Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  *
0004  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
0005  *     & Swedish University of Agricultural Sciences.
0006  *
0007  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
0008  *     Agricultural Sciences.
0009  *
0010  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
0011  *
0012  * This work is based on the LPC-trie which is originally described in:
0013  *
0014  * An experimental study of compression methods for dynamic tries
0015  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
0016  * https://www.csc.kth.se/~snilsson/software/dyntrie2/
0017  *
0018  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
0019  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
0020  *
0021  * Code from fib_hash has been reused which includes the following header:
0022  *
0023  * INET     An implementation of the TCP/IP protocol suite for the LINUX
0024  *      operating system.  INET is implemented using the  BSD Socket
0025  *      interface as the means of communication with the user level.
0026  *
0027  *      IPv4 FIB: lookup engine and maintenance routines.
0028  *
0029  * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
0030  *
0031  * Substantial contributions to this work comes from:
0032  *
0033  *      David S. Miller, <davem@davemloft.net>
0034  *      Stephen Hemminger <shemminger@osdl.org>
0035  *      Paul E. McKenney <paulmck@us.ibm.com>
0036  *      Patrick McHardy <kaber@trash.net>
0037  */
0038 #include <linux/cache.h>
0039 #include <linux/uaccess.h>
0040 #include <linux/bitops.h>
0041 #include <linux/types.h>
0042 #include <linux/kernel.h>
0043 #include <linux/mm.h>
0044 #include <linux/string.h>
0045 #include <linux/socket.h>
0046 #include <linux/sockios.h>
0047 #include <linux/errno.h>
0048 #include <linux/in.h>
0049 #include <linux/inet.h>
0050 #include <linux/inetdevice.h>
0051 #include <linux/netdevice.h>
0052 #include <linux/if_arp.h>
0053 #include <linux/proc_fs.h>
0054 #include <linux/rcupdate.h>
0055 #include <linux/skbuff.h>
0056 #include <linux/netlink.h>
0057 #include <linux/init.h>
0058 #include <linux/list.h>
0059 #include <linux/slab.h>
0060 #include <linux/export.h>
0061 #include <linux/vmalloc.h>
0062 #include <linux/notifier.h>
0063 #include <net/net_namespace.h>
0064 #include <net/inet_dscp.h>
0065 #include <net/ip.h>
0066 #include <net/protocol.h>
0067 #include <net/route.h>
0068 #include <net/tcp.h>
0069 #include <net/sock.h>
0070 #include <net/ip_fib.h>
0071 #include <net/fib_notifier.h>
0072 #include <trace/events/fib.h>
0073 #include "fib_lookup.h"
0074 
0075 static int call_fib_entry_notifier(struct notifier_block *nb,
0076                    enum fib_event_type event_type, u32 dst,
0077                    int dst_len, struct fib_alias *fa,
0078                    struct netlink_ext_ack *extack)
0079 {
0080     struct fib_entry_notifier_info info = {
0081         .info.extack = extack,
0082         .dst = dst,
0083         .dst_len = dst_len,
0084         .fi = fa->fa_info,
0085         .dscp = fa->fa_dscp,
0086         .type = fa->fa_type,
0087         .tb_id = fa->tb_id,
0088     };
0089     return call_fib4_notifier(nb, event_type, &info.info);
0090 }
0091 
0092 static int call_fib_entry_notifiers(struct net *net,
0093                     enum fib_event_type event_type, u32 dst,
0094                     int dst_len, struct fib_alias *fa,
0095                     struct netlink_ext_ack *extack)
0096 {
0097     struct fib_entry_notifier_info info = {
0098         .info.extack = extack,
0099         .dst = dst,
0100         .dst_len = dst_len,
0101         .fi = fa->fa_info,
0102         .dscp = fa->fa_dscp,
0103         .type = fa->fa_type,
0104         .tb_id = fa->tb_id,
0105     };
0106     return call_fib4_notifiers(net, event_type, &info.info);
0107 }
0108 
0109 #define MAX_STAT_DEPTH 32
0110 
0111 #define KEYLENGTH   (8*sizeof(t_key))
0112 #define KEY_MAX     ((t_key)~0)
0113 
0114 typedef unsigned int t_key;
0115 
0116 #define IS_TRIE(n)  ((n)->pos >= KEYLENGTH)
0117 #define IS_TNODE(n) ((n)->bits)
0118 #define IS_LEAF(n)  (!(n)->bits)
0119 
0120 struct key_vector {
0121     t_key key;
0122     unsigned char pos;      /* 2log(KEYLENGTH) bits needed */
0123     unsigned char bits;     /* 2log(KEYLENGTH) bits needed */
0124     unsigned char slen;
0125     union {
0126         /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
0127         struct hlist_head leaf;
0128         /* This array is valid if (pos | bits) > 0 (TNODE) */
0129         struct key_vector __rcu *tnode[0];
0130     };
0131 };
0132 
0133 struct tnode {
0134     struct rcu_head rcu;
0135     t_key empty_children;       /* KEYLENGTH bits needed */
0136     t_key full_children;        /* KEYLENGTH bits needed */
0137     struct key_vector __rcu *parent;
0138     struct key_vector kv[1];
0139 #define tn_bits kv[0].bits
0140 };
0141 
0142 #define TNODE_SIZE(n)   offsetof(struct tnode, kv[0].tnode[n])
0143 #define LEAF_SIZE   TNODE_SIZE(1)
0144 
0145 #ifdef CONFIG_IP_FIB_TRIE_STATS
0146 struct trie_use_stats {
0147     unsigned int gets;
0148     unsigned int backtrack;
0149     unsigned int semantic_match_passed;
0150     unsigned int semantic_match_miss;
0151     unsigned int null_node_hit;
0152     unsigned int resize_node_skipped;
0153 };
0154 #endif
0155 
0156 struct trie_stat {
0157     unsigned int totdepth;
0158     unsigned int maxdepth;
0159     unsigned int tnodes;
0160     unsigned int leaves;
0161     unsigned int nullpointers;
0162     unsigned int prefixes;
0163     unsigned int nodesizes[MAX_STAT_DEPTH];
0164 };
0165 
0166 struct trie {
0167     struct key_vector kv[1];
0168 #ifdef CONFIG_IP_FIB_TRIE_STATS
0169     struct trie_use_stats __percpu *stats;
0170 #endif
0171 };
0172 
0173 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
0174 static unsigned int tnode_free_size;
0175 
0176 /*
0177  * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
0178  * especially useful before resizing the root node with PREEMPT_NONE configs;
0179  * the value was obtained experimentally, aiming to avoid visible slowdown.
0180  */
0181 unsigned int sysctl_fib_sync_mem = 512 * 1024;
0182 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
0183 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
0184 
0185 static struct kmem_cache *fn_alias_kmem __ro_after_init;
0186 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
0187 
0188 static inline struct tnode *tn_info(struct key_vector *kv)
0189 {
0190     return container_of(kv, struct tnode, kv[0]);
0191 }
0192 
0193 /* caller must hold RTNL */
0194 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
0195 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0196 
0197 /* caller must hold RCU read lock or RTNL */
0198 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
0199 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0200 
0201 /* wrapper for rcu_assign_pointer */
0202 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
0203 {
0204     if (n)
0205         rcu_assign_pointer(tn_info(n)->parent, tp);
0206 }
0207 
0208 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
0209 
0210 /* This provides us with the number of children in this node, in the case of a
0211  * leaf this will return 0 meaning none of the children are accessible.
0212  */
0213 static inline unsigned long child_length(const struct key_vector *tn)
0214 {
0215     return (1ul << tn->bits) & ~(1ul);
0216 }
0217 
0218 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
0219 
0220 static inline unsigned long get_index(t_key key, struct key_vector *kv)
0221 {
0222     unsigned long index = key ^ kv->key;
0223 
0224     if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
0225         return 0;
0226 
0227     return index >> kv->pos;
0228 }
0229 
0230 /* To understand this stuff, an understanding of keys and all their bits is
0231  * necessary. Every node in the trie has a key associated with it, but not
0232  * all of the bits in that key are significant.
0233  *
0234  * Consider a node 'n' and its parent 'tp'.
0235  *
0236  * If n is a leaf, every bit in its key is significant. Its presence is
0237  * necessitated by path compression, since during a tree traversal (when
0238  * searching for a leaf - unless we are doing an insertion) we will completely
0239  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
0240  * a potentially successful search, that we have indeed been walking the
0241  * correct key path.
0242  *
0243  * Note that we can never "miss" the correct key in the tree if present by
0244  * following the wrong path. Path compression ensures that segments of the key
0245  * that are the same for all keys with a given prefix are skipped, but the
0246  * skipped part *is* identical for each node in the subtrie below the skipped
0247  * bit! trie_insert() in this implementation takes care of that.
0248  *
0249  * if n is an internal node - a 'tnode' here, the various parts of its key
0250  * have many different meanings.
0251  *
0252  * Example:
0253  * _________________________________________________________________
0254  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
0255  * -----------------------------------------------------------------
0256  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
0257  *
0258  * _________________________________________________________________
0259  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
0260  * -----------------------------------------------------------------
0261  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
0262  *
0263  * tp->pos = 22
0264  * tp->bits = 3
0265  * n->pos = 13
0266  * n->bits = 4
0267  *
0268  * First, let's just ignore the bits that come before the parent tp, that is
0269  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
0270  * point we do not use them for anything.
0271  *
0272  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
0273  * index into the parent's child array. That is, they will be used to find
0274  * 'n' among tp's children.
0275  *
0276  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
0277  * for the node n.
0278  *
0279  * All the bits we have seen so far are significant to the node n. The rest
0280  * of the bits are really not needed or indeed known in n->key.
0281  *
0282  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
0283  * n's child array, and will of course be different for each child.
0284  *
0285  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
0286  * at this point.
0287  */
0288 
0289 static const int halve_threshold = 25;
0290 static const int inflate_threshold = 50;
0291 static const int halve_threshold_root = 15;
0292 static const int inflate_threshold_root = 30;
0293 
0294 static void __alias_free_mem(struct rcu_head *head)
0295 {
0296     struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
0297     kmem_cache_free(fn_alias_kmem, fa);
0298 }
0299 
0300 static inline void alias_free_mem_rcu(struct fib_alias *fa)
0301 {
0302     call_rcu(&fa->rcu, __alias_free_mem);
0303 }
0304 
0305 #define TNODE_VMALLOC_MAX \
0306     ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
0307 
0308 static void __node_free_rcu(struct rcu_head *head)
0309 {
0310     struct tnode *n = container_of(head, struct tnode, rcu);
0311 
0312     if (!n->tn_bits)
0313         kmem_cache_free(trie_leaf_kmem, n);
0314     else
0315         kvfree(n);
0316 }
0317 
0318 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
0319 
0320 static struct tnode *tnode_alloc(int bits)
0321 {
0322     size_t size;
0323 
0324     /* verify bits is within bounds */
0325     if (bits > TNODE_VMALLOC_MAX)
0326         return NULL;
0327 
0328     /* determine size and verify it is non-zero and didn't overflow */
0329     size = TNODE_SIZE(1ul << bits);
0330 
0331     if (size <= PAGE_SIZE)
0332         return kzalloc(size, GFP_KERNEL);
0333     else
0334         return vzalloc(size);
0335 }
0336 
0337 static inline void empty_child_inc(struct key_vector *n)
0338 {
0339     tn_info(n)->empty_children++;
0340 
0341     if (!tn_info(n)->empty_children)
0342         tn_info(n)->full_children++;
0343 }
0344 
0345 static inline void empty_child_dec(struct key_vector *n)
0346 {
0347     if (!tn_info(n)->empty_children)
0348         tn_info(n)->full_children--;
0349 
0350     tn_info(n)->empty_children--;
0351 }
0352 
0353 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
0354 {
0355     struct key_vector *l;
0356     struct tnode *kv;
0357 
0358     kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
0359     if (!kv)
0360         return NULL;
0361 
0362     /* initialize key vector */
0363     l = kv->kv;
0364     l->key = key;
0365     l->pos = 0;
0366     l->bits = 0;
0367     l->slen = fa->fa_slen;
0368 
0369     /* link leaf to fib alias */
0370     INIT_HLIST_HEAD(&l->leaf);
0371     hlist_add_head(&fa->fa_list, &l->leaf);
0372 
0373     return l;
0374 }
0375 
0376 static struct key_vector *tnode_new(t_key key, int pos, int bits)
0377 {
0378     unsigned int shift = pos + bits;
0379     struct key_vector *tn;
0380     struct tnode *tnode;
0381 
0382     /* verify bits and pos their msb bits clear and values are valid */
0383     BUG_ON(!bits || (shift > KEYLENGTH));
0384 
0385     tnode = tnode_alloc(bits);
0386     if (!tnode)
0387         return NULL;
0388 
0389     pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
0390          sizeof(struct key_vector *) << bits);
0391 
0392     if (bits == KEYLENGTH)
0393         tnode->full_children = 1;
0394     else
0395         tnode->empty_children = 1ul << bits;
0396 
0397     tn = tnode->kv;
0398     tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
0399     tn->pos = pos;
0400     tn->bits = bits;
0401     tn->slen = pos;
0402 
0403     return tn;
0404 }
0405 
0406 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
0407  * and no bits are skipped. See discussion in dyntree paper p. 6
0408  */
0409 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
0410 {
0411     return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
0412 }
0413 
0414 /* Add a child at position i overwriting the old value.
