Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  *  IP multicast routing support for mrouted 3.6/3.8
0004  *
0005  *      (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
0006  *    Linux Consultancy and Custom Driver Development
0007  *
0008  *  Fixes:
0009  *  Michael Chastain    :   Incorrect size of copying.
0010  *  Alan Cox        :   Added the cache manager code
0011  *  Alan Cox        :   Fixed the clone/copy bug and device race.
0012  *  Mike McLagan        :   Routing by source
0013  *  Malcolm Beattie     :   Buffer handling fixes.
0014  *  Alexey Kuznetsov    :   Double buffer free and other fixes.
0015  *  SVR Anand       :   Fixed several multicast bugs and problems.
0016  *  Alexey Kuznetsov    :   Status, optimisations and more.
0017  *  Brad Parker     :   Better behaviour on mrouted upcall
0018  *                  overflow.
0019  *      Carlos Picoto           :       PIMv1 Support
0020  *  Pavlin Ivanov Radoslavov:   PIMv2 Registers must checksum only PIM header
0021  *                  Relax this requirement to work with older peers.
0022  */
0023 
0024 #include <linux/uaccess.h>
0025 #include <linux/types.h>
0026 #include <linux/cache.h>
0027 #include <linux/capability.h>
0028 #include <linux/errno.h>
0029 #include <linux/mm.h>
0030 #include <linux/kernel.h>
0031 #include <linux/fcntl.h>
0032 #include <linux/stat.h>
0033 #include <linux/socket.h>
0034 #include <linux/in.h>
0035 #include <linux/inet.h>
0036 #include <linux/netdevice.h>
0037 #include <linux/inetdevice.h>
0038 #include <linux/igmp.h>
0039 #include <linux/proc_fs.h>
0040 #include <linux/seq_file.h>
0041 #include <linux/mroute.h>
0042 #include <linux/init.h>
0043 #include <linux/if_ether.h>
0044 #include <linux/slab.h>
0045 #include <net/net_namespace.h>
0046 #include <net/ip.h>
0047 #include <net/protocol.h>
0048 #include <linux/skbuff.h>
0049 #include <net/route.h>
0050 #include <net/icmp.h>
0051 #include <net/udp.h>
0052 #include <net/raw.h>
0053 #include <linux/notifier.h>
0054 #include <linux/if_arp.h>
0055 #include <linux/netfilter_ipv4.h>
0056 #include <linux/compat.h>
0057 #include <linux/export.h>
0058 #include <linux/rhashtable.h>
0059 #include <net/ip_tunnels.h>
0060 #include <net/checksum.h>
0061 #include <net/netlink.h>
0062 #include <net/fib_rules.h>
0063 #include <linux/netconf.h>
0064 #include <net/rtnh.h>
0065 
0066 #include <linux/nospec.h>
0067 
0068 struct ipmr_rule {
0069     struct fib_rule     common;
0070 };
0071 
0072 struct ipmr_result {
0073     struct mr_table     *mrt;
0074 };
0075 
0076 /* Big lock, protecting vif table, mrt cache and mroute socket state.
0077  * Note that the changes are semaphored via rtnl_lock.
0078  */
0079 
0080 static DEFINE_SPINLOCK(mrt_lock);
0081 
0082 static struct net_device *vif_dev_read(const struct vif_device *vif)
0083 {
0084     return rcu_dereference(vif->dev);
0085 }
0086 
0087 /* Multicast router control variables */
0088 
0089 /* Special spinlock for queue of unresolved entries */
0090 static DEFINE_SPINLOCK(mfc_unres_lock);
0091 
0092 /* We return to original Alan's scheme. Hash table of resolved
0093  * entries is changed only in process context and protected
0094  * with weak lock mrt_lock. Queue of unresolved entries is protected
0095  * with strong spinlock mfc_unres_lock.
0096  *
0097  * In this case data path is free of exclusive locks at all.
0098  */
0099 
0100 static struct kmem_cache *mrt_cachep __ro_after_init;
0101 
0102 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
0103 static void ipmr_free_table(struct mr_table *mrt);
0104 
0105 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
0106               struct net_device *dev, struct sk_buff *skb,
0107               struct mfc_cache *cache, int local);
0108 static int ipmr_cache_report(const struct mr_table *mrt,
0109                  struct sk_buff *pkt, vifi_t vifi, int assert);
0110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
0111                  int cmd);
0112 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
0113 static void mroute_clean_tables(struct mr_table *mrt, int flags);
0114 static void ipmr_expire_process(struct timer_list *t);
0115 
0116 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
0117 #define ipmr_for_each_table(mrt, net)                   \
0118     list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list,    \
0119                 lockdep_rtnl_is_held() ||       \
0120                 list_empty(&net->ipv4.mr_tables))
0121 
0122 static struct mr_table *ipmr_mr_table_iter(struct net *net,
0123                        struct mr_table *mrt)
0124 {
0125     struct mr_table *ret;
0126 
0127     if (!mrt)
0128         ret = list_entry_rcu(net->ipv4.mr_tables.next,
0129                      struct mr_table, list);
0130     else
0131         ret = list_entry_rcu(mrt->list.next,
0132                      struct mr_table, list);
0133 
0134     if (&ret->list == &net->ipv4.mr_tables)
0135         return NULL;
0136     return ret;
0137 }
0138 
0139 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
0140 {
0141     struct mr_table *mrt;
0142 
0143     ipmr_for_each_table(mrt, net) {
0144         if (mrt->id == id)
0145             return mrt;
0146     }
0147     return NULL;
0148 }
0149 
0150 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
0151                struct mr_table **mrt)
0152 {
0153     int err;
0154     struct ipmr_result res;
0155     struct fib_lookup_arg arg = {
0156         .result = &res,
0157         .flags = FIB_LOOKUP_NOREF,
0158     };
0159 
0160     /* update flow if oif or iif point to device enslaved to l3mdev */
0161     l3mdev_update_flow(net, flowi4_to_flowi(flp4));
0162 
0163     err = fib_rules_lookup(net->ipv4.mr_rules_ops,
0164                    flowi4_to_flowi(flp4), 0, &arg);
0165     if (err < 0)
0166         return err;
0167     *mrt = res.mrt;
0168     return 0;
0169 }
0170 
0171 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
0172                 int flags, struct fib_lookup_arg *arg)
0173 {
0174     struct ipmr_result *res = arg->result;
0175     struct mr_table *mrt;
0176 
0177     switch (rule->action) {
0178     case FR_ACT_TO_TBL:
0179         break;
0180     case FR_ACT_UNREACHABLE:
0181         return -ENETUNREACH;
0182     case FR_ACT_PROHIBIT:
0183         return -EACCES;
0184     case FR_ACT_BLACKHOLE:
0185     default:
0186         return -EINVAL;
0187     }
0188 
0189     arg->table = fib_rule_get_table(rule, arg);
0190 
0191     mrt = ipmr_get_table(rule->fr_net, arg->table);
0192     if (!mrt)
0193         return -EAGAIN;
0194     res->mrt = mrt;
0195     return 0;
0196 }
0197 
0198 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
0199 {
0200     return 1;
0201 }
0202 
0203 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
0204                    struct fib_rule_hdr *frh, struct nlattr **tb,
0205                    struct netlink_ext_ack *extack)
0206 {
0207     return 0;
0208 }
0209 
0210 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
0211                  struct nlattr **tb)
0212 {
0213     return 1;
0214 }
0215 
0216 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
0217               struct fib_rule_hdr *frh)
0218 {
0219     frh->dst_len = 0;
0220     frh->src_len = 0;
0221     frh->tos     = 0;
0222     return 0;
0223 }
0224 
0225 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
0226     .family     = RTNL_FAMILY_IPMR,
0227     .rule_size  = sizeof(struct ipmr_rule),
0228     .addr_size  = sizeof(u32),
0229     .action     = ipmr_rule_action,
0230     .match      = ipmr_rule_match,
0231     .configure  = ipmr_rule_configure,
0232     .compare    = ipmr_rule_compare,
0233     .fill       = ipmr_rule_fill,
0234     .nlgroup    = RTNLGRP_IPV4_RULE,
0235     .owner      = THIS_MODULE,
0236 };
0237 
0238 static int __net_init ipmr_rules_init(struct net *net)
0239 {
0240     struct fib_rules_ops *ops;
0241     struct mr_table *mrt;
0242     int err;
0243 
0244     ops = fib_rules_register(&ipmr_rules_ops_template, net);
0245     if (IS_ERR(ops))
0246         return PTR_ERR(ops);
0247 
0248     INIT_LIST_HEAD(&net->ipv4.mr_tables);
0249 
0250     mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
0251     if (IS_ERR(mrt)) {
0252         err = PTR_ERR(mrt);
0253         goto err1;
0254     }
0255 
0256     err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
0257     if (err < 0)
0258         goto err2;
0259 
0260     net->ipv4.mr_rules_ops = ops;
0261     return 0;
0262 
0263 err2:
0264     rtnl_lock();
0265     ipmr_free_table(mrt);
0266     rtnl_unlock();
0267 err1:
0268     fib_rules_unregister(ops);
0269     return err;
0270 }
0271 
0272 static void __net_exit ipmr_rules_exit(struct net *net)
0273 {
0274     struct mr_table *mrt, *next;
0275 
0276     ASSERT_RTNL();
0277     list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
0278         list_del(&mrt->list);
0279         ipmr_free_table(mrt);
0280     }
0281     fib_rules_unregister(net->ipv4.mr_rules_ops);
0282 }
0283 
0284 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
0285                struct netlink_ext_ack *extack)
0286 {
0287     return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
0288 }
0289 
0290 static unsigned int ipmr_rules_seq_read(struct net *net)
0291 {
0292     return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
0293 }
0294 
0295 bool ipmr_rule_default(const struct fib_rule *rule)
0296 {
0297     return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
0298 }
0299 EXPORT_SYMBOL(ipmr_rule_default);
0300 #else
0301 #define ipmr_for_each_table(mrt, net) \
0302     for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
0303 
0304 static struct mr_table *ipmr_mr_table_iter(struct net *net,
0305                        struct mr_table *mrt)
0306 {
0307     if (!mrt)
0308         return net->ipv4.mrt;
0309     return NULL;
0310 }
0311 
0312 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
0313 {
0314     return net->ipv4.mrt;
0315 }
0316 
0317 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
0318                struct mr_table **mrt)
0319 {
0320     *mrt = net->ipv4.mrt;
0321     return 0;
0322 }
0323 
0324 static int __net_init ipmr_rules_init(struct net *net)
0325 {
0326     struct mr_table *mrt;
0327 
0328     mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
0329     if (IS_ERR(mrt))
0330         return PTR_ERR(mrt);
0331     net->ipv4.mrt = mrt;
0332     return 0;
0333 }
0334 
0335 static void __net_exit ipmr_rules_exit(struct net *net)
0336 {
0337     ASSERT_RTNL();
0338     ipmr_free_table(net->ipv4.mrt);
0339     net->ipv4.mrt = NULL;
0340 }
0341 
0342 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
0343                struct netlink_ext_ack *extack)
0344 {
0345     return 0;
0346 }
0347 
0348 static unsigned int ipmr_rules_seq_read(struct net *net)
0349 {
0350     return 0;
0351 }
0352 
0353 bool ipmr_rule_default(const struct fib_rule *rule)
0354 {
0355     return true;
0356 }
0357 EXPORT_SYMBOL(ipmr_rule_default);
0358 #endif
0359 
0360 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
0361                 const void *ptr)
0362 {
0363     const struct mfc_cache_cmp_arg *cmparg = arg->key;
