Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * INET     An implementation of the TCP/IP protocol suite for the LINUX
0004  *      operating system.  INET is implemented using the  BSD Socket
0005  *      interface as the means of communication with the user level.
0006  *
0007  *      Implementation of the Transmission Control Protocol(TCP).
0008  *
0009  * Authors: Ross Biro
0010  *      Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
0011  *      Mark Evans, <evansmp@uhura.aston.ac.uk>
0012  *      Corey Minyard <wf-rch!minyard@relay.EU.net>
0013  *      Florian La Roche, <flla@stud.uni-sb.de>
0014  *      Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
0015  *      Linus Torvalds, <torvalds@cs.helsinki.fi>
0016  *      Alan Cox, <gw4pts@gw4pts.ampr.org>
0017  *      Matthew Dillon, <dillon@apollo.west.oic.com>
0018  *      Arnt Gulbrandsen, <agulbra@nvg.unit.no>
0019  *      Jorge Cwik, <jorge@laser.satlink.net>
0020  */
0021 
0022 /*
0023  * Changes: Pedro Roque :   Retransmit queue handled by TCP.
0024  *              :   Fragmentation on mtu decrease
0025  *              :   Segment collapse on retransmit
0026  *              :   AF independence
0027  *
0028  *      Linus Torvalds  :   send_delayed_ack
0029  *      David S. Miller :   Charge memory using the right skb
0030  *                  during syn/ack processing.
0031  *      David S. Miller :   Output engine completely rewritten.
0032  *      Andrea Arcangeli:   SYNACK carry ts_recent in tsecr.
0033  *      Cacophonix Gaul :   draft-minshall-nagle-01
0034  *      J Hadi Salim    :   ECN support
0035  *
0036  */
0037 
0038 #define pr_fmt(fmt) "TCP: " fmt
0039 
0040 #include <net/tcp.h>
0041 #include <net/mptcp.h>
0042 
0043 #include <linux/compiler.h>
0044 #include <linux/gfp.h>
0045 #include <linux/module.h>
0046 #include <linux/static_key.h>
0047 
0048 #include <trace/events/tcp.h>
0049 
0050 /* Refresh clocks of a TCP socket,
0051  * ensuring monotically increasing values.
0052  */
0053 void tcp_mstamp_refresh(struct tcp_sock *tp)
0054 {
0055     u64 val = tcp_clock_ns();
0056 
0057     tp->tcp_clock_cache = val;
0058     tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
0059 }
0060 
0061 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
0062                int push_one, gfp_t gfp);
0063 
0064 /* Account for new data that has been sent to the network. */
0065 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
0066 {
0067     struct inet_connection_sock *icsk = inet_csk(sk);
0068     struct tcp_sock *tp = tcp_sk(sk);
0069     unsigned int prior_packets = tp->packets_out;
0070 
0071     WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
0072 
0073     __skb_unlink(skb, &sk->sk_write_queue);
0074     tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
0075 
0076     if (tp->highest_sack == NULL)
0077         tp->highest_sack = skb;
0078 
0079     tp->packets_out += tcp_skb_pcount(skb);
0080     if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
0081         tcp_rearm_rto(sk);
0082 
0083     NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
0084               tcp_skb_pcount(skb));
0085     tcp_check_space(sk);
0086 }
0087 
0088 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
0089  * window scaling factor due to loss of precision.
0090  * If window has been shrunk, what should we make? It is not clear at all.
0091  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
0092  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
0093  * invalid. OK, let's make this for now:
0094  */
0095 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
0096 {
0097     const struct tcp_sock *tp = tcp_sk(sk);
0098 
0099     if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
0100         (tp->rx_opt.wscale_ok &&
0101          ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
0102         return tp->snd_nxt;
0103     else
0104         return tcp_wnd_end(tp);
0105 }
0106 
0107 /* Calculate mss to advertise in SYN segment.
0108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
0109  *
0110  * 1. It is independent of path mtu.
0111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
0112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
0113  *    attached devices, because some buggy hosts are confused by
0114  *    large MSS.
0115  * 4. We do not make 3, we advertise MSS, calculated from first
0116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
0117  *    This may be overridden via information stored in routing table.
0118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
0119  *    probably even Jumbo".
0120  */
0121 static __u16 tcp_advertise_mss(struct sock *sk)
0122 {
0123     struct tcp_sock *tp = tcp_sk(sk);
0124     const struct dst_entry *dst = __sk_dst_get(sk);
0125     int mss = tp->advmss;
0126 
0127     if (dst) {
0128         unsigned int metric = dst_metric_advmss(dst);
0129 
0130         if (metric < mss) {
0131             mss = metric;
0132             tp->advmss = mss;
0133         }
0134     }
0135 
0136     return (__u16)mss;
0137 }
0138 
0139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
0140  * This is the first part of cwnd validation mechanism.
0141  */
0142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
0143 {
0144     struct tcp_sock *tp = tcp_sk(sk);
0145     u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
0146     u32 cwnd = tcp_snd_cwnd(tp);
0147 
0148     tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
0149 
0150     tp->snd_ssthresh = tcp_current_ssthresh(sk);
0151     restart_cwnd = min(restart_cwnd, cwnd);
0152 
0153     while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
0154         cwnd >>= 1;
0155     tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
0156     tp->snd_cwnd_stamp = tcp_jiffies32;
0157     tp->snd_cwnd_used = 0;
0158 }
0159 
0160 /* Congestion state accounting after a packet has been sent. */
0161 static void tcp_event_data_sent(struct tcp_sock *tp,
0162                 struct sock *sk)
0163 {
0164     struct inet_connection_sock *icsk = inet_csk(sk);
0165     const u32 now = tcp_jiffies32;
0166 
0167     if (tcp_packets_in_flight(tp) == 0)
0168         tcp_ca_event(sk, CA_EVENT_TX_START);
0169 
0170     tp->lsndtime = now;
0171 
0172     /* If it is a reply for ato after last received
0173      * packet, enter pingpong mode.
0174      */
0175     if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
0176         inet_csk_enter_pingpong_mode(sk);
0177 }
0178 
0179 /* Account for an ACK we sent. */
0180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
0181                       u32 rcv_nxt)
0182 {
0183     struct tcp_sock *tp = tcp_sk(sk);
0184 
0185     if (unlikely(tp->compressed_ack)) {
0186         NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
0187                   tp->compressed_ack);
0188         tp->compressed_ack = 0;
0189         if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
0190             __sock_put(sk);
0191     }
0192 
0193     if (unlikely(rcv_nxt != tp->rcv_nxt))
0194         return;  /* Special ACK sent by DCTCP to reflect ECN */
0195     tcp_dec_quickack_mode(sk, pkts);
0196     inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
0197 }
0198 
0199 /* Determine a window scaling and initial window to offer.
0200  * Based on the assumption that the given amount of space
0201  * will be offered. Store the results in the tp structure.
0202  * NOTE: for smooth operation initial space offering should
0203  * be a multiple of mss if possible. We assume here that mss >= 1.
0204  * This MUST be enforced by all callers.
0205  */
0206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
0207                    __u32 *rcv_wnd, __u32 *window_clamp,
0208                    int wscale_ok, __u8 *rcv_wscale,
0209                    __u32 init_rcv_wnd)
0210 {
0211     unsigned int space = (__space < 0 ? 0 : __space);
0212 
0213     /* If no clamp set the clamp to the max possible scaled window */
0214     if (*window_clamp == 0)
0215         (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
0216     space = min(*window_clamp, space);
0217 
0218     /* Quantize space offering to a multiple of mss if possible. */
0219     if (space > mss)
0220         space = rounddown(space, mss);
0221 
0222     /* NOTE: offering an initial window larger than 32767
0223      * will break some buggy TCP stacks. If the admin tells us
0224      * it is likely we could be speaking with such a buggy stack
0225      * we will truncate our initial window offering to 32K-1
0226      * unless the remote has sent us a window scaling option,
0227      * which we interpret as a sign the remote TCP is not
0228      * misinterpreting the window field as a signed quantity.
0229      */
0230     if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
0231         (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
0232     else
0233         (*rcv_wnd) = min_t(u32, space, U16_MAX);
0234 
0235     if (init_rcv_wnd)
0236         *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
0237 
0238     *rcv_wscale = 0;
0239     if (wscale_ok) {
0240         /* Set window scaling on max possible window */
0241         space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
0242         space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
0243         space = min_t(u32, space, *window_clamp);
0244         *rcv_wscale = clamp_t(int, ilog2(space) - 15,
0245                       0, TCP_MAX_WSCALE);
0246     }
0247     /* Set the clamp no higher than max representable value */
0248     (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
0249 }
0250 EXPORT_SYMBOL(tcp_select_initial_window);
0251 
0252 /* Chose a new window to advertise, update state in tcp_sock for the
0253  * socket, and return result with RFC1323 scaling applied.  The return
0254  * value can be stuffed directly into th->window for an outgoing
0255  * frame.
0256  */
0257 static u16 tcp_select_window(struct sock *sk)
0258 {
0259     struct tcp_sock *tp = tcp_sk(sk);
0260     u32 old_win = tp->rcv_wnd;
0261     u32 cur_win = tcp_receive_window(tp);
0262     u32 new_win = __tcp_select_window(sk);
0263 
0264     /* Never shrink the offered window */
0265     if (new_win < cur_win) {
0266         /* Danger Will Robinson!
0267          * Don't update rcv_wup/rcv_wnd here or else
0268          * we will not be able to advertise a zero
0269          * window in time.  --DaveM
0270          *
0271          * Relax Will Robinson.
0272          */
0273         if (new_win == 0)
0274             NET_INC_STATS(sock_net(sk),
0275                       LINUX_MIB_TCPWANTZEROWINDOWADV);
0276         new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
0277     }
0278     tp->rcv_wnd = new_win;
0279     tp->rcv_wup = tp->rcv_nxt;
0280 
0281     /* Make sure we do not exceed the maximum possible
0282      * scaled window.
0283      */
0284     if (!tp->rx_opt.rcv_wscale &&
0285         READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
0286         new_win = min(new_win, MAX_TCP_WINDOW);
0287     else
0288         new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
0289 
0290     /* RFC1323 scaling applied */
0291     new_win >>= tp->rx_opt.rcv_wscale;
0292 
0293     /* If we advertise zero window, disable fast path. */
0294     if (new_win == 0) {
0295         tp->pred_flags = 0;
0296         if (old_win)
0297             NET_INC_STATS(sock_net(sk),
0298                       LINUX_MIB_TCPTOZEROWINDOWADV);
0299     } else if (old_win == 0) {
0300         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
0301     }
0302 
0303     return new_win;
0304 }
0305 
0306 /* Packet ECN state for a SYN-ACK */
0307 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
0308 {
0309     const struct tcp_sock *tp = tcp_sk(sk);
0310 
0311     TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
0312     if (!(tp->ecn_flags & TCP_ECN_OK))
0313         TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
0314     else if (tcp_ca_needs_ecn(sk) ||
0315          tcp_bpf_ca_needs_ecn(sk))
0316         INET_ECN_xmit(sk);
0317 }
0318 
0319 /* Packet ECN state for a SYN.  */
0320 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
0321 {
0322     struct tcp_sock *tp = tcp_sk(sk);
0323     bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
0324     bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
0325         tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
0326 
0327     if (!use_ecn) {
0328         const struct dst_entry *dst = __sk_dst_get(sk);
0329 
0330         if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
0331             use_ecn = true;
0332     }
0333 
0334     tp->ecn_flags = 0;
0335 
0336     if (use_ecn) {
0337         TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
0338         tp->ecn_flags = TCP_ECN_OK;
0339         if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
0340             INET_ECN_xmit(sk);
0341     }
0342 }
0343 
0344 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
0345 {
0346     if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
0347         /* tp->ecn_flags are cleared at a later point in time when
0348          * SYN ACK is ultimatively being received.
0349          */
0350         TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
0351 }
0352 
0353 static void
0354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
0355 {
0356     if (inet_rsk(req)->ecn_ok)
0357         th->ece = 1;
0358 }
0359 
0360 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
0361  * be sent.
0362  */
0363 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
0364              struct tcphdr *th, int tcp_header_len)
0365 {
0366     struct tcp_sock *tp = tcp_sk(sk);
0367 
0368     if (tp->ecn_flags & TCP_ECN_OK) {
0369         /* Not-retransmitted data segment: set ECT and inject CWR. */
0370         if (skb->len != tcp_header_len &&
0371             !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
0372             INET_ECN_xmit(sk);
0373             if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
0374                 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
0375                 th->cwr = 1;
0376                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
0377             }
0378         } else if (!tcp_ca_needs_ecn(sk)) {
0379             /* ACK or retransmitted segment: clear ECT|CE */
0380             INET_ECN_dontxmit(sk);
0381         }
0382         if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
0383             th->ece = 1;
0384     }
0385 }
0386 
0387 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
0388  * auto increment end seqno.
0389  */
0390 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
0391 {
0392     skb->ip_summed = CHECKSUM_PARTIAL;
0393 
0394     TCP_SKB_CB(skb)->tcp_flags = flags;
0395 
0396     tcp_skb_pcount_set(skb, 1);
0397 
0398     TCP_SKB_CB(skb)->seq = seq;
0399     if (flags & (TCPHDR_SYN | TCPHDR_FIN))
0400         seq++;
0401     TCP_SKB_CB(skb)->end_seq = seq;
0402 }
0403 
0404 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
0405 {
0406     return tp->snd_una != tp->snd_up;
0407 }
0408 
0409 #define OPTION_SACK_ADVERTISE   BIT(0)
0410 #define OPTION_TS       BIT(1)
0411 #define OPTION_MD5      BIT(2)
0412 #define OPTION_WSCALE       BIT(3)
0413 #define OPTION_FAST_OPEN_COOKIE BIT(8)
0414 #define OPTION_SMC      BIT(9)
0415 #define OPTION_MPTCP        BIT(10)
0416 
0417 static void smc_options_write(__be32 *ptr, u16 *options)
0418 {
0419 #if IS_ENABLED(CONFIG_SMC)
0420     if (static_branch_unlikely(&tcp_have_smc)) {
0421         if (unlikely(OPTION_SMC & *options)) {
0422             *ptr++ = htonl((TCPOPT_NOP  << 24) |
0423                        (TCPOPT_NOP  << 16) |
0424                        (TCPOPT_EXP <<  8) |
0425                        (TCPOLEN_EXP_SMC_BASE));
0426             *ptr++ = htonl(TCPOPT_SMC_MAGIC);
0427         }
0428     }
0429 #endif
0430 }
0431 
0432 struct tcp_out_options {
0433     u16 options;        /* bit field of OPTION_* */
0434     u16 mss;        /* 0 to disable */
0435     u8 ws;          /* window scale, 0 to disable */
0436     u8 num_sack_blocks; /* number of SACK blocks to include */
0437     u8 hash_size;       /* bytes in hash_location */
0438     u8 bpf_opt_len;     /* length of BPF hdr option */
0439     __u8 *hash_location;    /* temporary pointer, overloaded */
0440     __u32 tsval, tsecr; /* need to include OPTION_TS */
0441     struct tcp_fastopen_cookie *fastopen_cookie;    /* Fast open cookie */
0442     struct mptcp_out_options mptcp;
0443 };
0444 
0445 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
0446                 struct tcp_sock *tp,
0447                 struct tcp_out_options *opts)
0448 {
0449 #if IS_ENABLED(CONFIG_MPTCP)
0450     if (unlikely(OPTION_MPTCP & opts->options))
0451         mptcp_write_options(th, ptr, tp, &opts->mptcp);
0452 #endif
0453 }
0454 
0455 #ifdef CONFIG_CGROUP_BPF
0456 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
0457                     enum tcp_synack_type synack_type)
0458 {
0459     if (unlikely(!skb))
0460         return BPF_WRITE_HDR_TCP_CURRENT_MSS;
0461 
0462     if (unlikely(synack_type == TCP_SYNACK_COOKIE))
0463         return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
0464 
0465     return 0;
0466 }
0467 
0468 /* req, syn_skb and synack_type are used when writing synack */
0469 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
0470                   struct request_sock *req,
0471                   struct sk_buff *syn_skb,
0472                   enum tcp_synack_type synack_type,
0473                   struct tcp_out_options *opts,
0474                   unsigned int *remaining)
0475 {
0476     struct bpf_sock_ops_kern sock_ops;
0477     int err;
0478 
0479     if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
0480                        BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
0481         !*remaining)
0482         return;
0483 
0484     /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
0485 
0486     /* init sock_ops */
0487     memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
0488 
0489     sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
0490 
0491     if (req) {
0492         /* The listen "sk" cannot be passed here because
0493          * it is not locked.  It would not make too much
0494          * sense to do bpf_setsockopt(listen_sk) based
0495          * on individual connection request also.
0496          *
0497          * Thus, "req" is passed here and the cgroup-bpf-progs
0498          * of the listen "sk" will be run.
