Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  *      NET3    Protocol independent device support routines.
0004  *
0005  *  Derived from the non IP parts of dev.c 1.0.19
0006  *              Authors:    Ross Biro
0007  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
0008  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
0009  *
0010  *  Additional Authors:
0011  *      Florian la Roche <rzsfl@rz.uni-sb.de>
0012  *      Alan Cox <gw4pts@gw4pts.ampr.org>
0013  *      David Hinds <dahinds@users.sourceforge.net>
0014  *      Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
0015  *      Adam Sulmicki <adam@cfar.umd.edu>
0016  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
0017  *
0018  *  Changes:
0019  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
0020  *                                      to 2 if register_netdev gets called
0021  *                                      before net_dev_init & also removed a
0022  *                                      few lines of code in the process.
0023  *      Alan Cox    :   device private ioctl copies fields back.
0024  *      Alan Cox    :   Transmit queue code does relevant
0025  *                  stunts to keep the queue safe.
0026  *      Alan Cox    :   Fixed double lock.
0027  *      Alan Cox    :   Fixed promisc NULL pointer trap
0028  *      ????????    :   Support the full private ioctl range
0029  *      Alan Cox    :   Moved ioctl permission check into
0030  *                  drivers
0031  *      Tim Kordas  :   SIOCADDMULTI/SIOCDELMULTI
0032  *      Alan Cox    :   100 backlog just doesn't cut it when
0033  *                  you start doing multicast video 8)
0034  *      Alan Cox    :   Rewrote net_bh and list manager.
0035  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
0036  *      Alan Cox    :   Took out transmit every packet pass
0037  *                  Saved a few bytes in the ioctl handler
0038  *      Alan Cox    :   Network driver sets packet type before
0039  *                  calling netif_rx. Saves a function
0040  *                  call a packet.
0041  *      Alan Cox    :   Hashed net_bh()
0042  *      Richard Kooijman:   Timestamp fixes.
0043  *      Alan Cox    :   Wrong field in SIOCGIFDSTADDR
0044  *      Alan Cox    :   Device lock protection.
0045  *              Alan Cox        :       Fixed nasty side effect of device close
0046  *                  changes.
0047  *      Rudi Cilibrasi  :   Pass the right thing to
0048  *                  set_mac_address()
0049  *      Dave Miller :   32bit quantity for the device lock to
0050  *                  make it work out on a Sparc.
0051  *      Bjorn Ekwall    :   Added KERNELD hack.
0052  *      Alan Cox    :   Cleaned up the backlog initialise.
0053  *      Craig Metz  :   SIOCGIFCONF fix if space for under
0054  *                  1 device.
0055  *      Thomas Bogendoerfer :   Return ENODEV for dev_open, if there
0056  *                  is no device open function.
0057  *      Andi Kleen  :   Fix error reporting for SIOCGIFCONF
0058  *      Michael Chastain    :   Fix signed/unsigned for SIOCGIFCONF
0059  *      Cyrus Durgin    :   Cleaned for KMOD
0060  *      Adam Sulmicki   :   Bug Fix : Network Device Unload
0061  *                  A network device unload needs to purge
0062  *                  the backlog queue.
0063  *  Paul Rusty Russell  :   SIOCSIFNAME
0064  *              Pekka Riikonen  :   Netdev boot-time settings code
0065  *              Andrew Morton   :       Make unregister_netdevice wait
0066  *                                      indefinitely on dev->refcnt
0067  *              J Hadi Salim    :       - Backlog queue sampling
0068  *                      - netif_rx() feedback
0069  */
0070 
0071 #include <linux/uaccess.h>
0072 #include <linux/bitops.h>
0073 #include <linux/capability.h>
0074 #include <linux/cpu.h>
0075 #include <linux/types.h>
0076 #include <linux/kernel.h>
0077 #include <linux/hash.h>
0078 #include <linux/slab.h>
0079 #include <linux/sched.h>
0080 #include <linux/sched/mm.h>
0081 #include <linux/mutex.h>
0082 #include <linux/rwsem.h>
0083 #include <linux/string.h>
0084 #include <linux/mm.h>
0085 #include <linux/socket.h>
0086 #include <linux/sockios.h>
0087 #include <linux/errno.h>
0088 #include <linux/interrupt.h>
0089 #include <linux/if_ether.h>
0090 #include <linux/netdevice.h>
0091 #include <linux/etherdevice.h>
0092 #include <linux/ethtool.h>
0093 #include <linux/skbuff.h>
0094 #include <linux/kthread.h>
0095 #include <linux/bpf.h>
0096 #include <linux/bpf_trace.h>
0097 #include <net/net_namespace.h>
0098 #include <net/sock.h>
0099 #include <net/busy_poll.h>
0100 #include <linux/rtnetlink.h>
0101 #include <linux/stat.h>
0102 #include <net/dsa.h>
0103 #include <net/dst.h>
0104 #include <net/dst_metadata.h>
0105 #include <net/gro.h>
0106 #include <net/pkt_sched.h>
0107 #include <net/pkt_cls.h>
0108 #include <net/checksum.h>
0109 #include <net/xfrm.h>
0110 #include <linux/highmem.h>
0111 #include <linux/init.h>
0112 #include <linux/module.h>
0113 #include <linux/netpoll.h>
0114 #include <linux/rcupdate.h>
0115 #include <linux/delay.h>
0116 #include <net/iw_handler.h>
0117 #include <asm/current.h>
0118 #include <linux/audit.h>
0119 #include <linux/dmaengine.h>
0120 #include <linux/err.h>
0121 #include <linux/ctype.h>
0122 #include <linux/if_arp.h>
0123 #include <linux/if_vlan.h>
0124 #include <linux/ip.h>
0125 #include <net/ip.h>
0126 #include <net/mpls.h>
0127 #include <linux/ipv6.h>
0128 #include <linux/in.h>
0129 #include <linux/jhash.h>
0130 #include <linux/random.h>
0131 #include <trace/events/napi.h>
0132 #include <trace/events/net.h>
0133 #include <trace/events/skb.h>
0134 #include <trace/events/qdisc.h>
0135 #include <linux/inetdevice.h>
0136 #include <linux/cpu_rmap.h>
0137 #include <linux/static_key.h>
0138 #include <linux/hashtable.h>
0139 #include <linux/vmalloc.h>
0140 #include <linux/if_macvlan.h>
0141 #include <linux/errqueue.h>
0142 #include <linux/hrtimer.h>
0143 #include <linux/netfilter_netdev.h>
0144 #include <linux/crash_dump.h>
0145 #include <linux/sctp.h>
0146 #include <net/udp_tunnel.h>
0147 #include <linux/net_namespace.h>
0148 #include <linux/indirect_call_wrapper.h>
0149 #include <net/devlink.h>
0150 #include <linux/pm_runtime.h>
0151 #include <linux/prandom.h>
0152 #include <linux/once_lite.h>
0153 
0154 #include "dev.h"
0155 #include "net-sysfs.h"
0156 
0157 
0158 static DEFINE_SPINLOCK(ptype_lock);
0159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
0160 struct list_head ptype_all __read_mostly;   /* Taps */
0161 
0162 static int netif_rx_internal(struct sk_buff *skb);
0163 static int call_netdevice_notifiers_info(unsigned long val,
0164                      struct netdev_notifier_info *info);
0165 static int call_netdevice_notifiers_extack(unsigned long val,
0166                        struct net_device *dev,
0167                        struct netlink_ext_ack *extack);
0168 static struct napi_struct *napi_by_id(unsigned int napi_id);
0169 
0170 /*
0171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
0172  * semaphore.