0364     const struct mfc_cache *c = ptr;
0365 
0366     return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
0367            cmparg->mfc_origin != c->mfc_origin;
0368 }
0369 
0370 static const struct rhashtable_params ipmr_rht_params = {
0371     .head_offset = offsetof(struct mr_mfc, mnode),
0372     .key_offset = offsetof(struct mfc_cache, cmparg),
0373     .key_len = sizeof(struct mfc_cache_cmp_arg),
0374     .nelem_hint = 3,
0375     .obj_cmpfn = ipmr_hash_cmp,
0376     .automatic_shrinking = true,
0377 };
0378 
0379 static void ipmr_new_table_set(struct mr_table *mrt,
0380                    struct net *net)
0381 {
0382 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
0383     list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
0384 #endif
0385 }
0386 
0387 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
0388     .mfc_mcastgrp = htonl(INADDR_ANY),
0389     .mfc_origin = htonl(INADDR_ANY),
0390 };
0391 
0392 static struct mr_table_ops ipmr_mr_table_ops = {
0393     .rht_params = &ipmr_rht_params,
0394     .cmparg_any = &ipmr_mr_table_ops_cmparg_any,
0395 };
0396 
0397 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
0398 {
0399     struct mr_table *mrt;
0400 
0401     /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
0402     if (id != RT_TABLE_DEFAULT && id >= 1000000000)
0403         return ERR_PTR(-EINVAL);
0404 
0405     mrt = ipmr_get_table(net, id);
0406     if (mrt)
0407         return mrt;
0408 
0409     return mr_table_alloc(net, id, &ipmr_mr_table_ops,
0410                   ipmr_expire_process, ipmr_new_table_set);
0411 }
0412 
0413 static void ipmr_free_table(struct mr_table *mrt)
0414 {
0415     del_timer_sync(&mrt->ipmr_expire_timer);
0416     mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
0417                  MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
0418     rhltable_destroy(&mrt->mfc_hash);
0419     kfree(mrt);
0420 }
0421 
0422 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
0423 
0424 /* Initialize ipmr pimreg/tunnel in_device */
0425 static bool ipmr_init_vif_indev(const struct net_device *dev)
0426 {
0427     struct in_device *in_dev;
0428 
0429     ASSERT_RTNL();
0430 
0431     in_dev = __in_dev_get_rtnl(dev);
0432     if (!in_dev)
0433         return false;
0434     ipv4_devconf_setall(in_dev);
0435     neigh_parms_data_state_setall(in_dev->arp_parms);
0436     IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
0437 
0438     return true;
0439 }
0440 
0441 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
0442 {
0443     struct net_device *tunnel_dev, *new_dev;
0444     struct ip_tunnel_parm p = { };
0445     int err;
0446 
0447     tunnel_dev = __dev_get_by_name(net, "tunl0");
0448     if (!tunnel_dev)
0449         goto out;
0450 
0451     p.iph.daddr = v->vifc_rmt_addr.s_addr;
0452     p.iph.saddr = v->vifc_lcl_addr.s_addr;
0453     p.iph.version = 4;
0454     p.iph.ihl = 5;
0455     p.iph.protocol = IPPROTO_IPIP;
0456     sprintf(p.name, "dvmrp%d", v->vifc_vifi);
0457 
0458     if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
0459         goto out;
0460     err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
0461             SIOCADDTUNNEL);
0462     if (err)
0463         goto out;
0464 
0465     new_dev = __dev_get_by_name(net, p.name);
0466     if (!new_dev)
0467         goto out;
0468 
0469     new_dev->flags |= IFF_MULTICAST;
0470     if (!ipmr_init_vif_indev(new_dev))
0471         goto out_unregister;
0472     if (dev_open(new_dev, NULL))
0473         goto out_unregister;
0474     dev_hold(new_dev);
0475     err = dev_set_allmulti(new_dev, 1);
0476     if (err) {
0477         dev_close(new_dev);
0478         tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
0479                 SIOCDELTUNNEL);
0480         dev_put(new_dev);
0481         new_dev = ERR_PTR(err);
0482     }
0483     return new_dev;
0484 
0485 out_unregister:
0486     unregister_netdevice(new_dev);
0487 out:
0488     return ERR_PTR(-ENOBUFS);
0489 }
0490 
0491 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
0492 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
0493 {
0494     struct net *net = dev_net(dev);
0495     struct mr_table *mrt;
0496     struct flowi4 fl4 = {
0497         .flowi4_oif = dev->ifindex,
0498         .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
0499         .flowi4_mark    = skb->mark,
0500     };
0501     int err;
0502 
0503     err = ipmr_fib_lookup(net, &fl4, &mrt);
0504     if (err < 0) {
0505         kfree_skb(skb);
0506         return err;
0507     }
0508 
0509     dev->stats.tx_bytes += skb->len;
0510     dev->stats.tx_packets++;
0511     rcu_read_lock();
0512 
0513     /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
0514     ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
0515               IGMPMSG_WHOLEPKT);
0516 
0517     rcu_read_unlock();
0518     kfree_skb(skb);
0519     return NETDEV_TX_OK;
0520 }
0521 
0522 static int reg_vif_get_iflink(const struct net_device *dev)
0523 {
0524     return 0;
0525 }
0526 
0527 static const struct net_device_ops reg_vif_netdev_ops = {
0528     .ndo_start_xmit = reg_vif_xmit,
0529     .ndo_get_iflink = reg_vif_get_iflink,
0530 };
0531 
0532 static void reg_vif_setup(struct net_device *dev)
0533 {
0534     dev->type       = ARPHRD_PIMREG;
0535     dev->mtu        = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
0536     dev->flags      = IFF_NOARP;
0537     dev->netdev_ops     = &reg_vif_netdev_ops;
0538     dev->needs_free_netdev  = true;
0539     dev->features       |= NETIF_F_NETNS_LOCAL;
0540 }
0541 
0542 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
0543 {
0544     struct net_device *dev;
0545     char name[IFNAMSIZ];
0546 
0547     if (mrt->id == RT_TABLE_DEFAULT)
0548         sprintf(name, "pimreg");
0549     else
0550         sprintf(name, "pimreg%u", mrt->id);
0551 
0552     dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
0553 
0554     if (!dev)
0555         return NULL;
0556 
0557     dev_net_set(dev, net);
0558 
0559     if (register_netdevice(dev)) {
0560         free_netdev(dev);
0561         return NULL;
0562     }
0563 
0564     if (!ipmr_init_vif_indev(dev))
0565         goto failure;
0566     if (dev_open(dev, NULL))
0567         goto failure;
0568 
0569     dev_hold(dev);
0570 
0571     return dev;
0572 
0573 failure:
0574     unregister_netdevice(dev);
0575     return NULL;
0576 }
0577 
0578 /* called with rcu_read_lock() */
0579 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
0580              unsigned int pimlen)
0581 {
0582     struct net_device *reg_dev = NULL;
0583     struct iphdr *encap;
0584     int vif_num;
0585 
0586     encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
0587     /* Check that:
0588      * a. packet is really sent to a multicast group
0589      * b. packet is not a NULL-REGISTER
0590      * c. packet is not truncated
0591      */
0592     if (!ipv4_is_multicast(encap->daddr) ||
0593         encap->tot_len == 0 ||
0594         ntohs(encap->tot_len) + pimlen > skb->len)
0595         return 1;
0596 
0597     /* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
0598     vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
0599     if (vif_num >= 0)
0600         reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
0601     if (!reg_dev)
0602         return 1;
0603 
0604     skb->mac_header = skb->network_header;
0605     skb_pull(skb, (u8 *)encap - skb->data);
0606     skb_reset_network_header(skb);
0607     skb->protocol = htons(ETH_P_IP);
0608     skb->ip_summed = CHECKSUM_NONE;
0609 
0610     skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
0611 
0612     netif_rx(skb);
0613 
0614     return NET_RX_SUCCESS;
0615 }
0616 #else
0617 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
0618 {
0619     return NULL;
0620 }
0621 #endif
0622 
0623 static int call_ipmr_vif_entry_notifiers(struct net *net,
0624                      enum fib_event_type event_type,
0625                      struct vif_device *vif,
0626                      struct net_device *vif_dev,
0627                      vifi_t vif_index, u32 tb_id)
0628 {
0629     return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
0630                      vif, vif_dev, vif_index, tb_id,
0631                      &net->ipv4.ipmr_seq);
0632 }
0633 
0634 static int call_ipmr_mfc_entry_notifiers(struct net *net,
0635                      enum fib_event_type event_type,
0636                      struct mfc_cache *mfc, u32 tb_id)
0637 {
0638     return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
0639                      &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
0640 }
0641 
0642 /**
0643  *  vif_delete - Delete a VIF entry
0644  *  @mrt: Table to delete from
0645  *  @vifi: VIF identifier to delete
0646  *  @notify: Set to 1, if the caller is a notifier_call
0647  *  @head: if unregistering the VIF, place it on this queue
0648  */
0649 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
0650               struct list_head *head)
0651 {
0652     struct net *net = read_pnet(&mrt->net);
0653     struct vif_device *v;
0654     struct net_device *dev;
0655     struct in_device *in_dev;
0656 
0657     if (vifi < 0 || vifi >= mrt->maxvif)
0658         return -EADDRNOTAVAIL;
0659 
0660     v = &mrt->vif_table[vifi];
0661 
0662     dev = rtnl_dereference(v->dev);
0663     if (!dev)
0664         return -EADDRNOTAVAIL;
0665 
0666     spin_lock(&mrt_lock);
0667     call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
0668                       vifi, mrt->id);
0669     RCU_INIT_POINTER(v->dev, NULL);
0670 
0671     if (vifi == mrt->mroute_reg_vif_num) {
0672         /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
0673         WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
0674     }
0675     if (vifi + 1 == mrt->maxvif) {
0676         int tmp;
0677 
0678         for (tmp = vifi - 1; tmp >= 0; tmp--) {
0679             if (VIF_EXISTS(mrt, tmp))
0680                 break;
0681         }
0682         WRITE_ONCE(mrt->maxvif, tmp + 1);
0683     }
0684 
0685     spin_unlock(&mrt_lock);
0686 
0687     dev_set_allmulti(dev, -1);
0688 
0689     in_dev = __in_dev_get_rtnl(dev);
0690     if (in_dev) {
0691         IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
0692         inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
0693                         NETCONFA_MC_FORWARDING,
0694                         dev->ifindex, &in_dev->cnf);
0695         ip_rt_multicast_event(in_dev);
0696     }
0697 
0698     if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
0699         unregister_netdevice_queue(dev, head);
0700 
0701     netdev_put(dev, &v->dev_tracker);
0702     return 0;
0703 }
0704 
0705 static void ipmr_cache_free_rcu(struct rcu_head *head)
0706 {
0707     struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
0708 
0709     kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
0710 }
0711 
0712 static void ipmr_cache_free(struct mfc_cache *c)
0713 {
0714     call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
0715 }
0716 
0717 /* Destroy an unresolved cache entry, killing queued skbs
0718  * and reporting error to netlink readers.
