Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
0003 
0004 #include <linux/skmsg.h>
0005 #include <linux/skbuff.h>
0006 #include <linux/scatterlist.h>
0007 
0008 #include <net/sock.h>
0009 #include <net/tcp.h>
0010 #include <net/tls.h>
0011 
0012 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
0013 {
0014     if (msg->sg.end > msg->sg.start &&
0015         elem_first_coalesce < msg->sg.end)
0016         return true;
0017 
0018     if (msg->sg.end < msg->sg.start &&
0019         (elem_first_coalesce > msg->sg.start ||
0020          elem_first_coalesce < msg->sg.end))
0021         return true;
0022 
0023     return false;
0024 }
0025 
0026 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
0027          int elem_first_coalesce)
0028 {
0029     struct page_frag *pfrag = sk_page_frag(sk);
0030     u32 osize = msg->sg.size;
0031     int ret = 0;
0032 
0033     len -= msg->sg.size;
0034     while (len > 0) {
0035         struct scatterlist *sge;
0036         u32 orig_offset;
0037         int use, i;
0038 
0039         if (!sk_page_frag_refill(sk, pfrag)) {
0040             ret = -ENOMEM;
0041             goto msg_trim;
0042         }
0043 
0044         orig_offset = pfrag->offset;
0045         use = min_t(int, len, pfrag->size - orig_offset);
0046         if (!sk_wmem_schedule(sk, use)) {
0047             ret = -ENOMEM;
0048             goto msg_trim;
0049         }
0050 
0051         i = msg->sg.end;
0052         sk_msg_iter_var_prev(i);
0053         sge = &msg->sg.data[i];
0054 
0055         if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
0056             sg_page(sge) == pfrag->page &&
0057             sge->offset + sge->length == orig_offset) {
0058             sge->length += use;
0059         } else {
0060             if (sk_msg_full(msg)) {
0061                 ret = -ENOSPC;
0062                 break;
0063             }
0064 
0065             sge = &msg->sg.data[msg->sg.end];
0066             sg_unmark_end(sge);
0067             sg_set_page(sge, pfrag->page, use, orig_offset);
0068             get_page(pfrag->page);
0069             sk_msg_iter_next(msg, end);
0070         }
0071 
0072         sk_mem_charge(sk, use);
0073         msg->sg.size += use;
0074         pfrag->offset += use;
0075         len -= use;
0076     }
0077 
0078     return ret;
0079 
0080 msg_trim:
0081     sk_msg_trim(sk, msg, osize);
0082     return ret;
0083 }
0084 EXPORT_SYMBOL_GPL(sk_msg_alloc);
0085 
0086 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
0087          u32 off, u32 len)
0088 {
0089     int i = src->sg.start;
0090     struct scatterlist *sge = sk_msg_elem(src, i);
0091     struct scatterlist *sgd = NULL;
0092     u32 sge_len, sge_off;
0093 
0094     while (off) {
0095         if (sge->length > off)
0096             break;
0097         off -= sge->length;
0098         sk_msg_iter_var_next(i);
0099         if (i == src->sg.end && off)
0100             return -ENOSPC;
0101         sge = sk_msg_elem(src, i);
0102     }
0103 
0104     while (len) {
0105         sge_len = sge->length - off;
0106         if (sge_len > len)
0107             sge_len = len;
0108 
0109         if (dst->sg.end)
0110             sgd = sk_msg_elem(dst, dst->sg.end - 1);
0111 
0112         if (sgd &&
0113             (sg_page(sge) == sg_page(sgd)) &&
0114             (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
0115             sgd->length += sge_len;
0116             dst->sg.size += sge_len;
0117         } else if (!sk_msg_full(dst)) {
0118             sge_off = sge->offset + off;
0119             sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
0120         } else {
0121             return -ENOSPC;
0122         }
0123 
0124         off = 0;
0125         len -= sge_len;
0126         sk_mem_charge(sk, sge_len);
0127         sk_msg_iter_var_next(i);
0128         if (i == src->sg.end && len)
0129             return -ENOSPC;
0130         sge = sk_msg_elem(src, i);
0131     }
0132 
0133     return 0;
0134 }
0135 EXPORT_SYMBOL_GPL(sk_msg_clone);
0136 
0137 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
0138 {
0139     int i = msg->sg.start;
0140 
0141     do {
0142         struct scatterlist *sge = sk_msg_elem(msg, i);
0143 
0144         if (bytes < sge->length) {
0145             sge->length -= bytes;
0146             sge->offset += bytes;
0147             sk_mem_uncharge(sk, bytes);
0148             break;
0149         }
0150 
0151         sk_mem_uncharge(sk, sge->length);
0152         bytes -= sge->length;
0153         sge->length = 0;