0173  *
0174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
0175  *
0176  * Writers must hold the rtnl semaphore while they loop through the
0177  * dev_base_head list, and hold dev_base_lock for writing when they do the
0178  * actual updates.  This allows pure readers to access the list even
0179  * while a writer is preparing to update it.
0180  *
0181  * To put it another way, dev_base_lock is held for writing only to
0182  * protect against pure readers; the rtnl semaphore provides the
0183  * protection against other writers.
0184  *
0185  * See, for example usages, register_netdevice() and
0186  * unregister_netdevice(), which must be called with the rtnl
0187  * semaphore held.
0188  */
0189 DEFINE_RWLOCK(dev_base_lock);
0190 EXPORT_SYMBOL(dev_base_lock);
0191 
0192 static DEFINE_MUTEX(ifalias_mutex);
0193 
0194 /* protects napi_hash addition/deletion and napi_gen_id */
0195 static DEFINE_SPINLOCK(napi_hash_lock);
0196 
0197 static unsigned int napi_gen_id = NR_CPUS;
0198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
0199 
0200 static DECLARE_RWSEM(devnet_rename_sem);
0201 
0202 static inline void dev_base_seq_inc(struct net *net)
0203 {
0204     while (++net->dev_base_seq == 0)
0205         ;
0206 }
0207 
0208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
0209 {
0210     unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
0211 
0212     return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
0213 }
0214 
0215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
0216 {
0217     return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
0218 }
0219 
0220 static inline void rps_lock_irqsave(struct softnet_data *sd,
0221                     unsigned long *flags)
0222 {
0223     if (IS_ENABLED(CONFIG_RPS))
0224         spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
0225     else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
0226         local_irq_save(*flags);
0227 }
0228 
0229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
0230 {
0231     if (IS_ENABLED(CONFIG_RPS))
0232         spin_lock_irq(&sd->input_pkt_queue.lock);
0233     else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
0234         local_irq_disable();
0235 }
0236 
0237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
0238                       unsigned long *flags)
0239 {
0240     if (IS_ENABLED(CONFIG_RPS))
0241         spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
0242     else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
0243         local_irq_restore(*flags);
0244 }
0245 
0246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
0247 {
0248     if (IS_ENABLED(CONFIG_RPS))
0249         spin_unlock_irq(&sd->input_pkt_queue.lock);
0250     else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
0251         local_irq_enable();
0252 }
0253 
0254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
0255                                const char *name)
0256 {
0257     struct netdev_name_node *name_node;
0258 
0259     name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
0260     if (!name_node)
0261         return NULL;
0262     INIT_HLIST_NODE(&name_node->hlist);
0263     name_node->dev = dev;
0264     name_node->name = name;
0265     return name_node;
0266 }
0267 
0268 static struct netdev_name_node *
0269 netdev_name_node_head_alloc(struct net_device *dev)
0270 {
0271     struct netdev_name_node *name_node;
0272 
0273     name_node = netdev_name_node_alloc(dev, dev->name);
0274     if (!name_node)
0275         return NULL;
0276     INIT_LIST_HEAD(&name_node->list);
0277     return name_node;
0278 }
0279 
0280 static void netdev_name_node_free(struct netdev_name_node *name_node)
0281 {
0282     kfree(name_node);
0283 }
0284 
0285 static void netdev_name_node_add(struct net *net,
0286                  struct netdev_name_node *name_node)
0287 {
0288     hlist_add_head_rcu(&name_node->hlist,
0289                dev_name_hash(net, name_node->name));
0290 }
0291 
0292 static void netdev_name_node_del(struct netdev_name_node *name_node)
0293 {
0294     hlist_del_rcu(&name_node->hlist);
0295 }
0296 
0297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
0298                             const char *name)
0299 {
0300     struct hlist_head *head = dev_name_hash(net, name);
0301     struct netdev_name_node *name_node;
0302 
0303     hlist_for_each_entry(name_node, head, hlist)
0304         if (!strcmp(name_node->name, name))
0305             return name_node;
0306     return NULL;
0307 }
0308 
0309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
0310                                 const char *name)
0311 {
0312     struct hlist_head *head = dev_name_hash(net, name);
0313     struct netdev_name_node *name_node;
0314 
0315     hlist_for_each_entry_rcu(name_node, head, hlist)
0316         if (!strcmp(name_node->name, name))
0317             return name_node;
0318     return NULL;
0319 }
0320 
0321 bool netdev_name_in_use(struct net *net, const char *name)
0322 {
0323     return netdev_name_node_lookup(net, name);
0324 }
0325 EXPORT_SYMBOL(netdev_name_in_use);
0326 
0327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
0328 {
0329     struct netdev_name_node *name_node;
0330     struct net *net = dev_net(dev);
0331 
0332     name_node = netdev_name_node_lookup(net, name);
0333     if (name_node)
0334         return -EEXIST;
0335     name_node = netdev_name_node_alloc(dev, name);
0336     if (!name_node)
0337         return -ENOMEM;
0338     netdev_name_node_add(net, name_node);
0339     /* The node that holds dev->name acts as a head of per-device list. */
0340     list_add_tail(&name_node->list, &dev->name_node->list);
0341 
0342     return 0;
0343 }
0344 
0345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
0346 {
0347     list_del(&name_node->list);
0348     netdev_name_node_del(name_node);
0349     kfree(name_node->name);
0350     netdev_name_node_free(name_node);
0351 }
0352 
0353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
0354 {
0355     struct netdev_name_node *name_node;
0356     struct net *net = dev_net(dev);
0357 
0358     name_node = netdev_name_node_lookup(net, name);
0359     if (!name_node)
0360         return -ENOENT;
0361     /* lookup might have found our primary name or a name belonging
0362      * to another device.