0415  * Update the value of full_children and empty_children.
0416  */
0417 static void put_child(struct key_vector *tn, unsigned long i,
0418               struct key_vector *n)
0419 {
0420     struct key_vector *chi = get_child(tn, i);
0421     int isfull, wasfull;
0422 
0423     BUG_ON(i >= child_length(tn));
0424 
0425     /* update emptyChildren, overflow into fullChildren */
0426     if (!n && chi)
0427         empty_child_inc(tn);
0428     if (n && !chi)
0429         empty_child_dec(tn);
0430 
0431     /* update fullChildren */
0432     wasfull = tnode_full(tn, chi);
0433     isfull = tnode_full(tn, n);
0434 
0435     if (wasfull && !isfull)
0436         tn_info(tn)->full_children--;
0437     else if (!wasfull && isfull)
0438         tn_info(tn)->full_children++;
0439 
0440     if (n && (tn->slen < n->slen))
0441         tn->slen = n->slen;
0442 
0443     rcu_assign_pointer(tn->tnode[i], n);
0444 }
0445 
0446 static void update_children(struct key_vector *tn)
0447 {
0448     unsigned long i;
0449 
0450     /* update all of the child parent pointers */
0451     for (i = child_length(tn); i;) {
0452         struct key_vector *inode = get_child(tn, --i);
0453 
0454         if (!inode)
0455             continue;
0456 
0457         /* Either update the children of a tnode that
0458          * already belongs to us or update the child
0459          * to point to ourselves.
0460          */
0461         if (node_parent(inode) == tn)
0462             update_children(inode);
0463         else
0464             node_set_parent(inode, tn);
0465     }
0466 }
0467 
0468 static inline void put_child_root(struct key_vector *tp, t_key key,
0469                   struct key_vector *n)
0470 {
0471     if (IS_TRIE(tp))
0472         rcu_assign_pointer(tp->tnode[0], n);
0473     else
0474         put_child(tp, get_index(key, tp), n);
0475 }
0476 
0477 static inline void tnode_free_init(struct key_vector *tn)
0478 {
0479     tn_info(tn)->rcu.next = NULL;
0480 }
0481 
0482 static inline void tnode_free_append(struct key_vector *tn,
0483                      struct key_vector *n)
0484 {
0485     tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
0486     tn_info(tn)->rcu.next = &tn_info(n)->rcu;
0487 }
0488 
0489 static void tnode_free(struct key_vector *tn)
0490 {
0491     struct callback_head *head = &tn_info(tn)->rcu;
0492 
0493     while (head) {
0494         head = head->next;
0495         tnode_free_size += TNODE_SIZE(1ul << tn->bits);
0496         node_free(tn);
0497 
0498         tn = container_of(head, struct tnode, rcu)->kv;
0499     }
0500 
0501     if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
0502         tnode_free_size = 0;
0503         synchronize_rcu();
0504     }
0505 }
0506 
0507 static struct key_vector *replace(struct trie *t,
0508                   struct key_vector *oldtnode,
0509                   struct key_vector *tn)
0510 {
0511     struct key_vector *tp = node_parent(oldtnode);
0512     unsigned long i;
0513 
0514     /* setup the parent pointer out of and back into this node */
0515     NODE_INIT_PARENT(tn, tp);
0516     put_child_root(tp, tn->key, tn);
0517 
0518     /* update all of the child parent pointers */
0519     update_children(tn);
0520 
0521     /* all pointers should be clean so we are done */
0522     tnode_free(oldtnode);
0523 
0524     /* resize children now that oldtnode is freed */
0525     for (i = child_length(tn); i;) {
0526         struct key_vector *inode = get_child(tn, --i);
0527 
0528         /* resize child node */
0529         if (tnode_full(tn, inode))
0530             tn = resize(t, inode);
0531     }
0532 
0533     return tp;
0534 }
0535 
0536 static struct key_vector *inflate(struct trie *t,
0537                   struct key_vector *oldtnode)
0538 {
0539     struct key_vector *tn;
0540     unsigned long i;
0541     t_key m;
0542 
0543     pr_debug("In inflate\n");
0544 
0545     tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0546     if (!tn)
0547         goto notnode;
0548 
0549     /* prepare oldtnode to be freed */
0550     tnode_free_init(oldtnode);
0551 
0552     /* Assemble all of the pointers in our cluster, in this case that
0553      * represents all of the pointers out of our allocated nodes that
0554      * point to existing tnodes and the links between our allocated
0555      * nodes.
0556      */
0557     for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
0558         struct key_vector *inode = get_child(oldtnode, --i);
0559         struct key_vector *node0, *node1;
0560         unsigned long j, k;
0561 
0562         /* An empty child */
0563         if (!inode)
0564             continue;
0565 
0566         /* A leaf or an internal node with skipped bits */
0567         if (!tnode_full(oldtnode, inode)) {
0568             put_child(tn, get_index(inode->key, tn), inode);
0569             continue;
0570         }
0571 
0572         /* drop the node in the old tnode free list */
0573         tnode_free_append(oldtnode, inode);
0574 
0575         /* An internal node with two children */
0576         if (inode->bits == 1) {
0577             put_child(tn, 2 * i + 1, get_child(inode, 1));
0578             put_child(tn, 2 * i, get_child(inode, 0));
0579             continue;
0580         }
0581 
0582         /* We will replace this node 'inode' with two new
0583          * ones, 'node0' and 'node1', each with half of the
0584          * original children. The two new nodes will have
0585          * a position one bit further down the key and this
0586          * means that the "significant" part of their keys
0587          * (see the discussion near the top of this file)
0588          * will differ by one bit, which will be "0" in
0589          * node0's key and "1" in node1's key. Since we are
0590          * moving the key position by one step, the bit that
0591          * we are moving away from - the bit at position
0592          * (tn->pos) - is the one that will differ between
0593          * node0 and node1. So... we synthesize that bit in the
0594          * two new keys.
0595          */
0596         node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
0597         if (!node1)
0598             goto nomem;
0599         node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
0600 
0601         tnode_free_append(tn, node1);
0602         if (!node0)
0603             goto nomem;
0604         tnode_free_append(tn, node0);
0605 
0606         /* populate child pointers in new nodes */
0607         for (k = child_length(inode), j = k / 2; j;) {
0608             put_child(node1, --j, get_child(inode, --k));
0609             put_child(node0, j, get_child(inode, j));
0610             put_child(node1, --j, get_child(inode, --k));
0611             put_child(node0, j, get_child(inode, j));
0612         }
0613 
0614         /* link new nodes to parent */
0615         NODE_INIT_PARENT(node1, tn);
0616         NODE_INIT_PARENT(node0, tn);
0617 
0618         /* link parent to nodes */
0619         put_child(tn, 2 * i + 1, node1);
0620         put_child(tn, 2 * i, node0);
0621     }
0622 
0623     /* setup the parent pointers into and out of this node */
0624     return replace(t, oldtnode, tn);
0625 nomem:
0626     /* all pointers should be clean so we are done */
0627     tnode_free(tn);
0628 notnode:
0629     return NULL;
0630 }
0631 
0632 static struct key_vector *halve(struct trie *t,
0633                 struct key_vector *oldtnode)
0634 {
0635     struct key_vector *tn;
0636     unsigned long i;
0637 
0638     pr_debug("In halve\n");
0639 
0640     tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
0641     if (!tn)
0642         goto notnode;
0643 
0644     /* prepare oldtnode to be freed */
0645     tnode_free_init(oldtnode);
0646 
0647     /* Assemble all of the pointers in our cluster, in this case that
0648      * represents all of the pointers out of our allocated nodes that
0649      * point to existing tnodes and the links between our allocated
0650      * nodes.
0651      */
0652     for (i = child_length(oldtnode); i;) {
0653         struct key_vector *node1 = get_child(oldtnode, --i);
0654         struct key_vector *node0 = get_child(oldtnode, --i);
0655         struct key_vector *inode;
0656 
0657         /* At least one of the children is empty */
0658         if (!node1 || !node0) {
0659             put_child(tn, i / 2, node1 ? : node0);
0660             continue;
0661         }
0662 
0663         /* Two nonempty children */
0664         inode = tnode_new(node0->key, oldtnode->pos, 1);
0665         if (!inode)
0666             goto nomem;
0667         tnode_free_append(tn, inode);
0668 
0669         /* initialize pointers out of node */
0670         put_child(inode, 1, node1);
0671         put_child(inode, 0, node0);
0672         NODE_INIT_PARENT(inode, tn);
0673 
0674         /* link parent to node */
0675         put_child(tn, i / 2, inode);
0676     }
0677 
0678     /* setup the parent pointers into and out of this node */
0679     return replace(t, oldtnode, tn);
0680 nomem:
0681     /* all pointers should be clean so we are done */
0682     tnode_free(tn);
0683 notnode:
0684     return NULL;
0685 }
0686 
0687 static struct key_vector *collapse(struct trie *t,
0688                    struct key_vector *oldtnode)
0689 {
0690     struct key_vector *n, *tp;
0691     unsigned long i;
0692 
0693     /* scan the tnode looking for that one child that might still exist */
0694     for (n = NULL, i = child_length(oldtnode); !n && i;)
0695         n = get_child(oldtnode, --i);
0696 
0697     /* compress one level */
0698     tp = node_parent(oldtnode);
0699     put_child_root(tp, oldtnode->key, n);
0700     node_set_parent(n, tp);
0701 
0702     /* drop dead node */
0703     node_free(oldtnode);
0704 
0705     return tp;
0706 }
0707 
0708 static unsigned char update_suffix(struct key_vector *tn)
0709 {
0710     unsigned char slen = tn->pos;
0711     unsigned long stride, i;
0712     unsigned char slen_max;
0713 
0714     /* only vector 0 can have a suffix length greater than or equal to
0715      * tn->pos + tn->bits, the second highest node will have a suffix
0716      * length at most of tn->pos + tn->bits - 1
0717      */
0718     slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
0719 
0720     /* search though the list of children looking for nodes that might
0721      * have a suffix greater than the one we currently have.  This is
0722      * why we start with a stride of 2 since a stride of 1 would
0723      * represent the nodes with suffix length equal to tn->pos
0724      */
0725     for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
0726         struct key_vector *n = get_child(tn, i);
0727 
0728         if (!n || (n->slen <= slen))
0729             continue;
0730 
0731         /* update stride and slen based on new value */
0732         stride <<= (n->slen - slen);
0733         slen = n->slen;
0734         i &= ~(stride - 1);
0735 
0736         /* stop searching if we have hit the maximum possible value */
0737         if (slen >= slen_max)
0738             break;
0739     }
0740 
0741     tn->slen = slen;
0742 
0743     return slen;
0744 }
0745 
0746 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
0747  * the Helsinki University of Technology and Matti Tikkanen of Nokia
0748  * Telecommunications, page 6:
0749  * "A node is doubled if the ratio of non-empty children to all
0750  * children in the *doubled* node is at least 'high'."
