0001
0002
0003
0004
0005
0006 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0007
0008 #include <linux/skbuff.h>
0009 #include <linux/in.h>
0010 #include <linux/ip.h>
0011 #include <linux/openvswitch.h>
0012 #include <linux/sctp.h>
0013 #include <linux/tcp.h>
0014 #include <linux/udp.h>
0015 #include <linux/in6.h>
0016 #include <linux/if_arp.h>
0017 #include <linux/if_vlan.h>
0018
0019 #include <net/dst.h>
0020 #include <net/ip.h>
0021 #include <net/ipv6.h>
0022 #include <net/ip6_fib.h>
0023 #include <net/checksum.h>
0024 #include <net/dsfield.h>
0025 #include <net/mpls.h>
0026 #include <net/sctp/checksum.h>
0027
0028 #include "datapath.h"
0029 #include "flow.h"
0030 #include "conntrack.h"
0031 #include "vport.h"
0032 #include "flow_netlink.h"
0033 #include "openvswitch_trace.h"
0034
0035 struct deferred_action {
0036 struct sk_buff *skb;
0037 const struct nlattr *actions;
0038 int actions_len;
0039
0040
0041 struct sw_flow_key pkt_key;
0042 };
0043
0044 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
0045 struct ovs_frag_data {
0046 unsigned long dst;
0047 struct vport *vport;
0048 struct ovs_skb_cb cb;
0049 __be16 inner_protocol;
0050 u16 network_offset;
0051 u16 vlan_tci;
0052 __be16 vlan_proto;
0053 unsigned int l2_len;
0054 u8 mac_proto;
0055 u8 l2_data[MAX_L2_LEN];
0056 };
0057
0058 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
0059
0060 #define DEFERRED_ACTION_FIFO_SIZE 10
0061 #define OVS_RECURSION_LIMIT 5
0062 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
0063 struct action_fifo {
0064 int head;
0065 int tail;
0066
0067 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
0068 };
0069
0070 struct action_flow_keys {
0071 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
0072 };
0073
0074 static struct action_fifo __percpu *action_fifos;
0075 static struct action_flow_keys __percpu *flow_keys;
0076 static DEFINE_PER_CPU(int, exec_actions_level);
0077
0078
0079
0080
0081 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
0082 {
0083 struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
0084 int level = this_cpu_read(exec_actions_level);
0085 struct sw_flow_key *key = NULL;
0086
0087 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
0088 key = &keys->key[level - 1];
0089 *key = *key_;
0090 }
0091
0092 return key;
0093 }
0094
0095 static void action_fifo_init(struct action_fifo *fifo)
0096 {
0097 fifo->head = 0;
0098 fifo->tail = 0;
0099 }
0100
0101 static bool action_fifo_is_empty(const struct action_fifo *fifo)
0102 {
0103 return (fifo->head == fifo->tail);
0104 }
0105
0106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
0107 {
0108 if (action_fifo_is_empty(fifo))
0109 return NULL;
0110
0111 return &fifo->fifo[fifo->tail++];
0112 }
0113
0114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
0115 {
0116 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
0117 return NULL;
0118
0119 return &fifo->fifo[fifo->head++];
0120 }
0121
0122
0123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
0124 const struct sw_flow_key *key,
0125 const struct nlattr *actions,
0126 const int actions_len)
0127 {
0128 struct action_fifo *fifo;
0129 struct deferred_action *da;
0130
0131 fifo = this_cpu_ptr(action_fifos);
0132 da = action_fifo_put(fifo);
0133 if (da) {
0134 da->skb = skb;
0135 da->actions = actions;
0136 da->actions_len = actions_len;
0137 da->pkt_key = *key;
0138 }
0139
0140 return da;
0141 }
0142
0143 static void invalidate_flow_key(struct sw_flow_key *key)
0144 {
0145 key->mac_proto |= SW_FLOW_KEY_INVALID;
0146 }
0147
0148 static bool is_flow_key_valid(const struct sw_flow_key *key)
0149 {
0150 return !(key->mac_proto & SW_FLOW_KEY_INVALID);
0151 }
0152
0153 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
0154 struct sw_flow_key *key,
0155 u32 recirc_id,
0156 const struct nlattr *actions, int len,
0157 bool last, bool clone_flow_key);
0158
0159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
0160 struct sw_flow_key *key,
0161 const struct nlattr *attr, int len);
0162
0163 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
0164 __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
0165 {
0166 int err;
0167
0168 err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
0169 if (err)
0170 return err;
0171
0172 if (!mac_len)
0173 key->mac_proto = MAC_PROTO_NONE;
0174
0175 invalidate_flow_key(key);
0176 return 0;
0177 }
0178
0179 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
0180 const __be16 ethertype)
0181 {
0182 int err;
0183
0184 err = skb_mpls_pop(skb, ethertype, skb->mac_len,
0185 ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
0186 if (err)
0187 return err;
0188
0189 if (ethertype == htons(ETH_P_TEB))
0190 key->mac_proto = MAC_PROTO_ETHERNET;
0191
0192 invalidate_flow_key(key);
0193 return 0;
0194 }
0195
0196 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
0197 const __be32 *mpls_lse, const __be32 *mask)
0198 {
0199 struct mpls_shim_hdr *stack;
0200 __be32 lse;
0201 int err;
0202
0203 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
0204 return -ENOMEM;
0205
0206 stack = mpls_hdr(skb);
0207 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