0363      */
0364     if (name_node == dev->name_node || name_node->dev != dev)
0365         return -EINVAL;
0366 
0367     __netdev_name_node_alt_destroy(name_node);
0368 
0369     return 0;
0370 }
0371 
0372 static void netdev_name_node_alt_flush(struct net_device *dev)
0373 {
0374     struct netdev_name_node *name_node, *tmp;
0375 
0376     list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
0377         __netdev_name_node_alt_destroy(name_node);
0378 }
0379 
0380 /* Device list insertion */
0381 static void list_netdevice(struct net_device *dev)
0382 {
0383     struct net *net = dev_net(dev);
0384 
0385     ASSERT_RTNL();
0386 
0387     write_lock(&dev_base_lock);
0388     list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
0389     netdev_name_node_add(net, dev->name_node);
0390     hlist_add_head_rcu(&dev->index_hlist,
0391                dev_index_hash(net, dev->ifindex));
0392     write_unlock(&dev_base_lock);
0393 
0394     dev_base_seq_inc(net);
0395 }
0396 
0397 /* Device list removal
0398  * caller must respect a RCU grace period before freeing/reusing dev
0399  */
0400 static void unlist_netdevice(struct net_device *dev, bool lock)
0401 {
0402     ASSERT_RTNL();
0403 
0404     /* Unlink dev from the device chain */
0405     if (lock)
0406         write_lock(&dev_base_lock);
0407     list_del_rcu(&dev->dev_list);
0408     netdev_name_node_del(dev->name_node);
0409     hlist_del_rcu(&dev->index_hlist);
0410     if (lock)
0411         write_unlock(&dev_base_lock);
0412 
0413     dev_base_seq_inc(dev_net(dev));
0414 }
0415 
0416 /*
0417  *  Our notifier list
0418  */
0419 
0420 static RAW_NOTIFIER_HEAD(netdev_chain);
0421 
0422 /*
0423  *  Device drivers call our routines to queue packets here. We empty the
0424  *  queue in the local softnet handler.
0425  */
0426 
0427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
0428 EXPORT_PER_CPU_SYMBOL(softnet_data);
0429 
0430 #ifdef CONFIG_LOCKDEP
0431 /*
0432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
0433  * according to dev->type
0434  */
0435 static const unsigned short netdev_lock_type[] = {
0436      ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
0437      ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
0438      ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
0439      ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
0440      ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
0441      ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
0442      ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
0443      ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
0444      ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
0445      ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
0446      ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
0447      ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
0448      ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
0449      ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
0450      ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
0451 
0452 static const char *const netdev_lock_name[] = {
0453     "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
0454     "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
0455     "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
0456     "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
0457     "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
0458     "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
0459     "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
0460     "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
0461     "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
0462     "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
0463     "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
0464     "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
0465     "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
0466     "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
0467     "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
0468 
0469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
0470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
0471 
0472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
0473 {
0474     int i;
0475 
0476     for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
0477         if (netdev_lock_type[i] == dev_type)
0478             return i;
0479     /* the last key is used by default */
0480     return ARRAY_SIZE(netdev_lock_type) - 1;
0481 }
0482 
0483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
0484                          unsigned short dev_type)
0485 {
0486     int i;
0487 
0488     i = netdev_lock_pos(dev_type);
0489     lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
0490                    netdev_lock_name[i]);
0491 }
0492 
0493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
0494 {
0495     int i;
0496 
0497     i = netdev_lock_pos(dev->type);
0498     lockdep_set_class_and_name(&dev->addr_list_lock,
0499                    &netdev_addr_lock_key[i],
0500                    netdev_lock_name[i]);
0501 }
0502 #else
0503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
0504                          unsigned short dev_type)
0505 {
0506 }
0507 
0508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
0509 {
0510 }
0511 #endif
0512 
0513 /*******************************************************************************
0514  *
0515  *      Protocol management and registration routines
0516  *
0517  *******************************************************************************/
0518 
0519 
0520 /*
0521  *  Add a protocol ID to the list. Now that the input handler is
0522  *  smarter we can dispense with all the messy stuff that used to be
0523  *  here.
0524  *
0525  *  BEWARE!!! Protocol handlers, mangling input packets,
0526  *  MUST BE last in hash buckets and checking protocol handlers
0527  *  MUST start from promiscuous ptype_all chain in net_bh.
0528  *  It is true now, do not change it.