0719  */
0720 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
0721 {
0722     struct net *net = read_pnet(&mrt->net);
0723     struct sk_buff *skb;
0724     struct nlmsgerr *e;
0725 
0726     atomic_dec(&mrt->cache_resolve_queue_len);
0727 
0728     while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
0729         if (ip_hdr(skb)->version == 0) {
0730             struct nlmsghdr *nlh = skb_pull(skb,
0731                             sizeof(struct iphdr));
0732             nlh->nlmsg_type = NLMSG_ERROR;
0733             nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
0734             skb_trim(skb, nlh->nlmsg_len);
0735             e = nlmsg_data(nlh);
0736             e->error = -ETIMEDOUT;
0737             memset(&e->msg, 0, sizeof(e->msg));
0738 
0739             rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
0740         } else {
0741             kfree_skb(skb);
0742         }
0743     }
0744 
0745     ipmr_cache_free(c);
0746 }
0747 
0748 /* Timer process for the unresolved queue. */
0749 static void ipmr_expire_process(struct timer_list *t)
0750 {
0751     struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
0752     struct mr_mfc *c, *next;
0753     unsigned long expires;
0754     unsigned long now;
0755 
0756     if (!spin_trylock(&mfc_unres_lock)) {
0757         mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
0758         return;
0759     }
0760 
0761     if (list_empty(&mrt->mfc_unres_queue))
0762         goto out;
0763 
0764     now = jiffies;
0765     expires = 10*HZ;
0766 
0767     list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
0768         if (time_after(c->mfc_un.unres.expires, now)) {
0769             unsigned long interval = c->mfc_un.unres.expires - now;
0770             if (interval < expires)
0771                 expires = interval;
0772             continue;
0773         }
0774 
0775         list_del(&c->list);
0776         mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
0777         ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
0778     }
0779 
0780     if (!list_empty(&mrt->mfc_unres_queue))
0781         mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
0782 
0783 out:
0784     spin_unlock(&mfc_unres_lock);
0785 }
0786 
0787 /* Fill oifs list. It is called under locked mrt_lock. */
0788 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
0789                    unsigned char *ttls)
0790 {
0791     int vifi;
0792 
0793     cache->mfc_un.res.minvif = MAXVIFS;
0794     cache->mfc_un.res.maxvif = 0;
0795     memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
0796 
0797     for (vifi = 0; vifi < mrt->maxvif; vifi++) {
0798         if (VIF_EXISTS(mrt, vifi) &&
0799             ttls[vifi] && ttls[vifi] < 255) {
0800             cache->mfc_un.res.ttls[vifi] = ttls[vifi];
0801             if (cache->mfc_un.res.minvif > vifi)
0802                 cache->mfc_un.res.minvif = vifi;
0803             if (cache->mfc_un.res.maxvif <= vifi)
0804                 cache->mfc_un.res.maxvif = vifi + 1;
0805         }
0806     }
0807     cache->mfc_un.res.lastuse = jiffies;
0808 }
0809 
0810 static int vif_add(struct net *net, struct mr_table *mrt,
0811            struct vifctl *vifc, int mrtsock)
0812 {
0813     struct netdev_phys_item_id ppid = { };
0814     int vifi = vifc->vifc_vifi;
0815     struct vif_device *v = &mrt->vif_table[vifi];
0816     struct net_device *dev;
0817     struct in_device *in_dev;
0818     int err;
0819 
0820     /* Is vif busy ? */
0821     if (VIF_EXISTS(mrt, vifi))
0822         return -EADDRINUSE;
0823 
0824     switch (vifc->vifc_flags) {
0825     case VIFF_REGISTER:
0826         if (!ipmr_pimsm_enabled())
0827             return -EINVAL;
0828         /* Special Purpose VIF in PIM
0829          * All the packets will be sent to the daemon
0830          */
0831         if (mrt->mroute_reg_vif_num >= 0)
0832             return -EADDRINUSE;
0833         dev = ipmr_reg_vif(net, mrt);
0834         if (!dev)
0835             return -ENOBUFS;
0836         err = dev_set_allmulti(dev, 1);
0837         if (err) {
0838             unregister_netdevice(dev);
0839             dev_put(dev);
0840             return err;
0841         }
0842         break;
0843     case VIFF_TUNNEL:
0844         dev = ipmr_new_tunnel(net, vifc);
0845         if (IS_ERR(dev))
0846             return PTR_ERR(dev);
0847         break;
0848     case VIFF_USE_IFINDEX:
0849     case 0:
0850         if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
0851             dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
0852             if (dev && !__in_dev_get_rtnl(dev)) {
0853                 dev_put(dev);
0854                 return -EADDRNOTAVAIL;
0855             }
0856         } else {
0857             dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
0858         }
0859         if (!dev)
0860             return -EADDRNOTAVAIL;
0861         err = dev_set_allmulti(dev, 1);
0862         if (err) {
0863             dev_put(dev);
0864             return err;
0865         }
0866         break;
0867     default:
0868         return -EINVAL;
0869     }
0870 
0871     in_dev = __in_dev_get_rtnl(dev);
0872     if (!in_dev) {
0873         dev_put(dev);
0874         return -EADDRNOTAVAIL;
0875     }
0876     IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
0877     inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
0878                     dev->ifindex, &in_dev->cnf);
0879     ip_rt_multicast_event(in_dev);
0880 
0881     /* Fill in the VIF structures */
0882     vif_device_init(v, dev, vifc->vifc_rate_limit,
0883             vifc->vifc_threshold,
0884             vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
0885             (VIFF_TUNNEL | VIFF_REGISTER));
0886 
0887     err = dev_get_port_parent_id(dev, &ppid, true);
0888     if (err == 0) {
0889         memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
0890         v->dev_parent_id.id_len = ppid.id_len;
0891     } else {
0892         v->dev_parent_id.id_len = 0;
0893     }
0894 
0895     v->local = vifc->vifc_lcl_addr.s_addr;
0896     v->remote = vifc->vifc_rmt_addr.s_addr;
0897 
0898     /* And finish update writing critical data */
0899     spin_lock(&mrt_lock);
0900     rcu_assign_pointer(v->dev, dev);
0901     netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
0902     if (v->flags & VIFF_REGISTER) {
0903         /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
0904         WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
0905     }
0906     if (vifi+1 > mrt->maxvif)
0907         WRITE_ONCE(mrt->maxvif, vifi + 1);
0908     spin_unlock(&mrt_lock);
0909     call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
0910                       vifi, mrt->id);
0911     return 0;
0912 }
0913 
0914 /* called with rcu_read_lock() */
0915 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
0916                      __be32 origin,
0917                      __be32 mcastgrp)
0918 {
0919     struct mfc_cache_cmp_arg arg = {
0920             .mfc_mcastgrp = mcastgrp,
0921             .mfc_origin = origin
0922     };
0923 
0924     return mr_mfc_find(mrt, &arg);
0925 }
0926 
0927 /* Look for a (*,G) entry */
0928 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
0929                          __be32 mcastgrp, int vifi)
0930 {
0931     struct mfc_cache_cmp_arg arg = {
0932             .mfc_mcastgrp = mcastgrp,
0933             .mfc_origin = htonl(INADDR_ANY)
0934     };
0935 
0936     if (mcastgrp == htonl(INADDR_ANY))
0937         return mr_mfc_find_any_parent(mrt, vifi);
0938     return mr_mfc_find_any(mrt, vifi, &arg);
0939 }
0940 
0941 /* Look for a (S,G,iif) entry if parent != -1 */
0942 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
0943                         __be32 origin, __be32 mcastgrp,
0944                         int parent)
0945 {
0946     struct mfc_cache_cmp_arg arg = {
0947             .mfc_mcastgrp = mcastgrp,
0948             .mfc_origin = origin,
0949     };
0950 
0951     return mr_mfc_find_parent(mrt, &arg, parent);
0952 }
0953 
0954 /* Allocate a multicast cache entry */
0955 static struct mfc_cache *ipmr_cache_alloc(void)
0956 {
0957     struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
0958 
0959     if (c) {
0960         c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
0961         c->_c.mfc_un.res.minvif = MAXVIFS;
0962         c->_c.free = ipmr_cache_free_rcu;
0963         refcount_set(&c->_c.mfc_un.res.refcount, 1);
0964     }
0965     return c;
0966 }
0967 
0968 static struct mfc_cache *ipmr_cache_alloc_unres(void)
0969 {
0970     struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
0971 
0972     if (c) {
0973         skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
0974         c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
0975     }
0976     return c;
0977 }
0978 
0979 /* A cache entry has gone into a resolved state from queued */
0980 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
0981                    struct mfc_cache *uc, struct mfc_cache *c)
0982 {
0983     struct sk_buff *skb;
0984     struct nlmsgerr *e;
0985 
0986     /* Play the pending entries through our router */
0987     while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
0988         if (ip_hdr(skb)->version == 0) {
0989             struct nlmsghdr *nlh = skb_pull(skb,
0990                             sizeof(struct iphdr));
0991 
0992             if (mr_fill_mroute(mrt, skb, &c->_c,
0993                        nlmsg_data(nlh)) > 0) {
0994                 nlh->nlmsg_len = skb_tail_pointer(skb) -
0995                          (u8 *)nlh;
0996             } else {
0997                 nlh->nlmsg_type = NLMSG_ERROR;
0998                 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
0999                 skb_trim(skb, nlh->nlmsg_len);
1000                 e = nlmsg_data(nlh);
1001                 e->error = -EMSGSIZE;
1002                 memset(&e->msg, 0, sizeof(e->msg));
1003             }
1004 
1005             rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1006         } else {
1007             rcu_read_lock();
1008             ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1009             rcu_read_unlock();
1010         }
1011     }
1012 }
1013 
1014 /* Bounce a cache query up to mrouted and netlink.
1015  *
1016  * Called under rcu_read_lock().
1017  */
1018 static int ipmr_cache_report(const struct mr_table *mrt,
1019                  struct sk_buff *pkt, vifi_t vifi, int assert)
1020 {
1021     const int ihl = ip_hdrlen(pkt);
1022     struct sock *mroute_sk;
1023     struct igmphdr *igmp;
1024     struct igmpmsg *msg;
1025     struct sk_buff *skb;
1026     int ret;
1027 
1028     if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1029         skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1030     else
1031         skb = alloc_skb(128, GFP_ATOMIC);
1032 
1033     if (!skb)
1034         return -ENOBUFS;
1035 
1036     if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1037         /* Ugly, but we have no choice with this interface.
1038          * Duplicate old header, fix ihl, length etc.
