1935 {
1936 struct cake_sched_data *q = qdisc_priv(sch);
1937 struct sk_buff *skb;
1938
1939 q->cur_tin = tin;
1940 for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1941 while (!!(skb = cake_dequeue_one(sch)))
1942 kfree_skb(skb);
1943 }
1944
1945 static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1946 {
1947 struct cake_sched_data *q = qdisc_priv(sch);
1948 struct cake_tin_data *b = &q->tins[q->cur_tin];
1949 struct cake_host *srchost, *dsthost;
1950 ktime_t now = ktime_get();
1951 struct cake_flow *flow;
1952 struct list_head *head;
1953 bool first_flow = true;
1954 struct sk_buff *skb;
1955 u16 host_load;
1956 u64 delay;
1957 u32 len;
1958
1959 begin:
1960 if (!sch->q.qlen)
1961 return NULL;
1962
1963
1964 if (ktime_after(q->time_next_packet, now) &&
1965 ktime_after(q->failsafe_next_packet, now)) {
1966 u64 next = min(ktime_to_ns(q->time_next_packet),
1967 ktime_to_ns(q->failsafe_next_packet));
1968
1969 sch->qstats.overlimits++;
1970 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1971 return NULL;
1972 }
1973
1974
1975 if (!q->rate_ns) {
1976
1977
1978
1979 bool wrapped = false, empty = true;
1980
1981 while (b->tin_deficit < 0 ||
1982 !(b->sparse_flow_count + b->bulk_flow_count)) {
1983 if (b->tin_deficit <= 0)
1984 b->tin_deficit += b->tin_quantum;
1985 if (b->sparse_flow_count + b->bulk_flow_count)
1986 empty = false;
1987
1988 q->cur_tin++;
1989 b++;
1990 if (q->cur_tin >= q->tin_cnt) {
1991 q->cur_tin = 0;
1992 b = q->tins;
1993
1994 if (wrapped) {
1995
1996
1997
1998
1999 if (empty)
2000 return NULL;
2001 } else {
2002 wrapped = true;
2003 }
2004 }
2005 }
2006 } else {
2007
2008
2009
2010
2011 ktime_t best_time = KTIME_MAX;
2012 int tin, best_tin = 0;
2013
2014 for (tin = 0; tin < q->tin_cnt; tin++) {
2015 b = q->tins + tin;
2016 if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
2017 ktime_t time_to_pkt = \
2018 ktime_sub(b->time_next_packet, now);
2019
2020 if (ktime_to_ns(time_to_pkt) <= 0 ||
2021 ktime_compare(time_to_pkt,
2022 best_time) <= 0) {
2023 best_time = time_to_pkt;
2024 best_tin = tin;
2025 }
2026 }
2027 }
2028
2029 q->cur_tin = best_tin;
2030 b = q->tins + best_tin;
2031
2032
2033 if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
2034 return NULL;
2035 }
2036
2037 retry:
2038
2039 head = &b->decaying_flows;
2040 if (!first_flow || list_empty(head)) {
2041 head = &b->new_flows;
2042 if (list_empty(head)) {
2043 head = &b->old_flows;
2044 if (unlikely(list_empty(head))) {
2045 head = &b->decaying_flows;
2046 if (unlikely(list_empty(head)))
2047 goto begin;
2048 }
2049 }
2050 }
2051 flow = list_first_entry(head, struct cake_flow, flowchain);
2052 q->cur_flow = flow - b->flows;
2053 first_flow = false;
2054
2055
2056 srchost = &b->hosts[flow->srchost];
2057 dsthost = &b->hosts[flow->dsthost];
2058 host_load = 1;
2059
2060
2061 if (flow->deficit <= 0) {
2062
2063
2064
2065
2066 if (flow->set == CAKE_SET_SPARSE) {
2067 if (flow->head) {
2068 b->sparse_flow_count--;
2069 b->bulk_flow_count++;
2070
2071 if (cake_dsrc(q->flow_mode))
2072 srchost->srchost_bulk_flow_count++;
2073
2074 if (cake_ddst(q->flow_mode))
2075 dsthost->dsthost_bulk_flow_count++;
2076
2077 flow->set = CAKE_SET_BULK;
2078 } else {
2079
2080
2081
2082
2083 flow->set = CAKE_SET_SPARSE_WAIT;
2084 }
2085 }
2086
2087 if (cake_dsrc(q->flow_mode))
2088 host_load = max(host_load, srchost->srchost_bulk_flow_count);
2089
2090 if (cake_ddst(q->flow_mode))
2091 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
2092
2093 WARN_ON(host_load > CAKE_QUEUES);
2094
2095
2096
2097
2098 flow->deficit += (b->flow_quantum * quantum_div[host_load] +
2099 (prandom_u32() >> 16)) >> 16;
2100 list_move_tail(&flow->flowchain, &b->old_flows);