0529  *  Explanation follows: if protocol handler, mangling packet, will
0530  *  be the first on list, it is not able to sense, that packet
0531  *  is cloned and should be copied-on-write, so that it will
0532  *  change it and subsequent readers will get broken packet.
0533  *                          --ANK (980803)
0534  */
0535 
0536 static inline struct list_head *ptype_head(const struct packet_type *pt)
0537 {
0538     if (pt->type == htons(ETH_P_ALL))
0539         return pt->dev ? &pt->dev->ptype_all : &ptype_all;
0540     else
0541         return pt->dev ? &pt->dev->ptype_specific :
0542                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
0543 }
0544 
0545 /**
0546  *  dev_add_pack - add packet handler
0547  *  @pt: packet type declaration
0548  *
0549  *  Add a protocol handler to the networking stack. The passed &packet_type
0550  *  is linked into kernel lists and may not be freed until it has been
0551  *  removed from the kernel lists.
0552  *
0553  *  This call does not sleep therefore it can not
0554  *  guarantee all CPU's that are in middle of receiving packets
0555  *  will see the new packet type (until the next received packet).
0556  */
0557 
0558 void dev_add_pack(struct packet_type *pt)
0559 {
0560     struct list_head *head = ptype_head(pt);
0561 
0562     spin_lock(&ptype_lock);
0563     list_add_rcu(&pt->list, head);
0564     spin_unlock(&ptype_lock);
0565 }
0566 EXPORT_SYMBOL(dev_add_pack);
0567 
0568 /**
0569  *  __dev_remove_pack    - remove packet handler
0570  *  @pt: packet type declaration
0571  *
0572  *  Remove a protocol handler that was previously added to the kernel
0573  *  protocol handlers by dev_add_pack(). The passed &packet_type is removed
0574  *  from the kernel lists and can be freed or reused once this function
0575  *  returns.
0576  *
0577  *      The packet type might still be in use by receivers
0578  *  and must not be freed until after all the CPU's have gone
0579  *  through a quiescent state.
0580  */
0581 void __dev_remove_pack(struct packet_type *pt)
0582 {
0583     struct list_head *head = ptype_head(pt);
0584     struct packet_type *pt1;
0585 
0586     spin_lock(&ptype_lock);
0587 
0588     list_for_each_entry(pt1, head, list) {
0589         if (pt == pt1) {
0590             list_del_rcu(&pt->list);
0591             goto out;
0592         }
0593     }
0594 
0595     pr_warn("dev_remove_pack: %p not found\n", pt);
0596 out:
0597     spin_unlock(&ptype_lock);
0598 }
0599 EXPORT_SYMBOL(__dev_remove_pack);
0600 
0601 /**
0602  *  dev_remove_pack  - remove packet handler
0603  *  @pt: packet type declaration
0604  *
0605  *  Remove a protocol handler that was previously added to the kernel
0606  *  protocol handlers by dev_add_pack(). The passed &packet_type is removed
0607  *  from the kernel lists and can be freed or reused once this function
0608  *  returns.
0609  *
0610  *  This call sleeps to guarantee that no CPU is looking at the packet
0611  *  type after return.
0612  */
0613 void dev_remove_pack(struct packet_type *pt)
0614 {
0615     __dev_remove_pack(pt);
0616 
0617     synchronize_net();
0618 }
0619 EXPORT_SYMBOL(dev_remove_pack);
0620 
0621 
0622 /*******************************************************************************
0623  *
0624  *              Device Interface Subroutines
0625  *
0626  *******************************************************************************/
0627 
0628 /**
0629  *  dev_get_iflink  - get 'iflink' value of a interface
0630  *  @dev: targeted interface
0631  *
0632  *  Indicates the ifindex the interface is linked to.
0633  *  Physical interfaces have the same 'ifindex' and 'iflink' values.
0634  */
0635 
0636 int dev_get_iflink(const struct net_device *dev)
0637 {
0638     if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
0639         return dev->netdev_ops->ndo_get_iflink(dev);
0640 
0641     return dev->ifindex;
0642 }
0643 EXPORT_SYMBOL(dev_get_iflink);
0644 
0645 /**
0646  *  dev_fill_metadata_dst - Retrieve tunnel egress information.
0647  *  @dev: targeted interface
0648  *  @skb: The packet.
0649  *
0650  *  For better visibility of tunnel traffic OVS needs to retrieve
0651  *  egress tunnel information for a packet. Following API allows
0652  *  user to get this info.
0653  */
0654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
0655 {
0656     struct ip_tunnel_info *info;
0657 
0658     if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
0659         return -EINVAL;
0660 
0661     info = skb_tunnel_info_unclone(skb);
0662     if (!info)
0663         return -ENOMEM;
0664     if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
0665         return -EINVAL;
0666 
0667     return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
0668 }
0669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
0670 
0671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
0672 {
0673     int k = stack->num_paths++;
0674 
0675     if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
0676         return NULL;
0677 
0678     return &stack->path[k];
0679 }
0680 
0681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
0682               struct net_device_path_stack *stack)
0683 {
0684     const struct net_device *last_dev;
0685     struct net_device_path_ctx ctx = {
0686         .dev    = dev,
0687     };
0688     struct net_device_path *path;
0689     int ret = 0;
0690 
0691     memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
0692     stack->num_paths = 0;
0693     while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
0694         last_dev = ctx.dev;
0695         path = dev_fwd_path(stack);
0696         if (!path)
0697             return -1;
0698 
0699         memset(path, 0, sizeof(struct net_device_path));
0700         ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
0701         if (ret < 0)
0702             return -1;
0703 
0704         if (WARN_ON_ONCE(last_dev == ctx.dev))
0705             return -1;
0706     }
0707 
0708     if (!ctx.dev)
0709         return ret;
0710 
0711     path = dev_fwd_path(stack);
0712     if (!path)
0713         return -1;
0714     path->type = DEV_PATH_ETHERNET;
0715     path->dev = ctx.dev;
0716 
0717     return ret;
0718 }
0719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
0720 
0721 /**
0722  *  __dev_get_by_name   - find a device by its name
0723  *  @net: the applicable net namespace
0724  *  @name: name to find
0725  *
0726  *  Find an interface by name. Must be called under RTNL semaphore
0727  *  or @dev_base_lock. If the name is found a pointer to the device
0728  *  is returned. If the name is not found then %NULL is returned. The
0729  *  reference counters are not incremented so the caller must be
0730  *  careful with locks.
