Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * INET     An implementation of the TCP/IP protocol suite for the LINUX
0004  *      operating system.  INET is implemented using the  BSD Socket
0005  *      interface as the means of communication with the user level.
0006  *
0007  *      The User Datagram Protocol (UDP).
0008  *
0009  * Authors: Ross Biro
0010  *      Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
0011  *      Arnt Gulbrandsen, <agulbra@nvg.unit.no>
0012  *      Alan Cox, <alan@lxorguk.ukuu.org.uk>
0013  *      Hirokazu Takahashi, <taka@valinux.co.jp>
0014  *
0015  * Fixes:
0016  *      Alan Cox    :   verify_area() calls
0017  *      Alan Cox    :   stopped close while in use off icmp
0018  *                  messages. Not a fix but a botch that
0019  *                  for udp at least is 'valid'.
0020  *      Alan Cox    :   Fixed icmp handling properly
0021  *      Alan Cox    :   Correct error for oversized datagrams
0022  *      Alan Cox    :   Tidied select() semantics.
0023  *      Alan Cox    :   udp_err() fixed properly, also now
0024  *                  select and read wake correctly on errors
0025  *      Alan Cox    :   udp_send verify_area moved to avoid mem leak
0026  *      Alan Cox    :   UDP can count its memory
0027  *      Alan Cox    :   send to an unknown connection causes
0028  *                  an ECONNREFUSED off the icmp, but
0029  *                  does NOT close.
0030  *      Alan Cox    :   Switched to new sk_buff handlers. No more backlog!
0031  *      Alan Cox    :   Using generic datagram code. Even smaller and the PEEK
0032  *                  bug no longer crashes it.
0033  *      Fred Van Kempen :   Net2e support for sk->broadcast.
0034  *      Alan Cox    :   Uses skb_free_datagram
0035  *      Alan Cox    :   Added get/set sockopt support.
0036  *      Alan Cox    :   Broadcasting without option set returns EACCES.
0037  *      Alan Cox    :   No wakeup calls. Instead we now use the callbacks.
0038  *      Alan Cox    :   Use ip_tos and ip_ttl
0039  *      Alan Cox    :   SNMP Mibs
0040  *      Alan Cox    :   MSG_DONTROUTE, and 0.0.0.0 support.
0041  *      Matt Dillon :   UDP length checks.
0042  *      Alan Cox    :   Smarter af_inet used properly.
0043  *      Alan Cox    :   Use new kernel side addressing.
0044  *      Alan Cox    :   Incorrect return on truncated datagram receive.
0045  *  Arnt Gulbrandsen    :   New udp_send and stuff
0046  *      Alan Cox    :   Cache last socket
0047  *      Alan Cox    :   Route cache
0048  *      Jon Peatfield   :   Minor efficiency fix to sendto().
0049  *      Mike Shaver :   RFC1122 checks.
0050  *      Alan Cox    :   Nonblocking error fix.
0051  *  Willy Konynenberg   :   Transparent proxying support.
0052  *      Mike McLagan    :   Routing by source
0053  *      David S. Miller :   New socket lookup architecture.
0054  *                  Last socket cache retained as it
0055  *                  does have a high hit rate.
0056  *      Olaf Kirch  :   Don't linearise iovec on sendmsg.
0057  *      Andi Kleen  :   Some cleanups, cache destination entry
0058  *                  for connect.
0059  *  Vitaly E. Lavrov    :   Transparent proxy revived after year coma.
0060  *      Melvin Smith    :   Check msg_name not msg_namelen in sendto(),
0061  *                  return ENOTCONN for unconnected sockets (POSIX)
0062  *      Janos Farkas    :   don't deliver multi/broadcasts to a different
0063  *                  bound-to-device socket
0064  *  Hirokazu Takahashi  :   HW checksumming for outgoing UDP
0065  *                  datagrams.
0066  *  Hirokazu Takahashi  :   sendfile() on UDP works now.
0067  *      Arnaldo C. Melo :   convert /proc/net/udp to seq_file
0068  *  YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
0069  *  Alexey Kuznetsov:       allow both IPv4 and IPv6 sockets to bind
0070  *                  a single port at the same time.
0071  *  Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
0072  *  James Chapman       :   Add L2TP encapsulation type.
0073  */
0074 
0075 #define pr_fmt(fmt) "UDP: " fmt
0076 
0077 #include <linux/bpf-cgroup.h>
0078 #include <linux/uaccess.h>
0079 #include <asm/ioctls.h>
0080 #include <linux/memblock.h>
0081 #include <linux/highmem.h>
0082 #include <linux/types.h>
0083 #include <linux/fcntl.h>
0084 #include <linux/module.h>
0085 #include <linux/socket.h>
0086 #include <linux/sockios.h>
0087 #include <linux/igmp.h>
0088 #include <linux/inetdevice.h>
0089 #include <linux/in.h>
0090 #include <linux/errno.h>
0091 #include <linux/timer.h>
0092 #include <linux/mm.h>
0093 #include <linux/inet.h>
0094 #include <linux/netdevice.h>
0095 #include <linux/slab.h>
0096 #include <net/tcp_states.h>
0097 #include <linux/skbuff.h>
0098 #include <linux/proc_fs.h>
0099 #include <linux/seq_file.h>
0100 #include <net/net_namespace.h>
0101 #include <net/icmp.h>
0102 #include <net/inet_hashtables.h>
0103 #include <net/ip_tunnels.h>
0104 #include <net/route.h>
0105 #include <net/checksum.h>
0106 #include <net/xfrm.h>
0107 #include <trace/events/udp.h>
0108 #include <linux/static_key.h>
0109 #include <linux/btf_ids.h>
0110 #include <trace/events/skb.h>
0111 #include <net/busy_poll.h>
0112 #include "udp_impl.h"
0113 #include <net/sock_reuseport.h>
0114 #include <net/addrconf.h>
0115 #include <net/udp_tunnel.h>
0116 #if IS_ENABLED(CONFIG_IPV6)
0117 #include <net/ipv6_stubs.h>
0118 #endif
0119 
0120 struct udp_table udp_table __read_mostly;
0121 EXPORT_SYMBOL(udp_table);
0122 
0123 long sysctl_udp_mem[3] __read_mostly;
0124 EXPORT_SYMBOL(sysctl_udp_mem);
0125 
0126 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
0127 EXPORT_SYMBOL(udp_memory_allocated);
0128 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
0129 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
0130 
0131 #define MAX_UDP_PORTS 65536
0132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
0133 
0134 static int udp_lib_lport_inuse(struct net *net, __u16 num,
0135                    const struct udp_hslot *hslot,
0136                    unsigned long *bitmap,
0137                    struct sock *sk, unsigned int log)
0138 {
0139     struct sock *sk2;
0140     kuid_t uid = sock_i_uid(sk);
0141 
0142     sk_for_each(sk2, &hslot->head) {
0143         if (net_eq(sock_net(sk2), net) &&
0144             sk2 != sk &&
0145             (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
0146             (!sk2->sk_reuse || !sk->sk_reuse) &&
0147             (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
0148              sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
0149             inet_rcv_saddr_equal(sk, sk2, true)) {
0150             if (sk2->sk_reuseport && sk->sk_reuseport &&
0151                 !rcu_access_pointer(sk->sk_reuseport_cb) &&
0152                 uid_eq(uid, sock_i_uid(sk2))) {
0153                 if (!bitmap)
0154                     return 0;
0155             } else {
0156                 if (!bitmap)
0157                     return 1;
0158                 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
0159                       bitmap);
0160             }
0161         }
0162     }
0163     return 0;
0164 }
0165 
0166 /*
0167  * Note: we still hold spinlock of primary hash chain, so no other writer
0168  * can insert/delete a socket with local_port == num
0169  */
0170 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
0171                 struct udp_hslot *hslot2,
0172                 struct sock *sk)
0173 {
0174     struct sock *sk2;
0175     kuid_t uid = sock_i_uid(sk);
0176     int res = 0;
0177 
0178     spin_lock(&hslot2->lock);
0179     udp_portaddr_for_each_entry(sk2, &hslot2->head) {
0180         if (net_eq(sock_net(sk2), net) &&
0181             sk2 != sk &&
0182             (udp_sk(sk2)->udp_port_hash == num) &&
0183             (!sk2->sk_reuse || !sk->sk_reuse) &&
0184             (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
0185              sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
0186             inet_rcv_saddr_equal(sk, sk2, true)) {
0187             if (sk2->sk_reuseport && sk->sk_reuseport &&
0188                 !rcu_access_pointer(sk->sk_reuseport_cb) &&
0189                 uid_eq(uid, sock_i_uid(sk2))) {
0190                 res = 0;
0191             } else {
0192                 res = 1;
0193             }
0194             break;
0195         }
0196     }
0197     spin_unlock(&hslot2->lock);
0198     return res;
0199 }
0200 
0201 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
0202 {
0203     struct net *net = sock_net(sk);
0204     kuid_t uid = sock_i_uid(sk);
0205     struct sock *sk2;
0206 
0207     sk_for_each(sk2, &hslot->head) {
0208         if (net_eq(sock_net(sk2), net) &&
0209             sk2 != sk &&
0210             sk2->sk_family == sk->sk_family &&
0211             ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
0212             (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
0213             (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
0214             sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
0215             inet_rcv_saddr_equal(sk, sk2, false)) {
0216             return reuseport_add_sock(sk, sk2,
0217                           inet_rcv_saddr_any(sk));
0218         }
0219     }
0220 
0221     return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
0222 }
0223 
0224 /**
0225  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
0226  *
0227  *  @sk:          socket struct in question
0228  *  @snum:        port number to look up
0229  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
0230  *                   with NULL address
0231  */
0232 int udp_lib_get_port(struct sock *sk, unsigned short snum,
0233              unsigned int hash2_nulladdr)
0234 {
0235     struct udp_hslot *hslot, *hslot2;
0236     struct udp_table *udptable = sk->sk_prot->h.udp_table;
0237     int    error = 1;
0238     struct net *net = sock_net(sk);
0239 
0240     if (!snum) {
0241         int low, high, remaining;
0242         unsigned int rand;
0243         unsigned short first, last;
0244         DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
0245 
0246         inet_get_local_port_range(net, &low, &high);
0247         remaining = (high - low) + 1;
0248 
0249         rand = prandom_u32();
0250         first = reciprocal_scale(rand, remaining) + low;
0251         /*
0252          * force rand to be an odd multiple of UDP_HTABLE_SIZE
0253          */
0254         rand = (rand | 1) * (udptable->mask + 1);
0255         last = first + udptable->mask + 1;
0256         do {
0257             hslot = udp_hashslot(udptable, net, first);
0258             bitmap_zero(bitmap, PORTS_PER_CHAIN);
0259             spin_lock_bh(&hslot->lock);
0260             udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
0261                         udptable->log);
0262 
0263             snum = first;
0264             /*
0265              * Iterate on all possible values of snum for this hash.
0266              * Using steps of an odd multiple of UDP_HTABLE_SIZE
0267              * give us randomization and full range coverage.