2101
2102 goto retry;
2103 }
2104
2105
2106 while (1) {
2107 skb = cake_dequeue_one(sch);
2108 if (!skb) {
2109
2110 if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2111 b->unresponsive_flow_count--;
2112
2113 if (flow->cvars.p_drop || flow->cvars.count ||
2114 ktime_before(now, flow->cvars.drop_next)) {
2115
2116
2117
2118 list_move_tail(&flow->flowchain,
2119 &b->decaying_flows);
2120 if (flow->set == CAKE_SET_BULK) {
2121 b->bulk_flow_count--;
2122
2123 if (cake_dsrc(q->flow_mode))
2124 srchost->srchost_bulk_flow_count--;
2125
2126 if (cake_ddst(q->flow_mode))
2127 dsthost->dsthost_bulk_flow_count--;
2128
2129 b->decaying_flow_count++;
2130 } else if (flow->set == CAKE_SET_SPARSE ||
2131 flow->set == CAKE_SET_SPARSE_WAIT) {
2132 b->sparse_flow_count--;
2133 b->decaying_flow_count++;
2134 }
2135 flow->set = CAKE_SET_DECAYING;
2136 } else {
2137
2138 list_del_init(&flow->flowchain);
2139 if (flow->set == CAKE_SET_SPARSE ||
2140 flow->set == CAKE_SET_SPARSE_WAIT)
2141 b->sparse_flow_count--;
2142 else if (flow->set == CAKE_SET_BULK) {
2143 b->bulk_flow_count--;
2144
2145 if (cake_dsrc(q->flow_mode))
2146 srchost->srchost_bulk_flow_count--;
2147
2148 if (cake_ddst(q->flow_mode))
2149 dsthost->dsthost_bulk_flow_count--;
2150
2151 } else
2152 b->decaying_flow_count--;
2153
2154 flow->set = CAKE_SET_NONE;
2155 }
2156 goto begin;
2157 }
2158
2159
2160 if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2161 (b->bulk_flow_count *
2162 !!(q->rate_flags &
2163 CAKE_FLAG_INGRESS))) ||
2164 !flow->head)
2165 break;
2166
2167
2168 if (q->rate_flags & CAKE_FLAG_INGRESS) {
2169 len = cake_advance_shaper(q, b, skb,
2170 now, true);
2171 flow->deficit -= len;
2172 b->tin_deficit -= len;
2173 }
2174 flow->dropped++;
2175 b->tin_dropped++;
2176 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2177 qdisc_qstats_drop(sch);
2178 kfree_skb(skb);
2179 if (q->rate_flags & CAKE_FLAG_INGRESS)
2180 goto retry;
2181 }
2182
2183 b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2184 qdisc_bstats_update(sch, skb);
2185
2186
2187 delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2188 b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2189 b->peak_delay = cake_ewma(b->peak_delay, delay,
2190 delay > b->peak_delay ? 2 : 8);
2191 b->base_delay = cake_ewma(b->base_delay, delay,
2192 delay < b->base_delay ? 2 : 8);
2193
2194 len = cake_advance_shaper(q, b, skb, now, false);
2195 flow->deficit -= len;
2196 b->tin_deficit -= len;
2197
2198 if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2199 u64 next = min(ktime_to_ns(q->time_next_packet),
2200 ktime_to_ns(q->failsafe_next_packet));
2201
2202 qdisc_watchdog_schedule_ns(&q->watchdog, next);
2203 } else if (!sch->q.qlen) {
2204 int i;
2205
2206 for (i = 0; i < q->tin_cnt; i++) {
2207 if (q->tins[i].decaying_flow_count) {
2208 ktime_t next = \
2209 ktime_add_ns(now,
2210 q->tins[i].cparams.target);
2211
2212 qdisc_watchdog_schedule_ns(&q->watchdog,
2213 ktime_to_ns(next));
2214 break;
2215 }
2216 }
2217 }
2218
2219 if (q->overflow_timeout)
2220 q->overflow_timeout--;
2221
2222 return skb;
2223 }
2224
2225 static void cake_reset(struct Qdisc *sch)
2226 {
2227 u32 c;
2228
2229 for (c = 0; c < CAKE_MAX_TINS; c++)
2230 cake_clear_tin(sch, c);
2231 }
2232
2233 static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2234 [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 },
2235 [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2236 [TCA_CAKE_ATM] = { .type = NLA_U32 },
2237 [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
2238 [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
2239 [TCA_CAKE_RTT] = { .type = NLA_U32 },
2240 [TCA_CAKE_TARGET] = { .type = NLA_U32 },