0731  */
0732 
0733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
0734 {
0735     struct netdev_name_node *node_name;
0736 
0737     node_name = netdev_name_node_lookup(net, name);
0738     return node_name ? node_name->dev : NULL;
0739 }
0740 EXPORT_SYMBOL(__dev_get_by_name);
0741 
0742 /**
0743  * dev_get_by_name_rcu  - find a device by its name
0744  * @net: the applicable net namespace
0745  * @name: name to find
0746  *
0747  * Find an interface by name.
0748  * If the name is found a pointer to the device is returned.
0749  * If the name is not found then %NULL is returned.
0750  * The reference counters are not incremented so the caller must be
0751  * careful with locks. The caller must hold RCU lock.
0752  */
0753 
0754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
0755 {
0756     struct netdev_name_node *node_name;
0757 
0758     node_name = netdev_name_node_lookup_rcu(net, name);
0759     return node_name ? node_name->dev : NULL;
0760 }
0761 EXPORT_SYMBOL(dev_get_by_name_rcu);
0762 
0763 /**
0764  *  dev_get_by_name     - find a device by its name
0765  *  @net: the applicable net namespace
0766  *  @name: name to find
0767  *
0768  *  Find an interface by name. This can be called from any
0769  *  context and does its own locking. The returned handle has
0770  *  the usage count incremented and the caller must use dev_put() to
0771  *  release it when it is no longer needed. %NULL is returned if no
0772  *  matching device is found.
0773  */
0774 
0775 struct net_device *dev_get_by_name(struct net *net, const char *name)
0776 {
0777     struct net_device *dev;
0778 
0779     rcu_read_lock();
0780     dev = dev_get_by_name_rcu(net, name);
0781     dev_hold(dev);
0782     rcu_read_unlock();
0783     return dev;
0784 }
0785 EXPORT_SYMBOL(dev_get_by_name);
0786 
0787 /**
0788  *  __dev_get_by_index - find a device by its ifindex
0789  *  @net: the applicable net namespace
0790  *  @ifindex: index of device
0791  *
0792  *  Search for an interface by index. Returns %NULL if the device
0793  *  is not found or a pointer to the device. The device has not
0794  *  had its reference counter increased so the caller must be careful
0795  *  about locking. The caller must hold either the RTNL semaphore
0796  *  or @dev_base_lock.
0797  */
0798 
0799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
0800 {
0801     struct net_device *dev;
0802     struct hlist_head *head = dev_index_hash(net, ifindex);
0803 
0804     hlist_for_each_entry(dev, head, index_hlist)
0805         if (dev->ifindex == ifindex)
0806             return dev;
0807 
0808     return NULL;
0809 }
0810 EXPORT_SYMBOL(__dev_get_by_index);
0811 
0812 /**
0813  *  dev_get_by_index_rcu - find a device by its ifindex
0814  *  @net: the applicable net namespace
0815  *  @ifindex: index of device
0816  *
0817  *  Search for an interface by index. Returns %NULL if the device
0818  *  is not found or a pointer to the device. The device has not
0819  *  had its reference counter increased so the caller must be careful
0820  *  about locking. The caller must hold RCU lock.
0821  */
0822 
0823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
0824 {
0825     struct net_device *dev;
0826     struct hlist_head *head = dev_index_hash(net, ifindex);
0827 
0828     hlist_for_each_entry_rcu(dev, head, index_hlist)
0829         if (dev->ifindex == ifindex)
0830             return dev;
0831 
0832     return NULL;
0833 }
0834 EXPORT_SYMBOL(dev_get_by_index_rcu);
0835 
0836 
0837 /**
0838  *  dev_get_by_index - find a device by its ifindex
0839  *  @net: the applicable net namespace
0840  *  @ifindex: index of device
0841  *
0842  *  Search for an interface by index. Returns NULL if the device
0843  *  is not found or a pointer to the device. The device returned has
0844  *  had a reference added and the pointer is safe until the user calls
0845  *  dev_put to indicate they have finished with it.
0846  */
0847 
0848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
0849 {
0850     struct net_device *dev;
0851 
0852     rcu_read_lock();
0853     dev = dev_get_by_index_rcu(net, ifindex);
0854     dev_hold(dev);
0855     rcu_read_unlock();
0856     return dev;
0857 }
0858 EXPORT_SYMBOL(dev_get_by_index);
0859 
0860 /**
0861  *  dev_get_by_napi_id - find a device by napi_id
0862  *  @napi_id: ID of the NAPI struct
0863  *
0864  *  Search for an interface by NAPI ID. Returns %NULL if the device
0865  *  is not found or a pointer to the device. The device has not had
0866  *  its reference counter increased so the caller must be careful
0867  *  about locking. The caller must hold RCU lock.
0868  */
0869 
0870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
0871 {
0872     struct napi_struct *napi;
0873 
0874     WARN_ON_ONCE(!rcu_read_lock_held());
0875 
0876     if (napi_id < MIN_NAPI_ID)
0877         return NULL;
0878 
0879     napi = napi_by_id(napi_id);
0880 
0881     return napi ? napi->dev : NULL;
0882 }
0883 EXPORT_SYMBOL(dev_get_by_napi_id);
0884 
0885 /**
0886  *  netdev_get_name - get a netdevice name, knowing its ifindex.
0887  *  @net: network namespace
0888  *  @name: a pointer to the buffer where the name will be stored.
0889  *  @ifindex: the ifindex of the interface to get the name from.