0154         sge->offset = 0;
0155         sk_msg_iter_var_next(i);
0156     } while (bytes && i != msg->sg.end);
0157     msg->sg.start = i;
0158 }
0159 EXPORT_SYMBOL_GPL(sk_msg_return_zero);
0160 
0161 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
0162 {
0163     int i = msg->sg.start;
0164 
0165     do {
0166         struct scatterlist *sge = &msg->sg.data[i];
0167         int uncharge = (bytes < sge->length) ? bytes : sge->length;
0168 
0169         sk_mem_uncharge(sk, uncharge);
0170         bytes -= uncharge;
0171         sk_msg_iter_var_next(i);
0172     } while (i != msg->sg.end);
0173 }
0174 EXPORT_SYMBOL_GPL(sk_msg_return);
0175 
0176 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
0177                 bool charge)
0178 {
0179     struct scatterlist *sge = sk_msg_elem(msg, i);
0180     u32 len = sge->length;
0181 
0182     /* When the skb owns the memory we free it from consume_skb path. */
0183     if (!msg->skb) {
0184         if (charge)
0185             sk_mem_uncharge(sk, len);
0186         put_page(sg_page(sge));
0187     }
0188     memset(sge, 0, sizeof(*sge));
0189     return len;
0190 }
0191 
0192 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
0193              bool charge)
0194 {
0195     struct scatterlist *sge = sk_msg_elem(msg, i);
0196     int freed = 0;
0197 
0198     while (msg->sg.size) {
0199         msg->sg.size -= sge->length;
0200         freed += sk_msg_free_elem(sk, msg, i, charge);
0201         sk_msg_iter_var_next(i);
0202         sk_msg_check_to_free(msg, i, msg->sg.size);
0203         sge = sk_msg_elem(msg, i);
0204     }
0205     consume_skb(msg->skb);
0206     sk_msg_init(msg);
0207     return freed;
0208 }
0209 
0210 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
0211 {
0212     return __sk_msg_free(sk, msg, msg->sg.start, false);
0213 }
0214 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
0215 
0216 int sk_msg_free(struct sock *sk, struct sk_msg *msg)
0217 {
0218     return __sk_msg_free(sk, msg, msg->sg.start, true);
0219 }
0220 EXPORT_SYMBOL_GPL(sk_msg_free);
0221 
0222 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
0223                   u32 bytes, bool charge)
0224 {
0225     struct scatterlist *sge;
0226     u32 i = msg->sg.start;
0227 
0228     while (bytes) {
0229         sge = sk_msg_elem(msg, i);
0230         if (!sge->length)
0231             break;
0232         if (bytes < sge->length) {
0233             if (charge)
0234                 sk_mem_uncharge(sk, bytes);
0235             sge->length -= bytes;
0236             sge->offset += bytes;
0237             msg->sg.size -= bytes;
0238             break;
0239         }
0240 
0241         msg->sg.size -= sge->length;
0242         bytes -= sge->length;
0243         sk_msg_free_elem(sk, msg, i, charge);
0244         sk_msg_iter_var_next(i);
0245         sk_msg_check_to_free(msg, i, bytes);
0246     }
0247     msg->sg.start = i;
0248 }
0249 
0250 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
0251 {
0252     __sk_msg_free_partial(sk, msg, bytes, true);
0253 }
0254 EXPORT_SYMBOL_GPL(sk_msg_free_partial);
0255 
0256 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
0257                   u32 bytes)
0258 {
0259     __sk_msg_free_partial(sk, msg, bytes, false);
0260 }
0261 
0262 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
0263 {
0264     int trim = msg->sg.size - len;
0265     u32 i = msg->sg.end;
0266 
0267     if (trim <= 0) {
0268         WARN_ON(trim < 0);
0269         return;
0270     }
0271 
0272     sk_msg_iter_var_prev(i);
0273     msg->sg.size = len;
0274     while (msg->sg.data[i].length &&
0275            trim >= msg->sg.data[i].length) {
0276         trim -= msg->sg.data[i].length;
0277         sk_msg_free_elem(sk, msg, i, true);
0278         sk_msg_iter_var_prev(i);
0279         if (!trim)
0280             goto out;
0281     }
0282 
0283     msg->sg.data[i].length -= trim;
0284     sk_mem_uncharge(sk, trim);
0285     /* Adjust copybreak if it falls into the trimmed part of last buf */
0286     if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
0287         msg->sg.copybreak = msg->sg.data[i].length;
0288 out:
0289     sk_msg_iter_var_next(i);
0290     msg->sg.end = i;
0291 
0292     /* If we trim data a full sg elem before curr pointer update
0293      * copybreak and current so that any future copy operations
0294      * start at new copy location.
0295      * However trimed data that has not yet been used in a copy op
0296      * does not require an update.