0268              */
0269             do {
0270                 if (low <= snum && snum <= high &&
0271                     !test_bit(snum >> udptable->log, bitmap) &&
0272                     !inet_is_local_reserved_port(net, snum))
0273                     goto found;
0274                 snum += rand;
0275             } while (snum != first);
0276             spin_unlock_bh(&hslot->lock);
0277             cond_resched();
0278         } while (++first != last);
0279         goto fail;
0280     } else {
0281         hslot = udp_hashslot(udptable, net, snum);
0282         spin_lock_bh(&hslot->lock);
0283         if (hslot->count > 10) {
0284             int exist;
0285             unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
0286 
0287             slot2          &= udptable->mask;
0288             hash2_nulladdr &= udptable->mask;
0289 
0290             hslot2 = udp_hashslot2(udptable, slot2);
0291             if (hslot->count < hslot2->count)
0292                 goto scan_primary_hash;
0293 
0294             exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
0295             if (!exist && (hash2_nulladdr != slot2)) {
0296                 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
0297                 exist = udp_lib_lport_inuse2(net, snum, hslot2,
0298                                  sk);
0299             }
0300             if (exist)
0301                 goto fail_unlock;
0302             else
0303                 goto found;
0304         }
0305 scan_primary_hash:
0306         if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
0307             goto fail_unlock;
0308     }
0309 found:
0310     inet_sk(sk)->inet_num = snum;
0311     udp_sk(sk)->udp_port_hash = snum;
0312     udp_sk(sk)->udp_portaddr_hash ^= snum;
0313     if (sk_unhashed(sk)) {
0314         if (sk->sk_reuseport &&
0315             udp_reuseport_add_sock(sk, hslot)) {
0316             inet_sk(sk)->inet_num = 0;
0317             udp_sk(sk)->udp_port_hash = 0;
0318             udp_sk(sk)->udp_portaddr_hash ^= snum;
0319             goto fail_unlock;
0320         }
0321 
0322         sk_add_node_rcu(sk, &hslot->head);
0323         hslot->count++;
0324         sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
0325 
0326         hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
0327         spin_lock(&hslot2->lock);
0328         if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
0329             sk->sk_family == AF_INET6)
0330             hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
0331                        &hslot2->head);
0332         else
0333             hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
0334                        &hslot2->head);
0335         hslot2->count++;
0336         spin_unlock(&hslot2->lock);
0337     }
0338     sock_set_flag(sk, SOCK_RCU_FREE);
0339     error = 0;
0340 fail_unlock:
0341     spin_unlock_bh(&hslot->lock);
0342 fail:
0343     return error;
0344 }
0345 EXPORT_SYMBOL(udp_lib_get_port);
0346 
0347 int udp_v4_get_port(struct sock *sk, unsigned short snum)
0348 {
0349     unsigned int hash2_nulladdr =
0350         ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
0351     unsigned int hash2_partial =
0352         ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
0353 
0354     /* precompute partial secondary hash */
0355     udp_sk(sk)->udp_portaddr_hash = hash2_partial;
0356     return udp_lib_get_port(sk, snum, hash2_nulladdr);
0357 }
0358 
0359 static int compute_score(struct sock *sk, struct net *net,
0360              __be32 saddr, __be16 sport,
0361              __be32 daddr, unsigned short hnum,
0362              int dif, int sdif)
0363 {
0364     int score;
0365     struct inet_sock *inet;
0366     bool dev_match;
0367 
0368     if (!net_eq(sock_net(sk), net) ||
0369         udp_sk(sk)->udp_port_hash != hnum ||
0370         ipv6_only_sock(sk))
0371         return -1;
0372 
0373     if (sk->sk_rcv_saddr != daddr)
0374         return -1;
0375 
0376     score = (sk->sk_family == PF_INET) ? 2 : 1;
0377 
0378     inet = inet_sk(sk);
0379     if (inet->inet_daddr) {
0380         if (inet->inet_daddr != saddr)
0381             return -1;
0382         score += 4;
0383     }
0384 
0385     if (inet->inet_dport) {
0386         if (inet->inet_dport != sport)
0387             return -1;
0388         score += 4;
0389     }
0390 
0391     dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
0392                     dif, sdif);
0393     if (!dev_match)
0394         return -1;
0395     if (sk->sk_bound_dev_if)
0396         score += 4;
0397 
0398     if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
0399         score++;
0400     return score;
0401 }
0402 
0403 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
0404                const __u16 lport, const __be32 faddr,
0405                const __be16 fport)
0406 {
0407     static u32 udp_ehash_secret __read_mostly;
0408 
0409     net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
0410 
0411     return __inet_ehashfn(laddr, lport, faddr, fport,
0412                   udp_ehash_secret + net_hash_mix(net));
0413 }
0414 
0415 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
0416                      struct sk_buff *skb,
0417                      __be32 saddr, __be16 sport,
0418                      __be32 daddr, unsigned short hnum)
0419 {
0420     struct sock *reuse_sk = NULL;
0421     u32 hash;
0422 
0423     if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
0424         hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
0425         reuse_sk = reuseport_select_sock(sk, hash, skb,
0426                          sizeof(struct udphdr));
0427     }
0428     return reuse_sk;
0429 }
0430 
0431 /* called with rcu_read_lock() */
0432 static struct sock *udp4_lib_lookup2(struct net *net,
0433                      __be32 saddr, __be16 sport,
0434                      __be32 daddr, unsigned int hnum,
0435                      int dif, int sdif,
0436                      struct udp_hslot *hslot2,
0437                      struct sk_buff *skb)
0438 {
0439     struct sock *sk, *result;
0440     int score, badness;
0441 
0442     result = NULL;
0443     badness = 0;
0444     udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
0445         score = compute_score(sk, net, saddr, sport,
0446                       daddr, hnum, dif, sdif);
0447         if (score > badness) {
0448             result = lookup_reuseport(net, sk, skb,
0449                           saddr, sport, daddr, hnum);
0450             /* Fall back to scoring if group has connections */
0451             if (result && !reuseport_has_conns(sk, false))
0452                 return result;
0453 
0454             result = result ? : sk;
0455             badness = score;
0456         }
0457     }
0458     return result;
0459 }
0460 
0461 static struct sock *udp4_lookup_run_bpf(struct net *net,
0462                     struct udp_table *udptable,
0463                     struct sk_buff *skb,
0464                     __be32 saddr, __be16 sport,
0465                     __be32 daddr, u16 hnum, const int dif)
0466 {
0467     struct sock *sk, *reuse_sk;
0468     bool no_reuseport;
0469 
0470     if (udptable != &udp_table)
0471         return NULL; /* only UDP is supported */
0472 
0473     no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport,
0474                         daddr, hnum, dif, &sk);
0475     if (no_reuseport || IS_ERR_OR_NULL(sk))
0476         return sk;
0477 
0478     reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
0479     if (reuse_sk)
0480         sk = reuse_sk;
0481     return sk;
0482 }
0483 
0484 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
0485  * harder than this. -DaveM
0486  */
0487 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
0488         __be16 sport, __be32 daddr, __be16 dport, int dif,
0489         int sdif, struct udp_table *udptable, struct sk_buff *skb)
0490 {
0491     unsigned short hnum = ntohs(dport);
0492     unsigned int hash2, slot2;
0493     struct udp_hslot *hslot2;
0494     struct sock *result, *sk;
0495 
0496     hash2 = ipv4_portaddr_hash(net, daddr, hnum);
0497     slot2 = hash2 & udptable->mask;
0498     hslot2 = &udptable->hash2[slot2];
0499 
0500     /* Lookup connected or non-wildcard socket */
0501     result = udp4_lib_lookup2(net, saddr, sport,
0502                   daddr, hnum, dif, sdif,
0503                   hslot2, skb);
0504     if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
0505         goto done;
0506 
0507     /* Lookup redirect from BPF */
0508     if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
0509         sk = udp4_lookup_run_bpf(net, udptable, skb,
0510                      saddr, sport, daddr, hnum, dif);
0511         if (sk) {
0512             result = sk;
0513             goto done;
0514         }
0515     }
0516 
0517     /* Got non-wildcard socket or error on first lookup */
0518     if (result)
0519         goto done;
0520 
0521     /* Lookup wildcard sockets */
0522     hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
0523     slot2 = hash2 & udptable->mask;
0524     hslot2 = &udptable->hash2[slot2];
0525 
0526     result = udp4_lib_lookup2(net, saddr, sport,
0527                   htonl(INADDR_ANY), hnum, dif, sdif,
0528                   hslot2, skb);
0529 done:
0530     if (IS_ERR(result))
0531         return NULL;
0532     return result;
0533 }
0534 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
0535 
0536 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
0537                          __be16 sport, __be16 dport,
0538                          struct udp_table *udptable)
0539 {
0540     const struct iphdr *iph = ip_hdr(skb);
0541 
0542     return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
0543                  iph->daddr, dport, inet_iif(skb),
0544                  inet_sdif(skb), udptable, skb);
0545 }
0546 
0547 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
0548                  __be16 sport, __be16 dport)
0549 {
0550     const struct iphdr *iph = ip_hdr(skb);
0551 
0552     return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
0553                  iph->daddr, dport, inet_iif(skb),
0554                  inet_sdif(skb), &udp_table, NULL);
0555 }
0556 
0557 /* Must be called under rcu_read_lock().
0558  * Does increment socket refcount.
0559  */
0560 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
0561 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
0562                  __be32 daddr, __be16 dport, int dif)
0563 {
0564     struct sock *sk;
0565 
0566     sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
0567                    dif, 0, &udp_table, NULL);
0568     if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
0569         sk = NULL;
0570     return sk;
0571 }
0572 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
0573 #endif
0574 
0575 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
0576                        __be16 loc_port, __be32 loc_addr,
0577                        __be16 rmt_port, __be32 rmt_addr,
0578                        int dif, int sdif, unsigned short hnum)
0579 {
0580     struct inet_sock *inet = inet_sk(sk);
0581 
0582     if (!net_eq(sock_net(sk), net) ||
0583         udp_sk(sk)->udp_port_hash != hnum ||
0584         (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
0585         (inet->inet_dport != rmt_port && inet->inet_dport) ||
0586         (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
0587         ipv6_only_sock(sk) ||
0588         !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
0589         return false;
0590     if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
0591         return false;
0592     return true;
0593 }
0594 
0595 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
0596 void udp_encap_enable(void)
0597 {
0598     static_branch_inc(&udp_encap_needed_key);
0599 }
0600 EXPORT_SYMBOL(udp_encap_enable);
0601 
0602 void udp_encap_disable(void)
0603 {
0604     static_branch_dec(&udp_encap_needed_key);
0605 }
0606 EXPORT_SYMBOL(udp_encap_disable);
0607 
0608 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
0609  * through error handlers in encapsulations looking for a match.
0610  */
0611 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
0612 {
0613     int i;
0614 
0615     for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
0616         int (*handler)(struct sk_buff *skb, u32 info);
0617         const struct ip_tunnel_encap_ops *encap;
0618 
0619         encap = rcu_dereference(iptun_encaps[i]);
0620         if (!encap)
0621             continue;
0622         handler = encap->err_handler;
0623         if (handler && !handler(skb, info))
0624             return 0;
0625     }
0626 
0627     return -ENOENT;
0628 }
0629 
0630 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
0631  * reversing source and destination port: this will match tunnels that force the
0632  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
0633  * lwtunnels might actually break this assumption by being configured with
0634  * different destination ports on endpoints, in this case we won't be able to
0635  * trace ICMP messages back to them.
0636  *
0637  * If this doesn't match any socket, probe tunnels with arbitrary destination
0638  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
0639  * we've sent packets to won't necessarily match the local destination port.
0640  *
0641  * Then ask the tunnel implementation to match the error against a valid
0642  * association.
0643  *
0644  * Return an error if we can't find a match, the socket if we need further
0645  * processing, zero otherwise.
0646  */
0647 static struct sock *__udp4_lib_err_encap(struct net *net,
0648                      const struct iphdr *iph,
0649                      struct udphdr *uh,
0650                      struct udp_table *udptable,
0651                      struct sock *sk,
0652                      struct sk_buff *skb, u32 info)
0653 {
0654     int (*lookup)(struct sock *sk, struct sk_buff *skb);
0655     int network_offset, transport_offset;
0656     struct udp_sock *up;
0657 
0658     network_offset = skb_network_offset(skb);
0659     transport_offset = skb_transport_offset(skb);
0660 
0661     /* Network header needs to point to the outer IPv4 header inside ICMP */
0662     skb_reset_network_header(skb);
0663 
0664     /* Transport header needs to point to the UDP header */
0665     skb_set_transport_header(skb, iph->ihl << 2);
0666 
0667     if (sk) {
0668         up = udp_sk(sk);
0669 
0670         lookup = READ_ONCE(up->encap_err_lookup);
0671         if (lookup && lookup(sk, skb))
0672             sk = NULL;
0673 
0674         goto out;
0675     }
0676 
0677     sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
0678                    iph->saddr, uh->dest, skb->dev->ifindex, 0,
0679                    udptable, NULL);
0680     if (sk) {
0681         up = udp_sk(sk);
0682 
0683         lookup = READ_ONCE(up->encap_err_lookup);
0684         if (!lookup || lookup(sk, skb))
0685             sk = NULL;
0686     }
0687 
0688 out:
0689     if (!sk)
0690         sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
0691 
0692     skb_set_transport_header(skb, transport_offset);
0693     skb_set_network_header(skb, network_offset);
0694 
0695     return sk;
0696 }
0697 
0698 /*
0699  * This routine is called by the ICMP module when it gets some
0700  * sort of error condition.  If err < 0 then the socket should
0701  * be closed and the error returned to the user.  If err > 0
0702  * it's just the icmp type << 8 | icmp code.
0703  * Header points to the ip header of the error packet. We move
0704  * on past this. Then (as it used to claim before adjustment)
0705  * header points to the first 8 bytes of the udp header.  We need
0706  * to find the appropriate port.
0707  */
0708 
0709 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
0710 {
0711     struct inet_sock *inet;
0712     const struct iphdr *iph = (const struct iphdr *)skb->data;
0713     struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
0714     const int type = icmp_hdr(skb)->type;
0715     const int code = icmp_hdr(skb)->code;
0716     bool tunnel = false;
0717     struct sock *sk;
0718     int harderr;
0719     int err;
0720     struct net *net = dev_net(skb->dev);
0721 
0722     sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
0723                    iph->saddr, uh->source, skb->dev->ifindex,
0724                    inet_sdif(skb), udptable, NULL);
0725 
0726     if (!sk || udp_sk(sk)->encap_type) {
0727         /* No socket for error: try tunnels before discarding */
0728         if (static_branch_unlikely(&udp_encap_needed_key)) {
0729             sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
0730                           info);
0731             if (!sk)
0732                 return 0;
0733         } else
0734             sk = ERR_PTR(-ENOENT);
0735 
0736         if (IS_ERR(sk)) {
0737             __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
0738             return PTR_ERR(sk);
0739         }
0740 
0741         tunnel = true;
0742     }
0743 
0744     err = 0;
0745     harderr = 0;
0746     inet = inet_sk(sk);
0747 
0748     switch (type) {
0749     default:
0750     case ICMP_TIME_EXCEEDED:
0751         err = EHOSTUNREACH;
0752         break;
0753     case ICMP_SOURCE_QUENCH:
0754         goto out;
0755     case ICMP_PARAMETERPROB:
0756         err = EPROTO;
0757         harderr = 1;
0758         break;
0759     case ICMP_DEST_UNREACH:
0760         if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
0761             ipv4_sk_update_pmtu(skb, sk, info);
0762             if (inet->pmtudisc != IP_PMTUDISC_DONT) {
0763                 err = EMSGSIZE;
0764                 harderr = 1;
0765                 break;
0766             }
0767             goto out;
0768         }
0769         err = EHOSTUNREACH;
0770         if (code <= NR_ICMP_UNREACH) {
0771             harderr = icmp_err_convert[code].fatal;
0772             err = icmp_err_convert[code].errno;
0773         }
0774         break;
0775     case ICMP_REDIRECT:
0776         ipv4_sk_redirect(skb, sk);
0777         goto out;
0778     }
0779 
0780     /*
0781      *      RFC1122: OK.  Passes ICMP errors back to application, as per
0782      *  4.1.3.3.
