0001
0002
0003
0004
0005
0006
0007
0008 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0009
0010 #include <crypto/skcipher.h>
0011 #include <linux/module.h>
0012 #include <linux/net.h>
0013 #include <linux/skbuff.h>
0014 #include <linux/udp.h>
0015 #include <linux/scatterlist.h>
0016 #include <linux/ctype.h>
0017 #include <linux/slab.h>
0018 #include <linux/key-type.h>
0019 #include <net/sock.h>
0020 #include <net/af_rxrpc.h>
0021 #include <keys/rxrpc-type.h>
0022 #include "ar-internal.h"
0023
0024 #define RXKAD_VERSION 2
0025 #define MAXKRB5TICKETLEN 1024
0026 #define RXKAD_TKT_TYPE_KERBEROS_V5 256
0027 #define ANAME_SZ 40
0028 #define INST_SZ 40
0029 #define REALM_SZ 40
0030 #define SNAME_SZ 40
0031 #define RXKAD_ALIGN 8
0032
0033 struct rxkad_level1_hdr {
0034 __be32 data_size;
0035 };
0036
0037 struct rxkad_level2_hdr {
0038 __be32 data_size;
0039 __be32 checksum;
0040 };
0041
0042 static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
0043 struct crypto_sync_skcipher *ci);
0044
0045
0046
0047
0048
0049
0050 static struct crypto_sync_skcipher *rxkad_ci;
0051 static struct skcipher_request *rxkad_ci_req;
0052 static DEFINE_MUTEX(rxkad_ci_mutex);
0053
0054
0055
0056
0057
0058
0059 static int rxkad_preparse_server_key(struct key_preparsed_payload *prep)
0060 {
0061 struct crypto_skcipher *ci;
0062
0063 if (prep->datalen != 8)
0064 return -EINVAL;
0065
0066 memcpy(&prep->payload.data[2], prep->data, 8);
0067
0068 ci = crypto_alloc_skcipher("pcbc(des)", 0, CRYPTO_ALG_ASYNC);
0069 if (IS_ERR(ci)) {
0070 _leave(" = %ld", PTR_ERR(ci));
0071 return PTR_ERR(ci);
0072 }
0073
0074 if (crypto_skcipher_setkey(ci, prep->data, 8) < 0)
0075 BUG();
0076
0077 prep->payload.data[0] = ci;
0078 _leave(" = 0");
0079 return 0;
0080 }
0081
0082 static void rxkad_free_preparse_server_key(struct key_preparsed_payload *prep)
0083 {
0084
0085 if (prep->payload.data[0])
0086 crypto_free_skcipher(prep->payload.data[0]);
0087 }
0088
0089 static void rxkad_destroy_server_key(struct key *key)
0090 {
0091 if (key->payload.data[0]) {
0092 crypto_free_skcipher(key->payload.data[0]);
0093 key->payload.data[0] = NULL;
0094 }
0095 }
0096
0097
0098
0099
0100 static int rxkad_init_connection_security(struct rxrpc_connection *conn,
0101 struct rxrpc_key_token *token)
0102 {
0103 struct crypto_sync_skcipher *ci;
0104 int ret;
0105
0106 _enter("{%d},{%x}", conn->debug_id, key_serial(conn->params.key));
0107
0108 conn->security_ix = token->security_index;
0109
0110 ci = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
0111 if (IS_ERR(ci)) {
0112 _debug("no cipher");
0113 ret = PTR_ERR(ci);
0114 goto error;
0115 }
0116
0117 if (crypto_sync_skcipher_setkey(ci, token->kad->session_key,
0118 sizeof(token->kad->session_key)) < 0)
0119 BUG();
0120
0121 switch (conn->params.security_level) {
0122 case RXRPC_SECURITY_PLAIN:
0123 case RXRPC_SECURITY_AUTH:
0124 case RXRPC_SECURITY_ENCRYPT:
0125 break;
0126 default:
0127 ret = -EKEYREJECTED;
0128 goto error;
0129 }
0130
0131 ret = rxkad_prime_packet_security(conn, ci);
0132 if (ret < 0)
0133 goto error_ci;
0134
0135 conn->rxkad.cipher = ci;
0136 return 0;
0137
0138 error_ci:
0139 crypto_free_sync_skcipher(ci);
0140 error:
0141 _leave(" = %d", ret);
0142 return ret;
0143 }
0144
0145
0146
0147
0148 static int rxkad_how_much_data(struct rxrpc_call *call, size_t remain,
0149 size_t *_buf_size, size_t *_data_size, size_t *_offset)
0150 {
0151 size_t shdr, buf_size, chunk;
0152
0153 switch (call->conn->params.security_level) {
0154 default:
0155 buf_size = chunk = min_t(size_t, remain, RXRPC_JUMBO_DATALEN);
0156 shdr = 0;
0157 goto out;
0158 case RXRPC_SECURITY_AUTH:
0159 shdr = sizeof(struct rxkad_level1_hdr);
0160 break;
0161 case RXRPC_SECURITY_ENCRYPT:
0162 shdr = sizeof(struct rxkad_level2_hdr);
0163 break;
0164 }
0165
0166 buf_size = round_down(RXRPC_JUMBO_DATALEN, RXKAD_ALIGN);
0167
0168 chunk = buf_size - shdr;
0169 if (remain < chunk)
0170 buf_size = round_up(shdr + remain, RXKAD_ALIGN);
0171
0172 out:
0173 *_buf_size = buf_size;
0174 *_data_size = chunk;
0175 *_offset = shdr;
0176 return 0;
0177 }
0178
0179
0180
0181
0182
0183 static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
0184 struct crypto_sync_skcipher *ci)
0185 {
0186 struct skcipher_request *req;
0187 struct rxrpc_key_token *token;
0188 struct scatterlist sg;
0189 struct rxrpc_crypt iv;
0190 __be32 *tmpbuf;
0191 size_t tmpsize = 4 * sizeof(__be32);
0192
0193 _enter("");
0194
0195 if (!conn->params.key)
0196 return 0;
0197
0198 tmpbuf = kmalloc(tmpsize, GFP_KERNEL);
0199 if (!tmpbuf)
0200 return -ENOMEM;
0201