0499          *
0500          * "req" is also used here for fastopen even the "sk" here is
0501          * a fullsock "child" sk.  It is to keep the behavior
0502          * consistent between fastopen and non-fastopen on
0503          * the bpf programming side.
0504          */
0505         sock_ops.sk = (struct sock *)req;
0506         sock_ops.syn_skb = syn_skb;
0507     } else {
0508         sock_owned_by_me(sk);
0509 
0510         sock_ops.is_fullsock = 1;
0511         sock_ops.sk = sk;
0512     }
0513 
0514     sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
0515     sock_ops.remaining_opt_len = *remaining;
0516     /* tcp_current_mss() does not pass a skb */
0517     if (skb)
0518         bpf_skops_init_skb(&sock_ops, skb, 0);
0519 
0520     err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
0521 
0522     if (err || sock_ops.remaining_opt_len == *remaining)
0523         return;
0524 
0525     opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
0526     /* round up to 4 bytes */
0527     opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
0528 
0529     *remaining -= opts->bpf_opt_len;
0530 }
0531 
0532 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
0533                     struct request_sock *req,
0534                     struct sk_buff *syn_skb,
0535                     enum tcp_synack_type synack_type,
0536                     struct tcp_out_options *opts)
0537 {
0538     u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
0539     struct bpf_sock_ops_kern sock_ops;
0540     int err;
0541 
0542     if (likely(!max_opt_len))
0543         return;
0544 
0545     memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
0546 
0547     sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
0548 
0549     if (req) {
0550         sock_ops.sk = (struct sock *)req;
0551         sock_ops.syn_skb = syn_skb;
0552     } else {
0553         sock_owned_by_me(sk);
0554 
0555         sock_ops.is_fullsock = 1;
0556         sock_ops.sk = sk;
0557     }
0558 
0559     sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
0560     sock_ops.remaining_opt_len = max_opt_len;
0561     first_opt_off = tcp_hdrlen(skb) - max_opt_len;
0562     bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
0563 
0564     err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
0565 
0566     if (err)
0567         nr_written = 0;
0568     else
0569         nr_written = max_opt_len - sock_ops.remaining_opt_len;
0570 
0571     if (nr_written < max_opt_len)
0572         memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
0573                max_opt_len - nr_written);
0574 }
0575 #else
0576 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
0577                   struct request_sock *req,
0578                   struct sk_buff *syn_skb,
0579                   enum tcp_synack_type synack_type,
0580                   struct tcp_out_options *opts,
0581                   unsigned int *remaining)
0582 {
0583 }
0584 
0585 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
0586                     struct request_sock *req,
0587                     struct sk_buff *syn_skb,
0588                     enum tcp_synack_type synack_type,
0589                     struct tcp_out_options *opts)
0590 {
0591 }
0592 #endif
0593 
0594 /* Write previously computed TCP options to the packet.
0595  *
0596  * Beware: Something in the Internet is very sensitive to the ordering of
0597  * TCP options, we learned this through the hard way, so be careful here.
0598  * Luckily we can at least blame others for their non-compliance but from
0599  * inter-operability perspective it seems that we're somewhat stuck with
0600  * the ordering which we have been using if we want to keep working with
0601  * those broken things (not that it currently hurts anybody as there isn't
0602  * particular reason why the ordering would need to be changed).
0603  *
0604  * At least SACK_PERM as the first option is known to lead to a disaster
0605  * (but it may well be that other scenarios fail similarly).
0606  */
0607 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
0608                   struct tcp_out_options *opts)
0609 {
0610     __be32 *ptr = (__be32 *)(th + 1);
0611     u16 options = opts->options;    /* mungable copy */
0612 
0613     if (unlikely(OPTION_MD5 & options)) {
0614         *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
0615                    (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
0616         /* overload cookie hash location */
0617         opts->hash_location = (__u8 *)ptr;
0618         ptr += 4;
0619     }
0620 
0621     if (unlikely(opts->mss)) {
0622         *ptr++ = htonl((TCPOPT_MSS << 24) |
0623                    (TCPOLEN_MSS << 16) |
0624                    opts->mss);
0625     }
0626 
0627     if (likely(OPTION_TS & options)) {
0628         if (unlikely(OPTION_SACK_ADVERTISE & options)) {
0629             *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
0630                        (TCPOLEN_SACK_PERM << 16) |
0631                        (TCPOPT_TIMESTAMP << 8) |
0632                        TCPOLEN_TIMESTAMP);
0633             options &= ~OPTION_SACK_ADVERTISE;
0634         } else {
0635             *ptr++ = htonl((TCPOPT_NOP << 24) |
0636                        (TCPOPT_NOP << 16) |
0637                        (TCPOPT_TIMESTAMP << 8) |
0638                        TCPOLEN_TIMESTAMP);
0639         }
0640         *ptr++ = htonl(opts->tsval);
0641         *ptr++ = htonl(opts->tsecr);
0642     }
0643 
0644     if (unlikely(OPTION_SACK_ADVERTISE & options)) {
0645         *ptr++ = htonl((TCPOPT_NOP << 24) |
0646                    (TCPOPT_NOP << 16) |
0647                    (TCPOPT_SACK_PERM << 8) |
0648                    TCPOLEN_SACK_PERM);
0649     }
0650 
0651     if (unlikely(OPTION_WSCALE & options)) {
0652         *ptr++ = htonl((TCPOPT_NOP << 24) |
0653                    (TCPOPT_WINDOW << 16) |
0654                    (TCPOLEN_WINDOW << 8) |
0655                    opts->ws);
0656     }
0657 
0658     if (unlikely(opts->num_sack_blocks)) {
0659         struct tcp_sack_block *sp = tp->rx_opt.dsack ?
0660             tp->duplicate_sack : tp->selective_acks;
0661         int this_sack;
0662 
0663         *ptr++ = htonl((TCPOPT_NOP  << 24) |
0664                    (TCPOPT_NOP  << 16) |
0665                    (TCPOPT_SACK <<  8) |
0666                    (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
0667                              TCPOLEN_SACK_PERBLOCK)));
0668 
0669         for (this_sack = 0; this_sack < opts->num_sack_blocks;
0670              ++this_sack) {
0671             *ptr++ = htonl(sp[this_sack].start_seq);
0672             *ptr++ = htonl(sp[this_sack].end_seq);
0673         }
0674 
0675         tp->rx_opt.dsack = 0;
0676     }
0677 
0678     if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
0679         struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
0680         u8 *p = (u8 *)ptr;
0681         u32 len; /* Fast Open option length */
0682 
0683         if (foc->exp) {
0684             len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
0685             *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
0686                      TCPOPT_FASTOPEN_MAGIC);
0687             p += TCPOLEN_EXP_FASTOPEN_BASE;
0688         } else {
0689             len = TCPOLEN_FASTOPEN_BASE + foc->len;
0690             *p++ = TCPOPT_FASTOPEN;
0691             *p++ = len;
0692         }
0693 
0694         memcpy(p, foc->val, foc->len);
0695         if ((len & 3) == 2) {
0696             p[foc->len] = TCPOPT_NOP;
0697             p[foc->len + 1] = TCPOPT_NOP;
0698         }
0699         ptr += (len + 3) >> 2;
0700     }
0701 
0702     smc_options_write(ptr, &options);
0703 
0704     mptcp_options_write(th, ptr, tp, opts);
0705 }
0706 
0707 static void smc_set_option(const struct tcp_sock *tp,
0708                struct tcp_out_options *opts,
0709                unsigned int *remaining)
0710 {
0711 #if IS_ENABLED(CONFIG_SMC)
0712     if (static_branch_unlikely(&tcp_have_smc)) {
0713         if (tp->syn_smc) {
0714             if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
0715                 opts->options |= OPTION_SMC;
0716                 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
0717             }
0718         }
0719     }
0720 #endif
0721 }
0722 
0723 static void smc_set_option_cond(const struct tcp_sock *tp,
0724                 const struct inet_request_sock *ireq,
0725                 struct tcp_out_options *opts,
0726                 unsigned int *remaining)
0727 {
0728 #if IS_ENABLED(CONFIG_SMC)
0729     if (static_branch_unlikely(&tcp_have_smc)) {
0730         if (tp->syn_smc && ireq->smc_ok) {
0731             if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
0732                 opts->options |= OPTION_SMC;
0733                 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
0734             }
0735         }
0736     }
0737 #endif
0738 }
0739 
0740 static void mptcp_set_option_cond(const struct request_sock *req,
0741                   struct tcp_out_options *opts,
0742                   unsigned int *remaining)
0743 {
0744     if (rsk_is_mptcp(req)) {
0745         unsigned int size;
0746 
0747         if (mptcp_synack_options(req, &size, &opts->mptcp)) {
0748             if (*remaining >= size) {
0749                 opts->options |= OPTION_MPTCP;
0750                 *remaining -= size;
0751             }
0752         }
0753     }
0754 }
0755 
0756 /* Compute TCP options for SYN packets. This is not the final
0757  * network wire format yet.
0758  */
0759 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
0760                 struct tcp_out_options *opts,
0761                 struct tcp_md5sig_key **md5)
0762 {
0763     struct tcp_sock *tp = tcp_sk(sk);
0764     unsigned int remaining = MAX_TCP_OPTION_SPACE;
0765     struct tcp_fastopen_request *fastopen = tp->fastopen_req;
0766 
0767     *md5 = NULL;
0768 #ifdef CONFIG_TCP_MD5SIG
0769     if (static_branch_unlikely(&tcp_md5_needed) &&
0770         rcu_access_pointer(tp->md5sig_info)) {
0771         *md5 = tp->af_specific->md5_lookup(sk, sk);
0772         if (*md5) {
0773             opts->options |= OPTION_MD5;
0774             remaining -= TCPOLEN_MD5SIG_ALIGNED;
0775         }
0776     }
0777 #endif
0778 
0779     /* We always get an MSS option.  The option bytes which will be seen in
0780      * normal data packets should timestamps be used, must be in the MSS
0781      * advertised.  But we subtract them from tp->mss_cache so that
0782      * calculations in tcp_sendmsg are simpler etc.  So account for this
0783      * fact here if necessary.  If we don't do this correctly, as a
0784      * receiver we won't recognize data packets as being full sized when we
0785      * should, and thus we won't abide by the delayed ACK rules correctly.
0786      * SACKs don't matter, we never delay an ACK when we have any of those
0787      * going out.  */
0788     opts->mss = tcp_advertise_mss(sk);
0789     remaining -= TCPOLEN_MSS_ALIGNED;
0790 
0791     if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
0792         opts->options |= OPTION_TS;
0793         opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
0794         opts->tsecr = tp->rx_opt.ts_recent;
0795         remaining -= TCPOLEN_TSTAMP_ALIGNED;
0796     }
0797     if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
0798         opts->ws = tp->rx_opt.rcv_wscale;
0799         opts->options |= OPTION_WSCALE;
0800         remaining -= TCPOLEN_WSCALE_ALIGNED;
0801     }
0802     if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
0803         opts->options |= OPTION_SACK_ADVERTISE;
0804         if (unlikely(!(OPTION_TS & opts->options)))
0805             remaining -= TCPOLEN_SACKPERM_ALIGNED;
0806     }
0807 
0808     if (fastopen && fastopen->cookie.len >= 0) {
0809         u32 need = fastopen->cookie.len;
0810 
0811         need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
0812                            TCPOLEN_FASTOPEN_BASE;
0813         need = (need + 3) & ~3U;  /* Align to 32 bits */
0814         if (remaining >= need) {
0815             opts->options |= OPTION_FAST_OPEN_COOKIE;
0816             opts->fastopen_cookie = &fastopen->cookie;
0817             remaining -= need;
0818             tp->syn_fastopen = 1;
0819             tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
0820         }
0821     }
0822 
0823     smc_set_option(tp, opts, &remaining);
0824 
0825     if (sk_is_mptcp(sk)) {
0826         unsigned int size;
0827 
0828         if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
0829             opts->options |= OPTION_MPTCP;
0830             remaining -= size;
0831         }
0832     }
0833 
0834     bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
0835 
0836     return MAX_TCP_OPTION_SPACE - remaining;
0837 }
0838 
0839 /* Set up TCP options for SYN-ACKs. */
0840 static unsigned int tcp_synack_options(const struct sock *sk,
0841                        struct request_sock *req,
0842                        unsigned int mss, struct sk_buff *skb,
0843                        struct tcp_out_options *opts,
0844                        const struct tcp_md5sig_key *md5,
0845                        struct tcp_fastopen_cookie *foc,
0846                        enum tcp_synack_type synack_type,
0847                        struct sk_buff *syn_skb)
0848 {
0849     struct inet_request_sock *ireq = inet_rsk(req);
0850     unsigned int remaining = MAX_TCP_OPTION_SPACE;
0851 
0852 #ifdef CONFIG_TCP_MD5SIG
0853     if (md5) {
0854         opts->options |= OPTION_MD5;
0855         remaining -= TCPOLEN_MD5SIG_ALIGNED;
0856 
0857         /* We can't fit any SACK blocks in a packet with MD5 + TS
0858          * options. There was discussion about disabling SACK
0859          * rather than TS in order to fit in better with old,
0860          * buggy kernels, but that was deemed to be unnecessary.
0861          */
0862         if (synack_type != TCP_SYNACK_COOKIE)
0863             ireq->tstamp_ok &= !ireq->sack_ok;
0864     }
0865 #endif
0866 
0867     /* We always send an MSS option. */
0868     opts->mss = mss;
0869     remaining -= TCPOLEN_MSS_ALIGNED;
0870 
0871     if (likely(ireq->wscale_ok)) {
0872         opts->ws = ireq->rcv_wscale;
0873         opts->options |= OPTION_WSCALE;
0874         remaining -= TCPOLEN_WSCALE_ALIGNED;
0875     }
0876     if (likely(ireq->tstamp_ok)) {
0877         opts->options |= OPTION_TS;
0878         opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
0879         opts->tsecr = req->ts_recent;
0880         remaining -= TCPOLEN_TSTAMP_ALIGNED;
0881     }
0882     if (likely(ireq->sack_ok)) {
0883         opts->options |= OPTION_SACK_ADVERTISE;
0884         if (unlikely(!ireq->tstamp_ok))
0885             remaining -= TCPOLEN_SACKPERM_ALIGNED;
0886     }
0887     if (foc != NULL && foc->len >= 0) {
0888         u32 need = foc->len;
0889 
0890         need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
0891                    TCPOLEN_FASTOPEN_BASE;
0892         need = (need + 3) & ~3U;  /* Align to 32 bits */
0893         if (remaining >= need) {
0894             opts->options |= OPTION_FAST_OPEN_COOKIE;
0895             opts->fastopen_cookie = foc;
0896             remaining -= need;
0897         }
0898     }
0899 
0900     mptcp_set_option_cond(req, opts, &remaining);
0901 
0902     smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
0903 
0904     bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
0905                   synack_type, opts, &remaining);
0906 
0907     return MAX_TCP_OPTION_SPACE - remaining;
0908 }
0909 
0910 /* Compute TCP options for ESTABLISHED sockets. This is not the
0911  * final wire format yet.
0912  */
0913 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
0914                     struct tcp_out_options *opts,
0915                     struct tcp_md5sig_key **md5)
0916 {
0917     struct tcp_sock *tp = tcp_sk(sk);
0918     unsigned int size = 0;
0919     unsigned int eff_sacks;
0920 
0921     opts->options = 0;
0922 
0923     *md5 = NULL;
0924 #ifdef CONFIG_TCP_MD5SIG
0925     if (static_branch_unlikely(&tcp_md5_needed) &&
0926         rcu_access_pointer(tp->md5sig_info)) {
0927         *md5 = tp->af_specific->md5_lookup(sk, sk);
0928         if (*md5) {
0929             opts->options |= OPTION_MD5;
0930             size += TCPOLEN_MD5SIG_ALIGNED;
0931         }
0932     }
0933 #endif
0934 
0935     if (likely(tp->rx_opt.tstamp_ok)) {
0936         opts->options |= OPTION_TS;
0937         opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
0938         opts->tsecr = tp->rx_opt.ts_recent;
0939         size += TCPOLEN_TSTAMP_ALIGNED;
0940     }
0941 
0942     /* MPTCP options have precedence over SACK for the limited TCP
0943      * option space because a MPTCP connection would be forced to
0944      * fall back to regular TCP if a required multipath option is
0945      * missing. SACK still gets a chance to use whatever space is
0946      * left.