0783      */
0784     if (tunnel) {
0785         /* ...not for tunnels though: we don't have a sending socket */
0786         if (udp_sk(sk)->encap_err_rcv)
0787             udp_sk(sk)->encap_err_rcv(sk, skb, iph->ihl << 2);
0788         goto out;
0789     }
0790     if (!inet->recverr) {
0791         if (!harderr || sk->sk_state != TCP_ESTABLISHED)
0792             goto out;
0793     } else
0794         ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
0795 
0796     sk->sk_err = err;
0797     sk_error_report(sk);
0798 out:
0799     return 0;
0800 }
0801 
0802 int udp_err(struct sk_buff *skb, u32 info)
0803 {
0804     return __udp4_lib_err(skb, info, &udp_table);
0805 }
0806 
0807 /*
0808  * Throw away all pending data and cancel the corking. Socket is locked.
0809  */
0810 void udp_flush_pending_frames(struct sock *sk)
0811 {
0812     struct udp_sock *up = udp_sk(sk);
0813 
0814     if (up->pending) {
0815         up->len = 0;
0816         up->pending = 0;
0817         ip_flush_pending_frames(sk);
0818     }
0819 }
0820 EXPORT_SYMBOL(udp_flush_pending_frames);
0821 
0822 /**
0823  *  udp4_hwcsum  -  handle outgoing HW checksumming
0824  *  @skb:   sk_buff containing the filled-in UDP header
0825  *          (checksum field must be zeroed out)
0826  *  @src:   source IP address
0827  *  @dst:   destination IP address
0828  */
0829 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
0830 {
0831     struct udphdr *uh = udp_hdr(skb);
0832     int offset = skb_transport_offset(skb);
0833     int len = skb->len - offset;
0834     int hlen = len;
0835     __wsum csum = 0;
0836 
0837     if (!skb_has_frag_list(skb)) {
0838         /*
0839          * Only one fragment on the socket.
0840          */
0841         skb->csum_start = skb_transport_header(skb) - skb->head;
0842         skb->csum_offset = offsetof(struct udphdr, check);
0843         uh->check = ~csum_tcpudp_magic(src, dst, len,
0844                            IPPROTO_UDP, 0);
0845     } else {
0846         struct sk_buff *frags;
0847 
0848         /*
0849          * HW-checksum won't work as there are two or more
0850          * fragments on the socket so that all csums of sk_buffs
0851          * should be together
0852          */
0853         skb_walk_frags(skb, frags) {
0854             csum = csum_add(csum, frags->csum);
0855             hlen -= frags->len;
0856         }
0857 
0858         csum = skb_checksum(skb, offset, hlen, csum);
0859         skb->ip_summed = CHECKSUM_NONE;
0860 
0861         uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
0862         if (uh->check == 0)
0863             uh->check = CSUM_MANGLED_0;
0864     }
0865 }
0866 EXPORT_SYMBOL_GPL(udp4_hwcsum);
0867 
0868 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
0869  * for the simple case like when setting the checksum for a UDP tunnel.
0870  */
0871 void udp_set_csum(bool nocheck, struct sk_buff *skb,
0872           __be32 saddr, __be32 daddr, int len)
0873 {
0874     struct udphdr *uh = udp_hdr(skb);
0875 
0876     if (nocheck) {
0877         uh->check = 0;
0878     } else if (skb_is_gso(skb)) {
0879         uh->check = ~udp_v4_check(len, saddr, daddr, 0);
0880     } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
0881         uh->check = 0;
0882         uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
0883         if (uh->check == 0)
0884             uh->check = CSUM_MANGLED_0;
0885     } else {
0886         skb->ip_summed = CHECKSUM_PARTIAL;
0887         skb->csum_start = skb_transport_header(skb) - skb->head;
0888         skb->csum_offset = offsetof(struct udphdr, check);
0889         uh->check = ~udp_v4_check(len, saddr, daddr, 0);
0890     }
0891 }
0892 EXPORT_SYMBOL(udp_set_csum);
0893 
0894 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
0895             struct inet_cork *cork)
0896 {
0897     struct sock *sk = skb->sk;
0898     struct inet_sock *inet = inet_sk(sk);
0899     struct udphdr *uh;
0900     int err;
0901     int is_udplite = IS_UDPLITE(sk);
0902     int offset = skb_transport_offset(skb);
0903     int len = skb->len - offset;
0904     int datalen = len - sizeof(*uh);
0905     __wsum csum = 0;
0906 
0907     /*
0908      * Create a UDP header
0909      */
0910     uh = udp_hdr(skb);
0911     uh->source = inet->inet_sport;
0912     uh->dest = fl4->fl4_dport;
0913     uh->len = htons(len);
0914     uh->check = 0;
0915 
0916     if (cork->gso_size) {
0917         const int hlen = skb_network_header_len(skb) +
0918                  sizeof(struct udphdr);
0919 
0920         if (hlen + cork->gso_size > cork->fragsize) {
0921             kfree_skb(skb);
0922             return -EINVAL;
0923         }
0924         if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
0925             kfree_skb(skb);
0926             return -EINVAL;
0927         }
0928         if (sk->sk_no_check_tx) {
0929             kfree_skb(skb);
0930             return -EINVAL;
0931         }
0932         if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
0933             dst_xfrm(skb_dst(skb))) {
0934             kfree_skb(skb);
0935             return -EIO;
0936         }
0937 
0938         if (datalen > cork->gso_size) {
0939             skb_shinfo(skb)->gso_size = cork->gso_size;
0940             skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
0941             skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
0942                                  cork->gso_size);
0943         }
0944         goto csum_partial;
0945     }
0946 
0947     if (is_udplite)                  /*     UDP-Lite      */
0948         csum = udplite_csum(skb);
0949 
0950     else if (sk->sk_no_check_tx) {           /* UDP csum off */
0951 
0952         skb->ip_summed = CHECKSUM_NONE;
0953         goto send;
0954 
0955     } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
0956 csum_partial:
0957 
0958         udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
0959         goto send;
0960 
0961     } else
0962         csum = udp_csum(skb);
0963 
0964     /* add protocol-dependent pseudo-header */
0965     uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
0966                       sk->sk_protocol, csum);
0967     if (uh->check == 0)
0968         uh->check = CSUM_MANGLED_0;
0969 
0970 send:
0971     err = ip_send_skb(sock_net(sk), skb);
0972     if (err) {
0973         if (err == -ENOBUFS && !inet->recverr) {
0974             UDP_INC_STATS(sock_net(sk),
0975                       UDP_MIB_SNDBUFERRORS, is_udplite);
0976             err = 0;
0977         }
0978     } else
0979         UDP_INC_STATS(sock_net(sk),
0980                   UDP_MIB_OUTDATAGRAMS, is_udplite);
0981     return err;
0982 }
0983 
0984 /*
0985  * Push out all pending data as one UDP datagram. Socket is locked.
0986  */
0987 int udp_push_pending_frames(struct sock *sk)
0988 {
0989     struct udp_sock  *up = udp_sk(sk);
0990     struct inet_sock *inet = inet_sk(sk);
0991     struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
0992     struct sk_buff *skb;
0993     int err = 0;
0994 
0995     skb = ip_finish_skb(sk, fl4);
0996     if (!skb)
0997         goto out;
0998 
0999     err = udp_send_skb(skb, fl4, &inet->cork.base);
1000 
1001 out:
1002     up->len = 0;
1003     up->pending = 0;
1004     return err;
1005 }
1006 EXPORT_SYMBOL(udp_push_pending_frames);
1007 
1008 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1009 {
1010     switch (cmsg->cmsg_type) {
1011     case UDP_SEGMENT:
1012         if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1013             return -EINVAL;
1014         *gso_size = *(__u16 *)CMSG_DATA(cmsg);
1015         return 0;
1016     default:
1017         return -EINVAL;
1018     }
1019 }
1020 
1021 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1022 {
1023     struct cmsghdr *cmsg;
1024     bool need_ip = false;
1025     int err;
1026 
1027     for_each_cmsghdr(cmsg, msg) {
1028         if (!CMSG_OK(msg, cmsg))
1029             return -EINVAL;
1030 
1031         if (cmsg->cmsg_level != SOL_UDP) {
1032             need_ip = true;
1033             continue;
1034         }
1035 
1036         err = __udp_cmsg_send(cmsg, gso_size);
1037         if (err)
1038             return err;
1039     }
1040 
1041     return need_ip;
1042 }
1043 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1044 
1045 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1046 {
1047     struct inet_sock *inet = inet_sk(sk);
1048     struct udp_sock *up = udp_sk(sk);
1049     DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1050     struct flowi4 fl4_stack;
1051     struct flowi4 *fl4;
1052     int ulen = len;
1053     struct ipcm_cookie ipc;
1054     struct rtable *rt = NULL;
1055     int free = 0;
1056     int connected = 0;
1057     __be32 daddr, faddr, saddr;
1058     __be16 dport;
1059     u8  tos;
1060     int err, is_udplite = IS_UDPLITE(sk);
1061     int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1062     int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1063     struct sk_buff *skb;
1064     struct ip_options_data opt_copy;
1065 
1066     if (len > 0xFFFF)
1067         return -EMSGSIZE;
1068 
1069     /*
1070      *  Check the flags.
1071      */
1072 
1073     if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1074         return -EOPNOTSUPP;
1075 
1076     getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1077 
1078     fl4 = &inet->cork.fl.u.ip4;
1079     if (up->pending) {
1080         /*
1081          * There are pending frames.
1082          * The socket lock must be held while it's corked.
1083          */
1084         lock_sock(sk);
1085         if (likely(up->pending)) {
1086             if (unlikely(up->pending != AF_INET)) {
1087                 release_sock(sk);
1088                 return -EINVAL;
1089             }
1090             goto do_append_data;
1091         }
1092         release_sock(sk);
1093     }
1094     ulen += sizeof(struct udphdr);
1095 
1096     /*
1097      *  Get and verify the address.
1098      */
1099     if (usin) {
1100         if (msg->msg_namelen < sizeof(*usin))
1101             return -EINVAL;
1102         if (usin->sin_family != AF_INET) {
1103             if (usin->sin_family != AF_UNSPEC)
1104                 return -EAFNOSUPPORT;
1105         }
1106 
1107         daddr = usin->sin_addr.s_addr;
1108         dport = usin->sin_port;
1109         if (dport == 0)
1110             return -EINVAL;
1111     } else {
1112         if (sk->sk_state != TCP_ESTABLISHED)
1113             return -EDESTADDRREQ;
1114         daddr = inet->inet_daddr;
1115         dport = inet->inet_dport;
1116         /* Open fast path for connected socket.
1117            Route will not be used, if at least one option is set.
1118          */
1119         connected = 1;
1120     }
1121 
1122     ipcm_init_sk(&ipc, inet);
1123     ipc.gso_size = READ_ONCE(up->gso_size);
1124 
1125     if (msg->msg_controllen) {
1126         err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1127         if (err > 0)
1128             err = ip_cmsg_send(sk, msg, &ipc,
1129                        sk->sk_family == AF_INET6);
1130         if (unlikely(err < 0)) {
1131             kfree(ipc.opt);
1132             return err;
1133         }
1134         if (ipc.opt)
1135             free = 1;
1136         connected = 0;
1137     }
1138     if (!ipc.opt) {
1139         struct ip_options_rcu *inet_opt;
1140 
1141         rcu_read_lock();
1142         inet_opt = rcu_dereference(inet->inet_opt);
1143         if (inet_opt) {
1144             memcpy(&opt_copy, inet_opt,
1145                    sizeof(*inet_opt) + inet_opt->opt.optlen);
1146             ipc.opt = &opt_copy.opt;
1147         }
1148         rcu_read_unlock();
1149     }
1150 
1151     if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1152         err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1153                         (struct sockaddr *)usin, &ipc.addr);
1154         if (err)
1155             goto out_free;
1156         if (usin) {
1157             if (usin->sin_port == 0) {
1158                 /* BPF program set invalid port. Reject it. */
1159                 err = -EINVAL;
1160                 goto out_free;
1161             }
1162             daddr = usin->sin_addr.s_addr;
1163             dport = usin->sin_port;
1164         }
1165     }
1166 
1167     saddr = ipc.addr;
1168     ipc.addr = faddr = daddr;
1169 
1170     if (ipc.opt && ipc.opt->opt.srr) {
1171         if (!daddr) {
1172             err = -EINVAL;
1173             goto out_free;
1174         }
1175         faddr = ipc.opt->opt.faddr;
1176         connected = 0;
1177     }
1178     tos = get_rttos(&ipc, inet);
1179     if (sock_flag(sk, SOCK_LOCALROUTE) ||
1180         (msg->msg_flags & MSG_DONTROUTE) ||
1181         (ipc.opt && ipc.opt->opt.is_strictroute)) {
1182         tos |= RTO_ONLINK;
1183         connected = 0;
1184     }
1185 
1186     if (ipv4_is_multicast(daddr)) {
1187         if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1188             ipc.oif = inet->mc_index;
1189         if (!saddr)
1190             saddr = inet->mc_addr;
1191         connected = 0;
1192     } else if (!ipc.oif) {
1193         ipc.oif = inet->uc_index;
1194     } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1195         /* oif is set, packet is to local broadcast and
1196          * uc_index is set. oif is most likely set
1197          * by sk_bound_dev_if. If uc_index != oif check if the
1198          * oif is an L3 master and uc_index is an L3 slave.
1199          * If so, we want to allow the send using the uc_index.