0208 err = skb_mpls_update_lse(skb, lse);
0209 if (err)
0210 return err;
0211
0212 flow_key->mpls.lse[0] = lse;
0213 return 0;
0214 }
0215
0216 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
0217 {
0218 int err;
0219
0220 err = skb_vlan_pop(skb);
0221 if (skb_vlan_tag_present(skb)) {
0222 invalidate_flow_key(key);
0223 } else {
0224 key->eth.vlan.tci = 0;
0225 key->eth.vlan.tpid = 0;
0226 }
0227 return err;
0228 }
0229
0230 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
0231 const struct ovs_action_push_vlan *vlan)
0232 {
0233 if (skb_vlan_tag_present(skb)) {
0234 invalidate_flow_key(key);
0235 } else {
0236 key->eth.vlan.tci = vlan->vlan_tci;
0237 key->eth.vlan.tpid = vlan->vlan_tpid;
0238 }
0239 return skb_vlan_push(skb, vlan->vlan_tpid,
0240 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
0241 }
0242
0243
0244 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
0245 {
0246 u16 *dst = (u16 *)dst_;
0247 const u16 *src = (const u16 *)src_;
0248 const u16 *mask = (const u16 *)mask_;
0249
0250 OVS_SET_MASKED(dst[0], src[0], mask[0]);
0251 OVS_SET_MASKED(dst[1], src[1], mask[1]);
0252 OVS_SET_MASKED(dst[2], src[2], mask[2]);
0253 }
0254
0255 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
0256 const struct ovs_key_ethernet *key,
0257 const struct ovs_key_ethernet *mask)
0258 {
0259 int err;
0260
0261 err = skb_ensure_writable(skb, ETH_HLEN);
0262 if (unlikely(err))
0263 return err;
0264
0265 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
0266
0267 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
0268 mask->eth_src);
0269 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
0270 mask->eth_dst);
0271
0272 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
0273
0274 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
0275 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
0276 return 0;
0277 }
0278
0279
0280
0281
0282 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
0283 {
0284 int err;
0285
0286 err = skb_eth_pop(skb);
0287 if (err)
0288 return err;
0289
0290
0291 key->mac_proto = MAC_PROTO_NONE;
0292 invalidate_flow_key(key);
0293 return 0;
0294 }
0295
0296 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
0297 const struct ovs_action_push_eth *ethh)
0298 {
0299 int err;
0300
0301 err = skb_eth_push(skb, ethh->addresses.eth_dst,
0302 ethh->addresses.eth_src);
0303 if (err)
0304 return err;
0305
0306
0307 key->mac_proto = MAC_PROTO_ETHERNET;
0308 invalidate_flow_key(key);
0309 return 0;
0310 }
0311
0312 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
0313 const struct nshhdr *nh)
0314 {
0315 int err;
0316
0317 err = nsh_push(skb, nh);
0318 if (err)
0319 return err;
0320
0321
0322 key->mac_proto = MAC_PROTO_NONE;
0323 invalidate_flow_key(key);
0324 return 0;
0325 }
0326
0327 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
0328 {
0329 int err;
0330
0331 err = nsh_pop(skb);
0332 if (err)
0333 return err;
0334
0335
0336 if (skb->protocol == htons(ETH_P_TEB))
0337 key->mac_proto = MAC_PROTO_ETHERNET;
0338 else
0339 key->mac_proto = MAC_PROTO_NONE;
0340 invalidate_flow_key(key);
0341 return 0;
0342 }
0343
0344 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
0345 __be32 addr, __be32 new_addr)
0346 {
0347 int transport_len = skb->len - skb_transport_offset(skb);
0348
0349 if (nh->frag_off & htons(IP_OFFSET))
0350 return;
0351
0352 if (nh->protocol == IPPROTO_TCP) {
0353 if (likely(transport_len >= sizeof(struct tcphdr)))
0354 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
0355 addr, new_addr, true);
0356 } else if (nh->protocol == IPPROTO_UDP) {
0357 if (likely(transport_len >= sizeof(struct udphdr))) {
0358 struct udphdr *uh = udp_hdr(skb);
0359
0360 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
0361 inet_proto_csum_replace4(&uh->check, skb,
0362 addr, new_addr, true);
0363 if (!uh->check)
0364 uh->check = CSUM_MANGLED_0;
0365 }
0366 }
0367 }
0368 }
0369
0370 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
0371 __be32 *addr, __be32 new_addr)
0372 {
0373 update_ip_l4_checksum(skb, nh, *addr, new_addr);
0374 csum_replace4(&nh->check, *addr, new_addr);
0375 skb_clear_hash(skb);
0376 ovs_ct_clear(skb, NULL);
0377 *addr = new_addr;
0378 }
0379
0380 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
0381 __be32 addr[4], const __be32 new_addr[4])
0382 {
0383 int transport_len = skb->len - skb_transport_offset(skb);
0384
0385 if (l4_proto == NEXTHDR_TCP) {
0386 if (likely(transport_len >= sizeof(struct tcphdr)))
0387 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
0388 addr, new_addr, true);
0389 } else if (l4_proto == NEXTHDR_UDP) {
0390 if (likely(transport_len >= sizeof(struct udphdr))) {
0391 struct udphdr *uh = udp_hdr(skb);
0392
0393 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
0394 inet_proto_csum_replace16(&uh->check, skb,
0395 addr, new_addr, true);
0396 if (!uh->check)
0397 uh->check = CSUM_MANGLED_0;
0398 }
0399 }
0400 } else if (l4_proto == NEXTHDR_ICMP) {
0401 if (likely(transport_len >= sizeof(struct icmp6hdr)))
0402 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
0403 skb, addr, new_addr, true);
0404 }
0405 }
