Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  *  Routines having to do with the 'struct sk_buff' memory handlers.
0004  *
0005  *  Authors:    Alan Cox <alan@lxorguk.ukuu.org.uk>
0006  *          Florian La Roche <rzsfl@rz.uni-sb.de>
0007  *
0008  *  Fixes:
0009  *      Alan Cox    :   Fixed the worst of the load
0010  *                  balancer bugs.
0011  *      Dave Platt  :   Interrupt stacking fix.
0012  *  Richard Kooijman    :   Timestamp fixes.
0013  *      Alan Cox    :   Changed buffer format.
0014  *      Alan Cox    :   destructor hook for AF_UNIX etc.
0015  *      Linus Torvalds  :   Better skb_clone.
0016  *      Alan Cox    :   Added skb_copy.
0017  *      Alan Cox    :   Added all the changed routines Linus
0018  *                  only put in the headers
0019  *      Ray VanTassle   :   Fixed --skb->lock in free
0020  *      Alan Cox    :   skb_copy copy arp field
0021  *      Andi Kleen  :   slabified it.
0022  *      Robert Olsson   :   Removed skb_head_pool
0023  *
0024  *  NOTE:
0025  *      The __skb_ routines should be called with interrupts
0026  *  disabled, or you better be *real* sure that the operation is atomic
0027  *  with respect to whatever list is being frobbed (e.g. via lock_sock()
0028  *  or via disabling bottom half handlers, etc).
0029  */
0030 
0031 /*
0032  *  The functions in this file will not compile correctly with gcc 2.4.x
0033  */
0034 
0035 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0036 
0037 #include <linux/module.h>
0038 #include <linux/types.h>
0039 #include <linux/kernel.h>
0040 #include <linux/mm.h>
0041 #include <linux/interrupt.h>
0042 #include <linux/in.h>
0043 #include <linux/inet.h>
0044 #include <linux/slab.h>
0045 #include <linux/tcp.h>
0046 #include <linux/udp.h>
0047 #include <linux/sctp.h>
0048 #include <linux/netdevice.h>
0049 #ifdef CONFIG_NET_CLS_ACT
0050 #include <net/pkt_sched.h>
0051 #endif
0052 #include <linux/string.h>
0053 #include <linux/skbuff.h>
0054 #include <linux/splice.h>
0055 #include <linux/cache.h>
0056 #include <linux/rtnetlink.h>
0057 #include <linux/init.h>
0058 #include <linux/scatterlist.h>
0059 #include <linux/errqueue.h>
0060 #include <linux/prefetch.h>
0061 #include <linux/if_vlan.h>
0062 #include <linux/mpls.h>
0063 #include <linux/kcov.h>
0064 
0065 #include <net/protocol.h>
0066 #include <net/dst.h>
0067 #include <net/sock.h>
0068 #include <net/checksum.h>
0069 #include <net/ip6_checksum.h>
0070 #include <net/xfrm.h>
0071 #include <net/mpls.h>
0072 #include <net/mptcp.h>
0073 #include <net/mctp.h>
0074 #include <net/page_pool.h>
0075 
0076 #include <linux/uaccess.h>
0077 #include <trace/events/skb.h>
0078 #include <linux/highmem.h>
0079 #include <linux/capability.h>
0080 #include <linux/user_namespace.h>
0081 #include <linux/indirect_call_wrapper.h>
0082 
0083 #include "dev.h"
0084 #include "sock_destructor.h"
0085 
0086 struct kmem_cache *skbuff_head_cache __ro_after_init;
0087 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
0088 #ifdef CONFIG_SKB_EXTENSIONS
0089 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
0090 #endif
0091 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
0092 EXPORT_SYMBOL(sysctl_max_skb_frags);
0093 
0094 #undef FN
0095 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
0096 const char * const drop_reasons[] = {
0097     DEFINE_DROP_REASON(FN, FN)
0098 };
0099 EXPORT_SYMBOL(drop_reasons);
0100 
0101 /**
0102  *  skb_panic - private function for out-of-line support
0103  *  @skb:   buffer
0104  *  @sz:    size
0105  *  @addr:  address
0106  *  @msg:   skb_over_panic or skb_under_panic
0107  *
0108  *  Out-of-line support for skb_put() and skb_push().
0109  *  Called via the wrapper skb_over_panic() or skb_under_panic().
0110  *  Keep out of line to prevent kernel bloat.
0111  *  __builtin_return_address is not used because it is not always reliable.
0112  */
0113 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
0114               const char msg[])
0115 {
0116     pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
0117          msg, addr, skb->len, sz, skb->head, skb->data,
0118          (unsigned long)skb->tail, (unsigned long)skb->end,
0119          skb->dev ? skb->dev->name : "<NULL>");
0120     BUG();
0121 }
0122 
0123 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
0124 {
0125     skb_panic(skb, sz, addr, __func__);
0126 }
0127 
0128 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
0129 {
0130     skb_panic(skb, sz, addr, __func__);
0131 }
0132 
0133 #define NAPI_SKB_CACHE_SIZE 64
0134 #define NAPI_SKB_CACHE_BULK 16
0135 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
0136 
0137 struct napi_alloc_cache {
0138     struct page_frag_cache page;
0139     unsigned int skb_count;
0140     void *skb_cache[NAPI_SKB_CACHE_SIZE];
0141 };
0142 
0143 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
0144 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
0145 
0146 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
0147 {
0148     struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
0149 
0150     fragsz = SKB_DATA_ALIGN(fragsz);
0151 
0152     return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
0153 }
0154 EXPORT_SYMBOL(__napi_alloc_frag_align);
0155 
0156 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
0157 {
0158     void *data;
0159 
0160     fragsz = SKB_DATA_ALIGN(fragsz);
0161     if (in_hardirq() || irqs_disabled()) {
0162         struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
0163 
0164         data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
0165     } else {
0166         struct napi_alloc_cache *nc;
0167 
0168         local_bh_disable();
0169         nc = this_cpu_ptr(&napi_alloc_cache);
0170         data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
0171         local_bh_enable();
0172     }
0173     return data;
0174 }
0175 EXPORT_SYMBOL(__netdev_alloc_frag_align);
0176 
0177 static struct sk_buff *napi_skb_cache_get(void)
0178 {
0179     struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
0180     struct sk_buff *skb;
0181 
0182     if (unlikely(!nc->skb_count)) {
0183         nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
0184                               GFP_ATOMIC,
0185                               NAPI_SKB_CACHE_BULK,
0186                               nc->skb_cache);
0187         if (unlikely(!nc->skb_count))
0188             return NULL;
0189     }
0190 
0191     skb = nc->skb_cache[--nc->skb_count];
0192     kasan_unpoison_object_data(skbuff_head_cache, skb);
0193 
0194     return skb;
0195 }
0196 
0197 /* Caller must provide SKB that is memset cleared */
0198 static void __build_skb_around(struct sk_buff *skb, void *data,
0199                    unsigned int frag_size)
0200 {
0201     struct skb_shared_info *shinfo;
0202     unsigned int size = frag_size ? : ksize(data);
0203 
0204     size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
0205 
0206     /* Assumes caller memset cleared SKB */
0207     skb->truesize = SKB_TRUESIZE(size);
0208     refcount_set(&skb->users, 1);
0209     skb->head = data;
0210     skb->data = data;
0211     skb_reset_tail_pointer(skb);
0212     skb_set_end_offset(skb, size);
0213     skb->mac_header = (typeof(skb->mac_header))~0U;
0214     skb->transport_header = (typeof(skb->transport_header))~0U;
0215     skb->alloc_cpu = raw_smp_processor_id();
0216     /* make sure we initialize shinfo sequentially */
0217     shinfo = skb_shinfo(skb);
0218     memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
0219     atomic_set(&shinfo->dataref, 1);
0220 
0221     skb_set_kcov_handle(skb, kcov_common_handle());
0222 }
0223 
0224 /**
0225  * __build_skb - build a network buffer
0226  * @data: data buffer provided by caller
0227  * @frag_size: size of data, or 0 if head was kmalloced
0228  *
0229  * Allocate a new &sk_buff. Caller provides space holding head and
0230  * skb_shared_info. @data must have been allocated by kmalloc() only if
0231  * @frag_size is 0, otherwise data should come from the page allocator
0232  *  or vmalloc()
0233  * The return is the new skb buffer.
0234  * On a failure the return is %NULL, and @data is not freed.
0235  * Notes :
0236  *  Before IO, driver allocates only data buffer where NIC put incoming frame
0237  *  Driver should add room at head (NET_SKB_PAD) and
0238  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
0239  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
0240  *  before giving packet to stack.
0241  *  RX rings only contains data buffers, not full skbs.
0242  */
0243 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
0244 {
0245     struct sk_buff *skb;
0246 
0247     skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
0248     if (unlikely(!skb))
0249         return NULL;
0250 
0251     memset(skb, 0, offsetof(struct sk_buff, tail));
0252     __build_skb_around(skb, data, frag_size);
0253 
0254     return skb;
0255 }
0256 
0257 /* build_skb() is wrapper over __build_skb(), that specifically
0258  * takes care of skb->head and skb->pfmemalloc
0259  * This means that if @frag_size is not zero, then @data must be backed
0260  * by a page fragment, not kmalloc() or vmalloc()
0261  */
0262 struct sk_buff *build_skb(void *data, unsigned int frag_size)
0263 {
0264     struct sk_buff *skb = __build_skb(data, frag_size);
0265 
0266     if (skb && frag_size) {
0267         skb->head_frag = 1;
0268         if (page_is_pfmemalloc(virt_to_head_page(data)))
0269             skb->pfmemalloc = 1;
0270     }
0271     return skb;
0272 }
0273 EXPORT_SYMBOL(build_skb);
0274 
0275 /**
0276  * build_skb_around - build a network buffer around provided skb
0277  * @skb: sk_buff provide by caller, must be memset cleared
0278  * @data: data buffer provided by caller
0279  * @frag_size: size of data, or 0 if head was kmalloced
0280  */
0281 struct sk_buff *build_skb_around(struct sk_buff *skb,
0282                  void *data, unsigned int frag_size)
0283 {
0284     if (unlikely(!skb))
0285         return NULL;
0286 
0287     __build_skb_around(skb, data, frag_size);
0288 
0289     if (frag_size) {
0290         skb->head_frag = 1;
0291         if (page_is_pfmemalloc(virt_to_head_page(data)))
0292             skb->pfmemalloc = 1;
0293     }
0294     return skb;
0295 }
0296 EXPORT_SYMBOL(build_skb_around);
0297 
0298 /**
0299  * __napi_build_skb - build a network buffer
0300  * @data: data buffer provided by caller
0301  * @frag_size: size of data, or 0 if head was kmalloced
0302  *
0303  * Version of __build_skb() that uses NAPI percpu caches to obtain
0304  * skbuff_head instead of inplace allocation.
0305  *
0306  * Returns a new &sk_buff on success, %NULL on allocation failure.
0307  */
0308 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
0309 {
0310     struct sk_buff *skb;
0311 
0312     skb = napi_skb_cache_get();
0313     if (unlikely(!skb))
0314         return NULL;
0315 
0316     memset(skb, 0, offsetof(struct sk_buff, tail));
0317     __build_skb_around(skb, data, frag_size);
0318 
0319     return skb;
0320 }
0321 
0322 /**
0323  * napi_build_skb - build a network buffer
0324  * @data: data buffer provided by caller
0325  * @frag_size: size of data, or 0 if head was kmalloced
0326  *
0327  * Version of __napi_build_skb() that takes care of skb->head_frag
0328  * and skb->pfmemalloc when the data is a page or page fragment.
0329  *
0330  * Returns a new &sk_buff on success, %NULL on allocation failure.
0331  */
0332 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
0333 {
0334     struct sk_buff *skb = __napi_build_skb(data, frag_size);
0335 
0336     if (likely(skb) && frag_size) {
0337         skb->head_frag = 1;
0338         skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
0339     }
0340 
0341     return skb;
0342 }
0343 EXPORT_SYMBOL(napi_build_skb);
0344 
0345 /*
0346  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
0347  * the caller if emergency pfmemalloc reserves are being used. If it is and
0348  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
0349  * may be used. Otherwise, the packet data may be discarded until enough
0350  * memory is free
0351  */
0352 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
0353                  bool *pfmemalloc)
0354 {
0355     void *obj;
0356     bool ret_pfmemalloc = false;
0357 
0358     /*
0359      * Try a regular allocation, when that fails and we're not entitled
0360      * to the reserves, fail.
0361      */
0362     obj = kmalloc_node_track_caller(size,
0363                     flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
0364                     node);
0365     if (obj || !(gfp_pfmemalloc_allowed(flags)))
0366         goto out;
0367 
0368     /* Try again but now we are using pfmemalloc reserves */
0369     ret_pfmemalloc = true;
0370     obj = kmalloc_node_track_caller(size, flags, node);
0371 
0372 out:
0373     if (pfmemalloc)
0374         *pfmemalloc = ret_pfmemalloc;
0375 
0376     return obj;
0377 }
0378 
0379 /*  Allocate a new skbuff. We do this ourselves so we can fill in a few
0380  *  'private' fields and also do memory statistics to find all the
0381  *  [BEEP] leaks.
0382  *
0383  */
0384 
0385 /**
0386  *  __alloc_skb -   allocate a network buffer
0387  *  @size: size to allocate
0388  *  @gfp_mask: allocation mask
0389  *  @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
0390  *      instead of head cache and allocate a cloned (child) skb.
0391  *      If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
0392  *      allocations in case the data is required for writeback
0393  *  @node: numa node to allocate memory on
0394  *
0395  *  Allocate a new &sk_buff. The returned buffer has no headroom and a
0396  *  tail room of at least size bytes. The object has a reference count
0397  *  of one. The return is the buffer. On a failure the return is %NULL.
0398  *
0399  *  Buffers may only be allocated from interrupts using a @gfp_mask of
0400  *  %GFP_ATOMIC.
0401  */
0402 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
0403                 int flags, int node)
0404 {
0405     struct kmem_cache *cache;
0406     struct sk_buff *skb;
0407     unsigned int osize;
0408     bool pfmemalloc;
0409     u8 *data;
0410 
0411     cache = (flags & SKB_ALLOC_FCLONE)
0412         ? skbuff_fclone_cache : skbuff_head_cache;
0413 
0414     if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
0415         gfp_mask |= __GFP_MEMALLOC;
0416 
0417     /* Get the HEAD */
0418     if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
0419         likely(node == NUMA_NO_NODE || node == numa_mem_id()))
0420         skb = napi_skb_cache_get();
0421     else
0422         skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
0423     if (unlikely(!skb))
0424         return NULL;
0425     prefetchw(skb);
0426 
0427     /* We do our best to align skb_shared_info on a separate cache
0428      * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
0429      * aligned memory blocks, unless SLUB/SLAB debug is enabled.
0430      * Both skb->head and skb_shared_info are cache line aligned.
0431      */
0432     size = SKB_DATA_ALIGN(size);
0433     size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
0434     data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
0435     if (unlikely(!data))
0436         goto nodata;
0437     /* kmalloc(size) might give us more room than requested.
0438      * Put skb_shared_info exactly at the end of allocated zone,
0439      * to allow max possible filling before reallocation.
0440      */
0441     osize = ksize(data);
0442     size = SKB_WITH_OVERHEAD(osize);
0443     prefetchw(data + size);
0444 
0445     /*
0446      * Only clear those fields we need to clear, not those that we will
0447      * actually initialise below. Hence, don't put any more fields after
0448      * the tail pointer in struct sk_buff!
0449      */
0450     memset(skb, 0, offsetof(struct sk_buff, tail));
0451     __build_skb_around(skb, data, osize);
0452     skb->pfmemalloc = pfmemalloc;
0453 
0454     if (flags & SKB_ALLOC_FCLONE) {
0455         struct sk_buff_fclones *fclones;
0456 
0457         fclones = container_of(skb, struct sk_buff_fclones, skb1);
0458 
0459         skb->fclone = SKB_FCLONE_ORIG;
0460         refcount_set(&fclones->fclone_ref, 1);
0461     }
0462 
0463     return skb;
0464 
0465 nodata:
0466     kmem_cache_free(cache, skb);
0467     return NULL;
0468 }
0469 EXPORT_SYMBOL(__alloc_skb);
0470 
0471 /**
0472  *  __netdev_alloc_skb - allocate an skbuff for rx on a specific device
0473  *  @dev: network device to receive on
0474  *  @len: length to allocate
0475  *  @gfp_mask: get_free_pages mask, passed to alloc_skb
0476  *
0477  *  Allocate a new &sk_buff and assign it a usage count of one. The
0478  *  buffer has NET_SKB_PAD headroom built in. Users should allocate
0479  *  the headroom they think they need without accounting for the
0480  *  built in space. The built in space is used for optimisations.
0481  *
0482  *  %NULL is returned if there is no free memory.
0483  */
0484 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
0485                    gfp_t gfp_mask)
0486 {
0487     struct page_frag_cache *nc;
0488     struct sk_buff *skb;
0489     bool pfmemalloc;
0490     void *data;
0491 
0492     len += NET_SKB_PAD;
0493 
0494     /* If requested length is either too small or too big,
0495      * we use kmalloc() for skb->head allocation.
0496      */
0497     if (len <= SKB_WITH_OVERHEAD(1024) ||
0498         len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
0499         (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
0500         skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
0501         if (!skb)
0502             goto skb_fail;
0503         goto skb_success;
0504     }
0505 
0506     len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
0507     len = SKB_DATA_ALIGN(len);
0508 
0509     if (sk_memalloc_socks())
0510         gfp_mask |= __GFP_MEMALLOC;
0511 
0512     if (in_hardirq() || irqs_disabled()) {
0513         nc = this_cpu_ptr(&netdev_alloc_cache);
0514         data = page_frag_alloc(nc, len, gfp_mask);
0515         pfmemalloc = nc->pfmemalloc;
0516     } else {
0517         local_bh_disable();
0518         nc = this_cpu_ptr(&napi_alloc_cache.page);
0519         data = page_frag_alloc(nc, len, gfp_mask);
0520         pfmemalloc = nc->pfmemalloc;
0521         local_bh_enable();
0522     }
0523 
0524     if (unlikely(!data))
0525         return NULL;
0526 
0527     skb = __build_skb(data, len);
0528     if (unlikely(!skb)) {
0529         skb_free_frag(data);
0530         return NULL;
0531     }
0532 
0533     if (pfmemalloc)
0534         skb->pfmemalloc = 1;
0535     skb->head_frag = 1;
0536 
0537 skb_success:
0538     skb_reserve(skb, NET_SKB_PAD);
0539     skb->dev = dev;
0540 
0541 skb_fail:
0542     return skb;
0543 }
0544 EXPORT_SYMBOL(__netdev_alloc_skb);
0545 
0546 /**
0547  *  __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
0548  *  @napi: napi instance this buffer was allocated for
0549  *  @len: length to allocate
0550  *  @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
0551  *
0552  *  Allocate a new sk_buff for use in NAPI receive.  This buffer will
0553  *  attempt to allocate the head from a special reserved region used
0554  *  only for NAPI Rx allocation.  By doing this we can save several
0555  *  CPU cycles by avoiding having to disable and re-enable IRQs.
0556  *
0557  *  %NULL is returned if there is no free memory.
0558  */
0559 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
0560                  gfp_t gfp_mask)
0561 {
0562     struct napi_alloc_cache *nc;
0563     struct sk_buff *skb;
0564     void *data;
0565 
0566     DEBUG_NET_WARN_ON_ONCE(!in_softirq());
0567     len += NET_SKB_PAD + NET_IP_ALIGN;
0568 
0569     /* If requested length is either too small or too big,
0570      * we use kmalloc() for skb->head allocation.
0571      */
0572     if (len <= SKB_WITH_OVERHEAD(1024) ||
0573         len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
0574         (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
0575         skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
0576                   NUMA_NO_NODE);
0577         if (!skb)
0578             goto skb_fail;
0579         goto skb_success;
0580     }
0581 
0582     nc = this_cpu_ptr(&napi_alloc_cache);
0583     len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
0584     len = SKB_DATA_ALIGN(len);
0585 
0586     if (sk_memalloc_socks())
0587         gfp_mask |= __GFP_MEMALLOC;
0588 
0589     data = page_frag_alloc(&nc->page, len, gfp_mask);
0590     if (unlikely(!data))
0591         return NULL;
0592 
0593     skb = __napi_build_skb(data, len);
0594     if (unlikely(!skb)) {
0595         skb_free_frag(data);
0596         return NULL;
0597     }
0598 
0599     if (nc->page.pfmemalloc)
0600         skb->pfmemalloc = 1;
0601     skb->head_frag = 1;
0602 
0603 skb_success:
0604     skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
0605     skb->dev = napi->dev;
0606 
0607 skb_fail:
0608     return skb;
0609 }
0610 EXPORT_SYMBOL(__napi_alloc_skb);
0611 
0612 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
0613              int size, unsigned int truesize)
0614 {
0615     skb_fill_page_desc(skb, i, page, off, size);
0616     skb->len += size;
0617     skb->data_len += size;
0618     skb->truesize += truesize;
0619 }
0620 EXPORT_SYMBOL(skb_add_rx_frag);
0621 
0622 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
0623               unsigned int truesize)
0624 {
0625     skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0626 
0627     skb_frag_size_add(frag, size);
0628     skb->len += size;
0629     skb->data_len += size;
0630     skb->truesize += truesize;
0631 }
0632 EXPORT_SYMBOL(skb_coalesce_rx_frag);
0633 
0634 static void skb_drop_list(struct sk_buff **listp)
0635 {
0636     kfree_skb_list(*listp);
0637     *listp = NULL;
0638 }
0639 
0640 static inline void skb_drop_fraglist(struct sk_buff *skb)
0641 {
0642     skb_drop_list(&skb_shinfo(skb)->frag_list);
0643 }
0644 
0645 static void skb_clone_fraglist(struct sk_buff *skb)
0646 {
0647     struct sk_buff *list;
0648 
0649     skb_walk_frags(skb, list)
0650         skb_get(list);
0651 }
0652 
0653 static void skb_free_head(struct sk_buff *skb)
0654 {
0655     unsigned char *head = skb->head;
0656 
0657     if (skb->head_frag) {
0658         if (skb_pp_recycle(skb, head))
0659             return;
0660         skb_free_frag(head);
0661     } else {
0662         kfree(head);
0663     }
0664 }
0665 
0666 static void skb_release_data(struct sk_buff *skb)
0667 {
0668     struct skb_shared_info *shinfo = skb_shinfo(skb);
0669     int i;
0670 
0671     if (skb->cloned &&
0672         atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
0673                   &shinfo->dataref))
0674         goto exit;
0675 
0676     if (skb_zcopy(skb)) {
0677         bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
0678 
0679         skb_zcopy_clear(skb, true);
0680         if (skip_unref)
0681             goto free_head;
0682     }
0683 
0684     for (i = 0; i < shinfo->nr_frags; i++)
0685         __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
0686 
0687 free_head:
0688     if (shinfo->frag_list)
0689         kfree_skb_list(shinfo->frag_list);
0690 
0691     skb_free_head(skb);
0692 exit:
0693     /* When we clone an SKB we copy the reycling bit. The pp_recycle
0694      * bit is only set on the head though, so in order to avoid races
0695      * while trying to recycle fragments on __skb_frag_unref() we need
0696      * to make one SKB responsible for triggering the recycle path.
0697      * So disable the recycling bit if an SKB is cloned and we have
0698      * additional references to the fragmented part of the SKB.
0699      * Eventually the last SKB will have the recycling bit set and it's
0700      * dataref set to 0, which will trigger the recycling
0701      */
0702     skb->pp_recycle = 0;
0703 }
0704 
0705 /*
0706  *  Free an skbuff by memory without cleaning the state.
0707  */
0708 static void kfree_skbmem(struct sk_buff *skb)
0709 {
0710     struct sk_buff_fclones *fclones;
0711 
0712     switch (skb->fclone) {
0713     case SKB_FCLONE_UNAVAILABLE:
0714         kmem_cache_free(skbuff_head_cache, skb);
0715         return;
0716 
0717     case SKB_FCLONE_ORIG:
0718         fclones = container_of(skb, struct sk_buff_fclones, skb1);
0719 
0720         /* We usually free the clone (TX completion) before original skb
0721          * This test would have no chance to be true for the clone,
0722          * while here, branch prediction will be good.
0723          */
0724         if (refcount_read(&fclones->fclone_ref) == 1)
0725             goto fastpath;
0726         break;
0727 
0728     default: /* SKB_FCLONE_CLONE */
0729         fclones = container_of(skb, struct sk_buff_fclones, skb2);
0730         break;
0731     }
0732     if (!refcount_dec_and_test(&fclones->fclone_ref))
0733         return;
0734 fastpath:
0735     kmem_cache_free(skbuff_fclone_cache, fclones);
0736 }
0737 
0738 void skb_release_head_state(struct sk_buff *skb)
0739 {
0740     skb_dst_drop(skb);
0741     if (skb->destructor) {
0742         DEBUG_NET_WARN_ON_ONCE(in_hardirq());
0743         skb->destructor(skb);
0744     }
0745 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
0746     nf_conntrack_put(skb_nfct(skb));
0747 #endif
0748     skb_ext_put(skb);
0749 }
0750 
0751 /* Free everything but the sk_buff shell. */
0752 static void skb_release_all(struct sk_buff *skb)
0753 {
0754     skb_release_head_state(skb);
0755     if (likely(skb->head))
0756         skb_release_data(skb);
0757 }
0758 
0759 /**
0760  *  __kfree_skb - private function
0761  *  @skb: buffer
0762  *
0763  *  Free an sk_buff. Release anything attached to the buffer.