0751  *
0752  * 'high' in this instance is the variable 'inflate_threshold'. It
0753  * is expressed as a percentage, so we multiply it with
0754  * child_length() and instead of multiplying by 2 (since the
0755  * child array will be doubled by inflate()) and multiplying
0756  * the left-hand side by 100 (to handle the percentage thing) we
0757  * multiply the left-hand side by 50.
0758  *
0759  * The left-hand side may look a bit weird: child_length(tn)
0760  * - tn->empty_children is of course the number of non-null children
0761  * in the current node. tn->full_children is the number of "full"
0762  * children, that is non-null tnodes with a skip value of 0.
0763  * All of those will be doubled in the resulting inflated tnode, so
0764  * we just count them one extra time here.
0765  *
0766  * A clearer way to write this would be:
0767  *
0768  * to_be_doubled = tn->full_children;
0769  * not_to_be_doubled = child_length(tn) - tn->empty_children -
0770  *     tn->full_children;
0771  *
0772  * new_child_length = child_length(tn) * 2;
0773  *
0774  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
0775  *      new_child_length;
0776  * if (new_fill_factor >= inflate_threshold)
0777  *
0778  * ...and so on, tho it would mess up the while () loop.
0779  *
0780  * anyway,
0781  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
0782  *      inflate_threshold
0783  *
0784  * avoid a division:
0785  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
0786  *      inflate_threshold * new_child_length
0787  *
0788  * expand not_to_be_doubled and to_be_doubled, and shorten:
0789  * 100 * (child_length(tn) - tn->empty_children +
0790  *    tn->full_children) >= inflate_threshold * new_child_length
0791  *
0792  * expand new_child_length:
0793  * 100 * (child_length(tn) - tn->empty_children +
0794  *    tn->full_children) >=
0795  *      inflate_threshold * child_length(tn) * 2
0796  *
0797  * shorten again:
0798  * 50 * (tn->full_children + child_length(tn) -
0799  *    tn->empty_children) >= inflate_threshold *
0800  *    child_length(tn)
0801  *
0802  */
0803 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
0804 {
0805     unsigned long used = child_length(tn);
0806     unsigned long threshold = used;
0807 
0808     /* Keep root node larger */
0809     threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
0810     used -= tn_info(tn)->empty_children;
0811     used += tn_info(tn)->full_children;
0812 
0813     /* if bits == KEYLENGTH then pos = 0, and will fail below */
0814 
0815     return (used > 1) && tn->pos && ((50 * used) >= threshold);
0816 }
0817 
0818 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
0819 {
0820     unsigned long used = child_length(tn);
0821     unsigned long threshold = used;
0822 
0823     /* Keep root node larger */
0824     threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
0825     used -= tn_info(tn)->empty_children;
0826 
0827     /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
0828 
0829     return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
0830 }
0831 
0832 static inline bool should_collapse(struct key_vector *tn)
0833 {
0834     unsigned long used = child_length(tn);
0835 
0836     used -= tn_info(tn)->empty_children;
0837 
0838     /* account for bits == KEYLENGTH case */
0839     if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
0840         used -= KEY_MAX;
0841 
0842     /* One child or none, time to drop us from the trie */
0843     return used < 2;
0844 }
0845 
0846 #define MAX_WORK 10
0847 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
0848 {
0849 #ifdef CONFIG_IP_FIB_TRIE_STATS
0850     struct trie_use_stats __percpu *stats = t->stats;
0851 #endif
0852     struct key_vector *tp = node_parent(tn);
0853     unsigned long cindex = get_index(tn->key, tp);
0854     int max_work = MAX_WORK;
0855 
0856     pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
0857          tn, inflate_threshold, halve_threshold);
0858 
0859     /* track the tnode via the pointer from the parent instead of
0860      * doing it ourselves.  This way we can let RCU fully do its
0861      * thing without us interfering
0862      */
0863     BUG_ON(tn != get_child(tp, cindex));
0864 
0865     /* Double as long as the resulting node has a number of
0866      * nonempty nodes that are above the threshold.
0867      */
0868     while (should_inflate(tp, tn) && max_work) {
0869         tp = inflate(t, tn);
0870         if (!tp) {
0871 #ifdef CONFIG_IP_FIB_TRIE_STATS
0872             this_cpu_inc(stats->resize_node_skipped);
0873 #endif
0874             break;
0875         }
0876 
0877         max_work--;
0878         tn = get_child(tp, cindex);
0879     }
0880 
0881     /* update parent in case inflate failed */
0882     tp = node_parent(tn);
0883 
0884     /* Return if at least one inflate is run */
0885     if (max_work != MAX_WORK)
0886         return tp;
0887 
0888     /* Halve as long as the number of empty children in this
0889      * node is above threshold.
0890      */
0891     while (should_halve(tp, tn) && max_work) {
0892         tp = halve(t, tn);
0893         if (!tp) {
0894 #ifdef CONFIG_IP_FIB_TRIE_STATS
0895             this_cpu_inc(stats->resize_node_skipped);
0896 #endif
0897             break;
0898         }
0899 
0900         max_work--;
0901         tn = get_child(tp, cindex);
0902     }
0903 
0904     /* Only one child remains */
0905     if (should_collapse(tn))
0906         return collapse(t, tn);
0907 
0908     /* update parent in case halve failed */
0909     return node_parent(tn);
0910 }
0911 
0912 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
0913 {
0914     unsigned char node_slen = tn->slen;
0915 
0916     while ((node_slen > tn->pos) && (node_slen > slen)) {
0917         slen = update_suffix(tn);
0918         if (node_slen == slen)
0919             break;
0920 
0921         tn = node_parent(tn);
0922         node_slen = tn->slen;
0923     }
0924 }
0925 
0926 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
0927 {
0928     while (tn->slen < slen) {
0929         tn->slen = slen;
0930         tn = node_parent(tn);
0931     }
0932 }
0933 
0934 /* rcu_read_lock needs to be hold by caller from readside */
0935 static struct key_vector *fib_find_node(struct trie *t,
0936                     struct key_vector **tp, u32 key)
0937 {
0938     struct key_vector *pn, *n = t->kv;
0939     unsigned long index = 0;
0940 
0941     do {
0942         pn = n;
0943         n = get_child_rcu(n, index);
0944 
0945         if (!n)
0946             break;
0947 
0948         index = get_cindex(key, n);
0949 
0950         /* This bit of code is a bit tricky but it combines multiple
0951          * checks into a single check.  The prefix consists of the
0952          * prefix plus zeros for the bits in the cindex. The index
0953          * is the difference between the key and this value.  From
0954          * this we can actually derive several pieces of data.
0955          *   if (index >= (1ul << bits))
0956          *     we have a mismatch in skip bits and failed
0957          *   else
0958          *     we know the value is cindex
0959          *
0960          * This check is safe even if bits == KEYLENGTH due to the
0961          * fact that we can only allocate a node with 32 bits if a
0962          * long is greater than 32 bits.
0963          */
0964         if (index >= (1ul << n->bits)) {
0965             n = NULL;
0966             break;
0967         }
0968 
0969         /* keep searching until we find a perfect match leaf or NULL */
0970     } while (IS_TNODE(n));
0971 
0972     *tp = pn;
0973 
0974     return n;
0975 }
0976 
0977 /* Return the first fib alias matching DSCP with
0978  * priority less than or equal to PRIO.
0979  * If 'find_first' is set, return the first matching
0980  * fib alias, regardless of DSCP and priority.
0981  */
0982 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
0983                     dscp_t dscp, u32 prio, u32 tb_id,
0984                     bool find_first)
0985 {
0986     struct fib_alias *fa;
0987 
0988     if (!fah)
0989         return NULL;
0990 
0991     hlist_for_each_entry(fa, fah, fa_list) {
0992         /* Avoid Sparse warning when using dscp_t in inequalities */
0993         u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp);
0994         u8 __dscp = inet_dscp_to_dsfield(dscp);
0995 
0996         if (fa->fa_slen < slen)
0997             continue;
0998         if (fa->fa_slen != slen)
0999             break;
1000         if (fa->tb_id > tb_id)
1001             continue;
1002         if (fa->tb_id != tb_id)
1003             break;
1004         if (find_first)
1005             return fa;
1006         if (__fa_dscp > __dscp)
1007             continue;
1008         if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp)
1009             return fa;
1010     }
1011 
1012     return NULL;
1013 }
1014 
1015 static struct fib_alias *
1016 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1017 {
1018     u8 slen = KEYLENGTH - fri->dst_len;
1019     struct key_vector *l, *tp;
1020     struct fib_table *tb;
1021     struct fib_alias *fa;
1022     struct trie *t;
1023 
1024     tb = fib_get_table(net, fri->tb_id);
1025     if (!tb)
1026         return NULL;
1027 
1028     t = (struct trie *)tb->tb_data;
1029     l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1030     if (!l)
1031         return NULL;
1032 
1033     hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1034         if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1035             fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi &&
1036             fa->fa_type == fri->type)
1037             return fa;
1038     }
1039 
1040     return NULL;
1041 }
1042 
1043 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1044 {
1045     u8 fib_notify_on_flag_change;
1046     struct fib_alias *fa_match;
1047     struct sk_buff *skb;
1048     int err;
1049 
1050     rcu_read_lock();
1051 
1052     fa_match = fib_find_matching_alias(net, fri);
1053     if (!fa_match)
1054         goto out;
1055 
1056     /* These are paired with the WRITE_ONCE() happening in this function.
1057      * The reason is that we are only protected by RCU at this point.