1039          * And all this only to mangle msg->im_msgtype and
1040          * to set msg->im_mbz to "mbz" :-)
1041          */
1042         skb_push(skb, sizeof(struct iphdr));
1043         skb_reset_network_header(skb);
1044         skb_reset_transport_header(skb);
1045         msg = (struct igmpmsg *)skb_network_header(skb);
1046         memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1047         msg->im_msgtype = assert;
1048         msg->im_mbz = 0;
1049         if (assert == IGMPMSG_WRVIFWHOLE) {
1050             msg->im_vif = vifi;
1051             msg->im_vif_hi = vifi >> 8;
1052         } else {
1053             /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1054             int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1055 
1056             msg->im_vif = vif_num;
1057             msg->im_vif_hi = vif_num >> 8;
1058         }
1059         ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1060         ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1061                          sizeof(struct iphdr));
1062     } else {
1063         /* Copy the IP header */
1064         skb_set_network_header(skb, skb->len);
1065         skb_put(skb, ihl);
1066         skb_copy_to_linear_data(skb, pkt->data, ihl);
1067         /* Flag to the kernel this is a route add */
1068         ip_hdr(skb)->protocol = 0;
1069         msg = (struct igmpmsg *)skb_network_header(skb);
1070         msg->im_vif = vifi;
1071         msg->im_vif_hi = vifi >> 8;
1072         skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1073         /* Add our header */
1074         igmp = skb_put(skb, sizeof(struct igmphdr));
1075         igmp->type = assert;
1076         msg->im_msgtype = assert;
1077         igmp->code = 0;
1078         ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1079         skb->transport_header = skb->network_header;
1080     }
1081 
1082     mroute_sk = rcu_dereference(mrt->mroute_sk);
1083     if (!mroute_sk) {
1084         kfree_skb(skb);
1085         return -EINVAL;
1086     }
1087 
1088     igmpmsg_netlink_event(mrt, skb);
1089 
1090     /* Deliver to mrouted */
1091     ret = sock_queue_rcv_skb(mroute_sk, skb);
1092 
1093     if (ret < 0) {
1094         net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1095         kfree_skb(skb);
1096     }
1097 
1098     return ret;
1099 }
1100 
1101 /* Queue a packet for resolution. It gets locked cache entry! */
1102 /* Called under rcu_read_lock() */
1103 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1104                  struct sk_buff *skb, struct net_device *dev)
1105 {
1106     const struct iphdr *iph = ip_hdr(skb);
1107     struct mfc_cache *c;
1108     bool found = false;
1109     int err;
1110 
1111     spin_lock_bh(&mfc_unres_lock);
1112     list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1113         if (c->mfc_mcastgrp == iph->daddr &&
1114             c->mfc_origin == iph->saddr) {
1115             found = true;
1116             break;
1117         }
1118     }
1119 
1120     if (!found) {
1121         /* Create a new entry if allowable */
1122         c = ipmr_cache_alloc_unres();
1123         if (!c) {
1124             spin_unlock_bh(&mfc_unres_lock);
1125 
1126             kfree_skb(skb);
1127             return -ENOBUFS;
1128         }
1129 
1130         /* Fill in the new cache entry */
1131         c->_c.mfc_parent = -1;
1132         c->mfc_origin   = iph->saddr;
1133         c->mfc_mcastgrp = iph->daddr;
1134 
1135         /* Reflect first query at mrouted. */
1136         err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1137 
1138         if (err < 0) {
1139             /* If the report failed throw the cache entry
1140                out - Brad Parker
1141              */
1142             spin_unlock_bh(&mfc_unres_lock);
1143 
1144             ipmr_cache_free(c);
1145             kfree_skb(skb);
1146             return err;
1147         }
1148 
1149         atomic_inc(&mrt->cache_resolve_queue_len);
1150         list_add(&c->_c.list, &mrt->mfc_unres_queue);
1151         mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1152 
1153         if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1154             mod_timer(&mrt->ipmr_expire_timer,
1155                   c->_c.mfc_un.unres.expires);
1156     }
1157 
1158     /* See if we can append the packet */
1159     if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1160         kfree_skb(skb);
1161         err = -ENOBUFS;
1162     } else {
1163         if (dev) {
1164             skb->dev = dev;
1165             skb->skb_iif = dev->ifindex;
1166         }
1167         skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1168         err = 0;
1169     }
1170 
1171     spin_unlock_bh(&mfc_unres_lock);
1172     return err;
1173 }
1174 
1175 /* MFC cache manipulation by user space mroute daemon */
1176 
1177 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1178 {
1179     struct net *net = read_pnet(&mrt->net);
1180     struct mfc_cache *c;
1181 
1182     /* The entries are added/deleted only under RTNL */
1183     rcu_read_lock();
1184     c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1185                    mfc->mfcc_mcastgrp.s_addr, parent);
1186     rcu_read_unlock();
1187     if (!c)
1188         return -ENOENT;
1189     rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1190     list_del_rcu(&c->_c.list);
1191     call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1192     mroute_netlink_event(mrt, c, RTM_DELROUTE);
1193     mr_cache_put(&c->_c);
1194 
1195     return 0;
1196 }
1197 
1198 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1199             struct mfcctl *mfc, int mrtsock, int parent)
1200 {
1201     struct mfc_cache *uc, *c;
1202     struct mr_mfc *_uc;
1203     bool found;
1204     int ret;
1205 
1206     if (mfc->mfcc_parent >= MAXVIFS)
1207         return -ENFILE;
1208 
1209     /* The entries are added/deleted only under RTNL */
1210     rcu_read_lock();
1211     c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1212                    mfc->mfcc_mcastgrp.s_addr, parent);
1213     rcu_read_unlock();
1214     if (c) {
1215         spin_lock(&mrt_lock);
1216         c->_c.mfc_parent = mfc->mfcc_parent;
1217         ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1218         if (!mrtsock)
1219             c->_c.mfc_flags |= MFC_STATIC;
1220         spin_unlock(&mrt_lock);
1221         call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1222                           mrt->id);
1223         mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1224         return 0;
1225     }
1226 
1227     if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1228         !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1229         return -EINVAL;
1230 
1231     c = ipmr_cache_alloc();
1232     if (!c)
1233         return -ENOMEM;
1234 
1235     c->mfc_origin = mfc->mfcc_origin.s_addr;
1236     c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1237     c->_c.mfc_parent = mfc->mfcc_parent;
1238     ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1239     if (!mrtsock)
1240         c->_c.mfc_flags |= MFC_STATIC;
1241 
1242     ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1243                   ipmr_rht_params);
1244     if (ret) {
1245         pr_err("ipmr: rhtable insert error %d\n", ret);
1246         ipmr_cache_free(c);
1247         return ret;
1248     }
1249     list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1250     /* Check to see if we resolved a queued list. If so we
1251      * need to send on the frames and tidy up.
1252      */
1253     found = false;
1254     spin_lock_bh(&mfc_unres_lock);
1255     list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1256         uc = (struct mfc_cache *)_uc;
1257         if (uc->mfc_origin == c->mfc_origin &&
1258             uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1259             list_del(&_uc->list);
1260             atomic_dec(&mrt->cache_resolve_queue_len);
1261             found = true;
1262             break;
1263         }
1264     }
1265     if (list_empty(&mrt->mfc_unres_queue))
1266         del_timer(&mrt->ipmr_expire_timer);
1267     spin_unlock_bh(&mfc_unres_lock);
1268 
1269     if (found) {
1270         ipmr_cache_resolve(net, mrt, uc, c);
1271         ipmr_cache_free(uc);
1272     }
1273     call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1274     mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1275     return 0;
1276 }
1277 
1278 /* Close the multicast socket, and clear the vif tables etc */
1279 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1280 {
1281     struct net *net = read_pnet(&mrt->net);
1282     struct mr_mfc *c, *tmp;
1283     struct mfc_cache *cache;
1284     LIST_HEAD(list);
1285     int i;
1286 
1287     /* Shut down all active vif entries */
1288     if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1289         for (i = 0; i < mrt->maxvif; i++) {
1290             if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1291                  !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1292                 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1293                 continue;
1294             vif_delete(mrt, i, 0, &list);
1295         }
1296         unregister_netdevice_many(&list);
1297     }
1298 
1299     /* Wipe the cache */
1300     if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1301         list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1302             if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1303                 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1304                 continue;
1305             rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1306             list_del_rcu(&c->list);
1307             cache = (struct mfc_cache *)c;
1308             call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1309                               mrt->id);
1310             mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1311             mr_cache_put(c);
1312         }
1313     }
1314 
1315     if (flags & MRT_FLUSH_MFC) {
1316         if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1317             spin_lock_bh(&mfc_unres_lock);
1318             list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1319                 list_del(&c->list);
1320                 cache = (struct mfc_cache *)c;
1321                 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1322                 ipmr_destroy_unres(mrt, cache);
1323             }
1324             spin_unlock_bh(&mfc_unres_lock);
1325         }
1326     }
1327 }
1328 
1329 /* called from ip_ra_control(), before an RCU grace period,
1330  * we don't need to call synchronize_rcu() here
1331  */
1332 static void mrtsock_destruct(struct sock *sk)
1333 {
1334     struct net *net = sock_net(sk);
1335     struct mr_table *mrt;
1336 
1337     rtnl_lock();
1338     ipmr_for_each_table(mrt, net) {
1339         if (sk == rtnl_dereference(mrt->mroute_sk)) {
1340             IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1341             inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1342                             NETCONFA_MC_FORWARDING,
1343                             NETCONFA_IFINDEX_ALL,
1344                             net->ipv4.devconf_all);
1345             RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1346             mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1347         }
1348     }
1349     rtnl_unlock();
1350 }
1351 
1352 /* Socket options and virtual interface manipulation. The whole
1353  * virtual interface system is a complete heap, but unfortunately
1354  * that's how BSD mrouted happens to think. Maybe one day with a proper
1355  * MOSPF/PIM router set up we can clean this up.
1356  */
1357 
1358 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1359              unsigned int optlen)
1360 {
1361     struct net *net = sock_net(sk);
1362     int val, ret = 0, parent = 0;
1363     struct mr_table *mrt;
1364     struct vifctl vif;
1365     struct mfcctl mfc;
1366     bool do_wrvifwhole;
1367     u32 uval;
1368 
1369     /* There's one exception to the lock - MRT_DONE which needs to unlock */
1370     rtnl_lock();
1371     if (sk->sk_type != SOCK_RAW ||
1372         inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1373         ret = -EOPNOTSUPP;
1374         goto out_unlock;
1375     }
1376 
1377     mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1378     if (!mrt) {
1379         ret = -ENOENT;
1380         goto out_unlock;
1381     }
1382     if (optname != MRT_INIT) {
1383         if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1384             !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1385             ret = -EACCES;
1386             goto out_unlock;
1387         }
1388     }
1389 
1390     switch (optname) {
1391     case MRT_INIT:
1392         if (optlen != sizeof(int)) {
1393             ret = -EINVAL;
1394             break;
1395         }
1396         if (rtnl_dereference(mrt->mroute_sk)) {
1397             ret = -EADDRINUSE;
1398             break;
1399         }
1400 
1401         ret = ip_ra_control(sk, 1, mrtsock_destruct);
1402         if (ret == 0) {
1403             rcu_assign_pointer(mrt->mroute_sk, sk);
1404             IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1405             inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1406                             NETCONFA_MC_FORWARDING,
1407                             NETCONFA_IFINDEX_ALL,
1408                             net->ipv4.devconf_all);
1409         }
1410         break;
1411     case MRT_DONE:
1412         if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1413             ret = -EACCES;
1414         } else {
1415             /* We need to unlock here because mrtsock_destruct takes
1416              * care of rtnl itself and we can't change that due to
1417              * the IP_ROUTER_ALERT setsockopt which runs without it.
1418              */
1419             rtnl_unlock();
1420             ret = ip_ra_control(sk, 0, NULL);
1421             goto out;
1422         }
1423         break;
1424     case MRT_ADD_VIF:
1425     case MRT_DEL_VIF:
1426         if (optlen != sizeof(vif)) {
1427             ret = -EINVAL;
1428             break;
1429         }
1430         if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1431             ret = -EFAULT;
1432             break;
1433         }
1434         if (vif.vifc_vifi >= MAXVIFS) {
1435             ret = -ENFILE;
1436             break;
1437         }
1438         if (optname == MRT_ADD_VIF) {
1439             ret = vif_add(net, mrt, &vif,
1440                       sk == rtnl_dereference(mrt->mroute_sk));
1441         } else {
1442             ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1443         }
1444         break;
1445     /* Manipulate the forwarding caches. These live
1446      * in a sort of kernel/user symbiosis.