0764  *  Clean the state. This is an internal helper function. Users should
0765  *  always call kfree_skb
0766  */
0767 
0768 void __kfree_skb(struct sk_buff *skb)
0769 {
0770     skb_release_all(skb);
0771     kfree_skbmem(skb);
0772 }
0773 EXPORT_SYMBOL(__kfree_skb);
0774 
0775 /**
0776  *  kfree_skb_reason - free an sk_buff with special reason
0777  *  @skb: buffer to free
0778  *  @reason: reason why this skb is dropped
0779  *
0780  *  Drop a reference to the buffer and free it if the usage count has
0781  *  hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
0782  *  tracepoint.
0783  */
0784 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
0785 {
0786     if (!skb_unref(skb))
0787         return;
0788 
0789     DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
0790 
0791     trace_kfree_skb(skb, __builtin_return_address(0), reason);
0792     __kfree_skb(skb);
0793 }
0794 EXPORT_SYMBOL(kfree_skb_reason);
0795 
0796 void kfree_skb_list_reason(struct sk_buff *segs,
0797                enum skb_drop_reason reason)
0798 {
0799     while (segs) {
0800         struct sk_buff *next = segs->next;
0801 
0802         kfree_skb_reason(segs, reason);
0803         segs = next;
0804     }
0805 }
0806 EXPORT_SYMBOL(kfree_skb_list_reason);
0807 
0808 /* Dump skb information and contents.
0809  *
0810  * Must only be called from net_ratelimit()-ed paths.
0811  *
0812  * Dumps whole packets if full_pkt, only headers otherwise.
0813  */
0814 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
0815 {
0816     struct skb_shared_info *sh = skb_shinfo(skb);
0817     struct net_device *dev = skb->dev;
0818     struct sock *sk = skb->sk;
0819     struct sk_buff *list_skb;
0820     bool has_mac, has_trans;
0821     int headroom, tailroom;
0822     int i, len, seg_len;
0823 
0824     if (full_pkt)
0825         len = skb->len;
0826     else
0827         len = min_t(int, skb->len, MAX_HEADER + 128);
0828 
0829     headroom = skb_headroom(skb);
0830     tailroom = skb_tailroom(skb);
0831 
0832     has_mac = skb_mac_header_was_set(skb);
0833     has_trans = skb_transport_header_was_set(skb);
0834 
0835     printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
0836            "mac=(%d,%d) net=(%d,%d) trans=%d\n"
0837            "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
0838            "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
0839            "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
0840            level, skb->len, headroom, skb_headlen(skb), tailroom,
0841            has_mac ? skb->mac_header : -1,
0842            has_mac ? skb_mac_header_len(skb) : -1,
0843            skb->network_header,
0844            has_trans ? skb_network_header_len(skb) : -1,
0845            has_trans ? skb->transport_header : -1,
0846            sh->tx_flags, sh->nr_frags,
0847            sh->gso_size, sh->gso_type, sh->gso_segs,
0848            skb->csum, skb->ip_summed, skb->csum_complete_sw,
0849            skb->csum_valid, skb->csum_level,
0850            skb->hash, skb->sw_hash, skb->l4_hash,
0851            ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
0852 
0853     if (dev)
0854         printk("%sdev name=%s feat=%pNF\n",
0855                level, dev->name, &dev->features);
0856     if (sk)
0857         printk("%ssk family=%hu type=%u proto=%u\n",
0858                level, sk->sk_family, sk->sk_type, sk->sk_protocol);
0859 
0860     if (full_pkt && headroom)
0861         print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
0862                    16, 1, skb->head, headroom, false);
0863 
0864     seg_len = min_t(int, skb_headlen(skb), len);
0865     if (seg_len)
0866         print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
0867                    16, 1, skb->data, seg_len, false);
0868     len -= seg_len;
0869 
0870     if (full_pkt && tailroom)
0871         print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
0872                    16, 1, skb_tail_pointer(skb), tailroom, false);
0873 
0874     for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
0875         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0876         u32 p_off, p_len, copied;
0877         struct page *p;
0878         u8 *vaddr;
0879 
0880         skb_frag_foreach_page(frag, skb_frag_off(frag),
0881                       skb_frag_size(frag), p, p_off, p_len,
0882                       copied) {
0883             seg_len = min_t(int, p_len, len);
0884             vaddr = kmap_atomic(p);
0885             print_hex_dump(level, "skb frag:     ",
0886                        DUMP_PREFIX_OFFSET,
0887                        16, 1, vaddr + p_off, seg_len, false);
0888             kunmap_atomic(vaddr);
0889             len -= seg_len;
0890             if (!len)
0891                 break;
0892         }
0893     }
0894 
0895     if (full_pkt && skb_has_frag_list(skb)) {
0896         printk("skb fraglist:\n");
0897         skb_walk_frags(skb, list_skb)
0898             skb_dump(level, list_skb, true);
0899     }
0900 }
0901 EXPORT_SYMBOL(skb_dump);
0902 
0903 /**
0904  *  skb_tx_error - report an sk_buff xmit error
0905  *  @skb: buffer that triggered an error
0906  *
0907  *  Report xmit error if a device callback is tracking this skb.
0908  *  skb must be freed afterwards.
0909  */
0910 void skb_tx_error(struct sk_buff *skb)
0911 {
0912     if (skb) {
0913         skb_zcopy_downgrade_managed(skb);
0914         skb_zcopy_clear(skb, true);
0915     }
0916 }
0917 EXPORT_SYMBOL(skb_tx_error);
0918 
0919 #ifdef CONFIG_TRACEPOINTS
0920 /**
0921  *  consume_skb - free an skbuff
0922  *  @skb: buffer to free
0923  *
0924  *  Drop a ref to the buffer and free it if the usage count has hit zero
0925  *  Functions identically to kfree_skb, but kfree_skb assumes that the frame
0926  *  is being dropped after a failure and notes that
0927  */
0928 void consume_skb(struct sk_buff *skb)
0929 {
0930     if (!skb_unref(skb))
0931         return;
0932 
0933     trace_consume_skb(skb);
0934     __kfree_skb(skb);
0935 }
0936 EXPORT_SYMBOL(consume_skb);
0937 #endif
0938 
0939 /**
0940  *  __consume_stateless_skb - free an skbuff, assuming it is stateless
0941  *  @skb: buffer to free
0942  *
0943  *  Alike consume_skb(), but this variant assumes that this is the last
0944  *  skb reference and all the head states have been already dropped
0945  */
0946 void __consume_stateless_skb(struct sk_buff *skb)
0947 {
0948     trace_consume_skb(skb);
0949     skb_release_data(skb);
0950     kfree_skbmem(skb);
0951 }
0952 
0953 static void napi_skb_cache_put(struct sk_buff *skb)
0954 {
0955     struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
0956     u32 i;
0957 
0958     kasan_poison_object_data(skbuff_head_cache, skb);
0959     nc->skb_cache[nc->skb_count++] = skb;
0960 
0961     if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
0962         for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
0963             kasan_unpoison_object_data(skbuff_head_cache,
0964                            nc->skb_cache[i]);
0965 
0966         kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
0967                      nc->skb_cache + NAPI_SKB_CACHE_HALF);
0968         nc->skb_count = NAPI_SKB_CACHE_HALF;
0969     }
0970 }
0971 
0972 void __kfree_skb_defer(struct sk_buff *skb)
0973 {
0974     skb_release_all(skb);
0975     napi_skb_cache_put(skb);
0976 }
0977 
0978 void napi_skb_free_stolen_head(struct sk_buff *skb)
0979 {
0980     if (unlikely(skb->slow_gro)) {
0981         nf_reset_ct(skb);
0982         skb_dst_drop(skb);
0983         skb_ext_put(skb);
0984         skb_orphan(skb);
0985         skb->slow_gro = 0;
0986     }
0987     napi_skb_cache_put(skb);
0988 }
0989 
0990 void napi_consume_skb(struct sk_buff *skb, int budget)
0991 {
0992     /* Zero budget indicate non-NAPI context called us, like netpoll */
0993     if (unlikely(!budget)) {
0994         dev_consume_skb_any(skb);
0995         return;
0996     }
0997 
0998     DEBUG_NET_WARN_ON_ONCE(!in_softirq());
0999 
1000     if (!skb_unref(skb))
1001         return;
1002 
1003     /* if reaching here SKB is ready to free */
1004     trace_consume_skb(skb);
1005 
1006     /* if SKB is a clone, don't handle this case */
1007     if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1008         __kfree_skb(skb);
1009         return;
1010     }
1011 
1012     skb_release_all(skb);
1013     napi_skb_cache_put(skb);
1014 }
1015 EXPORT_SYMBOL(napi_consume_skb);
1016 
1017 /* Make sure a field is contained by headers group */
1018 #define CHECK_SKB_FIELD(field) \
1019     BUILD_BUG_ON(offsetof(struct sk_buff, field) !=     \
1020              offsetof(struct sk_buff, headers.field));  \
1021 
1022 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1023 {
1024     new->tstamp     = old->tstamp;
1025     /* We do not copy old->sk */
1026     new->dev        = old->dev;
1027     memcpy(new->cb, old->cb, sizeof(old->cb));
1028     skb_dst_copy(new, old);
1029     __skb_ext_copy(new, old);
1030     __nf_copy(new, old, false);
1031 
1032     /* Note : this field could be in the headers group.
1033      * It is not yet because we do not want to have a 16 bit hole
1034      */
1035     new->queue_mapping = old->queue_mapping;
1036 
1037     memcpy(&new->headers, &old->headers, sizeof(new->headers));
1038     CHECK_SKB_FIELD(protocol);
1039     CHECK_SKB_FIELD(csum);
1040     CHECK_SKB_FIELD(hash);
1041     CHECK_SKB_FIELD(priority);
1042     CHECK_SKB_FIELD(skb_iif);
1043     CHECK_SKB_FIELD(vlan_proto);
1044     CHECK_SKB_FIELD(vlan_tci);
1045     CHECK_SKB_FIELD(transport_header);
1046     CHECK_SKB_FIELD(network_header);
1047     CHECK_SKB_FIELD(mac_header);
1048     CHECK_SKB_FIELD(inner_protocol);
1049     CHECK_SKB_FIELD(inner_transport_header);
1050     CHECK_SKB_FIELD(inner_network_header);
1051     CHECK_SKB_FIELD(inner_mac_header);
1052     CHECK_SKB_FIELD(mark);
1053 #ifdef CONFIG_NETWORK_SECMARK
1054     CHECK_SKB_FIELD(secmark);
1055 #endif
1056 #ifdef CONFIG_NET_RX_BUSY_POLL
1057     CHECK_SKB_FIELD(napi_id);
1058 #endif
1059     CHECK_SKB_FIELD(alloc_cpu);
1060 #ifdef CONFIG_XPS
1061     CHECK_SKB_FIELD(sender_cpu);
1062 #endif
1063 #ifdef CONFIG_NET_SCHED
1064     CHECK_SKB_FIELD(tc_index);
1065 #endif
1066 
1067 }
1068 
1069 /*
1070  * You should not add any new code to this function.  Add it to
1071  * __copy_skb_header above instead.
1072  */
1073 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1074 {
1075 #define C(x) n->x = skb->x
1076 
1077     n->next = n->prev = NULL;
1078     n->sk = NULL;
1079     __copy_skb_header(n, skb);
1080 
1081     C(len);
1082     C(data_len);
1083     C(mac_len);
1084     n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1085     n->cloned = 1;
1086     n->nohdr = 0;
1087     n->peeked = 0;
1088     C(pfmemalloc);
1089     C(pp_recycle);
1090     n->destructor = NULL;
1091     C(tail);
1092     C(end);
1093     C(head);
1094     C(head_frag);
1095     C(data);
1096     C(truesize);
1097     refcount_set(&n->users, 1);
1098 
1099     atomic_inc(&(skb_shinfo(skb)->dataref));
1100     skb->cloned = 1;
1101 
1102     return n;
1103 #undef C
1104 }
1105 
1106 /**
1107  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1108  * @first: first sk_buff of the msg
1109  */
1110 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1111 {
1112     struct sk_buff *n;
1113 
1114     n = alloc_skb(0, GFP_ATOMIC);
1115     if (!n)
1116         return NULL;
1117 
1118     n->len = first->len;
1119     n->data_len = first->len;
1120     n->truesize = first->truesize;
1121 
1122     skb_shinfo(n)->frag_list = first;
1123 
1124     __copy_skb_header(n, first);
1125     n->destructor = NULL;
1126 
1127     return n;
1128 }
1129 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1130 
1131 /**
1132  *  skb_morph   -   morph one skb into another
1133  *  @dst: the skb to receive the contents
1134  *  @src: the skb to supply the contents
1135  *
1136  *  This is identical to skb_clone except that the target skb is
1137  *  supplied by the user.
1138  *
1139  *  The target skb is returned upon exit.
1140  */
1141 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1142 {
1143     skb_release_all(dst);
1144     return __skb_clone(dst, src);
1145 }
1146 EXPORT_SYMBOL_GPL(skb_morph);
1147 
1148 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1149 {
1150     unsigned long max_pg, num_pg, new_pg, old_pg;
1151     struct user_struct *user;
1152 
1153     if (capable(CAP_IPC_LOCK) || !size)
1154         return 0;
1155 
1156     num_pg = (size >> PAGE_SHIFT) + 2;  /* worst case */
1157     max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1158     user = mmp->user ? : current_user();
1159 
1160     do {
1161         old_pg = atomic_long_read(&user->locked_vm);
1162         new_pg = old_pg + num_pg;
1163         if (new_pg > max_pg)
1164             return -ENOBUFS;
1165     } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1166          old_pg);
1167 
1168     if (!mmp->user) {
1169         mmp->user = get_uid(user);
1170         mmp->num_pg = num_pg;
1171     } else {
1172         mmp->num_pg += num_pg;
1173     }
1174 
1175     return 0;
1176 }
1177 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1178 
1179 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1180 {
1181     if (mmp->user) {
1182         atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1183         free_uid(mmp->user);
1184     }
1185 }
1186 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1187 
1188 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1189 {
1190     struct ubuf_info *uarg;
1191     struct sk_buff *skb;
1192 
1193     WARN_ON_ONCE(!in_task());
1194 
1195     skb = sock_omalloc(sk, 0, GFP_KERNEL);
1196     if (!skb)
1197         return NULL;
1198 
1199     BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1200     uarg = (void *)skb->cb;
1201     uarg->mmp.user = NULL;
1202 
1203     if (mm_account_pinned_pages(&uarg->mmp, size)) {
1204         kfree_skb(skb);
1205         return NULL;
1206     }
1207 
1208     uarg->callback = msg_zerocopy_callback;
1209     uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1210     uarg->len = 1;
1211     uarg->bytelen = size;
1212     uarg->zerocopy = 1;
1213     uarg->flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1214     refcount_set(&uarg->refcnt, 1);
1215     sock_hold(sk);
1216 
1217     return uarg;
1218 }
1219 
1220 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1221 {
1222     return container_of((void *)uarg, struct sk_buff, cb);
1223 }
1224 
1225 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1226                        struct ubuf_info *uarg)
1227 {
1228     if (uarg) {
1229         const u32 byte_limit = 1 << 19;     /* limit to a few TSO */
1230         u32 bytelen, next;
1231 
1232         /* there might be non MSG_ZEROCOPY users */
1233         if (uarg->callback != msg_zerocopy_callback)
1234             return NULL;
1235 
1236         /* realloc only when socket is locked (TCP, UDP cork),
1237          * so uarg->len and sk_zckey access is serialized
1238          */
1239         if (!sock_owned_by_user(sk)) {
1240             WARN_ON_ONCE(1);
1241             return NULL;
1242         }
1243 
1244         bytelen = uarg->bytelen + size;
1245         if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1246             /* TCP can create new skb to attach new uarg */
1247             if (sk->sk_type == SOCK_STREAM)
1248                 goto new_alloc;
1249             return NULL;
1250         }
1251 
1252         next = (u32)atomic_read(&sk->sk_zckey);
1253         if ((u32)(uarg->id + uarg->len) == next) {
1254             if (mm_account_pinned_pages(&uarg->mmp, size))
1255                 return NULL;
1256             uarg->len++;
1257             uarg->bytelen = bytelen;
1258             atomic_set(&sk->sk_zckey, ++next);
1259 
1260             /* no extra ref when appending to datagram (MSG_MORE) */
1261             if (sk->sk_type == SOCK_STREAM)
1262                 net_zcopy_get(uarg);
1263 
1264             return uarg;
1265         }
1266     }
1267 
1268 new_alloc:
1269     return msg_zerocopy_alloc(sk, size);
1270 }
1271 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1272 
1273 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1274 {
1275     struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1276     u32 old_lo, old_hi;
1277     u64 sum_len;
1278 
1279     old_lo = serr->ee.ee_info;
1280     old_hi = serr->ee.ee_data;
1281     sum_len = old_hi - old_lo + 1ULL + len;
1282 
1283     if (sum_len >= (1ULL << 32))
1284         return false;
1285 
1286     if (lo != old_hi + 1)
1287         return false;
1288 
1289     serr->ee.ee_data += len;
1290     return true;
1291 }
1292 
1293 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1294 {
1295     struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1296     struct sock_exterr_skb *serr;
1297     struct sock *sk = skb->sk;
1298     struct sk_buff_head *q;
1299     unsigned long flags;
1300     bool is_zerocopy;
1301     u32 lo, hi;
1302     u16 len;
1303 
1304     mm_unaccount_pinned_pages(&uarg->mmp);
1305 
1306     /* if !len, there was only 1 call, and it was aborted
1307      * so do not queue a completion notification
1308      */
1309     if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1310         goto release;
1311 
1312     len = uarg->len;
1313     lo = uarg->id;
1314     hi = uarg->id + len - 1;
1315     is_zerocopy = uarg->zerocopy;
1316 
1317     serr = SKB_EXT_ERR(skb);
1318     memset(serr, 0, sizeof(*serr));
1319     serr->ee.ee_errno = 0;
1320     serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1321     serr->ee.ee_data = hi;
1322     serr->ee.ee_info = lo;
1323     if (!is_zerocopy)
1324         serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1325 
1326     q = &sk->sk_error_queue;
1327     spin_lock_irqsave(&q->lock, flags);
1328     tail = skb_peek_tail(q);
1329     if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1330         !skb_zerocopy_notify_extend(tail, lo, len)) {
1331         __skb_queue_tail(q, skb);
1332         skb = NULL;
1333     }
1334     spin_unlock_irqrestore(&q->lock, flags);
1335 
1336     sk_error_report(sk);
1337 
1338 release:
1339     consume_skb(skb);
1340     sock_put(sk);
1341 }
1342 
1343 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1344                bool success)
1345 {
1346     uarg->zerocopy = uarg->zerocopy & success;
1347 
1348     if (refcount_dec_and_test(&uarg->refcnt))
1349         __msg_zerocopy_callback(uarg);
1350 }
1351 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1352 
1353 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1354 {
1355     struct sock *sk = skb_from_uarg(uarg)->sk;
1356 
1357     atomic_dec(&sk->sk_zckey);
1358     uarg->len--;
1359 
1360     if (have_uref)
1361         msg_zerocopy_callback(NULL, uarg, true);
1362 }
1363 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1364 
1365 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1366                  struct msghdr *msg, int len,
1367                  struct ubuf_info *uarg)
1368 {
1369     struct ubuf_info *orig_uarg = skb_zcopy(skb);
1370     int err, orig_len = skb->len;
1371 
1372     /* An skb can only point to one uarg. This edge case happens when
1373      * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1374      */
1375     if (orig_uarg && uarg != orig_uarg)
1376         return -EEXIST;
1377 
1378     err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1379     if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1380         struct sock *save_sk = skb->sk;
1381 
1382         /* Streams do not free skb on error. Reset to prev state. */
1383         iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1384         skb->sk = sk;
1385         ___pskb_trim(skb, orig_len);
1386         skb->sk = save_sk;
1387         return err;
1388     }
1389 
1390     skb_zcopy_set(skb, uarg, NULL);
1391     return skb->len - orig_len;
1392 }
1393 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1394 
1395 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1396 {
1397     int i;
1398 
1399     skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1400     for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1401         skb_frag_ref(skb, i);
1402 }
1403 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1404 
1405 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1406                   gfp_t gfp_mask)
1407 {
1408     if (skb_zcopy(orig)) {
1409         if (skb_zcopy(nskb)) {
1410             /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1411             if (!gfp_mask) {
1412                 WARN_ON_ONCE(1);
1413                 return -ENOMEM;
1414             }
1415             if (skb_uarg(nskb) == skb_uarg(orig))
1416                 return 0;
1417             if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1418                 return -EIO;
1419         }
1420         skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1421     }
1422     return 0;
1423 }
1424 
1425 /**
1426  *  skb_copy_ubufs  -   copy userspace skb frags buffers to kernel
1427  *  @skb: the skb to modify
1428  *  @gfp_mask: allocation priority
1429  *
1430  *  This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1431  *  It will copy all frags into kernel and drop the reference
1432  *  to userspace pages.
1433  *
1434  *  If this function is called from an interrupt gfp_mask() must be
1435  *  %GFP_ATOMIC.
1436  *
1437  *  Returns 0 on success or a negative error code on failure
1438  *  to allocate kernel memory to copy to.
1439  */
1440 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1441 {
1442     int num_frags = skb_shinfo(skb)->nr_frags;
1443     struct page *page, *head = NULL;
1444     int i, new_frags;
1445     u32 d_off;
1446 
1447     if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1448         return -EINVAL;
1449 
1450     if (!num_frags)
1451         goto release;
1452 
1453     new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1454     for (i = 0; i < new_frags; i++) {
1455         page = alloc_page(gfp_mask);
1456         if (!page) {
1457             while (head) {
1458                 struct page *next = (struct page *)page_private(head);
1459                 put_page(head);
1460                 head = next;
1461             }
1462             return -ENOMEM;
1463         }
1464         set_page_private(page, (unsigned long)head);
1465         head = page;
1466     }
1467 
1468     page = head;
1469     d_off = 0;
1470     for (i = 0; i < num_frags; i++) {
1471         skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1472         u32 p_off, p_len, copied;
1473         struct page *p;
1474         u8 *vaddr;
1475 
1476         skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1477                       p, p_off, p_len, copied) {
1478             u32 copy, done = 0;
1479             vaddr = kmap_atomic(p);
1480 
1481             while (done < p_len) {
1482                 if (d_off == PAGE_SIZE) {
1483                     d_off = 0;
1484                     page = (struct page *)page_private(page);
1485                 }
1486                 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1487                 memcpy(page_address(page) + d_off,
1488                        vaddr + p_off + done, copy);
1489                 done += copy;
1490                 d_off += copy;
1491             }
1492             kunmap_atomic(vaddr);
1493         }
1494     }
1495 
1496     /* skb frags release userspace buffers */
1497     for (i = 0; i < num_frags; i++)
1498         skb_frag_unref(skb, i);
1499 
1500     /* skb frags point to kernel buffers */
1501     for (i = 0; i < new_frags - 1; i++) {
1502         __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1503         head = (struct page *)page_private(head);
1504     }
1505     __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1506     skb_shinfo(skb)->nr_frags = new_frags;
1507 
1508 release:
1509     skb_zcopy_clear(skb, false);
1510     return 0;
1511 }
1512 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1513 
1514 /**
1515  *  skb_clone   -   duplicate an sk_buff
1516  *  @skb: buffer to clone
1517  *  @gfp_mask: allocation priority
1518  *
1519  *  Duplicate an &sk_buff. The new one is not owned by a socket. Both
1520  *  copies share the same packet data but not structure. The new
1521  *  buffer has a reference count of 1. If the allocation fails the
1522  *  function returns %NULL otherwise the new buffer is returned.
1523  *
1524  *  If this function is called from an interrupt gfp_mask() must be
1525  *  %GFP_ATOMIC.