1058      */
1059     if (READ_ONCE(fa_match->offload) == fri->offload &&
1060         READ_ONCE(fa_match->trap) == fri->trap &&
1061         READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1062         goto out;
1063 
1064     WRITE_ONCE(fa_match->offload, fri->offload);
1065     WRITE_ONCE(fa_match->trap, fri->trap);
1066 
1067     fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1068 
1069     /* 2 means send notifications only if offload_failed was changed. */
1070     if (fib_notify_on_flag_change == 2 &&
1071         READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1072         goto out;
1073 
1074     WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1075 
1076     if (!fib_notify_on_flag_change)
1077         goto out;
1078 
1079     skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1080     if (!skb) {
1081         err = -ENOBUFS;
1082         goto errout;
1083     }
1084 
1085     err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1086     if (err < 0) {
1087         /* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1088         WARN_ON(err == -EMSGSIZE);
1089         kfree_skb(skb);
1090         goto errout;
1091     }
1092 
1093     rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1094     goto out;
1095 
1096 errout:
1097     rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1098 out:
1099     rcu_read_unlock();
1100 }
1101 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1102 
1103 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1104 {
1105     while (!IS_TRIE(tn))
1106         tn = resize(t, tn);
1107 }
1108 
1109 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1110                struct fib_alias *new, t_key key)
1111 {
1112     struct key_vector *n, *l;
1113 
1114     l = leaf_new(key, new);
1115     if (!l)
1116         goto noleaf;
1117 
1118     /* retrieve child from parent node */
1119     n = get_child(tp, get_index(key, tp));
1120 
1121     /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1122      *
1123      *  Add a new tnode here
1124      *  first tnode need some special handling
1125      *  leaves us in position for handling as case 3
1126      */
1127     if (n) {
1128         struct key_vector *tn;
1129 
1130         tn = tnode_new(key, __fls(key ^ n->key), 1);
1131         if (!tn)
1132             goto notnode;
1133 
1134         /* initialize routes out of node */
1135         NODE_INIT_PARENT(tn, tp);
1136         put_child(tn, get_index(key, tn) ^ 1, n);
1137 
1138         /* start adding routes into the node */
1139         put_child_root(tp, key, tn);
1140         node_set_parent(n, tn);
1141 
1142         /* parent now has a NULL spot where the leaf can go */
1143         tp = tn;
1144     }
1145 
1146     /* Case 3: n is NULL, and will just insert a new leaf */
1147     node_push_suffix(tp, new->fa_slen);
1148     NODE_INIT_PARENT(l, tp);
1149     put_child_root(tp, key, l);
1150     trie_rebalance(t, tp);
1151 
1152     return 0;
1153 notnode:
1154     node_free(l);
1155 noleaf:
1156     return -ENOMEM;
1157 }
1158 
1159 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1160                 struct key_vector *l, struct fib_alias *new,
1161                 struct fib_alias *fa, t_key key)
1162 {
1163     if (!l)
1164         return fib_insert_node(t, tp, new, key);
1165 
1166     if (fa) {
1167         hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1168     } else {
1169         struct fib_alias *last;
1170 
1171         hlist_for_each_entry(last, &l->leaf, fa_list) {
1172             if (new->fa_slen < last->fa_slen)
1173                 break;
1174             if ((new->fa_slen == last->fa_slen) &&
1175                 (new->tb_id > last->tb_id))
1176                 break;
1177             fa = last;
1178         }
1179 
1180         if (fa)
1181             hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1182         else
1183             hlist_add_head_rcu(&new->fa_list, &l->leaf);
1184     }
1185 
1186     /* if we added to the tail node then we need to update slen */
1187     if (l->slen < new->fa_slen) {
1188         l->slen = new->fa_slen;
1189         node_push_suffix(tp, new->fa_slen);
1190     }
1191 
1192     return 0;
1193 }
1194 
1195 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1196 {
1197     if (plen > KEYLENGTH) {
1198         NL_SET_ERR_MSG(extack, "Invalid prefix length");
1199         return false;
1200     }
1201 
1202     if ((plen < KEYLENGTH) && (key << plen)) {
1203         NL_SET_ERR_MSG(extack,
1204                    "Invalid prefix for given prefix length");
1205         return false;
1206     }
1207 
1208     return true;
1209 }
1210 
1211 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1212                  struct key_vector *l, struct fib_alias *old);
1213 
1214 /* Caller must hold RTNL. */
1215 int fib_table_insert(struct net *net, struct fib_table *tb,
1216              struct fib_config *cfg, struct netlink_ext_ack *extack)
1217 {
1218     struct trie *t = (struct trie *)tb->tb_data;
1219     struct fib_alias *fa, *new_fa;
1220     struct key_vector *l, *tp;
1221     u16 nlflags = NLM_F_EXCL;
1222     struct fib_info *fi;
1223     u8 plen = cfg->fc_dst_len;
1224     u8 slen = KEYLENGTH - plen;
1225     dscp_t dscp;
1226     u32 key;
1227     int err;
1228 
1229     key = ntohl(cfg->fc_dst);
1230 
1231     if (!fib_valid_key_len(key, plen, extack))
1232         return -EINVAL;
1233 
1234     pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1235 
1236     fi = fib_create_info(cfg, extack);
1237     if (IS_ERR(fi)) {
1238         err = PTR_ERR(fi);
1239         goto err;
1240     }
1241 
1242     dscp = cfg->fc_dscp;
1243     l = fib_find_node(t, &tp, key);
1244     fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority,
1245                 tb->tb_id, false) : NULL;
1246 
1247     /* Now fa, if non-NULL, points to the first fib alias
1248      * with the same keys [prefix,dscp,priority], if such key already
1249      * exists or to the node before which we will insert new one.
1250      *
1251      * If fa is NULL, we will need to allocate a new one and
1252      * insert to the tail of the section matching the suffix length
1253      * of the new alias.
1254      */
1255 
1256     if (fa && fa->fa_dscp == dscp &&
1257         fa->fa_info->fib_priority == fi->fib_priority) {
1258         struct fib_alias *fa_first, *fa_match;
1259 
1260         err = -EEXIST;
1261         if (cfg->fc_nlflags & NLM_F_EXCL)
1262             goto out;
1263 
1264         nlflags &= ~NLM_F_EXCL;
1265 
1266         /* We have 2 goals:
1267          * 1. Find exact match for type, scope, fib_info to avoid
1268          * duplicate routes
1269          * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1270          */
1271         fa_match = NULL;
1272         fa_first = fa;
1273         hlist_for_each_entry_from(fa, fa_list) {
1274             if ((fa->fa_slen != slen) ||
1275                 (fa->tb_id != tb->tb_id) ||
1276                 (fa->fa_dscp != dscp))
1277                 break;
1278             if (fa->fa_info->fib_priority != fi->fib_priority)
1279                 break;
1280             if (fa->fa_type == cfg->fc_type &&
1281                 fa->fa_info == fi) {
1282                 fa_match = fa;
1283                 break;
1284             }
1285         }
1286 
1287         if (cfg->fc_nlflags & NLM_F_REPLACE) {
1288             struct fib_info *fi_drop;
1289             u8 state;
1290 
1291             nlflags |= NLM_F_REPLACE;
1292             fa = fa_first;
1293             if (fa_match) {
1294                 if (fa == fa_match)
1295                     err = 0;
1296                 goto out;
1297             }
1298             err = -ENOBUFS;
1299             new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1300             if (!new_fa)
1301                 goto out;
1302 
1303             fi_drop = fa->fa_info;
1304             new_fa->fa_dscp = fa->fa_dscp;
1305             new_fa->fa_info = fi;
1306             new_fa->fa_type = cfg->fc_type;
1307             state = fa->fa_state;
1308             new_fa->fa_state = state & ~FA_S_ACCESSED;
1309             new_fa->fa_slen = fa->fa_slen;
1310             new_fa->tb_id = tb->tb_id;
1311             new_fa->fa_default = -1;
1312             new_fa->offload = 0;
1313             new_fa->trap = 0;
1314             new_fa->offload_failed = 0;
1315 
1316             hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1317 
1318             if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1319                        tb->tb_id, true) == new_fa) {
1320                 enum fib_event_type fib_event;
1321 
1322                 fib_event = FIB_EVENT_ENTRY_REPLACE;
1323                 err = call_fib_entry_notifiers(net, fib_event,
1324                                    key, plen,
1325                                    new_fa, extack);
1326                 if (err) {
1327                     hlist_replace_rcu(&new_fa->fa_list,
1328                               &fa->fa_list);
1329                     goto out_free_new_fa;
1330                 }
1331             }
1332 
1333             rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1334                   tb->tb_id, &cfg->fc_nlinfo, nlflags);
1335 
1336             alias_free_mem_rcu(fa);
1337 
1338             fib_release_info(fi_drop);
1339             if (state & FA_S_ACCESSED)
1340                 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1341 
1342             goto succeeded;
1343         }
1344         /* Error if we find a perfect match which
1345          * uses the same scope, type, and nexthop
1346          * information.
1347          */
1348         if (fa_match)
1349             goto out;
1350 
1351         if (cfg->fc_nlflags & NLM_F_APPEND)
1352             nlflags |= NLM_F_APPEND;
1353         else
1354             fa = fa_first;
1355     }
1356     err = -ENOENT;
1357     if (!(cfg->fc_nlflags & NLM_F_CREATE))
1358         goto out;
1359 
1360     nlflags |= NLM_F_CREATE;
1361     err = -ENOBUFS;
1362     new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1363     if (!new_fa)
1364         goto out;
1365 
1366     new_fa->fa_info = fi;
1367     new_fa->fa_dscp = dscp;
1368     new_fa->fa_type = cfg->fc_type;
1369     new_fa->fa_state = 0;
1370     new_fa->fa_slen = slen;
1371     new_fa->tb_id = tb->tb_id;
1372     new_fa->fa_default = -1;
1373     new_fa->offload = 0;
1374     new_fa->trap = 0;
1375     new_fa->offload_failed = 0;
1376 
1377     /* Insert new entry to the list. */
1378     err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1379     if (err)
1380         goto out_free_new_fa;
1381 
1382     /* The alias was already inserted, so the node must exist. */
1383     l = l ? l : fib_find_node(t, &tp, key);
1384     if (WARN_ON_ONCE(!l))
1385         goto out_free_new_fa;
1386 
1387     if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1388         new_fa) {
1389         enum fib_event_type fib_event;
1390 
1391         fib_event = FIB_EVENT_ENTRY_REPLACE;
1392         err = call_fib_entry_notifiers(net, fib_event, key, plen,
1393                            new_fa, extack);
1394         if (err)
1395             goto out_remove_new_fa;
1396     }
1397 
1398     if (!plen)
1399         tb->tb_num_default++;
1400 
1401     rt_cache_flush(cfg->fc_nlinfo.nl_net);
1402     rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1403           &cfg->fc_nlinfo, nlflags);
1404 succeeded:
1405     return 0;
1406 
1407 out_remove_new_fa:
1408     fib_remove_alias(t, tp, l, new_fa);
1409 out_free_new_fa:
1410     kmem_cache_free(fn_alias_kmem, new_fa);
1411 out:
1412     fib_release_info(fi);
1413 err:
1414     return err;
1415 }
1416 
1417 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1418 {
1419     t_key prefix = n->key;
1420 
1421     return (key ^ prefix) & (prefix | -prefix);
1422 }
1423 
1424 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1425              const struct flowi4 *flp)
1426 {
1427     if (nhc->nhc_flags & RTNH_F_DEAD)
1428         return false;
1429 
1430     if (ip_ignore_linkdown(nhc->nhc_dev) &&
1431         nhc->nhc_flags & RTNH_F_LINKDOWN &&
1432         !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1433         return false;
1434 
1435     if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif)
1436         return false;
1437 
1438     return true;
1439 }
1440 
1441 /* should be called with rcu_read_lock */
1442 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1443              struct fib_result *res, int fib_flags)
1444 {
1445     struct trie *t = (struct trie *) tb->tb_data;
1446 #ifdef CONFIG_IP_FIB_TRIE_STATS
1447     struct trie_use_stats __percpu *stats = t->stats;
1448 #endif
1449     const t_key key = ntohl(flp->daddr);
1450     struct key_vector *n, *pn;
1451     struct fib_alias *fa;
1452     unsigned long index;
1453     t_key cindex;
1454 
1455     pn = t->kv;
1456     cindex = 0;
1457 
1458     n = get_child_rcu(pn, cindex);
1459     if (!n) {
1460         trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1461         return -EAGAIN;
1462     }
1463 
1464 #ifdef CONFIG_IP_FIB_TRIE_STATS
1465     this_cpu_inc(stats->gets);
1466 #endif
1467 
1468     /* Step 1: Travel to the longest prefix match in the trie */
1469     for (;;) {
1470         index = get_cindex(key, n);
1471 
1472         /* This bit of code is a bit tricky but it combines multiple
1473          * checks into a single check.  The prefix consists of the
1474          * prefix plus zeros for the "bits" in the prefix. The index
1475          * is the difference between the key and this value.  From
1476          * this we can actually derive several pieces of data.
1477          *   if (index >= (1ul << bits))
1478          *     we have a mismatch in skip bits and failed
1479          *   else
1480          *     we know the value is cindex
1481          *
1482          * This check is safe even if bits == KEYLENGTH due to the
1483          * fact that we can only allocate a node with 32 bits if a
1484          * long is greater than 32 bits.