0947      */
0948     if (sk_is_mptcp(sk)) {
0949         unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
0950         unsigned int opt_size = 0;
0951 
0952         if (mptcp_established_options(sk, skb, &opt_size, remaining,
0953                           &opts->mptcp)) {
0954             opts->options |= OPTION_MPTCP;
0955             size += opt_size;
0956         }
0957     }
0958 
0959     eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
0960     if (unlikely(eff_sacks)) {
0961         const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
0962         if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
0963                      TCPOLEN_SACK_PERBLOCK))
0964             return size;
0965 
0966         opts->num_sack_blocks =
0967             min_t(unsigned int, eff_sacks,
0968                   (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
0969                   TCPOLEN_SACK_PERBLOCK);
0970 
0971         size += TCPOLEN_SACK_BASE_ALIGNED +
0972             opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
0973     }
0974 
0975     if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
0976                         BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
0977         unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
0978 
0979         bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
0980 
0981         size = MAX_TCP_OPTION_SPACE - remaining;
0982     }
0983 
0984     return size;
0985 }
0986 
0987 
0988 /* TCP SMALL QUEUES (TSQ)
0989  *
0990  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
0991  * to reduce RTT and bufferbloat.
0992  * We do this using a special skb destructor (tcp_wfree).
0993  *
0994  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
0995  * needs to be reallocated in a driver.
0996  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
0997  *
0998  * Since transmit from skb destructor is forbidden, we use a tasklet
0999  * to process all sockets that eventually need to send more skbs.
1000  * We use one tasklet per cpu, with its own queue of sockets.
1001  */
1002 struct tsq_tasklet {
1003     struct tasklet_struct   tasklet;
1004     struct list_head    head; /* queue of tcp sockets */
1005 };
1006 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1007 
1008 static void tcp_tsq_write(struct sock *sk)
1009 {
1010     if ((1 << sk->sk_state) &
1011         (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1012          TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1013         struct tcp_sock *tp = tcp_sk(sk);
1014 
1015         if (tp->lost_out > tp->retrans_out &&
1016             tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1017             tcp_mstamp_refresh(tp);
1018             tcp_xmit_retransmit_queue(sk);
1019         }
1020 
1021         tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1022                    0, GFP_ATOMIC);
1023     }
1024 }
1025 
1026 static void tcp_tsq_handler(struct sock *sk)
1027 {
1028     bh_lock_sock(sk);
1029     if (!sock_owned_by_user(sk))
1030         tcp_tsq_write(sk);
1031     else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1032         sock_hold(sk);
1033     bh_unlock_sock(sk);
1034 }
1035 /*
1036  * One tasklet per cpu tries to send more skbs.
1037  * We run in tasklet context but need to disable irqs when
1038  * transferring tsq->head because tcp_wfree() might
1039  * interrupt us (non NAPI drivers)
1040  */
1041 static void tcp_tasklet_func(struct tasklet_struct *t)
1042 {
1043     struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1044     LIST_HEAD(list);
1045     unsigned long flags;
1046     struct list_head *q, *n;
1047     struct tcp_sock *tp;
1048     struct sock *sk;
1049 
1050     local_irq_save(flags);
1051     list_splice_init(&tsq->head, &list);
1052     local_irq_restore(flags);
1053 
1054     list_for_each_safe(q, n, &list) {
1055         tp = list_entry(q, struct tcp_sock, tsq_node);
1056         list_del(&tp->tsq_node);
1057 
1058         sk = (struct sock *)tp;
1059         smp_mb__before_atomic();
1060         clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1061 
1062         tcp_tsq_handler(sk);
1063         sk_free(sk);
1064     }
1065 }
1066 
1067 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |       \
1068               TCPF_WRITE_TIMER_DEFERRED |   \
1069               TCPF_DELACK_TIMER_DEFERRED |  \
1070               TCPF_MTU_REDUCED_DEFERRED)
1071 /**
1072  * tcp_release_cb - tcp release_sock() callback
1073  * @sk: socket
1074  *
1075  * called from release_sock() to perform protocol dependent
1076  * actions before socket release.
1077  */
1078 void tcp_release_cb(struct sock *sk)
1079 {
1080     unsigned long flags, nflags;
1081 
1082     /* perform an atomic operation only if at least one flag is set */
1083     do {
1084         flags = sk->sk_tsq_flags;
1085         if (!(flags & TCP_DEFERRED_ALL))
1086             return;
1087         nflags = flags & ~TCP_DEFERRED_ALL;
1088     } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1089 
1090     if (flags & TCPF_TSQ_DEFERRED) {
1091         tcp_tsq_write(sk);
1092         __sock_put(sk);
1093     }
1094     /* Here begins the tricky part :
1095      * We are called from release_sock() with :
1096      * 1) BH disabled
1097      * 2) sk_lock.slock spinlock held
1098      * 3) socket owned by us (sk->sk_lock.owned == 1)
1099      *
1100      * But following code is meant to be called from BH handlers,
1101      * so we should keep BH disabled, but early release socket ownership
1102      */
1103     sock_release_ownership(sk);
1104 
1105     if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1106         tcp_write_timer_handler(sk);
1107         __sock_put(sk);
1108     }
1109     if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1110         tcp_delack_timer_handler(sk);
1111         __sock_put(sk);
1112     }
1113     if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1114         inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1115         __sock_put(sk);
1116     }
1117 }
1118 EXPORT_SYMBOL(tcp_release_cb);
1119 
1120 void __init tcp_tasklet_init(void)
1121 {
1122     int i;
1123 
1124     for_each_possible_cpu(i) {
1125         struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1126 
1127         INIT_LIST_HEAD(&tsq->head);
1128         tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1129     }
1130 }
1131 
1132 /*
1133  * Write buffer destructor automatically called from kfree_skb.
1134  * We can't xmit new skbs from this context, as we might already
1135  * hold qdisc lock.
1136  */
1137 void tcp_wfree(struct sk_buff *skb)
1138 {
1139     struct sock *sk = skb->sk;
1140     struct tcp_sock *tp = tcp_sk(sk);
1141     unsigned long flags, nval, oval;
1142 
1143     /* Keep one reference on sk_wmem_alloc.
1144      * Will be released by sk_free() from here or tcp_tasklet_func()
1145      */
1146     WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1147 
1148     /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1149      * Wait until our queues (qdisc + devices) are drained.
1150      * This gives :
1151      * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1152      * - chance for incoming ACK (processed by another cpu maybe)
1153      *   to migrate this flow (skb->ooo_okay will be eventually set)
1154      */
1155     if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1156         goto out;
1157 
1158     for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1159         struct tsq_tasklet *tsq;
1160         bool empty;
1161 
1162         if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1163             goto out;
1164 
1165         nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1166         nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1167         if (nval != oval)
1168             continue;
1169 
1170         /* queue this socket to tasklet queue */
1171         local_irq_save(flags);
1172         tsq = this_cpu_ptr(&tsq_tasklet);
1173         empty = list_empty(&tsq->head);
1174         list_add(&tp->tsq_node, &tsq->head);
1175         if (empty)
1176             tasklet_schedule(&tsq->tasklet);
1177         local_irq_restore(flags);
1178         return;
1179     }
1180 out:
1181     sk_free(sk);
1182 }
1183 
1184 /* Note: Called under soft irq.
1185  * We can call TCP stack right away, unless socket is owned by user.
1186  */
1187 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1188 {
1189     struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1190     struct sock *sk = (struct sock *)tp;
1191 
1192     tcp_tsq_handler(sk);
1193     sock_put(sk);
1194 
1195     return HRTIMER_NORESTART;
1196 }
1197 
1198 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1199                       u64 prior_wstamp)
1200 {
1201     struct tcp_sock *tp = tcp_sk(sk);
1202 
1203     if (sk->sk_pacing_status != SK_PACING_NONE) {
1204         unsigned long rate = sk->sk_pacing_rate;
1205 
1206         /* Original sch_fq does not pace first 10 MSS
1207          * Note that tp->data_segs_out overflows after 2^32 packets,
1208          * this is a minor annoyance.
1209          */
1210         if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1211             u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1212             u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1213 
1214             /* take into account OS jitter */
1215             len_ns -= min_t(u64, len_ns / 2, credit);
1216             tp->tcp_wstamp_ns += len_ns;
1217         }
1218     }
1219     list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1220 }
1221 
1222 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1223 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1224 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1225 
1226 /* This routine actually transmits TCP packets queued in by
1227  * tcp_do_sendmsg().  This is used by both the initial
1228  * transmission and possible later retransmissions.
1229  * All SKB's seen here are completely headerless.  It is our
1230  * job to build the TCP header, and pass the packet down to
1231  * IP so it can do the same plus pass the packet off to the
1232  * device.
1233  *
1234  * We are working here with either a clone of the original
1235  * SKB, or a fresh unique copy made by the retransmit engine.
1236  */
1237 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1238                   int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1239 {
1240     const struct inet_connection_sock *icsk = inet_csk(sk);
1241     struct inet_sock *inet;
1242     struct tcp_sock *tp;
1243     struct tcp_skb_cb *tcb;
1244     struct tcp_out_options opts;
1245     unsigned int tcp_options_size, tcp_header_size;
1246     struct sk_buff *oskb = NULL;
1247     struct tcp_md5sig_key *md5;
1248     struct tcphdr *th;
1249     u64 prior_wstamp;
1250     int err;
1251 
1252     BUG_ON(!skb || !tcp_skb_pcount(skb));
1253     tp = tcp_sk(sk);
1254     prior_wstamp = tp->tcp_wstamp_ns;
1255     tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1256     skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1257     if (clone_it) {
1258         oskb = skb;
1259 
1260         tcp_skb_tsorted_save(oskb) {
1261             if (unlikely(skb_cloned(oskb)))
1262                 skb = pskb_copy(oskb, gfp_mask);
1263             else
1264                 skb = skb_clone(oskb, gfp_mask);
1265         } tcp_skb_tsorted_restore(oskb);
1266 
1267         if (unlikely(!skb))
1268             return -ENOBUFS;
1269         /* retransmit skbs might have a non zero value in skb->dev
1270          * because skb->dev is aliased with skb->rbnode.rb_left
1271          */
1272         skb->dev = NULL;
1273     }
1274 
1275     inet = inet_sk(sk);
1276     tcb = TCP_SKB_CB(skb);
1277     memset(&opts, 0, sizeof(opts));
1278 
1279     if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1280         tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1281     } else {
1282         tcp_options_size = tcp_established_options(sk, skb, &opts,
1283                                &md5);
1284         /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1285          * at receiver : This slightly improve GRO performance.
1286          * Note that we do not force the PSH flag for non GSO packets,
1287          * because they might be sent under high congestion events,
1288          * and in this case it is better to delay the delivery of 1-MSS
1289          * packets and thus the corresponding ACK packet that would
1290          * release the following packet.
1291          */
1292         if (tcp_skb_pcount(skb) > 1)
1293             tcb->tcp_flags |= TCPHDR_PSH;
1294     }
1295     tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1296 
1297     /* if no packet is in qdisc/device queue, then allow XPS to select
1298      * another queue. We can be called from tcp_tsq_handler()
1299      * which holds one reference to sk.
1300      *
1301      * TODO: Ideally, in-flight pure ACK packets should not matter here.
1302      * One way to get this would be to set skb->truesize = 2 on them.
1303      */
1304     skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1305 
1306     /* If we had to use memory reserve to allocate this skb,
1307      * this might cause drops if packet is looped back :
1308      * Other socket might not have SOCK_MEMALLOC.
1309      * Packets not looped back do not care about pfmemalloc.
1310      */
1311     skb->pfmemalloc = 0;
1312 
1313     skb_push(skb, tcp_header_size);
1314     skb_reset_transport_header(skb);
1315 
1316     skb_orphan(skb);
1317     skb->sk = sk;
1318     skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1319     refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1320 
1321     skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1322 
1323     /* Build TCP header and checksum it. */
1324     th = (struct tcphdr *)skb->data;
1325     th->source      = inet->inet_sport;
1326     th->dest        = inet->inet_dport;
1327     th->seq         = htonl(tcb->seq);
1328     th->ack_seq     = htonl(rcv_nxt);
1329     *(((__be16 *)th) + 6)   = htons(((tcp_header_size >> 2) << 12) |
1330                     tcb->tcp_flags);
1331 
1332     th->check       = 0;
1333     th->urg_ptr     = 0;
1334 
1335     /* The urg_mode check is necessary during a below snd_una win probe */
1336     if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1337         if (before(tp->snd_up, tcb->seq + 0x10000)) {
1338             th->urg_ptr = htons(tp->snd_up - tcb->seq);
1339             th->urg = 1;
1340         } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1341             th->urg_ptr = htons(0xFFFF);
1342             th->urg = 1;
1343         }
1344     }
1345 
1346     skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1347     if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1348         th->window      = htons(tcp_select_window(sk));
1349         tcp_ecn_send(sk, skb, th, tcp_header_size);
1350     } else {
1351         /* RFC1323: The window in SYN & SYN/ACK segments
1352          * is never scaled.
1353          */
1354         th->window  = htons(min(tp->rcv_wnd, 65535U));
1355     }
1356 
1357     tcp_options_write(th, tp, &opts);
1358 
1359 #ifdef CONFIG_TCP_MD5SIG
1360     /* Calculate the MD5 hash, as we have all we need now */
1361     if (md5) {
1362         sk_gso_disable(sk);
1363         tp->af_specific->calc_md5_hash(opts.hash_location,
1364                            md5, sk, skb);
1365     }
1366 #endif
1367 
1368     /* BPF prog is the last one writing header option */
1369     bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1370 
1371     INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1372                tcp_v6_send_check, tcp_v4_send_check,
1373                sk, skb);
1374 
1375     if (likely(tcb->tcp_flags & TCPHDR_ACK))
1376         tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1377 
1378     if (skb->len != tcp_header_size) {
1379         tcp_event_data_sent(tp, sk);
1380         tp->data_segs_out += tcp_skb_pcount(skb);
1381         tp->bytes_sent += skb->len - tcp_header_size;
1382     }
1383 
1384     if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1385         TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1386                   tcp_skb_pcount(skb));
1387 
1388     tp->segs_out += tcp_skb_pcount(skb);
1389     skb_set_hash_from_sk(skb, sk);
1390     /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1391     skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1392     skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1393 
1394     /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1395 
1396     /* Cleanup our debris for IP stacks */
1397     memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1398                    sizeof(struct inet6_skb_parm)));
1399 
1400     tcp_add_tx_delay(skb, tp);
1401 
1402     err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1403                  inet6_csk_xmit, ip_queue_xmit,
1404                  sk, skb, &inet->cork.fl);
1405 
1406     if (unlikely(err > 0)) {
1407         tcp_enter_cwr(sk);
1408         err = net_xmit_eval(err);
1409     }
1410     if (!err && oskb) {
1411         tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1412         tcp_rate_skb_sent(sk, oskb);
1413     }
1414     return err;
1415 }
1416 
1417 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1418                 gfp_t gfp_mask)
1419 {
1420     return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1421                   tcp_sk(sk)->rcv_nxt);
1422 }
1423 
1424 /* This routine just queues the buffer for sending.
1425  *
1426  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1427  * otherwise socket can stall.
1428  */
1429 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1430 {
1431     struct tcp_sock *tp = tcp_sk(sk);
1432 
1433     /* Advance write_seq and place onto the write_queue. */
1434     WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1435     __skb_header_release(skb);
1436     tcp_add_write_queue_tail(sk, skb);
1437     sk_wmem_queued_add(sk, skb->truesize);
1438     sk_mem_charge(sk, skb->truesize);
1439 }
1440 
1441 /* Initialize TSO segments for a packet. */
1442 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1443 {
1444     if (skb->len <= mss_now) {
1445         /* Avoid the costly divide in the normal
1446          * non-TSO case.
1447          */
1448         tcp_skb_pcount_set(skb, 1);
1449         TCP_SKB_CB(skb)->tcp_gso_size = 0;
1450     } else {
1451         tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1452         TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1453     }
1454 }
1455 
1456 /* Pcount in the middle of the write queue got changed, we need to do various
1457  * tweaks to fix counters
1458  */
1459 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1460 {
1461     struct tcp_sock *tp = tcp_sk(sk);
1462 
1463     tp->packets_out -= decr;
1464 
1465     if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1466         tp->sacked_out -= decr;
1467     if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1468         tp->retrans_out -= decr;
1469     if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1470         tp->lost_out -= decr;
1471 
1472     /* Reno case is special. Sigh... */
1473     if (tcp_is_reno(tp) && decr > 0)
1474         tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1475 
1476     if (tp->lost_skb_hint &&
1477         before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1478         (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1479         tp->lost_cnt_hint -= decr;
1480 
1481     tcp_verify_left_out(tp);
1482 }
1483 
1484 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1485 {
1486     return TCP_SKB_CB(skb)->txstamp_ack ||
1487         (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1488 }
1489 
1490 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1491 {
1492     struct skb_shared_info *shinfo = skb_shinfo(skb);
1493 
1494     if (unlikely(tcp_has_tx_tstamp(skb)) &&
1495         !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1496         struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1497         u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1498 
1499         shinfo->tx_flags &= ~tsflags;
1500         shinfo2->tx_flags |= tsflags;
1501         swap(shinfo->tskey, shinfo2->tskey);
1502         TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1503         TCP_SKB_CB(skb)->txstamp_ack = 0;
1504     }
1505 }
1506 
1507 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1508 {
1509     TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1510     TCP_SKB_CB(skb)->eor = 0;
1511 }
1512 
1513 /* Insert buff after skb on the write or rtx queue of sk.  */
1514 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1515                      struct sk_buff *buff,
1516                      struct sock *sk,
1517                      enum tcp_queue tcp_queue)
1518 {
1519     if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1520         __skb_queue_after(&sk->sk_write_queue, skb, buff);
1521     else
1522         tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1523 }
1524 
1525 /* Function to create two new TCP segments.  Shrinks the given segment
1526  * to the specified size and appends a new segment with the rest of the
1527  * packet to the list.  This won't be called frequently, I hope.