0406
0407 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
0408 const __be32 mask[4], __be32 masked[4])
0409 {
0410 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
0411 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
0412 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
0413 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
0414 }
0415
0416 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
0417 __be32 addr[4], const __be32 new_addr[4],
0418 bool recalculate_csum)
0419 {
0420 if (recalculate_csum)
0421 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
0422
0423 skb_clear_hash(skb);
0424 ovs_ct_clear(skb, NULL);
0425 memcpy(addr, new_addr, sizeof(__be32[4]));
0426 }
0427
0428 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
0429 {
0430 u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
0431
0432 ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
0433
0434 if (skb->ip_summed == CHECKSUM_COMPLETE)
0435 csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
0436 (__force __wsum)(ipv6_tclass << 12));
0437
0438 ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
0439 }
0440
0441 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
0442 {
0443 u32 ofl;
0444
0445 ofl = nh->flow_lbl[0] << 16 | nh->flow_lbl[1] << 8 | nh->flow_lbl[2];
0446 fl = OVS_MASKED(ofl, fl, mask);
0447
0448
0449 nh->flow_lbl[0] = (u8)(fl >> 16);
0450 nh->flow_lbl[1] = (u8)(fl >> 8);
0451 nh->flow_lbl[2] = (u8)fl;
0452
0453 if (skb->ip_summed == CHECKSUM_COMPLETE)
0454 csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
0455 }
0456
0457 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
0458 {
0459 new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
0460
0461 if (skb->ip_summed == CHECKSUM_COMPLETE)
0462 csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
0463 (__force __wsum)(new_ttl << 8));
0464 nh->hop_limit = new_ttl;
0465 }
0466
0467 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
0468 u8 mask)
0469 {
0470 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
0471
0472 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
0473 nh->ttl = new_ttl;
0474 }
0475
0476 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
0477 const struct ovs_key_ipv4 *key,
0478 const struct ovs_key_ipv4 *mask)
0479 {
0480 struct iphdr *nh;
0481 __be32 new_addr;
0482 int err;
0483
0484 err = skb_ensure_writable(skb, skb_network_offset(skb) +
0485 sizeof(struct iphdr));
0486 if (unlikely(err))
0487 return err;
0488
0489 nh = ip_hdr(skb);
0490
0491
0492
0493
0494
0495 if (mask->ipv4_src) {
0496 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
0497
0498 if (unlikely(new_addr != nh->saddr)) {
0499 set_ip_addr(skb, nh, &nh->saddr, new_addr);
0500 flow_key->ipv4.addr.src = new_addr;
0501 }
0502 }
0503 if (mask->ipv4_dst) {
0504 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
0505
0506 if (unlikely(new_addr != nh->daddr)) {
0507 set_ip_addr(skb, nh, &nh->daddr, new_addr);
0508 flow_key->ipv4.addr.dst = new_addr;
0509 }
0510 }
0511 if (mask->ipv4_tos) {
0512 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
0513 flow_key->ip.tos = nh->tos;
0514 }
0515 if (mask->ipv4_ttl) {
0516 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
0517 flow_key->ip.ttl = nh->ttl;
0518 }
0519
0520 return 0;
0521 }
0522
0523 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
0524 {
0525 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
0526 }
0527
0528 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
0529 const struct ovs_key_ipv6 *key,
0530 const struct ovs_key_ipv6 *mask)
0531 {
0532 struct ipv6hdr *nh;
0533 int err;
0534
0535 err = skb_ensure_writable(skb, skb_network_offset(skb) +
0536 sizeof(struct ipv6hdr));
0537 if (unlikely(err))
0538 return err;
0539
0540 nh = ipv6_hdr(skb);
0541
0542
0543
0544
0545
0546 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
0547 __be32 *saddr = (__be32 *)&nh->saddr;
0548 __be32 masked[4];
0549
0550 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
0551
0552 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
0553 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
0554 true);
0555 memcpy(&flow_key->ipv6.addr.src, masked,
0556 sizeof(flow_key->ipv6.addr.src));
0557 }
0558 }
0559 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
0560 unsigned int offset = 0;
0561 int flags = IP6_FH_F_SKIP_RH;
0562 bool recalc_csum = true;
0563 __be32 *daddr = (__be32 *)&nh->daddr;
0564 __be32 masked[4];
0565
0566 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
0567
0568 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
0569 if (ipv6_ext_hdr(nh->nexthdr))
0570 recalc_csum = (ipv6_find_hdr(skb, &offset,
0571 NEXTHDR_ROUTING,
0572 NULL, &flags)
0573 != NEXTHDR_ROUTING);
0574
0575 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
0576 recalc_csum);
0577 memcpy(&flow_key->ipv6.addr.dst, masked,
0578 sizeof(flow_key->ipv6.addr.dst));
0579 }
0580 }
0581 if (mask->ipv6_tclass) {
0582 set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
0583 flow_key->ip.tos = ipv6_get_dsfield(nh);
0584 }
0585 if (mask->ipv6_label) {
0586 set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
