Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Multipath TCP
0003  *
0004  * Copyright (c) 2017 - 2019, Intel Corporation.
0005  */
0006 
0007 #define pr_fmt(fmt) "MPTCP: " fmt
0008 
0009 #include <linux/kernel.h>
0010 #include <linux/module.h>
0011 #include <linux/netdevice.h>
0012 #include <linux/sched/signal.h>
0013 #include <linux/atomic.h>
0014 #include <net/sock.h>
0015 #include <net/inet_common.h>
0016 #include <net/inet_hashtables.h>
0017 #include <net/protocol.h>
0018 #include <net/tcp.h>
0019 #include <net/tcp_states.h>
0020 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
0021 #include <net/transp_v6.h>
0022 #endif
0023 #include <net/mptcp.h>
0024 #include <net/xfrm.h>
0025 #include <asm/ioctls.h>
0026 #include "protocol.h"
0027 #include "mib.h"
0028 
0029 #define CREATE_TRACE_POINTS
0030 #include <trace/events/mptcp.h>
0031 
0032 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
0033 struct mptcp6_sock {
0034     struct mptcp_sock msk;
0035     struct ipv6_pinfo np;
0036 };
0037 #endif
0038 
0039 struct mptcp_skb_cb {
0040     u64 map_seq;
0041     u64 end_seq;
0042     u32 offset;
0043     u8  has_rxtstamp:1;
0044 };
0045 
0046 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0]))
0047 
0048 enum {
0049     MPTCP_CMSG_TS = BIT(0),
0050     MPTCP_CMSG_INQ = BIT(1),
0051 };
0052 
0053 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
0054 
0055 static void __mptcp_destroy_sock(struct sock *sk);
0056 static void __mptcp_check_send_data_fin(struct sock *sk);
0057 
0058 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
0059 static struct net_device mptcp_napi_dev;
0060 
0061 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
0062  * completed yet or has failed, return the subflow socket.
0063  * Otherwise return NULL.
0064  */
0065 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
0066 {
0067     if (!msk->subflow || READ_ONCE(msk->can_ack))
0068         return NULL;
0069 
0070     return msk->subflow;
0071 }
0072 
0073 /* Returns end sequence number of the receiver's advertised window */
0074 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
0075 {
0076     return READ_ONCE(msk->wnd_end);
0077 }
0078 
0079 static bool mptcp_is_tcpsk(struct sock *sk)
0080 {
0081     struct socket *sock = sk->sk_socket;
0082 
0083     if (unlikely(sk->sk_prot == &tcp_prot)) {
0084         /* we are being invoked after mptcp_accept() has
0085          * accepted a non-mp-capable flow: sk is a tcp_sk,
0086          * not an mptcp one.
0087          *
0088          * Hand the socket over to tcp so all further socket ops
0089          * bypass mptcp.
0090          */
0091         sock->ops = &inet_stream_ops;
0092         return true;
0093 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
0094     } else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
0095         sock->ops = &inet6_stream_ops;
0096         return true;
0097 #endif
0098     }
0099 
0100     return false;
0101 }
0102 
0103 static int __mptcp_socket_create(struct mptcp_sock *msk)
0104 {
0105     struct mptcp_subflow_context *subflow;
0106     struct sock *sk = (struct sock *)msk;
0107     struct socket *ssock;
0108     int err;
0109 
0110     err = mptcp_subflow_create_socket(sk, &ssock);
0111     if (err)
0112         return err;
0113 
0114     msk->first = ssock->sk;
0115     msk->subflow = ssock;
0116     subflow = mptcp_subflow_ctx(ssock->sk);
0117     list_add(&subflow->node, &msk->conn_list);
0118     sock_hold(ssock->sk);
0119     subflow->request_mptcp = 1;
0120 
0121     /* This is the first subflow, always with id 0 */
0122     subflow->local_id_valid = 1;
0123     mptcp_sock_graft(msk->first, sk->sk_socket);
0124 
0125     return 0;
0126 }
0127 
0128 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
0129 {
0130     sk_drops_add(sk, skb);
0131     __kfree_skb(skb);
0132 }
0133 
0134 static void mptcp_rmem_charge(struct sock *sk, int size)
0135 {
0136     mptcp_sk(sk)->rmem_fwd_alloc -= size;
0137 }
0138 
0139 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
0140                    struct sk_buff *from)
0141 {
0142     bool fragstolen;
0143     int delta;
0144 
0145     if (MPTCP_SKB_CB(from)->offset ||
0146         !skb_try_coalesce(to, from, &fragstolen, &delta))
0147         return false;
0148 
0149     pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
0150          MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
0151          to->len, MPTCP_SKB_CB(from)->end_seq);
0152     MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
0153 
0154     /* note the fwd memory can reach a negative value after accounting
0155      * for the delta, but the later skb free will restore a non
0156      * negative one
0157      */
0158     atomic_add(delta, &sk->sk_rmem_alloc);
0159     mptcp_rmem_charge(sk, delta);
0160     kfree_skb_partial(from, fragstolen);
0161 
0162     return true;
0163 }
0164 
0165 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
0166                    struct sk_buff *from)
0167 {
0168     if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
0169         return false;
0170 
0171     return mptcp_try_coalesce((struct sock *)msk, to, from);
0172 }
0173 
0174 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
0175 {
0176     amount >>= PAGE_SHIFT;
0177     mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT;
0178     __sk_mem_reduce_allocated(sk, amount);
0179 }
0180 
0181 static void mptcp_rmem_uncharge(struct sock *sk, int size)
0182 {
0183     struct mptcp_sock *msk = mptcp_sk(sk);
0184     int reclaimable;
0185 
0186     msk->rmem_fwd_alloc += size;
0187     reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
0188 
0189     /* see sk_mem_uncharge() for the rationale behind the following schema */
0190     if (unlikely(reclaimable >= PAGE_SIZE))
0191         __mptcp_rmem_reclaim(sk, reclaimable);
0192 }
0193 
0194 static void mptcp_rfree(struct sk_buff *skb)
0195 {
0196     unsigned int len = skb->truesize;
0197     struct sock *sk = skb->sk;
0198 
0199     atomic_sub(len, &sk->sk_rmem_alloc);
0200     mptcp_rmem_uncharge(sk, len);
0201 }
0202 
0203 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
0204 {
0205     skb_orphan(skb);
0206     skb->sk = sk;
0207     skb->destructor = mptcp_rfree;
0208     atomic_add(skb->truesize, &sk->sk_rmem_alloc);
0209     mptcp_rmem_charge(sk, skb->truesize);
0210 }
0211 
0212 /* "inspired" by tcp_data_queue_ofo(), main differences:
0213  * - use mptcp seqs
0214  * - don't cope with sacks
0215  */
0216 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
0217 {
0218     struct sock *sk = (struct sock *)msk;
0219     struct rb_node **p, *parent;
0220     u64 seq, end_seq, max_seq;
0221     struct sk_buff *skb1;
0222 
0223     seq = MPTCP_SKB_CB(skb)->map_seq;
0224     end_seq = MPTCP_SKB_CB(skb)->end_seq;
0225     max_seq = atomic64_read(&msk->rcv_wnd_sent);
0226 
0227     pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
0228          RB_EMPTY_ROOT(&msk->out_of_order_queue));
0229     if (after64(end_seq, max_seq)) {
0230         /* out of window */
0231         mptcp_drop(sk, skb);
0232         pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
0233              (unsigned long long)end_seq - (unsigned long)max_seq,
0234              (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
0235         MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
0236         return;
0237     }
0238 
0239     p = &msk->out_of_order_queue.rb_node;
0240     MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
0241     if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
0242         rb_link_node(&skb->rbnode, NULL, p);
0243         rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
0244         msk->ooo_last_skb = skb;
0245         goto end;
0246     }
0247 
0248     /* with 2 subflows, adding at end of ooo queue is quite likely
0249      * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
0250      */
0251     if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
0252         MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
0253         MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
0254         return;
0255     }
0256 
0257     /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
0258     if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
0259         MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
0260         parent = &msk->ooo_last_skb->rbnode;
0261         p = &parent->rb_right;
0262         goto insert;
0263     }
0264 
0265     /* Find place to insert this segment. Handle overlaps on the way. */
0266     parent = NULL;
0267     while (*p) {
0268         parent = *p;
0269         skb1 = rb_to_skb(parent);
0270         if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
0271             p = &parent->rb_left;
0272             continue;
0273         }
0274         if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
0275             if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
0276                 /* All the bits are present. Drop. */
0277                 mptcp_drop(sk, skb);
0278                 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
0279                 return;
0280             }
0281             if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
0282                 /* partial overlap:
0283                  *     |     skb      |
0284                  *  |     skb1    |
0285                  * continue traversing
0286                  */
0287             } else {
0288                 /* skb's seq == skb1's seq and skb covers skb1.
0289                  * Replace skb1 with skb.
0290                  */
0291                 rb_replace_node(&skb1->rbnode, &skb->rbnode,
0292                         &msk->out_of_order_queue);
0293                 mptcp_drop(sk, skb1);
0294                 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
0295                 goto merge_right;
0296             }
0297         } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
0298             MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
0299             return;
0300         }
0301         p = &parent->rb_right;
0302     }
0303 
0304 insert:
0305     /* Insert segment into RB tree. */
0306     rb_link_node(&skb->rbnode, parent, p);
0307     rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
0308 
0309 merge_right:
0310     /* Remove other segments covered by skb. */
0311     while ((skb1 = skb_rb_next(skb)) != NULL) {
0312         if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
0313             break;
0314         rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
0315         mptcp_drop(sk, skb1);
0316         MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
0317     }
0318     /* If there is no skb after us, we are the last_skb ! */
0319     if (!skb1)
0320         msk->ooo_last_skb = skb;
0321 
0322 end:
0323     skb_condense(skb);
0324     mptcp_set_owner_r(skb, sk);
0325 }
0326 
0327 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
0328 {
0329     struct mptcp_sock *msk = mptcp_sk(sk);
0330     int amt, amount;
0331 
0332     if (size <= msk->rmem_fwd_alloc)
0333         return true;
0334 
0335     size -= msk->rmem_fwd_alloc;
0336     amt = sk_mem_pages(size);
0337     amount = amt << PAGE_SHIFT;
0338     if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
0339         return false;
0340 
0341     msk->rmem_fwd_alloc += amount;
0342     return true;
0343 }
0344 
0345 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
0346                  struct sk_buff *skb, unsigned int offset,
0347                  size_t copy_len)
0348 {
0349     struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
0350     struct sock *sk = (struct sock *)msk;
0351     struct sk_buff *tail;
0352     bool has_rxtstamp;
0353 
0354     __skb_unlink(skb, &ssk->sk_receive_queue);
0355 
0356     skb_ext_reset(skb);
0357     skb_orphan(skb);
0358 
0359     /* try to fetch required memory from subflow */
0360     if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
0361         goto drop;
0362 
0363     has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
0364 
0365     /* the skb map_seq accounts for the skb offset:
0366      * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
0367      * value
0368      */
0369     MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
0370     MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
0371     MPTCP_SKB_CB(skb)->offset = offset;
0372     MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
0373 
0374     if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
0375         /* in sequence */
0376         WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
0377         tail = skb_peek_tail(&sk->sk_receive_queue);
0378         if (tail && mptcp_try_coalesce(sk, tail, skb))
0379             return true;
0380 
0381         mptcp_set_owner_r(skb, sk);
0382         __skb_queue_tail(&sk->sk_receive_queue, skb);
0383         return true;
0384     } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
0385         mptcp_data_queue_ofo(msk, skb);
0386         return false;
0387     }
0388 
0389     /* old data, keep it simple and drop the whole pkt, sender
0390      * will retransmit as needed, if needed.
0391      */
0392     MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
0393 drop:
0394     mptcp_drop(sk, skb);
0395     return false;
0396 }
0397 
0398 static void mptcp_stop_timer(struct sock *sk)
0399 {
0400     struct inet_connection_sock *icsk = inet_csk(sk);
0401 
0402     sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
0403     mptcp_sk(sk)->timer_ival = 0;
0404 }
0405 
0406 static void mptcp_close_wake_up(struct sock *sk)
0407 {
0408     if (sock_flag(sk, SOCK_DEAD))
0409         return;
0410 
0411     sk->sk_state_change(sk);
0412     if (sk->sk_shutdown == SHUTDOWN_MASK ||
0413         sk->sk_state == TCP_CLOSE)
0414         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
0415     else
0416         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
0417 }
0418 
0419 static bool mptcp_pending_data_fin_ack(struct sock *sk)
0420 {
0421     struct mptcp_sock *msk = mptcp_sk(sk);
0422 
0423     return !__mptcp_check_fallback(msk) &&
0424            ((1 << sk->sk_state) &
0425         (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
0426            msk->write_seq == READ_ONCE(msk->snd_una);
0427 }
0428 
0429 static void mptcp_check_data_fin_ack(struct sock *sk)
0430 {
0431     struct mptcp_sock *msk = mptcp_sk(sk);
0432 
0433     /* Look for an acknowledged DATA_FIN */
0434     if (mptcp_pending_data_fin_ack(sk)) {
0435         WRITE_ONCE(msk->snd_data_fin_enable, 0);
0436 
0437         switch (sk->sk_state) {
0438         case TCP_FIN_WAIT1:
0439             inet_sk_state_store(sk, TCP_FIN_WAIT2);
0440             break;
0441         case TCP_CLOSING:
0442         case TCP_LAST_ACK:
0443             inet_sk_state_store(sk, TCP_CLOSE);
0444             break;
0445         }
0446 
0447         mptcp_close_wake_up(sk);
0448     }
0449 }
0450 
0451 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
0452 {
0453     struct mptcp_sock *msk = mptcp_sk(sk);
0454 
0455     if (READ_ONCE(msk->rcv_data_fin) &&
0456         ((1 << sk->sk_state) &
0457          (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
0458         u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
0459 
0460         if (msk->ack_seq == rcv_data_fin_seq) {
0461             if (seq)
0462                 *seq = rcv_data_fin_seq;
0463 
0464             return true;
0465         }
0466     }
0467 
0468     return false;
0469 }
0470 
0471 static void mptcp_set_datafin_timeout(const struct sock *sk)
0472 {
0473     struct inet_connection_sock *icsk = inet_csk(sk);
0474     u32 retransmits;
0475 
0476     retransmits = min_t(u32, icsk->icsk_retransmits,
0477                 ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
0478 
0479     mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
0480 }
0481 
0482 static void __mptcp_set_timeout(struct sock *sk, long tout)
0483 {
0484     mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
0485 }
0486 
0487 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
0488 {
0489     const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
0490 
0491     return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
0492            inet_csk(ssk)->icsk_timeout - jiffies : 0;
0493 }
0494 
0495 static void mptcp_set_timeout(struct sock *sk)
0496 {
0497     struct mptcp_subflow_context *subflow;
0498     long tout = 0;
0499 
0500     mptcp_for_each_subflow(mptcp_sk(sk), subflow)
0501         tout = max(tout, mptcp_timeout_from_subflow(subflow));
0502     __mptcp_set_timeout(sk, tout);
0503 }
0504 
0505 static inline bool tcp_can_send_ack(const struct sock *ssk)
0506 {
0507     return !((1 << inet_sk_state_load(ssk)) &
0508            (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
0509 }
0510 
0511 void __mptcp_subflow_send_ack(struct sock *ssk)
0512 {
0513     if (tcp_can_send_ack(ssk))
0514         tcp_send_ack(ssk);
0515 }
0516 
0517 static void mptcp_subflow_send_ack(struct sock *ssk)
0518 {
0519     bool slow;
0520 
0521     slow = lock_sock_fast(ssk);
0522     __mptcp_subflow_send_ack(ssk);
0523     unlock_sock_fast(ssk, slow);
0524 }
0525 
0526 static void mptcp_send_ack(struct mptcp_sock *msk)
0527 {
0528     struct mptcp_subflow_context *subflow;
0529 
0530     mptcp_for_each_subflow(msk, subflow)
0531         mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
0532 }
0533 
0534 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
0535 {
0536     bool slow;
0537 
0538     slow = lock_sock_fast(ssk);
0539     if (tcp_can_send_ack(ssk))
0540         tcp_cleanup_rbuf(ssk, 1);
0541     unlock_sock_fast(ssk, slow);
0542 }
0543 
0544 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
0545 {
0546     const struct inet_connection_sock *icsk = inet_csk(ssk);
0547     u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
0548     const struct tcp_sock *tp = tcp_sk(ssk);
0549 
0550     return (ack_pending & ICSK_ACK_SCHED) &&
0551         ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
0552           READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
0553          (rx_empty && ack_pending &
0554                   (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
0555 }
0556 
0557 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
0558 {
0559     int old_space = READ_ONCE(msk->old_wspace);
0560     struct mptcp_subflow_context *subflow;
0561     struct sock *sk = (struct sock *)msk;
0562     int space =  __mptcp_space(sk);
0563     bool cleanup, rx_empty;
0564 
0565     cleanup = (space > 0) && (space >= (old_space << 1));
0566     rx_empty = !__mptcp_rmem(sk);
0567 
0568     mptcp_for_each_subflow(msk, subflow) {
0569         struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
0570 
0571         if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
0572             mptcp_subflow_cleanup_rbuf(ssk);
0573     }
0574 }
0575 
0576 static bool mptcp_check_data_fin(struct sock *sk)
0577 {
0578     struct mptcp_sock *msk = mptcp_sk(sk);
0579     u64 rcv_data_fin_seq;
0580     bool ret = false;
0581 
0582     if (__mptcp_check_fallback(msk))
0583         return ret;
0584 
0585     /* Need to ack a DATA_FIN received from a peer while this side
0586      * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
0587      * msk->rcv_data_fin was set when parsing the incoming options
0588      * at the subflow level and the msk lock was not held, so this
0589      * is the first opportunity to act on the DATA_FIN and change
0590      * the msk state.