1528  * Remember, these are still headerless SKBs at this point.
1529  */
1530 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1531          struct sk_buff *skb, u32 len,
1532          unsigned int mss_now, gfp_t gfp)
1533 {
1534     struct tcp_sock *tp = tcp_sk(sk);
1535     struct sk_buff *buff;
1536     int nsize, old_factor;
1537     long limit;
1538     int nlen;
1539     u8 flags;
1540 
1541     if (WARN_ON(len > skb->len))
1542         return -EINVAL;
1543 
1544     nsize = skb_headlen(skb) - len;
1545     if (nsize < 0)
1546         nsize = 0;
1547 
1548     /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1549      * We need some allowance to not penalize applications setting small
1550      * SO_SNDBUF values.
1551      * Also allow first and last skb in retransmit queue to be split.
1552      */
1553     limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1554     if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1555              tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1556              skb != tcp_rtx_queue_head(sk) &&
1557              skb != tcp_rtx_queue_tail(sk))) {
1558         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1559         return -ENOMEM;
1560     }
1561 
1562     if (skb_unclone_keeptruesize(skb, gfp))
1563         return -ENOMEM;
1564 
1565     /* Get a new skb... force flag on. */
1566     buff = tcp_stream_alloc_skb(sk, nsize, gfp, true);
1567     if (!buff)
1568         return -ENOMEM; /* We'll just try again later. */
1569     skb_copy_decrypted(buff, skb);
1570     mptcp_skb_ext_copy(buff, skb);
1571 
1572     sk_wmem_queued_add(sk, buff->truesize);
1573     sk_mem_charge(sk, buff->truesize);
1574     nlen = skb->len - len - nsize;
1575     buff->truesize += nlen;
1576     skb->truesize -= nlen;
1577 
1578     /* Correct the sequence numbers. */
1579     TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1580     TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1581     TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1582 
1583     /* PSH and FIN should only be set in the second packet. */
1584     flags = TCP_SKB_CB(skb)->tcp_flags;
1585     TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1586     TCP_SKB_CB(buff)->tcp_flags = flags;
1587     TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1588     tcp_skb_fragment_eor(skb, buff);
1589 
1590     skb_split(skb, buff, len);
1591 
1592     skb_set_delivery_time(buff, skb->tstamp, true);
1593     tcp_fragment_tstamp(skb, buff);
1594 
1595     old_factor = tcp_skb_pcount(skb);
1596 
1597     /* Fix up tso_factor for both original and new SKB.  */
1598     tcp_set_skb_tso_segs(skb, mss_now);
1599     tcp_set_skb_tso_segs(buff, mss_now);
1600 
1601     /* Update delivered info for the new segment */
1602     TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1603 
1604     /* If this packet has been sent out already, we must
1605      * adjust the various packet counters.
1606      */
1607     if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1608         int diff = old_factor - tcp_skb_pcount(skb) -
1609             tcp_skb_pcount(buff);
1610 
1611         if (diff)
1612             tcp_adjust_pcount(sk, skb, diff);
1613     }
1614 
1615     /* Link BUFF into the send queue. */
1616     __skb_header_release(buff);
1617     tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1618     if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1619         list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1620 
1621     return 0;
1622 }
1623 
1624 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1625  * data is not copied, but immediately discarded.
1626  */
1627 static int __pskb_trim_head(struct sk_buff *skb, int len)
1628 {
1629     struct skb_shared_info *shinfo;
1630     int i, k, eat;
1631 
1632     eat = min_t(int, len, skb_headlen(skb));
1633     if (eat) {
1634         __skb_pull(skb, eat);
1635         len -= eat;
1636         if (!len)
1637             return 0;
1638     }
1639     eat = len;
1640     k = 0;
1641     shinfo = skb_shinfo(skb);
1642     for (i = 0; i < shinfo->nr_frags; i++) {
1643         int size = skb_frag_size(&shinfo->frags[i]);
1644 
1645         if (size <= eat) {
1646             skb_frag_unref(skb, i);
1647             eat -= size;
1648         } else {
1649             shinfo->frags[k] = shinfo->frags[i];
1650             if (eat) {
1651                 skb_frag_off_add(&shinfo->frags[k], eat);
1652                 skb_frag_size_sub(&shinfo->frags[k], eat);
1653                 eat = 0;
1654             }
1655             k++;
1656         }
1657     }
1658     shinfo->nr_frags = k;
1659 
1660     skb->data_len -= len;
1661     skb->len = skb->data_len;
1662     return len;
1663 }
1664 
1665 /* Remove acked data from a packet in the transmit queue. */
1666 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1667 {
1668     u32 delta_truesize;
1669 
1670     if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1671         return -ENOMEM;
1672 
1673     delta_truesize = __pskb_trim_head(skb, len);
1674 
1675     TCP_SKB_CB(skb)->seq += len;
1676 
1677     if (delta_truesize) {
1678         skb->truesize      -= delta_truesize;
1679         sk_wmem_queued_add(sk, -delta_truesize);
1680         if (!skb_zcopy_pure(skb))
1681             sk_mem_uncharge(sk, delta_truesize);
1682     }
1683 
1684     /* Any change of skb->len requires recalculation of tso factor. */
1685     if (tcp_skb_pcount(skb) > 1)
1686         tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1687 
1688     return 0;
1689 }
1690 
1691 /* Calculate MSS not accounting any TCP options.  */
1692 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1693 {
1694     const struct tcp_sock *tp = tcp_sk(sk);
1695     const struct inet_connection_sock *icsk = inet_csk(sk);
1696     int mss_now;
1697 
1698     /* Calculate base mss without TCP options:
1699        It is MMS_S - sizeof(tcphdr) of rfc1122
1700      */
1701     mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1702 
1703     /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1704     if (icsk->icsk_af_ops->net_frag_header_len) {
1705         const struct dst_entry *dst = __sk_dst_get(sk);
1706 
1707         if (dst && dst_allfrag(dst))
1708             mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1709     }
1710 
1711     /* Clamp it (mss_clamp does not include tcp options) */
1712     if (mss_now > tp->rx_opt.mss_clamp)
1713         mss_now = tp->rx_opt.mss_clamp;
1714 
1715     /* Now subtract optional transport overhead */
1716     mss_now -= icsk->icsk_ext_hdr_len;
1717 
1718     /* Then reserve room for full set of TCP options and 8 bytes of data */
1719     mss_now = max(mss_now,
1720               READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1721     return mss_now;
1722 }
1723 
1724 /* Calculate MSS. Not accounting for SACKs here.  */
1725 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1726 {
1727     /* Subtract TCP options size, not including SACKs */
1728     return __tcp_mtu_to_mss(sk, pmtu) -
1729            (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1730 }
1731 EXPORT_SYMBOL(tcp_mtu_to_mss);
1732 
1733 /* Inverse of above */
1734 int tcp_mss_to_mtu(struct sock *sk, int mss)
1735 {
1736     const struct tcp_sock *tp = tcp_sk(sk);
1737     const struct inet_connection_sock *icsk = inet_csk(sk);
1738     int mtu;
1739 
1740     mtu = mss +
1741           tp->tcp_header_len +
1742           icsk->icsk_ext_hdr_len +
1743           icsk->icsk_af_ops->net_header_len;
1744 
1745     /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1746     if (icsk->icsk_af_ops->net_frag_header_len) {
1747         const struct dst_entry *dst = __sk_dst_get(sk);
1748 
1749         if (dst && dst_allfrag(dst))
1750             mtu += icsk->icsk_af_ops->net_frag_header_len;
1751     }
1752     return mtu;
1753 }
1754 EXPORT_SYMBOL(tcp_mss_to_mtu);
1755 
1756 /* MTU probing init per socket */
1757 void tcp_mtup_init(struct sock *sk)
1758 {
1759     struct tcp_sock *tp = tcp_sk(sk);
1760     struct inet_connection_sock *icsk = inet_csk(sk);
1761     struct net *net = sock_net(sk);
1762 
1763     icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1764     icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1765                    icsk->icsk_af_ops->net_header_len;
1766     icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1767     icsk->icsk_mtup.probe_size = 0;
1768     if (icsk->icsk_mtup.enabled)
1769         icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1770 }
1771 EXPORT_SYMBOL(tcp_mtup_init);
1772 
1773 /* This function synchronize snd mss to current pmtu/exthdr set.
1774 
1775    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1776    for TCP options, but includes only bare TCP header.
1777 
1778    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1779    It is minimum of user_mss and mss received with SYN.
1780    It also does not include TCP options.
1781 
1782    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1783 
1784    tp->mss_cache is current effective sending mss, including
1785    all tcp options except for SACKs. It is evaluated,
1786    taking into account current pmtu, but never exceeds
1787    tp->rx_opt.mss_clamp.
1788 
1789    NOTE1. rfc1122 clearly states that advertised MSS
1790    DOES NOT include either tcp or ip options.
1791 
1792    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1793    are READ ONLY outside this function.     --ANK (980731)
1794  */
1795 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1796 {
1797     struct tcp_sock *tp = tcp_sk(sk);
1798     struct inet_connection_sock *icsk = inet_csk(sk);
1799     int mss_now;
1800 
1801     if (icsk->icsk_mtup.search_high > pmtu)
1802         icsk->icsk_mtup.search_high = pmtu;
1803 
1804     mss_now = tcp_mtu_to_mss(sk, pmtu);
1805     mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1806 
1807     /* And store cached results */
1808     icsk->icsk_pmtu_cookie = pmtu;
1809     if (icsk->icsk_mtup.enabled)
1810         mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1811     tp->mss_cache = mss_now;
1812 
1813     return mss_now;
1814 }
1815 EXPORT_SYMBOL(tcp_sync_mss);
1816 
1817 /* Compute the current effective MSS, taking SACKs and IP options,
1818  * and even PMTU discovery events into account.
1819  */
1820 unsigned int tcp_current_mss(struct sock *sk)
1821 {
1822     const struct tcp_sock *tp = tcp_sk(sk);
1823     const struct dst_entry *dst = __sk_dst_get(sk);
1824     u32 mss_now;
1825     unsigned int header_len;
1826     struct tcp_out_options opts;
1827     struct tcp_md5sig_key *md5;
1828 
1829     mss_now = tp->mss_cache;
1830 
1831     if (dst) {
1832         u32 mtu = dst_mtu(dst);
1833         if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1834             mss_now = tcp_sync_mss(sk, mtu);
1835     }
1836 
1837     header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1838              sizeof(struct tcphdr);
1839     /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1840      * some common options. If this is an odd packet (because we have SACK
1841      * blocks etc) then our calculated header_len will be different, and
1842      * we have to adjust mss_now correspondingly */
1843     if (header_len != tp->tcp_header_len) {
1844         int delta = (int) header_len - tp->tcp_header_len;
1845         mss_now -= delta;
1846     }
1847 
1848     return mss_now;
1849 }
1850 
1851 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1852  * As additional protections, we do not touch cwnd in retransmission phases,
1853  * and if application hit its sndbuf limit recently.
1854  */
1855 static void tcp_cwnd_application_limited(struct sock *sk)
1856 {
1857     struct tcp_sock *tp = tcp_sk(sk);
1858 
1859     if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1860         sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1861         /* Limited by application or receiver window. */
1862         u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1863         u32 win_used = max(tp->snd_cwnd_used, init_win);
1864         if (win_used < tcp_snd_cwnd(tp)) {
1865             tp->snd_ssthresh = tcp_current_ssthresh(sk);
1866             tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1867         }
1868         tp->snd_cwnd_used = 0;
1869     }
1870     tp->snd_cwnd_stamp = tcp_jiffies32;
1871 }
1872 
1873 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1874 {
1875     const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1876     struct tcp_sock *tp = tcp_sk(sk);
1877 
1878     /* Track the maximum number of outstanding packets in each
1879      * window, and remember whether we were cwnd-limited then.
1880      */
1881     if (!before(tp->snd_una, tp->max_packets_seq) ||
1882         tp->packets_out > tp->max_packets_out ||
1883         is_cwnd_limited) {
1884         tp->max_packets_out = tp->packets_out;
1885         tp->max_packets_seq = tp->snd_nxt;
1886         tp->is_cwnd_limited = is_cwnd_limited;
1887     }
1888 
1889     if (tcp_is_cwnd_limited(sk)) {
1890         /* Network is feed fully. */
1891         tp->snd_cwnd_used = 0;
1892         tp->snd_cwnd_stamp = tcp_jiffies32;
1893     } else {
1894         /* Network starves. */
1895         if (tp->packets_out > tp->snd_cwnd_used)
1896             tp->snd_cwnd_used = tp->packets_out;
1897 
1898         if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1899             (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1900             !ca_ops->cong_control)
1901             tcp_cwnd_application_limited(sk);
1902 
1903         /* The following conditions together indicate the starvation
1904          * is caused by insufficient sender buffer:
1905          * 1) just sent some data (see tcp_write_xmit)
1906          * 2) not cwnd limited (this else condition)
1907          * 3) no more data to send (tcp_write_queue_empty())
1908          * 4) application is hitting buffer limit (SOCK_NOSPACE)
1909          */
1910         if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1911             test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1912             (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1913             tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1914     }
1915 }
1916 
1917 /* Minshall's variant of the Nagle send check. */
1918 static bool tcp_minshall_check(const struct tcp_sock *tp)
1919 {
1920     return after(tp->snd_sml, tp->snd_una) &&
1921         !after(tp->snd_sml, tp->snd_nxt);
1922 }
1923 
1924 /* Update snd_sml if this skb is under mss
1925  * Note that a TSO packet might end with a sub-mss segment
1926  * The test is really :
1927  * if ((skb->len % mss) != 0)
1928  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1929  * But we can avoid doing the divide again given we already have
1930  *  skb_pcount = skb->len / mss_now
1931  */
1932 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1933                 const struct sk_buff *skb)
1934 {
1935     if (skb->len < tcp_skb_pcount(skb) * mss_now)
1936         tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1937 }
1938 
1939 /* Return false, if packet can be sent now without violation Nagle's rules:
1940  * 1. It is full sized. (provided by caller in %partial bool)
1941  * 2. Or it contains FIN. (already checked by caller)
1942  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1943  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1944  *    With Minshall's modification: all sent small packets are ACKed.
1945  */
1946 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1947                 int nonagle)
1948 {
1949     return partial &&
1950         ((nonagle & TCP_NAGLE_CORK) ||
1951          (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1952 }
1953 
1954 /* Return how many segs we'd like on a TSO packet,
1955  * depending on current pacing rate, and how close the peer is.
1956  *
1957  * Rationale is:
1958  * - For close peers, we rather send bigger packets to reduce
1959  *   cpu costs, because occasional losses will be repaired fast.
1960  * - For long distance/rtt flows, we would like to get ACK clocking
1961  *   with 1 ACK per ms.
1962  *
1963  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1964  * in bigger TSO bursts. We we cut the RTT-based allowance in half
1965  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1966  * is below 1500 bytes after 6 * ~500 usec = 3ms.
1967  */
1968 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1969                 int min_tso_segs)
1970 {
1971     unsigned long bytes;
1972     u32 r;
1973 
1974     bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1975 
1976     r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1977     if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1978         bytes += sk->sk_gso_max_size >> r;
1979 
1980     bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1981 
1982     return max_t(u32, bytes / mss_now, min_tso_segs);
1983 }
1984 
1985 /* Return the number of segments we want in the skb we are transmitting.
1986  * See if congestion control module wants to decide; otherwise, autosize.
1987  */
1988 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1989 {
1990     const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1991     u32 min_tso, tso_segs;
1992 
1993     min_tso = ca_ops->min_tso_segs ?
1994             ca_ops->min_tso_segs(sk) :
1995             READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1996 
1997     tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1998     return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1999 }
2000 
2001 /* Returns the portion of skb which can be sent right away */
2002 static unsigned int tcp_mss_split_point(const struct sock *sk,
2003                     const struct sk_buff *skb,
2004                     unsigned int mss_now,
2005                     unsigned int max_segs,
2006                     int nonagle)
2007 {
2008     const struct tcp_sock *tp = tcp_sk(sk);
2009     u32 partial, needed, window, max_len;
2010 
2011     window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2012     max_len = mss_now * max_segs;
2013 
2014     if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2015         return max_len;
2016 
2017     needed = min(skb->len, window);
2018 
2019     if (max_len <= needed)
2020         return max_len;
2021 
2022     partial = needed % mss_now;
2023     /* If last segment is not a full MSS, check if Nagle rules allow us
2024      * to include this last segment in this skb.