1200          */
1201         if (ipc.oif != inet->uc_index &&
1202             ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1203                                   inet->uc_index)) {
1204             ipc.oif = inet->uc_index;
1205         }
1206     }
1207 
1208     if (connected)
1209         rt = (struct rtable *)sk_dst_check(sk, 0);
1210 
1211     if (!rt) {
1212         struct net *net = sock_net(sk);
1213         __u8 flow_flags = inet_sk_flowi_flags(sk);
1214 
1215         fl4 = &fl4_stack;
1216 
1217         flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1218                    RT_SCOPE_UNIVERSE, sk->sk_protocol,
1219                    flow_flags,
1220                    faddr, saddr, dport, inet->inet_sport,
1221                    sk->sk_uid);
1222 
1223         security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1224         rt = ip_route_output_flow(net, fl4, sk);
1225         if (IS_ERR(rt)) {
1226             err = PTR_ERR(rt);
1227             rt = NULL;
1228             if (err == -ENETUNREACH)
1229                 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1230             goto out;
1231         }
1232 
1233         err = -EACCES;
1234         if ((rt->rt_flags & RTCF_BROADCAST) &&
1235             !sock_flag(sk, SOCK_BROADCAST))
1236             goto out;
1237         if (connected)
1238             sk_dst_set(sk, dst_clone(&rt->dst));
1239     }
1240 
1241     if (msg->msg_flags&MSG_CONFIRM)
1242         goto do_confirm;
1243 back_from_confirm:
1244 
1245     saddr = fl4->saddr;
1246     if (!ipc.addr)
1247         daddr = ipc.addr = fl4->daddr;
1248 
1249     /* Lockless fast path for the non-corking case. */
1250     if (!corkreq) {
1251         struct inet_cork cork;
1252 
1253         skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1254                   sizeof(struct udphdr), &ipc, &rt,
1255                   &cork, msg->msg_flags);
1256         err = PTR_ERR(skb);
1257         if (!IS_ERR_OR_NULL(skb))
1258             err = udp_send_skb(skb, fl4, &cork);
1259         goto out;
1260     }
1261 
1262     lock_sock(sk);
1263     if (unlikely(up->pending)) {
1264         /* The socket is already corked while preparing it. */
1265         /* ... which is an evident application bug. --ANK */
1266         release_sock(sk);
1267 
1268         net_dbg_ratelimited("socket already corked\n");
1269         err = -EINVAL;
1270         goto out;
1271     }
1272     /*
1273      *  Now cork the socket to pend data.
1274      */
1275     fl4 = &inet->cork.fl.u.ip4;
1276     fl4->daddr = daddr;
1277     fl4->saddr = saddr;
1278     fl4->fl4_dport = dport;
1279     fl4->fl4_sport = inet->inet_sport;
1280     up->pending = AF_INET;
1281 
1282 do_append_data:
1283     up->len += ulen;
1284     err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1285                  sizeof(struct udphdr), &ipc, &rt,
1286                  corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1287     if (err)
1288         udp_flush_pending_frames(sk);
1289     else if (!corkreq)
1290         err = udp_push_pending_frames(sk);
1291     else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1292         up->pending = 0;
1293     release_sock(sk);
1294 
1295 out:
1296     ip_rt_put(rt);
1297 out_free:
1298     if (free)
1299         kfree(ipc.opt);
1300     if (!err)
1301         return len;
1302     /*
1303      * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1304      * ENOBUFS might not be good (it's not tunable per se), but otherwise
1305      * we don't have a good statistic (IpOutDiscards but it can be too many
1306      * things).  We could add another new stat but at least for now that
1307      * seems like overkill.
1308      */
1309     if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1310         UDP_INC_STATS(sock_net(sk),
1311                   UDP_MIB_SNDBUFERRORS, is_udplite);
1312     }
1313     return err;
1314 
1315 do_confirm:
1316     if (msg->msg_flags & MSG_PROBE)
1317         dst_confirm_neigh(&rt->dst, &fl4->daddr);
1318     if (!(msg->msg_flags&MSG_PROBE) || len)
1319         goto back_from_confirm;
1320     err = 0;
1321     goto out;
1322 }
1323 EXPORT_SYMBOL(udp_sendmsg);
1324 
1325 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1326          size_t size, int flags)
1327 {
1328     struct inet_sock *inet = inet_sk(sk);
1329     struct udp_sock *up = udp_sk(sk);
1330     int ret;
1331 
1332     if (flags & MSG_SENDPAGE_NOTLAST)
1333         flags |= MSG_MORE;
1334 
1335     if (!up->pending) {
1336         struct msghdr msg = {   .msg_flags = flags|MSG_MORE };
1337 
1338         /* Call udp_sendmsg to specify destination address which
1339          * sendpage interface can't pass.
1340          * This will succeed only when the socket is connected.
1341          */
1342         ret = udp_sendmsg(sk, &msg, 0);
1343         if (ret < 0)
1344             return ret;
1345     }
1346 
1347     lock_sock(sk);
1348 
1349     if (unlikely(!up->pending)) {
1350         release_sock(sk);
1351 
1352         net_dbg_ratelimited("cork failed\n");
1353         return -EINVAL;
1354     }
1355 
1356     ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1357                  page, offset, size, flags);
1358     if (ret == -EOPNOTSUPP) {
1359         release_sock(sk);
1360         return sock_no_sendpage(sk->sk_socket, page, offset,
1361                     size, flags);
1362     }
1363     if (ret < 0) {
1364         udp_flush_pending_frames(sk);
1365         goto out;
1366     }
1367 
1368     up->len += size;
1369     if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1370         ret = udp_push_pending_frames(sk);
1371     if (!ret)
1372         ret = size;
1373 out:
1374     release_sock(sk);
1375     return ret;
1376 }
1377 
1378 #define UDP_SKB_IS_STATELESS 0x80000000
1379 
1380 /* all head states (dst, sk, nf conntrack) except skb extensions are
1381  * cleared by udp_rcv().
1382  *
1383  * We need to preserve secpath, if present, to eventually process
1384  * IP_CMSG_PASSSEC at recvmsg() time.
1385  *
1386  * Other extensions can be cleared.
1387  */
1388 static bool udp_try_make_stateless(struct sk_buff *skb)
1389 {
1390     if (!skb_has_extensions(skb))
1391         return true;
1392 
1393     if (!secpath_exists(skb)) {
1394         skb_ext_reset(skb);
1395         return true;
1396     }
1397 
1398     return false;
1399 }
1400 
1401 static void udp_set_dev_scratch(struct sk_buff *skb)
1402 {
1403     struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1404 
1405     BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1406     scratch->_tsize_state = skb->truesize;
1407 #if BITS_PER_LONG == 64
1408     scratch->len = skb->len;
1409     scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1410     scratch->is_linear = !skb_is_nonlinear(skb);
1411 #endif
1412     if (udp_try_make_stateless(skb))
1413         scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1414 }
1415 
1416 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1417 {
1418     /* We come here after udp_lib_checksum_complete() returned 0.
1419      * This means that __skb_checksum_complete() might have
1420      * set skb->csum_valid to 1.
1421      * On 64bit platforms, we can set csum_unnecessary
1422      * to true, but only if the skb is not shared.
1423      */
1424 #if BITS_PER_LONG == 64
1425     if (!skb_shared(skb))
1426         udp_skb_scratch(skb)->csum_unnecessary = true;
1427 #endif
1428 }
1429 
1430 static int udp_skb_truesize(struct sk_buff *skb)
1431 {
1432     return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1433 }
1434 
1435 static bool udp_skb_has_head_state(struct sk_buff *skb)
1436 {
1437     return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1438 }
1439 
1440 /* fully reclaim rmem/fwd memory allocated for skb */
1441 static void udp_rmem_release(struct sock *sk, int size, int partial,
1442                  bool rx_queue_lock_held)
1443 {
1444     struct udp_sock *up = udp_sk(sk);
1445     struct sk_buff_head *sk_queue;
1446     int amt;
1447 
1448     if (likely(partial)) {
1449         up->forward_deficit += size;
1450         size = up->forward_deficit;
1451         if (size < (sk->sk_rcvbuf >> 2) &&
1452             !skb_queue_empty(&up->reader_queue))
1453             return;
1454     } else {
1455         size += up->forward_deficit;
1456     }
1457     up->forward_deficit = 0;
1458 
1459     /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1460      * if the called don't held it already
1461      */
1462     sk_queue = &sk->sk_receive_queue;
1463     if (!rx_queue_lock_held)
1464         spin_lock(&sk_queue->lock);
1465 
1466 
1467     sk->sk_forward_alloc += size;
1468     amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1469     sk->sk_forward_alloc -= amt;
1470 
1471     if (amt)
1472         __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1473 
1474     atomic_sub(size, &sk->sk_rmem_alloc);
1475 
1476     /* this can save us from acquiring the rx queue lock on next receive */
1477     skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1478 
1479     if (!rx_queue_lock_held)
1480         spin_unlock(&sk_queue->lock);
1481 }
1482 
1483 /* Note: called with reader_queue.lock held.
1484  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1485  * This avoids a cache line miss while receive_queue lock is held.
1486  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1487  */
1488 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1489 {
1490     prefetch(&skb->data);
1491     udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1492 }
1493 EXPORT_SYMBOL(udp_skb_destructor);
1494 
1495 /* as above, but the caller held the rx queue lock, too */
1496 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1497 {
1498     prefetch(&skb->data);
1499     udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1500 }
1501 
1502 /* Idea of busylocks is to let producers grab an extra spinlock
1503  * to relieve pressure on the receive_queue spinlock shared by consumer.
1504  * Under flood, this means that only one producer can be in line
1505  * trying to acquire the receive_queue spinlock.
1506  * These busylock can be allocated on a per cpu manner, instead of a
1507  * per socket one (that would consume a cache line per socket)
1508  */
1509 static int udp_busylocks_log __read_mostly;
1510 static spinlock_t *udp_busylocks __read_mostly;
1511 
1512 static spinlock_t *busylock_acquire(void *ptr)
1513 {
1514     spinlock_t *busy;
1515 
1516     busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1517     spin_lock(busy);
1518     return busy;
1519 }
1520 
1521 static void busylock_release(spinlock_t *busy)
1522 {
1523     if (busy)
1524         spin_unlock(busy);
1525 }
1526 
1527 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1528 {
1529     struct sk_buff_head *list = &sk->sk_receive_queue;
1530     int rmem, delta, amt, err = -ENOMEM;
1531     spinlock_t *busy = NULL;
1532     int size;
1533 
1534     /* try to avoid the costly atomic add/sub pair when the receive
1535      * queue is full; always allow at least a packet
1536      */
1537     rmem = atomic_read(&sk->sk_rmem_alloc);
1538     if (rmem > sk->sk_rcvbuf)
1539         goto drop;
1540 
1541     /* Under mem pressure, it might be helpful to help udp_recvmsg()
1542      * having linear skbs :
1543      * - Reduce memory overhead and thus increase receive queue capacity
1544      * - Less cache line misses at copyout() time
1545      * - Less work at consume_skb() (less alien page frag freeing)
1546      */
1547     if (rmem > (sk->sk_rcvbuf >> 1)) {
1548         skb_condense(skb);
1549 
1550         busy = busylock_acquire(sk);
1551     }
1552     size = skb->truesize;
1553     udp_set_dev_scratch(skb);
1554 
1555     /* we drop only if the receive buf is full and the receive
1556      * queue contains some other skb
1557      */
1558     rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1559     if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1560         goto uncharge_drop;
1561 
1562     spin_lock(&list->lock);
1563     if (size >= sk->sk_forward_alloc) {
1564         amt = sk_mem_pages(size);
1565         delta = amt << PAGE_SHIFT;
1566         if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1567             err = -ENOBUFS;
1568             spin_unlock(&list->lock);
1569             goto uncharge_drop;
1570         }
1571 
1572         sk->sk_forward_alloc += delta;
1573     }
1574 
1575     sk->sk_forward_alloc -= size;
1576 
1577     /* no need to setup a destructor, we will explicitly release the
1578      * forward allocated memory on dequeue
1579      */
1580     sock_skb_set_dropcount(sk, skb);
1581 
1582     __skb_queue_tail(list, skb);
1583     spin_unlock(&list->lock);
1584 
1585     if (!sock_flag(sk, SOCK_DEAD))
1586         sk->sk_data_ready(sk);
1587 
1588     busylock_release(busy);
1589     return 0;
1590 
1591 uncharge_drop:
1592     atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1593 
1594 drop:
1595     atomic_inc(&sk->sk_drops);
1596     busylock_release(busy);
1597     return err;
1598 }
1599 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1600 
1601 void udp_destruct_sock(struct sock *sk)
1602 {
1603     /* reclaim completely the forward allocated memory */
1604     struct udp_sock *up = udp_sk(sk);
1605     unsigned int total = 0;
1606     struct sk_buff *skb;
1607 
1608     skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1609     while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1610         total += skb->truesize;
1611         kfree_skb(skb);
1612     }
1613     udp_rmem_release(sk, total, 0, true);
1614 
1615     inet_sock_destruct(sk);
1616 }
1617 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1618 
1619 int udp_init_sock(struct sock *sk)
1620 {
1621     skb_queue_head_init(&udp_sk(sk)->reader_queue);
1622     sk->sk_destruct = udp_destruct_sock;
1623     return 0;
1624 }
1625 EXPORT_SYMBOL_GPL(udp_init_sock);
1626 
1627 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1628 {
1629     if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1630         bool slow = lock_sock_fast(sk);
1631 
1632         sk_peek_offset_bwd(sk, len);
1633         unlock_sock_fast(sk, slow);
1634     }
1635 
1636     if (!skb_unref(skb))
1637         return;
1638 
1639     /* In the more common cases we cleared the head states previously,
1640      * see __udp_queue_rcv_skb().