0587 ntohl(mask->ipv6_label));
0588 flow_key->ipv6.label =
0589 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
0590 }
0591 if (mask->ipv6_hlimit) {
0592 set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
0593 flow_key->ip.ttl = nh->hop_limit;
0594 }
0595 return 0;
0596 }
0597
0598 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
0599 const struct nlattr *a)
0600 {
0601 struct nshhdr *nh;
0602 size_t length;
0603 int err;
0604 u8 flags;
0605 u8 ttl;
0606 int i;
0607
0608 struct ovs_key_nsh key;
0609 struct ovs_key_nsh mask;
0610
0611 err = nsh_key_from_nlattr(a, &key, &mask);
0612 if (err)
0613 return err;
0614
0615
0616 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
0617 return -ENOMEM;
0618
0619 nh = nsh_hdr(skb);
0620 length = nsh_hdr_len(nh);
0621
0622
0623 err = skb_ensure_writable(skb, skb_network_offset(skb) +
0624 length);
0625 if (unlikely(err))
0626 return err;
0627
0628 nh = nsh_hdr(skb);
0629 skb_postpull_rcsum(skb, nh, length);
0630 flags = nsh_get_flags(nh);
0631 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
0632 flow_key->nsh.base.flags = flags;
0633 ttl = nsh_get_ttl(nh);
0634 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
0635 flow_key->nsh.base.ttl = ttl;
0636 nsh_set_flags_and_ttl(nh, flags, ttl);
0637 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
0638 mask.base.path_hdr);
0639 flow_key->nsh.base.path_hdr = nh->path_hdr;
0640 switch (nh->mdtype) {
0641 case NSH_M_TYPE1:
0642 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
0643 nh->md1.context[i] =
0644 OVS_MASKED(nh->md1.context[i], key.context[i],
0645 mask.context[i]);
0646 }
0647 memcpy(flow_key->nsh.context, nh->md1.context,
0648 sizeof(nh->md1.context));
0649 break;
0650 case NSH_M_TYPE2:
0651 memset(flow_key->nsh.context, 0,
0652 sizeof(flow_key->nsh.context));
0653 break;
0654 default:
0655 return -EINVAL;
0656 }
0657 skb_postpush_rcsum(skb, nh, length);
0658 return 0;
0659 }
0660
0661
0662 static void set_tp_port(struct sk_buff *skb, __be16 *port,
0663 __be16 new_port, __sum16 *check)
0664 {
0665 ovs_ct_clear(skb, NULL);
0666 inet_proto_csum_replace2(check, skb, *port, new_port, false);
0667 *port = new_port;
0668 }
0669
0670 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
0671 const struct ovs_key_udp *key,
0672 const struct ovs_key_udp *mask)
0673 {
0674 struct udphdr *uh;
0675 __be16 src, dst;
0676 int err;
0677
0678 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
0679 sizeof(struct udphdr));
0680 if (unlikely(err))
0681 return err;
0682
0683 uh = udp_hdr(skb);
0684
0685 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
0686 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
0687
0688 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
0689 if (likely(src != uh->source)) {
0690 set_tp_port(skb, &uh->source, src, &uh->check);
0691 flow_key->tp.src = src;
0692 }
0693 if (likely(dst != uh->dest)) {
0694 set_tp_port(skb, &uh->dest, dst, &uh->check);
0695 flow_key->tp.dst = dst;
0696 }
0697
0698 if (unlikely(!uh->check))
0699 uh->check = CSUM_MANGLED_0;
0700 } else {
0701 uh->source = src;
0702 uh->dest = dst;
0703 flow_key->tp.src = src;
0704 flow_key->tp.dst = dst;
0705 ovs_ct_clear(skb, NULL);
0706 }
0707
0708 skb_clear_hash(skb);
0709
0710 return 0;
0711 }
0712
0713 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
0714 const struct ovs_key_tcp *key,
0715 const struct ovs_key_tcp *mask)
0716 {
0717 struct tcphdr *th;
0718 __be16 src, dst;
0719 int err;
0720
0721 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
0722 sizeof(struct tcphdr));
0723 if (unlikely(err))
0724 return err;
0725
0726 th = tcp_hdr(skb);
0727 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
0728 if (likely(src != th->source)) {
0729 set_tp_port(skb, &th->source, src, &th->check);
0730 flow_key->tp.src = src;
0731 }
0732 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
0733 if (likely(dst != th->dest)) {
0734 set_tp_port(skb, &th->dest, dst, &th->check);
0735 flow_key->tp.dst = dst;
0736 }
0737 skb_clear_hash(skb);
0738
0739 return 0;
0740 }
0741
0742 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
0743 const struct ovs_key_sctp *key,
0744 const struct ovs_key_sctp *mask)
0745 {
0746 unsigned int sctphoff = skb_transport_offset(skb);
0747 struct sctphdr *sh;
0748 __le32 old_correct_csum, new_csum, old_csum;
0749 int err;
0750
0751 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
0752 if (unlikely(err))
0753 return err;
0754
0755 sh = sctp_hdr(skb);
0756 old_csum = sh->checksum;
0757 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
0758
0759 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
0760 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
0761
0762 new_csum = sctp_compute_cksum(skb, sctphoff);
0763
0764
0765 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
0766
0767 skb_clear_hash(skb);
0768 ovs_ct_clear(skb, NULL);
0769
0770 flow_key->tp.src = sh->source;
0771 flow_key->tp.dst = sh->dest;
0772
0773 return 0;
0774 }
0775
0776 static int ovs_vport_output(struct net *net, struct sock *sk,
0777 struct sk_buff *skb)
0778 {
0779 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