0202 req = skcipher_request_alloc(&ci->base, GFP_NOFS);
0203 if (!req) {
0204 kfree(tmpbuf);
0205 return -ENOMEM;
0206 }
0207
0208 token = conn->params.key->payload.data[0];
0209 memcpy(&iv, token->kad->session_key, sizeof(iv));
0210
0211 tmpbuf[0] = htonl(conn->proto.epoch);
0212 tmpbuf[1] = htonl(conn->proto.cid);
0213 tmpbuf[2] = 0;
0214 tmpbuf[3] = htonl(conn->security_ix);
0215
0216 sg_init_one(&sg, tmpbuf, tmpsize);
0217 skcipher_request_set_sync_tfm(req, ci);
0218 skcipher_request_set_callback(req, 0, NULL, NULL);
0219 skcipher_request_set_crypt(req, &sg, &sg, tmpsize, iv.x);
0220 crypto_skcipher_encrypt(req);
0221 skcipher_request_free(req);
0222
0223 memcpy(&conn->rxkad.csum_iv, tmpbuf + 2, sizeof(conn->rxkad.csum_iv));
0224 kfree(tmpbuf);
0225 _leave(" = 0");
0226 return 0;
0227 }
0228
0229
0230
0231
0232
0233 static struct skcipher_request *rxkad_get_call_crypto(struct rxrpc_call *call)
0234 {
0235 struct crypto_skcipher *tfm = &call->conn->rxkad.cipher->base;
0236 struct skcipher_request *cipher_req = call->cipher_req;
0237
0238 if (!cipher_req) {
0239 cipher_req = skcipher_request_alloc(tfm, GFP_NOFS);
0240 if (!cipher_req)
0241 return NULL;
0242 call->cipher_req = cipher_req;
0243 }
0244
0245 return cipher_req;
0246 }
0247
0248
0249
0250
0251 static void rxkad_free_call_crypto(struct rxrpc_call *call)
0252 {
0253 if (call->cipher_req)
0254 skcipher_request_free(call->cipher_req);
0255 call->cipher_req = NULL;
0256 }
0257
0258
0259
0260
0261 static int rxkad_secure_packet_auth(const struct rxrpc_call *call,
0262 struct sk_buff *skb, u32 data_size,
0263 struct skcipher_request *req)
0264 {
0265 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
0266 struct rxkad_level1_hdr hdr;
0267 struct rxrpc_crypt iv;
0268 struct scatterlist sg;
0269 size_t pad;
0270 u16 check;
0271
0272 _enter("");
0273
0274 check = sp->hdr.seq ^ call->call_id;
0275 data_size |= (u32)check << 16;
0276
0277 hdr.data_size = htonl(data_size);
0278 memcpy(skb->head, &hdr, sizeof(hdr));
0279
0280 pad = sizeof(struct rxkad_level1_hdr) + data_size;
0281 pad = RXKAD_ALIGN - pad;
0282 pad &= RXKAD_ALIGN - 1;
0283 if (pad)
0284 skb_put_zero(skb, pad);
0285
0286
0287 memset(&iv, 0, sizeof(iv));
0288
0289 sg_init_one(&sg, skb->head, 8);
0290 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
0291 skcipher_request_set_callback(req, 0, NULL, NULL);
0292 skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
0293 crypto_skcipher_encrypt(req);
0294 skcipher_request_zero(req);
0295
0296 _leave(" = 0");
0297 return 0;
0298 }
0299
0300
0301
0302
0303 static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call,
0304 struct sk_buff *skb,
0305 u32 data_size,
0306 struct skcipher_request *req)
0307 {
0308 const struct rxrpc_key_token *token;
0309 struct rxkad_level2_hdr rxkhdr;
0310 struct rxrpc_skb_priv *sp;
0311 struct rxrpc_crypt iv;
0312 struct scatterlist sg[16];
0313 unsigned int len;
0314 size_t pad;
0315 u16 check;
0316 int err;
0317
0318 sp = rxrpc_skb(skb);
0319
0320 _enter("");
0321
0322 check = sp->hdr.seq ^ call->call_id;
0323
0324 rxkhdr.data_size = htonl(data_size | (u32)check << 16);
0325 rxkhdr.checksum = 0;
0326 memcpy(skb->head, &rxkhdr, sizeof(rxkhdr));
0327
0328 pad = sizeof(struct rxkad_level2_hdr) + data_size;
0329 pad = RXKAD_ALIGN - pad;
0330 pad &= RXKAD_ALIGN - 1;
0331 if (pad)
0332 skb_put_zero(skb, pad);
0333
0334
0335 token = call->conn->params.key->payload.data[0];
0336 memcpy(&iv, token->kad->session_key, sizeof(iv));
0337
0338 sg_init_one(&sg[0], skb->head, sizeof(rxkhdr));
0339 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
0340 skcipher_request_set_callback(req, 0, NULL, NULL);
0341 skcipher_request_set_crypt(req, &sg[0], &sg[0], sizeof(rxkhdr), iv.x);
0342 crypto_skcipher_encrypt(req);
0343
0344
0345 err = -EMSGSIZE;
0346 if (skb_shinfo(skb)->nr_frags > 16)
0347 goto out;
0348
0349 len = round_up(data_size, RXKAD_ALIGN);
0350
0351 sg_init_table(sg, ARRAY_SIZE(sg));
0352 err = skb_to_sgvec(skb, sg, 8, len);
0353 if (unlikely(err < 0))
0354 goto out;
0355 skcipher_request_set_crypt(req, sg, sg, len, iv.x);
0356 crypto_skcipher_encrypt(req);
0357
0358 _leave(" = 0");
0359 err = 0;
0360
0361 out:
0362 skcipher_request_zero(req);
0363 return err;
0364 }
0365
0366
0367
0368
0369 static int rxkad_secure_packet(struct rxrpc_call *call,
0370 struct sk_buff *skb,
0371 size_t data_size)
0372 {
0373 struct rxrpc_skb_priv *sp;
0374 struct skcipher_request *req;
0375 struct rxrpc_crypt iv;
0376 struct scatterlist sg;
0377 u32 x, y;
0378 int ret;
0379
0380 sp = rxrpc_skb(skb);
0381
0382 _enter("{%d{%x}},{#%u},%zu,",