2241 [TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
2242 [TCA_CAKE_MEMORY] = { .type = NLA_U32 },
2243 [TCA_CAKE_NAT] = { .type = NLA_U32 },
2244 [TCA_CAKE_RAW] = { .type = NLA_U32 },
2245 [TCA_CAKE_WASH] = { .type = NLA_U32 },
2246 [TCA_CAKE_MPU] = { .type = NLA_U32 },
2247 [TCA_CAKE_INGRESS] = { .type = NLA_U32 },
2248 [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
2249 [TCA_CAKE_SPLIT_GSO] = { .type = NLA_U32 },
2250 [TCA_CAKE_FWMARK] = { .type = NLA_U32 },
2251 };
2252
2253 static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2254 u64 target_ns, u64 rtt_est_ns)
2255 {
2256
2257
2258
2259 static const u64 MIN_RATE = 64;
2260 u32 byte_target = mtu;
2261 u64 byte_target_ns;
2262 u8 rate_shft = 0;
2263 u64 rate_ns = 0;
2264
2265 b->flow_quantum = 1514;
2266 if (rate) {
2267 b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2268 rate_shft = 34;
2269 rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2270 rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2271 while (!!(rate_ns >> 34)) {
2272 rate_ns >>= 1;
2273 rate_shft--;
2274 }
2275 }
2276
2277 b->tin_rate_bps = rate;
2278 b->tin_rate_ns = rate_ns;
2279 b->tin_rate_shft = rate_shft;
2280
2281 byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2282
2283 b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2284 b->cparams.interval = max(rtt_est_ns +
2285 b->cparams.target - target_ns,
2286 b->cparams.target * 2);
2287 b->cparams.mtu_time = byte_target_ns;
2288 b->cparams.p_inc = 1 << 24;
2289 b->cparams.p_dec = 1 << 20;
2290 }
2291
2292 static int cake_config_besteffort(struct Qdisc *sch)
2293 {
2294 struct cake_sched_data *q = qdisc_priv(sch);
2295 struct cake_tin_data *b = &q->tins[0];
2296 u32 mtu = psched_mtu(qdisc_dev(sch));
2297 u64 rate = q->rate_bps;
2298
2299 q->tin_cnt = 1;
2300
2301 q->tin_index = besteffort;
2302 q->tin_order = normal_order;
2303
2304 cake_set_rate(b, rate, mtu,
2305 us_to_ns(q->target), us_to_ns(q->interval));
2306 b->tin_quantum = 65535;
2307
2308 return 0;
2309 }
2310
2311 static int cake_config_precedence(struct Qdisc *sch)
2312 {
2313
2314 struct cake_sched_data *q = qdisc_priv(sch);
2315 u32 mtu = psched_mtu(qdisc_dev(sch));
2316 u64 rate = q->rate_bps;
2317 u32 quantum = 256;
2318 u32 i;
2319
2320 q->tin_cnt = 8;
2321 q->tin_index = precedence;
2322 q->tin_order = normal_order;
2323
2324 for (i = 0; i < q->tin_cnt; i++) {
2325 struct cake_tin_data *b = &q->tins[i];
2326
2327 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2328 us_to_ns(q->interval));
2329
2330 b->tin_quantum = max_t(u16, 1U, quantum);
2331
2332
2333 rate *= 7;
2334 rate >>= 3;
2335
2336 quantum *= 7;
2337 quantum >>= 3;
2338 }
2339
2340 return 0;
2341 }
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387 static int cake_config_diffserv8(struct Qdisc *sch)
2388 {
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403 struct cake_sched_data *q = qdisc_priv(sch);
2404 u32 mtu = psched_mtu(qdisc_dev(sch));
2405 u64 rate = q->rate_bps;
2406 u32 quantum = 256;
2407 u32 i;
2408
2409 q->tin_cnt = 8;
2410
2411
2412 q->tin_index = diffserv8;
2413 q->tin_order = normal_order;
2414
2415
2416 for (i = 0; i < q->tin_cnt; i++) {
2417 struct cake_tin_data *b = &q->tins[i];
2418
2419 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2420 us_to_ns(q->interval));
2421
2422 b->tin_quantum = max_t(u16, 1U, quantum);
2423
2424
2425 rate *= 7;
2426 rate >>= 3;
2427
2428 quantum *= 7;
2429 quantum >>= 3;
2430 }
2431
2432 return 0;
2433 }
2434
2435 static int cake_config_diffserv4(struct Qdisc *sch)
2436 {
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447 struct cake_sched_data *q = qdisc_priv(sch);
2448 u32 mtu = psched_mtu(qdisc_dev(sch));
2449 u64 rate = q->rate_bps;