1485          */
1486         if (index >= (1ul << n->bits))
1487             break;
1488 
1489         /* we have found a leaf. Prefixes have already been compared */
1490         if (IS_LEAF(n))
1491             goto found;
1492 
1493         /* only record pn and cindex if we are going to be chopping
1494          * bits later.  Otherwise we are just wasting cycles.
1495          */
1496         if (n->slen > n->pos) {
1497             pn = n;
1498             cindex = index;
1499         }
1500 
1501         n = get_child_rcu(n, index);
1502         if (unlikely(!n))
1503             goto backtrace;
1504     }
1505 
1506     /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1507     for (;;) {
1508         /* record the pointer where our next node pointer is stored */
1509         struct key_vector __rcu **cptr = n->tnode;
1510 
1511         /* This test verifies that none of the bits that differ
1512          * between the key and the prefix exist in the region of
1513          * the lsb and higher in the prefix.
1514          */
1515         if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1516             goto backtrace;
1517 
1518         /* exit out and process leaf */
1519         if (unlikely(IS_LEAF(n)))
1520             break;
1521 
1522         /* Don't bother recording parent info.  Since we are in
1523          * prefix match mode we will have to come back to wherever
1524          * we started this traversal anyway
1525          */
1526 
1527         while ((n = rcu_dereference(*cptr)) == NULL) {
1528 backtrace:
1529 #ifdef CONFIG_IP_FIB_TRIE_STATS
1530             if (!n)
1531                 this_cpu_inc(stats->null_node_hit);
1532 #endif
1533             /* If we are at cindex 0 there are no more bits for
1534              * us to strip at this level so we must ascend back
1535              * up one level to see if there are any more bits to
1536              * be stripped there.
1537              */
1538             while (!cindex) {
1539                 t_key pkey = pn->key;
1540 
1541                 /* If we don't have a parent then there is
1542                  * nothing for us to do as we do not have any
1543                  * further nodes to parse.
1544                  */
1545                 if (IS_TRIE(pn)) {
1546                     trace_fib_table_lookup(tb->tb_id, flp,
1547                                    NULL, -EAGAIN);
1548                     return -EAGAIN;
1549                 }
1550 #ifdef CONFIG_IP_FIB_TRIE_STATS
1551                 this_cpu_inc(stats->backtrack);
1552 #endif
1553                 /* Get Child's index */
1554                 pn = node_parent_rcu(pn);
1555                 cindex = get_index(pkey, pn);
1556             }
1557 
1558             /* strip the least significant bit from the cindex */
1559             cindex &= cindex - 1;
1560 
1561             /* grab pointer for next child node */
1562             cptr = &pn->tnode[cindex];
1563         }
1564     }
1565 
1566 found:
1567     /* this line carries forward the xor from earlier in the function */
1568     index = key ^ n->key;
1569 
1570     /* Step 3: Process the leaf, if that fails fall back to backtracing */
1571     hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1572         struct fib_info *fi = fa->fa_info;
1573         struct fib_nh_common *nhc;
1574         int nhsel, err;
1575 
1576         if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1577             if (index >= (1ul << fa->fa_slen))
1578                 continue;
1579         }
1580         if (fa->fa_dscp &&
1581             inet_dscp_to_dsfield(fa->fa_dscp) != flp->flowi4_tos)
1582             continue;
1583         if (fi->fib_dead)
1584             continue;
1585         if (fa->fa_info->fib_scope < flp->flowi4_scope)
1586             continue;
1587         fib_alias_accessed(fa);
1588         err = fib_props[fa->fa_type].error;
1589         if (unlikely(err < 0)) {
1590 out_reject:
1591 #ifdef CONFIG_IP_FIB_TRIE_STATS
1592             this_cpu_inc(stats->semantic_match_passed);
1593 #endif
1594             trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1595             return err;
1596         }
1597         if (fi->fib_flags & RTNH_F_DEAD)
1598             continue;
1599 
1600         if (unlikely(fi->nh)) {
1601             if (nexthop_is_blackhole(fi->nh)) {
1602                 err = fib_props[RTN_BLACKHOLE].error;
1603                 goto out_reject;
1604             }
1605 
1606             nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1607                              &nhsel);
1608             if (nhc)
1609                 goto set_result;
1610             goto miss;
1611         }
1612 
1613         for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1614             nhc = fib_info_nhc(fi, nhsel);
1615 
1616             if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1617                 continue;
1618 set_result:
1619             if (!(fib_flags & FIB_LOOKUP_NOREF))
1620                 refcount_inc(&fi->fib_clntref);
1621 
1622             res->prefix = htonl(n->key);
1623             res->prefixlen = KEYLENGTH - fa->fa_slen;
1624             res->nh_sel = nhsel;
1625             res->nhc = nhc;
1626             res->type = fa->fa_type;
1627             res->scope = fi->fib_scope;
1628             res->fi = fi;
1629             res->table = tb;
1630             res->fa_head = &n->leaf;
1631 #ifdef CONFIG_IP_FIB_TRIE_STATS
1632             this_cpu_inc(stats->semantic_match_passed);
1633 #endif
1634             trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1635 
1636             return err;
1637         }
1638     }
1639 miss:
1640 #ifdef CONFIG_IP_FIB_TRIE_STATS
1641     this_cpu_inc(stats->semantic_match_miss);
1642 #endif
1643     goto backtrace;
1644 }
1645 EXPORT_SYMBOL_GPL(fib_table_lookup);
1646 
1647 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1648                  struct key_vector *l, struct fib_alias *old)
1649 {
1650     /* record the location of the previous list_info entry */
1651     struct hlist_node **pprev = old->fa_list.pprev;
1652     struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1653 
1654     /* remove the fib_alias from the list */
1655     hlist_del_rcu(&old->fa_list);
1656 
1657     /* if we emptied the list this leaf will be freed and we can sort
1658      * out parent suffix lengths as a part of trie_rebalance
1659      */
1660     if (hlist_empty(&l->leaf)) {
1661         if (tp->slen == l->slen)
1662             node_pull_suffix(tp, tp->pos);
1663         put_child_root(tp, l->key, NULL);
1664         node_free(l);
1665         trie_rebalance(t, tp);
1666         return;
1667     }
1668 
1669     /* only access fa if it is pointing at the last valid hlist_node */
1670     if (*pprev)
1671         return;
1672 
1673     /* update the trie with the latest suffix length */
1674     l->slen = fa->fa_slen;
1675     node_pull_suffix(tp, fa->fa_slen);
1676 }
1677 
1678 static void fib_notify_alias_delete(struct net *net, u32 key,
1679                     struct hlist_head *fah,
1680                     struct fib_alias *fa_to_delete,
1681                     struct netlink_ext_ack *extack)
1682 {
1683     struct fib_alias *fa_next, *fa_to_notify;
1684     u32 tb_id = fa_to_delete->tb_id;
1685     u8 slen = fa_to_delete->fa_slen;
1686     enum fib_event_type fib_event;
1687 
1688     /* Do not notify if we do not care about the route. */
1689     if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1690         return;
1691 
1692     /* Determine if the route should be replaced by the next route in the
1693      * list.
1694      */
1695     fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1696                    struct fib_alias, fa_list);
1697     if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1698         fib_event = FIB_EVENT_ENTRY_REPLACE;
1699         fa_to_notify = fa_next;
1700     } else {
1701         fib_event = FIB_EVENT_ENTRY_DEL;
1702         fa_to_notify = fa_to_delete;
1703     }
1704     call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1705                  fa_to_notify, extack);
1706 }
1707 
1708 /* Caller must hold RTNL. */
1709 int fib_table_delete(struct net *net, struct fib_table *tb,
1710              struct fib_config *cfg, struct netlink_ext_ack *extack)
1711 {
1712     struct trie *t = (struct trie *) tb->tb_data;
1713     struct fib_alias *fa, *fa_to_delete;
1714     struct key_vector *l, *tp;
1715     u8 plen = cfg->fc_dst_len;
1716     u8 slen = KEYLENGTH - plen;
1717     dscp_t dscp;
1718     u32 key;
1719 
1720     key = ntohl(cfg->fc_dst);
1721 
1722     if (!fib_valid_key_len(key, plen, extack))
1723         return -EINVAL;
1724 
1725     l = fib_find_node(t, &tp, key);
1726     if (!l)
1727         return -ESRCH;
1728 
1729     dscp = cfg->fc_dscp;
1730     fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false);
1731     if (!fa)
1732         return -ESRCH;
1733 
1734     pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen,
1735          inet_dscp_to_dsfield(dscp), t);
1736 
1737     fa_to_delete = NULL;
1738     hlist_for_each_entry_from(fa, fa_list) {
1739         struct fib_info *fi = fa->fa_info;
1740 
1741         if ((fa->fa_slen != slen) ||
1742             (fa->tb_id != tb->tb_id) ||
1743             (fa->fa_dscp != dscp))
1744             break;
1745 
1746         if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1747             (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1748              fa->fa_info->fib_scope == cfg->fc_scope) &&
1749             (!cfg->fc_prefsrc ||
1750              fi->fib_prefsrc == cfg->fc_prefsrc) &&
1751             (!cfg->fc_protocol ||
1752              fi->fib_protocol == cfg->fc_protocol) &&
1753             fib_nh_match(net, cfg, fi, extack) == 0 &&
1754             fib_metrics_match(cfg, fi)) {
1755             fa_to_delete = fa;
1756             break;
1757         }
1758     }
1759 
1760     if (!fa_to_delete)
1761         return -ESRCH;
1762 
1763     fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1764     rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1765           &cfg->fc_nlinfo, 0);
1766 
1767     if (!plen)
1768         tb->tb_num_default--;
1769 
1770     fib_remove_alias(t, tp, l, fa_to_delete);
1771 
1772     if (fa_to_delete->fa_state & FA_S_ACCESSED)
1773         rt_cache_flush(cfg->fc_nlinfo.nl_net);
1774 
1775     fib_release_info(fa_to_delete->fa_info);
1776     alias_free_mem_rcu(fa_to_delete);
1777     return 0;
1778 }
1779 
1780 /* Scan for the next leaf starting at the provided key value */
1781 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1782 {
1783     struct key_vector *pn, *n = *tn;
1784     unsigned long cindex;
1785 
1786     /* this loop is meant to try and find the key in the trie */
1787     do {
1788         /* record parent and next child index */
1789         pn = n;
1790         cindex = (key > pn->key) ? get_index(key, pn) : 0;
1791 
1792         if (cindex >> pn->bits)
1793             break;
1794 
1795         /* descend into the next child */
1796         n = get_child_rcu(pn, cindex++);
1797         if (!n)
1798             break;
1799 
1800         /* guarantee forward progress on the keys */
1801         if (IS_LEAF(n) && (n->key >= key))
1802             goto found;
1803     } while (IS_TNODE(n));
1804 
1805     /* this loop will search for the next leaf with a greater key */