1447      */
1448     case MRT_ADD_MFC:
1449     case MRT_DEL_MFC:
1450         parent = -1;
1451         fallthrough;
1452     case MRT_ADD_MFC_PROXY:
1453     case MRT_DEL_MFC_PROXY:
1454         if (optlen != sizeof(mfc)) {
1455             ret = -EINVAL;
1456             break;
1457         }
1458         if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1459             ret = -EFAULT;
1460             break;
1461         }
1462         if (parent == 0)
1463             parent = mfc.mfcc_parent;
1464         if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1465             ret = ipmr_mfc_delete(mrt, &mfc, parent);
1466         else
1467             ret = ipmr_mfc_add(net, mrt, &mfc,
1468                        sk == rtnl_dereference(mrt->mroute_sk),
1469                        parent);
1470         break;
1471     case MRT_FLUSH:
1472         if (optlen != sizeof(val)) {
1473             ret = -EINVAL;
1474             break;
1475         }
1476         if (copy_from_sockptr(&val, optval, sizeof(val))) {
1477             ret = -EFAULT;
1478             break;
1479         }
1480         mroute_clean_tables(mrt, val);
1481         break;
1482     /* Control PIM assert. */
1483     case MRT_ASSERT:
1484         if (optlen != sizeof(val)) {
1485             ret = -EINVAL;
1486             break;
1487         }
1488         if (copy_from_sockptr(&val, optval, sizeof(val))) {
1489             ret = -EFAULT;
1490             break;
1491         }
1492         mrt->mroute_do_assert = val;
1493         break;
1494     case MRT_PIM:
1495         if (!ipmr_pimsm_enabled()) {
1496             ret = -ENOPROTOOPT;
1497             break;
1498         }
1499         if (optlen != sizeof(val)) {
1500             ret = -EINVAL;
1501             break;
1502         }
1503         if (copy_from_sockptr(&val, optval, sizeof(val))) {
1504             ret = -EFAULT;
1505             break;
1506         }
1507 
1508         do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1509         val = !!val;
1510         if (val != mrt->mroute_do_pim) {
1511             mrt->mroute_do_pim = val;
1512             mrt->mroute_do_assert = val;
1513             mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1514         }
1515         break;
1516     case MRT_TABLE:
1517         if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1518             ret = -ENOPROTOOPT;
1519             break;
1520         }
1521         if (optlen != sizeof(uval)) {
1522             ret = -EINVAL;
1523             break;
1524         }
1525         if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1526             ret = -EFAULT;
1527             break;
1528         }
1529 
1530         if (sk == rtnl_dereference(mrt->mroute_sk)) {
1531             ret = -EBUSY;
1532         } else {
1533             mrt = ipmr_new_table(net, uval);
1534             if (IS_ERR(mrt))
1535                 ret = PTR_ERR(mrt);
1536             else
1537                 raw_sk(sk)->ipmr_table = uval;
1538         }
1539         break;
1540     /* Spurious command, or MRT_VERSION which you cannot set. */
1541     default:
1542         ret = -ENOPROTOOPT;
1543     }
1544 out_unlock:
1545     rtnl_unlock();
1546 out:
1547     return ret;
1548 }
1549 
1550 /* Getsock opt support for the multicast routing system. */
1551 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1552 {
1553     int olr;
1554     int val;
1555     struct net *net = sock_net(sk);
1556     struct mr_table *mrt;
1557 
1558     if (sk->sk_type != SOCK_RAW ||
1559         inet_sk(sk)->inet_num != IPPROTO_IGMP)
1560         return -EOPNOTSUPP;
1561 
1562     mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1563     if (!mrt)
1564         return -ENOENT;
1565 
1566     switch (optname) {
1567     case MRT_VERSION:
1568         val = 0x0305;
1569         break;
1570     case MRT_PIM:
1571         if (!ipmr_pimsm_enabled())
1572             return -ENOPROTOOPT;
1573         val = mrt->mroute_do_pim;
1574         break;
1575     case MRT_ASSERT:
1576         val = mrt->mroute_do_assert;
1577         break;
1578     default:
1579         return -ENOPROTOOPT;
1580     }
1581 
1582     if (get_user(olr, optlen))
1583         return -EFAULT;
1584     olr = min_t(unsigned int, olr, sizeof(int));
1585     if (olr < 0)
1586         return -EINVAL;
1587     if (put_user(olr, optlen))
1588         return -EFAULT;
1589     if (copy_to_user(optval, &val, olr))
1590         return -EFAULT;
1591     return 0;
1592 }
1593 
1594 /* The IP multicast ioctl support routines. */
1595 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1596 {
1597     struct sioc_sg_req sr;
1598     struct sioc_vif_req vr;
1599     struct vif_device *vif;
1600     struct mfc_cache *c;
1601     struct net *net = sock_net(sk);
1602     struct mr_table *mrt;
1603 
1604     mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1605     if (!mrt)
1606         return -ENOENT;
1607 
1608     switch (cmd) {
1609     case SIOCGETVIFCNT:
1610         if (copy_from_user(&vr, arg, sizeof(vr)))
1611             return -EFAULT;
1612         if (vr.vifi >= mrt->maxvif)
1613             return -EINVAL;
1614         vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1615         rcu_read_lock();
1616         vif = &mrt->vif_table[vr.vifi];
1617         if (VIF_EXISTS(mrt, vr.vifi)) {
1618             vr.icount = READ_ONCE(vif->pkt_in);
1619             vr.ocount = READ_ONCE(vif->pkt_out);
1620             vr.ibytes = READ_ONCE(vif->bytes_in);
1621             vr.obytes = READ_ONCE(vif->bytes_out);
1622             rcu_read_unlock();
1623 
1624             if (copy_to_user(arg, &vr, sizeof(vr)))
1625                 return -EFAULT;
1626             return 0;
1627         }
1628         rcu_read_unlock();
1629         return -EADDRNOTAVAIL;
1630     case SIOCGETSGCNT:
1631         if (copy_from_user(&sr, arg, sizeof(sr)))
1632             return -EFAULT;
1633 
1634         rcu_read_lock();
1635         c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1636         if (c) {
1637             sr.pktcnt = c->_c.mfc_un.res.pkt;
1638             sr.bytecnt = c->_c.mfc_un.res.bytes;
1639             sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1640             rcu_read_unlock();
1641 
1642             if (copy_to_user(arg, &sr, sizeof(sr)))
1643                 return -EFAULT;
1644             return 0;
1645         }
1646         rcu_read_unlock();
1647         return -EADDRNOTAVAIL;
1648     default:
1649         return -ENOIOCTLCMD;
1650     }
1651 }
1652 
1653 #ifdef CONFIG_COMPAT
1654 struct compat_sioc_sg_req {
1655     struct in_addr src;
1656     struct in_addr grp;
1657     compat_ulong_t pktcnt;
1658     compat_ulong_t bytecnt;
1659     compat_ulong_t wrong_if;
1660 };
1661 
1662 struct compat_sioc_vif_req {
1663     vifi_t  vifi;       /* Which iface */
1664     compat_ulong_t icount;
1665     compat_ulong_t ocount;
1666     compat_ulong_t ibytes;
1667     compat_ulong_t obytes;
1668 };
1669 
1670 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1671 {
1672     struct compat_sioc_sg_req sr;
1673     struct compat_sioc_vif_req vr;
1674     struct vif_device *vif;
1675     struct mfc_cache *c;
1676     struct net *net = sock_net(sk);
1677     struct mr_table *mrt;
1678 
1679     mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1680     if (!mrt)
1681         return -ENOENT;
1682 
1683     switch (cmd) {
1684     case SIOCGETVIFCNT:
1685         if (copy_from_user(&vr, arg, sizeof(vr)))
1686             return -EFAULT;
1687         if (vr.vifi >= mrt->maxvif)
1688             return -EINVAL;
1689         vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1690         rcu_read_lock();
1691         vif = &mrt->vif_table[vr.vifi];
1692         if (VIF_EXISTS(mrt, vr.vifi)) {
1693             vr.icount = READ_ONCE(vif->pkt_in);
1694             vr.ocount = READ_ONCE(vif->pkt_out);
1695             vr.ibytes = READ_ONCE(vif->bytes_in);
1696             vr.obytes = READ_ONCE(vif->bytes_out);
1697             rcu_read_unlock();
1698 
1699             if (copy_to_user(arg, &vr, sizeof(vr)))
1700                 return -EFAULT;
1701             return 0;
1702         }
1703         rcu_read_unlock();
1704         return -EADDRNOTAVAIL;
1705     case SIOCGETSGCNT:
1706         if (copy_from_user(&sr, arg, sizeof(sr)))
1707             return -EFAULT;
1708 
1709         rcu_read_lock();
1710         c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1711         if (c) {
1712             sr.pktcnt = c->_c.mfc_un.res.pkt;
1713             sr.bytecnt = c->_c.mfc_un.res.bytes;
1714             sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1715             rcu_read_unlock();
1716 
1717             if (copy_to_user(arg, &sr, sizeof(sr)))
1718                 return -EFAULT;
1719             return 0;
1720         }
1721         rcu_read_unlock();
1722         return -EADDRNOTAVAIL;
1723     default:
1724         return -ENOIOCTLCMD;
1725     }
1726 }
1727 #endif
1728 
1729 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1730 {
1731     struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1732     struct net *net = dev_net(dev);
1733     struct mr_table *mrt;
1734     struct vif_device *v;
1735     int ct;
1736 
1737     if (event != NETDEV_UNREGISTER)
1738         return NOTIFY_DONE;
1739 
1740     ipmr_for_each_table(mrt, net) {
1741         v = &mrt->vif_table[0];
1742         for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1743             if (rcu_access_pointer(v->dev) == dev)
1744                 vif_delete(mrt, ct, 1, NULL);
1745         }
1746     }
1747     return NOTIFY_DONE;
1748 }
1749 
1750 static struct notifier_block ip_mr_notifier = {
1751     .notifier_call = ipmr_device_event,
1752 };
1753 
1754 /* Encapsulate a packet by attaching a valid IPIP header to it.
1755  * This avoids tunnel drivers and other mess and gives us the speed so
1756  * important for multicast video.
1757  */
1758 static void ip_encap(struct net *net, struct sk_buff *skb,
1759              __be32 saddr, __be32 daddr)
1760 {
1761     struct iphdr *iph;
1762     const struct iphdr *old_iph = ip_hdr(skb);
1763 
1764     skb_push(skb, sizeof(struct iphdr));
1765     skb->transport_header = skb->network_header;
1766     skb_reset_network_header(skb);
1767     iph = ip_hdr(skb);
1768 
1769     iph->version    =   4;
1770     iph->tos    =   old_iph->tos;
1771     iph->ttl    =   old_iph->ttl;
1772     iph->frag_off   =   0;
1773     iph->daddr  =   daddr;
1774     iph->saddr  =   saddr;
1775     iph->protocol   =   IPPROTO_IPIP;
1776     iph->ihl    =   5;
1777     iph->tot_len    =   htons(skb->len);
1778     ip_select_ident(net, skb, NULL);
1779     ip_send_check(iph);
1780 
1781     memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1782     nf_reset_ct(skb);
1783 }
1784 
1785 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1786                       struct sk_buff *skb)
1787 {
1788     struct ip_options *opt = &(IPCB(skb)->opt);
1789 
1790     IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1791     IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1792 
1793     if (unlikely(opt->optlen))
1794         ip_forward_options(skb);
1795 
1796     return dst_output(net, sk, skb);
1797 }
1798 
1799 #ifdef CONFIG_NET_SWITCHDEV
1800 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1801                    int in_vifi, int out_vifi)
1802 {
1803     struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1804     struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1805 
1806     if (!skb->offload_l3_fwd_mark)
1807         return false;
1808     if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1809         return false;
1810     return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1811                     &in_vif->dev_parent_id);
1812 }
1813 #else
1814 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1815                    int in_vifi, int out_vifi)
1816 {
1817     return false;
1818 }
1819 #endif
1820 
1821 /* Processing handlers for ipmr_forward, under rcu_read_lock() */
1822 
1823 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1824                 int in_vifi, struct sk_buff *skb, int vifi)
1825 {
1826     const struct iphdr *iph = ip_hdr(skb);
1827     struct vif_device *vif = &mrt->vif_table[vifi];
1828     struct net_device *vif_dev;
1829     struct net_device *dev;
1830     struct rtable *rt;
1831     struct flowi4 fl4;
1832     int    encap = 0;
1833 
1834     vif_dev = vif_dev_read(vif);
1835     if (!vif_dev)
1836         goto out_free;
1837 
1838     if (vif->flags & VIFF_REGISTER) {
1839         WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1840         WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1841         vif_dev->stats.tx_bytes += skb->len;
1842         vif_dev->stats.tx_packets++;
1843         ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1844         goto out_free;
1845     }
1846 
1847     if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1848         goto out_free;
1849 
1850     if (vif->flags & VIFF_TUNNEL) {
1851         rt = ip_route_output_ports(net, &fl4, NULL,
1852                        vif->remote, vif->local,
1853                        0, 0,
1854                        IPPROTO_IPIP,
1855                        RT_TOS(iph->tos), vif->link);
1856         if (IS_ERR(rt))
1857             goto out_free;
1858         encap = sizeof(struct iphdr);
1859     } else {
1860         rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1861                        0, 0,
1862                        IPPROTO_IPIP,
1863                        RT_TOS(iph->tos), vif->link);
1864         if (IS_ERR(rt))
1865             goto out_free;
1866     }
1867 
1868     dev = rt->dst.dev;
1869 
1870     if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1871         /* Do not fragment multicasts. Alas, IPv4 does not
1872          * allow to send ICMP, so that packets will disappear
1873          * to blackhole.
1874          */
1875         IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1876         ip_rt_put(rt);
1877         goto out_free;
1878     }
1879 
1880     encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1881 
1882     if (skb_cow(skb, encap)) {
1883         ip_rt_put(rt);
1884         goto out_free;
1885     }
1886 
1887     WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1888     WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1889 
1890     skb_dst_drop(skb);
1891     skb_dst_set(skb, &rt->dst);
1892     ip_decrease_ttl(ip_hdr(skb));
1893 
1894     /* FIXME: forward and output firewalls used to be called here.
1895      * What do we do with netfilter? -- RR
1896      */
1897     if (vif->flags & VIFF_TUNNEL) {
1898         ip_encap(net, skb, vif->local, vif->remote);
1899         /* FIXME: extra output firewall step used to be here. --RR */
1900         vif_dev->stats.tx_packets++;
1901         vif_dev->stats.tx_bytes += skb->len;
1902     }
1903 
1904     IPCB(skb)->flags |= IPSKB_FORWARDED;
1905 
1906     /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1907      * not only before forwarding, but after forwarding on all output
1908      * interfaces. It is clear, if mrouter runs a multicasting
1909      * program, it should receive packets not depending to what interface
1910      * program is joined.