1526  */
1527 
1528 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1529 {
1530     struct sk_buff_fclones *fclones = container_of(skb,
1531                                struct sk_buff_fclones,
1532                                skb1);
1533     struct sk_buff *n;
1534 
1535     if (skb_orphan_frags(skb, gfp_mask))
1536         return NULL;
1537 
1538     if (skb->fclone == SKB_FCLONE_ORIG &&
1539         refcount_read(&fclones->fclone_ref) == 1) {
1540         n = &fclones->skb2;
1541         refcount_set(&fclones->fclone_ref, 2);
1542         n->fclone = SKB_FCLONE_CLONE;
1543     } else {
1544         if (skb_pfmemalloc(skb))
1545             gfp_mask |= __GFP_MEMALLOC;
1546 
1547         n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1548         if (!n)
1549             return NULL;
1550 
1551         n->fclone = SKB_FCLONE_UNAVAILABLE;
1552     }
1553 
1554     return __skb_clone(n, skb);
1555 }
1556 EXPORT_SYMBOL(skb_clone);
1557 
1558 void skb_headers_offset_update(struct sk_buff *skb, int off)
1559 {
1560     /* Only adjust this if it actually is csum_start rather than csum */
1561     if (skb->ip_summed == CHECKSUM_PARTIAL)
1562         skb->csum_start += off;
1563     /* {transport,network,mac}_header and tail are relative to skb->head */
1564     skb->transport_header += off;
1565     skb->network_header   += off;
1566     if (skb_mac_header_was_set(skb))
1567         skb->mac_header += off;
1568     skb->inner_transport_header += off;
1569     skb->inner_network_header += off;
1570     skb->inner_mac_header += off;
1571 }
1572 EXPORT_SYMBOL(skb_headers_offset_update);
1573 
1574 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1575 {
1576     __copy_skb_header(new, old);
1577 
1578     skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1579     skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1580     skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1581 }
1582 EXPORT_SYMBOL(skb_copy_header);
1583 
1584 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1585 {
1586     if (skb_pfmemalloc(skb))
1587         return SKB_ALLOC_RX;
1588     return 0;
1589 }
1590 
1591 /**
1592  *  skb_copy    -   create private copy of an sk_buff
1593  *  @skb: buffer to copy
1594  *  @gfp_mask: allocation priority
1595  *
1596  *  Make a copy of both an &sk_buff and its data. This is used when the
1597  *  caller wishes to modify the data and needs a private copy of the
1598  *  data to alter. Returns %NULL on failure or the pointer to the buffer
1599  *  on success. The returned buffer has a reference count of 1.
1600  *
1601  *  As by-product this function converts non-linear &sk_buff to linear
1602  *  one, so that &sk_buff becomes completely private and caller is allowed
1603  *  to modify all the data of returned buffer. This means that this
1604  *  function is not recommended for use in circumstances when only
1605  *  header is going to be modified. Use pskb_copy() instead.
1606  */
1607 
1608 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1609 {
1610     int headerlen = skb_headroom(skb);
1611     unsigned int size = skb_end_offset(skb) + skb->data_len;
1612     struct sk_buff *n = __alloc_skb(size, gfp_mask,
1613                     skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1614 
1615     if (!n)
1616         return NULL;
1617 
1618     /* Set the data pointer */
1619     skb_reserve(n, headerlen);
1620     /* Set the tail pointer and length */
1621     skb_put(n, skb->len);
1622 
1623     BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1624 
1625     skb_copy_header(n, skb);
1626     return n;
1627 }
1628 EXPORT_SYMBOL(skb_copy);
1629 
1630 /**
1631  *  __pskb_copy_fclone  -  create copy of an sk_buff with private head.
1632  *  @skb: buffer to copy
1633  *  @headroom: headroom of new skb
1634  *  @gfp_mask: allocation priority
1635  *  @fclone: if true allocate the copy of the skb from the fclone
1636  *  cache instead of the head cache; it is recommended to set this
1637  *  to true for the cases where the copy will likely be cloned
1638  *
1639  *  Make a copy of both an &sk_buff and part of its data, located
1640  *  in header. Fragmented data remain shared. This is used when
1641  *  the caller wishes to modify only header of &sk_buff and needs
1642  *  private copy of the header to alter. Returns %NULL on failure
1643  *  or the pointer to the buffer on success.
1644  *  The returned buffer has a reference count of 1.
1645  */
1646 
1647 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1648                    gfp_t gfp_mask, bool fclone)
1649 {
1650     unsigned int size = skb_headlen(skb) + headroom;
1651     int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1652     struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1653 
1654     if (!n)
1655         goto out;
1656 
1657     /* Set the data pointer */
1658     skb_reserve(n, headroom);
1659     /* Set the tail pointer and length */
1660     skb_put(n, skb_headlen(skb));
1661     /* Copy the bytes */
1662     skb_copy_from_linear_data(skb, n->data, n->len);
1663 
1664     n->truesize += skb->data_len;
1665     n->data_len  = skb->data_len;
1666     n->len       = skb->len;
1667 
1668     if (skb_shinfo(skb)->nr_frags) {
1669         int i;
1670 
1671         if (skb_orphan_frags(skb, gfp_mask) ||
1672             skb_zerocopy_clone(n, skb, gfp_mask)) {
1673             kfree_skb(n);
1674             n = NULL;
1675             goto out;
1676         }
1677         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1678             skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1679             skb_frag_ref(skb, i);
1680         }
1681         skb_shinfo(n)->nr_frags = i;
1682     }
1683 
1684     if (skb_has_frag_list(skb)) {
1685         skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1686         skb_clone_fraglist(n);
1687     }
1688 
1689     skb_copy_header(n, skb);
1690 out:
1691     return n;
1692 }
1693 EXPORT_SYMBOL(__pskb_copy_fclone);
1694 
1695 /**
1696  *  pskb_expand_head - reallocate header of &sk_buff
1697  *  @skb: buffer to reallocate
1698  *  @nhead: room to add at head
1699  *  @ntail: room to add at tail
1700  *  @gfp_mask: allocation priority
1701  *
1702  *  Expands (or creates identical copy, if @nhead and @ntail are zero)
1703  *  header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1704  *  reference count of 1. Returns zero in the case of success or error,
1705  *  if expansion failed. In the last case, &sk_buff is not changed.
1706  *
1707  *  All the pointers pointing into skb header may change and must be
1708  *  reloaded after call to this function.
1709  */
1710 
1711 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1712              gfp_t gfp_mask)
1713 {
1714     int i, osize = skb_end_offset(skb);
1715     int size = osize + nhead + ntail;
1716     long off;
1717     u8 *data;
1718 
1719     BUG_ON(nhead < 0);
1720 
1721     BUG_ON(skb_shared(skb));
1722 
1723     skb_zcopy_downgrade_managed(skb);
1724 
1725     size = SKB_DATA_ALIGN(size);
1726 
1727     if (skb_pfmemalloc(skb))
1728         gfp_mask |= __GFP_MEMALLOC;
1729     data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1730                    gfp_mask, NUMA_NO_NODE, NULL);
1731     if (!data)
1732         goto nodata;
1733     size = SKB_WITH_OVERHEAD(ksize(data));
1734 
1735     /* Copy only real data... and, alas, header. This should be
1736      * optimized for the cases when header is void.
1737      */
1738     memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1739 
1740     memcpy((struct skb_shared_info *)(data + size),
1741            skb_shinfo(skb),
1742            offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1743 
1744     /*
1745      * if shinfo is shared we must drop the old head gracefully, but if it
1746      * is not we can just drop the old head and let the existing refcount
1747      * be since all we did is relocate the values
1748      */
1749     if (skb_cloned(skb)) {
1750         if (skb_orphan_frags(skb, gfp_mask))
1751             goto nofrags;
1752         if (skb_zcopy(skb))
1753             refcount_inc(&skb_uarg(skb)->refcnt);
1754         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1755             skb_frag_ref(skb, i);
1756 
1757         if (skb_has_frag_list(skb))
1758             skb_clone_fraglist(skb);
1759 
1760         skb_release_data(skb);
1761     } else {
1762         skb_free_head(skb);
1763     }
1764     off = (data + nhead) - skb->head;
1765 
1766     skb->head     = data;
1767     skb->head_frag = 0;
1768     skb->data    += off;
1769 
1770     skb_set_end_offset(skb, size);
1771 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1772     off           = nhead;
1773 #endif
1774     skb->tail         += off;
1775     skb_headers_offset_update(skb, nhead);
1776     skb->cloned   = 0;
1777     skb->hdr_len  = 0;
1778     skb->nohdr    = 0;
1779     atomic_set(&skb_shinfo(skb)->dataref, 1);
1780 
1781     skb_metadata_clear(skb);
1782 
1783     /* It is not generally safe to change skb->truesize.
1784      * For the moment, we really care of rx path, or
1785      * when skb is orphaned (not attached to a socket).
1786      */
1787     if (!skb->sk || skb->destructor == sock_edemux)
1788         skb->truesize += size - osize;
1789 
1790     return 0;
1791 
1792 nofrags:
1793     kfree(data);
1794 nodata:
1795     return -ENOMEM;
1796 }
1797 EXPORT_SYMBOL(pskb_expand_head);
1798 
1799 /* Make private copy of skb with writable head and some headroom */
1800 
1801 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1802 {
1803     struct sk_buff *skb2;
1804     int delta = headroom - skb_headroom(skb);
1805 
1806     if (delta <= 0)
1807         skb2 = pskb_copy(skb, GFP_ATOMIC);
1808     else {
1809         skb2 = skb_clone(skb, GFP_ATOMIC);
1810         if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1811                          GFP_ATOMIC)) {
1812             kfree_skb(skb2);
1813             skb2 = NULL;
1814         }
1815     }
1816     return skb2;
1817 }
1818 EXPORT_SYMBOL(skb_realloc_headroom);
1819 
1820 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1821 {
1822     unsigned int saved_end_offset, saved_truesize;
1823     struct skb_shared_info *shinfo;
1824     int res;
1825 
1826     saved_end_offset = skb_end_offset(skb);
1827     saved_truesize = skb->truesize;
1828 
1829     res = pskb_expand_head(skb, 0, 0, pri);
1830     if (res)
1831         return res;
1832 
1833     skb->truesize = saved_truesize;
1834 
1835     if (likely(skb_end_offset(skb) == saved_end_offset))
1836         return 0;
1837 
1838     shinfo = skb_shinfo(skb);
1839 
1840     /* We are about to change back skb->end,
1841      * we need to move skb_shinfo() to its new location.
1842      */
1843     memmove(skb->head + saved_end_offset,
1844         shinfo,
1845         offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1846 
1847     skb_set_end_offset(skb, saved_end_offset);
1848 
1849     return 0;
1850 }
1851 
1852 /**
1853  *  skb_expand_head - reallocate header of &sk_buff
1854  *  @skb: buffer to reallocate
1855  *  @headroom: needed headroom
1856  *
1857  *  Unlike skb_realloc_headroom, this one does not allocate a new skb
1858  *  if possible; copies skb->sk to new skb as needed
1859  *  and frees original skb in case of failures.
1860  *
1861  *  It expect increased headroom and generates warning otherwise.
1862  */
1863 
1864 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1865 {
1866     int delta = headroom - skb_headroom(skb);
1867     int osize = skb_end_offset(skb);
1868     struct sock *sk = skb->sk;
1869 
1870     if (WARN_ONCE(delta <= 0,
1871               "%s is expecting an increase in the headroom", __func__))
1872         return skb;
1873 
1874     delta = SKB_DATA_ALIGN(delta);
1875     /* pskb_expand_head() might crash, if skb is shared. */
1876     if (skb_shared(skb) || !is_skb_wmem(skb)) {
1877         struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1878 
1879         if (unlikely(!nskb))
1880             goto fail;
1881 
1882         if (sk)
1883             skb_set_owner_w(nskb, sk);
1884         consume_skb(skb);
1885         skb = nskb;
1886     }
1887     if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1888         goto fail;
1889 
1890     if (sk && is_skb_wmem(skb)) {
1891         delta = skb_end_offset(skb) - osize;
1892         refcount_add(delta, &sk->sk_wmem_alloc);
1893         skb->truesize += delta;
1894     }
1895     return skb;
1896 
1897 fail:
1898     kfree_skb(skb);
1899     return NULL;
1900 }
1901 EXPORT_SYMBOL(skb_expand_head);
1902 
1903 /**
1904  *  skb_copy_expand -   copy and expand sk_buff
1905  *  @skb: buffer to copy
1906  *  @newheadroom: new free bytes at head
1907  *  @newtailroom: new free bytes at tail
1908  *  @gfp_mask: allocation priority
1909  *
1910  *  Make a copy of both an &sk_buff and its data and while doing so
1911  *  allocate additional space.
1912  *
1913  *  This is used when the caller wishes to modify the data and needs a
1914  *  private copy of the data to alter as well as more space for new fields.
1915  *  Returns %NULL on failure or the pointer to the buffer
1916  *  on success. The returned buffer has a reference count of 1.
1917  *
1918  *  You must pass %GFP_ATOMIC as the allocation priority if this function
1919  *  is called from an interrupt.
1920  */
1921 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1922                 int newheadroom, int newtailroom,
1923                 gfp_t gfp_mask)
1924 {
1925     /*
1926      *  Allocate the copy buffer
1927      */
1928     struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1929                     gfp_mask, skb_alloc_rx_flag(skb),
1930                     NUMA_NO_NODE);
1931     int oldheadroom = skb_headroom(skb);
1932     int head_copy_len, head_copy_off;
1933 
1934     if (!n)
1935         return NULL;
1936 
1937     skb_reserve(n, newheadroom);
1938 
1939     /* Set the tail pointer and length */
1940     skb_put(n, skb->len);
1941 
1942     head_copy_len = oldheadroom;
1943     head_copy_off = 0;
1944     if (newheadroom <= head_copy_len)
1945         head_copy_len = newheadroom;
1946     else
1947         head_copy_off = newheadroom - head_copy_len;
1948 
1949     /* Copy the linear header and data. */
1950     BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1951                  skb->len + head_copy_len));
1952 
1953     skb_copy_header(n, skb);
1954 
1955     skb_headers_offset_update(n, newheadroom - oldheadroom);
1956 
1957     return n;
1958 }
1959 EXPORT_SYMBOL(skb_copy_expand);
1960 
1961 /**
1962  *  __skb_pad       -   zero pad the tail of an skb
1963  *  @skb: buffer to pad
1964  *  @pad: space to pad
1965  *  @free_on_error: free buffer on error
1966  *
1967  *  Ensure that a buffer is followed by a padding area that is zero
1968  *  filled. Used by network drivers which may DMA or transfer data
1969  *  beyond the buffer end onto the wire.
1970  *
1971  *  May return error in out of memory cases. The skb is freed on error
1972  *  if @free_on_error is true.
1973  */
1974 
1975 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1976 {
1977     int err;
1978     int ntail;
1979 
1980     /* If the skbuff is non linear tailroom is always zero.. */
1981     if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1982         memset(skb->data+skb->len, 0, pad);
1983         return 0;
1984     }
1985 
1986     ntail = skb->data_len + pad - (skb->end - skb->tail);
1987     if (likely(skb_cloned(skb) || ntail > 0)) {
1988         err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1989         if (unlikely(err))
1990             goto free_skb;
1991     }
1992 
1993     /* FIXME: The use of this function with non-linear skb's really needs
1994      * to be audited.
1995      */
1996     err = skb_linearize(skb);
1997     if (unlikely(err))
1998         goto free_skb;
1999 
2000     memset(skb->data + skb->len, 0, pad);
2001     return 0;
2002 
2003 free_skb:
2004     if (free_on_error)
2005         kfree_skb(skb);
2006     return err;
2007 }
2008 EXPORT_SYMBOL(__skb_pad);
2009 
2010 /**
2011  *  pskb_put - add data to the tail of a potentially fragmented buffer
2012  *  @skb: start of the buffer to use
2013  *  @tail: tail fragment of the buffer to use
2014  *  @len: amount of data to add
2015  *
2016  *  This function extends the used data area of the potentially
2017  *  fragmented buffer. @tail must be the last fragment of @skb -- or
2018  *  @skb itself. If this would exceed the total buffer size the kernel
2019  *  will panic. A pointer to the first byte of the extra data is
2020  *  returned.
2021  */
2022 
2023 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2024 {
2025     if (tail != skb) {
2026         skb->data_len += len;
2027         skb->len += len;
2028     }
2029     return skb_put(tail, len);
2030 }
2031 EXPORT_SYMBOL_GPL(pskb_put);
2032 
2033 /**
2034  *  skb_put - add data to a buffer
2035  *  @skb: buffer to use
2036  *  @len: amount of data to add
2037  *
2038  *  This function extends the used data area of the buffer. If this would
2039  *  exceed the total buffer size the kernel will panic. A pointer to the
2040  *  first byte of the extra data is returned.
2041  */
2042 void *skb_put(struct sk_buff *skb, unsigned int len)
2043 {
2044     void *tmp = skb_tail_pointer(skb);
2045     SKB_LINEAR_ASSERT(skb);
2046     skb->tail += len;
2047     skb->len  += len;
2048     if (unlikely(skb->tail > skb->end))
2049         skb_over_panic(skb, len, __builtin_return_address(0));
2050     return tmp;
2051 }
2052 EXPORT_SYMBOL(skb_put);
2053 
2054 /**
2055  *  skb_push - add data to the start of a buffer
2056  *  @skb: buffer to use
2057  *  @len: amount of data to add
2058  *
2059  *  This function extends the used data area of the buffer at the buffer
2060  *  start. If this would exceed the total buffer headroom the kernel will
2061  *  panic. A pointer to the first byte of the extra data is returned.
2062  */
2063 void *skb_push(struct sk_buff *skb, unsigned int len)
2064 {
2065     skb->data -= len;
2066     skb->len  += len;
2067     if (unlikely(skb->data < skb->head))
2068         skb_under_panic(skb, len, __builtin_return_address(0));
2069     return skb->data;
2070 }
2071 EXPORT_SYMBOL(skb_push);
2072 
2073 /**
2074  *  skb_pull - remove data from the start of a buffer
2075  *  @skb: buffer to use
2076  *  @len: amount of data to remove
2077  *
2078  *  This function removes data from the start of a buffer, returning
2079  *  the memory to the headroom. A pointer to the next data in the buffer
2080  *  is returned. Once the data has been pulled future pushes will overwrite
2081  *  the old data.
2082  */
2083 void *skb_pull(struct sk_buff *skb, unsigned int len)
2084 {
2085     return skb_pull_inline(skb, len);
2086 }
2087 EXPORT_SYMBOL(skb_pull);
2088 
2089 /**
2090  *  skb_pull_data - remove data from the start of a buffer returning its
2091  *  original position.
2092  *  @skb: buffer to use
2093  *  @len: amount of data to remove
2094  *
2095  *  This function removes data from the start of a buffer, returning
2096  *  the memory to the headroom. A pointer to the original data in the buffer
2097  *  is returned after checking if there is enough data to pull. Once the
2098  *  data has been pulled future pushes will overwrite the old data.
2099  */
2100 void *skb_pull_data(struct sk_buff *skb, size_t len)
2101 {
2102     void *data = skb->data;
2103 
2104     if (skb->len < len)
2105         return NULL;
2106 
2107     skb_pull(skb, len);
2108 
2109     return data;
2110 }
2111 EXPORT_SYMBOL(skb_pull_data);
2112 
2113 /**
2114  *  skb_trim - remove end from a buffer
2115  *  @skb: buffer to alter
2116  *  @len: new length
2117  *
2118  *  Cut the length of a buffer down by removing data from the tail. If
2119  *  the buffer is already under the length specified it is not modified.
2120  *  The skb must be linear.
2121  */
2122 void skb_trim(struct sk_buff *skb, unsigned int len)
2123 {
2124     if (skb->len > len)
2125         __skb_trim(skb, len);
2126 }
2127 EXPORT_SYMBOL(skb_trim);
2128 
2129 /* Trims skb to length len. It can change skb pointers.
2130  */
2131 
2132 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2133 {
2134     struct sk_buff **fragp;
2135     struct sk_buff *frag;
2136     int offset = skb_headlen(skb);
2137     int nfrags = skb_shinfo(skb)->nr_frags;
2138     int i;
2139     int err;
2140 
2141     if (skb_cloned(skb) &&
2142         unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2143         return err;
2144 
2145     i = 0;
2146     if (offset >= len)
2147         goto drop_pages;
2148 
2149     for (; i < nfrags; i++) {
2150         int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2151 
2152         if (end < len) {
2153             offset = end;
2154             continue;
2155         }
2156 
2157         skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2158 
2159 drop_pages:
2160         skb_shinfo(skb)->nr_frags = i;
2161 
2162         for (; i < nfrags; i++)
2163             skb_frag_unref(skb, i);
2164 
2165         if (skb_has_frag_list(skb))
2166             skb_drop_fraglist(skb);
2167         goto done;
2168     }
2169 
2170     for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2171          fragp = &frag->next) {
2172         int end = offset + frag->len;
2173 
2174         if (skb_shared(frag)) {
2175             struct sk_buff *nfrag;
2176 
2177             nfrag = skb_clone(frag, GFP_ATOMIC);
2178             if (unlikely(!nfrag))
2179                 return -ENOMEM;
2180 
2181             nfrag->next = frag->next;
2182             consume_skb(frag);
2183             frag = nfrag;
2184             *fragp = frag;
2185         }
2186 
2187         if (end < len) {
2188             offset = end;
2189             continue;
2190         }
2191 
2192         if (end > len &&
2193             unlikely((err = pskb_trim(frag, len - offset))))
2194             return err;
2195 
2196         if (frag->next)
2197             skb_drop_list(&frag->next);
2198         break;
2199     }
2200 
2201 done:
2202     if (len > skb_headlen(skb)) {
2203         skb->data_len -= skb->len - len;
2204         skb->len       = len;
2205     } else {
2206         skb->len       = len;
2207         skb->data_len  = 0;
2208         skb_set_tail_pointer(skb, len);
2209     }
2210 
2211     if (!skb->sk || skb->destructor == sock_edemux)
2212         skb_condense(skb);
2213     return 0;
2214 }
2215 EXPORT_SYMBOL(___pskb_trim);
2216 
2217 /* Note : use pskb_trim_rcsum() instead of calling this directly
2218  */
2219 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2220 {
2221     if (skb->ip_summed == CHECKSUM_COMPLETE) {
2222         int delta = skb->len - len;
2223 
2224         skb->csum = csum_block_sub(skb->csum,
2225                        skb_checksum(skb, len, delta, 0),
2226                        len);
2227     } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2228         int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2229         int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2230 
2231         if (offset + sizeof(__sum16) > hdlen)
2232             return -EINVAL;
2233     }
2234     return __pskb_trim(skb, len);
2235 }
2236 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2237 
2238 /**
2239  *  __pskb_pull_tail - advance tail of skb header
2240  *  @skb: buffer to reallocate
2241  *  @delta: number of bytes to advance tail
2242  *
2243  *  The function makes a sense only on a fragmented &sk_buff,
2244  *  it expands header moving its tail forward and copying necessary
2245  *  data from fragmented part.
2246  *
2247  *  &sk_buff MUST have reference count of 1.
2248  *
2249  *  Returns %NULL (and &sk_buff does not change) if pull failed
2250  *  or value of new tail of skb in the case of success.
2251  *
2252  *  All the pointers pointing into skb header may change and must be
2253  *  reloaded after call to this function.
2254  */
2255 
2256 /* Moves tail of skb head forward, copying data from fragmented part,
2257  * when it is necessary.
2258  * 1. It may fail due to malloc failure.
2259  * 2. It may change skb pointers.
2260  *
2261  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2262  */
2263 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2264 {
2265     /* If skb has not enough free space at tail, get new one
2266      * plus 128 bytes for future expansions. If we have enough
2267      * room at tail, reallocate without expansion only if skb is cloned.
2268      */
2269     int i, k, eat = (skb->tail + delta) - skb->end;
2270 
2271     if (eat > 0 || skb_cloned(skb)) {
2272         if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2273                      GFP_ATOMIC))
2274             return NULL;
2275     }
2276 
2277     BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2278                  skb_tail_pointer(skb), delta));
2279 
2280     /* Optimization: no fragments, no reasons to preestimate
2281      * size of pulled pages. Superb.
2282      */
2283     if (!skb_has_frag_list(skb))
2284         goto pull_pages;
2285 
2286     /* Estimate size of pulled pages. */
2287     eat = delta;
2288     for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2289         int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2290 
2291         if (size >= eat)
2292             goto pull_pages;
2293         eat -= size;
2294     }
2295 
2296     /* If we need update frag list, we are in troubles.
2297      * Certainly, it is possible to add an offset to skb data,
2298      * but taking into account that pulling is expected to
2299      * be very rare operation, it is worth to fight against
2300      * further bloating skb head and crucify ourselves here instead.