1806     while (!IS_TRIE(pn)) {
1807         /* if we exhausted the parent node we will need to climb */
1808         if (cindex >= (1ul << pn->bits)) {
1809             t_key pkey = pn->key;
1810 
1811             pn = node_parent_rcu(pn);
1812             cindex = get_index(pkey, pn) + 1;
1813             continue;
1814         }
1815 
1816         /* grab the next available node */
1817         n = get_child_rcu(pn, cindex++);
1818         if (!n)
1819             continue;
1820 
1821         /* no need to compare keys since we bumped the index */
1822         if (IS_LEAF(n))
1823             goto found;
1824 
1825         /* Rescan start scanning in new node */
1826         pn = n;
1827         cindex = 0;
1828     }
1829 
1830     *tn = pn;
1831     return NULL; /* Root of trie */
1832 found:
1833     /* if we are at the limit for keys just return NULL for the tnode */
1834     *tn = pn;
1835     return n;
1836 }
1837 
1838 static void fib_trie_free(struct fib_table *tb)
1839 {
1840     struct trie *t = (struct trie *)tb->tb_data;
1841     struct key_vector *pn = t->kv;
1842     unsigned long cindex = 1;
1843     struct hlist_node *tmp;
1844     struct fib_alias *fa;
1845 
1846     /* walk trie in reverse order and free everything */
1847     for (;;) {
1848         struct key_vector *n;
1849 
1850         if (!(cindex--)) {
1851             t_key pkey = pn->key;
1852 
1853             if (IS_TRIE(pn))
1854                 break;
1855 
1856             n = pn;
1857             pn = node_parent(pn);
1858 
1859             /* drop emptied tnode */
1860             put_child_root(pn, n->key, NULL);
1861             node_free(n);
1862 
1863             cindex = get_index(pkey, pn);
1864 
1865             continue;
1866         }
1867 
1868         /* grab the next available node */
1869         n = get_child(pn, cindex);
1870         if (!n)
1871             continue;
1872 
1873         if (IS_TNODE(n)) {
1874             /* record pn and cindex for leaf walking */
1875             pn = n;
1876             cindex = 1ul << n->bits;
1877 
1878             continue;
1879         }
1880 
1881         hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1882             hlist_del_rcu(&fa->fa_list);
1883             alias_free_mem_rcu(fa);
1884         }
1885 
1886         put_child_root(pn, n->key, NULL);
1887         node_free(n);
1888     }
1889 
1890 #ifdef CONFIG_IP_FIB_TRIE_STATS
1891     free_percpu(t->stats);
1892 #endif
1893     kfree(tb);
1894 }
1895 
1896 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1897 {
1898     struct trie *ot = (struct trie *)oldtb->tb_data;
1899     struct key_vector *l, *tp = ot->kv;
1900     struct fib_table *local_tb;
1901     struct fib_alias *fa;
1902     struct trie *lt;
1903     t_key key = 0;
1904 
1905     if (oldtb->tb_data == oldtb->__data)
1906         return oldtb;
1907 
1908     local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1909     if (!local_tb)
1910         return NULL;
1911 
1912     lt = (struct trie *)local_tb->tb_data;
1913 
1914     while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1915         struct key_vector *local_l = NULL, *local_tp;
1916 
1917         hlist_for_each_entry(fa, &l->leaf, fa_list) {
1918             struct fib_alias *new_fa;
1919 
1920             if (local_tb->tb_id != fa->tb_id)
1921                 continue;
1922 
1923             /* clone fa for new local table */
1924             new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1925             if (!new_fa)
1926                 goto out;
1927 
1928             memcpy(new_fa, fa, sizeof(*fa));
1929 
1930             /* insert clone into table */
1931             if (!local_l)
1932                 local_l = fib_find_node(lt, &local_tp, l->key);
1933 
1934             if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1935                          NULL, l->key)) {
1936                 kmem_cache_free(fn_alias_kmem, new_fa);
1937                 goto out;
1938             }
1939         }
1940 
1941         /* stop loop if key wrapped back to 0 */
1942         key = l->key + 1;
1943         if (key < l->key)
1944             break;
1945     }
1946 
1947     return local_tb;
1948 out:
1949     fib_trie_free(local_tb);
1950 
1951     return NULL;
1952 }
1953 
1954 /* Caller must hold RTNL */
1955 void fib_table_flush_external(struct fib_table *tb)
1956 {
1957     struct trie *t = (struct trie *)tb->tb_data;
1958     struct key_vector *pn = t->kv;
1959     unsigned long cindex = 1;
1960     struct hlist_node *tmp;
1961     struct fib_alias *fa;
1962 
1963     /* walk trie in reverse order */
1964     for (;;) {
1965         unsigned char slen = 0;
1966         struct key_vector *n;
1967 
1968         if (!(cindex--)) {
1969             t_key pkey = pn->key;
1970 
1971             /* cannot resize the trie vector */
1972             if (IS_TRIE(pn))
1973                 break;
1974 
1975             /* update the suffix to address pulled leaves */
1976             if (pn->slen > pn->pos)
1977                 update_suffix(pn);
1978 
1979             /* resize completed node */
1980             pn = resize(t, pn);
1981             cindex = get_index(pkey, pn);
1982 
1983             continue;
1984         }
1985 
1986         /* grab the next available node */
1987         n = get_child(pn, cindex);
1988         if (!n)
1989             continue;
1990 
1991         if (IS_TNODE(n)) {
1992             /* record pn and cindex for leaf walking */
1993             pn = n;
1994             cindex = 1ul << n->bits;
1995 
1996             continue;
1997         }
1998 
1999         hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2000             /* if alias was cloned to local then we just
2001              * need to remove the local copy from main
2002              */
2003             if (tb->tb_id != fa->tb_id) {
2004                 hlist_del_rcu(&fa->fa_list);
2005                 alias_free_mem_rcu(fa);
2006                 continue;
2007             }
2008 
2009             /* record local slen */
2010             slen = fa->fa_slen;
2011         }
2012 
2013         /* update leaf slen */
2014         n->slen = slen;
2015 
2016         if (hlist_empty(&n->leaf)) {
2017             put_child_root(pn, n->key, NULL);
2018             node_free(n);
2019         }
2020     }
2021 }
2022 
2023 /* Caller must hold RTNL. */
2024 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2025 {
2026     struct trie *t = (struct trie *)tb->tb_data;
2027     struct key_vector *pn = t->kv;
2028     unsigned long cindex = 1;
2029     struct hlist_node *tmp;
2030     struct fib_alias *fa;
2031     int found = 0;
2032 
2033     /* walk trie in reverse order */
2034     for (;;) {
2035         unsigned char slen = 0;
2036         struct key_vector *n;
2037 
2038         if (!(cindex--)) {
2039             t_key pkey = pn->key;
2040 
2041             /* cannot resize the trie vector */
2042             if (IS_TRIE(pn))
2043                 break;
2044 
2045             /* update the suffix to address pulled leaves */
2046             if (pn->slen > pn->pos)
2047                 update_suffix(pn);
2048 
2049             /* resize completed node */
2050             pn = resize(t, pn);
2051             cindex = get_index(pkey, pn);
2052 
2053             continue;
2054         }
2055 
2056         /* grab the next available node */
2057         n = get_child(pn, cindex);
2058         if (!n)
2059             continue;
2060 
2061         if (IS_TNODE(n)) {
2062             /* record pn and cindex for leaf walking */
2063             pn = n;
2064             cindex = 1ul << n->bits;
2065 
2066             continue;
2067         }
2068 
2069         hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2070             struct fib_info *fi = fa->fa_info;
2071 
2072             if (!fi || tb->tb_id != fa->tb_id ||
2073                 (!(fi->fib_flags & RTNH_F_DEAD) &&
2074                  !fib_props[fa->fa_type].error)) {
2075                 slen = fa->fa_slen;
2076                 continue;
2077             }
2078 
2079             /* Do not flush error routes if network namespace is
2080              * not being dismantled
2081              */
2082             if (!flush_all && fib_props[fa->fa_type].error) {
2083                 slen = fa->fa_slen;
2084                 continue;
2085             }
2086 
2087             fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2088                         NULL);
2089             hlist_del_rcu(&fa->fa_list);
2090             fib_release_info(fa->fa_info);
2091             alias_free_mem_rcu(fa);
2092             found++;
2093         }
2094 
2095         /* update leaf slen */
2096         n->slen = slen;
2097 
2098         if (hlist_empty(&n->leaf)) {
2099             put_child_root(pn, n->key, NULL);
2100             node_free(n);
2101         }
2102     }
2103 
2104     pr_debug("trie_flush found=%d\n", found);
2105     return found;
2106 }
2107 
2108 /* derived from fib_trie_free */
2109 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2110                      struct nl_info *info)
2111 {
2112     struct trie *t = (struct trie *)tb->tb_data;
2113     struct key_vector *pn = t->kv;
2114     unsigned long cindex = 1;
2115     struct fib_alias *fa;
2116 
2117     for (;;) {
2118         struct key_vector *n;
2119 
2120         if (!(cindex--)) {
2121             t_key pkey = pn->key;
2122 
2123             if (IS_TRIE(pn))
2124                 break;
2125 
2126             pn = node_parent(pn);
2127             cindex = get_index(pkey, pn);
2128             continue;
2129         }
2130 
2131         /* grab the next available node */
2132         n = get_child(pn, cindex);
2133         if (!n)
2134             continue;
2135 
2136         if (IS_TNODE(n)) {
2137             /* record pn and cindex for leaf walking */
2138             pn = n;
2139             cindex = 1ul << n->bits;
2140 
2141             continue;
2142         }
2143 
2144         hlist_for_each_entry(fa, &n->leaf, fa_list) {
2145             struct fib_info *fi = fa->fa_info;
2146 
2147             if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2148                 continue;
2149 
2150             rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2151                   KEYLENGTH - fa->fa_slen, tb->tb_id,
2152                   info, NLM_F_REPLACE);
2153         }
2154     }
2155 }
2156 
2157 void fib_info_notify_update(struct net *net, struct nl_info *info)
2158 {
2159     unsigned int h;
2160 
2161     for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2162         struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2163         struct fib_table *tb;
2164 
2165         hlist_for_each_entry_rcu(tb, head, tb_hlist,
2166                      lockdep_rtnl_is_held())
2167             __fib_info_notify_update(net, tb, info);
2168     }
2169 }
2170 
2171 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2172                struct notifier_block *nb,
2173                struct netlink_ext_ack *extack)
2174 {
2175     struct fib_alias *fa;
2176     int last_slen = -1;
2177     int err;
2178 
2179     hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2180         struct fib_info *fi = fa->fa_info;
2181 
2182         if (!fi)
2183             continue;
2184 
2185         /* local and main table can share the same trie,
2186          * so don't notify twice for the same entry.