2450 u32 quantum = 1024;
2451
2452 q->tin_cnt = 4;
2453
2454
2455 q->tin_index = diffserv4;
2456 q->tin_order = bulk_order;
2457
2458
2459 cake_set_rate(&q->tins[0], rate, mtu,
2460 us_to_ns(q->target), us_to_ns(q->interval));
2461 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2462 us_to_ns(q->target), us_to_ns(q->interval));
2463 cake_set_rate(&q->tins[2], rate >> 1, mtu,
2464 us_to_ns(q->target), us_to_ns(q->interval));
2465 cake_set_rate(&q->tins[3], rate >> 2, mtu,
2466 us_to_ns(q->target), us_to_ns(q->interval));
2467
2468
2469 q->tins[0].tin_quantum = quantum;
2470 q->tins[1].tin_quantum = quantum >> 4;
2471 q->tins[2].tin_quantum = quantum >> 1;
2472 q->tins[3].tin_quantum = quantum >> 2;
2473
2474 return 0;
2475 }
2476
2477 static int cake_config_diffserv3(struct Qdisc *sch)
2478 {
2479
2480
2481
2482
2483
2484 struct cake_sched_data *q = qdisc_priv(sch);
2485 u32 mtu = psched_mtu(qdisc_dev(sch));
2486 u64 rate = q->rate_bps;
2487 u32 quantum = 1024;
2488
2489 q->tin_cnt = 3;
2490
2491
2492 q->tin_index = diffserv3;
2493 q->tin_order = bulk_order;
2494
2495
2496 cake_set_rate(&q->tins[0], rate, mtu,
2497 us_to_ns(q->target), us_to_ns(q->interval));
2498 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2499 us_to_ns(q->target), us_to_ns(q->interval));
2500 cake_set_rate(&q->tins[2], rate >> 2, mtu,
2501 us_to_ns(q->target), us_to_ns(q->interval));
2502
2503
2504 q->tins[0].tin_quantum = quantum;
2505 q->tins[1].tin_quantum = quantum >> 4;
2506 q->tins[2].tin_quantum = quantum >> 2;
2507
2508 return 0;
2509 }
2510
2511 static void cake_reconfigure(struct Qdisc *sch)
2512 {
2513 struct cake_sched_data *q = qdisc_priv(sch);
2514 int c, ft;
2515
2516 switch (q->tin_mode) {
2517 case CAKE_DIFFSERV_BESTEFFORT:
2518 ft = cake_config_besteffort(sch);
2519 break;
2520
2521 case CAKE_DIFFSERV_PRECEDENCE:
2522 ft = cake_config_precedence(sch);
2523 break;
2524
2525 case CAKE_DIFFSERV_DIFFSERV8:
2526 ft = cake_config_diffserv8(sch);
2527 break;
2528
2529 case CAKE_DIFFSERV_DIFFSERV4:
2530 ft = cake_config_diffserv4(sch);
2531 break;
2532
2533 case CAKE_DIFFSERV_DIFFSERV3:
2534 default:
2535 ft = cake_config_diffserv3(sch);
2536 break;
2537 }
2538
2539 for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2540 cake_clear_tin(sch, c);
2541 q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2542 }
2543
2544 q->rate_ns = q->tins[ft].tin_rate_ns;
2545 q->rate_shft = q->tins[ft].tin_rate_shft;
2546
2547 if (q->buffer_config_limit) {
2548 q->buffer_limit = q->buffer_config_limit;
2549 } else if (q->rate_bps) {
2550 u64 t = q->rate_bps * q->interval;
2551
2552 do_div(t, USEC_PER_SEC / 4);
2553 q->buffer_limit = max_t(u32, t, 4U << 20);
2554 } else {
2555 q->buffer_limit = ~0;
2556 }
2557
2558 sch->flags &= ~TCQ_F_CAN_BYPASS;
2559
2560 q->buffer_limit = min(q->buffer_limit,
2561 max(sch->limit * psched_mtu(qdisc_dev(sch)),
2562 q->buffer_config_limit));
2563 }
2564
2565 static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2566 struct netlink_ext_ack *extack)
2567 {
2568 struct cake_sched_data *q = qdisc_priv(sch);
2569 struct nlattr *tb[TCA_CAKE_MAX + 1];
2570 int err;
2571
2572 if (!opt)
2573 return -EINVAL;
2574
2575 err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy,
2576 extack);
2577 if (err < 0)
2578 return err;
2579
2580 if (tb[TCA_CAKE_NAT]) {
2581 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2582 q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2583 q->flow_mode |= CAKE_FLOW_NAT_FLAG *
2584 !!nla_get_u32(tb[TCA_CAKE_NAT]);
2585 #else
2586 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2587 "No conntrack support in kernel");
2588 return -EOPNOTSUPP;
2589 #endif
2590 }
2591
2592 if (tb[TCA_CAKE_BASE_RATE64])