1641      */
1642     if (unlikely(udp_skb_has_head_state(skb)))
1643         skb_release_head_state(skb);
1644     __consume_stateless_skb(skb);
1645 }
1646 EXPORT_SYMBOL_GPL(skb_consume_udp);
1647 
1648 static struct sk_buff *__first_packet_length(struct sock *sk,
1649                          struct sk_buff_head *rcvq,
1650                          int *total)
1651 {
1652     struct sk_buff *skb;
1653 
1654     while ((skb = skb_peek(rcvq)) != NULL) {
1655         if (udp_lib_checksum_complete(skb)) {
1656             __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1657                     IS_UDPLITE(sk));
1658             __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1659                     IS_UDPLITE(sk));
1660             atomic_inc(&sk->sk_drops);
1661             __skb_unlink(skb, rcvq);
1662             *total += skb->truesize;
1663             kfree_skb(skb);
1664         } else {
1665             udp_skb_csum_unnecessary_set(skb);
1666             break;
1667         }
1668     }
1669     return skb;
1670 }
1671 
1672 /**
1673  *  first_packet_length - return length of first packet in receive queue
1674  *  @sk: socket
1675  *
1676  *  Drops all bad checksum frames, until a valid one is found.
1677  *  Returns the length of found skb, or -1 if none is found.
1678  */
1679 static int first_packet_length(struct sock *sk)
1680 {
1681     struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1682     struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1683     struct sk_buff *skb;
1684     int total = 0;
1685     int res;
1686 
1687     spin_lock_bh(&rcvq->lock);
1688     skb = __first_packet_length(sk, rcvq, &total);
1689     if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1690         spin_lock(&sk_queue->lock);
1691         skb_queue_splice_tail_init(sk_queue, rcvq);
1692         spin_unlock(&sk_queue->lock);
1693 
1694         skb = __first_packet_length(sk, rcvq, &total);
1695     }
1696     res = skb ? skb->len : -1;
1697     if (total)
1698         udp_rmem_release(sk, total, 1, false);
1699     spin_unlock_bh(&rcvq->lock);
1700     return res;
1701 }
1702 
1703 /*
1704  *  IOCTL requests applicable to the UDP protocol
1705  */
1706 
1707 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1708 {
1709     switch (cmd) {
1710     case SIOCOUTQ:
1711     {
1712         int amount = sk_wmem_alloc_get(sk);
1713 
1714         return put_user(amount, (int __user *)arg);
1715     }
1716 
1717     case SIOCINQ:
1718     {
1719         int amount = max_t(int, 0, first_packet_length(sk));
1720 
1721         return put_user(amount, (int __user *)arg);
1722     }
1723 
1724     default:
1725         return -ENOIOCTLCMD;
1726     }
1727 
1728     return 0;
1729 }
1730 EXPORT_SYMBOL(udp_ioctl);
1731 
1732 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1733                    int *off, int *err)
1734 {
1735     struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1736     struct sk_buff_head *queue;
1737     struct sk_buff *last;
1738     long timeo;
1739     int error;
1740 
1741     queue = &udp_sk(sk)->reader_queue;
1742     timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1743     do {
1744         struct sk_buff *skb;
1745 
1746         error = sock_error(sk);
1747         if (error)
1748             break;
1749 
1750         error = -EAGAIN;
1751         do {
1752             spin_lock_bh(&queue->lock);
1753             skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1754                             err, &last);
1755             if (skb) {
1756                 if (!(flags & MSG_PEEK))
1757                     udp_skb_destructor(sk, skb);
1758                 spin_unlock_bh(&queue->lock);
1759                 return skb;
1760             }
1761 
1762             if (skb_queue_empty_lockless(sk_queue)) {
1763                 spin_unlock_bh(&queue->lock);
1764                 goto busy_check;
1765             }
1766 
1767             /* refill the reader queue and walk it again
1768              * keep both queues locked to avoid re-acquiring
1769              * the sk_receive_queue lock if fwd memory scheduling
1770              * is needed.
1771              */
1772             spin_lock(&sk_queue->lock);
1773             skb_queue_splice_tail_init(sk_queue, queue);
1774 
1775             skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1776                             err, &last);
1777             if (skb && !(flags & MSG_PEEK))
1778                 udp_skb_dtor_locked(sk, skb);
1779             spin_unlock(&sk_queue->lock);
1780             spin_unlock_bh(&queue->lock);
1781             if (skb)
1782                 return skb;
1783 
1784 busy_check:
1785             if (!sk_can_busy_loop(sk))
1786                 break;
1787 
1788             sk_busy_loop(sk, flags & MSG_DONTWAIT);
1789         } while (!skb_queue_empty_lockless(sk_queue));
1790 
1791         /* sk_queue is empty, reader_queue may contain peeked packets */
1792     } while (timeo &&
1793          !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1794                           &error, &timeo,
1795                           (struct sk_buff *)sk_queue));
1796 
1797     *err = error;
1798     return NULL;
1799 }
1800 EXPORT_SYMBOL(__skb_recv_udp);
1801 
1802 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1803 {
1804     int copied = 0;
1805 
1806     while (1) {
1807         struct sk_buff *skb;
1808         int err, used;
1809 
1810         skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1811         if (!skb)
1812             return err;
1813 
1814         if (udp_lib_checksum_complete(skb)) {
1815             __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1816                     IS_UDPLITE(sk));
1817             __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1818                     IS_UDPLITE(sk));
1819             atomic_inc(&sk->sk_drops);
1820             kfree_skb(skb);
1821             continue;
1822         }
1823 
1824         WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1825         used = recv_actor(sk, skb);
1826         if (used <= 0) {
1827             if (!copied)
1828                 copied = used;
1829             kfree_skb(skb);
1830             break;
1831         } else if (used <= skb->len) {
1832             copied += used;
1833         }
1834 
1835         kfree_skb(skb);
1836         break;
1837     }
1838 
1839     return copied;
1840 }
1841 EXPORT_SYMBOL(udp_read_skb);
1842 
1843 /*
1844  *  This should be easy, if there is something there we
1845  *  return it, otherwise we block.
1846  */
1847 
1848 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1849         int *addr_len)
1850 {
1851     struct inet_sock *inet = inet_sk(sk);
1852     DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1853     struct sk_buff *skb;
1854     unsigned int ulen, copied;
1855     int off, err, peeking = flags & MSG_PEEK;
1856     int is_udplite = IS_UDPLITE(sk);
1857     bool checksum_valid = false;
1858 
1859     if (flags & MSG_ERRQUEUE)
1860         return ip_recv_error(sk, msg, len, addr_len);
1861 
1862 try_again:
1863     off = sk_peek_offset(sk, flags);
1864     skb = __skb_recv_udp(sk, flags, &off, &err);
1865     if (!skb)
1866         return err;
1867 
1868     ulen = udp_skb_len(skb);
1869     copied = len;
1870     if (copied > ulen - off)
1871         copied = ulen - off;
1872     else if (copied < ulen)
1873         msg->msg_flags |= MSG_TRUNC;
1874 
1875     /*
1876      * If checksum is needed at all, try to do it while copying the
1877      * data.  If the data is truncated, or if we only want a partial
1878      * coverage checksum (UDP-Lite), do it before the copy.
1879      */
1880 
1881     if (copied < ulen || peeking ||
1882         (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1883         checksum_valid = udp_skb_csum_unnecessary(skb) ||
1884                 !__udp_lib_checksum_complete(skb);
1885         if (!checksum_valid)
1886             goto csum_copy_err;
1887     }
1888 
1889     if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1890         if (udp_skb_is_linear(skb))
1891             err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1892         else
1893             err = skb_copy_datagram_msg(skb, off, msg, copied);
1894     } else {
1895         err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1896 
1897         if (err == -EINVAL)
1898             goto csum_copy_err;
1899     }
1900 
1901     if (unlikely(err)) {
1902         if (!peeking) {
1903             atomic_inc(&sk->sk_drops);
1904             UDP_INC_STATS(sock_net(sk),
1905                       UDP_MIB_INERRORS, is_udplite);
1906         }
1907         kfree_skb(skb);
1908         return err;
1909     }
1910 
1911     if (!peeking)
1912         UDP_INC_STATS(sock_net(sk),
1913                   UDP_MIB_INDATAGRAMS, is_udplite);
1914 
1915     sock_recv_cmsgs(msg, sk, skb);
1916 
1917     /* Copy the address. */
1918     if (sin) {
1919         sin->sin_family = AF_INET;
1920         sin->sin_port = udp_hdr(skb)->source;
1921         sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1922         memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1923         *addr_len = sizeof(*sin);
1924 
1925         BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1926                               (struct sockaddr *)sin);
1927     }
1928 
1929     if (udp_sk(sk)->gro_enabled)
1930         udp_cmsg_recv(msg, sk, skb);
1931 
1932     if (inet->cmsg_flags)
1933         ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1934 
1935     err = copied;
1936     if (flags & MSG_TRUNC)
1937         err = ulen;
1938 
1939     skb_consume_udp(sk, skb, peeking ? -err : err);
1940     return err;
1941 
1942 csum_copy_err:
1943     if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1944                  udp_skb_destructor)) {
1945         UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1946         UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1947     }
1948     kfree_skb(skb);
1949 
1950     /* starting over for a new packet, but check if we need to yield */
1951     cond_resched();
1952     msg->msg_flags &= ~MSG_TRUNC;
1953     goto try_again;
1954 }
1955 
1956 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1957 {
1958     /* This check is replicated from __ip4_datagram_connect() and
1959      * intended to prevent BPF program called below from accessing bytes
1960      * that are out of the bound specified by user in addr_len.
1961      */
1962     if (addr_len < sizeof(struct sockaddr_in))
1963         return -EINVAL;
1964 
1965     return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1966 }
1967 EXPORT_SYMBOL(udp_pre_connect);
1968 
1969 int __udp_disconnect(struct sock *sk, int flags)
1970 {
1971     struct inet_sock *inet = inet_sk(sk);
1972     /*
1973      *  1003.1g - break association.
1974      */
1975 
1976     sk->sk_state = TCP_CLOSE;
1977     inet->inet_daddr = 0;
1978     inet->inet_dport = 0;
1979     sock_rps_reset_rxhash(sk);
1980     sk->sk_bound_dev_if = 0;
1981     if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1982         inet_reset_saddr(sk);
1983         if (sk->sk_prot->rehash &&
1984             (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1985             sk->sk_prot->rehash(sk);
1986     }
1987 
1988     if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1989         sk->sk_prot->unhash(sk);
1990         inet->inet_sport = 0;
1991     }
1992     sk_dst_reset(sk);
1993     return 0;
1994 }
1995 EXPORT_SYMBOL(__udp_disconnect);
1996 
1997 int udp_disconnect(struct sock *sk, int flags)
1998 {
1999     lock_sock(sk);
2000     __udp_disconnect(sk, flags);
2001     release_sock(sk);
2002     return 0;
2003 }
2004 EXPORT_SYMBOL(udp_disconnect);
2005 
2006 void udp_lib_unhash(struct sock *sk)
2007 {
2008     if (sk_hashed(sk)) {
2009         struct udp_table *udptable = sk->sk_prot->h.udp_table;
2010         struct udp_hslot *hslot, *hslot2;
2011 
2012         hslot  = udp_hashslot(udptable, sock_net(sk),
2013                       udp_sk(sk)->udp_port_hash);
2014         hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2015 
2016         spin_lock_bh(&hslot->lock);
2017         if (rcu_access_pointer(sk->sk_reuseport_cb))
2018             reuseport_detach_sock(sk);
2019         if (sk_del_node_init_rcu(sk)) {
2020             hslot->count--;
2021             inet_sk(sk)->inet_num = 0;
2022             sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2023 
2024             spin_lock(&hslot2->lock);
2025             hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2026             hslot2->count--;
2027             spin_unlock(&hslot2->lock);
2028         }
2029         spin_unlock_bh(&hslot->lock);
2030     }
2031 }
2032 EXPORT_SYMBOL(udp_lib_unhash);
2033 
2034 /*
2035  * inet_rcv_saddr was changed, we must rehash secondary hash
2036  */
2037 void udp_lib_rehash(struct sock *sk, u16 newhash)
2038 {
2039     if (sk_hashed(sk)) {
2040         struct udp_table *udptable = sk->sk_prot->h.udp_table;
2041         struct udp_hslot *hslot, *hslot2, *nhslot2;
2042 
2043         hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2044         nhslot2 = udp_hashslot2(udptable, newhash);
2045         udp_sk(sk)->udp_portaddr_hash = newhash;
2046 
2047         if (hslot2 != nhslot2 ||
2048             rcu_access_pointer(sk->sk_reuseport_cb)) {
2049             hslot = udp_hashslot(udptable, sock_net(sk),
2050                          udp_sk(sk)->udp_port_hash);
2051             /* we must lock primary chain too */
2052             spin_lock_bh(&hslot->lock);
2053             if (rcu_access_pointer(sk->sk_reuseport_cb))
2054                 reuseport_detach_sock(sk);
2055 
2056             if (hslot2 != nhslot2) {
2057                 spin_lock(&hslot2->lock);
2058                 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2059                 hslot2->count--;
2060                 spin_unlock(&hslot2->lock);
2061 
2062                 spin_lock(&nhslot2->lock);
2063                 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2064                              &nhslot2->head);
2065                 nhslot2->count++;
2066                 spin_unlock(&nhslot2->lock);
2067             }
2068 
2069             spin_unlock_bh(&hslot->lock);
2070         }
2071     }
2072 }
2073 EXPORT_SYMBOL(udp_lib_rehash);
2074 
2075 void udp_v4_rehash(struct sock *sk)
2076 {
2077     u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2078                       inet_sk(sk)->inet_rcv_saddr,
2079                       inet_sk(sk)->inet_num);
2080     udp_lib_rehash(sk, new_hash);
2081 }
2082 
2083 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2084 {
2085     int rc;
2086 
2087     if (inet_sk(sk)->inet_daddr) {
2088         sock_rps_save_rxhash(sk, skb);
2089         sk_mark_napi_id(sk, skb);
2090         sk_incoming_cpu_update(sk);
2091     } else {
2092         sk_mark_napi_id_once(sk, skb);
2093     }
2094 
2095     rc = __udp_enqueue_schedule_skb(sk, skb);
2096     if (rc < 0) {
2097         int is_udplite = IS_UDPLITE(sk);
2098         int drop_reason;
2099 
2100         /* Note that an ENOMEM error is charged twice */
2101         if (rc == -ENOMEM) {
2102             UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2103                     is_udplite);
2104             drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2105         } else {
2106             UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2107                       is_udplite);
2108             drop_reason = SKB_DROP_REASON_PROTO_MEM;
2109         }
2110         UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2111         kfree_skb_reason(skb, drop_reason);
2112         trace_udp_fail_queue_rcv_skb(rc, sk);
2113         return -1;
2114     }
2115 
2116     return 0;
2117 }
2118 
2119 /* returns:
2120  *  -1: error
2121  *   0: success
2122  *  >0: "udp encap" protocol resubmission
2123  *
2124  * Note that in the success and error cases, the skb is assumed to
2125  * have either been requeued or freed.