2187          */
2188         if (tb->tb_id != fa->tb_id)
2189             continue;
2190 
2191         if (fa->fa_slen == last_slen)
2192             continue;
2193 
2194         last_slen = fa->fa_slen;
2195         err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2196                           l->key, KEYLENGTH - fa->fa_slen,
2197                           fa, extack);
2198         if (err)
2199             return err;
2200     }
2201     return 0;
2202 }
2203 
2204 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2205                 struct netlink_ext_ack *extack)
2206 {
2207     struct trie *t = (struct trie *)tb->tb_data;
2208     struct key_vector *l, *tp = t->kv;
2209     t_key key = 0;
2210     int err;
2211 
2212     while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2213         err = fib_leaf_notify(l, tb, nb, extack);
2214         if (err)
2215             return err;
2216 
2217         key = l->key + 1;
2218         /* stop in case of wrap around */
2219         if (key < l->key)
2220             break;
2221     }
2222     return 0;
2223 }
2224 
2225 int fib_notify(struct net *net, struct notifier_block *nb,
2226            struct netlink_ext_ack *extack)
2227 {
2228     unsigned int h;
2229     int err;
2230 
2231     for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2232         struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2233         struct fib_table *tb;
2234 
2235         hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2236             err = fib_table_notify(tb, nb, extack);
2237             if (err)
2238                 return err;
2239         }
2240     }
2241     return 0;
2242 }
2243 
2244 static void __trie_free_rcu(struct rcu_head *head)
2245 {
2246     struct fib_table *tb = container_of(head, struct fib_table, rcu);
2247 #ifdef CONFIG_IP_FIB_TRIE_STATS
2248     struct trie *t = (struct trie *)tb->tb_data;
2249 
2250     if (tb->tb_data == tb->__data)
2251         free_percpu(t->stats);
2252 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2253     kfree(tb);
2254 }
2255 
2256 void fib_free_table(struct fib_table *tb)
2257 {
2258     call_rcu(&tb->rcu, __trie_free_rcu);
2259 }
2260 
2261 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2262                  struct sk_buff *skb, struct netlink_callback *cb,
2263                  struct fib_dump_filter *filter)
2264 {
2265     unsigned int flags = NLM_F_MULTI;
2266     __be32 xkey = htonl(l->key);
2267     int i, s_i, i_fa, s_fa, err;
2268     struct fib_alias *fa;
2269 
2270     if (filter->filter_set ||
2271         !filter->dump_exceptions || !filter->dump_routes)
2272         flags |= NLM_F_DUMP_FILTERED;
2273 
2274     s_i = cb->args[4];
2275     s_fa = cb->args[5];
2276     i = 0;
2277 
2278     /* rcu_read_lock is hold by caller */
2279     hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2280         struct fib_info *fi = fa->fa_info;
2281 
2282         if (i < s_i)
2283             goto next;
2284 
2285         i_fa = 0;
2286 
2287         if (tb->tb_id != fa->tb_id)
2288             goto next;
2289 
2290         if (filter->filter_set) {
2291             if (filter->rt_type && fa->fa_type != filter->rt_type)
2292                 goto next;
2293 
2294             if ((filter->protocol &&
2295                  fi->fib_protocol != filter->protocol))
2296                 goto next;
2297 
2298             if (filter->dev &&
2299                 !fib_info_nh_uses_dev(fi, filter->dev))
2300                 goto next;
2301         }
2302 
2303         if (filter->dump_routes) {
2304             if (!s_fa) {
2305                 struct fib_rt_info fri;
2306 
2307                 fri.fi = fi;
2308                 fri.tb_id = tb->tb_id;
2309                 fri.dst = xkey;
2310                 fri.dst_len = KEYLENGTH - fa->fa_slen;
2311                 fri.dscp = fa->fa_dscp;
2312                 fri.type = fa->fa_type;
2313                 fri.offload = READ_ONCE(fa->offload);
2314                 fri.trap = READ_ONCE(fa->trap);
2315                 fri.offload_failed = READ_ONCE(fa->offload_failed);
2316                 err = fib_dump_info(skb,
2317                             NETLINK_CB(cb->skb).portid,
2318                             cb->nlh->nlmsg_seq,
2319                             RTM_NEWROUTE, &fri, flags);
2320                 if (err < 0)
2321                     goto stop;
2322             }
2323 
2324             i_fa++;
2325         }
2326 
2327         if (filter->dump_exceptions) {
2328             err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2329                          &i_fa, s_fa, flags);
2330             if (err < 0)
2331                 goto stop;
2332         }
2333 
2334 next:
2335         i++;
2336     }
2337 
2338     cb->args[4] = i;
2339     return skb->len;
2340 
2341 stop:
2342     cb->args[4] = i;
2343     cb->args[5] = i_fa;
2344     return err;
2345 }
2346 
2347 /* rcu_read_lock needs to be hold by caller from readside */
2348 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2349            struct netlink_callback *cb, struct fib_dump_filter *filter)
2350 {
2351     struct trie *t = (struct trie *)tb->tb_data;
2352     struct key_vector *l, *tp = t->kv;
2353     /* Dump starting at last key.
2354      * Note: 0.0.0.0/0 (ie default) is first key.
2355      */
2356     int count = cb->args[2];
2357     t_key key = cb->args[3];
2358 
2359     /* First time here, count and key are both always 0. Count > 0
2360      * and key == 0 means the dump has wrapped around and we are done.
2361      */
2362     if (count && !key)
2363         return skb->len;
2364 
2365     while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2366         int err;
2367 
2368         err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2369         if (err < 0) {
2370             cb->args[3] = key;
2371             cb->args[2] = count;
2372             return err;
2373         }
2374 
2375         ++count;
2376         key = l->key + 1;
2377 
2378         memset(&cb->args[4], 0,
2379                sizeof(cb->args) - 4*sizeof(cb->args[0]));
2380 
2381         /* stop loop if key wrapped back to 0 */
2382         if (key < l->key)
2383             break;
2384     }
2385 
2386     cb->args[3] = key;
2387     cb->args[2] = count;
2388 
2389     return skb->len;
2390 }
2391 
2392 void __init fib_trie_init(void)
2393 {
2394     fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2395                       sizeof(struct fib_alias),
2396                       0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2397 
2398     trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2399                        LEAF_SIZE,
2400                        0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2401 }
2402 
2403 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2404 {
2405     struct fib_table *tb;
2406     struct trie *t;
2407     size_t sz = sizeof(*tb);
2408 
2409     if (!alias)
2410         sz += sizeof(struct trie);
2411 
2412     tb = kzalloc(sz, GFP_KERNEL);
2413     if (!tb)
2414         return NULL;
2415 
2416     tb->tb_id = id;
2417     tb->tb_num_default = 0;
2418     tb->tb_data = (alias ? alias->__data : tb->__data);
2419 
2420     if (alias)
2421         return tb;
2422 
2423     t = (struct trie *) tb->tb_data;
2424     t->kv[0].pos = KEYLENGTH;
2425     t->kv[0].slen = KEYLENGTH;
2426 #ifdef CONFIG_IP_FIB_TRIE_STATS
2427     t->stats = alloc_percpu(struct trie_use_stats);
2428     if (!t->stats) {
2429         kfree(tb);
2430         tb = NULL;
2431     }
2432 #endif
2433 
2434     return tb;
2435 }
2436 
2437 #ifdef CONFIG_PROC_FS
2438 /* Depth first Trie walk iterator */
2439 struct fib_trie_iter {
2440     struct seq_net_private p;
2441     struct fib_table *tb;
2442     struct key_vector *tnode;
2443     unsigned int index;
2444     unsigned int depth;
2445 };
2446 
2447 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2448 {
2449     unsigned long cindex = iter->index;
2450     struct key_vector *pn = iter->tnode;
2451     t_key pkey;
2452 
2453     pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2454          iter->tnode, iter->index, iter->depth);
2455 
2456     while (!IS_TRIE(pn)) {
2457         while (cindex < child_length(pn)) {
2458             struct key_vector *n = get_child_rcu(pn, cindex++);
2459 
2460             if (!n)
2461                 continue;
2462 
2463             if (IS_LEAF(n)) {
2464                 iter->tnode = pn;
2465                 iter->index = cindex;
2466             } else {
2467                 /* push down one level */
2468                 iter->tnode = n;
2469                 iter->index = 0;
2470                 ++iter->depth;
2471             }
2472 
2473             return n;
2474         }
2475 
2476         /* Current node exhausted, pop back up */
2477         pkey = pn->key;
2478         pn = node_parent_rcu(pn);
2479         cindex = get_index(pkey, pn) + 1;
2480         --iter->depth;
2481     }
2482 
2483     /* record root node so further searches know we are done */
2484     iter->tnode = pn;
2485     iter->index = 0;
2486 
2487     return NULL;
2488 }
2489 
2490 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2491                          struct trie *t)
2492 {
2493     struct key_vector *n, *pn;
2494 
2495     if (!t)
2496         return NULL;
2497 
2498     pn = t->kv;
2499     n = rcu_dereference(pn->tnode[0]);
2500     if (!n)
2501         return NULL;
2502 
2503     if (IS_TNODE(n)) {
2504         iter->tnode = n;
2505         iter->index = 0;
2506         iter->depth = 1;
2507     } else {
2508         iter->tnode = pn;
2509         iter->index = 0;
2510         iter->depth = 0;
2511     }
2512 
2513     return n;
2514 }
2515 
2516 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2517 {
2518     struct key_vector *n;
2519     struct fib_trie_iter iter;
2520 
2521     memset(s, 0, sizeof(*s));
2522 
2523     rcu_read_lock();
2524     for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2525         if (IS_LEAF(n)) {
2526             struct fib_alias *fa;
2527 
2528             s->leaves++;
2529             s->totdepth += iter.depth;
2530             if (iter.depth > s->maxdepth)
2531                 s->maxdepth = iter.depth;
2532 
2533             hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2534                 ++s->prefixes;
2535         } else {
2536             s->tnodes++;
2537             if (n->bits < MAX_STAT_DEPTH)
2538                 s->nodesizes[n->bits]++;
2539             s->nullpointers += tn_info(n)->empty_children;
2540         }
2541     }
2542     rcu_read_unlock();
2543 }
2544 
2545 /*
2546  *  This outputs /proc/net/fib_triestats
2547  */
2548 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2549 {
2550     unsigned int i, max, pointers, bytes, avdepth;
2551 
2552     if (stat->leaves)
2553         avdepth = stat->totdepth*100 / stat->leaves;
2554     else
2555         avdepth = 0;
2556 
2557     seq_printf(seq, "\tAver depth:     %u.%02d\n",
2558            avdepth / 100, avdepth % 100);
2559     seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2560 
2561     seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2562     bytes = LEAF_SIZE * stat->leaves;
2563 
2564     seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2565     bytes += sizeof(struct fib_alias) * stat->prefixes;
2566 
2567     seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2568     bytes += TNODE_SIZE(0) * stat->tnodes;
2569 
2570     max = MAX_STAT_DEPTH;
2571     while (max > 0 && stat->nodesizes[max-1] == 0)
2572         max--;
2573 
2574     pointers = 0;
2575     for (i = 1; i < max; i++)
2576         if (stat->nodesizes[i] != 0) {
2577             seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2578             pointers += (1<<i) * stat->nodesizes[i];
2579         }
2580     seq_putc(seq, '\n');
2581     seq_printf(seq, "\tPointers: %u\n", pointers);
2582 
2583     bytes += sizeof(struct key_vector *) * pointers;
2584     seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2585     seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2586 }
2587 
2588 #ifdef CONFIG_IP_FIB_TRIE_STATS
2589 static void trie_show_usage(struct seq_file *seq,
2590                 const struct trie_use_stats __percpu *stats)
2591 {
2592     struct trie_use_stats s = { 0 };
2593     int cpu;
2594 
2595     /* loop through all of the CPUs and gather up the stats */
2596     for_each_possible_cpu(cpu) {
2597         const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2598 
2599         s.gets += pcpu->gets;
2600         s.backtrack += pcpu->backtrack;
2601         s.semantic_match_passed += pcpu->semantic_match_passed;
2602         s.semantic_match_miss += pcpu->semantic_match_miss;
2603         s.null_node_hit += pcpu->null_node_hit;
2604         s.resize_node_skipped += pcpu->resize_node_skipped;
2605     }
2606 
2607     seq_printf(seq, "\nCounters:\n---------\n");
2608     seq_printf(seq, "gets = %u\n", s.gets);
2609     seq_printf(seq, "backtracks = %u\n", s.backtrack);
2610     seq_printf(seq, "semantic match passed = %u\n",
2611            s.semantic_match_passed);
2612     seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2613     seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2614     seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2615 }
2616 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2617 