0890  */
0891 int netdev_get_name(struct net *net, char *name, int ifindex)
0892 {
0893     struct net_device *dev;
0894     int ret;
0895 
0896     down_read(&devnet_rename_sem);
0897     rcu_read_lock();
0898 
0899     dev = dev_get_by_index_rcu(net, ifindex);
0900     if (!dev) {
0901         ret = -ENODEV;
0902         goto out;
0903     }
0904 
0905     strcpy(name, dev->name);
0906 
0907     ret = 0;
0908 out:
0909     rcu_read_unlock();
0910     up_read(&devnet_rename_sem);
0911     return ret;
0912 }
0913 
0914 /**
0915  *  dev_getbyhwaddr_rcu - find a device by its hardware address
0916  *  @net: the applicable net namespace
0917  *  @type: media type of device
0918  *  @ha: hardware address
0919  *
0920  *  Search for an interface by MAC address. Returns NULL if the device
0921  *  is not found or a pointer to the device.
0922  *  The caller must hold RCU or RTNL.
0923  *  The returned device has not had its ref count increased
0924  *  and the caller must therefore be careful about locking
0925  *
0926  */
0927 
0928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
0929                        const char *ha)
0930 {
0931     struct net_device *dev;
0932 
0933     for_each_netdev_rcu(net, dev)
0934         if (dev->type == type &&
0935             !memcmp(dev->dev_addr, ha, dev->addr_len))
0936             return dev;
0937 
0938     return NULL;
0939 }
0940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
0941 
0942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
0943 {
0944     struct net_device *dev, *ret = NULL;
0945 
0946     rcu_read_lock();
0947     for_each_netdev_rcu(net, dev)
0948         if (dev->type == type) {
0949             dev_hold(dev);
0950             ret = dev;
0951             break;
0952         }
0953     rcu_read_unlock();
0954     return ret;
0955 }
0956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
0957 
0958 /**
0959  *  __dev_get_by_flags - find any device with given flags
0960  *  @net: the applicable net namespace
0961  *  @if_flags: IFF_* values
0962  *  @mask: bitmask of bits in if_flags to check
0963  *
0964  *  Search for any interface with the given flags. Returns NULL if a device
0965  *  is not found or a pointer to the device. Must be called inside
0966  *  rtnl_lock(), and result refcount is unchanged.
0967  */
0968 
0969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
0970                       unsigned short mask)
0971 {
0972     struct net_device *dev, *ret;
0973 
0974     ASSERT_RTNL();
0975 
0976     ret = NULL;
0977     for_each_netdev(net, dev) {
0978         if (((dev->flags ^ if_flags) & mask) == 0) {
0979             ret = dev;
0980             break;
0981         }
0982     }
0983     return ret;
0984 }
0985 EXPORT_SYMBOL(__dev_get_by_flags);
0986 
0987 /**
0988  *  dev_valid_name - check if name is okay for network device
0989  *  @name: name string
0990  *
0991  *  Network device names need to be valid file names to
0992  *  allow sysfs to work.  We also disallow any kind of
0993  *  whitespace.
0994  */
0995 bool dev_valid_name(const char *name)
0996 {
0997     if (*name == '\0')
0998         return false;
0999     if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000         return false;
1001     if (!strcmp(name, ".") || !strcmp(name, ".."))
1002         return false;
1003 
1004     while (*name) {
1005         if (*name == '/' || *name == ':' || isspace(*name))
1006             return false;
1007         name++;
1008     }
1009     return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012 
1013 /**
1014  *  __dev_alloc_name - allocate a name for a device
1015  *  @net: network namespace to allocate the device name in
1016  *  @name: name format string
1017  *  @buf:  scratch buffer and result name string
1018  *
1019  *  Passed a format string - eg "lt%d" it will try and find a suitable
1020  *  id. It scans list of devices to build up a free map, then chooses
1021  *  the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *  while allocating the name and adding the device in order to avoid
1023  *  duplicates.
1024  *  Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *  Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030     int i = 0;
1031     const char *p;
1032     const int max_netdevices = 8*PAGE_SIZE;
1033     unsigned long *inuse;
1034     struct net_device *d;
1035 
1036     if (!dev_valid_name(name))
1037         return -EINVAL;
1038 
1039     p = strchr(name, '%');
1040     if (p) {
1041         /*
1042          * Verify the string as this thing may have come from
1043          * the user.  There must be either one "%d" and no other "%"
1044          * characters.
1045          */
1046         if (p[1] != 'd' || strchr(p + 2, '%'))
1047             return -EINVAL;
1048 
1049         /* Use one page as a bit array of possible slots */
1050         inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051         if (!inuse)
1052             return -ENOMEM;
1053 
1054         for_each_netdev(net, d) {
1055             struct netdev_name_node *name_node;
1056             list_for_each_entry(name_node, &d->name_node->list, list) {
1057                 if (!sscanf(name_node->name, name, &i))
1058                     continue;
1059                 if (i < 0 || i >= max_netdevices)
1060                     continue;
1061 
1062                 /*  avoid cases where sscanf is not exact inverse of printf */
1063                 snprintf(buf, IFNAMSIZ, name, i);
1064                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065                     __set_bit(i, inuse);
1066             }
1067             if (!sscanf(d->name, name, &i))
1068                 continue;
1069             if (i < 0 || i >= max_netdevices)
1070                 continue;
1071 
1072             /*  avoid cases where sscanf is not exact inverse of printf */
1073             snprintf(buf, IFNAMSIZ, name, i);
1074             if (!strncmp(buf, d->name, IFNAMSIZ))
1075                 __set_bit(i, inuse);
1076         }
1077 
1078         i = find_first_zero_bit(inuse, max_netdevices);
1079         free_page((unsigned long) inuse);
1080     }
1081 
1082     snprintf(buf, IFNAMSIZ, name, i);
1083     if (!netdev_name_in_use(net, buf))
1084         return i;
1085 
1086     /* It is possible to run out of possible slots
1087      * when the name is long and there isn't enough space left
1088      * for the digits, or if all bits are used.