2025      * Otherwise, we'll split the skb at last MSS boundary
2026      */
2027     if (tcp_nagle_check(partial != 0, tp, nonagle))
2028         return needed - partial;
2029 
2030     return needed;
2031 }
2032 
2033 /* Can at least one segment of SKB be sent right now, according to the
2034  * congestion window rules?  If so, return how many segments are allowed.
2035  */
2036 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2037                      const struct sk_buff *skb)
2038 {
2039     u32 in_flight, cwnd, halfcwnd;
2040 
2041     /* Don't be strict about the congestion window for the final FIN.  */
2042     if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2043         tcp_skb_pcount(skb) == 1)
2044         return 1;
2045 
2046     in_flight = tcp_packets_in_flight(tp);
2047     cwnd = tcp_snd_cwnd(tp);
2048     if (in_flight >= cwnd)
2049         return 0;
2050 
2051     /* For better scheduling, ensure we have at least
2052      * 2 GSO packets in flight.
2053      */
2054     halfcwnd = max(cwnd >> 1, 1U);
2055     return min(halfcwnd, cwnd - in_flight);
2056 }
2057 
2058 /* Initialize TSO state of a skb.
2059  * This must be invoked the first time we consider transmitting
2060  * SKB onto the wire.
2061  */
2062 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2063 {
2064     int tso_segs = tcp_skb_pcount(skb);
2065 
2066     if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2067         tcp_set_skb_tso_segs(skb, mss_now);
2068         tso_segs = tcp_skb_pcount(skb);
2069     }
2070     return tso_segs;
2071 }
2072 
2073 
2074 /* Return true if the Nagle test allows this packet to be
2075  * sent now.
2076  */
2077 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2078                   unsigned int cur_mss, int nonagle)
2079 {
2080     /* Nagle rule does not apply to frames, which sit in the middle of the
2081      * write_queue (they have no chances to get new data).
2082      *
2083      * This is implemented in the callers, where they modify the 'nonagle'
2084      * argument based upon the location of SKB in the send queue.
2085      */
2086     if (nonagle & TCP_NAGLE_PUSH)
2087         return true;
2088 
2089     /* Don't use the nagle rule for urgent data (or for the final FIN). */
2090     if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2091         return true;
2092 
2093     if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2094         return true;
2095 
2096     return false;
2097 }
2098 
2099 /* Does at least the first segment of SKB fit into the send window? */
2100 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2101                  const struct sk_buff *skb,
2102                  unsigned int cur_mss)
2103 {
2104     u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2105 
2106     if (skb->len > cur_mss)
2107         end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2108 
2109     return !after(end_seq, tcp_wnd_end(tp));
2110 }
2111 
2112 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2113  * which is put after SKB on the list.  It is very much like
2114  * tcp_fragment() except that it may make several kinds of assumptions
2115  * in order to speed up the splitting operation.  In particular, we
2116  * know that all the data is in scatter-gather pages, and that the
2117  * packet has never been sent out before (and thus is not cloned).
2118  */
2119 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2120             unsigned int mss_now, gfp_t gfp)
2121 {
2122     int nlen = skb->len - len;
2123     struct sk_buff *buff;
2124     u8 flags;
2125 
2126     /* All of a TSO frame must be composed of paged data.  */
2127     if (skb->len != skb->data_len)
2128         return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2129                     skb, len, mss_now, gfp);
2130 
2131     buff = tcp_stream_alloc_skb(sk, 0, gfp, true);
2132     if (unlikely(!buff))
2133         return -ENOMEM;
2134     skb_copy_decrypted(buff, skb);
2135     mptcp_skb_ext_copy(buff, skb);
2136 
2137     sk_wmem_queued_add(sk, buff->truesize);
2138     sk_mem_charge(sk, buff->truesize);
2139     buff->truesize += nlen;
2140     skb->truesize -= nlen;
2141 
2142     /* Correct the sequence numbers. */
2143     TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2144     TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2145     TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2146 
2147     /* PSH and FIN should only be set in the second packet. */
2148     flags = TCP_SKB_CB(skb)->tcp_flags;
2149     TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2150     TCP_SKB_CB(buff)->tcp_flags = flags;
2151 
2152     tcp_skb_fragment_eor(skb, buff);
2153 
2154     skb_split(skb, buff, len);
2155     tcp_fragment_tstamp(skb, buff);
2156 
2157     /* Fix up tso_factor for both original and new SKB.  */
2158     tcp_set_skb_tso_segs(skb, mss_now);
2159     tcp_set_skb_tso_segs(buff, mss_now);
2160 
2161     /* Link BUFF into the send queue. */
2162     __skb_header_release(buff);
2163     tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2164 
2165     return 0;
2166 }
2167 
2168 /* Try to defer sending, if possible, in order to minimize the amount
2169  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2170  *
2171  * This algorithm is from John Heffner.
2172  */
2173 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2174                  bool *is_cwnd_limited,
2175                  bool *is_rwnd_limited,
2176                  u32 max_segs)
2177 {
2178     const struct inet_connection_sock *icsk = inet_csk(sk);
2179     u32 send_win, cong_win, limit, in_flight;
2180     struct tcp_sock *tp = tcp_sk(sk);
2181     struct sk_buff *head;
2182     int win_divisor;
2183     s64 delta;
2184 
2185     if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2186         goto send_now;
2187 
2188     /* Avoid bursty behavior by allowing defer
2189      * only if the last write was recent (1 ms).
2190      * Note that tp->tcp_wstamp_ns can be in the future if we have
2191      * packets waiting in a qdisc or device for EDT delivery.
2192      */
2193     delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2194     if (delta > 0)
2195         goto send_now;
2196 
2197     in_flight = tcp_packets_in_flight(tp);
2198 
2199     BUG_ON(tcp_skb_pcount(skb) <= 1);
2200     BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2201 
2202     send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2203 
2204     /* From in_flight test above, we know that cwnd > in_flight.  */
2205     cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2206 
2207     limit = min(send_win, cong_win);
2208 
2209     /* If a full-sized TSO skb can be sent, do it. */
2210     if (limit >= max_segs * tp->mss_cache)
2211         goto send_now;
2212 
2213     /* Middle in queue won't get any more data, full sendable already? */
2214     if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2215         goto send_now;
2216 
2217     win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2218     if (win_divisor) {
2219         u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2220 
2221         /* If at least some fraction of a window is available,
2222          * just use it.
2223          */
2224         chunk /= win_divisor;
2225         if (limit >= chunk)
2226             goto send_now;
2227     } else {
2228         /* Different approach, try not to defer past a single
2229          * ACK.  Receiver should ACK every other full sized
2230          * frame, so if we have space for more than 3 frames
2231          * then send now.
2232          */
2233         if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2234             goto send_now;
2235     }
2236 
2237     /* TODO : use tsorted_sent_queue ? */
2238     head = tcp_rtx_queue_head(sk);
2239     if (!head)
2240         goto send_now;
2241     delta = tp->tcp_clock_cache - head->tstamp;
2242     /* If next ACK is likely to come too late (half srtt), do not defer */
2243     if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2244         goto send_now;
2245 
2246     /* Ok, it looks like it is advisable to defer.
2247      * Three cases are tracked :
2248      * 1) We are cwnd-limited
2249      * 2) We are rwnd-limited
2250      * 3) We are application limited.
2251      */
2252     if (cong_win < send_win) {
2253         if (cong_win <= skb->len) {
2254             *is_cwnd_limited = true;
2255             return true;
2256         }
2257     } else {
2258         if (send_win <= skb->len) {
2259             *is_rwnd_limited = true;
2260             return true;
2261         }
2262     }
2263 
2264     /* If this packet won't get more data, do not wait. */
2265     if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2266         TCP_SKB_CB(skb)->eor)
2267         goto send_now;
2268 
2269     return true;
2270 
2271 send_now:
2272     return false;
2273 }
2274 
2275 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2276 {
2277     struct inet_connection_sock *icsk = inet_csk(sk);
2278     struct tcp_sock *tp = tcp_sk(sk);
2279     struct net *net = sock_net(sk);
2280     u32 interval;
2281     s32 delta;
2282 
2283     interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2284     delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2285     if (unlikely(delta >= interval * HZ)) {
2286         int mss = tcp_current_mss(sk);
2287 
2288         /* Update current search range */
2289         icsk->icsk_mtup.probe_size = 0;
2290         icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2291             sizeof(struct tcphdr) +
2292             icsk->icsk_af_ops->net_header_len;
2293         icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2294 
2295         /* Update probe time stamp */
2296         icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2297     }
2298 }
2299 
2300 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2301 {
2302     struct sk_buff *skb, *next;
2303 
2304     skb = tcp_send_head(sk);
2305     tcp_for_write_queue_from_safe(skb, next, sk) {
2306         if (len <= skb->len)
2307             break;
2308 
2309         if (unlikely(TCP_SKB_CB(skb)->eor) ||
2310             tcp_has_tx_tstamp(skb) ||
2311             !skb_pure_zcopy_same(skb, next))
2312             return false;
2313 
2314         len -= skb->len;
2315     }
2316 
2317     return true;
2318 }
2319 
2320 /* Create a new MTU probe if we are ready.
2321  * MTU probe is regularly attempting to increase the path MTU by
2322  * deliberately sending larger packets.  This discovers routing
2323  * changes resulting in larger path MTUs.
2324  *
2325  * Returns 0 if we should wait to probe (no cwnd available),
2326  *         1 if a probe was sent,
2327  *         -1 otherwise
2328  */
2329 static int tcp_mtu_probe(struct sock *sk)
2330 {
2331     struct inet_connection_sock *icsk = inet_csk(sk);
2332     struct tcp_sock *tp = tcp_sk(sk);
2333     struct sk_buff *skb, *nskb, *next;
2334     struct net *net = sock_net(sk);
2335     int probe_size;
2336     int size_needed;
2337     int copy, len;
2338     int mss_now;
2339     int interval;
2340 
2341     /* Not currently probing/verifying,
2342      * not in recovery,
2343      * have enough cwnd, and
2344      * not SACKing (the variable headers throw things off)
2345      */
2346     if (likely(!icsk->icsk_mtup.enabled ||
2347            icsk->icsk_mtup.probe_size ||
2348            inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2349            tcp_snd_cwnd(tp) < 11 ||
2350            tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2351         return -1;
2352 
2353     /* Use binary search for probe_size between tcp_mss_base,
2354      * and current mss_clamp. if (search_high - search_low)
2355      * smaller than a threshold, backoff from probing.
2356      */
2357     mss_now = tcp_current_mss(sk);
2358     probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2359                     icsk->icsk_mtup.search_low) >> 1);
2360     size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2361     interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2362     /* When misfortune happens, we are reprobing actively,
2363      * and then reprobe timer has expired. We stick with current
2364      * probing process by not resetting search range to its orignal.
2365      */
2366     if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2367         interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2368         /* Check whether enough time has elaplased for
2369          * another round of probing.
2370          */
2371         tcp_mtu_check_reprobe(sk);
2372         return -1;
2373     }
2374 
2375     /* Have enough data in the send queue to probe? */
2376     if (tp->write_seq - tp->snd_nxt < size_needed)
2377         return -1;
2378 
2379     if (tp->snd_wnd < size_needed)
2380         return -1;
2381     if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2382         return 0;
2383 
2384     /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2385     if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2386         if (!tcp_packets_in_flight(tp))
2387             return -1;
2388         else
2389             return 0;
2390     }
2391 
2392     if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2393         return -1;
2394 
2395     /* We're allowed to probe.  Build it now. */
2396     nskb = tcp_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2397     if (!nskb)
2398         return -1;
2399     sk_wmem_queued_add(sk, nskb->truesize);
2400     sk_mem_charge(sk, nskb->truesize);
2401 
2402     skb = tcp_send_head(sk);
2403     skb_copy_decrypted(nskb, skb);
2404     mptcp_skb_ext_copy(nskb, skb);
2405 
2406     TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2407     TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2408     TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2409 
2410     tcp_insert_write_queue_before(nskb, skb, sk);
2411     tcp_highest_sack_replace(sk, skb, nskb);
2412 
2413     len = 0;
2414     tcp_for_write_queue_from_safe(skb, next, sk) {
2415         copy = min_t(int, skb->len, probe_size - len);
2416         skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2417 
2418         if (skb->len <= copy) {
2419             /* We've eaten all the data from this skb.
2420              * Throw it away. */
2421             TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2422             /* If this is the last SKB we copy and eor is set
2423              * we need to propagate it to the new skb.
2424              */
2425             TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2426             tcp_skb_collapse_tstamp(nskb, skb);
2427             tcp_unlink_write_queue(skb, sk);
2428             tcp_wmem_free_skb(sk, skb);
2429         } else {
2430             TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2431                            ~(TCPHDR_FIN|TCPHDR_PSH);
2432             if (!skb_shinfo(skb)->nr_frags) {
2433                 skb_pull(skb, copy);
2434             } else {
2435                 __pskb_trim_head(skb, copy);
2436                 tcp_set_skb_tso_segs(skb, mss_now);
2437             }
2438             TCP_SKB_CB(skb)->seq += copy;
2439         }
2440 
2441         len += copy;
2442 
2443         if (len >= probe_size)
2444             break;
2445     }
2446     tcp_init_tso_segs(nskb, nskb->len);
2447 
2448     /* We're ready to send.  If this fails, the probe will
2449      * be resegmented into mss-sized pieces by tcp_write_xmit().
2450      */
2451     if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2452         /* Decrement cwnd here because we are sending
2453          * effectively two packets. */
2454         tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2455         tcp_event_new_data_sent(sk, nskb);
2456 
2457         icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2458         tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2459         tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2460 
2461         return 1;
2462     }
2463 
2464     return -1;
2465 }
2466 
2467 static bool tcp_pacing_check(struct sock *sk)
2468 {
2469     struct tcp_sock *tp = tcp_sk(sk);
2470 
2471     if (!tcp_needs_internal_pacing(sk))
2472         return false;
2473 
2474     if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2475         return false;
2476 
2477     if (!hrtimer_is_queued(&tp->pacing_timer)) {
2478         hrtimer_start(&tp->pacing_timer,
2479                   ns_to_ktime(tp->tcp_wstamp_ns),
2480                   HRTIMER_MODE_ABS_PINNED_SOFT);
2481         sock_hold(sk);
2482     }
2483     return true;
2484 }
2485 
2486 /* TCP Small Queues :
2487  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2488  * (These limits are doubled for retransmits)
2489  * This allows for :
2490  *  - better RTT estimation and ACK scheduling
2491  *  - faster recovery
2492  *  - high rates
2493  * Alas, some drivers / subsystems require a fair amount
2494  * of queued bytes to ensure line rate.
2495  * One example is wifi aggregation (802.11 AMPDU)
2496  */
2497 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2498                   unsigned int factor)
2499 {
2500     unsigned long limit;
2501 
2502     limit = max_t(unsigned long,
2503               2 * skb->truesize,
2504               sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2505     if (sk->sk_pacing_status == SK_PACING_NONE)
2506         limit = min_t(unsigned long, limit,
2507                   READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2508     limit <<= factor;
2509 
2510     if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2511         tcp_sk(sk)->tcp_tx_delay) {
2512         u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2513 
2514         /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2515          * approximate our needs assuming an ~100% skb->truesize overhead.
2516          * USEC_PER_SEC is approximated by 2^20.
2517          * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2518          */
2519         extra_bytes >>= (20 - 1);
2520         limit += extra_bytes;
2521     }
2522     if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2523         /* Always send skb if rtx queue is empty.
2524          * No need to wait for TX completion to call us back,
2525          * after softirq/tasklet schedule.
2526          * This helps when TX completions are delayed too much.
2527          */
2528         if (tcp_rtx_queue_empty(sk))
2529             return false;
2530 
2531         set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2532         /* It is possible TX completion already happened
2533          * before we set TSQ_THROTTLED, so we must
2534          * test again the condition.
2535          */
2536         smp_mb__after_atomic();
2537         if (refcount_read(&sk->sk_wmem_alloc) > limit)
2538             return true;
2539     }
2540     return false;
2541 }
2542 
2543 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2544 {
2545     const u32 now = tcp_jiffies32;
2546     enum tcp_chrono old = tp->chrono_type;
2547 
2548     if (old > TCP_CHRONO_UNSPEC)
2549         tp->chrono_stat[old - 1] += now - tp->chrono_start;
2550     tp->chrono_start = now;
2551     tp->chrono_type = new;
2552 }
2553 
2554 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2555 {
2556     struct tcp_sock *tp = tcp_sk(sk);
2557 
2558     /* If there are multiple conditions worthy of tracking in a
2559      * chronograph then the highest priority enum takes precedence
2560      * over the other conditions. So that if something "more interesting"
2561      * starts happening, stop the previous chrono and start a new one.