2126  */
2127 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2128 {
2129     int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2130     struct udp_sock *up = udp_sk(sk);
2131     int is_udplite = IS_UDPLITE(sk);
2132 
2133     /*
2134      *  Charge it to the socket, dropping if the queue is full.
2135      */
2136     if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2137         drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2138         goto drop;
2139     }
2140     nf_reset_ct(skb);
2141 
2142     if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2143         int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2144 
2145         /*
2146          * This is an encapsulation socket so pass the skb to
2147          * the socket's udp_encap_rcv() hook. Otherwise, just
2148          * fall through and pass this up the UDP socket.
2149          * up->encap_rcv() returns the following value:
2150          * =0 if skb was successfully passed to the encap
2151          *    handler or was discarded by it.
2152          * >0 if skb should be passed on to UDP.
2153          * <0 if skb should be resubmitted as proto -N
2154          */
2155 
2156         /* if we're overly short, let UDP handle it */
2157         encap_rcv = READ_ONCE(up->encap_rcv);
2158         if (encap_rcv) {
2159             int ret;
2160 
2161             /* Verify checksum before giving to encap */
2162             if (udp_lib_checksum_complete(skb))
2163                 goto csum_error;
2164 
2165             ret = encap_rcv(sk, skb);
2166             if (ret <= 0) {
2167                 __UDP_INC_STATS(sock_net(sk),
2168                         UDP_MIB_INDATAGRAMS,
2169                         is_udplite);
2170                 return -ret;
2171             }
2172         }
2173 
2174         /* FALLTHROUGH -- it's a UDP Packet */
2175     }
2176 
2177     /*
2178      *  UDP-Lite specific tests, ignored on UDP sockets
2179      */
2180     if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2181 
2182         /*
2183          * MIB statistics other than incrementing the error count are
2184          * disabled for the following two types of errors: these depend
2185          * on the application settings, not on the functioning of the
2186          * protocol stack as such.
2187          *
2188          * RFC 3828 here recommends (sec 3.3): "There should also be a
2189          * way ... to ... at least let the receiving application block
2190          * delivery of packets with coverage values less than a value
2191          * provided by the application."
2192          */
2193         if (up->pcrlen == 0) {          /* full coverage was set  */
2194             net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2195                         UDP_SKB_CB(skb)->cscov, skb->len);
2196             goto drop;
2197         }
2198         /* The next case involves violating the min. coverage requested
2199          * by the receiver. This is subtle: if receiver wants x and x is
2200          * greater than the buffersize/MTU then receiver will complain
2201          * that it wants x while sender emits packets of smaller size y.
2202          * Therefore the above ...()->partial_cov statement is essential.
2203          */
2204         if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2205             net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2206                         UDP_SKB_CB(skb)->cscov, up->pcrlen);
2207             goto drop;
2208         }
2209     }
2210 
2211     prefetch(&sk->sk_rmem_alloc);
2212     if (rcu_access_pointer(sk->sk_filter) &&
2213         udp_lib_checksum_complete(skb))
2214             goto csum_error;
2215 
2216     if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2217         drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2218         goto drop;
2219     }
2220 
2221     udp_csum_pull_header(skb);
2222 
2223     ipv4_pktinfo_prepare(sk, skb);
2224     return __udp_queue_rcv_skb(sk, skb);
2225 
2226 csum_error:
2227     drop_reason = SKB_DROP_REASON_UDP_CSUM;
2228     __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2229 drop:
2230     __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2231     atomic_inc(&sk->sk_drops);
2232     kfree_skb_reason(skb, drop_reason);
2233     return -1;
2234 }
2235 
2236 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2237 {
2238     struct sk_buff *next, *segs;
2239     int ret;
2240 
2241     if (likely(!udp_unexpected_gso(sk, skb)))
2242         return udp_queue_rcv_one_skb(sk, skb);
2243 
2244     BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2245     __skb_push(skb, -skb_mac_offset(skb));
2246     segs = udp_rcv_segment(sk, skb, true);
2247     skb_list_walk_safe(segs, skb, next) {
2248         __skb_pull(skb, skb_transport_offset(skb));
2249 
2250         udp_post_segment_fix_csum(skb);
2251         ret = udp_queue_rcv_one_skb(sk, skb);
2252         if (ret > 0)
2253             ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2254     }
2255     return 0;
2256 }
2257 
2258 /* For TCP sockets, sk_rx_dst is protected by socket lock
2259  * For UDP, we use xchg() to guard against concurrent changes.
2260  */
2261 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2262 {
2263     struct dst_entry *old;
2264 
2265     if (dst_hold_safe(dst)) {
2266         old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2267         dst_release(old);
2268         return old != dst;
2269     }
2270     return false;
2271 }
2272 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2273 
2274 /*
2275  *  Multicasts and broadcasts go to each listener.
2276  *
2277  *  Note: called only from the BH handler context.
2278  */
2279 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2280                     struct udphdr  *uh,
2281                     __be32 saddr, __be32 daddr,
2282                     struct udp_table *udptable,
2283                     int proto)
2284 {
2285     struct sock *sk, *first = NULL;
2286     unsigned short hnum = ntohs(uh->dest);
2287     struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2288     unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2289     unsigned int offset = offsetof(typeof(*sk), sk_node);
2290     int dif = skb->dev->ifindex;
2291     int sdif = inet_sdif(skb);
2292     struct hlist_node *node;
2293     struct sk_buff *nskb;
2294 
2295     if (use_hash2) {
2296         hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2297                 udptable->mask;
2298         hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2299 start_lookup:
2300         hslot = &udptable->hash2[hash2];
2301         offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2302     }
2303 
2304     sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2305         if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2306                      uh->source, saddr, dif, sdif, hnum))
2307             continue;
2308 
2309         if (!first) {
2310             first = sk;
2311             continue;
2312         }
2313         nskb = skb_clone(skb, GFP_ATOMIC);
2314 
2315         if (unlikely(!nskb)) {
2316             atomic_inc(&sk->sk_drops);
2317             __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2318                     IS_UDPLITE(sk));
2319             __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2320                     IS_UDPLITE(sk));
2321             continue;
2322         }
2323         if (udp_queue_rcv_skb(sk, nskb) > 0)
2324             consume_skb(nskb);
2325     }
2326 
2327     /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2328     if (use_hash2 && hash2 != hash2_any) {
2329         hash2 = hash2_any;
2330         goto start_lookup;
2331     }
2332 
2333     if (first) {
2334         if (udp_queue_rcv_skb(first, skb) > 0)
2335             consume_skb(skb);
2336     } else {
2337         kfree_skb(skb);
2338         __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2339                 proto == IPPROTO_UDPLITE);
2340     }
2341     return 0;
2342 }
2343 
2344 /* Initialize UDP checksum. If exited with zero value (success),
2345  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2346  * Otherwise, csum completion requires checksumming packet body,
2347  * including udp header and folding it to skb->csum.
2348  */
2349 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2350                  int proto)
2351 {
2352     int err;
2353 
2354     UDP_SKB_CB(skb)->partial_cov = 0;
2355     UDP_SKB_CB(skb)->cscov = skb->len;
2356 
2357     if (proto == IPPROTO_UDPLITE) {
2358         err = udplite_checksum_init(skb, uh);
2359         if (err)
2360             return err;
2361 
2362         if (UDP_SKB_CB(skb)->partial_cov) {
2363             skb->csum = inet_compute_pseudo(skb, proto);
2364             return 0;
2365         }
2366     }
2367 
2368     /* Note, we are only interested in != 0 or == 0, thus the
2369      * force to int.
2370      */
2371     err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2372                             inet_compute_pseudo);
2373     if (err)
2374         return err;
2375 
2376     if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2377         /* If SW calculated the value, we know it's bad */
2378         if (skb->csum_complete_sw)
2379             return 1;
2380 
2381         /* HW says the value is bad. Let's validate that.
2382          * skb->csum is no longer the full packet checksum,
2383          * so don't treat it as such.
2384          */
2385         skb_checksum_complete_unset(skb);
2386     }
2387 
2388     return 0;
2389 }
2390 
2391 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2392  * return code conversion for ip layer consumption
2393  */
2394 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2395                    struct udphdr *uh)
2396 {
2397     int ret;
2398 
2399     if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2400         skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2401 
2402     ret = udp_queue_rcv_skb(sk, skb);
2403 
2404     /* a return value > 0 means to resubmit the input, but
2405      * it wants the return to be -protocol, or 0
2406      */
2407     if (ret > 0)
2408         return -ret;
2409     return 0;
2410 }
2411 
2412 /*
2413  *  All we need to do is get the socket, and then do a checksum.
2414  */
2415 
2416 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2417            int proto)
2418 {
2419     struct sock *sk;
2420     struct udphdr *uh;
2421     unsigned short ulen;
2422     struct rtable *rt = skb_rtable(skb);
2423     __be32 saddr, daddr;
2424     struct net *net = dev_net(skb->dev);
2425     bool refcounted;
2426     int drop_reason;
2427 
2428     drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2429 
2430     /*
2431      *  Validate the packet.
2432      */
2433     if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2434         goto drop;      /* No space for header. */
2435 
2436     uh   = udp_hdr(skb);
2437     ulen = ntohs(uh->len);
2438     saddr = ip_hdr(skb)->saddr;
2439     daddr = ip_hdr(skb)->daddr;
2440 
2441     if (ulen > skb->len)
2442         goto short_packet;
2443 
2444     if (proto == IPPROTO_UDP) {
2445         /* UDP validates ulen. */
2446         if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2447             goto short_packet;
2448         uh = udp_hdr(skb);
2449     }
2450 
2451     if (udp4_csum_init(skb, uh, proto))
2452         goto csum_error;
2453 
2454     sk = skb_steal_sock(skb, &refcounted);
2455     if (sk) {
2456         struct dst_entry *dst = skb_dst(skb);
2457         int ret;
2458 
2459         if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2460             udp_sk_rx_dst_set(sk, dst);
2461 
2462         ret = udp_unicast_rcv_skb(sk, skb, uh);
2463         if (refcounted)
2464             sock_put(sk);
2465         return ret;
2466     }
2467 
2468     if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2469         return __udp4_lib_mcast_deliver(net, skb, uh,
2470                         saddr, daddr, udptable, proto);
2471 
2472     sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2473     if (sk)
2474         return udp_unicast_rcv_skb(sk, skb, uh);
2475 
2476     if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2477         goto drop;
2478     nf_reset_ct(skb);
2479 
2480     /* No socket. Drop packet silently, if checksum is wrong */
2481     if (udp_lib_checksum_complete(skb))
2482         goto csum_error;
2483 
2484     drop_reason = SKB_DROP_REASON_NO_SOCKET;
2485     __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2486     icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2487 
2488     /*
2489      * Hmm.  We got an UDP packet to a port to which we
2490      * don't wanna listen.  Ignore it.
2491      */
2492     kfree_skb_reason(skb, drop_reason);
2493     return 0;
2494 
2495 short_packet:
2496     drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2497     net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2498                 proto == IPPROTO_UDPLITE ? "Lite" : "",
2499                 &saddr, ntohs(uh->source),
2500                 ulen, skb->len,
2501                 &daddr, ntohs(uh->dest));
2502     goto drop;
2503 
2504 csum_error:
2505     /*
2506      * RFC1122: OK.  Discards the bad packet silently (as far as
2507      * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2508      */
2509     drop_reason = SKB_DROP_REASON_UDP_CSUM;
2510     net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2511                 proto == IPPROTO_UDPLITE ? "Lite" : "",
2512                 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2513                 ulen);
2514     __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2515 drop:
2516     __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2517     kfree_skb_reason(skb, drop_reason);
2518     return 0;
2519 }
2520 
2521 /* We can only early demux multicast if there is a single matching socket.