2301      * Pure masohism, indeed. 8)8)
2302      */
2303     if (eat) {
2304         struct sk_buff *list = skb_shinfo(skb)->frag_list;
2305         struct sk_buff *clone = NULL;
2306         struct sk_buff *insp = NULL;
2307 
2308         do {
2309             if (list->len <= eat) {
2310                 /* Eaten as whole. */
2311                 eat -= list->len;
2312                 list = list->next;
2313                 insp = list;
2314             } else {
2315                 /* Eaten partially. */
2316 
2317                 if (skb_shared(list)) {
2318                     /* Sucks! We need to fork list. :-( */
2319                     clone = skb_clone(list, GFP_ATOMIC);
2320                     if (!clone)
2321                         return NULL;
2322                     insp = list->next;
2323                     list = clone;
2324                 } else {
2325                     /* This may be pulled without
2326                      * problems. */
2327                     insp = list;
2328                 }
2329                 if (!pskb_pull(list, eat)) {
2330                     kfree_skb(clone);
2331                     return NULL;
2332                 }
2333                 break;
2334             }
2335         } while (eat);
2336 
2337         /* Free pulled out fragments. */
2338         while ((list = skb_shinfo(skb)->frag_list) != insp) {
2339             skb_shinfo(skb)->frag_list = list->next;
2340             consume_skb(list);
2341         }
2342         /* And insert new clone at head. */
2343         if (clone) {
2344             clone->next = list;
2345             skb_shinfo(skb)->frag_list = clone;
2346         }
2347     }
2348     /* Success! Now we may commit changes to skb data. */
2349 
2350 pull_pages:
2351     eat = delta;
2352     k = 0;
2353     for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2354         int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2355 
2356         if (size <= eat) {
2357             skb_frag_unref(skb, i);
2358             eat -= size;
2359         } else {
2360             skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2361 
2362             *frag = skb_shinfo(skb)->frags[i];
2363             if (eat) {
2364                 skb_frag_off_add(frag, eat);
2365                 skb_frag_size_sub(frag, eat);
2366                 if (!i)
2367                     goto end;
2368                 eat = 0;
2369             }
2370             k++;
2371         }
2372     }
2373     skb_shinfo(skb)->nr_frags = k;
2374 
2375 end:
2376     skb->tail     += delta;
2377     skb->data_len -= delta;
2378 
2379     if (!skb->data_len)
2380         skb_zcopy_clear(skb, false);
2381 
2382     return skb_tail_pointer(skb);
2383 }
2384 EXPORT_SYMBOL(__pskb_pull_tail);
2385 
2386 /**
2387  *  skb_copy_bits - copy bits from skb to kernel buffer
2388  *  @skb: source skb
2389  *  @offset: offset in source
2390  *  @to: destination buffer
2391  *  @len: number of bytes to copy
2392  *
2393  *  Copy the specified number of bytes from the source skb to the
2394  *  destination buffer.
2395  *
2396  *  CAUTION ! :
2397  *      If its prototype is ever changed,
2398  *      check arch/{*}/net/{*}.S files,
2399  *      since it is called from BPF assembly code.
2400  */
2401 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2402 {
2403     int start = skb_headlen(skb);
2404     struct sk_buff *frag_iter;
2405     int i, copy;
2406 
2407     if (offset > (int)skb->len - len)
2408         goto fault;
2409 
2410     /* Copy header. */
2411     if ((copy = start - offset) > 0) {
2412         if (copy > len)
2413             copy = len;
2414         skb_copy_from_linear_data_offset(skb, offset, to, copy);
2415         if ((len -= copy) == 0)
2416             return 0;
2417         offset += copy;
2418         to     += copy;
2419     }
2420 
2421     for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2422         int end;
2423         skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2424 
2425         WARN_ON(start > offset + len);
2426 
2427         end = start + skb_frag_size(f);
2428         if ((copy = end - offset) > 0) {
2429             u32 p_off, p_len, copied;
2430             struct page *p;
2431             u8 *vaddr;
2432 
2433             if (copy > len)
2434                 copy = len;
2435 
2436             skb_frag_foreach_page(f,
2437                           skb_frag_off(f) + offset - start,
2438                           copy, p, p_off, p_len, copied) {
2439                 vaddr = kmap_atomic(p);
2440                 memcpy(to + copied, vaddr + p_off, p_len);
2441                 kunmap_atomic(vaddr);
2442             }
2443 
2444             if ((len -= copy) == 0)
2445                 return 0;
2446             offset += copy;
2447             to     += copy;
2448         }
2449         start = end;
2450     }
2451 
2452     skb_walk_frags(skb, frag_iter) {
2453         int end;
2454 
2455         WARN_ON(start > offset + len);
2456 
2457         end = start + frag_iter->len;
2458         if ((copy = end - offset) > 0) {
2459             if (copy > len)
2460                 copy = len;
2461             if (skb_copy_bits(frag_iter, offset - start, to, copy))
2462                 goto fault;
2463             if ((len -= copy) == 0)
2464                 return 0;
2465             offset += copy;
2466             to     += copy;
2467         }
2468         start = end;
2469     }
2470 
2471     if (!len)
2472         return 0;
2473 
2474 fault:
2475     return -EFAULT;
2476 }
2477 EXPORT_SYMBOL(skb_copy_bits);
2478 
2479 /*
2480  * Callback from splice_to_pipe(), if we need to release some pages
2481  * at the end of the spd in case we error'ed out in filling the pipe.
2482  */
2483 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2484 {
2485     put_page(spd->pages[i]);
2486 }
2487 
2488 static struct page *linear_to_page(struct page *page, unsigned int *len,
2489                    unsigned int *offset,
2490                    struct sock *sk)
2491 {
2492     struct page_frag *pfrag = sk_page_frag(sk);
2493 
2494     if (!sk_page_frag_refill(sk, pfrag))
2495         return NULL;
2496 
2497     *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2498 
2499     memcpy(page_address(pfrag->page) + pfrag->offset,
2500            page_address(page) + *offset, *len);
2501     *offset = pfrag->offset;
2502     pfrag->offset += *len;
2503 
2504     return pfrag->page;
2505 }
2506 
2507 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2508                  struct page *page,
2509                  unsigned int offset)
2510 {
2511     return  spd->nr_pages &&
2512         spd->pages[spd->nr_pages - 1] == page &&
2513         (spd->partial[spd->nr_pages - 1].offset +
2514          spd->partial[spd->nr_pages - 1].len == offset);
2515 }
2516 
2517 /*
2518  * Fill page/offset/length into spd, if it can hold more pages.
2519  */
2520 static bool spd_fill_page(struct splice_pipe_desc *spd,
2521               struct pipe_inode_info *pipe, struct page *page,
2522               unsigned int *len, unsigned int offset,
2523               bool linear,
2524               struct sock *sk)
2525 {
2526     if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2527         return true;
2528 
2529     if (linear) {
2530         page = linear_to_page(page, len, &offset, sk);
2531         if (!page)
2532             return true;
2533     }
2534     if (spd_can_coalesce(spd, page, offset)) {
2535         spd->partial[spd->nr_pages - 1].len += *len;
2536         return false;
2537     }
2538     get_page(page);
2539     spd->pages[spd->nr_pages] = page;
2540     spd->partial[spd->nr_pages].len = *len;
2541     spd->partial[spd->nr_pages].offset = offset;
2542     spd->nr_pages++;
2543 
2544     return false;
2545 }
2546 
2547 static bool __splice_segment(struct page *page, unsigned int poff,
2548                  unsigned int plen, unsigned int *off,
2549                  unsigned int *len,
2550                  struct splice_pipe_desc *spd, bool linear,
2551                  struct sock *sk,
2552                  struct pipe_inode_info *pipe)
2553 {
2554     if (!*len)
2555         return true;
2556 
2557     /* skip this segment if already processed */
2558     if (*off >= plen) {
2559         *off -= plen;
2560         return false;
2561     }
2562 
2563     /* ignore any bits we already processed */
2564     poff += *off;
2565     plen -= *off;
2566     *off = 0;
2567 
2568     do {
2569         unsigned int flen = min(*len, plen);
2570 
2571         if (spd_fill_page(spd, pipe, page, &flen, poff,
2572                   linear, sk))
2573             return true;
2574         poff += flen;
2575         plen -= flen;
2576         *len -= flen;
2577     } while (*len && plen);
2578 
2579     return false;
2580 }
2581 
2582 /*
2583  * Map linear and fragment data from the skb to spd. It reports true if the
2584  * pipe is full or if we already spliced the requested length.
2585  */
2586 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2587                   unsigned int *offset, unsigned int *len,
2588                   struct splice_pipe_desc *spd, struct sock *sk)
2589 {
2590     int seg;
2591     struct sk_buff *iter;
2592 
2593     /* map the linear part :
2594      * If skb->head_frag is set, this 'linear' part is backed by a
2595      * fragment, and if the head is not shared with any clones then
2596      * we can avoid a copy since we own the head portion of this page.
2597      */
2598     if (__splice_segment(virt_to_page(skb->data),
2599                  (unsigned long) skb->data & (PAGE_SIZE - 1),
2600                  skb_headlen(skb),
2601                  offset, len, spd,
2602                  skb_head_is_locked(skb),
2603                  sk, pipe))
2604         return true;
2605 
2606     /*
2607      * then map the fragments
2608      */
2609     for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2610         const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2611 
2612         if (__splice_segment(skb_frag_page(f),
2613                      skb_frag_off(f), skb_frag_size(f),
2614                      offset, len, spd, false, sk, pipe))
2615             return true;
2616     }
2617 
2618     skb_walk_frags(skb, iter) {
2619         if (*offset >= iter->len) {
2620             *offset -= iter->len;
2621             continue;
2622         }
2623         /* __skb_splice_bits() only fails if the output has no room
2624          * left, so no point in going over the frag_list for the error
2625          * case.
2626          */
2627         if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2628             return true;
2629     }
2630 
2631     return false;
2632 }
2633 
2634 /*
2635  * Map data from the skb to a pipe. Should handle both the linear part,
2636  * the fragments, and the frag list.
2637  */
2638 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2639             struct pipe_inode_info *pipe, unsigned int tlen,
2640             unsigned int flags)
2641 {
2642     struct partial_page partial[MAX_SKB_FRAGS];
2643     struct page *pages[MAX_SKB_FRAGS];
2644     struct splice_pipe_desc spd = {
2645         .pages = pages,
2646         .partial = partial,
2647         .nr_pages_max = MAX_SKB_FRAGS,
2648         .ops = &nosteal_pipe_buf_ops,
2649         .spd_release = sock_spd_release,
2650     };
2651     int ret = 0;
2652 
2653     __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2654 
2655     if (spd.nr_pages)
2656         ret = splice_to_pipe(pipe, &spd);
2657 
2658     return ret;
2659 }
2660 EXPORT_SYMBOL_GPL(skb_splice_bits);
2661 
2662 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2663                 struct kvec *vec, size_t num, size_t size)
2664 {
2665     struct socket *sock = sk->sk_socket;
2666 
2667     if (!sock)
2668         return -EINVAL;
2669     return kernel_sendmsg(sock, msg, vec, num, size);
2670 }
2671 
2672 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2673                  size_t size, int flags)
2674 {
2675     struct socket *sock = sk->sk_socket;
2676 
2677     if (!sock)
2678         return -EINVAL;
2679     return kernel_sendpage(sock, page, offset, size, flags);
2680 }
2681 
2682 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2683                 struct kvec *vec, size_t num, size_t size);
2684 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2685                  size_t size, int flags);
2686 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2687                int len, sendmsg_func sendmsg, sendpage_func sendpage)
2688 {
2689     unsigned int orig_len = len;
2690     struct sk_buff *head = skb;
2691     unsigned short fragidx;
2692     int slen, ret;
2693 
2694 do_frag_list:
2695 
2696     /* Deal with head data */
2697     while (offset < skb_headlen(skb) && len) {
2698         struct kvec kv;
2699         struct msghdr msg;
2700 
2701         slen = min_t(int, len, skb_headlen(skb) - offset);
2702         kv.iov_base = skb->data + offset;
2703         kv.iov_len = slen;
2704         memset(&msg, 0, sizeof(msg));
2705         msg.msg_flags = MSG_DONTWAIT;
2706 
2707         ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2708                       sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2709         if (ret <= 0)
2710             goto error;
2711 
2712         offset += ret;
2713         len -= ret;
2714     }
2715 
2716     /* All the data was skb head? */
2717     if (!len)
2718         goto out;
2719 
2720     /* Make offset relative to start of frags */
2721     offset -= skb_headlen(skb);
2722 
2723     /* Find where we are in frag list */
2724     for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2725         skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2726 
2727         if (offset < skb_frag_size(frag))
2728             break;
2729 
2730         offset -= skb_frag_size(frag);
2731     }
2732 
2733     for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2734         skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2735 
2736         slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2737 
2738         while (slen) {
2739             ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2740                           sendpage_unlocked, sk,
2741                           skb_frag_page(frag),
2742                           skb_frag_off(frag) + offset,
2743                           slen, MSG_DONTWAIT);
2744             if (ret <= 0)
2745                 goto error;
2746 
2747             len -= ret;
2748             offset += ret;
2749             slen -= ret;
2750         }
2751 
2752         offset = 0;
2753     }
2754 
2755     if (len) {
2756         /* Process any frag lists */
2757 
2758         if (skb == head) {
2759             if (skb_has_frag_list(skb)) {
2760                 skb = skb_shinfo(skb)->frag_list;
2761                 goto do_frag_list;
2762             }
2763         } else if (skb->next) {
2764             skb = skb->next;
2765             goto do_frag_list;
2766         }
2767     }
2768 
2769 out:
2770     return orig_len - len;
2771 
2772 error:
2773     return orig_len == len ? ret : orig_len - len;
2774 }
2775 
2776 /* Send skb data on a socket. Socket must be locked. */
2777 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2778              int len)
2779 {
2780     return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2781                    kernel_sendpage_locked);
2782 }
2783 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2784 
2785 /* Send skb data on a socket. Socket must be unlocked. */
2786 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2787 {
2788     return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2789                    sendpage_unlocked);
2790 }
2791 
2792 /**
2793  *  skb_store_bits - store bits from kernel buffer to skb
2794  *  @skb: destination buffer
2795  *  @offset: offset in destination
2796  *  @from: source buffer
2797  *  @len: number of bytes to copy
2798  *
2799  *  Copy the specified number of bytes from the source buffer to the
2800  *  destination skb.  This function handles all the messy bits of
2801  *  traversing fragment lists and such.
2802  */
2803 
2804 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2805 {
2806     int start = skb_headlen(skb);
2807     struct sk_buff *frag_iter;
2808     int i, copy;
2809 
2810     if (offset > (int)skb->len - len)
2811         goto fault;
2812 
2813     if ((copy = start - offset) > 0) {
2814         if (copy > len)
2815             copy = len;
2816         skb_copy_to_linear_data_offset(skb, offset, from, copy);
2817         if ((len -= copy) == 0)
2818             return 0;
2819         offset += copy;
2820         from += copy;
2821     }
2822 
2823     for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2824         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2825         int end;
2826 
2827         WARN_ON(start > offset + len);
2828 
2829         end = start + skb_frag_size(frag);
2830         if ((copy = end - offset) > 0) {
2831             u32 p_off, p_len, copied;
2832             struct page *p;
2833             u8 *vaddr;
2834 
2835             if (copy > len)
2836                 copy = len;
2837 
2838             skb_frag_foreach_page(frag,
2839                           skb_frag_off(frag) + offset - start,
2840                           copy, p, p_off, p_len, copied) {
2841                 vaddr = kmap_atomic(p);
2842                 memcpy(vaddr + p_off, from + copied, p_len);
2843                 kunmap_atomic(vaddr);
2844             }
2845 
2846             if ((len -= copy) == 0)
2847                 return 0;
2848             offset += copy;
2849             from += copy;
2850         }
2851         start = end;
2852     }
2853 
2854     skb_walk_frags(skb, frag_iter) {
2855         int end;
2856 
2857         WARN_ON(start > offset + len);
2858 
2859         end = start + frag_iter->len;
2860         if ((copy = end - offset) > 0) {
2861             if (copy > len)
2862                 copy = len;
2863             if (skb_store_bits(frag_iter, offset - start,
2864                        from, copy))
2865                 goto fault;
2866             if ((len -= copy) == 0)
2867                 return 0;
2868             offset += copy;
2869             from += copy;
2870         }
2871         start = end;
2872     }
2873     if (!len)
2874         return 0;
2875 
2876 fault:
2877     return -EFAULT;
2878 }
2879 EXPORT_SYMBOL(skb_store_bits);
2880 
2881 /* Checksum skb data. */
2882 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2883               __wsum csum, const struct skb_checksum_ops *ops)
2884 {
2885     int start = skb_headlen(skb);
2886     int i, copy = start - offset;
2887     struct sk_buff *frag_iter;
2888     int pos = 0;
2889 
2890     /* Checksum header. */
2891     if (copy > 0) {
2892         if (copy > len)
2893             copy = len;
2894         csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2895                        skb->data + offset, copy, csum);
2896         if ((len -= copy) == 0)
2897             return csum;
2898         offset += copy;
2899         pos = copy;
2900     }
2901 
2902     for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2903         int end;
2904         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2905 
2906         WARN_ON(start > offset + len);
2907 
2908         end = start + skb_frag_size(frag);
2909         if ((copy = end - offset) > 0) {
2910             u32 p_off, p_len, copied;
2911             struct page *p;
2912             __wsum csum2;
2913             u8 *vaddr;
2914 
2915             if (copy > len)
2916                 copy = len;
2917 
2918             skb_frag_foreach_page(frag,
2919                           skb_frag_off(frag) + offset - start,
2920                           copy, p, p_off, p_len, copied) {
2921                 vaddr = kmap_atomic(p);
2922                 csum2 = INDIRECT_CALL_1(ops->update,
2923                             csum_partial_ext,
2924                             vaddr + p_off, p_len, 0);
2925                 kunmap_atomic(vaddr);
2926                 csum = INDIRECT_CALL_1(ops->combine,
2927                                csum_block_add_ext, csum,
2928                                csum2, pos, p_len);
2929                 pos += p_len;
2930             }
2931 
2932             if (!(len -= copy))
2933                 return csum;
2934             offset += copy;
2935         }
2936         start = end;
2937     }
2938 
2939     skb_walk_frags(skb, frag_iter) {
2940         int end;
2941 
2942         WARN_ON(start > offset + len);
2943 
2944         end = start + frag_iter->len;
2945         if ((copy = end - offset) > 0) {
2946             __wsum csum2;
2947             if (copy > len)
2948                 copy = len;
2949             csum2 = __skb_checksum(frag_iter, offset - start,
2950                            copy, 0, ops);
2951             csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2952                            csum, csum2, pos, copy);
2953             if ((len -= copy) == 0)
2954                 return csum;
2955             offset += copy;
2956             pos    += copy;
2957         }
2958         start = end;
2959     }
2960     BUG_ON(len);
2961 
2962     return csum;
2963 }
2964 EXPORT_SYMBOL(__skb_checksum);
2965 
2966 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2967             int len, __wsum csum)
2968 {
2969     const struct skb_checksum_ops ops = {
2970         .update  = csum_partial_ext,
2971         .combine = csum_block_add_ext,
2972     };
2973 
2974     return __skb_checksum(skb, offset, len, csum, &ops);
2975 }
2976 EXPORT_SYMBOL(skb_checksum);
2977 
2978 /* Both of above in one bottle. */
2979 
2980 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2981                     u8 *to, int len)
2982 {
2983     int start = skb_headlen(skb);
2984     int i, copy = start - offset;
2985     struct sk_buff *frag_iter;
2986     int pos = 0;
2987     __wsum csum = 0;
2988 
2989     /* Copy header. */
2990     if (copy > 0) {
2991         if (copy > len)
2992             copy = len;
2993         csum = csum_partial_copy_nocheck(skb->data + offset, to,
2994                          copy);
2995         if ((len -= copy) == 0)
2996             return csum;
2997         offset += copy;
2998         to     += copy;
2999         pos = copy;
3000     }
3001 
3002     for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3003         int end;
3004 
3005         WARN_ON(start > offset + len);
3006 
3007         end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3008         if ((copy = end - offset) > 0) {
3009             skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3010             u32 p_off, p_len, copied;
3011             struct page *p;
3012             __wsum csum2;
3013             u8 *vaddr;
3014 
3015             if (copy > len)
3016                 copy = len;
3017 
3018             skb_frag_foreach_page(frag,
3019                           skb_frag_off(frag) + offset - start,
3020                           copy, p, p_off, p_len, copied) {
3021                 vaddr = kmap_atomic(p);
3022                 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3023                                   to + copied,
3024                                   p_len);
3025                 kunmap_atomic(vaddr);
3026                 csum = csum_block_add(csum, csum2, pos);
3027                 pos += p_len;
3028             }
3029 
3030             if (!(len -= copy))
3031                 return csum;
3032             offset += copy;
3033             to     += copy;
3034         }
3035         start = end;
3036     }
3037 
3038     skb_walk_frags(skb, frag_iter) {
3039         __wsum csum2;
3040         int end;
3041 
3042         WARN_ON(start > offset + len);
3043 
3044         end = start + frag_iter->len;
3045         if ((copy = end - offset) > 0) {
3046             if (copy > len)
3047                 copy = len;
3048             csum2 = skb_copy_and_csum_bits(frag_iter,
3049                                offset - start,
3050                                to, copy);
3051             csum = csum_block_add(csum, csum2, pos);
3052             if ((len -= copy) == 0)
3053                 return csum;
3054             offset += copy;
3055             to     += copy;
3056             pos    += copy;
3057         }
3058         start = end;
3059     }
3060     BUG_ON(len);
3061     return csum;
3062 }
3063 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3064 
3065 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3066 {
3067     __sum16 sum;
3068 
3069     sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3070     /* See comments in __skb_checksum_complete(). */
3071     if (likely(!sum)) {
3072         if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3073             !skb->csum_complete_sw)
3074             netdev_rx_csum_fault(skb->dev, skb);
3075     }
3076     if (!skb_shared(skb))
3077         skb->csum_valid = !sum;
3078     return sum;
3079 }
3080 EXPORT_SYMBOL(__skb_checksum_complete_head);
3081 
3082 /* This function assumes skb->csum already holds pseudo header's checksum,
3083  * which has been changed from the hardware checksum, for example, by
3084  * __skb_checksum_validate_complete(). And, the original skb->csum must
3085  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3086  *
3087  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3088  * zero. The new checksum is stored back into skb->csum unless the skb is
3089  * shared.
3090  */
3091 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3092 {
3093     __wsum csum;
3094     __sum16 sum;
3095 
3096     csum = skb_checksum(skb, 0, skb->len, 0);
3097 
3098     sum = csum_fold(csum_add(skb->csum, csum));
3099     /* This check is inverted, because we already knew the hardware
3100      * checksum is invalid before calling this function. So, if the
3101      * re-computed checksum is valid instead, then we have a mismatch
3102      * between the original skb->csum and skb_checksum(). This means either
3103      * the original hardware checksum is incorrect or we screw up skb->csum
3104      * when moving skb->data around.
3105      */
3106     if (likely(!sum)) {
3107         if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3108             !skb->csum_complete_sw)
3109             netdev_rx_csum_fault(skb->dev, skb);
3110     }
3111 
3112     if (!skb_shared(skb)) {
3113         /* Save full packet checksum */
3114         skb->csum = csum;
3115         skb->ip_summed = CHECKSUM_COMPLETE;
3116         skb->csum_complete_sw = 1;
3117         skb->csum_valid = !sum;
3118     }
3119 
3120     return sum;
3121 }
3122 EXPORT_SYMBOL(__skb_checksum_complete);
3123 
3124 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3125 {
3126     net_warn_ratelimited(
3127         "%s: attempt to compute crc32c without libcrc32c.ko\n",
3128         __func__);
3129     return 0;
3130 }
3131 
3132 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3133                        int offset, int len)
3134 {
3135     net_warn_ratelimited(
3136         "%s: attempt to compute crc32c without libcrc32c.ko\n",
3137         __func__);
3138     return 0;
3139 }
3140 
3141 static const struct skb_checksum_ops default_crc32c_ops = {
3142     .update  = warn_crc32c_csum_update,
3143     .combine = warn_crc32c_csum_combine,
3144 };
3145 
3146 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3147     &default_crc32c_ops;
3148 EXPORT_SYMBOL(crc32c_csum_stub);
3149 
3150  /**
3151  *  skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3152  *  @from: source buffer
3153  *
3154  *  Calculates the amount of linear headroom needed in the 'to' skb passed
3155  *  into skb_zerocopy().
3156  */
3157 unsigned int
3158 skb_zerocopy_headlen(const struct sk_buff *from)
3159 {
3160     unsigned int hlen = 0;
3161 
3162     if (!from->head_frag ||
3163         skb_headlen(from) < L1_CACHE_BYTES ||
3164         skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3165         hlen = skb_headlen(from);
3166         if (!hlen)
3167             hlen = from->len;
3168     }
3169 
3170     if (skb_has_frag_list(from))
3171         hlen = from->len;
3172 
3173     return hlen;
3174 }
3175 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3176 
3177 /**
3178  *  skb_zerocopy - Zero copy skb to skb
3179  *  @to: destination buffer
3180  *  @from: source buffer
3181  *  @len: number of bytes to copy from source buffer
3182  *  @hlen: size of linear headroom in destination buffer
3183  *
3184  *  Copies up to `len` bytes from `from` to `to` by creating references
3185  *  to the frags in the source buffer.
3186  *
3187  *  The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3188  *  headroom in the `to` buffer.