0383 call->debug_id, key_serial(call->conn->params.key),
0384 sp->hdr.seq, data_size);
0385
0386 if (!call->conn->rxkad.cipher)
0387 return 0;
0388
0389 ret = key_validate(call->conn->params.key);
0390 if (ret < 0)
0391 return ret;
0392
0393 req = rxkad_get_call_crypto(call);
0394 if (!req)
0395 return -ENOMEM;
0396
0397
0398 memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
0399
0400
0401 x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
0402 x |= sp->hdr.seq & 0x3fffffff;
0403 call->crypto_buf[0] = htonl(call->call_id);
0404 call->crypto_buf[1] = htonl(x);
0405
0406 sg_init_one(&sg, call->crypto_buf, 8);
0407 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
0408 skcipher_request_set_callback(req, 0, NULL, NULL);
0409 skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
0410 crypto_skcipher_encrypt(req);
0411 skcipher_request_zero(req);
0412
0413 y = ntohl(call->crypto_buf[1]);
0414 y = (y >> 16) & 0xffff;
0415 if (y == 0)
0416 y = 1;
0417 sp->hdr.cksum = y;
0418
0419 switch (call->conn->params.security_level) {
0420 case RXRPC_SECURITY_PLAIN:
0421 ret = 0;
0422 break;
0423 case RXRPC_SECURITY_AUTH:
0424 ret = rxkad_secure_packet_auth(call, skb, data_size, req);
0425 break;
0426 case RXRPC_SECURITY_ENCRYPT:
0427 ret = rxkad_secure_packet_encrypt(call, skb, data_size, req);
0428 break;
0429 default:
0430 ret = -EPERM;
0431 break;
0432 }
0433
0434 _leave(" = %d [set %x]", ret, y);
0435 return ret;
0436 }
0437
0438
0439
0440
0441 static int rxkad_verify_packet_1(struct rxrpc_call *call, struct sk_buff *skb,
0442 unsigned int offset, unsigned int len,
0443 rxrpc_seq_t seq,
0444 struct skcipher_request *req)
0445 {
0446 struct rxkad_level1_hdr sechdr;
0447 struct rxrpc_crypt iv;
0448 struct scatterlist sg[16];
0449 bool aborted;
0450 u32 data_size, buf;
0451 u16 check;
0452 int ret;
0453
0454 _enter("");
0455
0456 if (len < 8) {
0457 aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_hdr", "V1H",
0458 RXKADSEALEDINCON);
0459 goto protocol_error;
0460 }
0461
0462
0463
0464
0465 sg_init_table(sg, ARRAY_SIZE(sg));
0466 ret = skb_to_sgvec(skb, sg, offset, 8);
0467 if (unlikely(ret < 0))
0468 return ret;
0469
0470
0471 memset(&iv, 0, sizeof(iv));
0472
0473 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
0474 skcipher_request_set_callback(req, 0, NULL, NULL);
0475 skcipher_request_set_crypt(req, sg, sg, 8, iv.x);
0476 crypto_skcipher_decrypt(req);
0477 skcipher_request_zero(req);
0478
0479
0480 if (skb_copy_bits(skb, offset, &sechdr, sizeof(sechdr)) < 0) {
0481 aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_len", "XV1",
0482 RXKADDATALEN);
0483 goto protocol_error;
0484 }
0485 len -= sizeof(sechdr);
0486
0487 buf = ntohl(sechdr.data_size);
0488 data_size = buf & 0xffff;
0489
0490 check = buf >> 16;
0491 check ^= seq ^ call->call_id;
0492 check &= 0xffff;
0493 if (check != 0) {
0494 aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_check", "V1C",
0495 RXKADSEALEDINCON);
0496 goto protocol_error;
0497 }
0498
0499 if (data_size > len) {
0500 aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_datalen", "V1L",
0501 RXKADDATALEN);
0502 goto protocol_error;
0503 }
0504
0505 _leave(" = 0 [dlen=%x]", data_size);
0506 return 0;
0507
0508 protocol_error:
0509 if (aborted)
0510 rxrpc_send_abort_packet(call);
0511 return -EPROTO;
0512 }
0513
0514
0515
0516
0517 static int rxkad_verify_packet_2(struct rxrpc_call *call, struct sk_buff *skb,
0518 unsigned int offset, unsigned int len,
0519 rxrpc_seq_t seq,
0520 struct skcipher_request *req)
0521 {
0522 const struct rxrpc_key_token *token;
0523 struct rxkad_level2_hdr sechdr;
0524 struct rxrpc_crypt iv;
0525 struct scatterlist _sg[4], *sg;
0526 bool aborted;
0527 u32 data_size, buf;
0528 u16 check;
0529 int nsg, ret;
0530
0531 _enter(",{%d}", skb->len);
0532
0533 if (len < 8) {
0534 aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_hdr", "V2H",
0535 RXKADSEALEDINCON);
0536 goto protocol_error;
0537 }
0538
0539
0540
0541
0542 sg = _sg;
0543 nsg = skb_shinfo(skb)->nr_frags + 1;
0544 if (nsg <= 4) {
0545 nsg = 4;
0546 } else {
0547 sg = kmalloc_array(nsg, sizeof(*sg), GFP_NOIO);
0548 if (!sg)
0549 goto nomem;
0550 }
0551
0552 sg_init_table(sg, nsg);
0553 ret = skb_to_sgvec(skb, sg, offset, len);
0554 if (unlikely(ret < 0)) {
0555 if (sg != _sg)
0556 kfree(sg);
0557 return ret;
0558 }
0559
0560
0561 token = call->conn->params.key->payload.data[0];
0562 memcpy(&iv, token->kad->session_key, sizeof(iv));
0563
0564 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
0565 skcipher_request_set_callback(req, 0, NULL, NULL);
0566 skcipher_request_set_crypt(req, sg, sg, len, iv.x);