0780 struct vport *vport = data->vport;
0781
0782 if (skb_cow_head(skb, data->l2_len) < 0) {
0783 kfree_skb(skb);
0784 return -ENOMEM;
0785 }
0786
0787 __skb_dst_copy(skb, data->dst);
0788 *OVS_CB(skb) = data->cb;
0789 skb->inner_protocol = data->inner_protocol;
0790 if (data->vlan_tci & VLAN_CFI_MASK)
0791 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
0792 else
0793 __vlan_hwaccel_clear_tag(skb);
0794
0795
0796 skb_push(skb, data->l2_len);
0797 memcpy(skb->data, &data->l2_data, data->l2_len);
0798 skb_postpush_rcsum(skb, skb->data, data->l2_len);
0799 skb_reset_mac_header(skb);
0800
0801 if (eth_p_mpls(skb->protocol)) {
0802 skb->inner_network_header = skb->network_header;
0803 skb_set_network_header(skb, data->network_offset);
0804 skb_reset_mac_len(skb);
0805 }
0806
0807 ovs_vport_send(vport, skb, data->mac_proto);
0808 return 0;
0809 }
0810
0811 static unsigned int
0812 ovs_dst_get_mtu(const struct dst_entry *dst)
0813 {
0814 return dst->dev->mtu;
0815 }
0816
0817 static struct dst_ops ovs_dst_ops = {
0818 .family = AF_UNSPEC,
0819 .mtu = ovs_dst_get_mtu,
0820 };
0821
0822
0823
0824
0825 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
0826 u16 orig_network_offset, u8 mac_proto)
0827 {
0828 unsigned int hlen = skb_network_offset(skb);
0829 struct ovs_frag_data *data;
0830
0831 data = this_cpu_ptr(&ovs_frag_data_storage);
0832 data->dst = skb->_skb_refdst;
0833 data->vport = vport;
0834 data->cb = *OVS_CB(skb);
0835 data->inner_protocol = skb->inner_protocol;
0836 data->network_offset = orig_network_offset;
0837 if (skb_vlan_tag_present(skb))
0838 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
0839 else
0840 data->vlan_tci = 0;
0841 data->vlan_proto = skb->vlan_proto;
0842 data->mac_proto = mac_proto;
0843 data->l2_len = hlen;
0844 memcpy(&data->l2_data, skb->data, hlen);
0845
0846 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
0847 skb_pull(skb, hlen);
0848 }
0849
0850 static void ovs_fragment(struct net *net, struct vport *vport,
0851 struct sk_buff *skb, u16 mru,
0852 struct sw_flow_key *key)
0853 {
0854 u16 orig_network_offset = 0;
0855
0856 if (eth_p_mpls(skb->protocol)) {
0857 orig_network_offset = skb_network_offset(skb);
0858 skb->network_header = skb->inner_network_header;
0859 }
0860
0861 if (skb_network_offset(skb) > MAX_L2_LEN) {
0862 OVS_NLERR(1, "L2 header too long to fragment");
0863 goto err;
0864 }
0865
0866 if (key->eth.type == htons(ETH_P_IP)) {
0867 struct rtable ovs_rt = { 0 };
0868 unsigned long orig_dst;
0869
0870 prepare_frag(vport, skb, orig_network_offset,
0871 ovs_key_mac_proto(key));
0872 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
0873 DST_OBSOLETE_NONE, DST_NOCOUNT);
0874 ovs_rt.dst.dev = vport->dev;
0875
0876 orig_dst = skb->_skb_refdst;
0877 skb_dst_set_noref(skb, &ovs_rt.dst);
0878 IPCB(skb)->frag_max_size = mru;
0879
0880 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
0881 refdst_drop(orig_dst);
0882 } else if (key->eth.type == htons(ETH_P_IPV6)) {
0883 unsigned long orig_dst;
0884 struct rt6_info ovs_rt;
0885
0886 prepare_frag(vport, skb, orig_network_offset,
0887 ovs_key_mac_proto(key));
0888 memset(&ovs_rt, 0, sizeof(ovs_rt));
0889 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
0890 DST_OBSOLETE_NONE, DST_NOCOUNT);
0891 ovs_rt.dst.dev = vport->dev;
0892
0893 orig_dst = skb->_skb_refdst;
0894 skb_dst_set_noref(skb, &ovs_rt.dst);
0895 IP6CB(skb)->frag_max_size = mru;
0896
0897 ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
0898 refdst_drop(orig_dst);
0899 } else {
0900 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
0901 ovs_vport_name(vport), ntohs(key->eth.type), mru,
0902 vport->dev->mtu);
0903 goto err;
0904 }
0905
0906 return;
0907 err:
0908 kfree_skb(skb);
0909 }
0910
0911 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
0912 struct sw_flow_key *key)
0913 {
0914 struct vport *vport = ovs_vport_rcu(dp, out_port);
0915
0916 if (likely(vport)) {
0917 u16 mru = OVS_CB(skb)->mru;
0918 u32 cutlen = OVS_CB(skb)->cutlen;
0919
0920 if (unlikely(cutlen > 0)) {
0921 if (skb->len - cutlen > ovs_mac_header_len(key))
0922 pskb_trim(skb, skb->len - cutlen);
0923 else
0924 pskb_trim(skb, ovs_mac_header_len(key));
0925 }
0926
0927 if (likely(!mru ||
0928 (skb->len <= mru + vport->dev->hard_header_len))) {
0929 ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
0930 } else if (mru <= vport->dev->mtu) {
0931 struct net *net = read_pnet(&dp->net);
0932
0933 ovs_fragment(net, vport, skb, mru, key);
0934 } else {
0935 kfree_skb(skb);
0936 }
0937 } else {
0938 kfree_skb(skb);
0939 }
0940 }
0941
0942 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
0943 struct sw_flow_key *key, const struct nlattr *attr,
0944 const struct nlattr *actions, int actions_len,
0945 uint32_t cutlen)
0946 {
0947 struct dp_upcall_info upcall;
0948 const struct nlattr *a;
0949 int rem;
0950
0951 memset(&upcall, 0, sizeof(upcall));
0952 upcall.cmd = OVS_PACKET_CMD_ACTION;
0953 upcall.mru = OVS_CB(skb)->mru;
0954
0955 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
0956 a = nla_next(a, &rem)) {
0957 switch (nla_type(a)) {