3189  *
3190  *  Return value:
3191  *  0: everything is OK
3192  *  -ENOMEM: couldn't orphan frags of @from due to lack of memory
3193  *  -EFAULT: skb_copy_bits() found some problem with skb geometry
3194  */
3195 int
3196 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3197 {
3198     int i, j = 0;
3199     int plen = 0; /* length of skb->head fragment */
3200     int ret;
3201     struct page *page;
3202     unsigned int offset;
3203 
3204     BUG_ON(!from->head_frag && !hlen);
3205 
3206     /* dont bother with small payloads */
3207     if (len <= skb_tailroom(to))
3208         return skb_copy_bits(from, 0, skb_put(to, len), len);
3209 
3210     if (hlen) {
3211         ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3212         if (unlikely(ret))
3213             return ret;
3214         len -= hlen;
3215     } else {
3216         plen = min_t(int, skb_headlen(from), len);
3217         if (plen) {
3218             page = virt_to_head_page(from->head);
3219             offset = from->data - (unsigned char *)page_address(page);
3220             __skb_fill_page_desc(to, 0, page, offset, plen);
3221             get_page(page);
3222             j = 1;
3223             len -= plen;
3224         }
3225     }
3226 
3227     skb_len_add(to, len + plen);
3228 
3229     if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3230         skb_tx_error(from);
3231         return -ENOMEM;
3232     }
3233     skb_zerocopy_clone(to, from, GFP_ATOMIC);
3234 
3235     for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3236         int size;
3237 
3238         if (!len)
3239             break;
3240         skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3241         size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3242                     len);
3243         skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3244         len -= size;
3245         skb_frag_ref(to, j);
3246         j++;
3247     }
3248     skb_shinfo(to)->nr_frags = j;
3249 
3250     return 0;
3251 }
3252 EXPORT_SYMBOL_GPL(skb_zerocopy);
3253 
3254 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3255 {
3256     __wsum csum;
3257     long csstart;
3258 
3259     if (skb->ip_summed == CHECKSUM_PARTIAL)
3260         csstart = skb_checksum_start_offset(skb);
3261     else
3262         csstart = skb_headlen(skb);
3263 
3264     BUG_ON(csstart > skb_headlen(skb));
3265 
3266     skb_copy_from_linear_data(skb, to, csstart);
3267 
3268     csum = 0;
3269     if (csstart != skb->len)
3270         csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3271                           skb->len - csstart);
3272 
3273     if (skb->ip_summed == CHECKSUM_PARTIAL) {
3274         long csstuff = csstart + skb->csum_offset;
3275 
3276         *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3277     }
3278 }
3279 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3280 
3281 /**
3282  *  skb_dequeue - remove from the head of the queue
3283  *  @list: list to dequeue from
3284  *
3285  *  Remove the head of the list. The list lock is taken so the function
3286  *  may be used safely with other locking list functions. The head item is
3287  *  returned or %NULL if the list is empty.
3288  */
3289 
3290 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3291 {
3292     unsigned long flags;
3293     struct sk_buff *result;
3294 
3295     spin_lock_irqsave(&list->lock, flags);
3296     result = __skb_dequeue(list);
3297     spin_unlock_irqrestore(&list->lock, flags);
3298     return result;
3299 }
3300 EXPORT_SYMBOL(skb_dequeue);
3301 
3302 /**
3303  *  skb_dequeue_tail - remove from the tail of the queue
3304  *  @list: list to dequeue from
3305  *
3306  *  Remove the tail of the list. The list lock is taken so the function
3307  *  may be used safely with other locking list functions. The tail item is
3308  *  returned or %NULL if the list is empty.
3309  */
3310 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3311 {
3312     unsigned long flags;
3313     struct sk_buff *result;
3314 
3315     spin_lock_irqsave(&list->lock, flags);
3316     result = __skb_dequeue_tail(list);
3317     spin_unlock_irqrestore(&list->lock, flags);
3318     return result;
3319 }
3320 EXPORT_SYMBOL(skb_dequeue_tail);
3321 
3322 /**
3323  *  skb_queue_purge - empty a list
3324  *  @list: list to empty
3325  *
3326  *  Delete all buffers on an &sk_buff list. Each buffer is removed from
3327  *  the list and one reference dropped. This function takes the list
3328  *  lock and is atomic with respect to other list locking functions.
3329  */
3330 void skb_queue_purge(struct sk_buff_head *list)
3331 {
3332     struct sk_buff *skb;
3333     while ((skb = skb_dequeue(list)) != NULL)
3334         kfree_skb(skb);
3335 }
3336 EXPORT_SYMBOL(skb_queue_purge);
3337 
3338 /**
3339  *  skb_rbtree_purge - empty a skb rbtree
3340  *  @root: root of the rbtree to empty
3341  *  Return value: the sum of truesizes of all purged skbs.
3342  *
3343  *  Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3344  *  the list and one reference dropped. This function does not take
3345  *  any lock. Synchronization should be handled by the caller (e.g., TCP
3346  *  out-of-order queue is protected by the socket lock).
3347  */
3348 unsigned int skb_rbtree_purge(struct rb_root *root)
3349 {
3350     struct rb_node *p = rb_first(root);
3351     unsigned int sum = 0;
3352 
3353     while (p) {
3354         struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3355 
3356         p = rb_next(p);
3357         rb_erase(&skb->rbnode, root);
3358         sum += skb->truesize;
3359         kfree_skb(skb);
3360     }
3361     return sum;
3362 }
3363 
3364 /**
3365  *  skb_queue_head - queue a buffer at the list head
3366  *  @list: list to use
3367  *  @newsk: buffer to queue
3368  *
3369  *  Queue a buffer at the start of the list. This function takes the
3370  *  list lock and can be used safely with other locking &sk_buff functions
3371  *  safely.
3372  *
3373  *  A buffer cannot be placed on two lists at the same time.
3374  */
3375 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3376 {
3377     unsigned long flags;
3378 
3379     spin_lock_irqsave(&list->lock, flags);
3380     __skb_queue_head(list, newsk);
3381     spin_unlock_irqrestore(&list->lock, flags);
3382 }
3383 EXPORT_SYMBOL(skb_queue_head);
3384 
3385 /**
3386  *  skb_queue_tail - queue a buffer at the list tail
3387  *  @list: list to use
3388  *  @newsk: buffer to queue
3389  *
3390  *  Queue a buffer at the tail of the list. This function takes the
3391  *  list lock and can be used safely with other locking &sk_buff functions
3392  *  safely.
3393  *
3394  *  A buffer cannot be placed on two lists at the same time.
3395  */
3396 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3397 {
3398     unsigned long flags;
3399 
3400     spin_lock_irqsave(&list->lock, flags);
3401     __skb_queue_tail(list, newsk);
3402     spin_unlock_irqrestore(&list->lock, flags);
3403 }
3404 EXPORT_SYMBOL(skb_queue_tail);
3405 
3406 /**
3407  *  skb_unlink  -   remove a buffer from a list
3408  *  @skb: buffer to remove
3409  *  @list: list to use
3410  *
3411  *  Remove a packet from a list. The list locks are taken and this
3412  *  function is atomic with respect to other list locked calls
3413  *
3414  *  You must know what list the SKB is on.
3415  */
3416 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3417 {
3418     unsigned long flags;
3419 
3420     spin_lock_irqsave(&list->lock, flags);
3421     __skb_unlink(skb, list);
3422     spin_unlock_irqrestore(&list->lock, flags);
3423 }
3424 EXPORT_SYMBOL(skb_unlink);
3425 
3426 /**
3427  *  skb_append  -   append a buffer
3428  *  @old: buffer to insert after
3429  *  @newsk: buffer to insert
3430  *  @list: list to use
3431  *
3432  *  Place a packet after a given packet in a list. The list locks are taken
3433  *  and this function is atomic with respect to other list locked calls.
3434  *  A buffer cannot be placed on two lists at the same time.
3435  */
3436 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3437 {
3438     unsigned long flags;
3439 
3440     spin_lock_irqsave(&list->lock, flags);
3441     __skb_queue_after(list, old, newsk);
3442     spin_unlock_irqrestore(&list->lock, flags);
3443 }
3444 EXPORT_SYMBOL(skb_append);
3445 
3446 static inline void skb_split_inside_header(struct sk_buff *skb,
3447                        struct sk_buff* skb1,
3448                        const u32 len, const int pos)
3449 {
3450     int i;
3451 
3452     skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3453                      pos - len);
3454     /* And move data appendix as is. */
3455     for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3456         skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3457 
3458     skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3459     skb_shinfo(skb)->nr_frags  = 0;
3460     skb1->data_len         = skb->data_len;
3461     skb1->len          += skb1->data_len;
3462     skb->data_len          = 0;
3463     skb->len           = len;
3464     skb_set_tail_pointer(skb, len);
3465 }
3466 
3467 static inline void skb_split_no_header(struct sk_buff *skb,
3468                        struct sk_buff* skb1,
3469                        const u32 len, int pos)
3470 {
3471     int i, k = 0;
3472     const int nfrags = skb_shinfo(skb)->nr_frags;
3473 
3474     skb_shinfo(skb)->nr_frags = 0;
3475     skb1->len         = skb1->data_len = skb->len - len;
3476     skb->len          = len;
3477     skb->data_len         = len - pos;
3478 
3479     for (i = 0; i < nfrags; i++) {
3480         int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3481 
3482         if (pos + size > len) {
3483             skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3484 
3485             if (pos < len) {
3486                 /* Split frag.
3487                  * We have two variants in this case:
3488                  * 1. Move all the frag to the second
3489                  *    part, if it is possible. F.e.
3490                  *    this approach is mandatory for TUX,
3491                  *    where splitting is expensive.
3492                  * 2. Split is accurately. We make this.
3493                  */
3494                 skb_frag_ref(skb, i);
3495                 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3496                 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3497                 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3498                 skb_shinfo(skb)->nr_frags++;
3499             }
3500             k++;
3501         } else
3502             skb_shinfo(skb)->nr_frags++;
3503         pos += size;
3504     }
3505     skb_shinfo(skb1)->nr_frags = k;
3506 }
3507 
3508 /**
3509  * skb_split - Split fragmented skb to two parts at length len.
3510  * @skb: the buffer to split
3511  * @skb1: the buffer to receive the second part
3512  * @len: new length for skb
3513  */
3514 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3515 {
3516     int pos = skb_headlen(skb);
3517     const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3518 
3519     skb_zcopy_downgrade_managed(skb);
3520 
3521     skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3522     skb_zerocopy_clone(skb1, skb, 0);
3523     if (len < pos)  /* Split line is inside header. */
3524         skb_split_inside_header(skb, skb1, len, pos);
3525     else        /* Second chunk has no header, nothing to copy. */
3526         skb_split_no_header(skb, skb1, len, pos);
3527 }
3528 EXPORT_SYMBOL(skb_split);
3529 
3530 /* Shifting from/to a cloned skb is a no-go.
3531  *
3532  * Caller cannot keep skb_shinfo related pointers past calling here!
3533  */
3534 static int skb_prepare_for_shift(struct sk_buff *skb)
3535 {
3536     return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3537 }
3538 
3539 /**
3540  * skb_shift - Shifts paged data partially from skb to another
3541  * @tgt: buffer into which tail data gets added
3542  * @skb: buffer from which the paged data comes from
3543  * @shiftlen: shift up to this many bytes
3544  *
3545  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3546  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3547  * It's up to caller to free skb if everything was shifted.
3548  *
3549  * If @tgt runs out of frags, the whole operation is aborted.
3550  *
3551  * Skb cannot include anything else but paged data while tgt is allowed
3552  * to have non-paged data as well.
3553  *
3554  * TODO: full sized shift could be optimized but that would need
3555  * specialized skb free'er to handle frags without up-to-date nr_frags.
3556  */
3557 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3558 {
3559     int from, to, merge, todo;
3560     skb_frag_t *fragfrom, *fragto;
3561 
3562     BUG_ON(shiftlen > skb->len);
3563 
3564     if (skb_headlen(skb))
3565         return 0;
3566     if (skb_zcopy(tgt) || skb_zcopy(skb))
3567         return 0;
3568 
3569     todo = shiftlen;
3570     from = 0;
3571     to = skb_shinfo(tgt)->nr_frags;
3572     fragfrom = &skb_shinfo(skb)->frags[from];
3573 
3574     /* Actual merge is delayed until the point when we know we can
3575      * commit all, so that we don't have to undo partial changes
3576      */
3577     if (!to ||
3578         !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3579                   skb_frag_off(fragfrom))) {
3580         merge = -1;
3581     } else {
3582         merge = to - 1;
3583 
3584         todo -= skb_frag_size(fragfrom);
3585         if (todo < 0) {
3586             if (skb_prepare_for_shift(skb) ||
3587                 skb_prepare_for_shift(tgt))
3588                 return 0;
3589 
3590             /* All previous frag pointers might be stale! */
3591             fragfrom = &skb_shinfo(skb)->frags[from];
3592             fragto = &skb_shinfo(tgt)->frags[merge];
3593 
3594             skb_frag_size_add(fragto, shiftlen);
3595             skb_frag_size_sub(fragfrom, shiftlen);
3596             skb_frag_off_add(fragfrom, shiftlen);
3597 
3598             goto onlymerged;
3599         }
3600 
3601         from++;
3602     }
3603 
3604     /* Skip full, not-fitting skb to avoid expensive operations */
3605     if ((shiftlen == skb->len) &&
3606         (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3607         return 0;
3608 
3609     if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3610         return 0;
3611 
3612     while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3613         if (to == MAX_SKB_FRAGS)
3614             return 0;
3615 
3616         fragfrom = &skb_shinfo(skb)->frags[from];
3617         fragto = &skb_shinfo(tgt)->frags[to];
3618 
3619         if (todo >= skb_frag_size(fragfrom)) {
3620             *fragto = *fragfrom;
3621             todo -= skb_frag_size(fragfrom);
3622             from++;
3623             to++;
3624 
3625         } else {
3626             __skb_frag_ref(fragfrom);
3627             skb_frag_page_copy(fragto, fragfrom);
3628             skb_frag_off_copy(fragto, fragfrom);
3629             skb_frag_size_set(fragto, todo);
3630 
3631             skb_frag_off_add(fragfrom, todo);
3632             skb_frag_size_sub(fragfrom, todo);
3633             todo = 0;
3634 
3635             to++;
3636             break;
3637         }
3638     }
3639 
3640     /* Ready to "commit" this state change to tgt */
3641     skb_shinfo(tgt)->nr_frags = to;
3642 
3643     if (merge >= 0) {
3644         fragfrom = &skb_shinfo(skb)->frags[0];
3645         fragto = &skb_shinfo(tgt)->frags[merge];
3646 
3647         skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3648         __skb_frag_unref(fragfrom, skb->pp_recycle);
3649     }
3650 
3651     /* Reposition in the original skb */
3652     to = 0;
3653     while (from < skb_shinfo(skb)->nr_frags)
3654         skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3655     skb_shinfo(skb)->nr_frags = to;
3656 
3657     BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3658 
3659 onlymerged:
3660     /* Most likely the tgt won't ever need its checksum anymore, skb on
3661      * the other hand might need it if it needs to be resent
3662      */
3663     tgt->ip_summed = CHECKSUM_PARTIAL;
3664     skb->ip_summed = CHECKSUM_PARTIAL;
3665 
3666     skb_len_add(skb, -shiftlen);
3667     skb_len_add(tgt, shiftlen);
3668 
3669     return shiftlen;
3670 }
3671 
3672 /**
3673  * skb_prepare_seq_read - Prepare a sequential read of skb data
3674  * @skb: the buffer to read
3675  * @from: lower offset of data to be read
3676  * @to: upper offset of data to be read
3677  * @st: state variable
3678  *
3679  * Initializes the specified state variable. Must be called before
3680  * invoking skb_seq_read() for the first time.
3681  */
3682 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3683               unsigned int to, struct skb_seq_state *st)
3684 {
3685     st->lower_offset = from;
3686     st->upper_offset = to;
3687     st->root_skb = st->cur_skb = skb;
3688     st->frag_idx = st->stepped_offset = 0;
3689     st->frag_data = NULL;
3690     st->frag_off = 0;
3691 }
3692 EXPORT_SYMBOL(skb_prepare_seq_read);
3693 
3694 /**
3695  * skb_seq_read - Sequentially read skb data
3696  * @consumed: number of bytes consumed by the caller so far
3697  * @data: destination pointer for data to be returned
3698  * @st: state variable
3699  *
3700  * Reads a block of skb data at @consumed relative to the
3701  * lower offset specified to skb_prepare_seq_read(). Assigns
3702  * the head of the data block to @data and returns the length
3703  * of the block or 0 if the end of the skb data or the upper
3704  * offset has been reached.
3705  *
3706  * The caller is not required to consume all of the data
3707  * returned, i.e. @consumed is typically set to the number
3708  * of bytes already consumed and the next call to
3709  * skb_seq_read() will return the remaining part of the block.
3710  *
3711  * Note 1: The size of each block of data returned can be arbitrary,
3712  *       this limitation is the cost for zerocopy sequential
3713  *       reads of potentially non linear data.
3714  *
3715  * Note 2: Fragment lists within fragments are not implemented
3716  *       at the moment, state->root_skb could be replaced with
3717  *       a stack for this purpose.
3718  */
3719 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3720               struct skb_seq_state *st)
3721 {
3722     unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3723     skb_frag_t *frag;
3724 
3725     if (unlikely(abs_offset >= st->upper_offset)) {
3726         if (st->frag_data) {
3727             kunmap_atomic(st->frag_data);
3728             st->frag_data = NULL;
3729         }
3730         return 0;
3731     }
3732 
3733 next_skb:
3734     block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3735 
3736     if (abs_offset < block_limit && !st->frag_data) {
3737         *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3738         return block_limit - abs_offset;
3739     }
3740 
3741     if (st->frag_idx == 0 && !st->frag_data)
3742         st->stepped_offset += skb_headlen(st->cur_skb);
3743 
3744     while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3745         unsigned int pg_idx, pg_off, pg_sz;
3746 
3747         frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3748 
3749         pg_idx = 0;
3750         pg_off = skb_frag_off(frag);
3751         pg_sz = skb_frag_size(frag);
3752 
3753         if (skb_frag_must_loop(skb_frag_page(frag))) {
3754             pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3755             pg_off = offset_in_page(pg_off + st->frag_off);
3756             pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3757                             PAGE_SIZE - pg_off);
3758         }
3759 
3760         block_limit = pg_sz + st->stepped_offset;
3761         if (abs_offset < block_limit) {
3762             if (!st->frag_data)
3763                 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3764 
3765             *data = (u8 *)st->frag_data + pg_off +
3766                 (abs_offset - st->stepped_offset);
3767 
3768             return block_limit - abs_offset;
3769         }
3770 
3771         if (st->frag_data) {
3772             kunmap_atomic(st->frag_data);
3773             st->frag_data = NULL;
3774         }
3775 
3776         st->stepped_offset += pg_sz;
3777         st->frag_off += pg_sz;
3778         if (st->frag_off == skb_frag_size(frag)) {
3779             st->frag_off = 0;
3780             st->frag_idx++;
3781         }
3782     }
3783 
3784     if (st->frag_data) {
3785         kunmap_atomic(st->frag_data);
3786         st->frag_data = NULL;
3787     }
3788 
3789     if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3790         st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3791         st->frag_idx = 0;
3792         goto next_skb;
3793     } else if (st->cur_skb->next) {
3794         st->cur_skb = st->cur_skb->next;
3795         st->frag_idx = 0;
3796         goto next_skb;
3797     }
3798 
3799     return 0;
3800 }
3801 EXPORT_SYMBOL(skb_seq_read);
3802 
3803 /**
3804  * skb_abort_seq_read - Abort a sequential read of skb data
3805  * @st: state variable
3806  *
3807  * Must be called if skb_seq_read() was not called until it
3808  * returned 0.
3809  */
3810 void skb_abort_seq_read(struct skb_seq_state *st)
3811 {
3812     if (st->frag_data)
3813         kunmap_atomic(st->frag_data);
3814 }
3815 EXPORT_SYMBOL(skb_abort_seq_read);
3816 
3817 #define TS_SKB_CB(state)    ((struct skb_seq_state *) &((state)->cb))
3818 
3819 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3820                       struct ts_config *conf,
3821                       struct ts_state *state)
3822 {
3823     return skb_seq_read(offset, text, TS_SKB_CB(state));
3824 }
3825 
3826 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3827 {
3828     skb_abort_seq_read(TS_SKB_CB(state));
3829 }
3830 
3831 /**
3832  * skb_find_text - Find a text pattern in skb data
3833  * @skb: the buffer to look in
3834  * @from: search offset
3835  * @to: search limit
3836  * @config: textsearch configuration
3837  *
3838  * Finds a pattern in the skb data according to the specified
3839  * textsearch configuration. Use textsearch_next() to retrieve
3840  * subsequent occurrences of the pattern. Returns the offset
3841  * to the first occurrence or UINT_MAX if no match was found.
3842  */
3843 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3844                unsigned int to, struct ts_config *config)
3845 {
3846     struct ts_state state;
3847     unsigned int ret;
3848 
3849     BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3850 
3851     config->get_next_block = skb_ts_get_next_block;
3852     config->finish = skb_ts_finish;
3853 
3854     skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3855 
3856     ret = textsearch_find(config, &state);
3857     return (ret <= to - from ? ret : UINT_MAX);
3858 }
3859 EXPORT_SYMBOL(skb_find_text);
3860 
3861 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3862              int offset, size_t size)
3863 {
3864     int i = skb_shinfo(skb)->nr_frags;
3865 
3866     if (skb_can_coalesce(skb, i, page, offset)) {
3867         skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3868     } else if (i < MAX_SKB_FRAGS) {
3869         skb_zcopy_downgrade_managed(skb);
3870         get_page(page);
3871         skb_fill_page_desc(skb, i, page, offset, size);
3872     } else {
3873         return -EMSGSIZE;
3874     }
3875 
3876     return 0;
3877 }
3878 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3879 
3880 /**
3881  *  skb_pull_rcsum - pull skb and update receive checksum
3882  *  @skb: buffer to update
3883  *  @len: length of data pulled
3884  *
3885  *  This function performs an skb_pull on the packet and updates
3886  *  the CHECKSUM_COMPLETE checksum.  It should be used on
3887  *  receive path processing instead of skb_pull unless you know
3888  *  that the checksum difference is zero (e.g., a valid IP header)
3889  *  or you are setting ip_summed to CHECKSUM_NONE.
3890  */
3891 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3892 {
3893     unsigned char *data = skb->data;
3894 
3895     BUG_ON(len > skb->len);
3896     __skb_pull(skb, len);
3897     skb_postpull_rcsum(skb, data, len);
3898     return skb->data;
3899 }
3900 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3901 
3902 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3903 {
3904     skb_frag_t head_frag;
3905     struct page *page;
3906 
3907     page = virt_to_head_page(frag_skb->head);
3908     __skb_frag_set_page(&head_frag, page);
3909     skb_frag_off_set(&head_frag, frag_skb->data -
3910              (unsigned char *)page_address(page));
3911     skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3912     return head_frag;
3913 }
3914 
3915 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3916                  netdev_features_t features,
3917                  unsigned int offset)
3918 {
3919     struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3920     unsigned int tnl_hlen = skb_tnl_header_len(skb);
3921     unsigned int delta_truesize = 0;
3922     unsigned int delta_len = 0;
3923     struct sk_buff *tail = NULL;
3924     struct sk_buff *nskb, *tmp;
3925     int len_diff, err;
3926 
3927     skb_push(skb, -skb_network_offset(skb) + offset);
3928 
3929     skb_shinfo(skb)->frag_list = NULL;
3930 
3931     do {
3932         nskb = list_skb;
3933         list_skb = list_skb->next;
3934 
3935         err = 0;
3936         delta_truesize += nskb->truesize;
3937         if (skb_shared(nskb)) {
3938             tmp = skb_clone(nskb, GFP_ATOMIC);
3939             if (tmp) {
3940                 consume_skb(nskb);
3941                 nskb = tmp;
3942                 err = skb_unclone(nskb, GFP_ATOMIC);
3943             } else {
3944                 err = -ENOMEM;
3945             }
3946         }
3947 
3948         if (!tail)
3949             skb->next = nskb;
3950         else
3951             tail->next = nskb;
3952 
3953         if (unlikely(err)) {
3954             nskb->next = list_skb;
3955             goto err_linearize;
3956         }
3957 
3958         tail = nskb;
3959 
3960         delta_len += nskb->len;
3961 
3962         skb_push(nskb, -skb_network_offset(nskb) + offset);
3963 
3964         skb_release_head_state(nskb);
3965         len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
3966         __copy_skb_header(nskb, skb);
3967 
3968         skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3969         nskb->transport_header += len_diff;
3970         skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3971                          nskb->data - tnl_hlen,
3972                          offset + tnl_hlen);
3973 
3974         if (skb_needs_linearize(nskb, features) &&
3975             __skb_linearize(nskb))
3976             goto err_linearize;
3977 
3978     } while (list_skb);
3979 
3980     skb->truesize = skb->truesize - delta_truesize;
3981     skb->data_len = skb->data_len - delta_len;
3982     skb->len = skb->len - delta_len;
3983 
3984     skb_gso_reset(skb);
3985 
3986     skb->prev = tail;
3987 
3988     if (skb_needs_linearize(skb, features) &&
3989         __skb_linearize(skb))
3990         goto err_linearize;
3991 
3992     skb_get(skb);
3993 
3994     return skb;
3995 
3996 err_linearize:
3997     kfree_skb_list(skb->next);
3998     skb->next = NULL;
3999     return ERR_PTR(-ENOMEM);
4000 }
4001 EXPORT_SYMBOL_GPL(skb_segment_list);
4002 
4003 /**
4004  *  skb_segment - Perform protocol segmentation on skb.
4005  *  @head_skb: buffer to segment
4006  *  @features: features for the output path (see dev->features)
4007  *
4008  *  This function performs segmentation on the given skb.  It returns
4009  *  a pointer to the first in a list of new skbs for the segments.
4010  *  In case of error it returns ERR_PTR(err).