1911      * If we will not make it, the program will have to join on all
1912      * interfaces. On the other hand, multihoming host (or router, but
1913      * not mrouter) cannot join to more than one interface - it will
1914      * result in receiving multiple packets.
1915      */
1916     NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1917         net, NULL, skb, skb->dev, dev,
1918         ipmr_forward_finish);
1919     return;
1920 
1921 out_free:
1922     kfree_skb(skb);
1923 }
1924 
1925 /* Called with mrt_lock or rcu_read_lock() */
1926 static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1927 {
1928     int ct;
1929     /* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1930     for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1931         if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1932             break;
1933     }
1934     return ct;
1935 }
1936 
1937 /* "local" means that we should preserve one skb (for local delivery) */
1938 /* Called uner rcu_read_lock() */
1939 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1940               struct net_device *dev, struct sk_buff *skb,
1941               struct mfc_cache *c, int local)
1942 {
1943     int true_vifi = ipmr_find_vif(mrt, dev);
1944     int psend = -1;
1945     int vif, ct;
1946 
1947     vif = c->_c.mfc_parent;
1948     c->_c.mfc_un.res.pkt++;
1949     c->_c.mfc_un.res.bytes += skb->len;
1950     c->_c.mfc_un.res.lastuse = jiffies;
1951 
1952     if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1953         struct mfc_cache *cache_proxy;
1954 
1955         /* For an (*,G) entry, we only check that the incoming
1956          * interface is part of the static tree.
1957          */
1958         cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1959         if (cache_proxy &&
1960             cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1961             goto forward;
1962     }
1963 
1964     /* Wrong interface: drop packet and (maybe) send PIM assert. */
1965     if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
1966         if (rt_is_output_route(skb_rtable(skb))) {
1967             /* It is our own packet, looped back.
1968              * Very complicated situation...
1969              *
1970              * The best workaround until routing daemons will be
1971              * fixed is not to redistribute packet, if it was
1972              * send through wrong interface. It means, that
1973              * multicast applications WILL NOT work for
1974              * (S,G), which have default multicast route pointing
1975              * to wrong oif. In any case, it is not a good
1976              * idea to use multicasting applications on router.
1977              */
1978             goto dont_forward;
1979         }
1980 
1981         c->_c.mfc_un.res.wrong_if++;
1982 
1983         if (true_vifi >= 0 && mrt->mroute_do_assert &&
1984             /* pimsm uses asserts, when switching from RPT to SPT,
1985              * so that we cannot check that packet arrived on an oif.
1986              * It is bad, but otherwise we would need to move pretty
1987              * large chunk of pimd to kernel. Ough... --ANK
1988              */
1989             (mrt->mroute_do_pim ||
1990              c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
1991             time_after(jiffies,
1992                    c->_c.mfc_un.res.last_assert +
1993                    MFC_ASSERT_THRESH)) {
1994             c->_c.mfc_un.res.last_assert = jiffies;
1995             ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1996             if (mrt->mroute_do_wrvifwhole)
1997                 ipmr_cache_report(mrt, skb, true_vifi,
1998                           IGMPMSG_WRVIFWHOLE);
1999         }
2000         goto dont_forward;
2001     }
2002 
2003 forward:
2004     WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2005            mrt->vif_table[vif].pkt_in + 1);
2006     WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2007            mrt->vif_table[vif].bytes_in + skb->len);
2008 
2009     /* Forward the frame */
2010     if (c->mfc_origin == htonl(INADDR_ANY) &&
2011         c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2012         if (true_vifi >= 0 &&
2013             true_vifi != c->_c.mfc_parent &&
2014             ip_hdr(skb)->ttl >
2015                 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2016             /* It's an (*,*) entry and the packet is not coming from
2017              * the upstream: forward the packet to the upstream
2018              * only.
2019              */
2020             psend = c->_c.mfc_parent;
2021             goto last_forward;
2022         }
2023         goto dont_forward;
2024     }
2025     for (ct = c->_c.mfc_un.res.maxvif - 1;
2026          ct >= c->_c.mfc_un.res.minvif; ct--) {
2027         /* For (*,G) entry, don't forward to the incoming interface */
2028         if ((c->mfc_origin != htonl(INADDR_ANY) ||
2029              ct != true_vifi) &&
2030             ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2031             if (psend != -1) {
2032                 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2033 
2034                 if (skb2)
2035                     ipmr_queue_xmit(net, mrt, true_vifi,
2036                             skb2, psend);
2037             }
2038             psend = ct;
2039         }
2040     }
2041 last_forward:
2042     if (psend != -1) {
2043         if (local) {
2044             struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2045 
2046             if (skb2)
2047                 ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2048                         psend);
2049         } else {
2050             ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2051             return;
2052         }
2053     }
2054 
2055 dont_forward:
2056     if (!local)
2057         kfree_skb(skb);
2058 }
2059 
2060 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2061 {
2062     struct rtable *rt = skb_rtable(skb);
2063     struct iphdr *iph = ip_hdr(skb);
2064     struct flowi4 fl4 = {
2065         .daddr = iph->daddr,
2066         .saddr = iph->saddr,
2067         .flowi4_tos = RT_TOS(iph->tos),
2068         .flowi4_oif = (rt_is_output_route(rt) ?
2069                    skb->dev->ifindex : 0),
2070         .flowi4_iif = (rt_is_output_route(rt) ?
2071                    LOOPBACK_IFINDEX :
2072                    skb->dev->ifindex),
2073         .flowi4_mark = skb->mark,
2074     };
2075     struct mr_table *mrt;
2076     int err;
2077 
2078     err = ipmr_fib_lookup(net, &fl4, &mrt);
2079     if (err)
2080         return ERR_PTR(err);
2081     return mrt;
2082 }
2083 
2084 /* Multicast packets for forwarding arrive here
2085  * Called with rcu_read_lock();
2086  */
2087 int ip_mr_input(struct sk_buff *skb)
2088 {
2089     struct mfc_cache *cache;
2090     struct net *net = dev_net(skb->dev);
2091     int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2092     struct mr_table *mrt;
2093     struct net_device *dev;
2094 
2095     /* skb->dev passed in is the loX master dev for vrfs.
2096      * As there are no vifs associated with loopback devices,
2097      * get the proper interface that does have a vif associated with it.
2098      */
2099     dev = skb->dev;
2100     if (netif_is_l3_master(skb->dev)) {
2101         dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2102         if (!dev) {
2103             kfree_skb(skb);
2104             return -ENODEV;
2105         }
2106     }
2107 
2108     /* Packet is looped back after forward, it should not be
2109      * forwarded second time, but still can be delivered locally.
2110      */
2111     if (IPCB(skb)->flags & IPSKB_FORWARDED)
2112         goto dont_forward;
2113 
2114     mrt = ipmr_rt_fib_lookup(net, skb);
2115     if (IS_ERR(mrt)) {
2116         kfree_skb(skb);
2117         return PTR_ERR(mrt);
2118     }
2119     if (!local) {
2120         if (IPCB(skb)->opt.router_alert) {
2121             if (ip_call_ra_chain(skb))
2122                 return 0;
2123         } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2124             /* IGMPv1 (and broken IGMPv2 implementations sort of
2125              * Cisco IOS <= 11.2(8)) do not put router alert
2126              * option to IGMP packets destined to routable
2127              * groups. It is very bad, because it means
2128              * that we can forward NO IGMP messages.
2129              */
2130             struct sock *mroute_sk;
2131 
2132             mroute_sk = rcu_dereference(mrt->mroute_sk);
2133             if (mroute_sk) {
2134                 nf_reset_ct(skb);
2135                 raw_rcv(mroute_sk, skb);
2136                 return 0;
2137             }
2138         }
2139     }
2140 
2141     /* already under rcu_read_lock() */
2142     cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2143     if (!cache) {
2144         int vif = ipmr_find_vif(mrt, dev);
2145 
2146         if (vif >= 0)
2147             cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2148                             vif);
2149     }
2150 
2151     /* No usable cache entry */
2152     if (!cache) {
2153         int vif;
2154 
2155         if (local) {
2156             struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2157             ip_local_deliver(skb);
2158             if (!skb2)
2159                 return -ENOBUFS;
2160             skb = skb2;
2161         }
2162 
2163         vif = ipmr_find_vif(mrt, dev);
2164         if (vif >= 0)
2165             return ipmr_cache_unresolved(mrt, vif, skb, dev);
2166         kfree_skb(skb);
2167         return -ENODEV;
2168     }
2169 
2170     ip_mr_forward(net, mrt, dev, skb, cache, local);
2171 
2172     if (local)
2173         return ip_local_deliver(skb);
2174 
2175     return 0;
2176 
2177 dont_forward:
2178     if (local)
2179         return ip_local_deliver(skb);
2180     kfree_skb(skb);
2181     return 0;
2182 }
2183 
2184 #ifdef CONFIG_IP_PIMSM_V1
2185 /* Handle IGMP messages of PIMv1 */
2186 int pim_rcv_v1(struct sk_buff *skb)
2187 {
2188     struct igmphdr *pim;
2189     struct net *net = dev_net(skb->dev);
2190     struct mr_table *mrt;
2191 
2192     if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2193         goto drop;
2194 
2195     pim = igmp_hdr(skb);
2196 
2197     mrt = ipmr_rt_fib_lookup(net, skb);
2198     if (IS_ERR(mrt))
2199         goto drop;
2200     if (!mrt->mroute_do_pim ||
2201         pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2202         goto drop;
2203 
2204     if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2205 drop:
2206         kfree_skb(skb);
2207     }
2208     return 0;
2209 }
2210 #endif
2211 
2212 #ifdef CONFIG_IP_PIMSM_V2
2213 static int pim_rcv(struct sk_buff *skb)
2214 {
2215     struct pimreghdr *pim;
2216     struct net *net = dev_net(skb->dev);
2217     struct mr_table *mrt;
2218 
2219     if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2220         goto drop;
2221 
2222     pim = (struct pimreghdr *)skb_transport_header(skb);
2223     if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2224         (pim->flags & PIM_NULL_REGISTER) ||
2225         (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2226          csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2227         goto drop;
2228 
2229     mrt = ipmr_rt_fib_lookup(net, skb);
2230     if (IS_ERR(mrt))
2231         goto drop;
2232     if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2233 drop:
2234         kfree_skb(skb);
2235     }
2236     return 0;
2237 }
2238 #endif
2239 
2240 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2241            __be32 saddr, __be32 daddr,
2242            struct rtmsg *rtm, u32 portid)
2243 {
2244     struct mfc_cache *cache;
2245     struct mr_table *mrt;
2246     int err;
2247 
2248     mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2249     if (!mrt)
2250         return -ENOENT;
2251 
2252     rcu_read_lock();
2253     cache = ipmr_cache_find(mrt, saddr, daddr);
2254     if (!cache && skb->dev) {
2255         int vif = ipmr_find_vif(mrt, skb->dev);
2256 
2257         if (vif >= 0)
2258             cache = ipmr_cache_find_any(mrt, daddr, vif);
2259     }
2260     if (!cache) {
2261         struct sk_buff *skb2;
2262         struct iphdr *iph;
2263         struct net_device *dev;
2264         int vif = -1;
2265 
2266         dev = skb->dev;
2267         if (dev)
2268             vif = ipmr_find_vif(mrt, dev);
2269         if (vif < 0) {
2270             rcu_read_unlock();
2271             return -ENODEV;
2272         }
2273 
2274         skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2275         if (!skb2) {
2276             rcu_read_unlock();
2277             return -ENOMEM;
2278         }
2279 
2280         NETLINK_CB(skb2).portid = portid;
2281         skb_push(skb2, sizeof(struct iphdr));
2282         skb_reset_network_header(skb2);
2283         iph = ip_hdr(skb2);
2284         iph->ihl = sizeof(struct iphdr) >> 2;
2285         iph->saddr = saddr;
2286         iph->daddr = daddr;
2287         iph->version = 0;
2288         err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2289         rcu_read_unlock();
2290         return err;
2291     }
2292 
2293     err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2294     rcu_read_unlock();
2295     return err;
2296 }
2297 
2298 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2299                 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2300                 int flags)
2301 {
2302     struct nlmsghdr *nlh;
2303     struct rtmsg *rtm;
2304     int err;
2305 
2306     nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2307     if (!nlh)
2308         return -EMSGSIZE;
2309 
2310     rtm = nlmsg_data(nlh);
2311     rtm->rtm_family   = RTNL_FAMILY_IPMR;
2312     rtm->rtm_dst_len  = 32;