2522  * If more than one socket found returns NULL
2523  */
2524 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2525                           __be16 loc_port, __be32 loc_addr,
2526                           __be16 rmt_port, __be32 rmt_addr,
2527                           int dif, int sdif)
2528 {
2529     struct sock *sk, *result;
2530     unsigned short hnum = ntohs(loc_port);
2531     unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2532     struct udp_hslot *hslot = &udp_table.hash[slot];
2533 
2534     /* Do not bother scanning a too big list */
2535     if (hslot->count > 10)
2536         return NULL;
2537 
2538     result = NULL;
2539     sk_for_each_rcu(sk, &hslot->head) {
2540         if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2541                     rmt_port, rmt_addr, dif, sdif, hnum)) {
2542             if (result)
2543                 return NULL;
2544             result = sk;
2545         }
2546     }
2547 
2548     return result;
2549 }
2550 
2551 /* For unicast we should only early demux connected sockets or we can
2552  * break forwarding setups.  The chains here can be long so only check
2553  * if the first socket is an exact match and if not move on.
2554  */
2555 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2556                         __be16 loc_port, __be32 loc_addr,
2557                         __be16 rmt_port, __be32 rmt_addr,
2558                         int dif, int sdif)
2559 {
2560     unsigned short hnum = ntohs(loc_port);
2561     unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2562     unsigned int slot2 = hash2 & udp_table.mask;
2563     struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2564     INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2565     const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2566     struct sock *sk;
2567 
2568     udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2569         if (inet_match(net, sk, acookie, ports, dif, sdif))
2570             return sk;
2571         /* Only check first socket in chain */
2572         break;
2573     }
2574     return NULL;
2575 }
2576 
2577 int udp_v4_early_demux(struct sk_buff *skb)
2578 {
2579     struct net *net = dev_net(skb->dev);
2580     struct in_device *in_dev = NULL;
2581     const struct iphdr *iph;
2582     const struct udphdr *uh;
2583     struct sock *sk = NULL;
2584     struct dst_entry *dst;
2585     int dif = skb->dev->ifindex;
2586     int sdif = inet_sdif(skb);
2587     int ours;
2588 
2589     /* validate the packet */
2590     if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2591         return 0;
2592 
2593     iph = ip_hdr(skb);
2594     uh = udp_hdr(skb);
2595 
2596     if (skb->pkt_type == PACKET_MULTICAST) {
2597         in_dev = __in_dev_get_rcu(skb->dev);
2598 
2599         if (!in_dev)
2600             return 0;
2601 
2602         ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2603                        iph->protocol);
2604         if (!ours)
2605             return 0;
2606 
2607         sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2608                            uh->source, iph->saddr,
2609                            dif, sdif);
2610     } else if (skb->pkt_type == PACKET_HOST) {
2611         sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2612                          uh->source, iph->saddr, dif, sdif);
2613     }
2614 
2615     if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2616         return 0;
2617 
2618     skb->sk = sk;
2619     skb->destructor = sock_efree;
2620     dst = rcu_dereference(sk->sk_rx_dst);
2621 
2622     if (dst)
2623         dst = dst_check(dst, 0);
2624     if (dst) {
2625         u32 itag = 0;
2626 
2627         /* set noref for now.
2628          * any place which wants to hold dst has to call
2629          * dst_hold_safe()
2630          */
2631         skb_dst_set_noref(skb, dst);
2632 
2633         /* for unconnected multicast sockets we need to validate
2634          * the source on each packet
2635          */
2636         if (!inet_sk(sk)->inet_daddr && in_dev)
2637             return ip_mc_validate_source(skb, iph->daddr,
2638                              iph->saddr,
2639                              iph->tos & IPTOS_RT_MASK,
2640                              skb->dev, in_dev, &itag);
2641     }
2642     return 0;
2643 }
2644 
2645 int udp_rcv(struct sk_buff *skb)
2646 {
2647     return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2648 }
2649 
2650 void udp_destroy_sock(struct sock *sk)
2651 {
2652     struct udp_sock *up = udp_sk(sk);
2653     bool slow = lock_sock_fast(sk);
2654 
2655     /* protects from races with udp_abort() */
2656     sock_set_flag(sk, SOCK_DEAD);
2657     udp_flush_pending_frames(sk);
2658     unlock_sock_fast(sk, slow);
2659     if (static_branch_unlikely(&udp_encap_needed_key)) {
2660         if (up->encap_type) {
2661             void (*encap_destroy)(struct sock *sk);
2662             encap_destroy = READ_ONCE(up->encap_destroy);
2663             if (encap_destroy)
2664                 encap_destroy(sk);
2665         }
2666         if (up->encap_enabled)
2667             static_branch_dec(&udp_encap_needed_key);
2668     }
2669 }
2670 
2671 /*
2672  *  Socket option code for UDP
2673  */
2674 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2675                sockptr_t optval, unsigned int optlen,
2676                int (*push_pending_frames)(struct sock *))
2677 {
2678     struct udp_sock *up = udp_sk(sk);
2679     int val, valbool;
2680     int err = 0;
2681     int is_udplite = IS_UDPLITE(sk);
2682 
2683     if (optlen < sizeof(int))
2684         return -EINVAL;
2685 
2686     if (copy_from_sockptr(&val, optval, sizeof(val)))
2687         return -EFAULT;
2688 
2689     valbool = val ? 1 : 0;
2690 
2691     switch (optname) {
2692     case UDP_CORK:
2693         if (val != 0) {
2694             WRITE_ONCE(up->corkflag, 1);
2695         } else {
2696             WRITE_ONCE(up->corkflag, 0);
2697             lock_sock(sk);
2698             push_pending_frames(sk);
2699             release_sock(sk);
2700         }
2701         break;
2702 
2703     case UDP_ENCAP:
2704         switch (val) {
2705         case 0:
2706 #ifdef CONFIG_XFRM
2707         case UDP_ENCAP_ESPINUDP:
2708         case UDP_ENCAP_ESPINUDP_NON_IKE:
2709 #if IS_ENABLED(CONFIG_IPV6)
2710             if (sk->sk_family == AF_INET6)
2711                 up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2712             else
2713 #endif
2714                 up->encap_rcv = xfrm4_udp_encap_rcv;
2715 #endif
2716             fallthrough;
2717         case UDP_ENCAP_L2TPINUDP:
2718             up->encap_type = val;
2719             lock_sock(sk);
2720             udp_tunnel_encap_enable(sk->sk_socket);
2721             release_sock(sk);
2722             break;
2723         default:
2724             err = -ENOPROTOOPT;
2725             break;
2726         }
2727         break;
2728 
2729     case UDP_NO_CHECK6_TX:
2730         up->no_check6_tx = valbool;
2731         break;
2732 
2733     case UDP_NO_CHECK6_RX:
2734         up->no_check6_rx = valbool;
2735         break;
2736 
2737     case UDP_SEGMENT:
2738         if (val < 0 || val > USHRT_MAX)
2739             return -EINVAL;
2740         WRITE_ONCE(up->gso_size, val);
2741         break;
2742 
2743     case UDP_GRO:
2744         lock_sock(sk);
2745 
2746         /* when enabling GRO, accept the related GSO packet type */
2747         if (valbool)
2748             udp_tunnel_encap_enable(sk->sk_socket);
2749         up->gro_enabled = valbool;
2750         up->accept_udp_l4 = valbool;
2751         release_sock(sk);
2752         break;
2753 
2754     /*
2755      *  UDP-Lite's partial checksum coverage (RFC 3828).
2756      */
2757     /* The sender sets actual checksum coverage length via this option.
2758      * The case coverage > packet length is handled by send module. */
2759     case UDPLITE_SEND_CSCOV:
2760         if (!is_udplite)         /* Disable the option on UDP sockets */
2761             return -ENOPROTOOPT;
2762         if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2763             val = 8;
2764         else if (val > USHRT_MAX)
2765             val = USHRT_MAX;
2766         up->pcslen = val;
2767         up->pcflag |= UDPLITE_SEND_CC;
2768         break;
2769 
2770     /* The receiver specifies a minimum checksum coverage value. To make
2771      * sense, this should be set to at least 8 (as done below). If zero is
2772      * used, this again means full checksum coverage.                     */
2773     case UDPLITE_RECV_CSCOV:
2774         if (!is_udplite)         /* Disable the option on UDP sockets */
2775             return -ENOPROTOOPT;
2776         if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2777             val = 8;
2778         else if (val > USHRT_MAX)
2779             val = USHRT_MAX;
2780         up->pcrlen = val;
2781         up->pcflag |= UDPLITE_RECV_CC;
2782         break;
2783 
2784     default:
2785         err = -ENOPROTOOPT;
2786         break;
2787     }
2788 
2789     return err;
2790 }
2791 EXPORT_SYMBOL(udp_lib_setsockopt);
2792 
2793 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2794            unsigned int optlen)
2795 {
2796     if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2797         return udp_lib_setsockopt(sk, level, optname,
2798                       optval, optlen,
2799                       udp_push_pending_frames);
2800     return ip_setsockopt(sk, level, optname, optval, optlen);
2801 }
2802 
2803 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2804                char __user *optval, int __user *optlen)
2805 {
2806     struct udp_sock *up = udp_sk(sk);
2807     int val, len;
2808 
2809     if (get_user(len, optlen))
2810         return -EFAULT;
2811 
2812     len = min_t(unsigned int, len, sizeof(int));
2813 
2814     if (len < 0)
2815         return -EINVAL;
2816 
2817     switch (optname) {
2818     case UDP_CORK:
2819         val = READ_ONCE(up->corkflag);
2820         break;
2821 
2822     case UDP_ENCAP:
2823         val = up->encap_type;
2824         break;
2825 
2826     case UDP_NO_CHECK6_TX:
2827         val = up->no_check6_tx;
2828         break;
2829 
2830     case UDP_NO_CHECK6_RX:
2831         val = up->no_check6_rx;
2832         break;
2833 
2834     case UDP_SEGMENT:
2835         val = READ_ONCE(up->gso_size);
2836         break;
2837 
2838     case UDP_GRO:
2839         val = up->gro_enabled;
2840         break;
2841 
2842     /* The following two cannot be changed on UDP sockets, the return is
2843      * always 0 (which corresponds to the full checksum coverage of UDP). */
2844     case UDPLITE_SEND_CSCOV:
2845         val = up->pcslen;
2846         break;
2847 
2848     case UDPLITE_RECV_CSCOV:
2849         val = up->pcrlen;
2850         break;
2851 
2852     default:
2853         return -ENOPROTOOPT;
2854     }
2855 
2856     if (put_user(len, optlen))
2857         return -EFAULT;
2858     if (copy_to_user(optval, &val, len))
2859         return -EFAULT;
2860     return 0;
2861 }
2862 EXPORT_SYMBOL(udp_lib_getsockopt);
2863 
2864 int udp_getsockopt(struct sock *sk, int level, int optname,
2865            char __user *optval, int __user *optlen)
2866 {
2867     if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2868         return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2869     return ip_getsockopt(sk, level, optname, optval, optlen);
2870 }
2871 
2872 /**
2873  *  udp_poll - wait for a UDP event.
2874  *  @file: - file struct
2875  *  @sock: - socket
2876  *  @wait: - poll table
2877  *
2878  *  This is same as datagram poll, except for the special case of
2879  *  blocking sockets. If application is using a blocking fd
2880  *  and a packet with checksum error is in the queue;
2881  *  then it could get return from select indicating data available
2882  *  but then block when reading it. Add special case code
2883  *  to work around these arguably broken applications.