2593 q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);
2594
2595 if (tb[TCA_CAKE_DIFFSERV_MODE])
2596 q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
2597
2598 if (tb[TCA_CAKE_WASH]) {
2599 if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2600 q->rate_flags |= CAKE_FLAG_WASH;
2601 else
2602 q->rate_flags &= ~CAKE_FLAG_WASH;
2603 }
2604
2605 if (tb[TCA_CAKE_FLOW_MODE])
2606 q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) |
2607 (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2608 CAKE_FLOW_MASK));
2609
2610 if (tb[TCA_CAKE_ATM])
2611 q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]);
2612
2613 if (tb[TCA_CAKE_OVERHEAD]) {
2614 q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
2615 q->rate_flags |= CAKE_FLAG_OVERHEAD;
2616
2617 q->max_netlen = 0;
2618 q->max_adjlen = 0;
2619 q->min_netlen = ~0;
2620 q->min_adjlen = ~0;
2621 }
2622
2623 if (tb[TCA_CAKE_RAW]) {
2624 q->rate_flags &= ~CAKE_FLAG_OVERHEAD;
2625
2626 q->max_netlen = 0;
2627 q->max_adjlen = 0;
2628 q->min_netlen = ~0;
2629 q->min_adjlen = ~0;
2630 }
2631
2632 if (tb[TCA_CAKE_MPU])
2633 q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
2634
2635 if (tb[TCA_CAKE_RTT]) {
2636 q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2637
2638 if (!q->interval)
2639 q->interval = 1;
2640 }
2641
2642 if (tb[TCA_CAKE_TARGET]) {
2643 q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2644
2645 if (!q->target)
2646 q->target = 1;
2647 }
2648
2649 if (tb[TCA_CAKE_AUTORATE]) {
2650 if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2651 q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2652 else
2653 q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2654 }
2655
2656 if (tb[TCA_CAKE_INGRESS]) {
2657 if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2658 q->rate_flags |= CAKE_FLAG_INGRESS;
2659 else
2660 q->rate_flags &= ~CAKE_FLAG_INGRESS;
2661 }
2662
2663 if (tb[TCA_CAKE_ACK_FILTER])
2664 q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]);
2665
2666 if (tb[TCA_CAKE_MEMORY])
2667 q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);
2668
2669 if (tb[TCA_CAKE_SPLIT_GSO]) {
2670 if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2671 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2672 else
2673 q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2674 }
2675
2676 if (tb[TCA_CAKE_FWMARK]) {
2677 q->fwmark_mask = nla_get_u32(tb[TCA_CAKE_FWMARK]);
2678 q->fwmark_shft = q->fwmark_mask ? __ffs(q->fwmark_mask) : 0;
2679 }
2680
2681 if (q->tins) {
2682 sch_tree_lock(sch);
2683 cake_reconfigure(sch);
2684 sch_tree_unlock(sch);
2685 }
2686
2687 return 0;
2688 }
2689
2690 static void cake_destroy(struct Qdisc *sch)
2691 {
2692 struct cake_sched_data *q = qdisc_priv(sch);
2693
2694 qdisc_watchdog_cancel(&q->watchdog);
2695 tcf_block_put(q->block);
2696 kvfree(q->tins);
2697 }
2698
2699 static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2700 struct netlink_ext_ack *extack)
2701 {
2702 struct cake_sched_data *q = qdisc_priv(sch);
2703 int i, j, err;
2704
2705 sch->limit = 10240;
2706 q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
2707 q->flow_mode = CAKE_FLOW_TRIPLE;
2708
2709 q->rate_bps = 0;
2710
2711 q->interval = 100000;
2712 q->target = 5000;
2713
2714
2715 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2716 q->cur_tin = 0;
2717 q->cur_flow = 0;
2718
2719 qdisc_watchdog_init(&q->watchdog, sch);
2720
2721 if (opt) {
2722 err = cake_change(sch, opt, extack);
2723
2724 if (err)
2725 return err;
2726 }
2727
2728 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2729 if (err)
2730 return err;
2731
2732 quantum_div[0] = ~0;
2733 for (i = 1; i <= CAKE_QUEUES; i++)
2734 quantum_div[i] = 65535 / i;