0567 crypto_skcipher_decrypt(req);
0568 skcipher_request_zero(req);
0569 if (sg != _sg)
0570 kfree(sg);
0571
0572
0573 if (skb_copy_bits(skb, offset, &sechdr, sizeof(sechdr)) < 0) {
0574 aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_len", "XV2",
0575 RXKADDATALEN);
0576 goto protocol_error;
0577 }
0578 len -= sizeof(sechdr);
0579
0580 buf = ntohl(sechdr.data_size);
0581 data_size = buf & 0xffff;
0582
0583 check = buf >> 16;
0584 check ^= seq ^ call->call_id;
0585 check &= 0xffff;
0586 if (check != 0) {
0587 aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_check", "V2C",
0588 RXKADSEALEDINCON);
0589 goto protocol_error;
0590 }
0591
0592 if (data_size > len) {
0593 aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_datalen", "V2L",
0594 RXKADDATALEN);
0595 goto protocol_error;
0596 }
0597
0598 _leave(" = 0 [dlen=%x]", data_size);
0599 return 0;
0600
0601 protocol_error:
0602 if (aborted)
0603 rxrpc_send_abort_packet(call);
0604 return -EPROTO;
0605
0606 nomem:
0607 _leave(" = -ENOMEM");
0608 return -ENOMEM;
0609 }
0610
0611
0612
0613
0614
0615 static int rxkad_verify_packet(struct rxrpc_call *call, struct sk_buff *skb,
0616 unsigned int offset, unsigned int len,
0617 rxrpc_seq_t seq, u16 expected_cksum)
0618 {
0619 struct skcipher_request *req;
0620 struct rxrpc_crypt iv;
0621 struct scatterlist sg;
0622 bool aborted;
0623 u16 cksum;
0624 u32 x, y;
0625
0626 _enter("{%d{%x}},{#%u}",
0627 call->debug_id, key_serial(call->conn->params.key), seq);
0628
0629 if (!call->conn->rxkad.cipher)
0630 return 0;
0631
0632 req = rxkad_get_call_crypto(call);
0633 if (!req)
0634 return -ENOMEM;
0635
0636
0637 memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
0638
0639
0640 x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
0641 x |= seq & 0x3fffffff;
0642 call->crypto_buf[0] = htonl(call->call_id);
0643 call->crypto_buf[1] = htonl(x);
0644
0645 sg_init_one(&sg, call->crypto_buf, 8);
0646 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
0647 skcipher_request_set_callback(req, 0, NULL, NULL);
0648 skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
0649 crypto_skcipher_encrypt(req);
0650 skcipher_request_zero(req);
0651
0652 y = ntohl(call->crypto_buf[1]);
0653 cksum = (y >> 16) & 0xffff;
0654 if (cksum == 0)
0655 cksum = 1;
0656
0657 if (cksum != expected_cksum) {
0658 aborted = rxrpc_abort_eproto(call, skb, "rxkad_csum", "VCK",
0659 RXKADSEALEDINCON);
0660 goto protocol_error;
0661 }
0662
0663 switch (call->conn->params.security_level) {
0664 case RXRPC_SECURITY_PLAIN:
0665 return 0;
0666 case RXRPC_SECURITY_AUTH:
0667 return rxkad_verify_packet_1(call, skb, offset, len, seq, req);
0668 case RXRPC_SECURITY_ENCRYPT:
0669 return rxkad_verify_packet_2(call, skb, offset, len, seq, req);
0670 default:
0671 return -ENOANO;
0672 }
0673
0674 protocol_error:
0675 if (aborted)
0676 rxrpc_send_abort_packet(call);
0677 return -EPROTO;
0678 }
0679
0680
0681
0682
0683 static void rxkad_locate_data_1(struct rxrpc_call *call, struct sk_buff *skb,
0684 unsigned int *_offset, unsigned int *_len)
0685 {
0686 struct rxkad_level1_hdr sechdr;
0687
0688 if (skb_copy_bits(skb, *_offset, &sechdr, sizeof(sechdr)) < 0)
0689 BUG();
0690 *_offset += sizeof(sechdr);
0691 *_len = ntohl(sechdr.data_size) & 0xffff;
0692 }
0693
0694
0695
0696
0697 static void rxkad_locate_data_2(struct rxrpc_call *call, struct sk_buff *skb,
0698 unsigned int *_offset, unsigned int *_len)
0699 {
0700 struct rxkad_level2_hdr sechdr;
0701
0702 if (skb_copy_bits(skb, *_offset, &sechdr, sizeof(sechdr)) < 0)
0703 BUG();
0704 *_offset += sizeof(sechdr);
0705 *_len = ntohl(sechdr.data_size) & 0xffff;
0706 }
0707
0708
0709
0710
0711 static void rxkad_locate_data(struct rxrpc_call *call, struct sk_buff *skb,
0712 unsigned int *_offset, unsigned int *_len)
0713 {
0714 switch (call->conn->params.security_level) {
0715 case RXRPC_SECURITY_AUTH:
0716 rxkad_locate_data_1(call, skb, _offset, _len);
0717 return;
0718 case RXRPC_SECURITY_ENCRYPT:
0719 rxkad_locate_data_2(call, skb, _offset, _len);
0720 return;
0721 default:
0722 return;
0723 }
0724 }
0725
0726
0727
0728
0729 static int rxkad_issue_challenge(struct rxrpc_connection *conn)
0730 {
0731 struct rxkad_challenge challenge;
0732 struct rxrpc_wire_header whdr;
0733 struct msghdr msg;
0734 struct kvec iov[2];
0735 size_t len;
0736 u32 serial;
0737 int ret;
0738
0739 _enter("{%d}", conn->debug_id);
0740
0741 get_random_bytes(&conn->rxkad.nonce, sizeof(conn->rxkad.nonce));
0742
0743 challenge.version = htonl(2);
0744 challenge.nonce = htonl(conn->rxkad.nonce);
0745 challenge.min_level = htonl(0);