0958 case OVS_USERSPACE_ATTR_USERDATA:
0959 upcall.userdata = a;
0960 break;
0961
0962 case OVS_USERSPACE_ATTR_PID:
0963 if (dp->user_features &
0964 OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
0965 upcall.portid =
0966 ovs_dp_get_upcall_portid(dp,
0967 smp_processor_id());
0968 else
0969 upcall.portid = nla_get_u32(a);
0970 break;
0971
0972 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
0973
0974 struct vport *vport;
0975
0976 vport = ovs_vport_rcu(dp, nla_get_u32(a));
0977 if (vport) {
0978 int err;
0979
0980 err = dev_fill_metadata_dst(vport->dev, skb);
0981 if (!err)
0982 upcall.egress_tun_info = skb_tunnel_info(skb);
0983 }
0984
0985 break;
0986 }
0987
0988 case OVS_USERSPACE_ATTR_ACTIONS: {
0989
0990 upcall.actions = actions;
0991 upcall.actions_len = actions_len;
0992 break;
0993 }
0994
0995 }
0996 }
0997
0998 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
0999 }
1000
1001 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1002 struct sw_flow_key *key,
1003 const struct nlattr *attr)
1004 {
1005
1006 struct nlattr *actions = nla_data(attr);
1007
1008 if (nla_len(actions))
1009 return clone_execute(dp, skb, key, 0, nla_data(actions),
1010 nla_len(actions), true, false);
1011
1012 consume_skb(skb);
1013 return 0;
1014 }
1015
1016
1017
1018
1019
1020 static int sample(struct datapath *dp, struct sk_buff *skb,
1021 struct sw_flow_key *key, const struct nlattr *attr,
1022 bool last)
1023 {
1024 struct nlattr *actions;
1025 struct nlattr *sample_arg;
1026 int rem = nla_len(attr);
1027 const struct sample_arg *arg;
1028 bool clone_flow_key;
1029
1030
1031 sample_arg = nla_data(attr);
1032 arg = nla_data(sample_arg);
1033 actions = nla_next(sample_arg, &rem);
1034
1035 if ((arg->probability != U32_MAX) &&
1036 (!arg->probability || prandom_u32() > arg->probability)) {
1037 if (last)
1038 consume_skb(skb);
1039 return 0;
1040 }
1041
1042 clone_flow_key = !arg->exec;
1043 return clone_execute(dp, skb, key, 0, actions, rem, last,
1044 clone_flow_key);
1045 }
1046
1047
1048
1049
1050
1051 static int clone(struct datapath *dp, struct sk_buff *skb,
1052 struct sw_flow_key *key, const struct nlattr *attr,
1053 bool last)
1054 {
1055 struct nlattr *actions;
1056 struct nlattr *clone_arg;
1057 int rem = nla_len(attr);
1058 bool dont_clone_flow_key;
1059
1060
1061 clone_arg = nla_data(attr);
1062 dont_clone_flow_key = nla_get_u32(clone_arg);
1063 actions = nla_next(clone_arg, &rem);
1064
1065 return clone_execute(dp, skb, key, 0, actions, rem, last,
1066 !dont_clone_flow_key);
1067 }
1068
1069 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1070 const struct nlattr *attr)
1071 {
1072 struct ovs_action_hash *hash_act = nla_data(attr);
1073 u32 hash = 0;
1074
1075
1076 hash = skb_get_hash(skb);
1077 hash = jhash_1word(hash, hash_act->hash_basis);
1078 if (!hash)
1079 hash = 0x1;
1080
1081 key->ovs_flow_hash = hash;
1082 }
1083
1084 static int execute_set_action(struct sk_buff *skb,
1085 struct sw_flow_key *flow_key,
1086 const struct nlattr *a)
1087 {
1088
1089 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1090 struct ovs_tunnel_info *tun = nla_data(a);
1091
1092 skb_dst_drop(skb);
1093 dst_hold((struct dst_entry *)tun->tun_dst);
1094 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1095 return 0;
1096 }
1097
1098 return -EINVAL;
1099 }
1100
1101
1102 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1103
1104 static int execute_masked_set_action(struct sk_buff *skb,
1105 struct sw_flow_key *flow_key,
1106 const struct nlattr *a)
1107 {
1108 int err = 0;
1109
1110 switch (nla_type(a)) {
1111 case OVS_KEY_ATTR_PRIORITY:
1112 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1113 *get_mask(a, u32 *));
1114 flow_key->phy.priority = skb->priority;
1115 break;
1116
1117 case OVS_KEY_ATTR_SKB_MARK:
1118 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1119 flow_key->phy.skb_mark = skb->mark;
1120 break;
1121
1122 case OVS_KEY_ATTR_TUNNEL_INFO:
1123
1124 err = -EINVAL;
1125 break;
1126
1127 case OVS_KEY_ATTR_ETHERNET:
1128 err = set_eth_addr(skb, flow_key, nla_data(a),
1129 get_mask(a, struct ovs_key_ethernet *));
1130 break;
1131
1132 case OVS_KEY_ATTR_NSH:
1133 err = set_nsh(skb, flow_key, a);
1134 break;
1135
1136 case OVS_KEY_ATTR_IPV4:
1137 err = set_ipv4(skb, flow_key, nla_data(a),
1138 get_mask(a, struct ovs_key_ipv4 *));
1139 break;
1140
1141 case OVS_KEY_ATTR_IPV6:
1142 err = set_ipv6(skb, flow_key, nla_data(a),
1143 get_mask(a, struct ovs_key_ipv6 *));
1144 break;
1145
1146 case OVS_KEY_ATTR_TCP:
1147 err = set_tcp(skb, flow_key, nla_data(a),
1148 get_mask(a, struct ovs_key_tcp *));
1149 break;
1150
1151 case OVS_KEY_ATTR_UDP:
1152 err = set_udp(skb, flow_key, nla_data(a),
1153 get_mask(a, struct ovs_key_udp *));
1154 break;
1155
1156 case OVS_KEY_ATTR_SCTP:
1157 err = set_sctp(skb, flow_key, nla_data(a),
1158 get_mask(a, struct ovs_key_sctp *));
1159 break;
1160
1161 case OVS_KEY_ATTR_MPLS:
1162 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1163 __be32 *));
1164 break;
1165
1166 case OVS_KEY_ATTR_CT_STATE:
1167 case OVS_KEY_ATTR_CT_ZONE:
1168 case OVS_KEY_ATTR_CT_MARK:
1169 case OVS_KEY_ATTR_CT_LABELS:
1170 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1171 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1172 err = -EINVAL;
1173 break;
1174 }
1175
1176 return err;
1177 }
1178
1179 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1180 struct sw_flow_key *key,
1181 const struct nlattr *a, bool last)
1182 {
1183 u32 recirc_id;
1184
1185 if (!is_flow_key_valid(key)) {
1186 int err;
1187
1188 err = ovs_flow_key_update(skb, key);
1189 if (err)
1190 return err;
1191 }
1192 BUG_ON(!is_flow_key_valid(key));
1193
1194 recirc_id = nla_get_u32(a);
1195 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1196 }
1197
1198 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1199 struct sw_flow_key *key,
1200 const struct nlattr *attr, bool last)
1201 {
1202 struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1203 const struct nlattr *actions, *cpl_arg;
1204 int len, max_len, rem = nla_len(attr);
1205 const struct check_pkt_len_arg *arg;
1206 bool clone_flow_key;
1207
1208
1209
1210
1211 cpl_arg = nla_data(attr);
1212 arg = nla_data(cpl_arg);
1213
1214 len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1215 max_len = arg->pkt_len;
1216
1217 if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1218 len <= max_len) {
1219
1220
1221
1222 actions = nla_next(cpl_arg, &rem);
1223 clone_flow_key = !arg->exec_for_lesser_equal;
1224 } else {
1225
1226
1227
1228 actions = nla_next(cpl_arg, &rem);
1229 actions = nla_next(actions, &rem);
1230 clone_flow_key = !arg->exec_for_greater;
1231 }
1232
1233 return clone_execute(dp, skb, key, 0, nla_data(actions),
1234 nla_len(actions), last, clone_flow_key);
1235 }
1236
1237 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1238 {
1239 int err;
1240
1241 if (skb->protocol == htons(ETH_P_IPV6)) {
1242 struct ipv6hdr *nh;
1243
1244 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1245 sizeof(*nh));
1246 if (unlikely(err))
1247 return err;
1248
1249 nh = ipv6_hdr(skb);
1250
1251 if (nh->hop_limit <= 1)
1252 return -EHOSTUNREACH;
1253
1254 key->ip.ttl = --nh->hop_limit;
1255 } else if (skb->protocol == htons(ETH_P_IP)) {
1256 struct iphdr *nh;
1257 u8 old_ttl;
1258
1259 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1260 sizeof(*nh));
1261 if (unlikely(err))
1262 return err;
1263
1264 nh = ip_hdr(skb);
1265 if (nh->ttl <= 1)
1266 return -EHOSTUNREACH;
1267
1268 old_ttl = nh->ttl--;
1269 csum_replace2(&nh->check, htons(old_ttl << 8),
1270 htons(nh->ttl << 8));
1271 key->ip.ttl = nh->ttl;
1272 }
1273 return 0;
1274 }
1275
1276
1277 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1278 struct sw_flow_key *key,
1279 const struct nlattr *attr, int len)
1280 {
1281 const struct nlattr *a;
1282 int rem;
1283
1284 for (a = attr, rem = len; rem > 0;
1285 a = nla_next(a, &rem)) {
1286 int err = 0;
1287
1288 if (trace_ovs_do_execute_action_enabled())
1289 trace_ovs_do_execute_action(dp, skb, key, a, rem);
1290
1291 switch (nla_type(a)) {
1292 case OVS_ACTION_ATTR_OUTPUT: {
1293 int port = nla_get_u32(a);
1294 struct sk_buff *clone;
1295
1296
1297
1298
1299
1300 if (nla_is_last(a, rem)) {
1301 do_output(dp, skb, port, key);
1302
1303
1304 return 0;
1305 }
1306
1307 clone = skb_clone(skb, GFP_ATOMIC);
1308 if (clone)
1309 do_output(dp, clone, port, key);
1310 OVS_CB(skb)->cutlen = 0;
1311 break;
1312 }
1313
1314 case OVS_ACTION_ATTR_TRUNC: {
1315 struct ovs_action_trunc *trunc = nla_data(a);
1316
1317 if (skb->len > trunc->max_len)
1318 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1319 break;
1320 }
1321
1322 case OVS_ACTION_ATTR_USERSPACE:
1323 output_userspace(dp, skb, key, a, attr,
1324 len, OVS_CB(skb)->cutlen);
1325 OVS_CB(skb)->cutlen = 0;
1326 break;
1327
1328 case OVS_ACTION_ATTR_HASH:
1329 execute_hash(skb, key, a);
1330 break;
1331
1332 case OVS_ACTION_ATTR_PUSH_MPLS: {
1333 struct ovs_action_push_mpls *mpls = nla_data(a);
1334
1335 err = push_mpls(skb, key, mpls->mpls_lse,
1336 mpls->mpls_ethertype, skb->mac_len);
1337 break;
1338 }
1339 case OVS_ACTION_ATTR_ADD_MPLS: {
1340 struct ovs_action_add_mpls *mpls = nla_data(a);
1341 __u16 mac_len = 0;
1342
1343 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1344 mac_len = skb->mac_len;
1345
1346 err = push_mpls(skb, key, mpls->mpls_lse,
1347 mpls->mpls_ethertype, mac_len);
1348 break;
1349 }
1350 case OVS_ACTION_ATTR_POP_MPLS:
1351 err = pop_mpls(skb, key, nla_get_be16(a));
1352 break;
1353
1354 case OVS_ACTION_ATTR_PUSH_VLAN:
1355 err = push_vlan(skb, key, nla_data(a));
1356 break;
1357
1358 case OVS_ACTION_ATTR_POP_VLAN:
1359 err = pop_vlan(skb, key);
1360 break;
1361
1362 case OVS_ACTION_ATTR_RECIRC: {
1363 bool last = nla_is_last(a, rem);
1364
1365 err = execute_recirc(dp, skb, key, a, last);
1366 if (last) {
1367
1368
1369
1370
1371 return err;
1372 }
1373 break;
1374 }
1375
1376 case OVS_ACTION_ATTR_SET:
1377 err = execute_set_action(skb, key, nla_data(a));
1378 break;
1379
1380 case OVS_ACTION_ATTR_SET_MASKED:
1381 case OVS_ACTION_ATTR_SET_TO_MASKED:
1382 err = execute_masked_set_action(skb, key, nla_data(a));
1383 break;
1384
1385 case OVS_ACTION_ATTR_SAMPLE: {
1386 bool last = nla_is_last(a, rem);