2884  */
2885 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2886 {
2887     __poll_t mask = datagram_poll(file, sock, wait);
2888     struct sock *sk = sock->sk;
2889 
2890     if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2891         mask |= EPOLLIN | EPOLLRDNORM;
2892 
2893     /* Check for false positives due to checksum errors */
2894     if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2895         !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2896         mask &= ~(EPOLLIN | EPOLLRDNORM);
2897 
2898     /* psock ingress_msg queue should not contain any bad checksum frames */
2899     if (sk_is_readable(sk))
2900         mask |= EPOLLIN | EPOLLRDNORM;
2901     return mask;
2902 
2903 }
2904 EXPORT_SYMBOL(udp_poll);
2905 
2906 int udp_abort(struct sock *sk, int err)
2907 {
2908     lock_sock(sk);
2909 
2910     /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2911      * with close()
2912      */
2913     if (sock_flag(sk, SOCK_DEAD))
2914         goto out;
2915 
2916     sk->sk_err = err;
2917     sk_error_report(sk);
2918     __udp_disconnect(sk, 0);
2919 
2920 out:
2921     release_sock(sk);
2922 
2923     return 0;
2924 }
2925 EXPORT_SYMBOL_GPL(udp_abort);
2926 
2927 struct proto udp_prot = {
2928     .name           = "UDP",
2929     .owner          = THIS_MODULE,
2930     .close          = udp_lib_close,
2931     .pre_connect        = udp_pre_connect,
2932     .connect        = ip4_datagram_connect,
2933     .disconnect     = udp_disconnect,
2934     .ioctl          = udp_ioctl,
2935     .init           = udp_init_sock,
2936     .destroy        = udp_destroy_sock,
2937     .setsockopt     = udp_setsockopt,
2938     .getsockopt     = udp_getsockopt,
2939     .sendmsg        = udp_sendmsg,
2940     .recvmsg        = udp_recvmsg,
2941     .sendpage       = udp_sendpage,
2942     .release_cb     = ip4_datagram_release_cb,
2943     .hash           = udp_lib_hash,
2944     .unhash         = udp_lib_unhash,
2945     .rehash         = udp_v4_rehash,
2946     .get_port       = udp_v4_get_port,
2947     .put_port       = udp_lib_unhash,
2948 #ifdef CONFIG_BPF_SYSCALL
2949     .psock_update_sk_prot   = udp_bpf_update_proto,
2950 #endif
2951     .memory_allocated   = &udp_memory_allocated,
2952     .per_cpu_fw_alloc   = &udp_memory_per_cpu_fw_alloc,
2953 
2954     .sysctl_mem     = sysctl_udp_mem,
2955     .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2956     .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2957     .obj_size       = sizeof(struct udp_sock),
2958     .h.udp_table        = &udp_table,
2959     .diag_destroy       = udp_abort,
2960 };
2961 EXPORT_SYMBOL(udp_prot);
2962 
2963 /* ------------------------------------------------------------------------ */
2964 #ifdef CONFIG_PROC_FS
2965 
2966 static struct sock *udp_get_first(struct seq_file *seq, int start)
2967 {
2968     struct sock *sk;
2969     struct udp_seq_afinfo *afinfo;
2970     struct udp_iter_state *state = seq->private;
2971     struct net *net = seq_file_net(seq);
2972 
2973     if (state->bpf_seq_afinfo)
2974         afinfo = state->bpf_seq_afinfo;
2975     else
2976         afinfo = pde_data(file_inode(seq->file));
2977 
2978     for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2979          ++state->bucket) {
2980         struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2981 
2982         if (hlist_empty(&hslot->head))
2983             continue;
2984 
2985         spin_lock_bh(&hslot->lock);
2986         sk_for_each(sk, &hslot->head) {
2987             if (!net_eq(sock_net(sk), net))
2988                 continue;
2989             if (afinfo->family == AF_UNSPEC ||
2990                 sk->sk_family == afinfo->family)
2991                 goto found;
2992         }
2993         spin_unlock_bh(&hslot->lock);
2994     }
2995     sk = NULL;
2996 found:
2997     return sk;
2998 }
2999 
3000 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3001 {
3002     struct udp_seq_afinfo *afinfo;
3003     struct udp_iter_state *state = seq->private;
3004     struct net *net = seq_file_net(seq);
3005 
3006     if (state->bpf_seq_afinfo)
3007         afinfo = state->bpf_seq_afinfo;
3008     else
3009         afinfo = pde_data(file_inode(seq->file));
3010 
3011     do {
3012         sk = sk_next(sk);
3013     } while (sk && (!net_eq(sock_net(sk), net) ||
3014             (afinfo->family != AF_UNSPEC &&
3015              sk->sk_family != afinfo->family)));
3016 
3017     if (!sk) {
3018         if (state->bucket <= afinfo->udp_table->mask)
3019             spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3020         return udp_get_first(seq, state->bucket + 1);
3021     }
3022     return sk;
3023 }
3024 
3025 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3026 {
3027     struct sock *sk = udp_get_first(seq, 0);
3028 
3029     if (sk)
3030         while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3031             --pos;
3032     return pos ? NULL : sk;
3033 }
3034 
3035 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3036 {
3037     struct udp_iter_state *state = seq->private;
3038     state->bucket = MAX_UDP_PORTS;
3039 
3040     return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3041 }
3042 EXPORT_SYMBOL(udp_seq_start);
3043 
3044 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3045 {
3046     struct sock *sk;
3047 
3048     if (v == SEQ_START_TOKEN)
3049         sk = udp_get_idx(seq, 0);
3050     else
3051         sk = udp_get_next(seq, v);
3052 
3053     ++*pos;
3054     return sk;
3055 }
3056 EXPORT_SYMBOL(udp_seq_next);
3057 
3058 void udp_seq_stop(struct seq_file *seq, void *v)
3059 {
3060     struct udp_seq_afinfo *afinfo;
3061     struct udp_iter_state *state = seq->private;
3062 
3063     if (state->bpf_seq_afinfo)
3064         afinfo = state->bpf_seq_afinfo;
3065     else
3066         afinfo = pde_data(file_inode(seq->file));
3067 
3068     if (state->bucket <= afinfo->udp_table->mask)
3069         spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3070 }
3071 EXPORT_SYMBOL(udp_seq_stop);
3072 
3073 /* ------------------------------------------------------------------------ */
3074 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3075         int bucket)
3076 {
3077     struct inet_sock *inet = inet_sk(sp);
3078     __be32 dest = inet->inet_daddr;
3079     __be32 src  = inet->inet_rcv_saddr;
3080     __u16 destp   = ntohs(inet->inet_dport);
3081     __u16 srcp    = ntohs(inet->inet_sport);
3082 
3083     seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3084         " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3085         bucket, src, srcp, dest, destp, sp->sk_state,
3086         sk_wmem_alloc_get(sp),
3087         udp_rqueue_get(sp),
3088         0, 0L, 0,
3089         from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3090         0, sock_i_ino(sp),
3091         refcount_read(&sp->sk_refcnt), sp,
3092         atomic_read(&sp->sk_drops));
3093 }
3094 
3095 int udp4_seq_show(struct seq_file *seq, void *v)
3096 {
3097     seq_setwidth(seq, 127);
3098     if (v == SEQ_START_TOKEN)
3099         seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3100                "rx_queue tr tm->when retrnsmt   uid  timeout "
3101                "inode ref pointer drops");
3102     else {
3103         struct udp_iter_state *state = seq->private;
3104 
3105         udp4_format_sock(v, seq, state->bucket);
3106     }
3107     seq_pad(seq, '\n');
3108     return 0;
3109 }
3110 
3111 #ifdef CONFIG_BPF_SYSCALL
3112 struct bpf_iter__udp {
3113     __bpf_md_ptr(struct bpf_iter_meta *, meta);
3114     __bpf_md_ptr(struct udp_sock *, udp_sk);
3115     uid_t uid __aligned(8);
3116     int bucket __aligned(8);
3117 };
3118 
3119 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3120                  struct udp_sock *udp_sk, uid_t uid, int bucket)
3121 {
3122     struct bpf_iter__udp ctx;
3123 
3124     meta->seq_num--;  /* skip SEQ_START_TOKEN */
3125     ctx.meta = meta;
3126     ctx.udp_sk = udp_sk;
3127     ctx.uid = uid;
3128     ctx.bucket = bucket;
3129     return bpf_iter_run_prog(prog, &ctx);
3130 }
3131 
3132 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3133 {
3134     struct udp_iter_state *state = seq->private;
3135     struct bpf_iter_meta meta;
3136     struct bpf_prog *prog;
3137     struct sock *sk = v;
3138     uid_t uid;
3139 
3140     if (v == SEQ_START_TOKEN)
3141         return 0;
3142 
3143     uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3144     meta.seq = seq;
3145     prog = bpf_iter_get_info(&meta, false);
3146     return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3147 }
3148 
3149 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3150 {
3151     struct bpf_iter_meta meta;
3152     struct bpf_prog *prog;
3153 
3154     if (!v) {
3155         meta.seq = seq;
3156         prog = bpf_iter_get_info(&meta, true);
3157         if (prog)
3158             (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3159     }
3160 
3161     udp_seq_stop(seq, v);
3162 }
3163 
3164 static const struct seq_operations bpf_iter_udp_seq_ops = {
3165     .start      = udp_seq_start,
3166     .next       = udp_seq_next,
3167     .stop       = bpf_iter_udp_seq_stop,
3168     .show       = bpf_iter_udp_seq_show,
3169 };
3170 #endif
3171 
3172 const struct seq_operations udp_seq_ops = {
3173     .start      = udp_seq_start,
3174     .next       = udp_seq_next,
3175     .stop       = udp_seq_stop,
3176     .show       = udp4_seq_show,
3177 };
3178 EXPORT_SYMBOL(udp_seq_ops);
3179 
3180 static struct udp_seq_afinfo udp4_seq_afinfo = {
3181     .family     = AF_INET,
3182     .udp_table  = &udp_table,
3183 };
3184 
3185 static int __net_init udp4_proc_init_net(struct net *net)
3186 {
3187     if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3188             sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3189         return -ENOMEM;
3190     return 0;
3191 }
3192 
3193 static void __net_exit udp4_proc_exit_net(struct net *net)
3194 {
3195     remove_proc_entry("udp", net->proc_net);
3196 }
3197 
3198 static struct pernet_operations udp4_net_ops = {
3199     .init = udp4_proc_init_net,
3200     .exit = udp4_proc_exit_net,
3201 };
3202 
3203 int __init udp4_proc_init(void)
3204 {
3205     return register_pernet_subsys(&udp4_net_ops);
3206 }
3207 
3208 void udp4_proc_exit(void)
3209 {
3210     unregister_pernet_subsys(&udp4_net_ops);
3211 }
3212 #endif /* CONFIG_PROC_FS */
3213 
3214 static __initdata unsigned long uhash_entries;
3215 static int __init set_uhash_entries(char *str)
3216 {
3217     ssize_t ret;
3218 
3219     if (!str)
3220         return 0;
3221 
3222     ret = kstrtoul(str, 0, &uhash_entries);
3223     if (ret)
3224         return 0;
3225 
3226     if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3227         uhash_entries = UDP_HTABLE_SIZE_MIN;
3228     return 1;
3229 }
3230 __setup("uhash_entries=", set_uhash_entries);
3231 
3232 void __init udp_table_init(struct udp_table *table, const char *name)
3233 {
3234     unsigned int i;
3235 
3236     table->hash = alloc_large_system_hash(name,
3237                           2 * sizeof(struct udp_hslot),
3238                           uhash_entries,
3239                           21, /* one slot per 2 MB */
3240                           0,
3241                           &table->log,
3242                           &table->mask,
3243                           UDP_HTABLE_SIZE_MIN,
3244                           64 * 1024);
3245 
3246     table->hash2 = table->hash + (table->mask + 1);
3247     for (i = 0; i <= table->mask; i++) {
3248         INIT_HLIST_HEAD(&table->hash[i].head);
3249         table->hash[i].count = 0;
3250         spin_lock_init(&table->hash[i].lock);
3251     }
3252     for (i = 0; i <= table->mask; i++) {
3253         INIT_HLIST_HEAD(&table->hash2[i].head);
3254         table->hash2[i].count = 0;
3255         spin_lock_init(&table->hash2[i].lock);
3256     }
3257 }
3258 
3259 u32 udp_flow_hashrnd(void)
3260 {
3261     static u32 hashrnd __read_mostly;
3262 
3263     net_get_random_once(&hashrnd, sizeof(hashrnd));
3264 
3265     return hashrnd;
3266 }
3267 EXPORT_SYMBOL(udp_flow_hashrnd);
3268 
3269 static int __net_init udp_sysctl_init(struct net *net)
3270 {
3271     net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3272     net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3273 
3274 #ifdef CONFIG_NET_L3_MASTER_DEV
3275     net->ipv4.sysctl_udp_l3mdev_accept = 0;
3276 #endif
3277 
3278     return 0;
3279 }
3280 
3281 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3282     .init   = udp_sysctl_init,
3283 };
3284 
3285 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3286 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3287              struct udp_sock *udp_sk, uid_t uid, int bucket)
3288 
3289 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3290 {
3291     struct udp_iter_state *st = priv_data;
3292     struct udp_seq_afinfo *afinfo;
3293     int ret;
3294 
3295     afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3296     if (!afinfo)
3297         return -ENOMEM;
3298 
3299     afinfo->family = AF_UNSPEC;
3300     afinfo->udp_table = &udp_table;
3301     st->bpf_seq_afinfo = afinfo;
3302     ret = bpf_iter_init_seq_net(priv_data, aux);
3303     if (ret)
3304         kfree(afinfo);
3305     return ret;
3306 }
3307 
3308 static void bpf_iter_fini_udp(void *priv_data)
3309 {
3310     struct udp_iter_state *st = priv_data;
3311 
3312     kfree(st->bpf_seq_afinfo);
3313     bpf_iter_fini_seq_net(priv_data);
3314 }
3315 
3316 static const struct bpf_iter_seq_info udp_seq_info = {
3317     .seq_ops        = &bpf_iter_udp_seq_ops,
3318     .init_seq_private   = bpf_iter_init_udp,
3319     .fini_seq_private   = bpf_iter_fini_udp,
3320     .seq_priv_size      = sizeof(struct udp_iter_state),
3321 };
3322 
3323 static struct bpf_iter_reg udp_reg_info = {
3324     .target         = "udp",
3325     .ctx_arg_info_size  = 1,
3326     .ctx_arg_info       = {
3327         { offsetof(struct bpf_iter__udp, udp_sk),
3328           PTR_TO_BTF_ID_OR_NULL },
3329     },
3330     .seq_info       = &udp_seq_info,
3331 };
3332 
3333 static void __init bpf_iter_register(void)
3334 {
3335     udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3336     if (bpf_iter_reg_target(&udp_reg_info))
3337         pr_warn("Warning: could not register bpf iterator udp\n");
3338 }
3339 #endif
3340 
3341 void __init udp_init(void)
3342 {
3343     unsigned long limit;
3344     unsigned int i;
3345 
3346     udp_table_init(&udp_table, "UDP");
3347     limit = nr_free_buffer_pages() / 8;
3348     limit = max(limit, 128UL);
3349     sysctl_udp_mem[0] = limit / 4 * 3;
3350     sysctl_udp_mem[1] = limit;
3351     sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3352 
3353     /* 16 spinlocks per cpu */
3354     udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3355     udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3356                 GFP_KERNEL);
3357     if (!udp_busylocks)
3358         panic("UDP: failed to alloc udp_busylocks\n");
3359     for (i = 0; i < (1U << udp_busylocks_log); i++)
3360         spin_lock_init(udp_busylocks + i);
3361 
3362     if (register_pernet_subsys(&udp_sysctl_ops))
3363         panic("UDP: failed to init sysctl parameters.\n");
3364 
3365 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3366     bpf_iter_register();
3367 #endif
3368 }