0746 challenge.__padding = 0;
0747
0748 msg.msg_name = &conn->params.peer->srx.transport;
0749 msg.msg_namelen = conn->params.peer->srx.transport_len;
0750 msg.msg_control = NULL;
0751 msg.msg_controllen = 0;
0752 msg.msg_flags = 0;
0753
0754 whdr.epoch = htonl(conn->proto.epoch);
0755 whdr.cid = htonl(conn->proto.cid);
0756 whdr.callNumber = 0;
0757 whdr.seq = 0;
0758 whdr.type = RXRPC_PACKET_TYPE_CHALLENGE;
0759 whdr.flags = conn->out_clientflag;
0760 whdr.userStatus = 0;
0761 whdr.securityIndex = conn->security_ix;
0762 whdr._rsvd = 0;
0763 whdr.serviceId = htons(conn->service_id);
0764
0765 iov[0].iov_base = &whdr;
0766 iov[0].iov_len = sizeof(whdr);
0767 iov[1].iov_base = &challenge;
0768 iov[1].iov_len = sizeof(challenge);
0769
0770 len = iov[0].iov_len + iov[1].iov_len;
0771
0772 serial = atomic_inc_return(&conn->serial);
0773 whdr.serial = htonl(serial);
0774 _proto("Tx CHALLENGE %%%u", serial);
0775
0776 ret = kernel_sendmsg(conn->params.local->socket, &msg, iov, 2, len);
0777 if (ret < 0) {
0778 trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
0779 rxrpc_tx_point_rxkad_challenge);
0780 return -EAGAIN;
0781 }
0782
0783 conn->params.peer->last_tx_at = ktime_get_seconds();
0784 trace_rxrpc_tx_packet(conn->debug_id, &whdr,
0785 rxrpc_tx_point_rxkad_challenge);
0786 _leave(" = 0");
0787 return 0;
0788 }
0789
0790
0791
0792
0793 static int rxkad_send_response(struct rxrpc_connection *conn,
0794 struct rxrpc_host_header *hdr,
0795 struct rxkad_response *resp,
0796 const struct rxkad_key *s2)
0797 {
0798 struct rxrpc_wire_header whdr;
0799 struct msghdr msg;
0800 struct kvec iov[3];
0801 size_t len;
0802 u32 serial;
0803 int ret;
0804
0805 _enter("");
0806
0807 msg.msg_name = &conn->params.peer->srx.transport;
0808 msg.msg_namelen = conn->params.peer->srx.transport_len;
0809 msg.msg_control = NULL;
0810 msg.msg_controllen = 0;
0811 msg.msg_flags = 0;
0812
0813 memset(&whdr, 0, sizeof(whdr));
0814 whdr.epoch = htonl(hdr->epoch);
0815 whdr.cid = htonl(hdr->cid);
0816 whdr.type = RXRPC_PACKET_TYPE_RESPONSE;
0817 whdr.flags = conn->out_clientflag;
0818 whdr.securityIndex = hdr->securityIndex;
0819 whdr.serviceId = htons(hdr->serviceId);
0820
0821 iov[0].iov_base = &whdr;
0822 iov[0].iov_len = sizeof(whdr);
0823 iov[1].iov_base = resp;
0824 iov[1].iov_len = sizeof(*resp);
0825 iov[2].iov_base = (void *)s2->ticket;
0826 iov[2].iov_len = s2->ticket_len;
0827
0828 len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len;
0829
0830 serial = atomic_inc_return(&conn->serial);
0831 whdr.serial = htonl(serial);
0832 _proto("Tx RESPONSE %%%u", serial);
0833
0834 ret = kernel_sendmsg(conn->params.local->socket, &msg, iov, 3, len);
0835 if (ret < 0) {
0836 trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
0837 rxrpc_tx_point_rxkad_response);
0838 return -EAGAIN;
0839 }
0840
0841 conn->params.peer->last_tx_at = ktime_get_seconds();
0842 _leave(" = 0");
0843 return 0;
0844 }
0845
0846
0847
0848
0849 static void rxkad_calc_response_checksum(struct rxkad_response *response)
0850 {
0851 u32 csum = 1000003;
0852 int loop;
0853 u8 *p = (u8 *) response;
0854
0855 for (loop = sizeof(*response); loop > 0; loop--)
0856 csum = csum * 0x10204081 + *p++;
0857
0858 response->encrypted.checksum = htonl(csum);
0859 }
0860
0861
0862
0863
0864 static int rxkad_encrypt_response(struct rxrpc_connection *conn,
0865 struct rxkad_response *resp,
0866 const struct rxkad_key *s2)
0867 {
0868 struct skcipher_request *req;
0869 struct rxrpc_crypt iv;
0870 struct scatterlist sg[1];
0871
0872 req = skcipher_request_alloc(&conn->rxkad.cipher->base, GFP_NOFS);
0873 if (!req)
0874 return -ENOMEM;
0875
0876
0877 memcpy(&iv, s2->session_key, sizeof(iv));
0878
0879 sg_init_table(sg, 1);
0880 sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
0881 skcipher_request_set_sync_tfm(req, conn->rxkad.cipher);
0882 skcipher_request_set_callback(req, 0, NULL, NULL);
0883 skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
0884 crypto_skcipher_encrypt(req);
0885 skcipher_request_free(req);
0886 return 0;
0887 }
0888
0889
0890
0891
0892 static int rxkad_respond_to_challenge(struct rxrpc_connection *conn,
0893 struct sk_buff *skb,
0894 u32 *_abort_code)
0895 {
0896 const struct rxrpc_key_token *token;
0897 struct rxkad_challenge challenge;
0898 struct rxkad_response *resp;
0899 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
0900 const char *eproto;
0901 u32 version, nonce, min_level, abort_code;
0902 int ret;
0903
0904 _enter("{%d,%x}", conn->debug_id, key_serial(conn->params.key));
0905
0906 eproto = tracepoint_string("chall_no_key");