1089      */
1090     return -ENFILE;
1091 }
1092 
1093 static int dev_alloc_name_ns(struct net *net,
1094                  struct net_device *dev,
1095                  const char *name)
1096 {
1097     char buf[IFNAMSIZ];
1098     int ret;
1099 
1100     BUG_ON(!net);
1101     ret = __dev_alloc_name(net, name, buf);
1102     if (ret >= 0)
1103         strlcpy(dev->name, buf, IFNAMSIZ);
1104     return ret;
1105 }
1106 
1107 /**
1108  *  dev_alloc_name - allocate a name for a device
1109  *  @dev: device
1110  *  @name: name format string
1111  *
1112  *  Passed a format string - eg "lt%d" it will try and find a suitable
1113  *  id. It scans list of devices to build up a free map, then chooses
1114  *  the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *  while allocating the name and adding the device in order to avoid
1116  *  duplicates.
1117  *  Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *  Returns the number of the unit assigned or a negative errno code.
1119  */
1120 
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123     return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126 
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128                   const char *name)
1129 {
1130     BUG_ON(!net);
1131 
1132     if (!dev_valid_name(name))
1133         return -EINVAL;
1134 
1135     if (strchr(name, '%'))
1136         return dev_alloc_name_ns(net, dev, name);
1137     else if (netdev_name_in_use(net, name))
1138         return -EEXIST;
1139     else if (dev->name != name)
1140         strlcpy(dev->name, name, IFNAMSIZ);
1141 
1142     return 0;
1143 }
1144 
1145 /**
1146  *  dev_change_name - change name of a device
1147  *  @dev: device
1148  *  @newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *  Change name of a device, can pass format strings "eth%d".
1151  *  for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155     unsigned char old_assign_type;
1156     char oldname[IFNAMSIZ];
1157     int err = 0;
1158     int ret;
1159     struct net *net;
1160 
1161     ASSERT_RTNL();
1162     BUG_ON(!dev_net(dev));
1163 
1164     net = dev_net(dev);
1165 
1166     /* Some auto-enslaved devices e.g. failover slaves are
1167      * special, as userspace might rename the device after
1168      * the interface had been brought up and running since
1169      * the point kernel initiated auto-enslavement. Allow
1170      * live name change even when these slave devices are
1171      * up and running.
1172      *
1173      * Typically, users of these auto-enslaving devices
1174      * don't actually care about slave name change, as
1175      * they are supposed to operate on master interface
1176      * directly.
1177      */
1178     if (dev->flags & IFF_UP &&
1179         likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1180         return -EBUSY;
1181 
1182     down_write(&devnet_rename_sem);
1183 
1184     if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1185         up_write(&devnet_rename_sem);
1186         return 0;
1187     }
1188 
1189     memcpy(oldname, dev->name, IFNAMSIZ);
1190 
1191     err = dev_get_valid_name(net, dev, newname);
1192     if (err < 0) {
1193         up_write(&devnet_rename_sem);
1194         return err;
1195     }
1196 
1197     if (oldname[0] && !strchr(oldname, '%'))
1198         netdev_info(dev, "renamed from %s\n", oldname);
1199 
1200     old_assign_type = dev->name_assign_type;
1201     dev->name_assign_type = NET_NAME_RENAMED;
1202 
1203 rollback:
1204     ret = device_rename(&dev->dev, dev->name);
1205     if (ret) {
1206         memcpy(dev->name, oldname, IFNAMSIZ);
1207         dev->name_assign_type = old_assign_type;
1208         up_write(&devnet_rename_sem);
1209         return ret;
1210     }
1211 
1212     up_write(&devnet_rename_sem);
1213 
1214     netdev_adjacent_rename_links(dev, oldname);
1215 
1216     write_lock(&dev_base_lock);
1217     netdev_name_node_del(dev->name_node);
1218     write_unlock(&dev_base_lock);
1219 
1220     synchronize_rcu();
1221 
1222     write_lock(&dev_base_lock);
1223     netdev_name_node_add(net, dev->name_node);
1224     write_unlock(&dev_base_lock);
1225 
1226     ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1227     ret = notifier_to_errno(ret);
1228 
1229     if (ret) {
1230         /* err >= 0 after dev_alloc_name() or stores the first errno */
1231         if (err >= 0) {
1232             err = ret;
1233             down_write(&devnet_rename_sem);
1234             memcpy(dev->name, oldname, IFNAMSIZ);
1235             memcpy(oldname, newname, IFNAMSIZ);
1236             dev->name_assign_type = old_assign_type;
1237             old_assign_type = NET_NAME_RENAMED;
1238             goto rollback;
1239         } else {
1240             netdev_err(dev, "name change rollback failed: %d\n",
1241                    ret);
1242         }
1243     }
1244 
1245     return err;
1246 }
1247 
1248 /**
1249  *  dev_set_alias - change ifalias of a device
1250  *  @dev: device
1251  *  @alias: name up to IFALIASZ
1252  *  @len: limit of bytes to copy from info
1253  *
1254  *  Set ifalias for a device,
1255  */
1256 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1257 {
1258     struct dev_ifalias *new_alias = NULL;
1259 
1260     if (len >= IFALIASZ)
1261         return -EINVAL;
1262 
1263     if (len) {
1264         new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1265         if (!new_alias)
1266             return -ENOMEM;
1267 
1268         memcpy(new_alias->ifalias, alias, len);
1269         new_alias->ifalias[len] = 0;
1270     }
1271 
1272     mutex_lock(&ifalias_mutex);
1273     new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1274                     mutex_is_locked(&ifalias_mutex));
1275     mutex_unlock(&ifalias_mutex);
1276 
1277     if (new_alias)
1278         kfree_rcu(new_alias, rcuhead);
1279 
1280     return len;
1281 }
1282 EXPORT_SYMBOL(dev_set_alias);
1283 
1284 /**
1285  *  dev_get_alias - get ifalias of a device
1286  *  @dev: device
1287  *  @name: buffer to store name of ifalias
1288  *  @len: size of buffer
1289  *
1290  *  get ifalias for a device.  Caller must make sure dev cannot go
1291  *  away,  e.g. rcu read lock or own a reference count to device.