2735
2736 q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
2737 GFP_KERNEL);
2738 if (!q->tins)
2739 return -ENOMEM;
2740
2741 for (i = 0; i < CAKE_MAX_TINS; i++) {
2742 struct cake_tin_data *b = q->tins + i;
2743
2744 INIT_LIST_HEAD(&b->new_flows);
2745 INIT_LIST_HEAD(&b->old_flows);
2746 INIT_LIST_HEAD(&b->decaying_flows);
2747 b->sparse_flow_count = 0;
2748 b->bulk_flow_count = 0;
2749 b->decaying_flow_count = 0;
2750
2751 for (j = 0; j < CAKE_QUEUES; j++) {
2752 struct cake_flow *flow = b->flows + j;
2753 u32 k = j * CAKE_MAX_TINS + i;
2754
2755 INIT_LIST_HEAD(&flow->flowchain);
2756 cobalt_vars_init(&flow->cvars);
2757
2758 q->overflow_heap[k].t = i;
2759 q->overflow_heap[k].b = j;
2760 b->overflow_idx[j] = k;
2761 }
2762 }
2763
2764 cake_reconfigure(sch);
2765 q->avg_peak_bandwidth = q->rate_bps;
2766 q->min_netlen = ~0;
2767 q->min_adjlen = ~0;
2768 return 0;
2769 }
2770
2771 static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2772 {
2773 struct cake_sched_data *q = qdisc_priv(sch);
2774 struct nlattr *opts;
2775
2776 opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
2777 if (!opts)
2778 goto nla_put_failure;
2779
2780 if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
2781 TCA_CAKE_PAD))
2782 goto nla_put_failure;
2783
2784 if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
2785 q->flow_mode & CAKE_FLOW_MASK))
2786 goto nla_put_failure;
2787
2788 if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
2789 goto nla_put_failure;
2790
2791 if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
2792 goto nla_put_failure;
2793
2794 if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
2795 goto nla_put_failure;
2796
2797 if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2798 !!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2799 goto nla_put_failure;
2800
2801 if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2802 !!(q->rate_flags & CAKE_FLAG_INGRESS)))
2803 goto nla_put_failure;
2804
2805 if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter))
2806 goto nla_put_failure;
2807
2808 if (nla_put_u32(skb, TCA_CAKE_NAT,
2809 !!(q->flow_mode & CAKE_FLOW_NAT_FLAG)))
2810 goto nla_put_failure;
2811
2812 if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
2813 goto nla_put_failure;
2814
2815 if (nla_put_u32(skb, TCA_CAKE_WASH,
2816 !!(q->rate_flags & CAKE_FLAG_WASH)))
2817 goto nla_put_failure;
2818
2819 if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead))
2820 goto nla_put_failure;
2821
2822 if (!(q->rate_flags & CAKE_FLAG_OVERHEAD))
2823 if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2824 goto nla_put_failure;
2825
2826 if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode))
2827 goto nla_put_failure;
2828
2829 if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
2830 goto nla_put_failure;
2831
2832 if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2833 !!(q->rate_flags & CAKE_FLAG_SPLIT_GSO)))
2834 goto nla_put_failure;
2835
2836 if (nla_put_u32(skb, TCA_CAKE_FWMARK, q->fwmark_mask))
2837 goto nla_put_failure;
2838
2839 return nla_nest_end(skb, opts);
2840
2841 nla_put_failure:
2842 return -1;
2843 }
2844
2845 static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2846 {
2847 struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
2848 struct cake_sched_data *q = qdisc_priv(sch);
2849 struct nlattr *tstats, *ts;
2850 int i;
2851
2852 if (!stats)
2853 return -1;
2854
2855 #define PUT_STAT_U32(attr, data) do { \
2856 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2857 goto nla_put_failure; \
2858 } while (0)
2859 #define PUT_STAT_U64(attr, data) do { \
2860 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2861 data, TCA_CAKE_STATS_PAD)) \