0297      */
0298     if (!msg->sg.size) {
0299         msg->sg.curr = msg->sg.start;
0300         msg->sg.copybreak = 0;
0301     } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
0302            sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
0303         sk_msg_iter_var_prev(i);
0304         msg->sg.curr = i;
0305         msg->sg.copybreak = msg->sg.data[i].length;
0306     }
0307 }
0308 EXPORT_SYMBOL_GPL(sk_msg_trim);
0309 
0310 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
0311                   struct sk_msg *msg, u32 bytes)
0312 {
0313     int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
0314     const int to_max_pages = MAX_MSG_FRAGS;
0315     struct page *pages[MAX_MSG_FRAGS];
0316     ssize_t orig, copied, use, offset;
0317 
0318     orig = msg->sg.size;
0319     while (bytes > 0) {
0320         i = 0;
0321         maxpages = to_max_pages - num_elems;
0322         if (maxpages == 0) {
0323             ret = -EFAULT;
0324             goto out;
0325         }
0326 
0327         copied = iov_iter_get_pages2(from, pages, bytes, maxpages,
0328                         &offset);
0329         if (copied <= 0) {
0330             ret = -EFAULT;
0331             goto out;
0332         }
0333 
0334         bytes -= copied;
0335         msg->sg.size += copied;
0336 
0337         while (copied) {
0338             use = min_t(int, copied, PAGE_SIZE - offset);
0339             sg_set_page(&msg->sg.data[msg->sg.end],
0340                     pages[i], use, offset);
0341             sg_unmark_end(&msg->sg.data[msg->sg.end]);
0342             sk_mem_charge(sk, use);
0343 
0344             offset = 0;
0345             copied -= use;
0346             sk_msg_iter_next(msg, end);
0347             num_elems++;
0348             i++;
0349         }
0350         /* When zerocopy is mixed with sk_msg_*copy* operations we
0351          * may have a copybreak set in this case clear and prefer
0352          * zerocopy remainder when possible.
0353          */
0354         msg->sg.copybreak = 0;
0355         msg->sg.curr = msg->sg.end;
0356     }
0357 out:
0358     /* Revert iov_iter updates, msg will need to use 'trim' later if it
0359      * also needs to be cleared.
0360      */
0361     if (ret)
0362         iov_iter_revert(from, msg->sg.size - orig);
0363     return ret;
0364 }
0365 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
0366 
0367 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
0368                  struct sk_msg *msg, u32 bytes)
0369 {
0370     int ret = -ENOSPC, i = msg->sg.curr;
0371     struct scatterlist *sge;
0372     u32 copy, buf_size;
0373     void *to;
0374 
0375     do {
0376         sge = sk_msg_elem(msg, i);
0377         /* This is possible if a trim operation shrunk the buffer */
0378         if (msg->sg.copybreak >= sge->length) {
0379             msg->sg.copybreak = 0;
0380             sk_msg_iter_var_next(i);
0381             if (i == msg->sg.end)
0382                 break;
0383             sge = sk_msg_elem(msg, i);
0384         }
0385 
0386         buf_size = sge->length - msg->sg.copybreak;
0387         copy = (buf_size > bytes) ? bytes : buf_size;
0388         to = sg_virt(sge) + msg->sg.copybreak;
0389         msg->sg.copybreak += copy;
0390         if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
0391             ret = copy_from_iter_nocache(to, copy, from);
0392         else
0393             ret = copy_from_iter(to, copy, from);
0394         if (ret != copy) {
0395             ret = -EFAULT;
0396             goto out;
0397         }
0398         bytes -= copy;
0399         if (!bytes)
0400             break;
0401         msg->sg.copybreak = 0;
0402         sk_msg_iter_var_next(i);
0403     } while (i != msg->sg.end);
0404 out:
0405     msg->sg.curr = i;
0406     return ret;
0407 }
0408 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
0409 
0410 /* Receive sk_msg from psock->ingress_msg to @msg. */
0411 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
0412            int len, int flags)
0413 {
0414     struct iov_iter *iter = &msg->msg_iter;
0415     int peek = flags & MSG_PEEK;
0416     struct sk_msg *msg_rx;
0417     int i, copied = 0;
0418 
0419     msg_rx = sk_psock_peek_msg(psock);
0420     while (copied != len) {
0421         struct scatterlist *sge;
0422 
0423         if (unlikely(!msg_rx))
0424             break;
0425 
0426         i = msg_rx->sg.start;
0427         do {
0428             struct page *page;
0429             int copy;
0430 
0431             sge = sk_msg_elem(msg_rx, i);
0432             copy = sge->length;
0433             page = sg_page(sge);
0434             if (copied + copy > len)
0435                 copy = len - copied;
0436             copy = copy_page_to_iter(page, sge->offset, copy, iter);
0437             if (!copy)
0438                 return copied ? copied : -EFAULT;
0439 
0440             copied += copy;
0441             if (likely(!peek)) {
0442                 sge->offset += copy;
0443                 sge->length -= copy;
0444                 if (!msg_rx->skb)
0445                     sk_mem_uncharge(sk, copy);
0446                 msg_rx->sg.size -= copy;
0447 
0448                 if (!sge->length) {
0449                     sk_msg_iter_var_next(i);
0450                     if (!msg_rx->skb)
0451                         put_page(page);
0452                 }
0453             } else {
0454                 /* Lets not optimize peek case if copy_page_to_iter
0455                  * didn't copy the entire length lets just break.