0591      *
0592      * If we are caught up to the sequence number of the incoming
0593      * DATA_FIN, send the DATA_ACK now and do state transition.  If
0594      * not caught up, do nothing and let the recv code send DATA_ACK
0595      * when catching up.
0596      */
0597 
0598     if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
0599         WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
0600         WRITE_ONCE(msk->rcv_data_fin, 0);
0601 
0602         sk->sk_shutdown |= RCV_SHUTDOWN;
0603         smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
0604 
0605         switch (sk->sk_state) {
0606         case TCP_ESTABLISHED:
0607             inet_sk_state_store(sk, TCP_CLOSE_WAIT);
0608             break;
0609         case TCP_FIN_WAIT1:
0610             inet_sk_state_store(sk, TCP_CLOSING);
0611             break;
0612         case TCP_FIN_WAIT2:
0613             inet_sk_state_store(sk, TCP_CLOSE);
0614             break;
0615         default:
0616             /* Other states not expected */
0617             WARN_ON_ONCE(1);
0618             break;
0619         }
0620 
0621         ret = true;
0622         mptcp_send_ack(msk);
0623         mptcp_close_wake_up(sk);
0624     }
0625     return ret;
0626 }
0627 
0628 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
0629                        struct sock *ssk,
0630                        unsigned int *bytes)
0631 {
0632     struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
0633     struct sock *sk = (struct sock *)msk;
0634     unsigned int moved = 0;
0635     bool more_data_avail;
0636     struct tcp_sock *tp;
0637     bool done = false;
0638     int sk_rbuf;
0639 
0640     sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
0641 
0642     if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
0643         int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
0644 
0645         if (unlikely(ssk_rbuf > sk_rbuf)) {
0646             WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
0647             sk_rbuf = ssk_rbuf;
0648         }
0649     }
0650 
0651     pr_debug("msk=%p ssk=%p", msk, ssk);
0652     tp = tcp_sk(ssk);
0653     do {
0654         u32 map_remaining, offset;
0655         u32 seq = tp->copied_seq;
0656         struct sk_buff *skb;
0657         bool fin;
0658 
0659         /* try to move as much data as available */
0660         map_remaining = subflow->map_data_len -
0661                 mptcp_subflow_get_map_offset(subflow);
0662 
0663         skb = skb_peek(&ssk->sk_receive_queue);
0664         if (!skb) {
0665             /* if no data is found, a racing workqueue/recvmsg
0666              * already processed the new data, stop here or we
0667              * can enter an infinite loop
0668              */
0669             if (!moved)
0670                 done = true;
0671             break;
0672         }
0673 
0674         if (__mptcp_check_fallback(msk)) {
0675             /* if we are running under the workqueue, TCP could have
0676              * collapsed skbs between dummy map creation and now
0677              * be sure to adjust the size
0678              */
0679             map_remaining = skb->len;
0680             subflow->map_data_len = skb->len;
0681         }
0682 
0683         offset = seq - TCP_SKB_CB(skb)->seq;
0684         fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
0685         if (fin) {
0686             done = true;
0687             seq++;
0688         }
0689 
0690         if (offset < skb->len) {
0691             size_t len = skb->len - offset;
0692 
0693             if (tp->urg_data)
0694                 done = true;
0695 
0696             if (__mptcp_move_skb(msk, ssk, skb, offset, len))
0697                 moved += len;
0698             seq += len;
0699 
0700             if (WARN_ON_ONCE(map_remaining < len))
0701                 break;
0702         } else {
0703             WARN_ON_ONCE(!fin);
0704             sk_eat_skb(ssk, skb);
0705             done = true;
0706         }
0707 
0708         WRITE_ONCE(tp->copied_seq, seq);
0709         more_data_avail = mptcp_subflow_data_available(ssk);
0710 
0711         if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
0712             done = true;
0713             break;
0714         }
0715     } while (more_data_avail);
0716 
0717     *bytes += moved;
0718     return done;
0719 }
0720 
0721 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
0722 {
0723     struct sock *sk = (struct sock *)msk;
0724     struct sk_buff *skb, *tail;
0725     bool moved = false;
0726     struct rb_node *p;
0727     u64 end_seq;
0728 
0729     p = rb_first(&msk->out_of_order_queue);
0730     pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
0731     while (p) {
0732         skb = rb_to_skb(p);
0733         if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
0734             break;
0735 
0736         p = rb_next(p);
0737         rb_erase(&skb->rbnode, &msk->out_of_order_queue);
0738 
0739         if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
0740                       msk->ack_seq))) {
0741             mptcp_drop(sk, skb);
0742             MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
0743             continue;
0744         }
0745 
0746         end_seq = MPTCP_SKB_CB(skb)->end_seq;
0747         tail = skb_peek_tail(&sk->sk_receive_queue);
0748         if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
0749             int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
0750 
0751             /* skip overlapping data, if any */
0752             pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
0753                  MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
0754                  delta);
0755             MPTCP_SKB_CB(skb)->offset += delta;
0756             MPTCP_SKB_CB(skb)->map_seq += delta;
0757             __skb_queue_tail(&sk->sk_receive_queue, skb);
0758         }
0759         msk->ack_seq = end_seq;
0760         moved = true;
0761     }
0762     return moved;
0763 }
0764 
0765 /* In most cases we will be able to lock the mptcp socket.  If its already
0766  * owned, we need to defer to the work queue to avoid ABBA deadlock.
0767  */
0768 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
0769 {
0770     struct sock *sk = (struct sock *)msk;
0771     unsigned int moved = 0;
0772 
0773     __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
0774     __mptcp_ofo_queue(msk);
0775     if (unlikely(ssk->sk_err)) {
0776         if (!sock_owned_by_user(sk))
0777             __mptcp_error_report(sk);
0778         else
0779             __set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
0780     }
0781 
0782     /* If the moves have caught up with the DATA_FIN sequence number
0783      * it's time to ack the DATA_FIN and change socket state, but
0784      * this is not a good place to change state. Let the workqueue
0785      * do it.
0786      */
0787     if (mptcp_pending_data_fin(sk, NULL))
0788         mptcp_schedule_work(sk);
0789     return moved > 0;
0790 }
0791 
0792 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
0793 {
0794     struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
0795     struct mptcp_sock *msk = mptcp_sk(sk);
0796     int sk_rbuf, ssk_rbuf;
0797 
0798     /* The peer can send data while we are shutting down this
0799      * subflow at msk destruction time, but we must avoid enqueuing
0800      * more data to the msk receive queue
0801      */
0802     if (unlikely(subflow->disposable))
0803         return;
0804 
0805     ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
0806     sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
0807     if (unlikely(ssk_rbuf > sk_rbuf))
0808         sk_rbuf = ssk_rbuf;
0809 
0810     /* over limit? can't append more skbs to msk, Also, no need to wake-up*/
0811     if (__mptcp_rmem(sk) > sk_rbuf) {
0812         MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
0813         return;
0814     }
0815 
0816     /* Wake-up the reader only for in-sequence data */
0817     mptcp_data_lock(sk);
0818     if (move_skbs_to_msk(msk, ssk))
0819         sk->sk_data_ready(sk);
0820 
0821     mptcp_data_unlock(sk);
0822 }
0823 
0824 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
0825 {
0826     struct sock *sk = (struct sock *)msk;
0827 
0828     if (sk->sk_state != TCP_ESTABLISHED)
0829         return false;
0830 
0831     /* attach to msk socket only after we are sure we will deal with it
0832      * at close time
0833      */
0834     if (sk->sk_socket && !ssk->sk_socket)
0835         mptcp_sock_graft(ssk, sk->sk_socket);
0836 
0837     mptcp_propagate_sndbuf((struct sock *)msk, ssk);
0838     mptcp_sockopt_sync_locked(msk, ssk);
0839     return true;
0840 }
0841 
0842 static void __mptcp_flush_join_list(struct sock *sk)
0843 {
0844     struct mptcp_subflow_context *tmp, *subflow;
0845     struct mptcp_sock *msk = mptcp_sk(sk);
0846 
0847     list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) {
0848         struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
0849         bool slow = lock_sock_fast(ssk);
0850 
0851         list_move_tail(&subflow->node, &msk->conn_list);
0852         if (!__mptcp_finish_join(msk, ssk))
0853             mptcp_subflow_reset(ssk);
0854         unlock_sock_fast(ssk, slow);
0855     }
0856 }
0857 
0858 static bool mptcp_timer_pending(struct sock *sk)
0859 {
0860     return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
0861 }
0862 
0863 static void mptcp_reset_timer(struct sock *sk)
0864 {
0865     struct inet_connection_sock *icsk = inet_csk(sk);
0866     unsigned long tout;
0867 
0868     /* prevent rescheduling on close */
0869     if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
0870         return;
0871 
0872     tout = mptcp_sk(sk)->timer_ival;
0873     sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
0874 }
0875 
0876 bool mptcp_schedule_work(struct sock *sk)
0877 {
0878     if (inet_sk_state_load(sk) != TCP_CLOSE &&
0879         schedule_work(&mptcp_sk(sk)->work)) {
0880         /* each subflow already holds a reference to the sk, and the
0881          * workqueue is invoked by a subflow, so sk can't go away here.