2862 goto nla_put_failure; \
2863 } while (0)
2864
2865 PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2866 PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2867 PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2868 PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2869 PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2870 PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2871 PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2872 PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2873
2874 #undef PUT_STAT_U32
2875 #undef PUT_STAT_U64
2876
2877 tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS);
2878 if (!tstats)
2879 goto nla_put_failure;
2880
2881 #define PUT_TSTAT_U32(attr, data) do { \
2882 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2883 goto nla_put_failure; \
2884 } while (0)
2885 #define PUT_TSTAT_U64(attr, data) do { \
2886 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2887 data, TCA_CAKE_TIN_STATS_PAD)) \
2888 goto nla_put_failure; \
2889 } while (0)
2890
2891 for (i = 0; i < q->tin_cnt; i++) {
2892 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
2893
2894 ts = nla_nest_start_noflag(d->skb, i + 1);
2895 if (!ts)
2896 goto nla_put_failure;
2897
2898 PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2899 PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2900 PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2901
2902 PUT_TSTAT_U32(TARGET_US,
2903 ktime_to_us(ns_to_ktime(b->cparams.target)));
2904 PUT_TSTAT_U32(INTERVAL_US,
2905 ktime_to_us(ns_to_ktime(b->cparams.interval)));
2906
2907 PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2908 PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2909 PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2910 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2911
2912 PUT_TSTAT_U32(PEAK_DELAY_US,
2913 ktime_to_us(ns_to_ktime(b->peak_delay)));
2914 PUT_TSTAT_U32(AVG_DELAY_US,
2915 ktime_to_us(ns_to_ktime(b->avge_delay)));
2916 PUT_TSTAT_U32(BASE_DELAY_US,
2917 ktime_to_us(ns_to_ktime(b->base_delay)));
2918
2919 PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2920 PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2921 PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2922
2923 PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2924 b->decaying_flow_count);
2925 PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2926 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2927 PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2928
2929 PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2930 nla_nest_end(d->skb, ts);
2931 }
2932
2933 #undef PUT_TSTAT_U32
2934 #undef PUT_TSTAT_U64
2935
2936 nla_nest_end(d->skb, tstats);
2937 return nla_nest_end(d->skb, stats);
2938
2939 nla_put_failure:
2940 nla_nest_cancel(d->skb, stats);
2941 return -1;
2942 }
2943
2944 static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2945 {
2946 return NULL;
2947 }
2948
2949 static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2950 {
2951 return 0;
2952 }
2953
2954 static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2955 u32 classid)
2956 {
2957 return 0;
2958 }
2959
2960 static void cake_unbind(struct Qdisc *q, unsigned long cl)
2961 {
2962 }
2963
2964 static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2965 struct netlink_ext_ack *extack)
2966 {
2967 struct cake_sched_data *q = qdisc_priv(sch);
2968
2969 if (cl)
2970 return NULL;
2971 return q->block;
2972 }
2973
2974 static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
2975 struct sk_buff *skb, struct tcmsg *tcm)
2976 {
2977 tcm->tcm_handle |= TC_H_MIN(cl);
2978 return 0;
2979 }
2980