4011  */
4012 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4013                 netdev_features_t features)
4014 {
4015     struct sk_buff *segs = NULL;
4016     struct sk_buff *tail = NULL;
4017     struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4018     skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4019     unsigned int mss = skb_shinfo(head_skb)->gso_size;
4020     unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4021     struct sk_buff *frag_skb = head_skb;
4022     unsigned int offset = doffset;
4023     unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4024     unsigned int partial_segs = 0;
4025     unsigned int headroom;
4026     unsigned int len = head_skb->len;
4027     __be16 proto;
4028     bool csum, sg;
4029     int nfrags = skb_shinfo(head_skb)->nr_frags;
4030     int err = -ENOMEM;
4031     int i = 0;
4032     int pos;
4033 
4034     if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
4035         (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
4036         /* gso_size is untrusted, and we have a frag_list with a linear
4037          * non head_frag head.
4038          *
4039          * (we assume checking the first list_skb member suffices;
4040          * i.e if either of the list_skb members have non head_frag
4041          * head, then the first one has too).
4042          *
4043          * If head_skb's headlen does not fit requested gso_size, it
4044          * means that the frag_list members do NOT terminate on exact
4045          * gso_size boundaries. Hence we cannot perform skb_frag_t page
4046          * sharing. Therefore we must fallback to copying the frag_list
4047          * skbs; we do so by disabling SG.
4048          */
4049         if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
4050             features &= ~NETIF_F_SG;
4051     }
4052 
4053     __skb_push(head_skb, doffset);
4054     proto = skb_network_protocol(head_skb, NULL);
4055     if (unlikely(!proto))
4056         return ERR_PTR(-EINVAL);
4057 
4058     sg = !!(features & NETIF_F_SG);
4059     csum = !!can_checksum_protocol(features, proto);
4060 
4061     if (sg && csum && (mss != GSO_BY_FRAGS))  {
4062         if (!(features & NETIF_F_GSO_PARTIAL)) {
4063             struct sk_buff *iter;
4064             unsigned int frag_len;
4065 
4066             if (!list_skb ||
4067                 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4068                 goto normal;
4069 
4070             /* If we get here then all the required
4071              * GSO features except frag_list are supported.
4072              * Try to split the SKB to multiple GSO SKBs
4073              * with no frag_list.
4074              * Currently we can do that only when the buffers don't
4075              * have a linear part and all the buffers except
4076              * the last are of the same length.
4077              */
4078             frag_len = list_skb->len;
4079             skb_walk_frags(head_skb, iter) {
4080                 if (frag_len != iter->len && iter->next)
4081                     goto normal;
4082                 if (skb_headlen(iter) && !iter->head_frag)
4083                     goto normal;
4084 
4085                 len -= iter->len;
4086             }
4087 
4088             if (len != frag_len)
4089                 goto normal;
4090         }
4091 
4092         /* GSO partial only requires that we trim off any excess that
4093          * doesn't fit into an MSS sized block, so take care of that
4094          * now.
4095          */
4096         partial_segs = len / mss;
4097         if (partial_segs > 1)
4098             mss *= partial_segs;
4099         else
4100             partial_segs = 0;
4101     }
4102 
4103 normal:
4104     headroom = skb_headroom(head_skb);
4105     pos = skb_headlen(head_skb);
4106 
4107     do {
4108         struct sk_buff *nskb;
4109         skb_frag_t *nskb_frag;
4110         int hsize;
4111         int size;
4112 
4113         if (unlikely(mss == GSO_BY_FRAGS)) {
4114             len = list_skb->len;
4115         } else {
4116             len = head_skb->len - offset;
4117             if (len > mss)
4118                 len = mss;
4119         }
4120 
4121         hsize = skb_headlen(head_skb) - offset;
4122 
4123         if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4124             (skb_headlen(list_skb) == len || sg)) {
4125             BUG_ON(skb_headlen(list_skb) > len);
4126 
4127             i = 0;
4128             nfrags = skb_shinfo(list_skb)->nr_frags;
4129             frag = skb_shinfo(list_skb)->frags;
4130             frag_skb = list_skb;
4131             pos += skb_headlen(list_skb);
4132 
4133             while (pos < offset + len) {
4134                 BUG_ON(i >= nfrags);
4135 
4136                 size = skb_frag_size(frag);
4137                 if (pos + size > offset + len)
4138                     break;
4139 
4140                 i++;
4141                 pos += size;
4142                 frag++;
4143             }
4144 
4145             nskb = skb_clone(list_skb, GFP_ATOMIC);
4146             list_skb = list_skb->next;
4147 
4148             if (unlikely(!nskb))
4149                 goto err;
4150 
4151             if (unlikely(pskb_trim(nskb, len))) {
4152                 kfree_skb(nskb);
4153                 goto err;
4154             }
4155 
4156             hsize = skb_end_offset(nskb);
4157             if (skb_cow_head(nskb, doffset + headroom)) {
4158                 kfree_skb(nskb);
4159                 goto err;
4160             }
4161 
4162             nskb->truesize += skb_end_offset(nskb) - hsize;
4163             skb_release_head_state(nskb);
4164             __skb_push(nskb, doffset);
4165         } else {
4166             if (hsize < 0)
4167                 hsize = 0;
4168             if (hsize > len || !sg)
4169                 hsize = len;
4170 
4171             nskb = __alloc_skb(hsize + doffset + headroom,
4172                        GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4173                        NUMA_NO_NODE);
4174 
4175             if (unlikely(!nskb))
4176                 goto err;
4177 
4178             skb_reserve(nskb, headroom);
4179             __skb_put(nskb, doffset);
4180         }
4181 
4182         if (segs)
4183             tail->next = nskb;
4184         else
4185             segs = nskb;
4186         tail = nskb;
4187 
4188         __copy_skb_header(nskb, head_skb);
4189 
4190         skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4191         skb_reset_mac_len(nskb);
4192 
4193         skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4194                          nskb->data - tnl_hlen,
4195                          doffset + tnl_hlen);
4196 
4197         if (nskb->len == len + doffset)
4198             goto perform_csum_check;
4199 
4200         if (!sg) {
4201             if (!csum) {
4202                 if (!nskb->remcsum_offload)
4203                     nskb->ip_summed = CHECKSUM_NONE;
4204                 SKB_GSO_CB(nskb)->csum =
4205                     skb_copy_and_csum_bits(head_skb, offset,
4206                                    skb_put(nskb,
4207                                        len),
4208                                    len);
4209                 SKB_GSO_CB(nskb)->csum_start =
4210                     skb_headroom(nskb) + doffset;
4211             } else {
4212                 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4213                     goto err;
4214             }
4215             continue;
4216         }
4217 
4218         nskb_frag = skb_shinfo(nskb)->frags;
4219 
4220         skb_copy_from_linear_data_offset(head_skb, offset,
4221                          skb_put(nskb, hsize), hsize);
4222 
4223         skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4224                        SKBFL_SHARED_FRAG;
4225 
4226         if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4227             skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4228             goto err;
4229 
4230         while (pos < offset + len) {
4231             if (i >= nfrags) {
4232                 i = 0;
4233                 nfrags = skb_shinfo(list_skb)->nr_frags;
4234                 frag = skb_shinfo(list_skb)->frags;
4235                 frag_skb = list_skb;
4236                 if (!skb_headlen(list_skb)) {
4237                     BUG_ON(!nfrags);
4238                 } else {
4239                     BUG_ON(!list_skb->head_frag);
4240 
4241                     /* to make room for head_frag. */
4242                     i--;
4243                     frag--;
4244                 }
4245                 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4246                     skb_zerocopy_clone(nskb, frag_skb,
4247                                GFP_ATOMIC))
4248                     goto err;
4249 
4250                 list_skb = list_skb->next;
4251             }
4252 
4253             if (unlikely(skb_shinfo(nskb)->nr_frags >=
4254                      MAX_SKB_FRAGS)) {
4255                 net_warn_ratelimited(
4256                     "skb_segment: too many frags: %u %u\n",
4257                     pos, mss);
4258                 err = -EINVAL;
4259                 goto err;
4260             }
4261 
4262             *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4263             __skb_frag_ref(nskb_frag);
4264             size = skb_frag_size(nskb_frag);
4265 
4266             if (pos < offset) {
4267                 skb_frag_off_add(nskb_frag, offset - pos);
4268                 skb_frag_size_sub(nskb_frag, offset - pos);
4269             }
4270 
4271             skb_shinfo(nskb)->nr_frags++;
4272 
4273             if (pos + size <= offset + len) {
4274                 i++;
4275                 frag++;
4276                 pos += size;
4277             } else {
4278                 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4279                 goto skip_fraglist;
4280             }
4281 
4282             nskb_frag++;
4283         }
4284 
4285 skip_fraglist:
4286         nskb->data_len = len - hsize;
4287         nskb->len += nskb->data_len;
4288         nskb->truesize += nskb->data_len;
4289 
4290 perform_csum_check:
4291         if (!csum) {
4292             if (skb_has_shared_frag(nskb) &&
4293                 __skb_linearize(nskb))
4294                 goto err;
4295 
4296             if (!nskb->remcsum_offload)
4297                 nskb->ip_summed = CHECKSUM_NONE;
4298             SKB_GSO_CB(nskb)->csum =
4299                 skb_checksum(nskb, doffset,
4300                          nskb->len - doffset, 0);
4301             SKB_GSO_CB(nskb)->csum_start =
4302                 skb_headroom(nskb) + doffset;
4303         }
4304     } while ((offset += len) < head_skb->len);
4305 
4306     /* Some callers want to get the end of the list.
4307      * Put it in segs->prev to avoid walking the list.
4308      * (see validate_xmit_skb_list() for example)
4309      */
4310     segs->prev = tail;
4311 
4312     if (partial_segs) {
4313         struct sk_buff *iter;
4314         int type = skb_shinfo(head_skb)->gso_type;
4315         unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4316 
4317         /* Update type to add partial and then remove dodgy if set */
4318         type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4319         type &= ~SKB_GSO_DODGY;
4320 
4321         /* Update GSO info and prepare to start updating headers on
4322          * our way back down the stack of protocols.
4323          */
4324         for (iter = segs; iter; iter = iter->next) {
4325             skb_shinfo(iter)->gso_size = gso_size;
4326             skb_shinfo(iter)->gso_segs = partial_segs;
4327             skb_shinfo(iter)->gso_type = type;
4328             SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4329         }
4330 
4331         if (tail->len - doffset <= gso_size)
4332             skb_shinfo(tail)->gso_size = 0;
4333         else if (tail != segs)
4334             skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4335     }
4336 
4337     /* Following permits correct backpressure, for protocols
4338      * using skb_set_owner_w().
4339      * Idea is to tranfert ownership from head_skb to last segment.
4340      */
4341     if (head_skb->destructor == sock_wfree) {
4342         swap(tail->truesize, head_skb->truesize);
4343         swap(tail->destructor, head_skb->destructor);
4344         swap(tail->sk, head_skb->sk);
4345     }
4346     return segs;
4347 
4348 err:
4349     kfree_skb_list(segs);
4350     return ERR_PTR(err);
4351 }
4352 EXPORT_SYMBOL_GPL(skb_segment);
4353 
4354 #ifdef CONFIG_SKB_EXTENSIONS
4355 #define SKB_EXT_ALIGN_VALUE 8
4356 #define SKB_EXT_CHUNKSIZEOF(x)  (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4357 
4358 static const u8 skb_ext_type_len[] = {
4359 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4360     [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4361 #endif
4362 #ifdef CONFIG_XFRM
4363     [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4364 #endif
4365 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4366     [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4367 #endif
4368 #if IS_ENABLED(CONFIG_MPTCP)
4369     [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4370 #endif
4371 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4372     [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4373 #endif
4374 };
4375 
4376 static __always_inline unsigned int skb_ext_total_length(void)
4377 {
4378     return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4379 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4380         skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4381 #endif
4382 #ifdef CONFIG_XFRM
4383         skb_ext_type_len[SKB_EXT_SEC_PATH] +
4384 #endif
4385 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4386         skb_ext_type_len[TC_SKB_EXT] +
4387 #endif
4388 #if IS_ENABLED(CONFIG_MPTCP)
4389         skb_ext_type_len[SKB_EXT_MPTCP] +
4390 #endif
4391 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4392         skb_ext_type_len[SKB_EXT_MCTP] +
4393 #endif
4394         0;
4395 }
4396 
4397 static void skb_extensions_init(void)
4398 {
4399     BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4400     BUILD_BUG_ON(skb_ext_total_length() > 255);
4401 
4402     skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4403                          SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4404                          0,
4405                          SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4406                          NULL);
4407 }
4408 #else
4409 static void skb_extensions_init(void) {}
4410 #endif
4411 
4412 void __init skb_init(void)
4413 {
4414     skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4415                           sizeof(struct sk_buff),
4416                           0,
4417                           SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4418                           offsetof(struct sk_buff, cb),
4419                           sizeof_field(struct sk_buff, cb),
4420                           NULL);
4421     skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4422                         sizeof(struct sk_buff_fclones),
4423                         0,
4424                         SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4425                         NULL);
4426     skb_extensions_init();
4427 }
4428 
4429 static int
4430 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4431            unsigned int recursion_level)
4432 {
4433     int start = skb_headlen(skb);
4434     int i, copy = start - offset;
4435     struct sk_buff *frag_iter;
4436     int elt = 0;
4437 
4438     if (unlikely(recursion_level >= 24))
4439         return -EMSGSIZE;
4440 
4441     if (copy > 0) {
4442         if (copy > len)
4443             copy = len;
4444         sg_set_buf(sg, skb->data + offset, copy);
4445         elt++;
4446         if ((len -= copy) == 0)
4447             return elt;
4448         offset += copy;
4449     }
4450 
4451     for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4452         int end;
4453 
4454         WARN_ON(start > offset + len);
4455 
4456         end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4457         if ((copy = end - offset) > 0) {
4458             skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4459             if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4460                 return -EMSGSIZE;
4461 
4462             if (copy > len)
4463                 copy = len;
4464             sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4465                     skb_frag_off(frag) + offset - start);
4466             elt++;
4467             if (!(len -= copy))
4468                 return elt;
4469             offset += copy;
4470         }
4471         start = end;
4472     }
4473 
4474     skb_walk_frags(skb, frag_iter) {
4475         int end, ret;
4476 
4477         WARN_ON(start > offset + len);
4478 
4479         end = start + frag_iter->len;
4480         if ((copy = end - offset) > 0) {
4481             if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4482                 return -EMSGSIZE;
4483 
4484             if (copy > len)
4485                 copy = len;
4486             ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4487                           copy, recursion_level + 1);
4488             if (unlikely(ret < 0))
4489                 return ret;
4490             elt += ret;
4491             if ((len -= copy) == 0)
4492                 return elt;
4493             offset += copy;
4494         }
4495         start = end;
4496     }
4497     BUG_ON(len);
4498     return elt;
4499 }
4500 
4501 /**
4502  *  skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4503  *  @skb: Socket buffer containing the buffers to be mapped
4504  *  @sg: The scatter-gather list to map into
4505  *  @offset: The offset into the buffer's contents to start mapping
4506  *  @len: Length of buffer space to be mapped
4507  *
4508  *  Fill the specified scatter-gather list with mappings/pointers into a
4509  *  region of the buffer space attached to a socket buffer. Returns either
4510  *  the number of scatterlist items used, or -EMSGSIZE if the contents
4511  *  could not fit.
4512  */
4513 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4514 {
4515     int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4516 
4517     if (nsg <= 0)
4518         return nsg;
4519 
4520     sg_mark_end(&sg[nsg - 1]);
4521 
4522     return nsg;
4523 }
4524 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4525 
4526 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4527  * sglist without mark the sg which contain last skb data as the end.
4528  * So the caller can mannipulate sg list as will when padding new data after
4529  * the first call without calling sg_unmark_end to expend sg list.
4530  *
4531  * Scenario to use skb_to_sgvec_nomark:
4532  * 1. sg_init_table
4533  * 2. skb_to_sgvec_nomark(payload1)
4534  * 3. skb_to_sgvec_nomark(payload2)
4535  *
4536  * This is equivalent to:
4537  * 1. sg_init_table
4538  * 2. skb_to_sgvec(payload1)
4539  * 3. sg_unmark_end
4540  * 4. skb_to_sgvec(payload2)
4541  *
4542  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4543  * is more preferable.
4544  */
4545 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4546             int offset, int len)
4547 {
4548     return __skb_to_sgvec(skb, sg, offset, len, 0);
4549 }
4550 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4551 
4552 
4553 
4554 /**
4555  *  skb_cow_data - Check that a socket buffer's data buffers are writable
4556  *  @skb: The socket buffer to check.
4557  *  @tailbits: Amount of trailing space to be added
4558  *  @trailer: Returned pointer to the skb where the @tailbits space begins
4559  *
4560  *  Make sure that the data buffers attached to a socket buffer are
4561  *  writable. If they are not, private copies are made of the data buffers
4562  *  and the socket buffer is set to use these instead.
4563  *
4564  *  If @tailbits is given, make sure that there is space to write @tailbits
4565  *  bytes of data beyond current end of socket buffer.  @trailer will be
4566  *  set to point to the skb in which this space begins.
4567  *
4568  *  The number of scatterlist elements required to completely map the
4569  *  COW'd and extended socket buffer will be returned.
4570  */
4571 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4572 {
4573     int copyflag;
4574     int elt;
4575     struct sk_buff *skb1, **skb_p;
4576 
4577     /* If skb is cloned or its head is paged, reallocate
4578      * head pulling out all the pages (pages are considered not writable
4579      * at the moment even if they are anonymous).
4580      */
4581     if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4582         !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4583         return -ENOMEM;
4584 
4585     /* Easy case. Most of packets will go this way. */
4586     if (!skb_has_frag_list(skb)) {
4587         /* A little of trouble, not enough of space for trailer.
4588          * This should not happen, when stack is tuned to generate
4589          * good frames. OK, on miss we reallocate and reserve even more
4590          * space, 128 bytes is fair. */
4591 
4592         if (skb_tailroom(skb) < tailbits &&
4593             pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4594             return -ENOMEM;
4595 
4596         /* Voila! */
4597         *trailer = skb;
4598         return 1;
4599     }
4600 
4601     /* Misery. We are in troubles, going to mincer fragments... */
4602 
4603     elt = 1;
4604     skb_p = &skb_shinfo(skb)->frag_list;
4605     copyflag = 0;
4606 
4607     while ((skb1 = *skb_p) != NULL) {
4608         int ntail = 0;
4609 
4610         /* The fragment is partially pulled by someone,
4611          * this can happen on input. Copy it and everything
4612          * after it. */
4613 
4614         if (skb_shared(skb1))
4615             copyflag = 1;
4616 
4617         /* If the skb is the last, worry about trailer. */
4618 
4619         if (skb1->next == NULL && tailbits) {
4620             if (skb_shinfo(skb1)->nr_frags ||
4621                 skb_has_frag_list(skb1) ||
4622                 skb_tailroom(skb1) < tailbits)
4623                 ntail = tailbits + 128;
4624         }
4625 
4626         if (copyflag ||
4627             skb_cloned(skb1) ||
4628             ntail ||
4629             skb_shinfo(skb1)->nr_frags ||
4630             skb_has_frag_list(skb1)) {
4631             struct sk_buff *skb2;
4632 
4633             /* Fuck, we are miserable poor guys... */
4634             if (ntail == 0)
4635                 skb2 = skb_copy(skb1, GFP_ATOMIC);
4636             else
4637                 skb2 = skb_copy_expand(skb1,
4638                                skb_headroom(skb1),
4639                                ntail,
4640                                GFP_ATOMIC);
4641             if (unlikely(skb2 == NULL))
4642                 return -ENOMEM;
4643 
4644             if (skb1->sk)
4645                 skb_set_owner_w(skb2, skb1->sk);
4646 
4647             /* Looking around. Are we still alive?
4648              * OK, link new skb, drop old one */
4649 
4650             skb2->next = skb1->next;
4651             *skb_p = skb2;
4652             kfree_skb(skb1);
4653             skb1 = skb2;
4654         }
4655         elt++;
4656         *trailer = skb1;
4657         skb_p = &skb1->next;
4658     }
4659 
4660     return elt;
4661 }
4662 EXPORT_SYMBOL_GPL(skb_cow_data);
4663 
4664 static void sock_rmem_free(struct sk_buff *skb)
4665 {
4666     struct sock *sk = skb->sk;
4667 
4668     atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4669 }
4670 
4671 static void skb_set_err_queue(struct sk_buff *skb)
4672 {
4673     /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4674      * So, it is safe to (mis)use it to mark skbs on the error queue.
4675      */
4676     skb->pkt_type = PACKET_OUTGOING;
4677     BUILD_BUG_ON(PACKET_OUTGOING == 0);
4678 }
4679 
4680 /*
4681  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4682  */
4683 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4684 {
4685     if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4686         (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4687         return -ENOMEM;
4688 
4689     skb_orphan(skb);
4690     skb->sk = sk;
4691     skb->destructor = sock_rmem_free;
4692     atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4693     skb_set_err_queue(skb);
4694 
4695     /* before exiting rcu section, make sure dst is refcounted */
4696     skb_dst_force(skb);
4697 
4698     skb_queue_tail(&sk->sk_error_queue, skb);
4699     if (!sock_flag(sk, SOCK_DEAD))
4700         sk_error_report(sk);
4701     return 0;
4702 }
4703 EXPORT_SYMBOL(sock_queue_err_skb);
4704 
4705 static bool is_icmp_err_skb(const struct sk_buff *skb)
4706 {
4707     return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4708                SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4709 }
4710 
4711 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4712 {
4713     struct sk_buff_head *q = &sk->sk_error_queue;
4714     struct sk_buff *skb, *skb_next = NULL;
4715     bool icmp_next = false;
4716     unsigned long flags;
4717 
4718     spin_lock_irqsave(&q->lock, flags);
4719     skb = __skb_dequeue(q);
4720     if (skb && (skb_next = skb_peek(q))) {
4721         icmp_next = is_icmp_err_skb(skb_next);
4722         if (icmp_next)
4723             sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4724     }
4725     spin_unlock_irqrestore(&q->lock, flags);
4726 
4727     if (is_icmp_err_skb(skb) && !icmp_next)
4728         sk->sk_err = 0;
4729 
4730     if (skb_next)
4731         sk_error_report(sk);
4732 
4733     return skb;
4734 }
4735 EXPORT_SYMBOL(sock_dequeue_err_skb);
4736 
4737 /**
4738  * skb_clone_sk - create clone of skb, and take reference to socket
4739  * @skb: the skb to clone
4740  *
4741  * This function creates a clone of a buffer that holds a reference on
4742  * sk_refcnt.  Buffers created via this function are meant to be
4743  * returned using sock_queue_err_skb, or free via kfree_skb.
4744  *
4745  * When passing buffers allocated with this function to sock_queue_err_skb
4746  * it is necessary to wrap the call with sock_hold/sock_put in order to
4747  * prevent the socket from being released prior to being enqueued on
4748  * the sk_error_queue.
4749  */
4750 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4751 {
4752     struct sock *sk = skb->sk;
4753     struct sk_buff *clone;
4754 
4755     if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4756         return NULL;
4757 
4758     clone = skb_clone(skb, GFP_ATOMIC);
4759     if (!clone) {
4760         sock_put(sk);
4761         return NULL;
4762     }
4763 
4764     clone->sk = sk;
4765     clone->destructor = sock_efree;
4766 
4767     return clone;
4768 }
4769 EXPORT_SYMBOL(skb_clone_sk);
4770 
4771 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4772                     struct sock *sk,
4773                     int tstype,
4774                     bool opt_stats)
4775 {
4776     struct sock_exterr_skb *serr;
4777     int err;
4778 
4779     BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4780 
4781     serr = SKB_EXT_ERR(skb);
4782     memset(serr, 0, sizeof(*serr));
4783     serr->ee.ee_errno = ENOMSG;
4784     serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4785     serr->ee.ee_info = tstype;
4786     serr->opt_stats = opt_stats;
4787     serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4788     if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4789         serr->ee.ee_data = skb_shinfo(skb)->tskey;
4790         if (sk_is_tcp(sk))
4791             serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4792     }
4793 
4794     err = sock_queue_err_skb(sk, skb);
4795 
4796     if (err)
4797         kfree_skb(skb);
4798 }
4799 
4800 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4801 {
4802     bool ret;
4803 
4804     if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4805         return true;
4806 
4807     read_lock_bh(&sk->sk_callback_lock);
4808     ret = sk->sk_socket && sk->sk_socket->file &&
4809           file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4810     read_unlock_bh(&sk->sk_callback_lock);
4811     return ret;
4812 }
4813 
4814 void skb_complete_tx_timestamp(struct sk_buff *skb,
4815                    struct skb_shared_hwtstamps *hwtstamps)
4816 {
4817     struct sock *sk = skb->sk;
4818 
4819     if (!skb_may_tx_timestamp(sk, false))
4820         goto err;
4821 
4822     /* Take a reference to prevent skb_orphan() from freeing the socket,
4823      * but only if the socket refcount is not zero.