0907 abort_code = RX_PROTOCOL_ERROR;
0908 if (!conn->params.key)
0909 goto protocol_error;
0910
0911 abort_code = RXKADEXPIRED;
0912 ret = key_validate(conn->params.key);
0913 if (ret < 0)
0914 goto other_error;
0915
0916 eproto = tracepoint_string("chall_short");
0917 abort_code = RXKADPACKETSHORT;
0918 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
0919 &challenge, sizeof(challenge)) < 0)
0920 goto protocol_error;
0921
0922 version = ntohl(challenge.version);
0923 nonce = ntohl(challenge.nonce);
0924 min_level = ntohl(challenge.min_level);
0925
0926 _proto("Rx CHALLENGE %%%u { v=%u n=%u ml=%u }",
0927 sp->hdr.serial, version, nonce, min_level);
0928
0929 eproto = tracepoint_string("chall_ver");
0930 abort_code = RXKADINCONSISTENCY;
0931 if (version != RXKAD_VERSION)
0932 goto protocol_error;
0933
0934 abort_code = RXKADLEVELFAIL;
0935 ret = -EACCES;
0936 if (conn->params.security_level < min_level)
0937 goto other_error;
0938
0939 token = conn->params.key->payload.data[0];
0940
0941
0942 resp = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
0943 if (!resp)
0944 return -ENOMEM;
0945
0946 resp->version = htonl(RXKAD_VERSION);
0947 resp->encrypted.epoch = htonl(conn->proto.epoch);
0948 resp->encrypted.cid = htonl(conn->proto.cid);
0949 resp->encrypted.securityIndex = htonl(conn->security_ix);
0950 resp->encrypted.inc_nonce = htonl(nonce + 1);
0951 resp->encrypted.level = htonl(conn->params.security_level);
0952 resp->kvno = htonl(token->kad->kvno);
0953 resp->ticket_len = htonl(token->kad->ticket_len);
0954 resp->encrypted.call_id[0] = htonl(conn->channels[0].call_counter);
0955 resp->encrypted.call_id[1] = htonl(conn->channels[1].call_counter);
0956 resp->encrypted.call_id[2] = htonl(conn->channels[2].call_counter);
0957 resp->encrypted.call_id[3] = htonl(conn->channels[3].call_counter);
0958
0959
0960 rxkad_calc_response_checksum(resp);
0961 ret = rxkad_encrypt_response(conn, resp, token->kad);
0962 if (ret == 0)
0963 ret = rxkad_send_response(conn, &sp->hdr, resp, token->kad);
0964 kfree(resp);
0965 return ret;
0966
0967 protocol_error:
0968 trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
0969 ret = -EPROTO;
0970 other_error:
0971 *_abort_code = abort_code;
0972 return ret;
0973 }
0974
0975
0976
0977
0978 static int rxkad_decrypt_ticket(struct rxrpc_connection *conn,
0979 struct key *server_key,
0980 struct sk_buff *skb,
0981 void *ticket, size_t ticket_len,
0982 struct rxrpc_crypt *_session_key,
0983 time64_t *_expiry,
0984 u32 *_abort_code)
0985 {
0986 struct skcipher_request *req;
0987 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
0988 struct rxrpc_crypt iv, key;
0989 struct scatterlist sg[1];
0990 struct in_addr addr;
0991 unsigned int life;
0992 const char *eproto;
0993 time64_t issue, now;
0994 bool little_endian;
0995 int ret;
0996 u32 abort_code;
0997 u8 *p, *q, *name, *end;
0998
0999 _enter("{%d},{%x}", conn->debug_id, key_serial(server_key));
1000
1001 *_expiry = 0;
1002
1003 ASSERT(server_key->payload.data[0] != NULL);
1004 ASSERTCMP((unsigned long) ticket & 7UL, ==, 0);
1005
1006 memcpy(&iv, &server_key->payload.data[2], sizeof(iv));
1007
1008 ret = -ENOMEM;
1009 req = skcipher_request_alloc(server_key->payload.data[0], GFP_NOFS);
1010 if (!req)
1011 goto temporary_error;
1012
1013 sg_init_one(&sg[0], ticket, ticket_len);
1014 skcipher_request_set_callback(req, 0, NULL, NULL);
1015 skcipher_request_set_crypt(req, sg, sg, ticket_len, iv.x);
1016 crypto_skcipher_decrypt(req);
1017 skcipher_request_free(req);
1018
1019 p = ticket;
1020 end = p + ticket_len;
1021
1022 #define Z(field) \
1023 ({ \
1024 u8 *__str = p; \
1025 eproto = tracepoint_string("rxkad_bad_"#field); \
1026 q = memchr(p, 0, end - p); \
1027 if (!q || q - p > (field##_SZ)) \
1028 goto bad_ticket; \
1029 for (; p < q; p++) \
1030 if (!isprint(*p)) \
1031 goto bad_ticket; \
1032 p++; \
1033 __str; \
1034 })
1035
1036
1037 _debug("KIV FLAGS: %x", *p);
1038 little_endian = *p & 1;
1039 p++;
1040
1041
1042 name = Z(ANAME);
1043 _debug("KIV ANAME: %s", name);
1044
1045
1046 name = Z(INST);
1047 _debug("KIV INST : %s", name);
1048
1049
1050 name = Z(REALM);
1051 _debug("KIV REALM: %s", name);
1052
1053 eproto = tracepoint_string("rxkad_bad_len");
1054 if (end - p < 4 + 8 + 4 + 2)
1055 goto bad_ticket;
1056
1057
1058 memcpy(&addr, p, sizeof(addr));
1059 p += 4;
1060 _debug("KIV ADDR : %pI4", &addr);
1061
1062
1063 memcpy(&key, p, sizeof(key));
1064 p += 8;
1065 _debug("KIV KEY : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1]));
1066 memcpy(_session_key, &key, sizeof(key));
1067
1068
1069 life = *p++ * 5 * 60;