2981 static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2982 struct gnet_dump *d)
2983 {
2984 struct cake_sched_data *q = qdisc_priv(sch);
2985 const struct cake_flow *flow = NULL;
2986 struct gnet_stats_queue qs = { 0 };
2987 struct nlattr *stats;
2988 u32 idx = cl - 1;
2989
2990 if (idx < CAKE_QUEUES * q->tin_cnt) {
2991 const struct cake_tin_data *b = \
2992 &q->tins[q->tin_order[idx / CAKE_QUEUES]];
2993 const struct sk_buff *skb;
2994
2995 flow = &b->flows[idx % CAKE_QUEUES];
2996
2997 if (flow->head) {
2998 sch_tree_lock(sch);
2999 skb = flow->head;
3000 while (skb) {
3001 qs.qlen++;
3002 skb = skb->next;
3003 }
3004 sch_tree_unlock(sch);
3005 }
3006 qs.backlog = b->backlogs[idx % CAKE_QUEUES];
3007 qs.drops = flow->dropped;
3008 }
3009 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
3010 return -1;
3011 if (flow) {
3012 ktime_t now = ktime_get();
3013
3014 stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
3015 if (!stats)
3016 return -1;
3017
3018 #define PUT_STAT_U32(attr, data) do { \
3019 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3020 goto nla_put_failure; \
3021 } while (0)
3022 #define PUT_STAT_S32(attr, data) do { \
3023 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3024 goto nla_put_failure; \
3025 } while (0)
3026
3027 PUT_STAT_S32(DEFICIT, flow->deficit);
3028 PUT_STAT_U32(DROPPING, flow->cvars.dropping);
3029 PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
3030 PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
3031 if (flow->cvars.p_drop) {
3032 PUT_STAT_S32(BLUE_TIMER_US,
3033 ktime_to_us(
3034 ktime_sub(now,
3035 flow->cvars.blue_timer)));
3036 }
3037 if (flow->cvars.dropping) {
3038 PUT_STAT_S32(DROP_NEXT_US,
3039 ktime_to_us(
3040 ktime_sub(now,
3041 flow->cvars.drop_next)));
3042 }
3043
3044 if (nla_nest_end(d->skb, stats) < 0)
3045 return -1;
3046 }
3047
3048 return 0;
3049
3050 nla_put_failure:
3051 nla_nest_cancel(d->skb, stats);
3052 return -1;
3053 }
3054
3055 static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
3056 {
3057 struct cake_sched_data *q = qdisc_priv(sch);
3058 unsigned int i, j;
3059
3060 if (arg->stop)
3061 return;
3062
3063 for (i = 0; i < q->tin_cnt; i++) {
3064 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
3065
3066 for (j = 0; j < CAKE_QUEUES; j++) {
3067 if (list_empty(&b->flows[j].flowchain) ||
3068 arg->count < arg->skip) {
3069 arg->count++;
3070 continue;
3071 }
3072 if (arg->fn(sch, i * CAKE_QUEUES + j + 1, arg) < 0) {
3073 arg->stop = 1;
3074 break;
3075 }
3076 arg->count++;
3077 }
3078 }
3079 }
3080
3081 static const struct Qdisc_class_ops cake_class_ops = {
3082 .leaf = cake_leaf,
3083 .find = cake_find,
3084 .tcf_block = cake_tcf_block,
3085 .bind_tcf = cake_bind,
3086 .unbind_tcf = cake_unbind,
3087 .dump = cake_dump_class,
3088 .dump_stats = cake_dump_class_stats,
3089 .walk = cake_walk,
3090 };
3091
3092 static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3093 .cl_ops = &cake_class_ops,
3094 .id = "cake",
3095 .priv_size = sizeof(struct cake_sched_data),
3096 .enqueue = cake_enqueue,
3097 .dequeue = cake_dequeue,
3098 .peek = qdisc_peek_dequeued,
3099 .init = cake_init,
3100 .reset = cake_reset,
3101 .destroy = cake_destroy,
3102 .change = cake_change,
3103 .dump = cake_dump,
3104 .dump_stats = cake_dump_stats,
3105 .owner = THIS_MODULE,
3106 };
3107
3108 static int __init cake_module_init(void)
3109 {
3110 return register_qdisc(&cake_qdisc_ops);
3111 }
3112
3113 static void __exit cake_module_exit(void)
3114 {
3115 unregister_qdisc(&cake_qdisc_ops);
3116 }
3117
3118 module_init(cake_module_init)
3119 module_exit(cake_module_exit)
3120 MODULE_AUTHOR("Jonathan Morton");
3121 MODULE_LICENSE("Dual BSD/GPL");
3122 MODULE_DESCRIPTION("The CAKE shaper.");