0882          */
0883         sock_hold(sk);
0884         return true;
0885     }
0886     return false;
0887 }
0888 
0889 void mptcp_subflow_eof(struct sock *sk)
0890 {
0891     if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
0892         mptcp_schedule_work(sk);
0893 }
0894 
0895 static void mptcp_check_for_eof(struct mptcp_sock *msk)
0896 {
0897     struct mptcp_subflow_context *subflow;
0898     struct sock *sk = (struct sock *)msk;
0899     int receivers = 0;
0900 
0901     mptcp_for_each_subflow(msk, subflow)
0902         receivers += !subflow->rx_eof;
0903     if (receivers)
0904         return;
0905 
0906     if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
0907         /* hopefully temporary hack: propagate shutdown status
0908          * to msk, when all subflows agree on it
0909          */
0910         sk->sk_shutdown |= RCV_SHUTDOWN;
0911 
0912         smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
0913         sk->sk_data_ready(sk);
0914     }
0915 
0916     switch (sk->sk_state) {
0917     case TCP_ESTABLISHED:
0918         inet_sk_state_store(sk, TCP_CLOSE_WAIT);
0919         break;
0920     case TCP_FIN_WAIT1:
0921         inet_sk_state_store(sk, TCP_CLOSING);
0922         break;
0923     case TCP_FIN_WAIT2:
0924         inet_sk_state_store(sk, TCP_CLOSE);
0925         break;
0926     default:
0927         return;
0928     }
0929     mptcp_close_wake_up(sk);
0930 }
0931 
0932 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
0933 {
0934     struct mptcp_subflow_context *subflow;
0935     struct sock *sk = (struct sock *)msk;
0936 
0937     sock_owned_by_me(sk);
0938 
0939     mptcp_for_each_subflow(msk, subflow) {
0940         if (READ_ONCE(subflow->data_avail))
0941             return mptcp_subflow_tcp_sock(subflow);
0942     }
0943 
0944     return NULL;
0945 }
0946 
0947 static bool mptcp_skb_can_collapse_to(u64 write_seq,
0948                       const struct sk_buff *skb,
0949                       const struct mptcp_ext *mpext)
0950 {
0951     if (!tcp_skb_can_collapse_to(skb))
0952         return false;
0953 
0954     /* can collapse only if MPTCP level sequence is in order and this
0955      * mapping has not been xmitted yet
0956      */
0957     return mpext && mpext->data_seq + mpext->data_len == write_seq &&
0958            !mpext->frozen;
0959 }
0960 
0961 /* we can append data to the given data frag if:
0962  * - there is space available in the backing page_frag
0963  * - the data frag tail matches the current page_frag free offset
0964  * - the data frag end sequence number matches the current write seq
0965  */
0966 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
0967                        const struct page_frag *pfrag,
0968                        const struct mptcp_data_frag *df)
0969 {
0970     return df && pfrag->page == df->page &&
0971         pfrag->size - pfrag->offset > 0 &&
0972         pfrag->offset == (df->offset + df->data_len) &&
0973         df->data_seq + df->data_len == msk->write_seq;
0974 }
0975 
0976 static void dfrag_uncharge(struct sock *sk, int len)
0977 {
0978     sk_mem_uncharge(sk, len);
0979     sk_wmem_queued_add(sk, -len);
0980 }
0981 
0982 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
0983 {
0984     int len = dfrag->data_len + dfrag->overhead;
0985 
0986     list_del(&dfrag->list);
0987     dfrag_uncharge(sk, len);
0988     put_page(dfrag->page);
0989 }
0990 
0991 static void __mptcp_clean_una(struct sock *sk)
0992 {
0993     struct mptcp_sock *msk = mptcp_sk(sk);
0994     struct mptcp_data_frag *dtmp, *dfrag;
0995     u64 snd_una;
0996 
0997     /* on fallback we just need to ignore snd_una, as this is really
0998      * plain TCP
0999      */
1000     if (__mptcp_check_fallback(msk))
1001         msk->snd_una = READ_ONCE(msk->snd_nxt);
1002 
1003     snd_una = msk->snd_una;
1004     list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1005         if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1006             break;
1007 
1008         if (unlikely(dfrag == msk->first_pending)) {
1009             /* in recovery mode can see ack after the current snd head */
1010             if (WARN_ON_ONCE(!msk->recovery))
1011                 break;
1012 
1013             WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1014         }
1015 
1016         dfrag_clear(sk, dfrag);
1017     }
1018 
1019     dfrag = mptcp_rtx_head(sk);
1020     if (dfrag && after64(snd_una, dfrag->data_seq)) {
1021         u64 delta = snd_una - dfrag->data_seq;
1022 
1023         /* prevent wrap around in recovery mode */
1024         if (unlikely(delta > dfrag->already_sent)) {
1025             if (WARN_ON_ONCE(!msk->recovery))
1026                 goto out;
1027             if (WARN_ON_ONCE(delta > dfrag->data_len))
1028                 goto out;
1029             dfrag->already_sent += delta - dfrag->already_sent;
1030         }
1031 
1032         dfrag->data_seq += delta;
1033         dfrag->offset += delta;
1034         dfrag->data_len -= delta;
1035         dfrag->already_sent -= delta;
1036 
1037         dfrag_uncharge(sk, delta);
1038     }
1039 
1040     /* all retransmitted data acked, recovery completed */
1041     if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1042         msk->recovery = false;
1043 
1044 out:
1045     if (snd_una == READ_ONCE(msk->snd_nxt) &&
1046         snd_una == READ_ONCE(msk->write_seq)) {
1047         if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1048             mptcp_stop_timer(sk);
1049     } else {
1050         mptcp_reset_timer(sk);
1051     }
1052 }
1053 
1054 static void __mptcp_clean_una_wakeup(struct sock *sk)
1055 {
1056     lockdep_assert_held_once(&sk->sk_lock.slock);
1057 
1058     __mptcp_clean_una(sk);
1059     mptcp_write_space(sk);
1060 }
1061 
1062 static void mptcp_clean_una_wakeup(struct sock *sk)
1063 {
1064     mptcp_data_lock(sk);
1065     __mptcp_clean_una_wakeup(sk);
1066     mptcp_data_unlock(sk);
1067 }
1068 
1069 static void mptcp_enter_memory_pressure(struct sock *sk)
1070 {
1071     struct mptcp_subflow_context *subflow;
1072     struct mptcp_sock *msk = mptcp_sk(sk);
1073     bool first = true;
1074 
1075     sk_stream_moderate_sndbuf(sk);
1076     mptcp_for_each_subflow(msk, subflow) {
1077         struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1078 
1079         if (first)
1080             tcp_enter_memory_pressure(ssk);
1081         sk_stream_moderate_sndbuf(ssk);
1082         first = false;
1083     }
1084 }
1085 
1086 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1087  * data
1088  */
1089 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1090 {
1091     if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1092                     pfrag, sk->sk_allocation)))
1093         return true;
1094 
1095     mptcp_enter_memory_pressure(sk);
1096     return false;
1097 }
1098 
1099 static struct mptcp_data_frag *
1100 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1101               int orig_offset)
1102 {
1103     int offset = ALIGN(orig_offset, sizeof(long));
1104     struct mptcp_data_frag *dfrag;
1105 
1106     dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1107     dfrag->data_len = 0;
1108     dfrag->data_seq = msk->write_seq;
1109     dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1110     dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1111     dfrag->already_sent = 0;
1112     dfrag->page = pfrag->page;
1113 
1114     return dfrag;
1115 }
1116 
1117 struct mptcp_sendmsg_info {
1118     int mss_now;
1119     int size_goal;
1120     u16 limit;
1121     u16 sent;
1122     unsigned int flags;
1123     bool data_lock_held;
1124 };
1125 
1126 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1127                     u64 data_seq, int avail_size)
1128 {
1129     u64 window_end = mptcp_wnd_end(msk);
1130     u64 mptcp_snd_wnd;
1131 
1132     if (__mptcp_check_fallback(msk))
1133         return avail_size;
1134 
1135     mptcp_snd_wnd = window_end - data_seq;
1136     avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1137 
1138     if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1139         tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1140         MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1141     }
1142 
1143     return avail_size;
1144 }
1145 
1146 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1147 {
1148     struct skb_ext *mpext = __skb_ext_alloc(gfp);
1149 
1150     if (!mpext)
1151         return false;
1152     __skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1153     return true;
1154 }
1155 
1156 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1157 {
1158     struct sk_buff *skb;
1159 
1160     skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1161     if (likely(skb)) {
1162         if (likely(__mptcp_add_ext(skb, gfp))) {
1163             skb_reserve(skb, MAX_TCP_HEADER);
1164             skb->ip_summed = CHECKSUM_PARTIAL;
1165             INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1166             return skb;
1167         }
1168         __kfree_skb(skb);
1169     } else {
1170         mptcp_enter_memory_pressure(sk);
1171     }
1172     return NULL;
1173 }
1174 
1175 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1176 {
1177     struct sk_buff *skb;
1178 
1179     skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1180     if (!skb)
1181         return NULL;
1182 
1183     if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1184         tcp_skb_entail(ssk, skb);
1185         return skb;
1186     }
1187     tcp_skb_tsorted_anchor_cleanup(skb);
1188     kfree_skb(skb);
1189     return NULL;
1190 }
1191 
1192 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1193 {
1194     gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1195 
1196     return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1197 }
1198 
1199 /* note: this always recompute the csum on the whole skb, even
1200  * if we just appended a single frag. More status info needed
1201  */
1202 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1203 {
1204     struct mptcp_ext *mpext = mptcp_get_ext(skb);
1205     __wsum csum = ~csum_unfold(mpext->csum);
1206     int offset = skb->len - added;
1207 
1208     mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1209 }
1210 
1211 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1212                       struct sock *ssk,
1213                       struct mptcp_ext *mpext)
1214 {
1215     if (!mpext)
1216         return;
1217 
1218     mpext->infinite_map = 1;
1219     mpext->data_len = 0;
1220 
1221     MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1222     mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1223     pr_fallback(msk);
1224     mptcp_do_fallback(ssk);
1225 }
1226 
1227 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1228                   struct mptcp_data_frag *dfrag,
1229                   struct mptcp_sendmsg_info *info)
1230 {
1231     u64 data_seq = dfrag->data_seq + info->sent;
1232     int offset = dfrag->offset + info->sent;
1233     struct mptcp_sock *msk = mptcp_sk(sk);
1234     bool zero_window_probe = false;
1235     struct mptcp_ext *mpext = NULL;
1236     bool can_coalesce = false;
1237     bool reuse_skb = true;
1238     struct sk_buff *skb;
1239     size_t copy;
1240     int i;
1241 
1242     pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1243          msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1244 
1245     if (WARN_ON_ONCE(info->sent > info->limit ||
1246              info->limit > dfrag->data_len))
1247         return 0;
1248 
1249     if (unlikely(!__tcp_can_send(ssk)))
1250         return -EAGAIN;
1251 
1252     /* compute send limit */
1253     info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1254     copy = info->size_goal;
1255 
1256     skb = tcp_write_queue_tail(ssk);
1257     if (skb && copy > skb->len) {
1258         /* Limit the write to the size available in the
1259          * current skb, if any, so that we create at most a new skb.
1260          * Explicitly tells TCP internals to avoid collapsing on later
1261          * queue management operation, to avoid breaking the ext <->
1262          * SSN association set here
1263          */
1264         mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1265         if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1266             TCP_SKB_CB(skb)->eor = 1;
1267             goto alloc_skb;
1268         }
1269 
1270         i = skb_shinfo(skb)->nr_frags;
1271         can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1272         if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1273             tcp_mark_push(tcp_sk(ssk), skb);
1274             goto alloc_skb;
1275         }
1276 
1277         copy -= skb->len;
1278     } else {
1279 alloc_skb:
1280         skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1281         if (!skb)
1282             return -ENOMEM;
1283 
1284         i = skb_shinfo(skb)->nr_frags;
1285         reuse_skb = false;
1286         mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1287     }
1288 
1289     /* Zero window and all data acked? Probe. */
1290     copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1291     if (copy == 0) {
1292         u64 snd_una = READ_ONCE(msk->snd_una);
1293 
1294         if (snd_una != msk->snd_nxt) {
1295             tcp_remove_empty_skb(ssk);
1296             return 0;
1297         }
1298 
1299         zero_window_probe = true;
1300         data_seq = snd_una - 1;
1301         copy = 1;
1302 
1303         /* all mptcp-level data is acked, no skbs should be present into the
1304          * ssk write queue
1305          */
1306         WARN_ON_ONCE(reuse_skb);
1307     }
1308 
1309     copy = min_t(size_t, copy, info->limit - info->sent);
1310     if (!sk_wmem_schedule(ssk, copy)) {
1311         tcp_remove_empty_skb(ssk);
1312         return -ENOMEM;
1313     }
1314 
1315     if (can_coalesce) {
1316         skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1317     } else {
1318         get_page(dfrag->page);
1319         skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1320     }
1321 
1322     skb->len += copy;
1323     skb->data_len += copy;
1324     skb->truesize += copy;
1325     sk_wmem_queued_add(ssk, copy);
1326     sk_mem_charge(ssk, copy);
1327     WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1328     TCP_SKB_CB(skb)->end_seq += copy;
1329     tcp_skb_pcount_set(skb, 0);
1330 
1331     /* on skb reuse we just need to update the DSS len */
1332     if (reuse_skb) {
1333         TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1334         mpext->data_len += copy;
1335         WARN_ON_ONCE(zero_window_probe);
1336         goto out;
1337     }
1338 
1339     memset(mpext, 0, sizeof(*mpext));
1340     mpext->data_seq = data_seq;
1341     mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1342     mpext->data_len = copy;
1343     mpext->use_map = 1;
1344     mpext->dsn64 = 1;
1345 
1346     pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1347          mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1348          mpext->dsn64);
1349 
1350     if (zero_window_probe) {
1351         mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1352         mpext->frozen = 1;
1353         if (READ_ONCE(msk->csum_enabled))
1354             mptcp_update_data_checksum(skb, copy);
1355         tcp_push_pending_frames(ssk);
1356         return 0;
1357     }
1358 out:
1359     if (READ_ONCE(msk->csum_enabled))
1360         mptcp_update_data_checksum(skb, copy);
1361     if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1362         mptcp_update_infinite_map(msk, ssk, mpext);
1363     trace_mptcp_sendmsg_frag(mpext);
1364     mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1365     return copy;
1366 }
1367 
1368 #define MPTCP_SEND_BURST_SIZE       ((1 << 16) - \
1369                      sizeof(struct tcphdr) - \
1370                      MAX_TCP_OPTION_SPACE - \
1371                      sizeof(struct ipv6hdr) - \
1372                      sizeof(struct frag_hdr))
1373 
1374 struct subflow_send_info {
1375     struct sock *ssk;
1376     u64 linger_time;
1377 };
1378 
1379 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1380 {
1381     if (!subflow->stale)
1382         return;
1383 
1384     subflow->stale = 0;
1385     MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1386 }
1387 
1388 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1389 {
1390     if (unlikely(subflow->stale)) {
1391         u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1392 
1393         if (subflow->stale_rcv_tstamp == rcv_tstamp)
1394             return false;
1395 
1396         mptcp_subflow_set_active(subflow);
1397     }
1398     return __mptcp_subflow_active(subflow);
1399 }
1400 
1401 #define SSK_MODE_ACTIVE 0
1402 #define SSK_MODE_BACKUP 1
1403 #define SSK_MODE_MAX    2
1404 
1405 /* implement the mptcp packet scheduler;
1406  * returns the subflow that will transmit the next DSS
1407  * additionally updates the rtx timeout
1408  */
1409 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1410 {
1411     struct subflow_send_info send_info[SSK_MODE_MAX];
1412     struct mptcp_subflow_context *subflow;
1413     struct sock *sk = (struct sock *)msk;
1414     u32 pace, burst, wmem;
1415     int i, nr_active = 0;
1416     struct sock *ssk;
1417     u64 linger_time;
1418     long tout = 0;
1419 
1420     sock_owned_by_me(sk);
1421 
1422     if (__mptcp_check_fallback(msk)) {
1423         if (!msk->first)
1424             return NULL;
1425         return __tcp_can_send(msk->first) &&
1426                sk_stream_memory_free(msk->first) ? msk->first : NULL;
1427     }
1428 
1429     /* re-use last subflow, if the burst allow that */
1430     if (msk->last_snd && msk->snd_burst > 0 &&
1431         sk_stream_memory_free(msk->last_snd) &&
1432         mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
1433         mptcp_set_timeout(sk);
1434         return msk->last_snd;
1435     }
1436 
1437     /* pick the subflow with the lower wmem/wspace ratio */
1438     for (i = 0; i < SSK_MODE_MAX; ++i) {
1439         send_info[i].ssk = NULL;
1440         send_info[i].linger_time = -1;
1441     }
1442 
1443     mptcp_for_each_subflow(msk, subflow) {
1444         trace_mptcp_subflow_get_send(subflow);
1445         ssk =  mptcp_subflow_tcp_sock(subflow);
1446         if (!mptcp_subflow_active(subflow))
1447             continue;
1448 
1449         tout = max(tout, mptcp_timeout_from_subflow(subflow));
1450         nr_active += !subflow->backup;
1451         pace = subflow->avg_pacing_rate;
1452         if (unlikely(!pace)) {
1453             /* init pacing rate from socket */
1454             subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1455             pace = subflow->avg_pacing_rate;
1456             if (!pace)
1457                 continue;
1458         }
1459 
1460         linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1461         if (linger_time < send_info[subflow->backup].linger_time) {
1462             send_info[subflow->backup].ssk = ssk;
1463             send_info[subflow->backup].linger_time = linger_time;
1464         }
1465     }
1466     __mptcp_set_timeout(sk, tout);
1467 
1468     /* pick the best backup if no other subflow is active */
1469     if (!nr_active)
1470         send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1471 
1472     /* According to the blest algorithm, to avoid HoL blocking for the
1473      * faster flow, we need to:
1474      * - estimate the faster flow linger time
1475      * - use the above to estimate the amount of byte transferred
1476      *   by the faster flow
1477      * - check that the amount of queued data is greter than the above,
1478      *   otherwise do not use the picked, slower, subflow
1479      * We select the subflow with the shorter estimated time to flush
1480      * the queued mem, which basically ensure the above. We just need
1481      * to check that subflow has a non empty cwin.