2618 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2619 {
2620     if (tb->tb_id == RT_TABLE_LOCAL)
2621         seq_puts(seq, "Local:\n");
2622     else if (tb->tb_id == RT_TABLE_MAIN)
2623         seq_puts(seq, "Main:\n");
2624     else
2625         seq_printf(seq, "Id %d:\n", tb->tb_id);
2626 }
2627 
2628 
2629 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2630 {
2631     struct net *net = seq->private;
2632     unsigned int h;
2633 
2634     seq_printf(seq,
2635            "Basic info: size of leaf:"
2636            " %zd bytes, size of tnode: %zd bytes.\n",
2637            LEAF_SIZE, TNODE_SIZE(0));
2638 
2639     rcu_read_lock();
2640     for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2641         struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2642         struct fib_table *tb;
2643 
2644         hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2645             struct trie *t = (struct trie *) tb->tb_data;
2646             struct trie_stat stat;
2647 
2648             if (!t)
2649                 continue;
2650 
2651             fib_table_print(seq, tb);
2652 
2653             trie_collect_stats(t, &stat);
2654             trie_show_stats(seq, &stat);
2655 #ifdef CONFIG_IP_FIB_TRIE_STATS
2656             trie_show_usage(seq, t->stats);
2657 #endif
2658         }
2659         cond_resched_rcu();
2660     }
2661     rcu_read_unlock();
2662 
2663     return 0;
2664 }
2665 
2666 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2667 {
2668     struct fib_trie_iter *iter = seq->private;
2669     struct net *net = seq_file_net(seq);
2670     loff_t idx = 0;
2671     unsigned int h;
2672 
2673     for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2674         struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2675         struct fib_table *tb;
2676 
2677         hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2678             struct key_vector *n;
2679 
2680             for (n = fib_trie_get_first(iter,
2681                             (struct trie *) tb->tb_data);
2682                  n; n = fib_trie_get_next(iter))
2683                 if (pos == idx++) {
2684                     iter->tb = tb;
2685                     return n;
2686                 }
2687         }
2688     }
2689 
2690     return NULL;
2691 }
2692 
2693 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2694     __acquires(RCU)
2695 {
2696     rcu_read_lock();
2697     return fib_trie_get_idx(seq, *pos);
2698 }
2699 
2700 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2701 {
2702     struct fib_trie_iter *iter = seq->private;
2703     struct net *net = seq_file_net(seq);
2704     struct fib_table *tb = iter->tb;
2705     struct hlist_node *tb_node;
2706     unsigned int h;
2707     struct key_vector *n;
2708 
2709     ++*pos;
2710     /* next node in same table */
2711     n = fib_trie_get_next(iter);
2712     if (n)
2713         return n;
2714 
2715     /* walk rest of this hash chain */
2716     h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2717     while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2718         tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2719         n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2720         if (n)
2721             goto found;
2722     }
2723 
2724     /* new hash chain */
2725     while (++h < FIB_TABLE_HASHSZ) {
2726         struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2727         hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2728             n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2729             if (n)
2730                 goto found;
2731         }
2732     }
2733     return NULL;
2734 
2735 found:
2736     iter->tb = tb;
2737     return n;
2738 }
2739 
2740 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2741     __releases(RCU)
2742 {
2743     rcu_read_unlock();
2744 }
2745 
2746 static void seq_indent(struct seq_file *seq, int n)
2747 {
2748     while (n-- > 0)
2749         seq_puts(seq, "   ");
2750 }
2751 
2752 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2753 {
2754     switch (s) {
2755     case RT_SCOPE_UNIVERSE: return "universe";
2756     case RT_SCOPE_SITE: return "site";
2757     case RT_SCOPE_LINK: return "link";
2758     case RT_SCOPE_HOST: return "host";
2759     case RT_SCOPE_NOWHERE:  return "nowhere";
2760     default:
2761         snprintf(buf, len, "scope=%d", s);
2762         return buf;
2763     }
2764 }
2765 
2766 static const char *const rtn_type_names[__RTN_MAX] = {
2767     [RTN_UNSPEC] = "UNSPEC",
2768     [RTN_UNICAST] = "UNICAST",
2769     [RTN_LOCAL] = "LOCAL",
2770     [RTN_BROADCAST] = "BROADCAST",
2771     [RTN_ANYCAST] = "ANYCAST",
2772     [RTN_MULTICAST] = "MULTICAST",
2773     [RTN_BLACKHOLE] = "BLACKHOLE",
2774     [RTN_UNREACHABLE] = "UNREACHABLE",
2775     [RTN_PROHIBIT] = "PROHIBIT",
2776     [RTN_THROW] = "THROW",
2777     [RTN_NAT] = "NAT",
2778     [RTN_XRESOLVE] = "XRESOLVE",
2779 };
2780 
2781 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2782 {
2783     if (t < __RTN_MAX && rtn_type_names[t])
2784         return rtn_type_names[t];
2785     snprintf(buf, len, "type %u", t);
2786     return buf;
2787 }
2788 
2789 /* Pretty print the trie */
2790 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2791 {
2792     const struct fib_trie_iter *iter = seq->private;
2793     struct key_vector *n = v;
2794 
2795     if (IS_TRIE(node_parent_rcu(n)))
2796         fib_table_print(seq, iter->tb);
2797 
2798     if (IS_TNODE(n)) {
2799         __be32 prf = htonl(n->key);
2800 
2801         seq_indent(seq, iter->depth-1);
2802         seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2803                &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2804                tn_info(n)->full_children,
2805                tn_info(n)->empty_children);
2806     } else {
2807         __be32 val = htonl(n->key);
2808         struct fib_alias *fa;
2809 
2810         seq_indent(seq, iter->depth);
2811         seq_printf(seq, "  |-- %pI4\n", &val);
2812 
2813         hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2814             char buf1[32], buf2[32];
2815 
2816             seq_indent(seq, iter->depth + 1);
2817             seq_printf(seq, "  /%zu %s %s",
2818                    KEYLENGTH - fa->fa_slen,
2819                    rtn_scope(buf1, sizeof(buf1),
2820                          fa->fa_info->fib_scope),
2821                    rtn_type(buf2, sizeof(buf2),
2822                         fa->fa_type));
2823             if (fa->fa_dscp)
2824                 seq_printf(seq, " tos=%d",
2825                        inet_dscp_to_dsfield(fa->fa_dscp));
2826             seq_putc(seq, '\n');
2827         }
2828     }
2829 
2830     return 0;
2831 }
2832 
2833 static const struct seq_operations fib_trie_seq_ops = {
2834     .start  = fib_trie_seq_start,
2835     .next   = fib_trie_seq_next,
2836     .stop   = fib_trie_seq_stop,
2837     .show   = fib_trie_seq_show,
2838 };
2839 
2840 struct fib_route_iter {
2841     struct seq_net_private p;
2842     struct fib_table *main_tb;
2843     struct key_vector *tnode;
2844     loff_t  pos;
2845     t_key   key;
2846 };
2847 
2848 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2849                         loff_t pos)
2850 {
2851     struct key_vector *l, **tp = &iter->tnode;
2852     t_key key;
2853 
2854     /* use cached location of previously found key */
2855     if (iter->pos > 0 && pos >= iter->pos) {
2856         key = iter->key;
2857     } else {
2858         iter->pos = 1;
2859         key = 0;
2860     }
2861 
2862     pos -= iter->pos;
2863 
2864     while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2865         key = l->key + 1;
2866         iter->pos++;
2867         l = NULL;
2868 
2869         /* handle unlikely case of a key wrap */
2870         if (!key)
2871             break;
2872     }
2873 
2874     if (l)
2875         iter->key = l->key; /* remember it */
2876     else
2877         iter->pos = 0;      /* forget it */
2878 
2879     return l;
2880 }
2881 
2882 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2883     __acquires(RCU)
2884 {
2885     struct fib_route_iter *iter = seq->private;
2886     struct fib_table *tb;
2887     struct trie *t;
2888 
2889     rcu_read_lock();
2890 
2891     tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2892     if (!tb)
2893         return NULL;
2894 
2895     iter->main_tb = tb;
2896     t = (struct trie *)tb->tb_data;
2897     iter->tnode = t->kv;
2898 
2899     if (*pos != 0)
2900         return fib_route_get_idx(iter, *pos);
2901 
2902     iter->pos = 0;
2903     iter->key = KEY_MAX;
2904 
2905     return SEQ_START_TOKEN;
2906 }
2907 
2908 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2909 {
2910     struct fib_route_iter *iter = seq->private;
2911     struct key_vector *l = NULL;
2912     t_key key = iter->key + 1;
2913 
2914     ++*pos;
2915 
2916     /* only allow key of 0 for start of sequence */
2917     if ((v == SEQ_START_TOKEN) || key)
2918         l = leaf_walk_rcu(&iter->tnode, key);
2919 
2920     if (l) {
2921         iter->key = l->key;
2922         iter->pos++;
2923     } else {
2924         iter->pos = 0;
2925     }
2926 
2927     return l;
2928 }
2929 
2930 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2931     __releases(RCU)
2932 {
2933     rcu_read_unlock();
2934 }
2935 
2936 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2937 {
2938     unsigned int flags = 0;
2939 
2940     if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2941         flags = RTF_REJECT;
2942     if (fi) {
2943         const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2944 
2945         if (nhc->nhc_gw.ipv4)
2946             flags |= RTF_GATEWAY;
2947     }
2948     if (mask == htonl(0xFFFFFFFF))
2949         flags |= RTF_HOST;
2950     flags |= RTF_UP;
2951     return flags;
2952 }
2953 
2954 /*
2955  *  This outputs /proc/net/route.
2956  *  The format of the file is not supposed to be changed
2957  *  and needs to be same as fib_hash output to avoid breaking
2958  *  legacy utilities
2959  */
2960 static int fib_route_seq_show(struct seq_file *seq, void *v)
2961 {
2962     struct fib_route_iter *iter = seq->private;
2963     struct fib_table *tb = iter->main_tb;
2964     struct fib_alias *fa;
2965     struct key_vector *l = v;
2966     __be32 prefix;
2967 
2968     if (v == SEQ_START_TOKEN) {
2969         seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2970                "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2971                "\tWindow\tIRTT");
2972         return 0;
2973     }
2974 
2975     prefix = htonl(l->key);
2976 
2977     hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2978         struct fib_info *fi = fa->fa_info;
2979         __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2980         unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2981 
2982         if ((fa->fa_type == RTN_BROADCAST) ||
2983             (fa->fa_type == RTN_MULTICAST))
2984             continue;
2985 
2986         if (fa->tb_id != tb->tb_id)
2987             continue;
2988 
2989         seq_setwidth(seq, 127);
2990 
2991         if (fi) {
2992             struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2993             __be32 gw = 0;
2994 
2995             if (nhc->nhc_gw_family == AF_INET)
2996                 gw = nhc->nhc_gw.ipv4;
2997 
2998             seq_printf(seq,
2999                    "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
3000                    "%d\t%08X\t%d\t%u\t%u",
3001                    nhc->nhc_dev ? nhc->nhc_dev->name : "*",
3002                    prefix, gw, flags, 0, 0,
3003                    fi->fib_priority,
3004                    mask,
3005                    (fi->fib_advmss ?
3006                     fi->fib_advmss + 40 : 0),
3007                    fi->fib_window,
3008                    fi->fib_rtt >> 3);
3009         } else {
3010             seq_printf(seq,
3011                    "*\t%08X\t%08X\t%04X\t%d\t%u\t"
3012                    "%d\t%08X\t%d\t%u\t%u",
3013                    prefix, 0, flags, 0, 0, 0,
3014                    mask, 0, 0, 0);
3015         }
3016         seq_pad(seq, '\n');
3017     }
3018 
3019     return 0;
3020 }
3021 
3022 static const struct seq_operations fib_route_seq_ops = {
3023     .start  = fib_route_seq_start,
3024     .next   = fib_route_seq_next,
3025     .stop   = fib_route_seq_stop,
3026     .show   = fib_route_seq_show,
3027 };
3028 
3029 int __net_init fib_proc_init(struct net *net)
3030 {
3031     if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3032             sizeof(struct fib_trie_iter)))
3033         goto out1;
3034 
3035     if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3036             fib_triestat_seq_show, NULL))
3037         goto out2;
3038 
3039     if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3040             sizeof(struct fib_route_iter)))
3041         goto out3;
3042 
3043     return 0;
3044 
3045 out3:
3046     remove_proc_entry("fib_triestat", net->proc_net);
3047 out2:
3048     remove_proc_entry("fib_trie", net->proc_net);
3049 out1:
3050     return -ENOMEM;
3051 }
3052 
3053 void __net_exit fib_proc_exit(struct net *net)
3054 {
3055     remove_proc_entry("fib_trie", net->proc_net);
3056     remove_proc_entry("fib_triestat", net->proc_net);
3057     remove_proc_entry("route", net->proc_net);
3058 }
3059 
3060 #endif /* CONFIG_PROC_FS */