0456                  */
0457                 if (copy != sge->length)
0458                     return copied;
0459                 sk_msg_iter_var_next(i);
0460             }
0461 
0462             if (copied == len)
0463                 break;
0464         } while ((i != msg_rx->sg.end) && !sg_is_last(sge));
0465 
0466         if (unlikely(peek)) {
0467             msg_rx = sk_psock_next_msg(psock, msg_rx);
0468             if (!msg_rx)
0469                 break;
0470             continue;
0471         }
0472 
0473         msg_rx->sg.start = i;
0474         if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) {
0475             msg_rx = sk_psock_dequeue_msg(psock);
0476             kfree_sk_msg(msg_rx);
0477         }
0478         msg_rx = sk_psock_peek_msg(psock);
0479     }
0480 
0481     return copied;
0482 }
0483 EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
0484 
0485 bool sk_msg_is_readable(struct sock *sk)
0486 {
0487     struct sk_psock *psock;
0488     bool empty = true;
0489 
0490     rcu_read_lock();
0491     psock = sk_psock(sk);
0492     if (likely(psock))
0493         empty = list_empty(&psock->ingress_msg);
0494     rcu_read_unlock();
0495     return !empty;
0496 }
0497 EXPORT_SYMBOL_GPL(sk_msg_is_readable);
0498 
0499 static struct sk_msg *alloc_sk_msg(void)
0500 {
0501     struct sk_msg *msg;
0502 
0503     msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL);
0504     if (unlikely(!msg))
0505         return NULL;
0506     sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS);
0507     return msg;
0508 }
0509 
0510 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
0511                           struct sk_buff *skb)
0512 {
0513     if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
0514         return NULL;
0515 
0516     if (!sk_rmem_schedule(sk, skb, skb->truesize))
0517         return NULL;
0518 
0519     return alloc_sk_msg();
0520 }
0521 
0522 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
0523                     u32 off, u32 len,
0524                     struct sk_psock *psock,
0525                     struct sock *sk,
0526                     struct sk_msg *msg)
0527 {
0528     int num_sge, copied;
0529 
0530     num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
0531     if (num_sge < 0) {
0532         /* skb linearize may fail with ENOMEM, but lets simply try again
0533          * later if this happens. Under memory pressure we don't want to
0534          * drop the skb. We need to linearize the skb so that the mapping
0535          * in skb_to_sgvec can not error.
0536          */
0537         if (skb_linearize(skb))
0538             return -EAGAIN;
0539 
0540         num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
0541         if (unlikely(num_sge < 0))
0542             return num_sge;
0543     }
0544 
0545     copied = len;
0546     msg->sg.start = 0;
0547     msg->sg.size = copied;
0548     msg->sg.end = num_sge;
0549     msg->skb = skb;
0550 
0551     sk_psock_queue_msg(psock, msg);
0552     sk_psock_data_ready(sk, psock);
0553     return copied;
0554 }
0555 
0556 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
0557                      u32 off, u32 len);
0558 
0559 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb,
0560                 u32 off, u32 len)
0561 {
0562     struct sock *sk = psock->sk;
0563     struct sk_msg *msg;
0564     int err;
0565 
0566     /* If we are receiving on the same sock skb->sk is already assigned,
0567      * skip memory accounting and owner transition seeing it already set
0568      * correctly.
0569      */
0570     if (unlikely(skb->sk == sk))
0571         return sk_psock_skb_ingress_self(psock, skb, off, len);
0572     msg = sk_psock_create_ingress_msg(sk, skb);
0573     if (!msg)
0574         return -EAGAIN;
0575 
0576     /* This will transition ownership of the data from the socket where
0577      * the BPF program was run initiating the redirect to the socket
0578      * we will eventually receive this data on. The data will be released
0579      * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
0580      * into user buffers.
0581      */
0582     skb_set_owner_r(skb, sk);
0583     err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
0584     if (err < 0)
0585         kfree(msg);
0586     return err;
0587 }
0588 
0589 /* Puts an skb on the ingress queue of the socket already assigned to the
0590  * skb. In this case we do not need to check memory limits or skb_set_owner_r
0591  * because the skb is already accounted for here.