2562      */
2563     if (type > tp->chrono_type)
2564         tcp_chrono_set(tp, type);
2565 }
2566 
2567 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2568 {
2569     struct tcp_sock *tp = tcp_sk(sk);
2570 
2571 
2572     /* There are multiple conditions worthy of tracking in a
2573      * chronograph, so that the highest priority enum takes
2574      * precedence over the other conditions (see tcp_chrono_start).
2575      * If a condition stops, we only stop chrono tracking if
2576      * it's the "most interesting" or current chrono we are
2577      * tracking and starts busy chrono if we have pending data.
2578      */
2579     if (tcp_rtx_and_write_queues_empty(sk))
2580         tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2581     else if (type == tp->chrono_type)
2582         tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2583 }
2584 
2585 /* This routine writes packets to the network.  It advances the
2586  * send_head.  This happens as incoming acks open up the remote
2587  * window for us.
2588  *
2589  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2590  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2591  * account rare use of URG, this is not a big flaw.
2592  *
2593  * Send at most one packet when push_one > 0. Temporarily ignore
2594  * cwnd limit to force at most one packet out when push_one == 2.
2595 
2596  * Returns true, if no segments are in flight and we have queued segments,
2597  * but cannot send anything now because of SWS or another problem.
2598  */
2599 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2600                int push_one, gfp_t gfp)
2601 {
2602     struct tcp_sock *tp = tcp_sk(sk);
2603     struct sk_buff *skb;
2604     unsigned int tso_segs, sent_pkts;
2605     int cwnd_quota;
2606     int result;
2607     bool is_cwnd_limited = false, is_rwnd_limited = false;
2608     u32 max_segs;
2609 
2610     sent_pkts = 0;
2611 
2612     tcp_mstamp_refresh(tp);
2613     if (!push_one) {
2614         /* Do MTU probing. */
2615         result = tcp_mtu_probe(sk);
2616         if (!result) {
2617             return false;
2618         } else if (result > 0) {
2619             sent_pkts = 1;
2620         }
2621     }
2622 
2623     max_segs = tcp_tso_segs(sk, mss_now);
2624     while ((skb = tcp_send_head(sk))) {
2625         unsigned int limit;
2626 
2627         if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2628             /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2629             tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2630             skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2631             list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2632             tcp_init_tso_segs(skb, mss_now);
2633             goto repair; /* Skip network transmission */
2634         }
2635 
2636         if (tcp_pacing_check(sk))
2637             break;
2638 
2639         tso_segs = tcp_init_tso_segs(skb, mss_now);
2640         BUG_ON(!tso_segs);
2641 
2642         cwnd_quota = tcp_cwnd_test(tp, skb);
2643         if (!cwnd_quota) {
2644             if (push_one == 2)
2645                 /* Force out a loss probe pkt. */
2646                 cwnd_quota = 1;
2647             else
2648                 break;
2649         }
2650 
2651         if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2652             is_rwnd_limited = true;
2653             break;
2654         }
2655 
2656         if (tso_segs == 1) {
2657             if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2658                              (tcp_skb_is_last(sk, skb) ?
2659                               nonagle : TCP_NAGLE_PUSH))))
2660                 break;
2661         } else {
2662             if (!push_one &&
2663                 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2664                          &is_rwnd_limited, max_segs))
2665                 break;
2666         }
2667 
2668         limit = mss_now;
2669         if (tso_segs > 1 && !tcp_urg_mode(tp))
2670             limit = tcp_mss_split_point(sk, skb, mss_now,
2671                             min_t(unsigned int,
2672                               cwnd_quota,
2673                               max_segs),
2674                             nonagle);
2675 
2676         if (skb->len > limit &&
2677             unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2678             break;
2679 
2680         if (tcp_small_queue_check(sk, skb, 0))
2681             break;
2682 
2683         /* Argh, we hit an empty skb(), presumably a thread
2684          * is sleeping in sendmsg()/sk_stream_wait_memory().
2685          * We do not want to send a pure-ack packet and have
2686          * a strange looking rtx queue with empty packet(s).
2687          */
2688         if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2689             break;
2690 
2691         if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2692             break;
2693 
2694 repair:
2695         /* Advance the send_head.  This one is sent out.
2696          * This call will increment packets_out.
2697          */
2698         tcp_event_new_data_sent(sk, skb);
2699 
2700         tcp_minshall_update(tp, mss_now, skb);
2701         sent_pkts += tcp_skb_pcount(skb);
2702 
2703         if (push_one)
2704             break;
2705     }
2706 
2707     if (is_rwnd_limited)
2708         tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2709     else
2710         tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2711 
2712     is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2713     if (likely(sent_pkts || is_cwnd_limited))
2714         tcp_cwnd_validate(sk, is_cwnd_limited);
2715 
2716     if (likely(sent_pkts)) {
2717         if (tcp_in_cwnd_reduction(sk))
2718             tp->prr_out += sent_pkts;
2719 
2720         /* Send one loss probe per tail loss episode. */
2721         if (push_one != 2)
2722             tcp_schedule_loss_probe(sk, false);
2723         return false;
2724     }
2725     return !tp->packets_out && !tcp_write_queue_empty(sk);
2726 }
2727 
2728 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2729 {
2730     struct inet_connection_sock *icsk = inet_csk(sk);
2731     struct tcp_sock *tp = tcp_sk(sk);
2732     u32 timeout, rto_delta_us;
2733     int early_retrans;
2734 
2735     /* Don't do any loss probe on a Fast Open connection before 3WHS
2736      * finishes.
2737      */
2738     if (rcu_access_pointer(tp->fastopen_rsk))
2739         return false;
2740 
2741     early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2742     /* Schedule a loss probe in 2*RTT for SACK capable connections
2743      * not in loss recovery, that are either limited by cwnd or application.
2744      */
2745     if ((early_retrans != 3 && early_retrans != 4) ||
2746         !tp->packets_out || !tcp_is_sack(tp) ||
2747         (icsk->icsk_ca_state != TCP_CA_Open &&
2748          icsk->icsk_ca_state != TCP_CA_CWR))
2749         return false;
2750 
2751     /* Probe timeout is 2*rtt. Add minimum RTO to account
2752      * for delayed ack when there's one outstanding packet. If no RTT
2753      * sample is available then probe after TCP_TIMEOUT_INIT.
2754      */
2755     if (tp->srtt_us) {
2756         timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2757         if (tp->packets_out == 1)
2758             timeout += TCP_RTO_MIN;
2759         else
2760             timeout += TCP_TIMEOUT_MIN;
2761     } else {
2762         timeout = TCP_TIMEOUT_INIT;
2763     }
2764 
2765     /* If the RTO formula yields an earlier time, then use that time. */
2766     rto_delta_us = advancing_rto ?
2767             jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2768             tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2769     if (rto_delta_us > 0)
2770         timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2771 
2772     tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2773     return true;
2774 }
2775 
2776 /* Thanks to skb fast clones, we can detect if a prior transmit of
2777  * a packet is still in a qdisc or driver queue.
2778  * In this case, there is very little point doing a retransmit !
2779  */
2780 static bool skb_still_in_host_queue(struct sock *sk,
2781                     const struct sk_buff *skb)
2782 {
2783     if (unlikely(skb_fclone_busy(sk, skb))) {
2784         set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2785         smp_mb__after_atomic();
2786         if (skb_fclone_busy(sk, skb)) {
2787             NET_INC_STATS(sock_net(sk),
2788                       LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2789             return true;
2790         }
2791     }
2792     return false;
2793 }
2794 
2795 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2796  * retransmit the last segment.
2797  */
2798 void tcp_send_loss_probe(struct sock *sk)
2799 {
2800     struct tcp_sock *tp = tcp_sk(sk);
2801     struct sk_buff *skb;
2802     int pcount;
2803     int mss = tcp_current_mss(sk);
2804 
2805     /* At most one outstanding TLP */
2806     if (tp->tlp_high_seq)
2807         goto rearm_timer;
2808 
2809     tp->tlp_retrans = 0;
2810     skb = tcp_send_head(sk);
2811     if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2812         pcount = tp->packets_out;
2813         tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2814         if (tp->packets_out > pcount)
2815             goto probe_sent;
2816         goto rearm_timer;
2817     }
2818     skb = skb_rb_last(&sk->tcp_rtx_queue);
2819     if (unlikely(!skb)) {
2820         WARN_ONCE(tp->packets_out,
2821               "invalid inflight: %u state %u cwnd %u mss %d\n",
2822               tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2823         inet_csk(sk)->icsk_pending = 0;
2824         return;
2825     }
2826 
2827     if (skb_still_in_host_queue(sk, skb))
2828         goto rearm_timer;
2829 
2830     pcount = tcp_skb_pcount(skb);
2831     if (WARN_ON(!pcount))
2832         goto rearm_timer;
2833 
2834     if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2835         if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2836                       (pcount - 1) * mss, mss,
2837                       GFP_ATOMIC)))
2838             goto rearm_timer;
2839         skb = skb_rb_next(skb);
2840     }
2841 
2842     if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2843         goto rearm_timer;
2844 
2845     if (__tcp_retransmit_skb(sk, skb, 1))
2846         goto rearm_timer;
2847 
2848     tp->tlp_retrans = 1;
2849 
2850 probe_sent:
2851     /* Record snd_nxt for loss detection. */
2852     tp->tlp_high_seq = tp->snd_nxt;
2853 
2854     NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2855     /* Reset s.t. tcp_rearm_rto will restart timer from now */
2856     inet_csk(sk)->icsk_pending = 0;
2857 rearm_timer:
2858     tcp_rearm_rto(sk);
2859 }
2860 
2861 /* Push out any pending frames which were held back due to
2862  * TCP_CORK or attempt at coalescing tiny packets.
2863  * The socket must be locked by the caller.
2864  */
2865 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2866                    int nonagle)
2867 {
2868     /* If we are closed, the bytes will have to remain here.
2869      * In time closedown will finish, we empty the write queue and
2870      * all will be happy.
2871      */
2872     if (unlikely(sk->sk_state == TCP_CLOSE))
2873         return;
2874 
2875     if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2876                sk_gfp_mask(sk, GFP_ATOMIC)))
2877         tcp_check_probe_timer(sk);
2878 }
2879 
2880 /* Send _single_ skb sitting at the send head. This function requires
2881  * true push pending frames to setup probe timer etc.
2882  */
2883 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2884 {
2885     struct sk_buff *skb = tcp_send_head(sk);
2886 
2887     BUG_ON(!skb || skb->len < mss_now);
2888 
2889     tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2890 }
2891 
2892 /* This function returns the amount that we can raise the
2893  * usable window based on the following constraints
2894  *
2895  * 1. The window can never be shrunk once it is offered (RFC 793)
2896  * 2. We limit memory per socket
2897  *
2898  * RFC 1122:
2899  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2900  *  RECV.NEXT + RCV.WIN fixed until:
2901  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2902  *
2903  * i.e. don't raise the right edge of the window until you can raise
2904  * it at least MSS bytes.
2905  *
2906  * Unfortunately, the recommended algorithm breaks header prediction,
2907  * since header prediction assumes th->window stays fixed.
2908  *
2909  * Strictly speaking, keeping th->window fixed violates the receiver
2910  * side SWS prevention criteria. The problem is that under this rule
2911  * a stream of single byte packets will cause the right side of the
2912  * window to always advance by a single byte.
2913  *
2914  * Of course, if the sender implements sender side SWS prevention
2915  * then this will not be a problem.
2916  *
2917  * BSD seems to make the following compromise:
2918  *
2919  *  If the free space is less than the 1/4 of the maximum
2920  *  space available and the free space is less than 1/2 mss,
2921  *  then set the window to 0.
2922  *  [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2923  *  Otherwise, just prevent the window from shrinking
2924  *  and from being larger than the largest representable value.
2925  *
2926  * This prevents incremental opening of the window in the regime
2927  * where TCP is limited by the speed of the reader side taking
2928  * data out of the TCP receive queue. It does nothing about
2929  * those cases where the window is constrained on the sender side
2930  * because the pipeline is full.
2931  *
2932  * BSD also seems to "accidentally" limit itself to windows that are a
2933  * multiple of MSS, at least until the free space gets quite small.
2934  * This would appear to be a side effect of the mbuf implementation.
2935  * Combining these two algorithms results in the observed behavior
2936  * of having a fixed window size at almost all times.
2937  *
2938  * Below we obtain similar behavior by forcing the offered window to
2939  * a multiple of the mss when it is feasible to do so.
2940  *
2941  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2942  * Regular options like TIMESTAMP are taken into account.
2943  */
2944 u32 __tcp_select_window(struct sock *sk)
2945 {
2946     struct inet_connection_sock *icsk = inet_csk(sk);
2947     struct tcp_sock *tp = tcp_sk(sk);
2948     /* MSS for the peer's data.  Previous versions used mss_clamp
2949      * here.  I don't know if the value based on our guesses
2950      * of peer's MSS is better for the performance.  It's more correct
2951      * but may be worse for the performance because of rcv_mss
2952      * fluctuations.  --SAW  1998/11/1
2953      */
2954     int mss = icsk->icsk_ack.rcv_mss;
2955     int free_space = tcp_space(sk);
2956     int allowed_space = tcp_full_space(sk);
2957     int full_space, window;
2958 
2959     if (sk_is_mptcp(sk))
2960         mptcp_space(sk, &free_space, &allowed_space);
2961 
2962     full_space = min_t(int, tp->window_clamp, allowed_space);
2963 
2964     if (unlikely(mss > full_space)) {
2965         mss = full_space;
2966         if (mss <= 0)
2967             return 0;
2968     }
2969     if (free_space < (full_space >> 1)) {
2970         icsk->icsk_ack.quick = 0;
2971 
2972         if (tcp_under_memory_pressure(sk))
2973             tcp_adjust_rcv_ssthresh(sk);
2974 
2975         /* free_space might become our new window, make sure we don't
2976          * increase it due to wscale.
2977          */
2978         free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2979 
2980         /* if free space is less than mss estimate, or is below 1/16th
2981          * of the maximum allowed, try to move to zero-window, else
2982          * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2983          * new incoming data is dropped due to memory limits.
2984          * With large window, mss test triggers way too late in order
2985          * to announce zero window in time before rmem limit kicks in.
2986          */
2987         if (free_space < (allowed_space >> 4) || free_space < mss)
2988             return 0;
2989     }
2990 
2991     if (free_space > tp->rcv_ssthresh)
2992         free_space = tp->rcv_ssthresh;
2993 
2994     /* Don't do rounding if we are using window scaling, since the
2995      * scaled window will not line up with the MSS boundary anyway.
2996      */
2997     if (tp->rx_opt.rcv_wscale) {
2998         window = free_space;
2999 
3000         /* Advertise enough space so that it won't get scaled away.
3001          * Import case: prevent zero window announcement if
3002          * 1<<rcv_wscale > mss.
3003          */
3004         window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3005     } else {
3006         window = tp->rcv_wnd;
3007         /* Get the largest window that is a nice multiple of mss.
3008          * Window clamp already applied above.
3009          * If our current window offering is within 1 mss of the
3010          * free space we just keep it. This prevents the divide
3011          * and multiply from happening most of the time.
3012          * We also don't do any window rounding when the free space
3013          * is too small.
3014          */
3015         if (window <= free_space - mss || window > free_space)
3016             window = rounddown(free_space, mss);
3017         else if (mss == full_space &&
3018              free_space > window + (full_space >> 1))
3019             window = free_space;
3020     }
3021 
3022     return window;
3023 }
3024 
3025 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3026                  const struct sk_buff *next_skb)
3027 {
3028     if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3029         const struct skb_shared_info *next_shinfo =
3030             skb_shinfo(next_skb);
3031         struct skb_shared_info *shinfo = skb_shinfo(skb);
3032 
3033         shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3034         shinfo->tskey = next_shinfo->tskey;
3035         TCP_SKB_CB(skb)->txstamp_ack |=
3036             TCP_SKB_CB(next_skb)->txstamp_ack;
3037     }
3038 }
3039 
3040 /* Collapses two adjacent SKB's during retransmission. */
3041 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3042 {
3043     struct tcp_sock *tp = tcp_sk(sk);
3044     struct sk_buff *next_skb = skb_rb_next(skb);
3045     int next_skb_size;
3046 
3047     next_skb_size = next_skb->len;
3048 
3049     BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3050 
3051     if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3052         return false;
3053 
3054     tcp_highest_sack_replace(sk, next_skb, skb);
3055 
3056     /* Update sequence range on original skb. */
3057     TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3058 
3059     /* Merge over control information. This moves PSH/FIN etc. over */
3060     TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3061 
3062     /* All done, get rid of second SKB and account for it so
3063      * packet counting does not break.