1482      */
1483     ssk = send_info[SSK_MODE_ACTIVE].ssk;
1484     if (!ssk || !sk_stream_memory_free(ssk))
1485         return NULL;
1486 
1487     burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1488     wmem = READ_ONCE(ssk->sk_wmem_queued);
1489     if (!burst) {
1490         msk->last_snd = NULL;
1491         return ssk;
1492     }
1493 
1494     subflow = mptcp_subflow_ctx(ssk);
1495     subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1496                        READ_ONCE(ssk->sk_pacing_rate) * burst,
1497                        burst + wmem);
1498     msk->last_snd = ssk;
1499     msk->snd_burst = burst;
1500     return ssk;
1501 }
1502 
1503 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1504 {
1505     tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1506     release_sock(ssk);
1507 }
1508 
1509 static void mptcp_update_post_push(struct mptcp_sock *msk,
1510                    struct mptcp_data_frag *dfrag,
1511                    u32 sent)
1512 {
1513     u64 snd_nxt_new = dfrag->data_seq;
1514 
1515     dfrag->already_sent += sent;
1516 
1517     msk->snd_burst -= sent;
1518 
1519     snd_nxt_new += dfrag->already_sent;
1520 
1521     /* snd_nxt_new can be smaller than snd_nxt in case mptcp
1522      * is recovering after a failover. In that event, this re-sends
1523      * old segments.
1524      *
1525      * Thus compute snd_nxt_new candidate based on
1526      * the dfrag->data_seq that was sent and the data
1527      * that has been handed to the subflow for transmission
1528      * and skip update in case it was old dfrag.
1529      */
1530     if (likely(after64(snd_nxt_new, msk->snd_nxt)))
1531         msk->snd_nxt = snd_nxt_new;
1532 }
1533 
1534 void mptcp_check_and_set_pending(struct sock *sk)
1535 {
1536     if (mptcp_send_head(sk))
1537         mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
1538 }
1539 
1540 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1541 {
1542     struct sock *prev_ssk = NULL, *ssk = NULL;
1543     struct mptcp_sock *msk = mptcp_sk(sk);
1544     struct mptcp_sendmsg_info info = {
1545                 .flags = flags,
1546     };
1547     struct mptcp_data_frag *dfrag;
1548     int len, copied = 0;
1549 
1550     while ((dfrag = mptcp_send_head(sk))) {
1551         info.sent = dfrag->already_sent;
1552         info.limit = dfrag->data_len;
1553         len = dfrag->data_len - dfrag->already_sent;
1554         while (len > 0) {
1555             int ret = 0;
1556 
1557             prev_ssk = ssk;
1558             ssk = mptcp_subflow_get_send(msk);
1559 
1560             /* First check. If the ssk has changed since
1561              * the last round, release prev_ssk
1562              */
1563             if (ssk != prev_ssk && prev_ssk)
1564                 mptcp_push_release(prev_ssk, &info);
1565             if (!ssk)
1566                 goto out;
1567 
1568             /* Need to lock the new subflow only if different
1569              * from the previous one, otherwise we are still
1570              * helding the relevant lock
1571              */
1572             if (ssk != prev_ssk)
1573                 lock_sock(ssk);
1574 
1575             ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1576             if (ret <= 0) {
1577                 if (ret == -EAGAIN)
1578                     continue;
1579                 mptcp_push_release(ssk, &info);
1580                 goto out;
1581             }
1582 
1583             info.sent += ret;
1584             copied += ret;
1585             len -= ret;
1586 
1587             mptcp_update_post_push(msk, dfrag, ret);
1588         }
1589         WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1590     }
1591 
1592     /* at this point we held the socket lock for the last subflow we used */
1593     if (ssk)
1594         mptcp_push_release(ssk, &info);
1595 
1596 out:
1597     /* ensure the rtx timer is running */
1598     if (!mptcp_timer_pending(sk))
1599         mptcp_reset_timer(sk);
1600     if (copied)
1601         __mptcp_check_send_data_fin(sk);
1602 }
1603 
1604 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1605 {
1606     struct mptcp_sock *msk = mptcp_sk(sk);
1607     struct mptcp_sendmsg_info info = {
1608         .data_lock_held = true,
1609     };
1610     struct mptcp_data_frag *dfrag;
1611     struct sock *xmit_ssk;
1612     int len, copied = 0;
1613     bool first = true;
1614 
1615     info.flags = 0;
1616     while ((dfrag = mptcp_send_head(sk))) {
1617         info.sent = dfrag->already_sent;
1618         info.limit = dfrag->data_len;
1619         len = dfrag->data_len - dfrag->already_sent;
1620         while (len > 0) {
1621             int ret = 0;
1622 
1623             /* the caller already invoked the packet scheduler,
1624              * check for a different subflow usage only after
1625              * spooling the first chunk of data
1626              */
1627             xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1628             if (!xmit_ssk)
1629                 goto out;
1630             if (xmit_ssk != ssk) {
1631                 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk),
1632                                MPTCP_DELEGATE_SEND);
1633                 goto out;
1634             }
1635 
1636             ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1637             if (ret <= 0)
1638                 goto out;
1639 
1640             info.sent += ret;
1641             copied += ret;
1642             len -= ret;
1643             first = false;
1644 
1645             mptcp_update_post_push(msk, dfrag, ret);
1646         }
1647         WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1648     }
1649 
1650 out:
1651     /* __mptcp_alloc_tx_skb could have released some wmem and we are
1652      * not going to flush it via release_sock()
1653      */
1654     if (copied) {
1655         tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1656              info.size_goal);
1657         if (!mptcp_timer_pending(sk))
1658             mptcp_reset_timer(sk);
1659 
1660         if (msk->snd_data_fin_enable &&
1661             msk->snd_nxt + 1 == msk->write_seq)
1662             mptcp_schedule_work(sk);
1663     }
1664 }
1665 
1666 static void mptcp_set_nospace(struct sock *sk)
1667 {
1668     /* enable autotune */
1669     set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1670 
1671     /* will be cleared on avail space */
1672     set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1673 }
1674 
1675 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1676 {
1677     struct mptcp_sock *msk = mptcp_sk(sk);
1678     struct page_frag *pfrag;
1679     size_t copied = 0;
1680     int ret = 0;
1681     long timeo;
1682 
1683     /* we don't support FASTOPEN yet */
1684     if (msg->msg_flags & MSG_FASTOPEN)
1685         return -EOPNOTSUPP;
1686 
1687     /* silently ignore everything else */
1688     msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1689 
1690     lock_sock(sk);
1691 
1692     timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1693 
1694     if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1695         ret = sk_stream_wait_connect(sk, &timeo);
1696         if (ret)
1697             goto out;
1698     }
1699 
1700     pfrag = sk_page_frag(sk);
1701 
1702     while (msg_data_left(msg)) {
1703         int total_ts, frag_truesize = 0;
1704         struct mptcp_data_frag *dfrag;
1705         bool dfrag_collapsed;
1706         size_t psize, offset;
1707 
1708         if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1709             ret = -EPIPE;
1710             goto out;
1711         }
1712 
1713         /* reuse tail pfrag, if possible, or carve a new one from the
1714          * page allocator
1715          */
1716         dfrag = mptcp_pending_tail(sk);
1717         dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1718         if (!dfrag_collapsed) {
1719             if (!sk_stream_memory_free(sk))
1720                 goto wait_for_memory;
1721 
1722             if (!mptcp_page_frag_refill(sk, pfrag))
1723                 goto wait_for_memory;
1724 
1725             dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1726             frag_truesize = dfrag->overhead;
1727         }
1728 
1729         /* we do not bound vs wspace, to allow a single packet.
1730          * memory accounting will prevent execessive memory usage
1731          * anyway
1732          */
1733         offset = dfrag->offset + dfrag->data_len;
1734         psize = pfrag->size - offset;
1735         psize = min_t(size_t, psize, msg_data_left(msg));
1736         total_ts = psize + frag_truesize;
1737 
1738         if (!sk_wmem_schedule(sk, total_ts))
1739             goto wait_for_memory;
1740 
1741         if (copy_page_from_iter(dfrag->page, offset, psize,
1742                     &msg->msg_iter) != psize) {
1743             ret = -EFAULT;
1744             goto out;
1745         }
1746 
1747         /* data successfully copied into the write queue */
1748         sk->sk_forward_alloc -= total_ts;
1749         copied += psize;
1750         dfrag->data_len += psize;
1751         frag_truesize += psize;
1752         pfrag->offset += frag_truesize;
1753         WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1754 
1755         /* charge data on mptcp pending queue to the msk socket
1756          * Note: we charge such data both to sk and ssk
1757          */
1758         sk_wmem_queued_add(sk, frag_truesize);
1759         if (!dfrag_collapsed) {
1760             get_page(dfrag->page);
1761             list_add_tail(&dfrag->list, &msk->rtx_queue);
1762             if (!msk->first_pending)
1763                 WRITE_ONCE(msk->first_pending, dfrag);
1764         }
1765         pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1766              dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1767              !dfrag_collapsed);
1768 
1769         continue;
1770 
1771 wait_for_memory:
1772         mptcp_set_nospace(sk);
1773         __mptcp_push_pending(sk, msg->msg_flags);
1774         ret = sk_stream_wait_memory(sk, &timeo);
1775         if (ret)
1776             goto out;
1777     }
1778 
1779     if (copied)
1780         __mptcp_push_pending(sk, msg->msg_flags);
1781 
1782 out:
1783     release_sock(sk);
1784     return copied ? : ret;
1785 }
1786 
1787 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1788                 struct msghdr *msg,
1789                 size_t len, int flags,
1790                 struct scm_timestamping_internal *tss,
1791                 int *cmsg_flags)
1792 {
1793     struct sk_buff *skb, *tmp;
1794     int copied = 0;
1795 
1796     skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1797         u32 offset = MPTCP_SKB_CB(skb)->offset;
1798         u32 data_len = skb->len - offset;
1799         u32 count = min_t(size_t, len - copied, data_len);
1800         int err;
1801 
1802         if (!(flags & MSG_TRUNC)) {
1803             err = skb_copy_datagram_msg(skb, offset, msg, count);
1804             if (unlikely(err < 0)) {
1805                 if (!copied)
1806                     return err;
1807                 break;
1808             }
1809         }
1810 
1811         if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1812             tcp_update_recv_tstamps(skb, tss);
1813             *cmsg_flags |= MPTCP_CMSG_TS;
1814         }
1815 
1816         copied += count;
1817 
1818         if (count < data_len) {
1819             if (!(flags & MSG_PEEK)) {
1820                 MPTCP_SKB_CB(skb)->offset += count;
1821                 MPTCP_SKB_CB(skb)->map_seq += count;
1822             }
1823             break;
1824         }
1825 
1826         if (!(flags & MSG_PEEK)) {
1827             /* we will bulk release the skb memory later */
1828             skb->destructor = NULL;
1829             WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1830             __skb_unlink(skb, &msk->receive_queue);
1831             __kfree_skb(skb);
1832         }
1833 
1834         if (copied >= len)
1835             break;
1836     }
1837 
1838     return copied;
1839 }
1840 
1841 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1842  *
1843  * Only difference: Use highest rtt estimate of the subflows in use.
1844  */
1845 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1846 {
1847     struct mptcp_subflow_context *subflow;
1848     struct sock *sk = (struct sock *)msk;
1849     u32 time, advmss = 1;
1850     u64 rtt_us, mstamp;
1851 
1852     sock_owned_by_me(sk);
1853 
1854     if (copied <= 0)
1855         return;
1856 
1857     msk->rcvq_space.copied += copied;
1858 
1859     mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1860     time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1861 
1862     rtt_us = msk->rcvq_space.rtt_us;
1863     if (rtt_us && time < (rtt_us >> 3))
1864         return;
1865 
1866     rtt_us = 0;
1867     mptcp_for_each_subflow(msk, subflow) {
1868         const struct tcp_sock *tp;
1869         u64 sf_rtt_us;
1870         u32 sf_advmss;
1871 
1872         tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1873 
1874         sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1875         sf_advmss = READ_ONCE(tp->advmss);
1876 
1877         rtt_us = max(sf_rtt_us, rtt_us);
1878         advmss = max(sf_advmss, advmss);
1879     }
1880 
1881     msk->rcvq_space.rtt_us = rtt_us;
1882     if (time < (rtt_us >> 3) || rtt_us == 0)
1883         return;
1884 
1885     if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1886         goto new_measure;
1887 
1888     if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1889         !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1890         int rcvmem, rcvbuf;
1891         u64 rcvwin, grow;
1892 
1893         rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1894 
1895         grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1896 
1897         do_div(grow, msk->rcvq_space.space);
1898         rcvwin += (grow << 1);
1899 
1900         rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1901         while (tcp_win_from_space(sk, rcvmem) < advmss)
1902             rcvmem += 128;
1903 
1904         do_div(rcvwin, advmss);
1905         rcvbuf = min_t(u64, rcvwin * rcvmem,
1906                    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1907 
1908         if (rcvbuf > sk->sk_rcvbuf) {
1909             u32 window_clamp;
1910 
1911             window_clamp = tcp_win_from_space(sk, rcvbuf);
1912             WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1913 
1914             /* Make subflows follow along.  If we do not do this, we
1915              * get drops at subflow level if skbs can't be moved to
1916              * the mptcp rx queue fast enough (announced rcv_win can
1917              * exceed ssk->sk_rcvbuf).
1918              */
1919             mptcp_for_each_subflow(msk, subflow) {
1920                 struct sock *ssk;
1921                 bool slow;
1922 
1923                 ssk = mptcp_subflow_tcp_sock(subflow);
1924                 slow = lock_sock_fast(ssk);
1925                 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1926                 tcp_sk(ssk)->window_clamp = window_clamp;
1927                 tcp_cleanup_rbuf(ssk, 1);
1928                 unlock_sock_fast(ssk, slow);
1929             }
1930         }
1931     }
1932 
1933     msk->rcvq_space.space = msk->rcvq_space.copied;
1934 new_measure:
1935     msk->rcvq_space.copied = 0;
1936     msk->rcvq_space.time = mstamp;
1937 }
1938 
1939 static void __mptcp_update_rmem(struct sock *sk)
1940 {
1941     struct mptcp_sock *msk = mptcp_sk(sk);
1942 
1943     if (!msk->rmem_released)
1944         return;
1945 
1946     atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1947     mptcp_rmem_uncharge(sk, msk->rmem_released);
1948     WRITE_ONCE(msk->rmem_released, 0);
1949 }
1950 
1951 static void __mptcp_splice_receive_queue(struct sock *sk)
1952 {
1953     struct mptcp_sock *msk = mptcp_sk(sk);
1954 
1955     skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1956 }
1957 
1958 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1959 {
1960     struct sock *sk = (struct sock *)msk;
1961     unsigned int moved = 0;
1962     bool ret, done;
1963 
1964     do {
1965         struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1966         bool slowpath;
1967 
1968         /* we can have data pending in the subflows only if the msk
1969          * receive buffer was full at subflow_data_ready() time,
1970          * that is an unlikely slow path.