4824      */
4825     if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4826         *skb_hwtstamps(skb) = *hwtstamps;
4827         __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4828         sock_put(sk);
4829         return;
4830     }
4831 
4832 err:
4833     kfree_skb(skb);
4834 }
4835 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4836 
4837 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4838              const struct sk_buff *ack_skb,
4839              struct skb_shared_hwtstamps *hwtstamps,
4840              struct sock *sk, int tstype)
4841 {
4842     struct sk_buff *skb;
4843     bool tsonly, opt_stats = false;
4844 
4845     if (!sk)
4846         return;
4847 
4848     if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4849         skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4850         return;
4851 
4852     tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4853     if (!skb_may_tx_timestamp(sk, tsonly))
4854         return;
4855 
4856     if (tsonly) {
4857 #ifdef CONFIG_INET
4858         if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4859             sk_is_tcp(sk)) {
4860             skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4861                                  ack_skb);
4862             opt_stats = true;
4863         } else
4864 #endif
4865             skb = alloc_skb(0, GFP_ATOMIC);
4866     } else {
4867         skb = skb_clone(orig_skb, GFP_ATOMIC);
4868     }
4869     if (!skb)
4870         return;
4871 
4872     if (tsonly) {
4873         skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4874                          SKBTX_ANY_TSTAMP;
4875         skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4876     }
4877 
4878     if (hwtstamps)
4879         *skb_hwtstamps(skb) = *hwtstamps;
4880     else
4881         __net_timestamp(skb);
4882 
4883     __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4884 }
4885 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4886 
4887 void skb_tstamp_tx(struct sk_buff *orig_skb,
4888            struct skb_shared_hwtstamps *hwtstamps)
4889 {
4890     return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4891                    SCM_TSTAMP_SND);
4892 }
4893 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4894 
4895 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4896 {
4897     struct sock *sk = skb->sk;
4898     struct sock_exterr_skb *serr;
4899     int err = 1;
4900 
4901     skb->wifi_acked_valid = 1;
4902     skb->wifi_acked = acked;
4903 
4904     serr = SKB_EXT_ERR(skb);
4905     memset(serr, 0, sizeof(*serr));
4906     serr->ee.ee_errno = ENOMSG;
4907     serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4908 
4909     /* Take a reference to prevent skb_orphan() from freeing the socket,
4910      * but only if the socket refcount is not zero.
4911      */
4912     if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4913         err = sock_queue_err_skb(sk, skb);
4914         sock_put(sk);
4915     }
4916     if (err)
4917         kfree_skb(skb);
4918 }
4919 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4920 
4921 /**
4922  * skb_partial_csum_set - set up and verify partial csum values for packet
4923  * @skb: the skb to set
4924  * @start: the number of bytes after skb->data to start checksumming.
4925  * @off: the offset from start to place the checksum.
4926  *
4927  * For untrusted partially-checksummed packets, we need to make sure the values
4928  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4929  *
4930  * This function checks and sets those values and skb->ip_summed: if this
4931  * returns false you should drop the packet.
4932  */
4933 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4934 {
4935     u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4936     u32 csum_start = skb_headroom(skb) + (u32)start;
4937 
4938     if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4939         net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4940                      start, off, skb_headroom(skb), skb_headlen(skb));
4941         return false;
4942     }
4943     skb->ip_summed = CHECKSUM_PARTIAL;
4944     skb->csum_start = csum_start;
4945     skb->csum_offset = off;
4946     skb_set_transport_header(skb, start);
4947     return true;
4948 }
4949 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4950 
4951 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4952                    unsigned int max)
4953 {
4954     if (skb_headlen(skb) >= len)
4955         return 0;
4956 
4957     /* If we need to pullup then pullup to the max, so we
4958      * won't need to do it again.
4959      */
4960     if (max > skb->len)
4961         max = skb->len;
4962 
4963     if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4964         return -ENOMEM;
4965 
4966     if (skb_headlen(skb) < len)
4967         return -EPROTO;
4968 
4969     return 0;
4970 }
4971 
4972 #define MAX_TCP_HDR_LEN (15 * 4)
4973 
4974 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4975                       typeof(IPPROTO_IP) proto,
4976                       unsigned int off)
4977 {
4978     int err;
4979 
4980     switch (proto) {
4981     case IPPROTO_TCP:
4982         err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4983                       off + MAX_TCP_HDR_LEN);
4984         if (!err && !skb_partial_csum_set(skb, off,
4985                           offsetof(struct tcphdr,
4986                                check)))
4987             err = -EPROTO;
4988         return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4989 
4990     case IPPROTO_UDP:
4991         err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4992                       off + sizeof(struct udphdr));
4993         if (!err && !skb_partial_csum_set(skb, off,
4994                           offsetof(struct udphdr,
4995                                check)))
4996             err = -EPROTO;
4997         return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4998     }
4999 
5000     return ERR_PTR(-EPROTO);
5001 }
5002 
5003 /* This value should be large enough to cover a tagged ethernet header plus
5004  * maximally sized IP and TCP or UDP headers.
5005  */
5006 #define MAX_IP_HDR_LEN 128
5007 
5008 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5009 {
5010     unsigned int off;
5011     bool fragment;
5012     __sum16 *csum;
5013     int err;
5014 
5015     fragment = false;
5016 
5017     err = skb_maybe_pull_tail(skb,
5018                   sizeof(struct iphdr),
5019                   MAX_IP_HDR_LEN);
5020     if (err < 0)
5021         goto out;
5022 
5023     if (ip_is_fragment(ip_hdr(skb)))
5024         fragment = true;
5025 
5026     off = ip_hdrlen(skb);
5027 
5028     err = -EPROTO;
5029 
5030     if (fragment)
5031         goto out;
5032 
5033     csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5034     if (IS_ERR(csum))
5035         return PTR_ERR(csum);
5036 
5037     if (recalculate)
5038         *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5039                        ip_hdr(skb)->daddr,
5040                        skb->len - off,
5041                        ip_hdr(skb)->protocol, 0);
5042     err = 0;
5043 
5044 out:
5045     return err;
5046 }
5047 
5048 /* This value should be large enough to cover a tagged ethernet header plus
5049  * an IPv6 header, all options, and a maximal TCP or UDP header.
5050  */
5051 #define MAX_IPV6_HDR_LEN 256
5052 
5053 #define OPT_HDR(type, skb, off) \
5054     (type *)(skb_network_header(skb) + (off))
5055 
5056 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5057 {
5058     int err;
5059     u8 nexthdr;
5060     unsigned int off;
5061     unsigned int len;
5062     bool fragment;
5063     bool done;
5064     __sum16 *csum;
5065 
5066     fragment = false;
5067     done = false;
5068 
5069     off = sizeof(struct ipv6hdr);
5070 
5071     err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5072     if (err < 0)
5073         goto out;
5074 
5075     nexthdr = ipv6_hdr(skb)->nexthdr;
5076 
5077     len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5078     while (off <= len && !done) {
5079         switch (nexthdr) {
5080         case IPPROTO_DSTOPTS:
5081         case IPPROTO_HOPOPTS:
5082         case IPPROTO_ROUTING: {
5083             struct ipv6_opt_hdr *hp;
5084 
5085             err = skb_maybe_pull_tail(skb,
5086                           off +
5087                           sizeof(struct ipv6_opt_hdr),
5088                           MAX_IPV6_HDR_LEN);
5089             if (err < 0)
5090                 goto out;
5091 
5092             hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5093             nexthdr = hp->nexthdr;
5094             off += ipv6_optlen(hp);
5095             break;
5096         }
5097         case IPPROTO_AH: {
5098             struct ip_auth_hdr *hp;
5099 
5100             err = skb_maybe_pull_tail(skb,
5101                           off +
5102                           sizeof(struct ip_auth_hdr),
5103                           MAX_IPV6_HDR_LEN);
5104             if (err < 0)
5105                 goto out;
5106 
5107             hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5108             nexthdr = hp->nexthdr;
5109             off += ipv6_authlen(hp);
5110             break;
5111         }
5112         case IPPROTO_FRAGMENT: {
5113             struct frag_hdr *hp;
5114 
5115             err = skb_maybe_pull_tail(skb,
5116                           off +
5117                           sizeof(struct frag_hdr),
5118                           MAX_IPV6_HDR_LEN);
5119             if (err < 0)
5120                 goto out;
5121 
5122             hp = OPT_HDR(struct frag_hdr, skb, off);
5123 
5124             if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5125                 fragment = true;
5126 
5127             nexthdr = hp->nexthdr;
5128             off += sizeof(struct frag_hdr);
5129             break;
5130         }
5131         default:
5132             done = true;
5133             break;
5134         }
5135     }
5136 
5137     err = -EPROTO;
5138 
5139     if (!done || fragment)
5140         goto out;
5141 
5142     csum = skb_checksum_setup_ip(skb, nexthdr, off);
5143     if (IS_ERR(csum))
5144         return PTR_ERR(csum);
5145 
5146     if (recalculate)
5147         *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5148                      &ipv6_hdr(skb)->daddr,
5149                      skb->len - off, nexthdr, 0);
5150     err = 0;
5151 
5152 out:
5153     return err;
5154 }
5155 
5156 /**
5157  * skb_checksum_setup - set up partial checksum offset
5158  * @skb: the skb to set up
5159  * @recalculate: if true the pseudo-header checksum will be recalculated
5160  */
5161 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5162 {
5163     int err;
5164 
5165     switch (skb->protocol) {
5166     case htons(ETH_P_IP):
5167         err = skb_checksum_setup_ipv4(skb, recalculate);
5168         break;
5169 
5170     case htons(ETH_P_IPV6):
5171         err = skb_checksum_setup_ipv6(skb, recalculate);
5172         break;
5173 
5174     default:
5175         err = -EPROTO;
5176         break;
5177     }
5178 
5179     return err;
5180 }
5181 EXPORT_SYMBOL(skb_checksum_setup);
5182 
5183 /**
5184  * skb_checksum_maybe_trim - maybe trims the given skb
5185  * @skb: the skb to check
5186  * @transport_len: the data length beyond the network header
5187  *
5188  * Checks whether the given skb has data beyond the given transport length.
5189  * If so, returns a cloned skb trimmed to this transport length.
5190  * Otherwise returns the provided skb. Returns NULL in error cases
5191  * (e.g. transport_len exceeds skb length or out-of-memory).
5192  *
5193  * Caller needs to set the skb transport header and free any returned skb if it
5194  * differs from the provided skb.
5195  */
5196 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5197                            unsigned int transport_len)
5198 {
5199     struct sk_buff *skb_chk;
5200     unsigned int len = skb_transport_offset(skb) + transport_len;
5201     int ret;
5202 
5203     if (skb->len < len)
5204         return NULL;
5205     else if (skb->len == len)
5206         return skb;
5207 
5208     skb_chk = skb_clone(skb, GFP_ATOMIC);
5209     if (!skb_chk)
5210         return NULL;
5211 
5212     ret = pskb_trim_rcsum(skb_chk, len);
5213     if (ret) {
5214         kfree_skb(skb_chk);
5215         return NULL;
5216     }
5217 
5218     return skb_chk;
5219 }
5220 
5221 /**
5222  * skb_checksum_trimmed - validate checksum of an skb
5223  * @skb: the skb to check
5224  * @transport_len: the data length beyond the network header
5225  * @skb_chkf: checksum function to use
5226  *
5227  * Applies the given checksum function skb_chkf to the provided skb.
5228  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5229  *
5230  * If the skb has data beyond the given transport length, then a
5231  * trimmed & cloned skb is checked and returned.
5232  *
5233  * Caller needs to set the skb transport header and free any returned skb if it
5234  * differs from the provided skb.
5235  */
5236 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5237                      unsigned int transport_len,
5238                      __sum16(*skb_chkf)(struct sk_buff *skb))
5239 {
5240     struct sk_buff *skb_chk;
5241     unsigned int offset = skb_transport_offset(skb);
5242     __sum16 ret;
5243 
5244     skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5245     if (!skb_chk)
5246         goto err;
5247 
5248     if (!pskb_may_pull(skb_chk, offset))
5249         goto err;
5250 
5251     skb_pull_rcsum(skb_chk, offset);
5252     ret = skb_chkf(skb_chk);
5253     skb_push_rcsum(skb_chk, offset);
5254 
5255     if (ret)
5256         goto err;
5257 
5258     return skb_chk;
5259 
5260 err:
5261     if (skb_chk && skb_chk != skb)
5262         kfree_skb(skb_chk);
5263 
5264     return NULL;
5265 
5266 }
5267 EXPORT_SYMBOL(skb_checksum_trimmed);
5268 
5269 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5270 {
5271     net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5272                  skb->dev->name);
5273 }
5274 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5275 
5276 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5277 {
5278     if (head_stolen) {
5279         skb_release_head_state(skb);
5280         kmem_cache_free(skbuff_head_cache, skb);
5281     } else {
5282         __kfree_skb(skb);
5283     }
5284 }
5285 EXPORT_SYMBOL(kfree_skb_partial);
5286 
5287 /**
5288  * skb_try_coalesce - try to merge skb to prior one
5289  * @to: prior buffer
5290  * @from: buffer to add
5291  * @fragstolen: pointer to boolean
5292  * @delta_truesize: how much more was allocated than was requested
5293  */
5294 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5295               bool *fragstolen, int *delta_truesize)
5296 {
5297     struct skb_shared_info *to_shinfo, *from_shinfo;
5298     int i, delta, len = from->len;
5299 
5300     *fragstolen = false;
5301 
5302     if (skb_cloned(to))
5303         return false;
5304 
5305     /* In general, avoid mixing slab allocated and page_pool allocated
5306      * pages within the same SKB. However when @to is not pp_recycle and
5307      * @from is cloned, we can transition frag pages from page_pool to
5308      * reference counted.
5309      *
5310      * On the other hand, don't allow coalescing two pp_recycle SKBs if
5311      * @from is cloned, in case the SKB is using page_pool fragment
5312      * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5313      * references for cloned SKBs at the moment that would result in
5314      * inconsistent reference counts.
5315      */
5316     if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5317         return false;
5318 
5319     if (len <= skb_tailroom(to)) {
5320         if (len)
5321             BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5322         *delta_truesize = 0;
5323         return true;
5324     }
5325 
5326     to_shinfo = skb_shinfo(to);
5327     from_shinfo = skb_shinfo(from);
5328     if (to_shinfo->frag_list || from_shinfo->frag_list)
5329         return false;
5330     if (skb_zcopy(to) || skb_zcopy(from))
5331         return false;
5332 
5333     if (skb_headlen(from) != 0) {
5334         struct page *page;
5335         unsigned int offset;
5336 
5337         if (to_shinfo->nr_frags +
5338             from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5339             return false;
5340 
5341         if (skb_head_is_locked(from))
5342             return false;
5343 
5344         delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5345 
5346         page = virt_to_head_page(from->head);
5347         offset = from->data - (unsigned char *)page_address(page);
5348 
5349         skb_fill_page_desc(to, to_shinfo->nr_frags,
5350                    page, offset, skb_headlen(from));
5351         *fragstolen = true;
5352     } else {
5353         if (to_shinfo->nr_frags +
5354             from_shinfo->nr_frags > MAX_SKB_FRAGS)
5355             return false;
5356 
5357         delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5358     }
5359 
5360     WARN_ON_ONCE(delta < len);
5361 
5362     memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5363            from_shinfo->frags,
5364            from_shinfo->nr_frags * sizeof(skb_frag_t));
5365     to_shinfo->nr_frags += from_shinfo->nr_frags;
5366 
5367     if (!skb_cloned(from))
5368         from_shinfo->nr_frags = 0;
5369 
5370     /* if the skb is not cloned this does nothing
5371      * since we set nr_frags to 0.
5372      */
5373     for (i = 0; i < from_shinfo->nr_frags; i++)
5374         __skb_frag_ref(&from_shinfo->frags[i]);
5375 
5376     to->truesize += delta;
5377     to->len += len;
5378     to->data_len += len;
5379 
5380     *delta_truesize = delta;
5381     return true;
5382 }
5383 EXPORT_SYMBOL(skb_try_coalesce);
5384 
5385 /**
5386  * skb_scrub_packet - scrub an skb
5387  *
5388  * @skb: buffer to clean
5389  * @xnet: packet is crossing netns
5390  *
5391  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5392  * into/from a tunnel. Some information have to be cleared during these
5393  * operations.
5394  * skb_scrub_packet can also be used to clean a skb before injecting it in
5395  * another namespace (@xnet == true). We have to clear all information in the
5396  * skb that could impact namespace isolation.
5397  */
5398 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5399 {
5400     skb->pkt_type = PACKET_HOST;
5401     skb->skb_iif = 0;
5402     skb->ignore_df = 0;
5403     skb_dst_drop(skb);
5404     skb_ext_reset(skb);
5405     nf_reset_ct(skb);
5406     nf_reset_trace(skb);
5407 
5408 #ifdef CONFIG_NET_SWITCHDEV
5409     skb->offload_fwd_mark = 0;
5410     skb->offload_l3_fwd_mark = 0;
5411 #endif
5412 
5413     if (!xnet)
5414         return;
5415 
5416     ipvs_reset(skb);
5417     skb->mark = 0;
5418     skb_clear_tstamp(skb);
5419 }
5420 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5421 
5422 /**
5423  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5424  *
5425  * @skb: GSO skb
5426  *
5427  * skb_gso_transport_seglen is used to determine the real size of the
5428  * individual segments, including Layer4 headers (TCP/UDP).
5429  *
5430  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5431  */
5432 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5433 {
5434     const struct skb_shared_info *shinfo = skb_shinfo(skb);
5435     unsigned int thlen = 0;
5436 
5437     if (skb->encapsulation) {
5438         thlen = skb_inner_transport_header(skb) -
5439             skb_transport_header(skb);
5440 
5441         if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5442             thlen += inner_tcp_hdrlen(skb);
5443     } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5444         thlen = tcp_hdrlen(skb);
5445     } else if (unlikely(skb_is_gso_sctp(skb))) {
5446         thlen = sizeof(struct sctphdr);
5447     } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5448         thlen = sizeof(struct udphdr);
5449     }
5450     /* UFO sets gso_size to the size of the fragmentation
5451      * payload, i.e. the size of the L4 (UDP) header is already
5452      * accounted for.
5453      */
5454     return thlen + shinfo->gso_size;
5455 }
5456 
5457 /**
5458  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5459  *
5460  * @skb: GSO skb
5461  *
5462  * skb_gso_network_seglen is used to determine the real size of the
5463  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5464  *
5465  * The MAC/L2 header is not accounted for.
5466  */
5467 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5468 {
5469     unsigned int hdr_len = skb_transport_header(skb) -
5470                    skb_network_header(skb);
5471 
5472     return hdr_len + skb_gso_transport_seglen(skb);
5473 }
5474 
5475 /**
5476  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5477  *
5478  * @skb: GSO skb
5479  *
5480  * skb_gso_mac_seglen is used to determine the real size of the
5481  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5482  * headers (TCP/UDP).
5483  */
5484 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5485 {
5486     unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5487 
5488     return hdr_len + skb_gso_transport_seglen(skb);
5489 }
5490 
5491 /**
5492  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5493  *
5494  * There are a couple of instances where we have a GSO skb, and we
5495  * want to determine what size it would be after it is segmented.
5496  *
5497  * We might want to check:
5498  * -    L3+L4+payload size (e.g. IP forwarding)
5499  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5500  *
5501  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5502  *
5503  * @skb: GSO skb
5504  *
5505  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5506  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5507  *
5508  * @max_len: The maximum permissible length.
5509  *
5510  * Returns true if the segmented length <= max length.
5511  */
5512 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5513                       unsigned int seg_len,
5514                       unsigned int max_len) {
5515     const struct skb_shared_info *shinfo = skb_shinfo(skb);
5516     const struct sk_buff *iter;
5517 
5518     if (shinfo->gso_size != GSO_BY_FRAGS)
5519         return seg_len <= max_len;
5520 
5521     /* Undo this so we can re-use header sizes */
5522     seg_len -= GSO_BY_FRAGS;
5523 
5524     skb_walk_frags(skb, iter) {
5525         if (seg_len + skb_headlen(iter) > max_len)
5526             return false;
5527     }
5528 
5529     return true;
5530 }
5531 
5532 /**
5533  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5534  *
5535  * @skb: GSO skb
5536  * @mtu: MTU to validate against
5537  *
5538  * skb_gso_validate_network_len validates if a given skb will fit a
5539  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5540  * payload.
5541  */
5542 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5543 {
5544     return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5545 }
5546 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5547 
5548 /**
5549  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5550  *
5551  * @skb: GSO skb
5552  * @len: length to validate against
5553  *
5554  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5555  * length once split, including L2, L3 and L4 headers and the payload.
5556  */
5557 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5558 {
5559     return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5560 }
5561 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5562 
5563 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5564 {
5565     int mac_len, meta_len;
5566     void *meta;
5567 
5568     if (skb_cow(skb, skb_headroom(skb)) < 0) {
5569         kfree_skb(skb);
5570         return NULL;
5571     }
5572 
5573     mac_len = skb->data - skb_mac_header(skb);
5574     if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5575         memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5576             mac_len - VLAN_HLEN - ETH_TLEN);
5577     }
5578 
5579     meta_len = skb_metadata_len(skb);
5580     if (meta_len) {
5581         meta = skb_metadata_end(skb) - meta_len;
5582         memmove(meta + VLAN_HLEN, meta, meta_len);
5583     }
5584 
5585     skb->mac_header += VLAN_HLEN;
5586     return skb;
5587 }
5588 
5589 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5590 {
5591     struct vlan_hdr *vhdr;
5592     u16 vlan_tci;
5593 
5594     if (unlikely(skb_vlan_tag_present(skb))) {
5595         /* vlan_tci is already set-up so leave this for another time */
5596         return skb;
5597     }
5598 
5599     skb = skb_share_check(skb, GFP_ATOMIC);
5600     if (unlikely(!skb))
5601         goto err_free;
5602     /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5603     if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5604         goto err_free;
5605 
5606     vhdr = (struct vlan_hdr *)skb->data;
5607     vlan_tci = ntohs(vhdr->h_vlan_TCI);
5608     __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5609 
5610     skb_pull_rcsum(skb, VLAN_HLEN);
5611     vlan_set_encap_proto(skb, vhdr);
5612 
5613     skb = skb_reorder_vlan_header(skb);
5614     if (unlikely(!skb))
5615         goto err_free;
5616 
5617     skb_reset_network_header(skb);
5618     if (!skb_transport_header_was_set(skb))
5619         skb_reset_transport_header(skb);
5620     skb_reset_mac_len(skb);
5621 
5622     return skb;
5623 
5624 err_free:
5625     kfree_skb(skb);
5626     return NULL;
5627 }
5628 EXPORT_SYMBOL(skb_vlan_untag);
5629 
5630 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5631 {
5632     if (!pskb_may_pull(skb, write_len))
5633         return -ENOMEM;
5634 
5635     if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5636         return 0;
5637 
5638     return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5639 }
5640 EXPORT_SYMBOL(skb_ensure_writable);
5641 
5642 /* remove VLAN header from packet and update csum accordingly.
5643  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5644  */
5645 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5646 {
5647     struct vlan_hdr *vhdr;
5648     int offset = skb->data - skb_mac_header(skb);
5649     int err;
5650 
5651     if (WARN_ONCE(offset,
5652               "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5653               offset)) {
5654         return -EINVAL;
5655     }
5656 
5657     err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5658     if (unlikely(err))
5659         return err;
5660 
5661     skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5662 
5663     vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5664     *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5665 
5666     memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5667     __skb_pull(skb, VLAN_HLEN);
5668 
5669     vlan_set_encap_proto(skb, vhdr);
5670     skb->mac_header += VLAN_HLEN;
5671 
5672     if (skb_network_offset(skb) < ETH_HLEN)
5673         skb_set_network_header(skb, ETH_HLEN);
5674 
5675     skb_reset_mac_len(skb);
5676 
5677     return err;
5678 }
5679 EXPORT_SYMBOL(__skb_vlan_pop);
5680 
5681 /* Pop a vlan tag either from hwaccel or from payload.
5682  * Expects skb->data at mac header.
5683  */
5684 int skb_vlan_pop(struct sk_buff *skb)
5685 {
5686     u16 vlan_tci;
5687     __be16 vlan_proto;
5688     int err;
5689 
5690     if (likely(skb_vlan_tag_present(skb))) {
5691         __vlan_hwaccel_clear_tag(skb);
5692     } else {
5693         if (unlikely(!eth_type_vlan(skb->protocol)))
5694             return 0;
5695 
5696         err = __skb_vlan_pop(skb, &vlan_tci);
5697         if (err)
5698             return err;
5699     }
5700     /* move next vlan tag to hw accel tag */
5701     if (likely(!eth_type_vlan(skb->protocol)))
5702         return 0;
5703 
5704     vlan_proto = skb->protocol;
5705     err = __skb_vlan_pop(skb, &vlan_tci);
5706     if (unlikely(err))
5707         return err;
5708 
5709     __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5710     return 0;
5711 }
5712 EXPORT_SYMBOL(skb_vlan_pop);
5713 
5714 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5715  * Expects skb->data at mac header.