3064      */
3065     TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3066     TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3067 
3068     /* changed transmit queue under us so clear hints */
3069     tcp_clear_retrans_hints_partial(tp);
3070     if (next_skb == tp->retransmit_skb_hint)
3071         tp->retransmit_skb_hint = skb;
3072 
3073     tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3074 
3075     tcp_skb_collapse_tstamp(skb, next_skb);
3076 
3077     tcp_rtx_queue_unlink_and_free(next_skb, sk);
3078     return true;
3079 }
3080 
3081 /* Check if coalescing SKBs is legal. */
3082 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3083 {
3084     if (tcp_skb_pcount(skb) > 1)
3085         return false;
3086     if (skb_cloned(skb))
3087         return false;
3088     /* Some heuristics for collapsing over SACK'd could be invented */
3089     if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3090         return false;
3091 
3092     return true;
3093 }
3094 
3095 /* Collapse packets in the retransmit queue to make to create
3096  * less packets on the wire. This is only done on retransmission.
3097  */
3098 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3099                      int space)
3100 {
3101     struct tcp_sock *tp = tcp_sk(sk);
3102     struct sk_buff *skb = to, *tmp;
3103     bool first = true;
3104 
3105     if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3106         return;
3107     if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3108         return;
3109 
3110     skb_rbtree_walk_from_safe(skb, tmp) {
3111         if (!tcp_can_collapse(sk, skb))
3112             break;
3113 
3114         if (!tcp_skb_can_collapse(to, skb))
3115             break;
3116 
3117         space -= skb->len;
3118 
3119         if (first) {
3120             first = false;
3121             continue;
3122         }
3123 
3124         if (space < 0)
3125             break;
3126 
3127         if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3128             break;
3129 
3130         if (!tcp_collapse_retrans(sk, to))
3131             break;
3132     }
3133 }
3134 
3135 /* This retransmits one SKB.  Policy decisions and retransmit queue
3136  * state updates are done by the caller.  Returns non-zero if an
3137  * error occurred which prevented the send.
3138  */
3139 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3140 {
3141     struct inet_connection_sock *icsk = inet_csk(sk);
3142     struct tcp_sock *tp = tcp_sk(sk);
3143     unsigned int cur_mss;
3144     int diff, len, err;
3145     int avail_wnd;
3146 
3147     /* Inconclusive MTU probe */
3148     if (icsk->icsk_mtup.probe_size)
3149         icsk->icsk_mtup.probe_size = 0;
3150 
3151     if (skb_still_in_host_queue(sk, skb))
3152         return -EBUSY;
3153 
3154     if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3155         if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3156             WARN_ON_ONCE(1);
3157             return -EINVAL;
3158         }
3159         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3160             return -ENOMEM;
3161     }
3162 
3163     if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3164         return -EHOSTUNREACH; /* Routing failure or similar. */
3165 
3166     cur_mss = tcp_current_mss(sk);
3167     avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3168 
3169     /* If receiver has shrunk his window, and skb is out of
3170      * new window, do not retransmit it. The exception is the
3171      * case, when window is shrunk to zero. In this case
3172      * our retransmit of one segment serves as a zero window probe.
3173      */
3174     if (avail_wnd <= 0) {
3175         if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3176             return -EAGAIN;
3177         avail_wnd = cur_mss;
3178     }
3179 
3180     len = cur_mss * segs;
3181     if (len > avail_wnd) {
3182         len = rounddown(avail_wnd, cur_mss);
3183         if (!len)
3184             len = avail_wnd;
3185     }
3186     if (skb->len > len) {
3187         if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3188                  cur_mss, GFP_ATOMIC))
3189             return -ENOMEM; /* We'll try again later. */
3190     } else {
3191         if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3192             return -ENOMEM;
3193 
3194         diff = tcp_skb_pcount(skb);
3195         tcp_set_skb_tso_segs(skb, cur_mss);
3196         diff -= tcp_skb_pcount(skb);
3197         if (diff)
3198             tcp_adjust_pcount(sk, skb, diff);
3199         avail_wnd = min_t(int, avail_wnd, cur_mss);
3200         if (skb->len < avail_wnd)
3201             tcp_retrans_try_collapse(sk, skb, avail_wnd);
3202     }
3203 
3204     /* RFC3168, section 6.1.1.1. ECN fallback */
3205     if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3206         tcp_ecn_clear_syn(sk, skb);
3207 
3208     /* Update global and local TCP statistics. */
3209     segs = tcp_skb_pcount(skb);
3210     TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3211     if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3212         __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3213     tp->total_retrans += segs;
3214     tp->bytes_retrans += skb->len;
3215 
3216     /* make sure skb->data is aligned on arches that require it
3217      * and check if ack-trimming & collapsing extended the headroom
3218      * beyond what csum_start can cover.
3219      */
3220     if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3221              skb_headroom(skb) >= 0xFFFF)) {
3222         struct sk_buff *nskb;
3223 
3224         tcp_skb_tsorted_save(skb) {
3225             nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3226             if (nskb) {
3227                 nskb->dev = NULL;
3228                 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3229             } else {
3230                 err = -ENOBUFS;
3231             }
3232         } tcp_skb_tsorted_restore(skb);
3233 
3234         if (!err) {
3235             tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3236             tcp_rate_skb_sent(sk, skb);
3237         }
3238     } else {
3239         err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3240     }
3241 
3242     /* To avoid taking spuriously low RTT samples based on a timestamp
3243      * for a transmit that never happened, always mark EVER_RETRANS
3244      */
3245     TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3246 
3247     if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3248         tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3249                   TCP_SKB_CB(skb)->seq, segs, err);
3250 
3251     if (likely(!err)) {
3252         trace_tcp_retransmit_skb(sk, skb);
3253     } else if (err != -EBUSY) {
3254         NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3255     }
3256     return err;
3257 }
3258 
3259 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3260 {
3261     struct tcp_sock *tp = tcp_sk(sk);
3262     int err = __tcp_retransmit_skb(sk, skb, segs);
3263 
3264     if (err == 0) {
3265 #if FASTRETRANS_DEBUG > 0
3266         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3267             net_dbg_ratelimited("retrans_out leaked\n");
3268         }
3269 #endif
3270         TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3271         tp->retrans_out += tcp_skb_pcount(skb);
3272     }
3273 
3274     /* Save stamp of the first (attempted) retransmit. */
3275     if (!tp->retrans_stamp)
3276         tp->retrans_stamp = tcp_skb_timestamp(skb);
3277 
3278     if (tp->undo_retrans < 0)
3279         tp->undo_retrans = 0;
3280     tp->undo_retrans += tcp_skb_pcount(skb);
3281     return err;
3282 }
3283 
3284 /* This gets called after a retransmit timeout, and the initially
3285  * retransmitted data is acknowledged.  It tries to continue
3286  * resending the rest of the retransmit queue, until either
3287  * we've sent it all or the congestion window limit is reached.
3288  */
3289 void tcp_xmit_retransmit_queue(struct sock *sk)
3290 {
3291     const struct inet_connection_sock *icsk = inet_csk(sk);
3292     struct sk_buff *skb, *rtx_head, *hole = NULL;
3293     struct tcp_sock *tp = tcp_sk(sk);
3294     bool rearm_timer = false;
3295     u32 max_segs;
3296     int mib_idx;
3297 
3298     if (!tp->packets_out)
3299         return;
3300 
3301     rtx_head = tcp_rtx_queue_head(sk);
3302     skb = tp->retransmit_skb_hint ?: rtx_head;
3303     max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3304     skb_rbtree_walk_from(skb) {
3305         __u8 sacked;
3306         int segs;
3307 
3308         if (tcp_pacing_check(sk))
3309             break;
3310 
3311         /* we could do better than to assign each time */
3312         if (!hole)
3313             tp->retransmit_skb_hint = skb;
3314 
3315         segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3316         if (segs <= 0)
3317             break;
3318         sacked = TCP_SKB_CB(skb)->sacked;
3319         /* In case tcp_shift_skb_data() have aggregated large skbs,
3320          * we need to make sure not sending too bigs TSO packets
3321          */
3322         segs = min_t(int, segs, max_segs);
3323 
3324         if (tp->retrans_out >= tp->lost_out) {
3325             break;
3326         } else if (!(sacked & TCPCB_LOST)) {
3327             if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3328                 hole = skb;
3329             continue;
3330 
3331         } else {
3332             if (icsk->icsk_ca_state != TCP_CA_Loss)
3333                 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3334             else
3335                 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3336         }
3337 
3338         if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3339             continue;
3340 
3341         if (tcp_small_queue_check(sk, skb, 1))
3342             break;
3343 
3344         if (tcp_retransmit_skb(sk, skb, segs))
3345             break;
3346 
3347         NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3348 
3349         if (tcp_in_cwnd_reduction(sk))
3350             tp->prr_out += tcp_skb_pcount(skb);
3351 
3352         if (skb == rtx_head &&
3353             icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3354             rearm_timer = true;
3355 
3356     }
3357     if (rearm_timer)
3358         tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3359                      inet_csk(sk)->icsk_rto,
3360                      TCP_RTO_MAX);
3361 }
3362 
3363 /* We allow to exceed memory limits for FIN packets to expedite
3364  * connection tear down and (memory) recovery.
3365  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3366  * or even be forced to close flow without any FIN.
3367  * In general, we want to allow one skb per socket to avoid hangs
3368  * with edge trigger epoll()
3369  */
3370 void sk_forced_mem_schedule(struct sock *sk, int size)
3371 {
3372     int delta, amt;
3373 
3374     delta = size - sk->sk_forward_alloc;
3375     if (delta <= 0)
3376         return;
3377     amt = sk_mem_pages(delta);
3378     sk->sk_forward_alloc += amt << PAGE_SHIFT;
3379     sk_memory_allocated_add(sk, amt);
3380 
3381     if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3382         mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3383                     gfp_memcg_charge() | __GFP_NOFAIL);
3384 }
3385 
3386 /* Send a FIN. The caller locks the socket for us.
3387  * We should try to send a FIN packet really hard, but eventually give up.
3388  */
3389 void tcp_send_fin(struct sock *sk)
3390 {
3391     struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3392     struct tcp_sock *tp = tcp_sk(sk);
3393 
3394     /* Optimization, tack on the FIN if we have one skb in write queue and
3395      * this skb was not yet sent, or we are under memory pressure.
3396      * Note: in the latter case, FIN packet will be sent after a timeout,
3397      * as TCP stack thinks it has already been transmitted.
3398      */
3399     tskb = tail;
3400     if (!tskb && tcp_under_memory_pressure(sk))
3401         tskb = skb_rb_last(&sk->tcp_rtx_queue);
3402 
3403     if (tskb) {
3404         TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3405         TCP_SKB_CB(tskb)->end_seq++;
3406         tp->write_seq++;
3407         if (!tail) {
3408             /* This means tskb was already sent.
3409              * Pretend we included the FIN on previous transmit.
3410              * We need to set tp->snd_nxt to the value it would have
3411              * if FIN had been sent. This is because retransmit path
3412              * does not change tp->snd_nxt.
3413              */
3414             WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3415             return;
3416         }
3417     } else {
3418         skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3419         if (unlikely(!skb))
3420             return;
3421 
3422         INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3423         skb_reserve(skb, MAX_TCP_HEADER);
3424         sk_forced_mem_schedule(sk, skb->truesize);
3425         /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3426         tcp_init_nondata_skb(skb, tp->write_seq,
3427                      TCPHDR_ACK | TCPHDR_FIN);
3428         tcp_queue_skb(sk, skb);
3429     }
3430     __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3431 }
3432 
3433 /* We get here when a process closes a file descriptor (either due to
3434  * an explicit close() or as a byproduct of exit()'ing) and there
3435  * was unread data in the receive queue.  This behavior is recommended
3436  * by RFC 2525, section 2.17.  -DaveM
3437  */
3438 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3439 {
3440     struct sk_buff *skb;
3441 
3442     TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3443 
3444     /* NOTE: No TCP options attached and we never retransmit this. */
3445     skb = alloc_skb(MAX_TCP_HEADER, priority);
3446     if (!skb) {
3447         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3448         return;
3449     }
3450 
3451     /* Reserve space for headers and prepare control bits. */
3452     skb_reserve(skb, MAX_TCP_HEADER);
3453     tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3454                  TCPHDR_ACK | TCPHDR_RST);
3455     tcp_mstamp_refresh(tcp_sk(sk));
3456     /* Send it off. */
3457     if (tcp_transmit_skb(sk, skb, 0, priority))
3458         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3459 
3460     /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3461      * skb here is different to the troublesome skb, so use NULL
3462      */
3463     trace_tcp_send_reset(sk, NULL);
3464 }
3465 
3466 /* Send a crossed SYN-ACK during socket establishment.
3467  * WARNING: This routine must only be called when we have already sent
3468  * a SYN packet that crossed the incoming SYN that caused this routine
3469  * to get called. If this assumption fails then the initial rcv_wnd
3470  * and rcv_wscale values will not be correct.
3471  */
3472 int tcp_send_synack(struct sock *sk)
3473 {
3474     struct sk_buff *skb;
3475 
3476     skb = tcp_rtx_queue_head(sk);
3477     if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3478         pr_err("%s: wrong queue state\n", __func__);
3479         return -EFAULT;
3480     }
3481     if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3482         if (skb_cloned(skb)) {
3483             struct sk_buff *nskb;
3484 
3485             tcp_skb_tsorted_save(skb) {
3486                 nskb = skb_copy(skb, GFP_ATOMIC);
3487             } tcp_skb_tsorted_restore(skb);
3488             if (!nskb)
3489                 return -ENOMEM;
3490             INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3491             tcp_highest_sack_replace(sk, skb, nskb);
3492             tcp_rtx_queue_unlink_and_free(skb, sk);
3493             __skb_header_release(nskb);
3494             tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3495             sk_wmem_queued_add(sk, nskb->truesize);
3496             sk_mem_charge(sk, nskb->truesize);
3497             skb = nskb;
3498         }
3499 
3500         TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3501         tcp_ecn_send_synack(sk, skb);
3502     }
3503     return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3504 }
3505 
3506 /**
3507  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3508  * @sk: listener socket
3509  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3510  *       should not use it again.
3511  * @req: request_sock pointer
3512  * @foc: cookie for tcp fast open
3513  * @synack_type: Type of synack to prepare
3514  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3515  */
3516 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3517                 struct request_sock *req,
3518                 struct tcp_fastopen_cookie *foc,
3519                 enum tcp_synack_type synack_type,
3520                 struct sk_buff *syn_skb)
3521 {
3522     struct inet_request_sock *ireq = inet_rsk(req);
3523     const struct tcp_sock *tp = tcp_sk(sk);
3524     struct tcp_md5sig_key *md5 = NULL;
3525     struct tcp_out_options opts;
3526     struct sk_buff *skb;
3527     int tcp_header_size;
3528     struct tcphdr *th;
3529     int mss;
3530     u64 now;
3531 
3532     skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3533     if (unlikely(!skb)) {
3534         dst_release(dst);
3535         return NULL;
3536     }
3537     /* Reserve space for headers. */
3538     skb_reserve(skb, MAX_TCP_HEADER);
3539 
3540     switch (synack_type) {
3541     case TCP_SYNACK_NORMAL:
3542         skb_set_owner_w(skb, req_to_sk(req));
3543         break;
3544     case TCP_SYNACK_COOKIE:
3545         /* Under synflood, we do not attach skb to a socket,
3546          * to avoid false sharing.
3547          */
3548         break;
3549     case TCP_SYNACK_FASTOPEN:
3550         /* sk is a const pointer, because we want to express multiple
3551          * cpu might call us concurrently.