1971          */
1972         if (likely(!ssk))
1973             break;
1974 
1975         slowpath = lock_sock_fast(ssk);
1976         mptcp_data_lock(sk);
1977         __mptcp_update_rmem(sk);
1978         done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1979         mptcp_data_unlock(sk);
1980 
1981         if (unlikely(ssk->sk_err))
1982             __mptcp_error_report(sk);
1983         unlock_sock_fast(ssk, slowpath);
1984     } while (!done);
1985 
1986     /* acquire the data lock only if some input data is pending */
1987     ret = moved > 0;
1988     if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
1989         !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
1990         mptcp_data_lock(sk);
1991         __mptcp_update_rmem(sk);
1992         ret |= __mptcp_ofo_queue(msk);
1993         __mptcp_splice_receive_queue(sk);
1994         mptcp_data_unlock(sk);
1995     }
1996     if (ret)
1997         mptcp_check_data_fin((struct sock *)msk);
1998     return !skb_queue_empty(&msk->receive_queue);
1999 }
2000 
2001 static unsigned int mptcp_inq_hint(const struct sock *sk)
2002 {
2003     const struct mptcp_sock *msk = mptcp_sk(sk);
2004     const struct sk_buff *skb;
2005 
2006     skb = skb_peek(&msk->receive_queue);
2007     if (skb) {
2008         u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2009 
2010         if (hint_val >= INT_MAX)
2011             return INT_MAX;
2012 
2013         return (unsigned int)hint_val;
2014     }
2015 
2016     if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2017         return 1;
2018 
2019     return 0;
2020 }
2021 
2022 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2023              int flags, int *addr_len)
2024 {
2025     struct mptcp_sock *msk = mptcp_sk(sk);
2026     struct scm_timestamping_internal tss;
2027     int copied = 0, cmsg_flags = 0;
2028     int target;
2029     long timeo;
2030 
2031     /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2032     if (unlikely(flags & MSG_ERRQUEUE))
2033         return inet_recv_error(sk, msg, len, addr_len);
2034 
2035     lock_sock(sk);
2036     if (unlikely(sk->sk_state == TCP_LISTEN)) {
2037         copied = -ENOTCONN;
2038         goto out_err;
2039     }
2040 
2041     timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2042 
2043     len = min_t(size_t, len, INT_MAX);
2044     target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2045 
2046     if (unlikely(msk->recvmsg_inq))
2047         cmsg_flags = MPTCP_CMSG_INQ;
2048 
2049     while (copied < len) {
2050         int bytes_read;
2051 
2052         bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2053         if (unlikely(bytes_read < 0)) {
2054             if (!copied)
2055                 copied = bytes_read;
2056             goto out_err;
2057         }
2058 
2059         copied += bytes_read;
2060 
2061         /* be sure to advertise window change */
2062         mptcp_cleanup_rbuf(msk);
2063 
2064         if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2065             continue;
2066 
2067         /* only the master socket status is relevant here. The exit
2068          * conditions mirror closely tcp_recvmsg()
2069          */
2070         if (copied >= target)
2071             break;
2072 
2073         if (copied) {
2074             if (sk->sk_err ||
2075                 sk->sk_state == TCP_CLOSE ||
2076                 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2077                 !timeo ||
2078                 signal_pending(current))
2079                 break;
2080         } else {
2081             if (sk->sk_err) {
2082                 copied = sock_error(sk);
2083                 break;
2084             }
2085 
2086             if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2087                 mptcp_check_for_eof(msk);
2088 
2089             if (sk->sk_shutdown & RCV_SHUTDOWN) {
2090                 /* race breaker: the shutdown could be after the
2091                  * previous receive queue check
2092                  */
2093                 if (__mptcp_move_skbs(msk))
2094                     continue;
2095                 break;
2096             }
2097 
2098             if (sk->sk_state == TCP_CLOSE) {
2099                 copied = -ENOTCONN;
2100                 break;
2101             }
2102 
2103             if (!timeo) {
2104                 copied = -EAGAIN;
2105                 break;
2106             }
2107 
2108             if (signal_pending(current)) {
2109                 copied = sock_intr_errno(timeo);
2110                 break;
2111             }
2112         }
2113 
2114         pr_debug("block timeout %ld", timeo);
2115         sk_wait_data(sk, &timeo, NULL);
2116     }
2117 
2118 out_err:
2119     if (cmsg_flags && copied >= 0) {
2120         if (cmsg_flags & MPTCP_CMSG_TS)
2121             tcp_recv_timestamp(msg, sk, &tss);
2122 
2123         if (cmsg_flags & MPTCP_CMSG_INQ) {
2124             unsigned int inq = mptcp_inq_hint(sk);
2125 
2126             put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2127         }
2128     }
2129 
2130     pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2131          msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2132          skb_queue_empty(&msk->receive_queue), copied);
2133     if (!(flags & MSG_PEEK))
2134         mptcp_rcv_space_adjust(msk, copied);
2135 
2136     release_sock(sk);
2137     return copied;
2138 }
2139 
2140 static void mptcp_retransmit_timer(struct timer_list *t)
2141 {
2142     struct inet_connection_sock *icsk = from_timer(icsk, t,
2143                                icsk_retransmit_timer);
2144     struct sock *sk = &icsk->icsk_inet.sk;
2145     struct mptcp_sock *msk = mptcp_sk(sk);
2146 
2147     bh_lock_sock(sk);
2148     if (!sock_owned_by_user(sk)) {
2149         /* we need a process context to retransmit */
2150         if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2151             mptcp_schedule_work(sk);
2152     } else {
2153         /* delegate our work to tcp_release_cb() */
2154         __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2155     }
2156     bh_unlock_sock(sk);
2157     sock_put(sk);
2158 }
2159 
2160 static void mptcp_timeout_timer(struct timer_list *t)
2161 {
2162     struct sock *sk = from_timer(sk, t, sk_timer);
2163 
2164     mptcp_schedule_work(sk);
2165     sock_put(sk);
2166 }
2167 
2168 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2169  * level.
2170  *
2171  * A backup subflow is returned only if that is the only kind available.
2172  */
2173 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2174 {
2175     struct sock *backup = NULL, *pick = NULL;
2176     struct mptcp_subflow_context *subflow;
2177     int min_stale_count = INT_MAX;
2178 
2179     sock_owned_by_me((const struct sock *)msk);
2180 
2181     if (__mptcp_check_fallback(msk))
2182         return NULL;
2183 
2184     mptcp_for_each_subflow(msk, subflow) {
2185         struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2186 
2187         if (!__mptcp_subflow_active(subflow))
2188             continue;
2189 
2190         /* still data outstanding at TCP level? skip this */
2191         if (!tcp_rtx_and_write_queues_empty(ssk)) {
2192             mptcp_pm_subflow_chk_stale(msk, ssk);
2193             min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2194             continue;
2195         }
2196 
2197         if (subflow->backup) {
2198             if (!backup)
2199                 backup = ssk;
2200             continue;
2201         }
2202 
2203         if (!pick)
2204             pick = ssk;
2205     }
2206 
2207     if (pick)
2208         return pick;
2209 
2210     /* use backup only if there are no progresses anywhere */
2211     return min_stale_count > 1 ? backup : NULL;
2212 }
2213 
2214 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2215 {
2216     if (msk->subflow) {
2217         iput(SOCK_INODE(msk->subflow));
2218         msk->subflow = NULL;
2219     }
2220 }
2221 
2222 bool __mptcp_retransmit_pending_data(struct sock *sk)
2223 {
2224     struct mptcp_data_frag *cur, *rtx_head;
2225     struct mptcp_sock *msk = mptcp_sk(sk);
2226 
2227     if (__mptcp_check_fallback(mptcp_sk(sk)))
2228         return false;
2229 
2230     if (tcp_rtx_and_write_queues_empty(sk))
2231         return false;
2232 
2233     /* the closing socket has some data untransmitted and/or unacked:
2234      * some data in the mptcp rtx queue has not really xmitted yet.
2235      * keep it simple and re-inject the whole mptcp level rtx queue
2236      */
2237     mptcp_data_lock(sk);
2238     __mptcp_clean_una_wakeup(sk);
2239     rtx_head = mptcp_rtx_head(sk);
2240     if (!rtx_head) {
2241         mptcp_data_unlock(sk);
2242         return false;
2243     }
2244 
2245     msk->recovery_snd_nxt = msk->snd_nxt;
2246     msk->recovery = true;
2247     mptcp_data_unlock(sk);
2248 
2249     msk->first_pending = rtx_head;
2250     msk->snd_burst = 0;
2251 
2252     /* be sure to clear the "sent status" on all re-injected fragments */
2253     list_for_each_entry(cur, &msk->rtx_queue, list) {
2254         if (!cur->already_sent)
2255             break;
2256         cur->already_sent = 0;
2257     }
2258 
2259     return true;
2260 }
2261 
2262 /* flags for __mptcp_close_ssk() */
2263 #define MPTCP_CF_PUSH       BIT(1)
2264 #define MPTCP_CF_FASTCLOSE  BIT(2)
2265 
2266 /* subflow sockets can be either outgoing (connect) or incoming
2267  * (accept).
2268  *
2269  * Outgoing subflows use in-kernel sockets.
2270  * Incoming subflows do not have their own 'struct socket' allocated,
2271  * so we need to use tcp_close() after detaching them from the mptcp
2272  * parent socket.
2273  */
2274 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2275                   struct mptcp_subflow_context *subflow,
2276                   unsigned int flags)
2277 {
2278     struct mptcp_sock *msk = mptcp_sk(sk);
2279     bool need_push, dispose_it;
2280 
2281     dispose_it = !msk->subflow || ssk != msk->subflow->sk;
2282     if (dispose_it)
2283         list_del(&subflow->node);
2284 
2285     lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2286 
2287     if (flags & MPTCP_CF_FASTCLOSE)
2288         subflow->send_fastclose = 1;
2289 
2290     need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2291     if (!dispose_it) {
2292         tcp_disconnect(ssk, 0);
2293         msk->subflow->state = SS_UNCONNECTED;
2294         mptcp_subflow_ctx_reset(subflow);
2295         release_sock(ssk);
2296 
2297         goto out;
2298     }
2299 
2300     /* if we are invoked by the msk cleanup code, the subflow is
2301      * already orphaned
2302      */
2303     if (ssk->sk_socket)
2304         sock_orphan(ssk);
2305 
2306     subflow->disposable = 1;
2307 
2308     /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2309      * the ssk has been already destroyed, we just need to release the
2310      * reference owned by msk;
2311      */
2312     if (!inet_csk(ssk)->icsk_ulp_ops) {
2313         kfree_rcu(subflow, rcu);
2314     } else {
2315         /* otherwise tcp will dispose of the ssk and subflow ctx */
2316         if (ssk->sk_state == TCP_LISTEN) {
2317             tcp_set_state(ssk, TCP_CLOSE);
2318             mptcp_subflow_queue_clean(ssk);
2319             inet_csk_listen_stop(ssk);
2320         }
2321         __tcp_close(ssk, 0);
2322 
2323         /* close acquired an extra ref */
2324         __sock_put(ssk);
2325     }
2326     release_sock(ssk);
2327 
2328     sock_put(ssk);
2329 
2330     if (ssk == msk->first)
2331         msk->first = NULL;
2332 
2333 out:
2334     if (ssk == msk->last_snd)
2335         msk->last_snd = NULL;
2336 
2337     if (need_push)
2338         __mptcp_push_pending(sk, 0);
2339 }
2340 
2341 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2342              struct mptcp_subflow_context *subflow)
2343 {
2344     if (sk->sk_state == TCP_ESTABLISHED)
2345         mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2346 
2347     /* subflow aborted before reaching the fully_established status
2348      * attempt the creation of the next subflow
2349      */
2350     mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2351 
2352     __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2353 }
2354 
2355 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2356 {
2357     return 0;
2358 }
2359 
2360 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2361 {
2362     struct mptcp_subflow_context *subflow, *tmp;
2363 
2364     might_sleep();
2365 
2366     list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2367         struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2368 
2369         if (inet_sk_state_load(ssk) != TCP_CLOSE)
2370             continue;
2371 
2372         /* 'subflow_data_ready' will re-sched once rx queue is empty */
2373         if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2374             continue;
2375 
2376         mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2377     }
2378 }
2379 
2380 static bool mptcp_check_close_timeout(const struct sock *sk)
2381 {
2382     s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2383     struct mptcp_subflow_context *subflow;
2384 
2385     if (delta >= TCP_TIMEWAIT_LEN)
2386         return true;
2387 
2388     /* if all subflows are in closed status don't bother with additional
2389      * timeout
2390      */
2391     mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2392         if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2393             TCP_CLOSE)
2394             return false;
2395     }
2396     return true;
2397 }
2398 
2399 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2400 {
2401     struct mptcp_subflow_context *subflow, *tmp;
2402     struct sock *sk = &msk->sk.icsk_inet.sk;
2403 
2404     if (likely(!READ_ONCE(msk->rcv_fastclose)))
2405         return;
2406 
2407     mptcp_token_destroy(msk);
2408 
2409     list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2410         struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2411         bool slow;
2412 
2413         slow = lock_sock_fast(tcp_sk);
2414         if (tcp_sk->sk_state != TCP_CLOSE) {
2415             tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2416             tcp_set_state(tcp_sk, TCP_CLOSE);
2417         }
2418         unlock_sock_fast(tcp_sk, slow);
2419     }
2420 
2421     inet_sk_state_store(sk, TCP_CLOSE);
2422     sk->sk_shutdown = SHUTDOWN_MASK;
2423     smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2424     set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2425 
2426     mptcp_close_wake_up(sk);
2427 }
2428 
2429 static void __mptcp_retrans(struct sock *sk)
2430 {
2431     struct mptcp_sock *msk = mptcp_sk(sk);
2432     struct mptcp_sendmsg_info info = {};
2433     struct mptcp_data_frag *dfrag;
2434     size_t copied = 0;
2435     struct sock *ssk;
2436     int ret;
2437 
2438     mptcp_clean_una_wakeup(sk);
2439 
2440     /* first check ssk: need to kick "stale" logic */
2441     ssk = mptcp_subflow_get_retrans(msk);
2442     dfrag = mptcp_rtx_head(sk);
2443     if (!dfrag) {
2444         if (mptcp_data_fin_enabled(msk)) {
2445             struct inet_connection_sock *icsk = inet_csk(sk);
2446 
2447             icsk->icsk_retransmits++;
2448             mptcp_set_datafin_timeout(sk);
2449             mptcp_send_ack(msk);
2450 
2451             goto reset_timer;