5716  */
5717 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5718 {
5719     if (skb_vlan_tag_present(skb)) {
5720         int offset = skb->data - skb_mac_header(skb);
5721         int err;
5722 
5723         if (WARN_ONCE(offset,
5724                   "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5725                   offset)) {
5726             return -EINVAL;
5727         }
5728 
5729         err = __vlan_insert_tag(skb, skb->vlan_proto,
5730                     skb_vlan_tag_get(skb));
5731         if (err)
5732             return err;
5733 
5734         skb->protocol = skb->vlan_proto;
5735         skb->mac_len += VLAN_HLEN;
5736 
5737         skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5738     }
5739     __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5740     return 0;
5741 }
5742 EXPORT_SYMBOL(skb_vlan_push);
5743 
5744 /**
5745  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5746  *
5747  * @skb: Socket buffer to modify
5748  *
5749  * Drop the Ethernet header of @skb.
5750  *
5751  * Expects that skb->data points to the mac header and that no VLAN tags are
5752  * present.
5753  *
5754  * Returns 0 on success, -errno otherwise.
5755  */
5756 int skb_eth_pop(struct sk_buff *skb)
5757 {
5758     if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5759         skb_network_offset(skb) < ETH_HLEN)
5760         return -EPROTO;
5761 
5762     skb_pull_rcsum(skb, ETH_HLEN);
5763     skb_reset_mac_header(skb);
5764     skb_reset_mac_len(skb);
5765 
5766     return 0;
5767 }
5768 EXPORT_SYMBOL(skb_eth_pop);
5769 
5770 /**
5771  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5772  *
5773  * @skb: Socket buffer to modify
5774  * @dst: Destination MAC address of the new header
5775  * @src: Source MAC address of the new header
5776  *
5777  * Prepend @skb with a new Ethernet header.
5778  *
5779  * Expects that skb->data points to the mac header, which must be empty.
5780  *
5781  * Returns 0 on success, -errno otherwise.
5782  */
5783 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5784          const unsigned char *src)
5785 {
5786     struct ethhdr *eth;
5787     int err;
5788 
5789     if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5790         return -EPROTO;
5791 
5792     err = skb_cow_head(skb, sizeof(*eth));
5793     if (err < 0)
5794         return err;
5795 
5796     skb_push(skb, sizeof(*eth));
5797     skb_reset_mac_header(skb);
5798     skb_reset_mac_len(skb);
5799 
5800     eth = eth_hdr(skb);
5801     ether_addr_copy(eth->h_dest, dst);
5802     ether_addr_copy(eth->h_source, src);
5803     eth->h_proto = skb->protocol;
5804 
5805     skb_postpush_rcsum(skb, eth, sizeof(*eth));
5806 
5807     return 0;
5808 }
5809 EXPORT_SYMBOL(skb_eth_push);
5810 
5811 /* Update the ethertype of hdr and the skb csum value if required. */
5812 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5813                  __be16 ethertype)
5814 {
5815     if (skb->ip_summed == CHECKSUM_COMPLETE) {
5816         __be16 diff[] = { ~hdr->h_proto, ethertype };
5817 
5818         skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5819     }
5820 
5821     hdr->h_proto = ethertype;
5822 }
5823 
5824 /**
5825  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5826  *                   the packet
5827  *
5828  * @skb: buffer
5829  * @mpls_lse: MPLS label stack entry to push
5830  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5831  * @mac_len: length of the MAC header
5832  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5833  *            ethernet
5834  *
5835  * Expects skb->data at mac header.
5836  *
5837  * Returns 0 on success, -errno otherwise.
5838  */
5839 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5840           int mac_len, bool ethernet)
5841 {
5842     struct mpls_shim_hdr *lse;
5843     int err;
5844 
5845     if (unlikely(!eth_p_mpls(mpls_proto)))
5846         return -EINVAL;
5847 
5848     /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5849     if (skb->encapsulation)
5850         return -EINVAL;
5851 
5852     err = skb_cow_head(skb, MPLS_HLEN);
5853     if (unlikely(err))
5854         return err;
5855 
5856     if (!skb->inner_protocol) {
5857         skb_set_inner_network_header(skb, skb_network_offset(skb));
5858         skb_set_inner_protocol(skb, skb->protocol);
5859     }
5860 
5861     skb_push(skb, MPLS_HLEN);
5862     memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5863         mac_len);
5864     skb_reset_mac_header(skb);
5865     skb_set_network_header(skb, mac_len);
5866     skb_reset_mac_len(skb);
5867 
5868     lse = mpls_hdr(skb);
5869     lse->label_stack_entry = mpls_lse;
5870     skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5871 
5872     if (ethernet && mac_len >= ETH_HLEN)
5873         skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5874     skb->protocol = mpls_proto;
5875 
5876     return 0;
5877 }
5878 EXPORT_SYMBOL_GPL(skb_mpls_push);
5879 
5880 /**
5881  * skb_mpls_pop() - pop the outermost MPLS header
5882  *
5883  * @skb: buffer
5884  * @next_proto: ethertype of header after popped MPLS header
5885  * @mac_len: length of the MAC header
5886  * @ethernet: flag to indicate if the packet is ethernet
5887  *
5888  * Expects skb->data at mac header.
5889  *
5890  * Returns 0 on success, -errno otherwise.
5891  */
5892 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5893          bool ethernet)
5894 {
5895     int err;
5896 
5897     if (unlikely(!eth_p_mpls(skb->protocol)))
5898         return 0;
5899 
5900     err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5901     if (unlikely(err))
5902         return err;
5903 
5904     skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5905     memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5906         mac_len);
5907 
5908     __skb_pull(skb, MPLS_HLEN);
5909     skb_reset_mac_header(skb);
5910     skb_set_network_header(skb, mac_len);
5911 
5912     if (ethernet && mac_len >= ETH_HLEN) {
5913         struct ethhdr *hdr;
5914 
5915         /* use mpls_hdr() to get ethertype to account for VLANs. */
5916         hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5917         skb_mod_eth_type(skb, hdr, next_proto);
5918     }
5919     skb->protocol = next_proto;
5920 
5921     return 0;
5922 }
5923 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5924 
5925 /**
5926  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5927  *
5928  * @skb: buffer
5929  * @mpls_lse: new MPLS label stack entry to update to
5930  *
5931  * Expects skb->data at mac header.
5932  *
5933  * Returns 0 on success, -errno otherwise.
5934  */
5935 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5936 {
5937     int err;
5938 
5939     if (unlikely(!eth_p_mpls(skb->protocol)))
5940         return -EINVAL;
5941 
5942     err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5943     if (unlikely(err))
5944         return err;
5945 
5946     if (skb->ip_summed == CHECKSUM_COMPLETE) {
5947         __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5948 
5949         skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5950     }
5951 
5952     mpls_hdr(skb)->label_stack_entry = mpls_lse;
5953 
5954     return 0;
5955 }
5956 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5957 
5958 /**
5959  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5960  *
5961  * @skb: buffer
5962  *
5963  * Expects skb->data at mac header.
5964  *
5965  * Returns 0 on success, -errno otherwise.
5966  */
5967 int skb_mpls_dec_ttl(struct sk_buff *skb)
5968 {
5969     u32 lse;
5970     u8 ttl;
5971 
5972     if (unlikely(!eth_p_mpls(skb->protocol)))
5973         return -EINVAL;
5974 
5975     if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5976         return -ENOMEM;
5977 
5978     lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5979     ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5980     if (!--ttl)
5981         return -EINVAL;
5982 
5983     lse &= ~MPLS_LS_TTL_MASK;
5984     lse |= ttl << MPLS_LS_TTL_SHIFT;
5985 
5986     return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5987 }
5988 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5989 
5990 /**
5991  * alloc_skb_with_frags - allocate skb with page frags
5992  *
5993  * @header_len: size of linear part
5994  * @data_len: needed length in frags
5995  * @max_page_order: max page order desired.
5996  * @errcode: pointer to error code if any
5997  * @gfp_mask: allocation mask
5998  *
5999  * This can be used to allocate a paged skb, given a maximal order for frags.
6000  */
6001 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6002                      unsigned long data_len,
6003                      int max_page_order,
6004                      int *errcode,
6005                      gfp_t gfp_mask)
6006 {
6007     int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6008     unsigned long chunk;
6009     struct sk_buff *skb;
6010     struct page *page;
6011     int i;
6012 
6013     *errcode = -EMSGSIZE;
6014     /* Note this test could be relaxed, if we succeed to allocate
6015      * high order pages...
6016      */
6017     if (npages > MAX_SKB_FRAGS)
6018         return NULL;
6019 
6020     *errcode = -ENOBUFS;
6021     skb = alloc_skb(header_len, gfp_mask);
6022     if (!skb)
6023         return NULL;
6024 
6025     skb->truesize += npages << PAGE_SHIFT;
6026 
6027     for (i = 0; npages > 0; i++) {
6028         int order = max_page_order;
6029 
6030         while (order) {
6031             if (npages >= 1 << order) {
6032                 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6033                            __GFP_COMP |
6034                            __GFP_NOWARN,
6035                            order);
6036                 if (page)
6037                     goto fill_page;
6038                 /* Do not retry other high order allocations */
6039                 order = 1;
6040                 max_page_order = 0;
6041             }
6042             order--;
6043         }
6044         page = alloc_page(gfp_mask);
6045         if (!page)
6046             goto failure;
6047 fill_page:
6048         chunk = min_t(unsigned long, data_len,
6049                   PAGE_SIZE << order);
6050         skb_fill_page_desc(skb, i, page, 0, chunk);
6051         data_len -= chunk;
6052         npages -= 1 << order;
6053     }
6054     return skb;
6055 
6056 failure:
6057     kfree_skb(skb);
6058     return NULL;
6059 }
6060 EXPORT_SYMBOL(alloc_skb_with_frags);
6061 
6062 /* carve out the first off bytes from skb when off < headlen */
6063 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6064                     const int headlen, gfp_t gfp_mask)
6065 {
6066     int i;
6067     int size = skb_end_offset(skb);
6068     int new_hlen = headlen - off;
6069     u8 *data;
6070 
6071     size = SKB_DATA_ALIGN(size);
6072 
6073     if (skb_pfmemalloc(skb))
6074         gfp_mask |= __GFP_MEMALLOC;
6075     data = kmalloc_reserve(size +
6076                    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6077                    gfp_mask, NUMA_NO_NODE, NULL);
6078     if (!data)
6079         return -ENOMEM;
6080 
6081     size = SKB_WITH_OVERHEAD(ksize(data));
6082 
6083     /* Copy real data, and all frags */
6084     skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6085     skb->len -= off;
6086 
6087     memcpy((struct skb_shared_info *)(data + size),
6088            skb_shinfo(skb),
6089            offsetof(struct skb_shared_info,
6090             frags[skb_shinfo(skb)->nr_frags]));
6091     if (skb_cloned(skb)) {
6092         /* drop the old head gracefully */
6093         if (skb_orphan_frags(skb, gfp_mask)) {
6094             kfree(data);
6095             return -ENOMEM;
6096         }
6097         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6098             skb_frag_ref(skb, i);
6099         if (skb_has_frag_list(skb))
6100             skb_clone_fraglist(skb);
6101         skb_release_data(skb);
6102     } else {
6103         /* we can reuse existing recount- all we did was
6104          * relocate values
6105          */
6106         skb_free_head(skb);
6107     }
6108 
6109     skb->head = data;
6110     skb->data = data;
6111     skb->head_frag = 0;
6112     skb_set_end_offset(skb, size);
6113     skb_set_tail_pointer(skb, skb_headlen(skb));
6114     skb_headers_offset_update(skb, 0);
6115     skb->cloned = 0;
6116     skb->hdr_len = 0;
6117     skb->nohdr = 0;
6118     atomic_set(&skb_shinfo(skb)->dataref, 1);
6119 
6120     return 0;
6121 }
6122 
6123 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6124 
6125 /* carve out the first eat bytes from skb's frag_list. May recurse into
6126  * pskb_carve()
6127  */
6128 static int pskb_carve_frag_list(struct sk_buff *skb,
6129                 struct skb_shared_info *shinfo, int eat,
6130                 gfp_t gfp_mask)
6131 {
6132     struct sk_buff *list = shinfo->frag_list;
6133     struct sk_buff *clone = NULL;
6134     struct sk_buff *insp = NULL;
6135 
6136     do {
6137         if (!list) {
6138             pr_err("Not enough bytes to eat. Want %d\n", eat);
6139             return -EFAULT;
6140         }
6141         if (list->len <= eat) {
6142             /* Eaten as whole. */
6143             eat -= list->len;
6144             list = list->next;
6145             insp = list;
6146         } else {
6147             /* Eaten partially. */
6148             if (skb_shared(list)) {
6149                 clone = skb_clone(list, gfp_mask);
6150                 if (!clone)
6151                     return -ENOMEM;
6152                 insp = list->next;
6153                 list = clone;
6154             } else {
6155                 /* This may be pulled without problems. */
6156                 insp = list;
6157             }
6158             if (pskb_carve(list, eat, gfp_mask) < 0) {
6159                 kfree_skb(clone);
6160                 return -ENOMEM;
6161             }
6162             break;
6163         }
6164     } while (eat);
6165 
6166     /* Free pulled out fragments. */
6167     while ((list = shinfo->frag_list) != insp) {
6168         shinfo->frag_list = list->next;
6169         consume_skb(list);
6170     }
6171     /* And insert new clone at head. */
6172     if (clone) {
6173         clone->next = list;
6174         shinfo->frag_list = clone;
6175     }
6176     return 0;
6177 }
6178 
6179 /* carve off first len bytes from skb. Split line (off) is in the
6180  * non-linear part of skb
6181  */
6182 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6183                        int pos, gfp_t gfp_mask)
6184 {
6185     int i, k = 0;
6186     int size = skb_end_offset(skb);
6187     u8 *data;
6188     const int nfrags = skb_shinfo(skb)->nr_frags;
6189     struct skb_shared_info *shinfo;
6190 
6191     size = SKB_DATA_ALIGN(size);
6192 
6193     if (skb_pfmemalloc(skb))
6194         gfp_mask |= __GFP_MEMALLOC;
6195     data = kmalloc_reserve(size +
6196                    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6197                    gfp_mask, NUMA_NO_NODE, NULL);
6198     if (!data)
6199         return -ENOMEM;
6200 
6201     size = SKB_WITH_OVERHEAD(ksize(data));
6202 
6203     memcpy((struct skb_shared_info *)(data + size),
6204            skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6205     if (skb_orphan_frags(skb, gfp_mask)) {
6206         kfree(data);
6207         return -ENOMEM;
6208     }
6209     shinfo = (struct skb_shared_info *)(data + size);
6210     for (i = 0; i < nfrags; i++) {
6211         int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6212 
6213         if (pos + fsize > off) {
6214             shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6215 
6216             if (pos < off) {
6217                 /* Split frag.
6218                  * We have two variants in this case:
6219                  * 1. Move all the frag to the second
6220                  *    part, if it is possible. F.e.
6221                  *    this approach is mandatory for TUX,
6222                  *    where splitting is expensive.
6223                  * 2. Split is accurately. We make this.
6224                  */
6225                 skb_frag_off_add(&shinfo->frags[0], off - pos);
6226                 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6227             }
6228             skb_frag_ref(skb, i);
6229             k++;
6230         }
6231         pos += fsize;
6232     }
6233     shinfo->nr_frags = k;
6234     if (skb_has_frag_list(skb))
6235         skb_clone_fraglist(skb);
6236 
6237     /* split line is in frag list */
6238     if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6239         /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6240         if (skb_has_frag_list(skb))
6241             kfree_skb_list(skb_shinfo(skb)->frag_list);
6242         kfree(data);
6243         return -ENOMEM;
6244     }
6245     skb_release_data(skb);
6246 
6247     skb->head = data;
6248     skb->head_frag = 0;
6249     skb->data = data;
6250     skb_set_end_offset(skb, size);
6251     skb_reset_tail_pointer(skb);
6252     skb_headers_offset_update(skb, 0);
6253     skb->cloned   = 0;
6254     skb->hdr_len  = 0;
6255     skb->nohdr    = 0;
6256     skb->len -= off;
6257     skb->data_len = skb->len;
6258     atomic_set(&skb_shinfo(skb)->dataref, 1);
6259     return 0;
6260 }
6261 
6262 /* remove len bytes from the beginning of the skb */
6263 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6264 {
6265     int headlen = skb_headlen(skb);
6266 
6267     if (len < headlen)
6268         return pskb_carve_inside_header(skb, len, headlen, gfp);
6269     else
6270         return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6271 }
6272 
6273 /* Extract to_copy bytes starting at off from skb, and return this in
6274  * a new skb
6275  */
6276 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6277                  int to_copy, gfp_t gfp)
6278 {
6279     struct sk_buff  *clone = skb_clone(skb, gfp);
6280 
6281     if (!clone)
6282         return NULL;
6283 
6284     if (pskb_carve(clone, off, gfp) < 0 ||
6285         pskb_trim(clone, to_copy)) {
6286         kfree_skb(clone);
6287         return NULL;
6288     }
6289     return clone;
6290 }
6291 EXPORT_SYMBOL(pskb_extract);
6292 
6293 /**
6294  * skb_condense - try to get rid of fragments/frag_list if possible
6295  * @skb: buffer
6296  *
6297  * Can be used to save memory before skb is added to a busy queue.
6298  * If packet has bytes in frags and enough tail room in skb->head,
6299  * pull all of them, so that we can free the frags right now and adjust
6300  * truesize.
6301  * Notes:
6302  *  We do not reallocate skb->head thus can not fail.
6303  *  Caller must re-evaluate skb->truesize if needed.
6304  */
6305 void skb_condense(struct sk_buff *skb)
6306 {
6307     if (skb->data_len) {
6308         if (skb->data_len > skb->end - skb->tail ||
6309             skb_cloned(skb))
6310             return;
6311 
6312         /* Nice, we can free page frag(s) right now */
6313         __pskb_pull_tail(skb, skb->data_len);
6314     }
6315     /* At this point, skb->truesize might be over estimated,
6316      * because skb had a fragment, and fragments do not tell
6317      * their truesize.
6318      * When we pulled its content into skb->head, fragment
6319      * was freed, but __pskb_pull_tail() could not possibly
6320      * adjust skb->truesize, not knowing the frag truesize.
6321      */
6322     skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6323 }
6324 
6325 #ifdef CONFIG_SKB_EXTENSIONS
6326 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6327 {
6328     return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6329 }
6330 
6331 /**
6332  * __skb_ext_alloc - allocate a new skb extensions storage
6333  *
6334  * @flags: See kmalloc().
6335  *
6336  * Returns the newly allocated pointer. The pointer can later attached to a
6337  * skb via __skb_ext_set().
6338  * Note: caller must handle the skb_ext as an opaque data.
6339  */
6340 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6341 {
6342     struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6343 
6344     if (new) {
6345         memset(new->offset, 0, sizeof(new->offset));
6346         refcount_set(&new->refcnt, 1);
6347     }
6348 
6349     return new;
6350 }
6351 
6352 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6353                      unsigned int old_active)
6354 {
6355     struct skb_ext *new;
6356 
6357     if (refcount_read(&old->refcnt) == 1)
6358         return old;
6359 
6360     new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6361     if (!new)
6362         return NULL;
6363 
6364     memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6365     refcount_set(&new->refcnt, 1);
6366 
6367 #ifdef CONFIG_XFRM
6368     if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6369         struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6370         unsigned int i;
6371 
6372         for (i = 0; i < sp->len; i++)
6373             xfrm_state_hold(sp->xvec[i]);
6374     }
6375 #endif
6376     __skb_ext_put(old);
6377     return new;
6378 }
6379 
6380 /**
6381  * __skb_ext_set - attach the specified extension storage to this skb
6382  * @skb: buffer
6383  * @id: extension id
6384  * @ext: extension storage previously allocated via __skb_ext_alloc()
6385  *
6386  * Existing extensions, if any, are cleared.
6387  *
6388  * Returns the pointer to the extension.
6389  */
6390 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6391             struct skb_ext *ext)
6392 {
6393     unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6394 
6395     skb_ext_put(skb);
6396     newlen = newoff + skb_ext_type_len[id];
6397     ext->chunks = newlen;
6398     ext->offset[id] = newoff;
6399     skb->extensions = ext;
6400     skb->active_extensions = 1 << id;
6401     return skb_ext_get_ptr(ext, id);
6402 }
6403 
6404 /**
6405  * skb_ext_add - allocate space for given extension, COW if needed
6406  * @skb: buffer
6407  * @id: extension to allocate space for
6408  *
6409  * Allocates enough space for the given extension.
6410  * If the extension is already present, a pointer to that extension
6411  * is returned.
6412  *
6413  * If the skb was cloned, COW applies and the returned memory can be
6414  * modified without changing the extension space of clones buffers.
6415  *
6416  * Returns pointer to the extension or NULL on allocation failure.
6417  */
6418 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6419 {
6420     struct skb_ext *new, *old = NULL;
6421     unsigned int newlen, newoff;
6422 
6423     if (skb->active_extensions) {
6424         old = skb->extensions;
6425 
6426         new = skb_ext_maybe_cow(old, skb->active_extensions);
6427         if (!new)
6428             return NULL;
6429 
6430         if (__skb_ext_exist(new, id))
6431             goto set_active;
6432 
6433         newoff = new->chunks;
6434     } else {
6435         newoff = SKB_EXT_CHUNKSIZEOF(*new);
6436 
6437         new = __skb_ext_alloc(GFP_ATOMIC);
6438         if (!new)
6439             return NULL;
6440     }
6441 
6442     newlen = newoff + skb_ext_type_len[id];
6443     new->chunks = newlen;
6444     new->offset[id] = newoff;
6445 set_active:
6446     skb->slow_gro = 1;
6447     skb->extensions = new;
6448     skb->active_extensions |= 1 << id;
6449     return skb_ext_get_ptr(new, id);
6450 }
6451 EXPORT_SYMBOL(skb_ext_add);
6452 
6453 #ifdef CONFIG_XFRM
6454 static void skb_ext_put_sp(struct sec_path *sp)
6455 {
6456     unsigned int i;
6457 
6458     for (i = 0; i < sp->len; i++)
6459         xfrm_state_put(sp->xvec[i]);
6460 }
6461 #endif
6462 
6463 #ifdef CONFIG_MCTP_FLOWS
6464 static void skb_ext_put_mctp(struct mctp_flow *flow)
6465 {
6466     if (flow->key)
6467         mctp_key_unref(flow->key);
6468 }
6469 #endif
6470 
6471 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6472 {
6473     struct skb_ext *ext = skb->extensions;
6474 
6475     skb->active_extensions &= ~(1 << id);
6476     if (skb->active_extensions == 0) {
6477         skb->extensions = NULL;
6478         __skb_ext_put(ext);
6479 #ifdef CONFIG_XFRM
6480     } else if (id == SKB_EXT_SEC_PATH &&
6481            refcount_read(&ext->refcnt) == 1) {
6482         struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6483 
6484         skb_ext_put_sp(sp);
6485         sp->len = 0;
6486 #endif
6487     }
6488 }
6489 EXPORT_SYMBOL(__skb_ext_del);
6490 
6491 void __skb_ext_put(struct skb_ext *ext)
6492 {
6493     /* If this is last clone, nothing can increment
6494      * it after check passes.  Avoids one atomic op.
6495      */
6496     if (refcount_read(&ext->refcnt) == 1)
6497         goto free_now;
6498 
6499     if (!refcount_dec_and_test(&ext->refcnt))
6500         return;
6501 free_now:
6502 #ifdef CONFIG_XFRM
6503     if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6504         skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6505 #endif
6506 #ifdef CONFIG_MCTP_FLOWS
6507     if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6508         skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6509 #endif
6510 
6511     kmem_cache_free(skbuff_ext_cache, ext);
6512 }
6513 EXPORT_SYMBOL(__skb_ext_put);
6514 #endif /* CONFIG_SKB_EXTENSIONS */
6515 
6516 /**
6517  * skb_attempt_defer_free - queue skb for remote freeing
6518  * @skb: buffer
6519  *
6520  * Put @skb in a per-cpu list, using the cpu which
6521  * allocated the skb/pages to reduce false sharing
6522  * and memory zone spinlock contention.
6523  */
6524 void skb_attempt_defer_free(struct sk_buff *skb)
6525 {
6526     int cpu = skb->alloc_cpu;
6527     struct softnet_data *sd;
6528     unsigned long flags;
6529     unsigned int defer_max;
6530     bool kick;
6531 
6532     if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6533         !cpu_online(cpu) ||
6534         cpu == raw_smp_processor_id()) {
6535 nodefer:    __kfree_skb(skb);
6536         return;
6537     }
6538 
6539     sd = &per_cpu(softnet_data, cpu);
6540     defer_max = READ_ONCE(sysctl_skb_defer_max);
6541     if (READ_ONCE(sd->defer_count) >= defer_max)
6542         goto nodefer;
6543 
6544     spin_lock_irqsave(&sd->defer_lock, flags);
6545     /* Send an IPI every time queue reaches half capacity. */
6546     kick = sd->defer_count == (defer_max >> 1);
6547     /* Paired with the READ_ONCE() few lines above */
6548     WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6549 
6550     skb->next = sd->defer_list;
6551     /* Paired with READ_ONCE() in skb_defer_free_flush() */
6552     WRITE_ONCE(sd->defer_list, skb);
6553     spin_unlock_irqrestore(&sd->defer_lock, flags);
6554 
6555     /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6556      * if we are unlucky enough (this seems very unlikely).
6557      */
6558     if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6559         smp_call_function_single_async(cpu, &sd->defer_csd);
6560 }