1387
1388 err = sample(dp, skb, key, a, last);
1389 if (last)
1390 return err;
1391
1392 break;
1393 }
1394
1395 case OVS_ACTION_ATTR_CT:
1396 if (!is_flow_key_valid(key)) {
1397 err = ovs_flow_key_update(skb, key);
1398 if (err)
1399 return err;
1400 }
1401
1402 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1403 nla_data(a));
1404
1405
1406 if (err)
1407 return err == -EINPROGRESS ? 0 : err;
1408 break;
1409
1410 case OVS_ACTION_ATTR_CT_CLEAR:
1411 err = ovs_ct_clear(skb, key);
1412 break;
1413
1414 case OVS_ACTION_ATTR_PUSH_ETH:
1415 err = push_eth(skb, key, nla_data(a));
1416 break;
1417
1418 case OVS_ACTION_ATTR_POP_ETH:
1419 err = pop_eth(skb, key);
1420 break;
1421
1422 case OVS_ACTION_ATTR_PUSH_NSH: {
1423 u8 buffer[NSH_HDR_MAX_LEN];
1424 struct nshhdr *nh = (struct nshhdr *)buffer;
1425
1426 err = nsh_hdr_from_nlattr(nla_data(a), nh,
1427 NSH_HDR_MAX_LEN);
1428 if (unlikely(err))
1429 break;
1430 err = push_nsh(skb, key, nh);
1431 break;
1432 }
1433
1434 case OVS_ACTION_ATTR_POP_NSH:
1435 err = pop_nsh(skb, key);
1436 break;
1437
1438 case OVS_ACTION_ATTR_METER:
1439 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1440 consume_skb(skb);
1441 return 0;
1442 }
1443 break;
1444
1445 case OVS_ACTION_ATTR_CLONE: {
1446 bool last = nla_is_last(a, rem);
1447
1448 err = clone(dp, skb, key, a, last);
1449 if (last)
1450 return err;
1451
1452 break;
1453 }
1454
1455 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1456 bool last = nla_is_last(a, rem);
1457
1458 err = execute_check_pkt_len(dp, skb, key, a, last);
1459 if (last)
1460 return err;
1461
1462 break;
1463 }
1464
1465 case OVS_ACTION_ATTR_DEC_TTL:
1466 err = execute_dec_ttl(skb, key);
1467 if (err == -EHOSTUNREACH)
1468 return dec_ttl_exception_handler(dp, skb,
1469 key, a);
1470 break;
1471 }
1472
1473 if (unlikely(err)) {
1474 kfree_skb(skb);
1475 return err;
1476 }
1477 }
1478
1479 consume_skb(skb);
1480 return 0;
1481 }
1482
1483
1484
1485
1486
1487
1488
1489 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1490 struct sw_flow_key *key, u32 recirc_id,
1491 const struct nlattr *actions, int len,
1492 bool last, bool clone_flow_key)
1493 {
1494 struct deferred_action *da;
1495 struct sw_flow_key *clone;
1496
1497 skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1498 if (!skb) {
1499
1500
1501 return 0;
1502 }
1503
1504
1505
1506
1507
1508
1509
1510 clone = clone_flow_key ? clone_key(key) : key;
1511 if (clone) {
1512 int err = 0;
1513
1514 if (actions) {
1515 if (clone_flow_key)
1516 __this_cpu_inc(exec_actions_level);
1517
1518 err = do_execute_actions(dp, skb, clone,
1519 actions, len);
1520
1521 if (clone_flow_key)
1522 __this_cpu_dec(exec_actions_level);
1523 } else {
1524 clone->recirc_id = recirc_id;
1525 ovs_dp_process_packet(skb, clone);
1526 }
1527 return err;
1528 }
1529
1530
1531 da = add_deferred_actions(skb, key, actions, len);
1532 if (da) {
1533 if (!actions) {
1534 key = &da->pkt_key;
1535 key->recirc_id = recirc_id;
1536 }
1537 } else {
1538
1539
1540
1541 kfree_skb(skb);
1542
1543 if (net_ratelimit()) {
1544 if (actions) {
1545 pr_warn("%s: deferred action limit reached, drop sample action\n",
1546 ovs_dp_name(dp));
1547 } else {
1548 pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1549 ovs_dp_name(dp), recirc_id);
1550 }
1551 }
1552 }
1553 return 0;
1554 }
1555
1556 static void process_deferred_actions(struct datapath *dp)
1557 {
1558 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1559
1560
1561 if (action_fifo_is_empty(fifo))
1562 return;
1563
1564
1565 do {
1566 struct deferred_action *da = action_fifo_get(fifo);
1567 struct sk_buff *skb = da->skb;
1568 struct sw_flow_key *key = &da->pkt_key;
1569 const struct nlattr *actions = da->actions;
1570 int actions_len = da->actions_len;
1571
1572 if (actions)
1573 do_execute_actions(dp, skb, key, actions, actions_len);
1574 else
1575 ovs_dp_process_packet(skb, key);
1576 } while (!action_fifo_is_empty(fifo));
1577
1578
1579 action_fifo_init(fifo);
1580 }
1581
1582
1583 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1584 const struct sw_flow_actions *acts,
1585 struct sw_flow_key *key)
1586 {
1587 int err, level;
1588
1589 level = __this_cpu_inc_return(exec_actions_level);
1590 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1591 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1592 ovs_dp_name(dp));
1593 kfree_skb(skb);
1594 err = -ENETDOWN;
1595 goto out;
1596 }
1597
1598 OVS_CB(skb)->acts_origlen = acts->orig_len;
1599 err = do_execute_actions(dp, skb, key,
1600 acts->actions, acts->actions_len);
1601
1602 if (level == 1)
1603 process_deferred_actions(dp);
1604
1605 out:
1606 __this_cpu_dec(exec_actions_level);
1607 return err;
1608 }
1609
1610 int action_fifos_init(void)
1611 {
1612 action_fifos = alloc_percpu(struct action_fifo);
1613 if (!action_fifos)
1614 return -ENOMEM;
1615
1616 flow_keys = alloc_percpu(struct action_flow_keys);
1617 if (!flow_keys) {
1618 free_percpu(action_fifos);
1619 return -ENOMEM;
1620 }
1621
1622 return 0;
1623 }
1624
1625 void action_fifos_exit(void)
1626 {
1627 free_percpu(action_fifos);
1628 free_percpu(flow_keys);
1629 }