0592  */
0593 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
0594                      u32 off, u32 len)
0595 {
0596     struct sk_msg *msg = alloc_sk_msg();
0597     struct sock *sk = psock->sk;
0598     int err;
0599 
0600     if (unlikely(!msg))
0601         return -EAGAIN;
0602     skb_set_owner_r(skb, sk);
0603     err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
0604     if (err < 0)
0605         kfree(msg);
0606     return err;
0607 }
0608 
0609 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
0610                    u32 off, u32 len, bool ingress)
0611 {
0612     if (!ingress) {
0613         if (!sock_writeable(psock->sk))
0614             return -EAGAIN;
0615         return skb_send_sock(psock->sk, skb, off, len);
0616     }
0617     return sk_psock_skb_ingress(psock, skb, off, len);
0618 }
0619 
0620 static void sk_psock_skb_state(struct sk_psock *psock,
0621                    struct sk_psock_work_state *state,
0622                    struct sk_buff *skb,
0623                    int len, int off)
0624 {
0625     spin_lock_bh(&psock->ingress_lock);
0626     if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
0627         state->skb = skb;
0628         state->len = len;
0629         state->off = off;
0630     } else {
0631         sock_drop(psock->sk, skb);
0632     }
0633     spin_unlock_bh(&psock->ingress_lock);
0634 }
0635 
0636 static void sk_psock_backlog(struct work_struct *work)
0637 {
0638     struct sk_psock *psock = container_of(work, struct sk_psock, work);
0639     struct sk_psock_work_state *state = &psock->work_state;
0640     struct sk_buff *skb = NULL;
0641     bool ingress;
0642     u32 len, off;
0643     int ret;
0644 
0645     mutex_lock(&psock->work_mutex);
0646     if (unlikely(state->skb)) {
0647         spin_lock_bh(&psock->ingress_lock);
0648         skb = state->skb;
0649         len = state->len;
0650         off = state->off;
0651         state->skb = NULL;
0652         spin_unlock_bh(&psock->ingress_lock);
0653     }
0654     if (skb)
0655         goto start;
0656 
0657     while ((skb = skb_dequeue(&psock->ingress_skb))) {
0658         len = skb->len;
0659         off = 0;
0660         if (skb_bpf_strparser(skb)) {
0661             struct strp_msg *stm = strp_msg(skb);
0662 
0663             off = stm->offset;
0664             len = stm->full_len;
0665         }
0666 start:
0667         ingress = skb_bpf_ingress(skb);
0668         skb_bpf_redirect_clear(skb);
0669         do {
0670             ret = -EIO;
0671             if (!sock_flag(psock->sk, SOCK_DEAD))
0672                 ret = sk_psock_handle_skb(psock, skb, off,
0673                               len, ingress);
0674             if (ret <= 0) {
0675                 if (ret == -EAGAIN) {
0676                     sk_psock_skb_state(psock, state, skb,
0677                                len, off);
0678                     goto end;
0679                 }
0680                 /* Hard errors break pipe and stop xmit. */
0681                 sk_psock_report_error(psock, ret ? -ret : EPIPE);
0682                 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
0683                 sock_drop(psock->sk, skb);
0684                 goto end;
0685             }
0686             off += ret;
0687             len -= ret;
0688         } while (len);
0689 
0690         if (!ingress)
0691             kfree_skb(skb);
0692     }
0693 end:
0694     mutex_unlock(&psock->work_mutex);
0695 }
0696 
0697 struct sk_psock *sk_psock_init(struct sock *sk, int node)
0698 {
0699     struct sk_psock *psock;
0700     struct proto *prot;
0701 
0702     write_lock_bh(&sk->sk_callback_lock);
0703 
0704     if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) {
0705         psock = ERR_PTR(-EINVAL);
0706         goto out;
0707     }
0708 
0709     if (sk->sk_user_data) {
0710         psock = ERR_PTR(-EBUSY);
0711         goto out;
0712     }
0713 
0714     psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
0715     if (!psock) {
0716         psock = ERR_PTR(-ENOMEM);
0717         goto out;
0718     }
0719 
0720     prot = READ_ONCE(sk->sk_prot);
0721     psock->sk = sk;
0722     psock->eval = __SK_NONE;
0723     psock->sk_proto = prot;
0724     psock->saved_unhash = prot->unhash;
0725     psock->saved_destroy = prot->destroy;
0726     psock->saved_close = prot->close;
0727     psock->saved_write_space = sk->sk_write_space;
0728 
0729     INIT_LIST_HEAD(&psock->link);
0730     spin_lock_init(&psock->link_lock);
0731 
0732     INIT_WORK(&psock->work, sk_psock_backlog);
0733     mutex_init(&psock->work_mutex);
0734     INIT_LIST_HEAD(&psock->ingress_msg);
0735     spin_lock_init(&psock->ingress_lock);
0736     skb_queue_head_init(&psock->ingress_skb);
0737 
0738     sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
0739     refcount_set(&psock->refcnt, 1);
0740 
0741     __rcu_assign_sk_user_data_with_flags(sk, psock,
0742                          SK_USER_DATA_NOCOPY |
0743                          SK_USER_DATA_PSOCK);
0744     sock_hold(sk);
0745 
0746 out:
0747     write_unlock_bh(&sk->sk_callback_lock);
0748     return psock;
0749 }
0750 EXPORT_SYMBOL_GPL(sk_psock_init);
0751 
0752 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
0753 {
0754     struct sk_psock_link *link;
0755 
0756     spin_lock_bh(&psock->link_lock);
0757     link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
0758                     list);
0759     if (link)
0760         list_del(&link->list);
0761     spin_unlock_bh(&psock->link_lock);
0762     return link;
0763 }
0764 
0765 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
0766 {
0767     struct sk_msg *msg, *tmp;
0768 
0769     list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
0770         list_del(&msg->list);
0771         sk_msg_free(psock->sk, msg);
0772         kfree(msg);
0773     }
0774 }
0775 
0776 static void __sk_psock_zap_ingress(struct sk_psock *psock)
0777 {
0778     struct sk_buff *skb;
0779 
0780     while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
0781         skb_bpf_redirect_clear(skb);
0782         sock_drop(psock->sk, skb);
0783     }
0784     kfree_skb(psock->work_state.skb);
0785     /* We null the skb here to ensure that calls to sk_psock_backlog
0786      * do not pick up the free'd skb.