1070 _debug("KIV LIFE : %u", life);
1071
1072
1073 if (little_endian) {
1074 __le32 stamp;
1075 memcpy(&stamp, p, 4);
1076 issue = rxrpc_u32_to_time64(le32_to_cpu(stamp));
1077 } else {
1078 __be32 stamp;
1079 memcpy(&stamp, p, 4);
1080 issue = rxrpc_u32_to_time64(be32_to_cpu(stamp));
1081 }
1082 p += 4;
1083 now = ktime_get_real_seconds();
1084 _debug("KIV ISSUE: %llx [%llx]", issue, now);
1085
1086
1087 if (issue > now) {
1088 abort_code = RXKADNOAUTH;
1089 ret = -EKEYREJECTED;
1090 goto other_error;
1091 }
1092
1093 if (issue < now - life) {
1094 abort_code = RXKADEXPIRED;
1095 ret = -EKEYEXPIRED;
1096 goto other_error;
1097 }
1098
1099 *_expiry = issue + life;
1100
1101
1102 name = Z(SNAME);
1103 _debug("KIV SNAME: %s", name);
1104
1105
1106 name = Z(INST);
1107 _debug("KIV SINST: %s", name);
1108 return 0;
1109
1110 bad_ticket:
1111 trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
1112 abort_code = RXKADBADTICKET;
1113 ret = -EPROTO;
1114 other_error:
1115 *_abort_code = abort_code;
1116 return ret;
1117 temporary_error:
1118 return ret;
1119 }
1120
1121
1122
1123
1124 static void rxkad_decrypt_response(struct rxrpc_connection *conn,
1125 struct rxkad_response *resp,
1126 const struct rxrpc_crypt *session_key)
1127 {
1128 struct skcipher_request *req = rxkad_ci_req;
1129 struct scatterlist sg[1];
1130 struct rxrpc_crypt iv;
1131
1132 _enter(",,%08x%08x",
1133 ntohl(session_key->n[0]), ntohl(session_key->n[1]));
1134
1135 mutex_lock(&rxkad_ci_mutex);
1136 if (crypto_sync_skcipher_setkey(rxkad_ci, session_key->x,
1137 sizeof(*session_key)) < 0)
1138 BUG();
1139
1140 memcpy(&iv, session_key, sizeof(iv));
1141
1142 sg_init_table(sg, 1);
1143 sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
1144 skcipher_request_set_sync_tfm(req, rxkad_ci);
1145 skcipher_request_set_callback(req, 0, NULL, NULL);
1146 skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
1147 crypto_skcipher_decrypt(req);
1148 skcipher_request_zero(req);
1149
1150 mutex_unlock(&rxkad_ci_mutex);
1151
1152 _leave("");
1153 }
1154
1155
1156
1157
1158 static int rxkad_verify_response(struct rxrpc_connection *conn,
1159 struct sk_buff *skb,
1160 u32 *_abort_code)
1161 {
1162 struct rxkad_response *response;
1163 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
1164 struct rxrpc_crypt session_key;
1165 struct key *server_key;
1166 const char *eproto;
1167 time64_t expiry;
1168 void *ticket;
1169 u32 abort_code, version, kvno, ticket_len, level;
1170 __be32 csum;
1171 int ret, i;
1172
1173 _enter("{%d}", conn->debug_id);
1174
1175 server_key = rxrpc_look_up_server_security(conn, skb, 0, 0);
1176 if (IS_ERR(server_key)) {
1177 switch (PTR_ERR(server_key)) {
1178 case -ENOKEY:
1179 abort_code = RXKADUNKNOWNKEY;
1180 break;
1181 case -EKEYEXPIRED:
1182 abort_code = RXKADEXPIRED;
1183 break;
1184 default:
1185 abort_code = RXKADNOAUTH;
1186 break;
1187 }
1188 trace_rxrpc_abort(0, "SVK",
1189 sp->hdr.cid, sp->hdr.callNumber, sp->hdr.seq,
1190 abort_code, PTR_ERR(server_key));
1191 *_abort_code = abort_code;
1192 return -EPROTO;
1193 }
1194
1195 ret = -ENOMEM;
1196 response = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
1197 if (!response)
1198 goto temporary_error;
1199
1200 eproto = tracepoint_string("rxkad_rsp_short");
1201 abort_code = RXKADPACKETSHORT;
1202 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
1203 response, sizeof(*response)) < 0)
1204 goto protocol_error;
1205
1206 version = ntohl(response->version);
1207 ticket_len = ntohl(response->ticket_len);
1208 kvno = ntohl(response->kvno);
1209 _proto("Rx RESPONSE %%%u { v=%u kv=%u tl=%u }",
1210 sp->hdr.serial, version, kvno, ticket_len);
1211
1212 eproto = tracepoint_string("rxkad_rsp_ver");
1213 abort_code = RXKADINCONSISTENCY;
1214 if (version != RXKAD_VERSION)
1215 goto protocol_error;
1216
1217 eproto = tracepoint_string("rxkad_rsp_tktlen");
1218 abort_code = RXKADTICKETLEN;
1219 if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN)
1220 goto protocol_error;
1221
1222 eproto = tracepoint_string("rxkad_rsp_unkkey");
1223 abort_code = RXKADUNKNOWNKEY;
1224 if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5)
1225 goto protocol_error;
1226
1227
1228 ret = -ENOMEM;
1229 ticket = kmalloc(ticket_len, GFP_NOFS);
1230 if (!ticket)
1231 goto temporary_error_free_resp;
1232
1233 eproto = tracepoint_string("rxkad_tkt_short");
1234 abort_code = RXKADPACKETSHORT;
1235 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header) + sizeof(*response),
1236 ticket, ticket_len) < 0)
1237 goto protocol_error_free;
1238
1239 ret = rxkad_decrypt_ticket(conn, server_key, skb, ticket, ticket_len,