2452         }
2453 
2454         if (!mptcp_send_head(sk))
2455             return;
2456 
2457         goto reset_timer;
2458     }
2459 
2460     if (!ssk)
2461         goto reset_timer;
2462 
2463     lock_sock(ssk);
2464 
2465     /* limit retransmission to the bytes already sent on some subflows */
2466     info.sent = 0;
2467     info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2468     while (info.sent < info.limit) {
2469         ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2470         if (ret <= 0)
2471             break;
2472 
2473         MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2474         copied += ret;
2475         info.sent += ret;
2476     }
2477     if (copied) {
2478         dfrag->already_sent = max(dfrag->already_sent, info.sent);
2479         tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2480              info.size_goal);
2481         WRITE_ONCE(msk->allow_infinite_fallback, false);
2482     }
2483 
2484     release_sock(ssk);
2485 
2486 reset_timer:
2487     mptcp_check_and_set_pending(sk);
2488 
2489     if (!mptcp_timer_pending(sk))
2490         mptcp_reset_timer(sk);
2491 }
2492 
2493 /* schedule the timeout timer for the relevant event: either close timeout
2494  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2495  */
2496 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout)
2497 {
2498     struct sock *sk = (struct sock *)msk;
2499     unsigned long timeout, close_timeout;
2500 
2501     if (!fail_tout && !sock_flag(sk, SOCK_DEAD))
2502         return;
2503 
2504     close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN;
2505 
2506     /* the close timeout takes precedence on the fail one, and here at least one of
2507      * them is active
2508      */
2509     timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout;
2510 
2511     sk_reset_timer(sk, &sk->sk_timer, timeout);
2512 }
2513 
2514 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2515 {
2516     struct sock *ssk = msk->first;
2517     bool slow;
2518 
2519     if (!ssk)
2520         return;
2521 
2522     pr_debug("MP_FAIL doesn't respond, reset the subflow");
2523 
2524     slow = lock_sock_fast(ssk);
2525     mptcp_subflow_reset(ssk);
2526     WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2527     unlock_sock_fast(ssk, slow);
2528 
2529     mptcp_reset_timeout(msk, 0);
2530 }
2531 
2532 static void mptcp_worker(struct work_struct *work)
2533 {
2534     struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2535     struct sock *sk = &msk->sk.icsk_inet.sk;
2536     unsigned long fail_tout;
2537     int state;
2538 
2539     lock_sock(sk);
2540     state = sk->sk_state;
2541     if (unlikely(state == TCP_CLOSE))
2542         goto unlock;
2543 
2544     mptcp_check_data_fin_ack(sk);
2545 
2546     mptcp_check_fastclose(msk);
2547 
2548     mptcp_pm_nl_work(msk);
2549 
2550     if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2551         mptcp_check_for_eof(msk);
2552 
2553     __mptcp_check_send_data_fin(sk);
2554     mptcp_check_data_fin(sk);
2555 
2556     /* There is no point in keeping around an orphaned sk timedout or
2557      * closed, but we need the msk around to reply to incoming DATA_FIN,
2558      * even if it is orphaned and in FIN_WAIT2 state
2559      */
2560     if (sock_flag(sk, SOCK_DEAD) &&
2561         (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2562         inet_sk_state_store(sk, TCP_CLOSE);
2563         __mptcp_destroy_sock(sk);
2564         goto unlock;
2565     }
2566 
2567     if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2568         __mptcp_close_subflow(msk);
2569 
2570     if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2571         __mptcp_retrans(sk);
2572 
2573     fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2574     if (fail_tout && time_after(jiffies, fail_tout))
2575         mptcp_mp_fail_no_response(msk);
2576 
2577 unlock:
2578     release_sock(sk);
2579     sock_put(sk);
2580 }
2581 
2582 static int __mptcp_init_sock(struct sock *sk)
2583 {
2584     struct mptcp_sock *msk = mptcp_sk(sk);
2585 
2586     INIT_LIST_HEAD(&msk->conn_list);
2587     INIT_LIST_HEAD(&msk->join_list);
2588     INIT_LIST_HEAD(&msk->rtx_queue);
2589     INIT_WORK(&msk->work, mptcp_worker);
2590     __skb_queue_head_init(&msk->receive_queue);
2591     msk->out_of_order_queue = RB_ROOT;
2592     msk->first_pending = NULL;
2593     msk->rmem_fwd_alloc = 0;
2594     WRITE_ONCE(msk->rmem_released, 0);
2595     msk->timer_ival = TCP_RTO_MIN;
2596 
2597     msk->first = NULL;
2598     inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2599     WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2600     WRITE_ONCE(msk->allow_infinite_fallback, true);
2601     msk->recovery = false;
2602 
2603     mptcp_pm_data_init(msk);
2604 
2605     /* re-use the csk retrans timer for MPTCP-level retrans */
2606     timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2607     timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2608 
2609     return 0;
2610 }
2611 
2612 static void mptcp_ca_reset(struct sock *sk)
2613 {
2614     struct inet_connection_sock *icsk = inet_csk(sk);
2615 
2616     tcp_assign_congestion_control(sk);
2617     strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2618 
2619     /* no need to keep a reference to the ops, the name will suffice */
2620     tcp_cleanup_congestion_control(sk);
2621     icsk->icsk_ca_ops = NULL;
2622 }
2623 
2624 static int mptcp_init_sock(struct sock *sk)
2625 {
2626     struct net *net = sock_net(sk);
2627     int ret;
2628 
2629     ret = __mptcp_init_sock(sk);
2630     if (ret)
2631         return ret;
2632 
2633     if (!mptcp_is_enabled(net))
2634         return -ENOPROTOOPT;
2635 
2636     if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2637         return -ENOMEM;
2638 
2639     ret = __mptcp_socket_create(mptcp_sk(sk));
2640     if (ret)
2641         return ret;
2642 
2643     /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2644      * propagate the correct value
2645      */
2646     mptcp_ca_reset(sk);
2647 
2648     sk_sockets_allocated_inc(sk);
2649     sk->sk_rcvbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
2650     sk->sk_sndbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
2651 
2652     return 0;
2653 }
2654 
2655 static void __mptcp_clear_xmit(struct sock *sk)
2656 {
2657     struct mptcp_sock *msk = mptcp_sk(sk);
2658     struct mptcp_data_frag *dtmp, *dfrag;
2659 
2660     WRITE_ONCE(msk->first_pending, NULL);
2661     list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2662         dfrag_clear(sk, dfrag);
2663 }
2664 
2665 void mptcp_cancel_work(struct sock *sk)
2666 {
2667     struct mptcp_sock *msk = mptcp_sk(sk);
2668 
2669     if (cancel_work_sync(&msk->work))
2670         __sock_put(sk);
2671 }
2672 
2673 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2674 {
2675     lock_sock(ssk);
2676 
2677     switch (ssk->sk_state) {
2678     case TCP_LISTEN:
2679         if (!(how & RCV_SHUTDOWN))
2680             break;
2681         fallthrough;
2682     case TCP_SYN_SENT:
2683         tcp_disconnect(ssk, O_NONBLOCK);
2684         break;
2685     default:
2686         if (__mptcp_check_fallback(mptcp_sk(sk))) {
2687             pr_debug("Fallback");
2688             ssk->sk_shutdown |= how;
2689             tcp_shutdown(ssk, how);
2690         } else {
2691             pr_debug("Sending DATA_FIN on subflow %p", ssk);
2692             tcp_send_ack(ssk);
2693             if (!mptcp_timer_pending(sk))
2694                 mptcp_reset_timer(sk);
2695         }
2696         break;
2697     }
2698 
2699     release_sock(ssk);
2700 }
2701 
2702 static const unsigned char new_state[16] = {
2703     /* current state:     new state:      action:   */
2704     [0 /* (Invalid) */] = TCP_CLOSE,
2705     [TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2706     [TCP_SYN_SENT]      = TCP_CLOSE,
2707     [TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2708     [TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2709     [TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2710     [TCP_TIME_WAIT]     = TCP_CLOSE,    /* should not happen ! */
2711     [TCP_CLOSE]         = TCP_CLOSE,
2712     [TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2713     [TCP_LAST_ACK]      = TCP_LAST_ACK,
2714     [TCP_LISTEN]        = TCP_CLOSE,
2715     [TCP_CLOSING]       = TCP_CLOSING,
2716     [TCP_NEW_SYN_RECV]  = TCP_CLOSE,    /* should not happen ! */
2717 };
2718 
2719 static int mptcp_close_state(struct sock *sk)
2720 {
2721     int next = (int)new_state[sk->sk_state];
2722     int ns = next & TCP_STATE_MASK;
2723 
2724     inet_sk_state_store(sk, ns);
2725 
2726     return next & TCP_ACTION_FIN;
2727 }
2728 
2729 static void __mptcp_check_send_data_fin(struct sock *sk)
2730 {
2731     struct mptcp_subflow_context *subflow;
2732     struct mptcp_sock *msk = mptcp_sk(sk);
2733 
2734     pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2735          msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2736          msk->snd_nxt, msk->write_seq);
2737 
2738     /* we still need to enqueue subflows or not really shutting down,
2739      * skip this
2740      */
2741     if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2742         mptcp_send_head(sk))
2743         return;
2744 
2745     WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2746 
2747     /* fallback socket will not get data_fin/ack, can move to the next
2748      * state now
2749      */
2750     if (__mptcp_check_fallback(msk)) {
2751         WRITE_ONCE(msk->snd_una, msk->write_seq);
2752         if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2753             inet_sk_state_store(sk, TCP_CLOSE);
2754             mptcp_close_wake_up(sk);
2755         } else if (sk->sk_state == TCP_FIN_WAIT1) {
2756             inet_sk_state_store(sk, TCP_FIN_WAIT2);
2757         }
2758     }
2759 
2760     mptcp_for_each_subflow(msk, subflow) {
2761         struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2762 
2763         mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2764     }
2765 }
2766 
2767 static void __mptcp_wr_shutdown(struct sock *sk)
2768 {
2769     struct mptcp_sock *msk = mptcp_sk(sk);
2770 
2771     pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2772          msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2773          !!mptcp_send_head(sk));
2774 
2775     /* will be ignored by fallback sockets */
2776     WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2777     WRITE_ONCE(msk->snd_data_fin_enable, 1);
2778 
2779     __mptcp_check_send_data_fin(sk);
2780 }
2781 
2782 static void __mptcp_destroy_sock(struct sock *sk)
2783 {
2784     struct mptcp_sock *msk = mptcp_sk(sk);
2785 
2786     pr_debug("msk=%p", msk);
2787 
2788     might_sleep();
2789 
2790     mptcp_stop_timer(sk);
2791     sk_stop_timer(sk, &sk->sk_timer);
2792     msk->pm.status = 0;
2793 
2794     sk->sk_prot->destroy(sk);
2795 
2796     WARN_ON_ONCE(msk->rmem_fwd_alloc);
2797     WARN_ON_ONCE(msk->rmem_released);
2798     sk_stream_kill_queues(sk);
2799     xfrm_sk_free_policy(sk);
2800 
2801     sk_refcnt_debug_release(sk);
2802     sock_put(sk);
2803 }
2804 
2805 bool __mptcp_close(struct sock *sk, long timeout)
2806 {
2807     struct mptcp_subflow_context *subflow;
2808     struct mptcp_sock *msk = mptcp_sk(sk);
2809     bool do_cancel_work = false;
2810 
2811     sk->sk_shutdown = SHUTDOWN_MASK;
2812 
2813     if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2814         inet_sk_state_store(sk, TCP_CLOSE);
2815         goto cleanup;
2816     }
2817 
2818     if (mptcp_close_state(sk))
2819         __mptcp_wr_shutdown(sk);
2820 
2821     sk_stream_wait_close(sk, timeout);
2822 
2823 cleanup:
2824     /* orphan all the subflows */
2825     inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2826     mptcp_for_each_subflow(msk, subflow) {
2827         struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2828         bool slow = lock_sock_fast_nested(ssk);
2829 
2830         /* since the close timeout takes precedence on the fail one,
2831          * cancel the latter
2832          */
2833         if (ssk == msk->first)
2834             subflow->fail_tout = 0;
2835 
2836         sock_orphan(ssk);
2837         unlock_sock_fast(ssk, slow);
2838     }
2839     sock_orphan(sk);
2840 
2841     sock_hold(sk);
2842     pr_debug("msk=%p state=%d", sk, sk->sk_state);
2843     if (mptcp_sk(sk)->token)
2844         mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
2845 
2846     if (sk->sk_state == TCP_CLOSE) {
2847         __mptcp_destroy_sock(sk);
2848         do_cancel_work = true;
2849     } else {
2850         mptcp_reset_timeout(msk, 0);
2851     }
2852 
2853     return do_cancel_work;
2854 }
2855 
2856 static void mptcp_close(struct sock *sk, long timeout)
2857 {
2858     bool do_cancel_work;
2859 
2860     lock_sock(sk);
2861 
2862     do_cancel_work = __mptcp_close(sk, timeout);
2863     release_sock(sk);
2864     if (do_cancel_work)
2865         mptcp_cancel_work(sk);
2866 
2867     sock_put(sk);
2868 }
2869 
2870 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2871 {
2872 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2873     const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2874     struct ipv6_pinfo *msk6 = inet6_sk(msk);
2875 
2876     msk->sk_v6_daddr = ssk->sk_v6_daddr;
2877     msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2878 
2879     if (msk6 && ssk6) {
2880         msk6->saddr = ssk6->saddr;
2881         msk6->flow_label = ssk6->flow_label;
2882     }
2883 #endif
2884 
2885     inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2886     inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2887     inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2888     inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2889     inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2890     inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2891 }
2892 
2893 static int mptcp_disconnect(struct sock *sk, int flags)
2894 {
2895     struct mptcp_sock *msk = mptcp_sk(sk);
2896 
2897     inet_sk_state_store(sk, TCP_CLOSE);
2898 
2899     mptcp_stop_timer(sk);
2900     sk_stop_timer(sk, &sk->sk_timer);
2901 
2902     if (mptcp_sk(sk)->token)
2903         mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2904 
2905     /* msk->subflow is still intact, the following will not free the first
2906      * subflow
2907      */
2908     mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
2909     msk->last_snd = NULL;
2910     WRITE_ONCE(msk->flags, 0);
2911     msk->cb_flags = 0;
2912     msk->push_pending = 0;
2913     msk->recovery = false;
2914     msk->can_ack = false;
2915     msk->fully_established = false;
2916     msk->rcv_data_fin = false;
2917     msk->snd_data_fin_enable = false;
2918     msk->rcv_fastclose = false;
2919     msk->use_64bit_ack = false;
2920     WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2921     mptcp_pm_data_reset(msk);
2922     mptcp_ca_reset(sk);
2923 
2924     sk->sk_shutdown = 0;
2925     sk_error_report(sk);
2926     return 0;
2927 }
2928 
2929 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2930 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2931 {
2932     unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2933 
2934     return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2935 }