0787      */
0788     psock->work_state.skb = NULL;
0789     __sk_psock_purge_ingress_msg(psock);
0790 }
0791 
0792 static void sk_psock_link_destroy(struct sk_psock *psock)
0793 {
0794     struct sk_psock_link *link, *tmp;
0795 
0796     list_for_each_entry_safe(link, tmp, &psock->link, list) {
0797         list_del(&link->list);
0798         sk_psock_free_link(link);
0799     }
0800 }
0801 
0802 void sk_psock_stop(struct sk_psock *psock, bool wait)
0803 {
0804     spin_lock_bh(&psock->ingress_lock);
0805     sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
0806     sk_psock_cork_free(psock);
0807     __sk_psock_zap_ingress(psock);
0808     spin_unlock_bh(&psock->ingress_lock);
0809 
0810     if (wait)
0811         cancel_work_sync(&psock->work);
0812 }
0813 
0814 static void sk_psock_done_strp(struct sk_psock *psock);
0815 
0816 static void sk_psock_destroy(struct work_struct *work)
0817 {
0818     struct sk_psock *psock = container_of(to_rcu_work(work),
0819                           struct sk_psock, rwork);
0820     /* No sk_callback_lock since already detached. */
0821 
0822     sk_psock_done_strp(psock);
0823 
0824     cancel_work_sync(&psock->work);
0825     mutex_destroy(&psock->work_mutex);
0826 
0827     psock_progs_drop(&psock->progs);
0828 
0829     sk_psock_link_destroy(psock);
0830     sk_psock_cork_free(psock);
0831 
0832     if (psock->sk_redir)
0833         sock_put(psock->sk_redir);
0834     sock_put(psock->sk);
0835     kfree(psock);
0836 }
0837 
0838 void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
0839 {
0840     write_lock_bh(&sk->sk_callback_lock);
0841     sk_psock_restore_proto(sk, psock);
0842     rcu_assign_sk_user_data(sk, NULL);
0843     if (psock->progs.stream_parser)
0844         sk_psock_stop_strp(sk, psock);
0845     else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
0846         sk_psock_stop_verdict(sk, psock);
0847     write_unlock_bh(&sk->sk_callback_lock);
0848 
0849     sk_psock_stop(psock, false);
0850 
0851     INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
0852     queue_rcu_work(system_wq, &psock->rwork);
0853 }
0854 EXPORT_SYMBOL_GPL(sk_psock_drop);
0855 
0856 static int sk_psock_map_verd(int verdict, bool redir)
0857 {
0858     switch (verdict) {
0859     case SK_PASS:
0860         return redir ? __SK_REDIRECT : __SK_PASS;
0861     case SK_DROP:
0862     default:
0863         break;
0864     }
0865 
0866     return __SK_DROP;
0867 }
0868 
0869 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
0870              struct sk_msg *msg)
0871 {
0872     struct bpf_prog *prog;
0873     int ret;
0874 
0875     rcu_read_lock();
0876     prog = READ_ONCE(psock->progs.msg_parser);
0877     if (unlikely(!prog)) {
0878         ret = __SK_PASS;
0879         goto out;
0880     }
0881 
0882     sk_msg_compute_data_pointers(msg);
0883     msg->sk = sk;
0884     ret = bpf_prog_run_pin_on_cpu(prog, msg);
0885     ret = sk_psock_map_verd(ret, msg->sk_redir);
0886     psock->apply_bytes = msg->apply_bytes;
0887     if (ret == __SK_REDIRECT) {
0888         if (psock->sk_redir)
0889             sock_put(psock->sk_redir);
0890         psock->sk_redir = msg->sk_redir;
0891         if (!psock->sk_redir) {
0892             ret = __SK_DROP;
0893             goto out;
0894         }
0895         sock_hold(psock->sk_redir);
0896     }
0897 out:
0898     rcu_read_unlock();
0899     return ret;
0900 }
0901 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
0902 
0903 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb)
0904 {
0905     struct sk_psock *psock_other;
0906     struct sock *sk_other;
0907 
0908     sk_other = skb_bpf_redirect_fetch(skb);
0909     /* This error is a buggy BPF program, it returned a redirect
0910      * return code, but then didn't set a redirect interface.
0911      */
0912     if (unlikely(!sk_other)) {
0913         skb_bpf_redirect_clear(skb);
0914         sock_drop(from->sk, skb);
0915         return -EIO;
0916     }
0917     psock_other = sk_psock(sk_other);
0918     /* This error indicates the socket is being torn down or had another
0919      * error that caused the pipe to break. We can't send a packet on
0920      * a socket that is in this state so we drop the skb.