1240 &session_key, &expiry, _abort_code);
1241 if (ret < 0)
1242 goto temporary_error_free_ticket;
1243
1244
1245
1246 rxkad_decrypt_response(conn, response, &session_key);
1247
1248 eproto = tracepoint_string("rxkad_rsp_param");
1249 abort_code = RXKADSEALEDINCON;
1250 if (ntohl(response->encrypted.epoch) != conn->proto.epoch)
1251 goto protocol_error_free;
1252 if (ntohl(response->encrypted.cid) != conn->proto.cid)
1253 goto protocol_error_free;
1254 if (ntohl(response->encrypted.securityIndex) != conn->security_ix)
1255 goto protocol_error_free;
1256 csum = response->encrypted.checksum;
1257 response->encrypted.checksum = 0;
1258 rxkad_calc_response_checksum(response);
1259 eproto = tracepoint_string("rxkad_rsp_csum");
1260 if (response->encrypted.checksum != csum)
1261 goto protocol_error_free;
1262
1263 spin_lock(&conn->bundle->channel_lock);
1264 for (i = 0; i < RXRPC_MAXCALLS; i++) {
1265 struct rxrpc_call *call;
1266 u32 call_id = ntohl(response->encrypted.call_id[i]);
1267
1268 eproto = tracepoint_string("rxkad_rsp_callid");
1269 if (call_id > INT_MAX)
1270 goto protocol_error_unlock;
1271
1272 eproto = tracepoint_string("rxkad_rsp_callctr");
1273 if (call_id < conn->channels[i].call_counter)
1274 goto protocol_error_unlock;
1275
1276 eproto = tracepoint_string("rxkad_rsp_callst");
1277 if (call_id > conn->channels[i].call_counter) {
1278 call = rcu_dereference_protected(
1279 conn->channels[i].call,
1280 lockdep_is_held(&conn->bundle->channel_lock));
1281 if (call && call->state < RXRPC_CALL_COMPLETE)
1282 goto protocol_error_unlock;
1283 conn->channels[i].call_counter = call_id;
1284 }
1285 }
1286 spin_unlock(&conn->bundle->channel_lock);
1287
1288 eproto = tracepoint_string("rxkad_rsp_seq");
1289 abort_code = RXKADOUTOFSEQUENCE;
1290 if (ntohl(response->encrypted.inc_nonce) != conn->rxkad.nonce + 1)
1291 goto protocol_error_free;
1292
1293 eproto = tracepoint_string("rxkad_rsp_level");
1294 abort_code = RXKADLEVELFAIL;
1295 level = ntohl(response->encrypted.level);
1296 if (level > RXRPC_SECURITY_ENCRYPT)
1297 goto protocol_error_free;
1298 conn->params.security_level = level;
1299
1300
1301
1302
1303 ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno);
1304 if (ret < 0)
1305 goto temporary_error_free_ticket;
1306
1307 kfree(ticket);
1308 kfree(response);
1309 _leave(" = 0");
1310 return 0;
1311
1312 protocol_error_unlock:
1313 spin_unlock(&conn->bundle->channel_lock);
1314 protocol_error_free:
1315 kfree(ticket);
1316 protocol_error:
1317 kfree(response);
1318 trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
1319 key_put(server_key);
1320 *_abort_code = abort_code;
1321 return -EPROTO;
1322
1323 temporary_error_free_ticket:
1324 kfree(ticket);
1325 temporary_error_free_resp:
1326 kfree(response);
1327 temporary_error:
1328
1329
1330
1331
1332 key_put(server_key);
1333 return ret;
1334 }
1335
1336
1337
1338
1339 static void rxkad_clear(struct rxrpc_connection *conn)
1340 {
1341 _enter("");
1342
1343 if (conn->rxkad.cipher)
1344 crypto_free_sync_skcipher(conn->rxkad.cipher);
1345 }
1346
1347
1348
1349
1350 static int rxkad_init(void)
1351 {
1352 struct crypto_sync_skcipher *tfm;
1353 struct skcipher_request *req;
1354
1355
1356
1357 tfm = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
1358 if (IS_ERR(tfm))
1359 return PTR_ERR(tfm);
1360
1361 req = skcipher_request_alloc(&tfm->base, GFP_KERNEL);
1362 if (!req)
1363 goto nomem_tfm;
1364
1365 rxkad_ci_req = req;
1366 rxkad_ci = tfm;
1367 return 0;
1368
1369 nomem_tfm:
1370 crypto_free_sync_skcipher(tfm);
1371 return -ENOMEM;
1372 }
1373
1374
1375
1376
1377 static void rxkad_exit(void)
1378 {
1379 crypto_free_sync_skcipher(rxkad_ci);
1380 skcipher_request_free(rxkad_ci_req);
1381 }
1382
1383
1384
1385
1386 const struct rxrpc_security rxkad = {
1387 .name = "rxkad",
1388 .security_index = RXRPC_SECURITY_RXKAD,
1389 .no_key_abort = RXKADUNKNOWNKEY,
1390 .init = rxkad_init,
1391 .exit = rxkad_exit,
1392 .preparse_server_key = rxkad_preparse_server_key,
1393 .free_preparse_server_key = rxkad_free_preparse_server_key,
1394 .destroy_server_key = rxkad_destroy_server_key,
1395 .init_connection_security = rxkad_init_connection_security,
1396 .how_much_data = rxkad_how_much_data,
1397 .secure_packet = rxkad_secure_packet,
1398 .verify_packet = rxkad_verify_packet,
1399 .free_call_crypto = rxkad_free_call_crypto,
1400 .locate_data = rxkad_locate_data,
1401 .issue_challenge = rxkad_issue_challenge,
1402 .respond_to_challenge = rxkad_respond_to_challenge,
1403 .verify_response = rxkad_verify_response,
1404 .clear = rxkad_clear,
1405 };