2936 #endif
2937 
2938 struct sock *mptcp_sk_clone(const struct sock *sk,
2939                 const struct mptcp_options_received *mp_opt,
2940                 struct request_sock *req)
2941 {
2942     struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2943     struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2944     struct mptcp_sock *msk;
2945     u64 ack_seq;
2946 
2947     if (!nsk)
2948         return NULL;
2949 
2950 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2951     if (nsk->sk_family == AF_INET6)
2952         inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2953 #endif
2954 
2955     __mptcp_init_sock(nsk);
2956 
2957     msk = mptcp_sk(nsk);
2958     msk->local_key = subflow_req->local_key;
2959     msk->token = subflow_req->token;
2960     msk->subflow = NULL;
2961     WRITE_ONCE(msk->fully_established, false);
2962     if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
2963         WRITE_ONCE(msk->csum_enabled, true);
2964 
2965     msk->write_seq = subflow_req->idsn + 1;
2966     msk->snd_nxt = msk->write_seq;
2967     msk->snd_una = msk->write_seq;
2968     msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2969     msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
2970 
2971     if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) {
2972         msk->can_ack = true;
2973         msk->remote_key = mp_opt->sndr_key;
2974         mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2975         ack_seq++;
2976         WRITE_ONCE(msk->ack_seq, ack_seq);
2977         atomic64_set(&msk->rcv_wnd_sent, ack_seq);
2978     }
2979 
2980     sock_reset_flag(nsk, SOCK_RCU_FREE);
2981     /* will be fully established after successful MPC subflow creation */
2982     inet_sk_state_store(nsk, TCP_SYN_RECV);
2983 
2984     security_inet_csk_clone(nsk, req);
2985     bh_unlock_sock(nsk);
2986 
2987     /* keep a single reference */
2988     __sock_put(nsk);
2989     return nsk;
2990 }
2991 
2992 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2993 {
2994     const struct tcp_sock *tp = tcp_sk(ssk);
2995 
2996     msk->rcvq_space.copied = 0;
2997     msk->rcvq_space.rtt_us = 0;
2998 
2999     msk->rcvq_space.time = tp->tcp_mstamp;
3000 
3001     /* initial rcv_space offering made to peer */
3002     msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3003                       TCP_INIT_CWND * tp->advmss);
3004     if (msk->rcvq_space.space == 0)
3005         msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3006 
3007     WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3008 }
3009 
3010 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
3011                  bool kern)
3012 {
3013     struct mptcp_sock *msk = mptcp_sk(sk);
3014     struct socket *listener;
3015     struct sock *newsk;
3016 
3017     listener = __mptcp_nmpc_socket(msk);
3018     if (WARN_ON_ONCE(!listener)) {
3019         *err = -EINVAL;
3020         return NULL;
3021     }
3022 
3023     pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
3024     newsk = inet_csk_accept(listener->sk, flags, err, kern);
3025     if (!newsk)
3026         return NULL;
3027 
3028     pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
3029     if (sk_is_mptcp(newsk)) {
3030         struct mptcp_subflow_context *subflow;
3031         struct sock *new_mptcp_sock;
3032 
3033         subflow = mptcp_subflow_ctx(newsk);
3034         new_mptcp_sock = subflow->conn;
3035 
3036         /* is_mptcp should be false if subflow->conn is missing, see
3037          * subflow_syn_recv_sock()
3038          */
3039         if (WARN_ON_ONCE(!new_mptcp_sock)) {
3040             tcp_sk(newsk)->is_mptcp = 0;
3041             goto out;
3042         }
3043 
3044         /* acquire the 2nd reference for the owning socket */
3045         sock_hold(new_mptcp_sock);
3046         newsk = new_mptcp_sock;
3047         MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3048     } else {
3049         MPTCP_INC_STATS(sock_net(sk),
3050                 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3051     }
3052 
3053 out:
3054     newsk->sk_kern_sock = kern;
3055     return newsk;
3056 }
3057 
3058 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3059 {
3060     struct mptcp_subflow_context *subflow, *tmp;
3061     struct sock *sk = (struct sock *)msk;
3062 
3063     __mptcp_clear_xmit(sk);
3064 
3065     /* join list will be eventually flushed (with rst) at sock lock release time */
3066     list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node)
3067         __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3068 
3069     /* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3070     mptcp_data_lock(sk);
3071     skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3072     __skb_queue_purge(&sk->sk_receive_queue);
3073     skb_rbtree_purge(&msk->out_of_order_queue);
3074     mptcp_data_unlock(sk);
3075 
3076     /* move all the rx fwd alloc into the sk_mem_reclaim_final in
3077      * inet_sock_destruct() will dispose it
3078      */
3079     sk->sk_forward_alloc += msk->rmem_fwd_alloc;
3080     msk->rmem_fwd_alloc = 0;
3081     mptcp_token_destroy(msk);
3082     mptcp_pm_free_anno_list(msk);
3083     mptcp_free_local_addr_list(msk);
3084 }
3085 
3086 static void mptcp_destroy(struct sock *sk)
3087 {
3088     struct mptcp_sock *msk = mptcp_sk(sk);
3089 
3090     /* clears msk->subflow, allowing the following to close
3091      * even the initial subflow
3092      */
3093     mptcp_dispose_initial_subflow(msk);
3094     mptcp_destroy_common(msk, 0);
3095     sk_sockets_allocated_dec(sk);
3096 }
3097 
3098 void __mptcp_data_acked(struct sock *sk)
3099 {
3100     if (!sock_owned_by_user(sk))
3101         __mptcp_clean_una(sk);
3102     else
3103         __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3104 
3105     if (mptcp_pending_data_fin_ack(sk))
3106         mptcp_schedule_work(sk);
3107 }
3108 
3109 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3110 {
3111     if (!mptcp_send_head(sk))
3112         return;
3113 
3114     if (!sock_owned_by_user(sk)) {
3115         struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
3116 
3117         if (xmit_ssk == ssk)
3118             __mptcp_subflow_push_pending(sk, ssk);
3119         else if (xmit_ssk)
3120             mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND);
3121     } else {
3122         __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3123     }
3124 }
3125 
3126 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3127                       BIT(MPTCP_RETRANSMIT) | \
3128                       BIT(MPTCP_FLUSH_JOIN_LIST))
3129 
3130 /* processes deferred events and flush wmem */
3131 static void mptcp_release_cb(struct sock *sk)
3132     __must_hold(&sk->sk_lock.slock)
3133 {
3134     struct mptcp_sock *msk = mptcp_sk(sk);
3135 
3136     for (;;) {
3137         unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
3138                       msk->push_pending;
3139         if (!flags)
3140             break;
3141 
3142         /* the following actions acquire the subflow socket lock
3143          *
3144          * 1) can't be invoked in atomic scope
3145          * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3146          *    datapath acquires the msk socket spinlock while helding
3147          *    the subflow socket lock
3148          */
3149         msk->push_pending = 0;
3150         msk->cb_flags &= ~flags;
3151         spin_unlock_bh(&sk->sk_lock.slock);
3152         if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3153             __mptcp_flush_join_list(sk);
3154         if (flags & BIT(MPTCP_PUSH_PENDING))
3155             __mptcp_push_pending(sk, 0);
3156         if (flags & BIT(MPTCP_RETRANSMIT))
3157             __mptcp_retrans(sk);
3158 
3159         cond_resched();
3160         spin_lock_bh(&sk->sk_lock.slock);
3161     }
3162 
3163     if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3164         __mptcp_clean_una_wakeup(sk);
3165     if (unlikely(&msk->cb_flags)) {
3166         /* be sure to set the current sk state before tacking actions
3167          * depending on sk_state, that is processing MPTCP_ERROR_REPORT
3168          */
3169         if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
3170             __mptcp_set_connected(sk);
3171         if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3172             __mptcp_error_report(sk);
3173         if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags))
3174             msk->last_snd = NULL;
3175     }
3176 
3177     __mptcp_update_rmem(sk);
3178 }
3179 
3180 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3181  * TCP can't schedule delack timer before the subflow is fully established.
3182  * MPTCP uses the delack timer to do 3rd ack retransmissions
3183  */
3184 static void schedule_3rdack_retransmission(struct sock *ssk)
3185 {
3186     struct inet_connection_sock *icsk = inet_csk(ssk);
3187     struct tcp_sock *tp = tcp_sk(ssk);
3188     unsigned long timeout;
3189 
3190     if (mptcp_subflow_ctx(ssk)->fully_established)
3191         return;
3192 
3193     /* reschedule with a timeout above RTT, as we must look only for drop */
3194     if (tp->srtt_us)
3195         timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3196     else
3197         timeout = TCP_TIMEOUT_INIT;
3198     timeout += jiffies;
3199 
3200     WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3201     icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3202     icsk->icsk_ack.timeout = timeout;
3203     sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3204 }
3205 
3206 void mptcp_subflow_process_delegated(struct sock *ssk)
3207 {
3208     struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3209     struct sock *sk = subflow->conn;
3210 
3211     if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) {
3212         mptcp_data_lock(sk);
3213         if (!sock_owned_by_user(sk))
3214             __mptcp_subflow_push_pending(sk, ssk);
3215         else
3216             __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3217         mptcp_data_unlock(sk);
3218         mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND);
3219     }
3220     if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) {
3221         schedule_3rdack_retransmission(ssk);
3222         mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK);
3223     }
3224 }
3225 
3226 static int mptcp_hash(struct sock *sk)
3227 {
3228     /* should never be called,
3229      * we hash the TCP subflows not the master socket
3230      */
3231     WARN_ON_ONCE(1);
3232     return 0;
3233 }
3234 
3235 static void mptcp_unhash(struct sock *sk)
3236 {
3237     /* called from sk_common_release(), but nothing to do here */
3238 }
3239 
3240 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3241 {
3242     struct mptcp_sock *msk = mptcp_sk(sk);
3243     struct socket *ssock;
3244 
3245     ssock = __mptcp_nmpc_socket(msk);
3246     pr_debug("msk=%p, subflow=%p", msk, ssock);
3247     if (WARN_ON_ONCE(!ssock))
3248         return -EINVAL;
3249 
3250     return inet_csk_get_port(ssock->sk, snum);
3251 }
3252 
3253 void mptcp_finish_connect(struct sock *ssk)
3254 {
3255     struct mptcp_subflow_context *subflow;
3256     struct mptcp_sock *msk;
3257     struct sock *sk;
3258     u64 ack_seq;
3259 
3260     subflow = mptcp_subflow_ctx(ssk);
3261     sk = subflow->conn;
3262     msk = mptcp_sk(sk);
3263 
3264     pr_debug("msk=%p, token=%u", sk, subflow->token);
3265 
3266     mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
3267     ack_seq++;
3268     subflow->map_seq = ack_seq;
3269     subflow->map_subflow_seq = 1;
3270 
3271     /* the socket is not connected yet, no msk/subflow ops can access/race
3272      * accessing the field below
3273      */
3274     WRITE_ONCE(msk->remote_key, subflow->remote_key);
3275     WRITE_ONCE(msk->local_key, subflow->local_key);
3276     WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3277     WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3278     WRITE_ONCE(msk->ack_seq, ack_seq);
3279     WRITE_ONCE(msk->can_ack, 1);
3280     WRITE_ONCE(msk->snd_una, msk->write_seq);
3281     atomic64_set(&msk->rcv_wnd_sent, ack_seq);
3282 
3283     mptcp_pm_new_connection(msk, ssk, 0);
3284 
3285     mptcp_rcv_space_init(msk, ssk);
3286 }
3287 
3288 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3289 {
3290     write_lock_bh(&sk->sk_callback_lock);
3291     rcu_assign_pointer(sk->sk_wq, &parent->wq);
3292     sk_set_socket(sk, parent);
3293     sk->sk_uid = SOCK_INODE(parent)->i_uid;
3294     write_unlock_bh(&sk->sk_callback_lock);
3295 }
3296 
3297 bool mptcp_finish_join(struct sock *ssk)
3298 {
3299     struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3300     struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3301     struct sock *parent = (void *)msk;
3302     bool ret = true;
3303 
3304     pr_debug("msk=%p, subflow=%p", msk, subflow);
3305 
3306     /* mptcp socket already closing? */
3307     if (!mptcp_is_fully_established(parent)) {
3308         subflow->reset_reason = MPTCP_RST_EMPTCP;
3309         return false;
3310     }
3311 
3312     if (!list_empty(&subflow->node))
3313         goto out;
3314 
3315     if (!mptcp_pm_allow_new_subflow(msk))
3316         goto err_prohibited;
3317 
3318     /* active connections are already on conn_list.
3319      * If we can't acquire msk socket lock here, let the release callback
3320      * handle it
3321      */
3322     mptcp_data_lock(parent);
3323     if (!sock_owned_by_user(parent)) {
3324         ret = __mptcp_finish_join(msk, ssk);
3325         if (ret) {
3326             sock_hold(ssk);
3327             list_add_tail(&subflow->node, &msk->conn_list);
3328         }
3329     } else {
3330         sock_hold(ssk);
3331         list_add_tail(&subflow->node, &msk->join_list);
3332         __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3333     }
3334     mptcp_data_unlock(parent);
3335 
3336     if (!ret) {
3337 err_prohibited:
3338         subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3339         return false;
3340     }
3341 
3342     subflow->map_seq = READ_ONCE(msk->ack_seq);
3343     WRITE_ONCE(msk->allow_infinite_fallback, false);
3344 
3345 out:
3346     mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3347     return true;
3348 }
3349 
3350 static void mptcp_shutdown(struct sock *sk, int how)
3351 {
3352     pr_debug("sk=%p, how=%d", sk, how);
3353 
3354     if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3355         __mptcp_wr_shutdown(sk);
3356 }
3357 
3358 static int mptcp_forward_alloc_get(const struct sock *sk)
3359 {
3360     return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc;
3361 }
3362 
3363 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3364 {
3365     const struct sock *sk = (void *)msk;
3366     u64 delta;
3367 
3368     if (sk->sk_state == TCP_LISTEN)
3369         return -EINVAL;
3370 
3371     if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3372         return 0;
3373 
3374     delta = msk->write_seq - v;
3375     if (__mptcp_check_fallback(msk) && msk->first) {
3376         struct tcp_sock *tp = tcp_sk(msk->first);
3377 
3378         /* the first subflow is disconnected after close - see
3379          * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3380          * so ignore that status, too.