0921      */
0922     if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
0923         skb_bpf_redirect_clear(skb);
0924         sock_drop(from->sk, skb);
0925         return -EIO;
0926     }
0927     spin_lock_bh(&psock_other->ingress_lock);
0928     if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
0929         spin_unlock_bh(&psock_other->ingress_lock);
0930         skb_bpf_redirect_clear(skb);
0931         sock_drop(from->sk, skb);
0932         return -EIO;
0933     }
0934 
0935     skb_queue_tail(&psock_other->ingress_skb, skb);
0936     schedule_work(&psock_other->work);
0937     spin_unlock_bh(&psock_other->ingress_lock);
0938     return 0;
0939 }
0940 
0941 static void sk_psock_tls_verdict_apply(struct sk_buff *skb,
0942                        struct sk_psock *from, int verdict)
0943 {
0944     switch (verdict) {
0945     case __SK_REDIRECT:
0946         sk_psock_skb_redirect(from, skb);
0947         break;
0948     case __SK_PASS:
0949     case __SK_DROP:
0950     default:
0951         break;
0952     }
0953 }
0954 
0955 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
0956 {
0957     struct bpf_prog *prog;
0958     int ret = __SK_PASS;
0959 
0960     rcu_read_lock();
0961     prog = READ_ONCE(psock->progs.stream_verdict);
0962     if (likely(prog)) {
0963         skb->sk = psock->sk;
0964         skb_dst_drop(skb);
0965         skb_bpf_redirect_clear(skb);
0966         ret = bpf_prog_run_pin_on_cpu(prog, skb);
0967         ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
0968         skb->sk = NULL;
0969     }
0970     sk_psock_tls_verdict_apply(skb, psock, ret);
0971     rcu_read_unlock();
0972     return ret;
0973 }
0974 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
0975 
0976 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb,
0977                   int verdict)
0978 {
0979     struct sock *sk_other;
0980     int err = 0;
0981     u32 len, off;
0982 
0983     switch (verdict) {
0984     case __SK_PASS:
0985         err = -EIO;
0986         sk_other = psock->sk;
0987         if (sock_flag(sk_other, SOCK_DEAD) ||
0988             !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
0989             skb_bpf_redirect_clear(skb);
0990             goto out_free;
0991         }
0992 
0993         skb_bpf_set_ingress(skb);
0994 
0995         /* If the queue is empty then we can submit directly
0996          * into the msg queue. If its not empty we have to
0997          * queue work otherwise we may get OOO data. Otherwise,
0998          * if sk_psock_skb_ingress errors will be handled by
0999          * retrying later from workqueue.
1000          */
1001         if (skb_queue_empty(&psock->ingress_skb)) {
1002             len = skb->len;
1003             off = 0;
1004             if (skb_bpf_strparser(skb)) {
1005                 struct strp_msg *stm = strp_msg(skb);
1006 
1007                 off = stm->offset;
1008                 len = stm->full_len;
1009             }
1010             err = sk_psock_skb_ingress_self(psock, skb, off, len);
1011         }
1012         if (err < 0) {
1013             spin_lock_bh(&psock->ingress_lock);
1014             if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
1015                 skb_queue_tail(&psock->ingress_skb, skb);
1016                 schedule_work(&psock->work);
1017                 err = 0;
1018             }
1019             spin_unlock_bh(&psock->ingress_lock);
1020             if (err < 0) {
1021                 skb_bpf_redirect_clear(skb);
1022                 goto out_free;
1023             }
1024         }
1025         break;
1026     case __SK_REDIRECT:
1027         err = sk_psock_skb_redirect(psock, skb);
1028         break;
1029     case __SK_DROP:
1030     default:
1031 out_free:
1032         sock_drop(psock->sk, skb);
1033     }
1034 
1035     return err;
1036 }
1037 
1038 static void sk_psock_write_space(struct sock *sk)
1039 {
1040     struct sk_psock *psock;
1041     void (*write_space)(struct sock *sk) = NULL;
1042 
1043     rcu_read_lock();
1044     psock = sk_psock(sk);
1045     if (likely(psock)) {
1046         if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
1047             schedule_work(&psock->work);
1048         write_space = psock->saved_write_space;
1049     }
1050     rcu_read_unlock();
1051     if (write_space)
1052         write_space(sk);
1053 }
1054 
1055 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
1056 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
1057 {
1058     struct sk_psock *psock;
1059     struct bpf_prog *prog;
1060     int ret = __SK_DROP;
1061     struct sock *sk;
1062 
1063     rcu_read_lock();
1064     sk = strp->sk;
1065     psock = sk_psock(sk);
1066     if (unlikely(!psock)) {
1067         sock_drop(sk, skb);
1068         goto out;
1069     }
1070     prog = READ_ONCE(psock->progs.stream_verdict);