3552          * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3553          */
3554         skb_set_owner_w(skb, (struct sock *)sk);
3555         break;
3556     }
3557     skb_dst_set(skb, dst);
3558 
3559     mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3560 
3561     memset(&opts, 0, sizeof(opts));
3562     now = tcp_clock_ns();
3563 #ifdef CONFIG_SYN_COOKIES
3564     if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3565         skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3566                       true);
3567     else
3568 #endif
3569     {
3570         skb_set_delivery_time(skb, now, true);
3571         if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3572             tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3573     }
3574 
3575 #ifdef CONFIG_TCP_MD5SIG
3576     rcu_read_lock();
3577     md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3578 #endif
3579     skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3580     /* bpf program will be interested in the tcp_flags */
3581     TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3582     tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3583                          foc, synack_type,
3584                          syn_skb) + sizeof(*th);
3585 
3586     skb_push(skb, tcp_header_size);
3587     skb_reset_transport_header(skb);
3588 
3589     th = (struct tcphdr *)skb->data;
3590     memset(th, 0, sizeof(struct tcphdr));
3591     th->syn = 1;
3592     th->ack = 1;
3593     tcp_ecn_make_synack(req, th);
3594     th->source = htons(ireq->ir_num);
3595     th->dest = ireq->ir_rmt_port;
3596     skb->mark = ireq->ir_mark;
3597     skb->ip_summed = CHECKSUM_PARTIAL;
3598     th->seq = htonl(tcp_rsk(req)->snt_isn);
3599     /* XXX data is queued and acked as is. No buffer/window check */
3600     th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3601 
3602     /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3603     th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3604     tcp_options_write(th, NULL, &opts);
3605     th->doff = (tcp_header_size >> 2);
3606     __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3607 
3608 #ifdef CONFIG_TCP_MD5SIG
3609     /* Okay, we have all we need - do the md5 hash if needed */
3610     if (md5)
3611         tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3612                            md5, req_to_sk(req), skb);
3613     rcu_read_unlock();
3614 #endif
3615 
3616     bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3617                 synack_type, &opts);
3618 
3619     skb_set_delivery_time(skb, now, true);
3620     tcp_add_tx_delay(skb, tp);
3621 
3622     return skb;
3623 }
3624 EXPORT_SYMBOL(tcp_make_synack);
3625 
3626 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3627 {
3628     struct inet_connection_sock *icsk = inet_csk(sk);
3629     const struct tcp_congestion_ops *ca;
3630     u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3631 
3632     if (ca_key == TCP_CA_UNSPEC)
3633         return;
3634 
3635     rcu_read_lock();
3636     ca = tcp_ca_find_key(ca_key);
3637     if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3638         bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3639         icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3640         icsk->icsk_ca_ops = ca;
3641     }
3642     rcu_read_unlock();
3643 }
3644 
3645 /* Do all connect socket setups that can be done AF independent. */
3646 static void tcp_connect_init(struct sock *sk)
3647 {
3648     const struct dst_entry *dst = __sk_dst_get(sk);
3649     struct tcp_sock *tp = tcp_sk(sk);
3650     __u8 rcv_wscale;
3651     u32 rcv_wnd;
3652 
3653     /* We'll fix this up when we get a response from the other end.
3654      * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3655      */
3656     tp->tcp_header_len = sizeof(struct tcphdr);
3657     if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3658         tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3659 
3660 #ifdef CONFIG_TCP_MD5SIG
3661     if (tp->af_specific->md5_lookup(sk, sk))
3662         tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3663 #endif
3664 
3665     /* If user gave his TCP_MAXSEG, record it to clamp */
3666     if (tp->rx_opt.user_mss)
3667         tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3668     tp->max_window = 0;
3669     tcp_mtup_init(sk);
3670     tcp_sync_mss(sk, dst_mtu(dst));
3671 
3672     tcp_ca_dst_init(sk, dst);
3673 
3674     if (!tp->window_clamp)
3675         tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3676     tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3677 
3678     tcp_initialize_rcv_mss(sk);
3679 
3680     /* limit the window selection if the user enforce a smaller rx buffer */
3681     if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3682         (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3683         tp->window_clamp = tcp_full_space(sk);
3684 
3685     rcv_wnd = tcp_rwnd_init_bpf(sk);
3686     if (rcv_wnd == 0)
3687         rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3688 
3689     tcp_select_initial_window(sk, tcp_full_space(sk),
3690                   tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3691                   &tp->rcv_wnd,
3692                   &tp->window_clamp,
3693                   READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3694                   &rcv_wscale,
3695                   rcv_wnd);
3696 
3697     tp->rx_opt.rcv_wscale = rcv_wscale;
3698     tp->rcv_ssthresh = tp->rcv_wnd;
3699 
3700     sk->sk_err = 0;
3701     sock_reset_flag(sk, SOCK_DONE);
3702     tp->snd_wnd = 0;
3703     tcp_init_wl(tp, 0);
3704     tcp_write_queue_purge(sk);
3705     tp->snd_una = tp->write_seq;
3706     tp->snd_sml = tp->write_seq;
3707     tp->snd_up = tp->write_seq;
3708     WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3709 
3710     if (likely(!tp->repair))
3711         tp->rcv_nxt = 0;
3712     else
3713         tp->rcv_tstamp = tcp_jiffies32;
3714     tp->rcv_wup = tp->rcv_nxt;
3715     WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3716 
3717     inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3718     inet_csk(sk)->icsk_retransmits = 0;
3719     tcp_clear_retrans(tp);
3720 }
3721 
3722 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3723 {
3724     struct tcp_sock *tp = tcp_sk(sk);
3725     struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3726 
3727     tcb->end_seq += skb->len;
3728     __skb_header_release(skb);
3729     sk_wmem_queued_add(sk, skb->truesize);
3730     sk_mem_charge(sk, skb->truesize);
3731     WRITE_ONCE(tp->write_seq, tcb->end_seq);
3732     tp->packets_out += tcp_skb_pcount(skb);
3733 }
3734 
3735 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3736  * queue a data-only packet after the regular SYN, such that regular SYNs
3737  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3738  * only the SYN sequence, the data are retransmitted in the first ACK.
3739  * If cookie is not cached or other error occurs, falls back to send a
3740  * regular SYN with Fast Open cookie request option.
3741  */
3742 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3743 {
3744     struct inet_connection_sock *icsk = inet_csk(sk);
3745     struct tcp_sock *tp = tcp_sk(sk);
3746     struct tcp_fastopen_request *fo = tp->fastopen_req;
3747     int space, err = 0;
3748     struct sk_buff *syn_data;
3749 
3750     tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3751     if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3752         goto fallback;
3753 
3754     /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3755      * user-MSS. Reserve maximum option space for middleboxes that add
3756      * private TCP options. The cost is reduced data space in SYN :(
3757      */
3758     tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3759     /* Sync mss_cache after updating the mss_clamp */
3760     tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3761 
3762     space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3763         MAX_TCP_OPTION_SPACE;
3764 
3765     space = min_t(size_t, space, fo->size);
3766 
3767     /* limit to order-0 allocations */
3768     space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3769 
3770     syn_data = tcp_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3771     if (!syn_data)
3772         goto fallback;
3773     memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3774     if (space) {
3775         int copied = copy_from_iter(skb_put(syn_data, space), space,
3776                         &fo->data->msg_iter);
3777         if (unlikely(!copied)) {
3778             tcp_skb_tsorted_anchor_cleanup(syn_data);
3779             kfree_skb(syn_data);
3780             goto fallback;
3781         }
3782         if (copied != space) {
3783             skb_trim(syn_data, copied);
3784             space = copied;
3785         }
3786         skb_zcopy_set(syn_data, fo->uarg, NULL);
3787     }
3788     /* No more data pending in inet_wait_for_connect() */
3789     if (space == fo->size)
3790         fo->data = NULL;
3791     fo->copied = space;
3792 
3793     tcp_connect_queue_skb(sk, syn_data);
3794     if (syn_data->len)
3795         tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3796 
3797     err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3798 
3799     skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3800 
3801     /* Now full SYN+DATA was cloned and sent (or not),
3802      * remove the SYN from the original skb (syn_data)
3803      * we keep in write queue in case of a retransmit, as we
3804      * also have the SYN packet (with no data) in the same queue.
3805      */
3806     TCP_SKB_CB(syn_data)->seq++;
3807     TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3808     if (!err) {
3809         tp->syn_data = (fo->copied > 0);
3810         tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3811         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3812         goto done;
3813     }
3814 
3815     /* data was not sent, put it in write_queue */
3816     __skb_queue_tail(&sk->sk_write_queue, syn_data);
3817     tp->packets_out -= tcp_skb_pcount(syn_data);
3818 
3819 fallback:
3820     /* Send a regular SYN with Fast Open cookie request option */
3821     if (fo->cookie.len > 0)
3822         fo->cookie.len = 0;
3823     err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3824     if (err)
3825         tp->syn_fastopen = 0;
3826 done:
3827     fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3828     return err;
3829 }
3830 
3831 /* Build a SYN and send it off. */
3832 int tcp_connect(struct sock *sk)
3833 {
3834     struct tcp_sock *tp = tcp_sk(sk);
3835     struct sk_buff *buff;
3836     int err;
3837 
3838     tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3839 
3840     if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3841         return -EHOSTUNREACH; /* Routing failure or similar. */
3842 
3843     tcp_connect_init(sk);
3844 
3845     if (unlikely(tp->repair)) {
3846         tcp_finish_connect(sk, NULL);
3847         return 0;
3848     }
3849 
3850     buff = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3851     if (unlikely(!buff))
3852         return -ENOBUFS;
3853 
3854     tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3855     tcp_mstamp_refresh(tp);
3856     tp->retrans_stamp = tcp_time_stamp(tp);
3857     tcp_connect_queue_skb(sk, buff);
3858     tcp_ecn_send_syn(sk, buff);
3859     tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3860 
3861     /* Send off SYN; include data in Fast Open. */
3862     err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3863           tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3864     if (err == -ECONNREFUSED)
3865         return err;
3866 
3867     /* We change tp->snd_nxt after the tcp_transmit_skb() call
3868      * in order to make this packet get counted in tcpOutSegs.
3869      */
3870     WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3871     tp->pushed_seq = tp->write_seq;
3872     buff = tcp_send_head(sk);
3873     if (unlikely(buff)) {
3874         WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3875         tp->pushed_seq  = TCP_SKB_CB(buff)->seq;
3876     }
3877     TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3878 
3879     /* Timer for repeating the SYN until an answer. */
3880     inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3881                   inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3882     return 0;
3883 }
3884 EXPORT_SYMBOL(tcp_connect);
3885 
3886 /* Send out a delayed ack, the caller does the policy checking
3887  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3888  * for details.
3889  */
3890 void tcp_send_delayed_ack(struct sock *sk)
3891 {
3892     struct inet_connection_sock *icsk = inet_csk(sk);
3893     int ato = icsk->icsk_ack.ato;
3894     unsigned long timeout;
3895 
3896     if (ato > TCP_DELACK_MIN) {
3897         const struct tcp_sock *tp = tcp_sk(sk);
3898         int max_ato = HZ / 2;
3899 
3900         if (inet_csk_in_pingpong_mode(sk) ||
3901             (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3902             max_ato = TCP_DELACK_MAX;
3903 
3904         /* Slow path, intersegment interval is "high". */
3905 
3906         /* If some rtt estimate is known, use it to bound delayed ack.
3907          * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3908          * directly.
3909          */
3910         if (tp->srtt_us) {
3911             int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3912                     TCP_DELACK_MIN);
3913 
3914             if (rtt < max_ato)
3915                 max_ato = rtt;
3916         }
3917 
3918         ato = min(ato, max_ato);
3919     }
3920 
3921     ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3922 
3923     /* Stay within the limit we were given */
3924     timeout = jiffies + ato;
3925 
3926     /* Use new timeout only if there wasn't a older one earlier. */
3927     if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3928         /* If delack timer is about to expire, send ACK now. */
3929         if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3930             tcp_send_ack(sk);
3931             return;
3932         }
3933 
3934         if (!time_before(timeout, icsk->icsk_ack.timeout))
3935             timeout = icsk->icsk_ack.timeout;
3936     }
3937     icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3938     icsk->icsk_ack.timeout = timeout;
3939     sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3940 }
3941 
3942 /* This routine sends an ack and also updates the window. */
3943 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3944 {
3945     struct sk_buff *buff;
3946 
3947     /* If we have been reset, we may not send again. */
3948     if (sk->sk_state == TCP_CLOSE)
3949         return;
3950 
3951     /* We are not putting this on the write queue, so
3952      * tcp_transmit_skb() will set the ownership to this
3953      * sock.
3954      */
3955     buff = alloc_skb(MAX_TCP_HEADER,
3956              sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3957     if (unlikely(!buff)) {
3958         struct inet_connection_sock *icsk = inet_csk(sk);
3959         unsigned long delay;
3960 
3961         delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3962         if (delay < TCP_RTO_MAX)
3963             icsk->icsk_ack.retry++;
3964         inet_csk_schedule_ack(sk);
3965         icsk->icsk_ack.ato = TCP_ATO_MIN;
3966         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3967         return;
3968     }
3969 
3970     /* Reserve space for headers and prepare control bits. */
3971     skb_reserve(buff, MAX_TCP_HEADER);
3972     tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3973 
3974     /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3975      * too much.
3976      * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3977      */
3978     skb_set_tcp_pure_ack(buff);
3979 
3980     /* Send it off, this clears delayed acks for us. */
3981     __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3982 }
3983 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3984 
3985 void tcp_send_ack(struct sock *sk)
3986 {
3987     __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3988 }
3989 
3990 /* This routine sends a packet with an out of date sequence
3991  * number. It assumes the other end will try to ack it.
3992  *
3993  * Question: what should we make while urgent mode?
3994  * 4.4BSD forces sending single byte of data. We cannot send
3995  * out of window data, because we have SND.NXT==SND.MAX...
3996  *
3997  * Current solution: to send TWO zero-length segments in urgent mode:
3998  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3999  * out-of-date with SND.UNA-1 to probe window.
4000  */
4001 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4002 {
4003     struct tcp_sock *tp = tcp_sk(sk);
4004     struct sk_buff *skb;
4005 
4006     /* We don't queue it, tcp_transmit_skb() sets ownership. */
4007     skb = alloc_skb(MAX_TCP_HEADER,
4008             sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4009     if (!skb)
4010         return -1;
4011 
4012     /* Reserve space for headers and set control bits. */
4013     skb_reserve(skb, MAX_TCP_HEADER);
4014     /* Use a previous sequence.  This should cause the other
4015      * end to send an ack.  Don't queue or clone SKB, just
4016      * send it.
4017      */
4018     tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4019     NET_INC_STATS(sock_net(sk), mib);
4020     return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4021 }
4022 
4023 /* Called from setsockopt( ... TCP_REPAIR ) */
4024 void tcp_send_window_probe(struct sock *sk)
4025 {
4026     if (sk->sk_state == TCP_ESTABLISHED) {
4027         tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4028         tcp_mstamp_refresh(tcp_sk(sk));
4029         tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4030     }
4031 }
4032 
4033 /* Initiate keepalive or window probe from timer. */
4034 int tcp_write_wakeup(struct sock *sk, int mib)
4035 {
4036     struct tcp_sock *tp = tcp_sk(sk);
4037     struct sk_buff *skb;
4038 
4039     if (sk->sk_state == TCP_CLOSE)
4040         return -1;
4041 
4042     skb = tcp_send_head(sk);
4043     if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4044         int err;
4045         unsigned int mss = tcp_current_mss(sk);
4046         unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4047 
4048         if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4049             tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4050 
4051         /* We are probing the opening of a window
4052          * but the window size is != 0
4053          * must have been a result SWS avoidance ( sender )
4054          */
4055         if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4056             skb->len > mss) {
4057             seg_size = min(seg_size, mss);
4058             TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4059             if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4060                      skb, seg_size, mss, GFP_ATOMIC))
4061                 return -1;
4062         } else if (!tcp_skb_pcount(skb))
4063             tcp_set_skb_tso_segs(skb, mss);
4064 
4065         TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4066         err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4067         if (!err)
4068             tcp_event_new_data_sent(sk, skb);
4069         return err;
4070     } else {
4071         if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4072             tcp_xmit_probe_skb(sk, 1, mib);
4073         return tcp_xmit_probe_skb(sk, 0, mib);
4074     }
4075 }
4076 
4077 /* A window probe timeout has occurred.  If window is not closed send
4078  * a partial packet else a zero probe.
4079  */
4080 void tcp_send_probe0(struct sock *sk)
4081 {
4082     struct inet_connection_sock *icsk = inet_csk(sk);
4083     struct tcp_sock *tp = tcp_sk(sk);
4084     struct net *net = sock_net(sk);
4085     unsigned long timeout;
4086     int err;
4087 
4088     err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4089 
4090     if (tp->packets_out || tcp_write_queue_empty(sk)) {
4091         /* Cancel probe timer, if it is not required. */
4092         icsk->icsk_probes_out = 0;
4093         icsk->icsk_backoff = 0;
4094         icsk->icsk_probes_tstamp = 0;
4095         return;
4096     }
4097 
4098     icsk->icsk_probes_out++;
4099     if (err <= 0) {
4100         if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4101             icsk->icsk_backoff++;
4102         timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4103     } else {
4104         /* If packet was not sent due to local congestion,
4105          * Let senders fight for local resources conservatively.
4106          */
4107         timeout = TCP_RESOURCE_PROBE_INTERVAL;
4108     }
4109 
4110     timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4111     tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4112 }
4113 
4114 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4115 {
4116     const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4117     struct flowi fl;
4118     int res;
4119 
4120     /* Paired with WRITE_ONCE() in sock_setsockopt() */
4121     if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4122         tcp_rsk(req)->txhash = net_tx_rndhash();
4123     res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4124                   NULL);
4125     if (!res) {
4126         TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4127         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4128         if (unlikely(tcp_passive_fastopen(sk)))
4129             tcp_sk(sk)->total_retrans++;
4130         trace_tcp_retransmit_synack(sk, req);
4131     }
4132     return res;
4133 }
4134 EXPORT_SYMBOL(tcp_rtx_synack);