2313     rtm->rtm_src_len  = 32;
2314     rtm->rtm_tos      = 0;
2315     rtm->rtm_table    = mrt->id;
2316     if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2317         goto nla_put_failure;
2318     rtm->rtm_type     = RTN_MULTICAST;
2319     rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2320     if (c->_c.mfc_flags & MFC_STATIC)
2321         rtm->rtm_protocol = RTPROT_STATIC;
2322     else
2323         rtm->rtm_protocol = RTPROT_MROUTED;
2324     rtm->rtm_flags    = 0;
2325 
2326     if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2327         nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2328         goto nla_put_failure;
2329     err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2330     /* do not break the dump if cache is unresolved */
2331     if (err < 0 && err != -ENOENT)
2332         goto nla_put_failure;
2333 
2334     nlmsg_end(skb, nlh);
2335     return 0;
2336 
2337 nla_put_failure:
2338     nlmsg_cancel(skb, nlh);
2339     return -EMSGSIZE;
2340 }
2341 
2342 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2343                  u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2344                  int flags)
2345 {
2346     return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2347                 cmd, flags);
2348 }
2349 
2350 static size_t mroute_msgsize(bool unresolved, int maxvif)
2351 {
2352     size_t len =
2353         NLMSG_ALIGN(sizeof(struct rtmsg))
2354         + nla_total_size(4) /* RTA_TABLE */
2355         + nla_total_size(4) /* RTA_SRC */
2356         + nla_total_size(4) /* RTA_DST */
2357         ;
2358 
2359     if (!unresolved)
2360         len = len
2361               + nla_total_size(4)   /* RTA_IIF */
2362               + nla_total_size(0)   /* RTA_MULTIPATH */
2363               + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2364                         /* RTA_MFC_STATS */
2365               + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2366         ;
2367 
2368     return len;
2369 }
2370 
2371 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2372                  int cmd)
2373 {
2374     struct net *net = read_pnet(&mrt->net);
2375     struct sk_buff *skb;
2376     int err = -ENOBUFS;
2377 
2378     skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2379                        mrt->maxvif),
2380             GFP_ATOMIC);
2381     if (!skb)
2382         goto errout;
2383 
2384     err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2385     if (err < 0)
2386         goto errout;
2387 
2388     rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2389     return;
2390 
2391 errout:
2392     kfree_skb(skb);
2393     if (err < 0)
2394         rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2395 }
2396 
2397 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2398 {
2399     size_t len =
2400         NLMSG_ALIGN(sizeof(struct rtgenmsg))
2401         + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
2402         + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
2403         + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
2404         + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
2405         + nla_total_size(4) /* IPMRA_CREPORT_TABLE */
2406                     /* IPMRA_CREPORT_PKT */
2407         + nla_total_size(payloadlen)
2408         ;
2409 
2410     return len;
2411 }
2412 
2413 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2414 {
2415     struct net *net = read_pnet(&mrt->net);
2416     struct nlmsghdr *nlh;
2417     struct rtgenmsg *rtgenm;
2418     struct igmpmsg *msg;
2419     struct sk_buff *skb;
2420     struct nlattr *nla;
2421     int payloadlen;
2422 
2423     payloadlen = pkt->len - sizeof(struct igmpmsg);
2424     msg = (struct igmpmsg *)skb_network_header(pkt);
2425 
2426     skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2427     if (!skb)
2428         goto errout;
2429 
2430     nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2431             sizeof(struct rtgenmsg), 0);
2432     if (!nlh)
2433         goto errout;
2434     rtgenm = nlmsg_data(nlh);
2435     rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2436     if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2437         nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2438         nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2439                 msg->im_src.s_addr) ||
2440         nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2441                 msg->im_dst.s_addr) ||
2442         nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2443         goto nla_put_failure;
2444 
2445     nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2446     if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2447                   nla_data(nla), payloadlen))
2448         goto nla_put_failure;
2449 
2450     nlmsg_end(skb, nlh);
2451 
2452     rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2453     return;
2454 
2455 nla_put_failure:
2456     nlmsg_cancel(skb, nlh);
2457 errout:
2458     kfree_skb(skb);
2459     rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2460 }
2461 
2462 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2463                        const struct nlmsghdr *nlh,
2464                        struct nlattr **tb,
2465                        struct netlink_ext_ack *extack)
2466 {
2467     struct rtmsg *rtm;
2468     int i, err;
2469 
2470     if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2471         NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2472         return -EINVAL;
2473     }
2474 
2475     if (!netlink_strict_get_check(skb))
2476         return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2477                           rtm_ipv4_policy, extack);
2478 
2479     rtm = nlmsg_data(nlh);
2480     if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2481         (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2482         rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2483         rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2484         NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2485         return -EINVAL;
2486     }
2487 
2488     err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2489                         rtm_ipv4_policy, extack);
2490     if (err)
2491         return err;
2492 
2493     if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2494         (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2495         NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2496         return -EINVAL;
2497     }
2498 
2499     for (i = 0; i <= RTA_MAX; i++) {
2500         if (!tb[i])
2501             continue;
2502 
2503         switch (i) {
2504         case RTA_SRC:
2505         case RTA_DST:
2506         case RTA_TABLE:
2507             break;
2508         default:
2509             NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2510             return -EINVAL;
2511         }
2512     }
2513 
2514     return 0;
2515 }
2516 
2517 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2518                  struct netlink_ext_ack *extack)
2519 {
2520     struct net *net = sock_net(in_skb->sk);
2521     struct nlattr *tb[RTA_MAX + 1];
2522     struct sk_buff *skb = NULL;
2523     struct mfc_cache *cache;
2524     struct mr_table *mrt;
2525     __be32 src, grp;
2526     u32 tableid;
2527     int err;
2528 
2529     err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2530     if (err < 0)
2531         goto errout;
2532 
2533     src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2534     grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2535     tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2536 
2537     mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2538     if (!mrt) {
2539         err = -ENOENT;
2540         goto errout_free;
2541     }
2542 
2543     /* entries are added/deleted only under RTNL */
2544     rcu_read_lock();
2545     cache = ipmr_cache_find(mrt, src, grp);
2546     rcu_read_unlock();
2547     if (!cache) {
2548         err = -ENOENT;
2549         goto errout_free;
2550     }
2551 
2552     skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2553     if (!skb) {
2554         err = -ENOBUFS;
2555         goto errout_free;
2556     }
2557 
2558     err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2559                    nlh->nlmsg_seq, cache,
2560                    RTM_NEWROUTE, 0);
2561     if (err < 0)
2562         goto errout_free;
2563 
2564     err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2565 
2566 errout:
2567     return err;
2568 
2569 errout_free:
2570     kfree_skb(skb);
2571     goto errout;
2572 }
2573 
2574 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2575 {
2576     struct fib_dump_filter filter = {};
2577     int err;
2578 
2579     if (cb->strict_check) {
2580         err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2581                         &filter, cb);
2582         if (err < 0)
2583             return err;
2584     }
2585 
2586     if (filter.table_id) {
2587         struct mr_table *mrt;
2588 
2589         mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id);
2590         if (!mrt) {
2591             if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2592                 return skb->len;
2593 
2594             NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2595             return -ENOENT;
2596         }
2597         err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2598                     &mfc_unres_lock, &filter);
2599         return skb->len ? : err;
2600     }
2601 
2602     return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2603                 _ipmr_fill_mroute, &mfc_unres_lock, &filter);
2604 }
2605 
2606 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2607     [RTA_SRC]   = { .type = NLA_U32 },
2608     [RTA_DST]   = { .type = NLA_U32 },
2609     [RTA_IIF]   = { .type = NLA_U32 },
2610     [RTA_TABLE] = { .type = NLA_U32 },
2611     [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2612 };
2613 
2614 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2615 {
2616     switch (rtm_protocol) {
2617     case RTPROT_STATIC:
2618     case RTPROT_MROUTED:
2619         return true;
2620     }
2621     return false;
2622 }
2623 
2624 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2625 {
2626     struct rtnexthop *rtnh = nla_data(nla);
2627     int remaining = nla_len(nla), vifi = 0;
2628 
2629     while (rtnh_ok(rtnh, remaining)) {
2630         mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2631         if (++vifi == MAXVIFS)
2632             break;
2633         rtnh = rtnh_next(rtnh, &remaining);
2634     }
2635 
2636     return remaining > 0 ? -EINVAL : vifi;
2637 }
2638 
2639 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2640 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2641                 struct mfcctl *mfcc, int *mrtsock,
2642                 struct mr_table **mrtret,
2643                 struct netlink_ext_ack *extack)
2644 {
2645     struct net_device *dev = NULL;
2646     u32 tblid = RT_TABLE_DEFAULT;
2647     struct mr_table *mrt;
2648     struct nlattr *attr;
2649     struct rtmsg *rtm;
2650     int ret, rem;
2651 
2652     ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2653                     rtm_ipmr_policy, extack);
2654     if (ret < 0)
2655         goto out;
2656     rtm = nlmsg_data(nlh);
2657 
2658     ret = -EINVAL;
2659     if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2660         rtm->rtm_type != RTN_MULTICAST ||
2661         rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2662         !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2663         goto out;
2664 
2665     memset(mfcc, 0, sizeof(*mfcc));
2666     mfcc->mfcc_parent = -1;
2667     ret = 0;
2668     nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2669         switch (nla_type(attr)) {
2670         case RTA_SRC:
2671             mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2672             break;
2673         case RTA_DST:
2674             mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2675             break;
2676         case RTA_IIF:
2677             dev = __dev_get_by_index(net, nla_get_u32(attr));
2678             if (!dev) {
2679                 ret = -ENODEV;
2680                 goto out;
2681             }
2682             break;
2683         case RTA_MULTIPATH:
2684             if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2685                 ret = -EINVAL;
2686                 goto out;
2687             }
2688             break;
2689         case RTA_PREFSRC:
2690             ret = 1;
2691             break;
2692         case RTA_TABLE:
2693             tblid = nla_get_u32(attr);
2694             break;
2695         }
2696     }
2697     mrt = ipmr_get_table(net, tblid);
2698     if (!mrt) {
2699         ret = -ENOENT;
2700         goto out;
2701     }
2702     *mrtret = mrt;
2703     *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2704     if (dev)
2705         mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2706 
2707 out:
2708     return ret;
2709 }
2710 
2711 /* takes care of both newroute and delroute */
2712 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2713               struct netlink_ext_ack *extack)
2714 {
2715     struct net *net = sock_net(skb->sk);
2716     int ret, mrtsock, parent;
2717     struct mr_table *tbl;
2718     struct mfcctl mfcc;
2719 
2720     mrtsock = 0;
2721     tbl = NULL;
2722     ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2723     if (ret < 0)
2724         return ret;
2725 
2726     parent = ret ? mfcc.mfcc_parent : -1;
2727     if (nlh->nlmsg_type == RTM_NEWROUTE)
2728         return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2729     else
2730         return ipmr_mfc_delete(tbl, &mfcc, parent);