1071     if (likely(prog)) {
1072         skb->sk = sk;
1073         skb_dst_drop(skb);
1074         skb_bpf_redirect_clear(skb);
1075         ret = bpf_prog_run_pin_on_cpu(prog, skb);
1076         if (ret == SK_PASS)
1077             skb_bpf_set_strparser(skb);
1078         ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1079         skb->sk = NULL;
1080     }
1081     sk_psock_verdict_apply(psock, skb, ret);
1082 out:
1083     rcu_read_unlock();
1084 }
1085 
1086 static int sk_psock_strp_read_done(struct strparser *strp, int err)
1087 {
1088     return err;
1089 }
1090 
1091 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
1092 {
1093     struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
1094     struct bpf_prog *prog;
1095     int ret = skb->len;
1096 
1097     rcu_read_lock();
1098     prog = READ_ONCE(psock->progs.stream_parser);
1099     if (likely(prog)) {
1100         skb->sk = psock->sk;
1101         ret = bpf_prog_run_pin_on_cpu(prog, skb);
1102         skb->sk = NULL;
1103     }
1104     rcu_read_unlock();
1105     return ret;
1106 }
1107 
1108 /* Called with socket lock held. */
1109 static void sk_psock_strp_data_ready(struct sock *sk)
1110 {
1111     struct sk_psock *psock;
1112 
1113     rcu_read_lock();
1114     psock = sk_psock(sk);
1115     if (likely(psock)) {
1116         if (tls_sw_has_ctx_rx(sk)) {
1117             psock->saved_data_ready(sk);
1118         } else {
1119             write_lock_bh(&sk->sk_callback_lock);
1120             strp_data_ready(&psock->strp);
1121             write_unlock_bh(&sk->sk_callback_lock);
1122         }
1123     }
1124     rcu_read_unlock();
1125 }
1126 
1127 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
1128 {
1129     static const struct strp_callbacks cb = {
1130         .rcv_msg    = sk_psock_strp_read,
1131         .read_sock_done = sk_psock_strp_read_done,
1132         .parse_msg  = sk_psock_strp_parse,
1133     };
1134 
1135     return strp_init(&psock->strp, sk, &cb);
1136 }
1137 
1138 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
1139 {
1140     if (psock->saved_data_ready)
1141         return;
1142 
1143     psock->saved_data_ready = sk->sk_data_ready;
1144     sk->sk_data_ready = sk_psock_strp_data_ready;
1145     sk->sk_write_space = sk_psock_write_space;
1146 }
1147 
1148 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
1149 {
1150     psock_set_prog(&psock->progs.stream_parser, NULL);
1151 
1152     if (!psock->saved_data_ready)
1153         return;
1154 
1155     sk->sk_data_ready = psock->saved_data_ready;
1156     psock->saved_data_ready = NULL;
1157     strp_stop(&psock->strp);
1158 }
1159 
1160 static void sk_psock_done_strp(struct sk_psock *psock)
1161 {
1162     /* Parser has been stopped */
1163     if (psock->progs.stream_parser)
1164         strp_done(&psock->strp);
1165 }
1166 #else
1167 static void sk_psock_done_strp(struct sk_psock *psock)
1168 {
1169 }
1170 #endif /* CONFIG_BPF_STREAM_PARSER */
1171 
1172 static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb)
1173 {
1174     struct sk_psock *psock;
1175     struct bpf_prog *prog;
1176     int ret = __SK_DROP;
1177     int len = skb->len;
1178 
1179     skb_get(skb);
1180 
1181     rcu_read_lock();
1182     psock = sk_psock(sk);
1183     if (unlikely(!psock)) {
1184         len = 0;
1185         sock_drop(sk, skb);
1186         goto out;
1187     }
1188     prog = READ_ONCE(psock->progs.stream_verdict);
1189     if (!prog)
1190         prog = READ_ONCE(psock->progs.skb_verdict);
1191     if (likely(prog)) {
1192         skb_dst_drop(skb);
1193         skb_bpf_redirect_clear(skb);
1194         ret = bpf_prog_run_pin_on_cpu(prog, skb);
1195         ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1196     }
1197     ret = sk_psock_verdict_apply(psock, skb, ret);
1198     if (ret < 0)
1199         len = ret;
1200 out:
1201     rcu_read_unlock();
1202     return len;
1203 }
1204 
1205 static void sk_psock_verdict_data_ready(struct sock *sk)
1206 {
1207     struct socket *sock = sk->sk_socket;
1208 
1209     if (unlikely(!sock || !sock->ops || !sock->ops->read_skb))
1210         return;
1211     sock->ops->read_skb(sk, sk_psock_verdict_recv);
1212 }
1213 
1214 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1215 {
1216     if (psock->saved_data_ready)
1217         return;
1218 
1219     psock->saved_data_ready = sk->sk_data_ready;
1220     sk->sk_data_ready = sk_psock_verdict_data_ready;
1221     sk->sk_write_space = sk_psock_write_space;
1222 }
1223 
1224 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1225 {
1226     psock_set_prog(&psock->progs.stream_verdict, NULL);
1227     psock_set_prog(&psock->progs.skb_verdict, NULL);
1228 
1229     if (!psock->saved_data_ready)
1230         return;
1231 
1232     sk->sk_data_ready = psock->saved_data_ready;
1233     psock->saved_data_ready = NULL;
1234 }