3381          */
3382         if (!((1 << msk->first->sk_state) &
3383               (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3384             delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3385     }
3386     if (delta > INT_MAX)
3387         delta = INT_MAX;
3388 
3389     return (int)delta;
3390 }
3391 
3392 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3393 {
3394     struct mptcp_sock *msk = mptcp_sk(sk);
3395     bool slow;
3396     int answ;
3397 
3398     switch (cmd) {
3399     case SIOCINQ:
3400         if (sk->sk_state == TCP_LISTEN)
3401             return -EINVAL;
3402 
3403         lock_sock(sk);
3404         __mptcp_move_skbs(msk);
3405         answ = mptcp_inq_hint(sk);
3406         release_sock(sk);
3407         break;
3408     case SIOCOUTQ:
3409         slow = lock_sock_fast(sk);
3410         answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3411         unlock_sock_fast(sk, slow);
3412         break;
3413     case SIOCOUTQNSD:
3414         slow = lock_sock_fast(sk);
3415         answ = mptcp_ioctl_outq(msk, msk->snd_nxt);
3416         unlock_sock_fast(sk, slow);
3417         break;
3418     default:
3419         return -ENOIOCTLCMD;
3420     }
3421 
3422     return put_user(answ, (int __user *)arg);
3423 }
3424 
3425 static struct proto mptcp_prot = {
3426     .name       = "MPTCP",
3427     .owner      = THIS_MODULE,
3428     .init       = mptcp_init_sock,
3429     .disconnect = mptcp_disconnect,
3430     .close      = mptcp_close,
3431     .accept     = mptcp_accept,
3432     .setsockopt = mptcp_setsockopt,
3433     .getsockopt = mptcp_getsockopt,
3434     .shutdown   = mptcp_shutdown,
3435     .destroy    = mptcp_destroy,
3436     .sendmsg    = mptcp_sendmsg,
3437     .ioctl      = mptcp_ioctl,
3438     .recvmsg    = mptcp_recvmsg,
3439     .release_cb = mptcp_release_cb,
3440     .hash       = mptcp_hash,
3441     .unhash     = mptcp_unhash,
3442     .get_port   = mptcp_get_port,
3443     .forward_alloc_get  = mptcp_forward_alloc_get,
3444     .sockets_allocated  = &mptcp_sockets_allocated,
3445 
3446     .memory_allocated   = &tcp_memory_allocated,
3447     .per_cpu_fw_alloc   = &tcp_memory_per_cpu_fw_alloc,
3448 
3449     .memory_pressure    = &tcp_memory_pressure,
3450     .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3451     .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3452     .sysctl_mem = sysctl_tcp_mem,
3453     .obj_size   = sizeof(struct mptcp_sock),
3454     .slab_flags = SLAB_TYPESAFE_BY_RCU,
3455     .no_autobind    = true,
3456 };
3457 
3458 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3459 {
3460     struct mptcp_sock *msk = mptcp_sk(sock->sk);
3461     struct socket *ssock;
3462     int err;
3463 
3464     lock_sock(sock->sk);
3465     ssock = __mptcp_nmpc_socket(msk);
3466     if (!ssock) {
3467         err = -EINVAL;
3468         goto unlock;
3469     }
3470 
3471     err = ssock->ops->bind(ssock, uaddr, addr_len);
3472     if (!err)
3473         mptcp_copy_inaddrs(sock->sk, ssock->sk);
3474 
3475 unlock:
3476     release_sock(sock->sk);
3477     return err;
3478 }
3479 
3480 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3481                      struct mptcp_subflow_context *subflow)
3482 {
3483     subflow->request_mptcp = 0;
3484     __mptcp_do_fallback(msk);
3485 }
3486 
3487 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3488                 int addr_len, int flags)
3489 {
3490     struct mptcp_sock *msk = mptcp_sk(sock->sk);
3491     struct mptcp_subflow_context *subflow;
3492     struct socket *ssock;
3493     int err = -EINVAL;
3494 
3495     lock_sock(sock->sk);
3496     if (uaddr) {
3497         if (addr_len < sizeof(uaddr->sa_family))
3498             goto unlock;
3499 
3500         if (uaddr->sa_family == AF_UNSPEC) {
3501             err = mptcp_disconnect(sock->sk, flags);
3502             sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
3503             goto unlock;
3504         }
3505     }
3506 
3507     if (sock->state != SS_UNCONNECTED && msk->subflow) {
3508         /* pending connection or invalid state, let existing subflow
3509          * cope with that
3510          */
3511         ssock = msk->subflow;
3512         goto do_connect;
3513     }
3514 
3515     ssock = __mptcp_nmpc_socket(msk);
3516     if (!ssock)
3517         goto unlock;
3518 
3519     mptcp_token_destroy(msk);
3520     inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3521     subflow = mptcp_subflow_ctx(ssock->sk);
3522 #ifdef CONFIG_TCP_MD5SIG
3523     /* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3524      * TCP option space.
3525      */
3526     if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3527         mptcp_subflow_early_fallback(msk, subflow);
3528 #endif
3529     if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3530         MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3531         mptcp_subflow_early_fallback(msk, subflow);
3532     }
3533     if (likely(!__mptcp_check_fallback(msk)))
3534         MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
3535 
3536 do_connect:
3537     err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3538     sock->state = ssock->state;
3539 
3540     /* on successful connect, the msk state will be moved to established by
3541      * subflow_finish_connect()
3542      */
3543     if (!err || err == -EINPROGRESS)
3544         mptcp_copy_inaddrs(sock->sk, ssock->sk);
3545     else
3546         inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3547 
3548 unlock:
3549     release_sock(sock->sk);
3550     return err;
3551 }
3552 
3553 static int mptcp_listen(struct socket *sock, int backlog)
3554 {
3555     struct mptcp_sock *msk = mptcp_sk(sock->sk);
3556     struct socket *ssock;
3557     int err;
3558 
3559     pr_debug("msk=%p", msk);
3560 
3561     lock_sock(sock->sk);
3562     ssock = __mptcp_nmpc_socket(msk);
3563     if (!ssock) {
3564         err = -EINVAL;
3565         goto unlock;
3566     }
3567 
3568     mptcp_token_destroy(msk);
3569     inet_sk_state_store(sock->sk, TCP_LISTEN);
3570     sock_set_flag(sock->sk, SOCK_RCU_FREE);
3571 
3572     err = ssock->ops->listen(ssock, backlog);
3573     inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3574     if (!err)
3575         mptcp_copy_inaddrs(sock->sk, ssock->sk);
3576 
3577 unlock:
3578     release_sock(sock->sk);
3579     return err;
3580 }
3581 
3582 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3583                    int flags, bool kern)
3584 {
3585     struct mptcp_sock *msk = mptcp_sk(sock->sk);
3586     struct socket *ssock;
3587     int err;
3588 
3589     pr_debug("msk=%p", msk);
3590 
3591     ssock = __mptcp_nmpc_socket(msk);
3592     if (!ssock)
3593         return -EINVAL;
3594 
3595     err = ssock->ops->accept(sock, newsock, flags, kern);
3596     if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3597         struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3598         struct mptcp_subflow_context *subflow;
3599         struct sock *newsk = newsock->sk;
3600 
3601         lock_sock(newsk);
3602 
3603         /* PM/worker can now acquire the first subflow socket
3604          * lock without racing with listener queue cleanup,
3605          * we can notify it, if needed.
3606          *
3607          * Even if remote has reset the initial subflow by now
3608          * the refcnt is still at least one.
3609          */
3610         subflow = mptcp_subflow_ctx(msk->first);
3611         list_add(&subflow->node, &msk->conn_list);
3612         sock_hold(msk->first);
3613         if (mptcp_is_fully_established(newsk))
3614             mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3615 
3616         mptcp_copy_inaddrs(newsk, msk->first);
3617         mptcp_rcv_space_init(msk, msk->first);
3618         mptcp_propagate_sndbuf(newsk, msk->first);
3619 
3620         /* set ssk->sk_socket of accept()ed flows to mptcp socket.
3621          * This is needed so NOSPACE flag can be set from tcp stack.
3622          */
3623         mptcp_for_each_subflow(msk, subflow) {
3624             struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3625 
3626             if (!ssk->sk_socket)
3627                 mptcp_sock_graft(ssk, newsock);
3628         }
3629         release_sock(newsk);
3630     }
3631 
3632     return err;
3633 }
3634 
3635 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3636 {
3637     /* Concurrent splices from sk_receive_queue into receive_queue will
3638      * always show at least one non-empty queue when checked in this order.
3639      */
3640     if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
3641         skb_queue_empty_lockless(&msk->receive_queue))
3642         return 0;
3643 
3644     return EPOLLIN | EPOLLRDNORM;
3645 }
3646 
3647 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3648 {
3649     struct sock *sk = (struct sock *)msk;
3650 
3651     if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3652         return EPOLLOUT | EPOLLWRNORM;
3653 
3654     if (sk_stream_is_writeable(sk))
3655         return EPOLLOUT | EPOLLWRNORM;
3656 
3657     mptcp_set_nospace(sk);
3658     smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3659     if (sk_stream_is_writeable(sk))
3660         return EPOLLOUT | EPOLLWRNORM;
3661 
3662     return 0;
3663 }
3664 
3665 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3666                struct poll_table_struct *wait)
3667 {
3668     struct sock *sk = sock->sk;
3669     struct mptcp_sock *msk;
3670     __poll_t mask = 0;
3671     int state;
3672 
3673     msk = mptcp_sk(sk);
3674     sock_poll_wait(file, sock, wait);
3675 
3676     state = inet_sk_state_load(sk);
3677     pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3678     if (state == TCP_LISTEN) {
3679         if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk))
3680             return 0;
3681 
3682         return inet_csk_listen_poll(msk->subflow->sk);
3683     }
3684 
3685     if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3686         mask |= mptcp_check_readable(msk);
3687         mask |= mptcp_check_writeable(msk);
3688     }
3689     if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3690         mask |= EPOLLHUP;
3691     if (sk->sk_shutdown & RCV_SHUTDOWN)
3692         mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3693 
3694     /* This barrier is coupled with smp_wmb() in tcp_reset() */
3695     smp_rmb();
3696     if (sk->sk_err)
3697         mask |= EPOLLERR;
3698 
3699     return mask;
3700 }
3701 
3702 static const struct proto_ops mptcp_stream_ops = {
3703     .family        = PF_INET,
3704     .owner         = THIS_MODULE,
3705     .release       = inet_release,
3706     .bind          = mptcp_bind,
3707     .connect       = mptcp_stream_connect,
3708     .socketpair    = sock_no_socketpair,
3709     .accept        = mptcp_stream_accept,
3710     .getname       = inet_getname,
3711     .poll          = mptcp_poll,
3712     .ioctl         = inet_ioctl,
3713     .gettstamp     = sock_gettstamp,
3714     .listen        = mptcp_listen,
3715     .shutdown      = inet_shutdown,
3716     .setsockopt    = sock_common_setsockopt,
3717     .getsockopt    = sock_common_getsockopt,
3718     .sendmsg       = inet_sendmsg,
3719     .recvmsg       = inet_recvmsg,
3720     .mmap          = sock_no_mmap,
3721     .sendpage      = inet_sendpage,
3722 };
3723 
3724 static struct inet_protosw mptcp_protosw = {
3725     .type       = SOCK_STREAM,
3726     .protocol   = IPPROTO_MPTCP,
3727     .prot       = &mptcp_prot,
3728     .ops        = &mptcp_stream_ops,
3729     .flags      = INET_PROTOSW_ICSK,
3730 };
3731 
3732 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3733 {
3734     struct mptcp_delegated_action *delegated;
3735     struct mptcp_subflow_context *subflow;
3736     int work_done = 0;
3737 
3738     delegated = container_of(napi, struct mptcp_delegated_action, napi);
3739     while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3740         struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3741 
3742         bh_lock_sock_nested(ssk);
3743         if (!sock_owned_by_user(ssk) &&
3744             mptcp_subflow_has_delegated_action(subflow))
3745             mptcp_subflow_process_delegated(ssk);
3746         /* ... elsewhere tcp_release_cb_override already processed
3747          * the action or will do at next release_sock().
3748          * In both case must dequeue the subflow here - on the same
3749          * CPU that scheduled it.
3750          */
3751         bh_unlock_sock(ssk);
3752         sock_put(ssk);
3753 
3754         if (++work_done == budget)
3755             return budget;
3756     }
3757 
3758     /* always provide a 0 'work_done' argument, so that napi_complete_done
3759      * will not try accessing the NULL napi->dev ptr
3760      */
3761     napi_complete_done(napi, 0);
3762     return work_done;
3763 }
3764 
3765 void __init mptcp_proto_init(void)
3766 {
3767     struct mptcp_delegated_action *delegated;
3768     int cpu;
3769 
3770     mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3771 
3772     if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3773         panic("Failed to allocate MPTCP pcpu counter\n");
3774 
3775     init_dummy_netdev(&mptcp_napi_dev);
3776     for_each_possible_cpu(cpu) {
3777         delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3778         INIT_LIST_HEAD(&delegated->head);
3779         netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
3780                   mptcp_napi_poll);
3781         napi_enable(&delegated->napi);
3782     }
3783 
3784     mptcp_subflow_init();
3785     mptcp_pm_init();
3786     mptcp_token_init();
3787 
3788     if (proto_register(&mptcp_prot, 1) != 0)
3789         panic("Failed to register MPTCP proto.\n");
3790 
3791     inet_register_protosw(&mptcp_protosw);
3792 
3793     BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3794 }
3795 
3796 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3797 static const struct proto_ops mptcp_v6_stream_ops = {
3798     .family        = PF_INET6,
3799     .owner         = THIS_MODULE,
3800     .release       = inet6_release,
3801     .bind          = mptcp_bind,
3802     .connect       = mptcp_stream_connect,
3803     .socketpair    = sock_no_socketpair,
3804     .accept        = mptcp_stream_accept,
3805     .getname       = inet6_getname,
3806     .poll          = mptcp_poll,
3807     .ioctl         = inet6_ioctl,
3808     .gettstamp     = sock_gettstamp,
3809     .listen        = mptcp_listen,
3810     .shutdown      = inet_shutdown,
3811     .setsockopt    = sock_common_setsockopt,
3812     .getsockopt    = sock_common_getsockopt,
3813     .sendmsg       = inet6_sendmsg,
3814     .recvmsg       = inet6_recvmsg,
3815     .mmap          = sock_no_mmap,
3816     .sendpage      = inet_sendpage,
3817 #ifdef CONFIG_COMPAT
3818     .compat_ioctl      = inet6_compat_ioctl,
3819 #endif
3820 };
3821 
3822 static struct proto mptcp_v6_prot;
3823 
3824 static void mptcp_v6_destroy(struct sock *sk)
3825 {
3826     mptcp_destroy(sk);
3827     inet6_destroy_sock(sk);
3828 }
3829 
3830 static struct inet_protosw mptcp_v6_protosw = {
3831     .type       = SOCK_STREAM,
3832     .protocol   = IPPROTO_MPTCP,
3833     .prot       = &mptcp_v6_prot,
3834     .ops        = &mptcp_v6_stream_ops,
3835     .flags      = INET_PROTOSW_ICSK,
3836 };
3837 
3838 int __init mptcp_proto_v6_init(void)
3839 {
3840     int err;
3841 
3842     mptcp_v6_prot = mptcp_prot;
3843     strcpy(mptcp_v6_prot.name, "MPTCPv6");
3844     mptcp_v6_prot.slab = NULL;
3845     mptcp_v6_prot.destroy = mptcp_v6_destroy;
3846     mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3847 
3848     err = proto_register(&mptcp_v6_prot, 1);
3849     if (err)
3850         return err;
3851 
3852     err = inet6_register_protosw(&mptcp_v6_protosw);
3853     if (err)
3854         proto_unregister(&mptcp_v6_prot);
3855 
3856     return err;
3857 }
3858 #endif