2731 }
2732 
2733 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2734 {
2735     u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2736 
2737     if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2738         nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2739         nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2740             mrt->mroute_reg_vif_num) ||
2741         nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2742                mrt->mroute_do_assert) ||
2743         nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2744         nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2745                mrt->mroute_do_wrvifwhole))
2746         return false;
2747 
2748     return true;
2749 }
2750 
2751 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2752 {
2753     struct net_device *vif_dev;
2754     struct nlattr *vif_nest;
2755     struct vif_device *vif;
2756 
2757     vif = &mrt->vif_table[vifid];
2758     vif_dev = rtnl_dereference(vif->dev);
2759     /* if the VIF doesn't exist just continue */
2760     if (!vif_dev)
2761         return true;
2762 
2763     vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2764     if (!vif_nest)
2765         return false;
2766 
2767     if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2768         nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2769         nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2770         nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2771                   IPMRA_VIFA_PAD) ||
2772         nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2773                   IPMRA_VIFA_PAD) ||
2774         nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2775                   IPMRA_VIFA_PAD) ||
2776         nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2777                   IPMRA_VIFA_PAD) ||
2778         nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2779         nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2780         nla_nest_cancel(skb, vif_nest);
2781         return false;
2782     }
2783     nla_nest_end(skb, vif_nest);
2784 
2785     return true;
2786 }
2787 
2788 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2789                    struct netlink_ext_ack *extack)
2790 {
2791     struct ifinfomsg *ifm;
2792 
2793     if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2794         NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2795         return -EINVAL;
2796     }
2797 
2798     if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2799         NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2800         return -EINVAL;
2801     }
2802 
2803     ifm = nlmsg_data(nlh);
2804     if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2805         ifm->ifi_change || ifm->ifi_index) {
2806         NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2807         return -EINVAL;
2808     }
2809 
2810     return 0;
2811 }
2812 
2813 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2814 {
2815     struct net *net = sock_net(skb->sk);
2816     struct nlmsghdr *nlh = NULL;
2817     unsigned int t = 0, s_t;
2818     unsigned int e = 0, s_e;
2819     struct mr_table *mrt;
2820 
2821     if (cb->strict_check) {
2822         int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2823 
2824         if (err < 0)
2825             return err;
2826     }
2827 
2828     s_t = cb->args[0];
2829     s_e = cb->args[1];
2830 
2831     ipmr_for_each_table(mrt, net) {
2832         struct nlattr *vifs, *af;
2833         struct ifinfomsg *hdr;
2834         u32 i;
2835 
2836         if (t < s_t)
2837             goto skip_table;
2838         nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2839                 cb->nlh->nlmsg_seq, RTM_NEWLINK,
2840                 sizeof(*hdr), NLM_F_MULTI);
2841         if (!nlh)
2842             break;
2843 
2844         hdr = nlmsg_data(nlh);
2845         memset(hdr, 0, sizeof(*hdr));
2846         hdr->ifi_family = RTNL_FAMILY_IPMR;
2847 
2848         af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2849         if (!af) {
2850             nlmsg_cancel(skb, nlh);
2851             goto out;
2852         }
2853 
2854         if (!ipmr_fill_table(mrt, skb)) {
2855             nlmsg_cancel(skb, nlh);
2856             goto out;
2857         }
2858 
2859         vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2860         if (!vifs) {
2861             nla_nest_end(skb, af);
2862             nlmsg_end(skb, nlh);
2863             goto out;
2864         }
2865         for (i = 0; i < mrt->maxvif; i++) {
2866             if (e < s_e)
2867                 goto skip_entry;
2868             if (!ipmr_fill_vif(mrt, i, skb)) {
2869                 nla_nest_end(skb, vifs);
2870                 nla_nest_end(skb, af);
2871                 nlmsg_end(skb, nlh);
2872                 goto out;
2873             }
2874 skip_entry:
2875             e++;
2876         }
2877         s_e = 0;
2878         e = 0;
2879         nla_nest_end(skb, vifs);
2880         nla_nest_end(skb, af);
2881         nlmsg_end(skb, nlh);
2882 skip_table:
2883         t++;
2884     }
2885 
2886 out:
2887     cb->args[1] = e;
2888     cb->args[0] = t;
2889 
2890     return skb->len;
2891 }
2892 
2893 #ifdef CONFIG_PROC_FS
2894 /* The /proc interfaces to multicast routing :
2895  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2896  */
2897 
2898 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2899     __acquires(RCU)
2900 {
2901     struct mr_vif_iter *iter = seq->private;
2902     struct net *net = seq_file_net(seq);
2903     struct mr_table *mrt;
2904 
2905     mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2906     if (!mrt)
2907         return ERR_PTR(-ENOENT);
2908 
2909     iter->mrt = mrt;
2910 
2911     rcu_read_lock();
2912     return mr_vif_seq_start(seq, pos);
2913 }
2914 
2915 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2916     __releases(RCU)
2917 {
2918     rcu_read_unlock();
2919 }
2920 
2921 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2922 {
2923     struct mr_vif_iter *iter = seq->private;
2924     struct mr_table *mrt = iter->mrt;
2925 
2926     if (v == SEQ_START_TOKEN) {
2927         seq_puts(seq,
2928              "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2929     } else {
2930         const struct vif_device *vif = v;
2931         const struct net_device *vif_dev;
2932         const char *name;
2933 
2934         vif_dev = vif_dev_read(vif);
2935         name = vif_dev ? vif_dev->name : "none";
2936         seq_printf(seq,
2937                "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2938                vif - mrt->vif_table,
2939                name, vif->bytes_in, vif->pkt_in,
2940                vif->bytes_out, vif->pkt_out,
2941                vif->flags, vif->local, vif->remote);
2942     }
2943     return 0;
2944 }
2945 
2946 static const struct seq_operations ipmr_vif_seq_ops = {
2947     .start = ipmr_vif_seq_start,
2948     .next  = mr_vif_seq_next,
2949     .stop  = ipmr_vif_seq_stop,
2950     .show  = ipmr_vif_seq_show,
2951 };
2952 
2953 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2954 {
2955     struct net *net = seq_file_net(seq);
2956     struct mr_table *mrt;
2957 
2958     mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2959     if (!mrt)
2960         return ERR_PTR(-ENOENT);
2961 
2962     return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2963 }
2964 
2965 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2966 {
2967     int n;
2968 
2969     if (v == SEQ_START_TOKEN) {
2970         seq_puts(seq,
2971          "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2972     } else {
2973         const struct mfc_cache *mfc = v;
2974         const struct mr_mfc_iter *it = seq->private;
2975         const struct mr_table *mrt = it->mrt;
2976 
2977         seq_printf(seq, "%08X %08X %-3hd",
2978                (__force u32) mfc->mfc_mcastgrp,
2979                (__force u32) mfc->mfc_origin,
2980                mfc->_c.mfc_parent);
2981 
2982         if (it->cache != &mrt->mfc_unres_queue) {
2983             seq_printf(seq, " %8lu %8lu %8lu",
2984                    mfc->_c.mfc_un.res.pkt,
2985                    mfc->_c.mfc_un.res.bytes,
2986                    mfc->_c.mfc_un.res.wrong_if);
2987             for (n = mfc->_c.mfc_un.res.minvif;
2988                  n < mfc->_c.mfc_un.res.maxvif; n++) {
2989                 if (VIF_EXISTS(mrt, n) &&
2990                     mfc->_c.mfc_un.res.ttls[n] < 255)
2991                     seq_printf(seq,
2992                        " %2d:%-3d",
2993                        n, mfc->_c.mfc_un.res.ttls[n]);
2994             }
2995         } else {
2996             /* unresolved mfc_caches don't contain
2997              * pkt, bytes and wrong_if values
2998              */
2999             seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3000         }
3001         seq_putc(seq, '\n');
3002     }
3003     return 0;
3004 }
3005 
3006 static const struct seq_operations ipmr_mfc_seq_ops = {
3007     .start = ipmr_mfc_seq_start,
3008     .next  = mr_mfc_seq_next,
3009     .stop  = mr_mfc_seq_stop,
3010     .show  = ipmr_mfc_seq_show,
3011 };
3012 #endif
3013 
3014 #ifdef CONFIG_IP_PIMSM_V2
3015 static const struct net_protocol pim_protocol = {
3016     .handler    =   pim_rcv,
3017 };
3018 #endif
3019 
3020 static unsigned int ipmr_seq_read(struct net *net)
3021 {
3022     ASSERT_RTNL();
3023 
3024     return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3025 }
3026 
3027 static int ipmr_dump(struct net *net, struct notifier_block *nb,
3028              struct netlink_ext_ack *extack)
3029 {
3030     return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3031                ipmr_mr_table_iter, extack);
3032 }
3033 
3034 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3035     .family     = RTNL_FAMILY_IPMR,
3036     .fib_seq_read   = ipmr_seq_read,
3037     .fib_dump   = ipmr_dump,
3038     .owner      = THIS_MODULE,
3039 };
3040 
3041 static int __net_init ipmr_notifier_init(struct net *net)
3042 {
3043     struct fib_notifier_ops *ops;
3044 
3045     net->ipv4.ipmr_seq = 0;
3046 
3047     ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3048     if (IS_ERR(ops))
3049         return PTR_ERR(ops);
3050     net->ipv4.ipmr_notifier_ops = ops;
3051 
3052     return 0;
3053 }
3054 
3055 static void __net_exit ipmr_notifier_exit(struct net *net)
3056 {
3057     fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3058     net->ipv4.ipmr_notifier_ops = NULL;
3059 }
3060 
3061 /* Setup for IP multicast routing */
3062 static int __net_init ipmr_net_init(struct net *net)
3063 {
3064     int err;
3065 
3066     err = ipmr_notifier_init(net);
3067     if (err)
3068         goto ipmr_notifier_fail;
3069 
3070     err = ipmr_rules_init(net);
3071     if (err < 0)
3072         goto ipmr_rules_fail;
3073 
3074 #ifdef CONFIG_PROC_FS
3075     err = -ENOMEM;
3076     if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3077             sizeof(struct mr_vif_iter)))
3078         goto proc_vif_fail;
3079     if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3080             sizeof(struct mr_mfc_iter)))
3081         goto proc_cache_fail;
3082 #endif
3083     return 0;
3084 
3085 #ifdef CONFIG_PROC_FS
3086 proc_cache_fail:
3087     remove_proc_entry("ip_mr_vif", net->proc_net);
3088 proc_vif_fail:
3089     rtnl_lock();
3090     ipmr_rules_exit(net);
3091     rtnl_unlock();
3092 #endif
3093 ipmr_rules_fail:
3094     ipmr_notifier_exit(net);
3095 ipmr_notifier_fail:
3096     return err;
3097 }
3098 
3099 static void __net_exit ipmr_net_exit(struct net *net)
3100 {
3101 #ifdef CONFIG_PROC_FS
3102     remove_proc_entry("ip_mr_cache", net->proc_net);
3103     remove_proc_entry("ip_mr_vif", net->proc_net);
3104 #endif
3105     ipmr_notifier_exit(net);
3106 }
3107 
3108 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3109 {
3110     struct net *net;
3111 
3112     rtnl_lock();
3113     list_for_each_entry(net, net_list, exit_list)
3114         ipmr_rules_exit(net);
3115     rtnl_unlock();
3116 }
3117 
3118 static struct pernet_operations ipmr_net_ops = {
3119     .init = ipmr_net_init,
3120     .exit = ipmr_net_exit,
3121     .exit_batch = ipmr_net_exit_batch,
3122 };
3123 
3124 int __init ip_mr_init(void)
3125 {
3126     int err;
3127 
3128     mrt_cachep = kmem_cache_create("ip_mrt_cache",
3129                        sizeof(struct mfc_cache),
3130                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3131                        NULL);
3132 
3133     err = register_pernet_subsys(&ipmr_net_ops);
3134     if (err)
3135         goto reg_pernet_fail;
3136 
3137     err = register_netdevice_notifier(&ip_mr_notifier);
3138     if (err)
3139         goto reg_notif_fail;
3140 #ifdef CONFIG_IP_PIMSM_V2
3141     if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3142         pr_err("%s: can't add PIM protocol\n", __func__);
3143         err = -EAGAIN;
3144         goto add_proto_fail;
3145     }
3146 #endif
3147     rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3148               ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3149     rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3150               ipmr_rtm_route, NULL, 0);
3151     rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3152               ipmr_rtm_route, NULL, 0);
3153 
3154     rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3155               NULL, ipmr_rtm_dumplink, 0);
3156     return 0;
3157 
3158 #ifdef CONFIG_IP_PIMSM_V2
3159 add_proto_fail:
3160     unregister_netdevice_notifier(&ip_mr_notifier);
3161 #endif
3162 reg_notif_fail:
3163     unregister_pernet_subsys(&ipmr_net_ops);
3164 reg_pernet_fail:
3165     kmem_cache_destroy(mrt_cachep);
3166     return err;
3167 }