1292  */
1293 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1294 {
1295     const struct dev_ifalias *alias;
1296     int ret = 0;
1297 
1298     rcu_read_lock();
1299     alias = rcu_dereference(dev->ifalias);
1300     if (alias)
1301         ret = snprintf(name, len, "%s", alias->ifalias);
1302     rcu_read_unlock();
1303 
1304     return ret;
1305 }
1306 
1307 /**
1308  *  netdev_features_change - device changes features
1309  *  @dev: device to cause notification
1310  *
1311  *  Called to indicate a device has changed features.
1312  */
1313 void netdev_features_change(struct net_device *dev)
1314 {
1315     call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1316 }
1317 EXPORT_SYMBOL(netdev_features_change);
1318 
1319 /**
1320  *  netdev_state_change - device changes state
1321  *  @dev: device to cause notification
1322  *
1323  *  Called to indicate a device has changed state. This function calls
1324  *  the notifier chains for netdev_chain and sends a NEWLINK message
1325  *  to the routing socket.
1326  */
1327 void netdev_state_change(struct net_device *dev)
1328 {
1329     if (dev->flags & IFF_UP) {
1330         struct netdev_notifier_change_info change_info = {
1331             .info.dev = dev,
1332         };
1333 
1334         call_netdevice_notifiers_info(NETDEV_CHANGE,
1335                           &change_info.info);
1336         rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1337     }
1338 }
1339 EXPORT_SYMBOL(netdev_state_change);
1340 
1341 /**
1342  * __netdev_notify_peers - notify network peers about existence of @dev,
1343  * to be called when rtnl lock is already held.
1344  * @dev: network device
1345  *
1346  * Generate traffic such that interested network peers are aware of
1347  * @dev, such as by generating a gratuitous ARP. This may be used when
1348  * a device wants to inform the rest of the network about some sort of
1349  * reconfiguration such as a failover event or virtual machine
1350  * migration.
1351  */
1352 void __netdev_notify_peers(struct net_device *dev)
1353 {
1354     ASSERT_RTNL();
1355     call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1356     call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1357 }
1358 EXPORT_SYMBOL(__netdev_notify_peers);
1359 
1360 /**
1361  * netdev_notify_peers - notify network peers about existence of @dev
1362  * @dev: network device
1363  *
1364  * Generate traffic such that interested network peers are aware of
1365  * @dev, such as by generating a gratuitous ARP. This may be used when
1366  * a device wants to inform the rest of the network about some sort of
1367  * reconfiguration such as a failover event or virtual machine
1368  * migration.
1369  */
1370 void netdev_notify_peers(struct net_device *dev)
1371 {
1372     rtnl_lock();
1373     __netdev_notify_peers(dev);
1374     rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377 
1378 static int napi_threaded_poll(void *data);
1379 
1380 static int napi_kthread_create(struct napi_struct *n)
1381 {
1382     int err = 0;
1383 
1384     /* Create and wake up the kthread once to put it in
1385      * TASK_INTERRUPTIBLE mode to avoid the blocked task
1386      * warning and work with loadavg.
1387      */
1388     n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1389                 n->dev->name, n->napi_id);
1390     if (IS_ERR(n->thread)) {
1391         err = PTR_ERR(n->thread);
1392         pr_err("kthread_run failed with err %d\n", err);
1393         n->thread = NULL;
1394     }
1395 
1396     return err;
1397 }
1398 
1399 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1400 {
1401     const struct net_device_ops *ops = dev->netdev_ops;
1402     int ret;
1403 
1404     ASSERT_RTNL();
1405     dev_addr_check(dev);
1406 
1407     if (!netif_device_present(dev)) {
1408         /* may be detached because parent is runtime-suspended */
1409         if (dev->dev.parent)
1410             pm_runtime_resume(dev->dev.parent);
1411         if (!netif_device_present(dev))
1412             return -ENODEV;
1413     }
1414 
1415     /* Block netpoll from trying to do any rx path servicing.
1416      * If we don't do this there is a chance ndo_poll_controller
1417      * or ndo_poll may be running while we open the device
1418      */
1419     netpoll_poll_disable(dev);
1420 
1421     ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1422     ret = notifier_to_errno(ret);
1423     if (ret)
1424         return ret;
1425 
1426     set_bit(__LINK_STATE_START, &dev->state);
1427 
1428     if (ops->ndo_validate_addr)
1429         ret = ops->ndo_validate_addr(dev);
1430 
1431     if (!ret && ops->ndo_open)
1432         ret = ops->ndo_open(dev);
1433 
1434     netpoll_poll_enable(dev);
1435 
1436     if (ret)
1437         clear_bit(__LINK_STATE_START, &dev->state);
1438     else {
1439         dev->flags |= IFF_UP;
1440         dev_set_rx_mode(dev);
1441         dev_activate(dev);
1442         add_device_randomness(dev->dev_addr, dev->addr_len);
1443     }
1444 
1445     return ret;
1446 }
1447 
1448 /**
1449  *  dev_open    - prepare an interface for use.
1450  *  @dev: device to open
1451  *  @extack: netlink extended ack
1452  *
1453  *  Takes a device from down to up state. The device's private open
1454  *  function is invoked and then the multicast lists are loaded. Finally
1455  *  the device is moved into the up state and a %NETDEV_UP message is
1456  *  sent to the netdev notifier chain.
1457  *
1458  *  Calling this function on an active interface is a nop. On a failure
1459  *  a negative errno code is returned.
1460  */
1461 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1462 {
1463     int ret;
1464 
1465     if (dev->flags & IFF_UP)
1466         return 0;
1467 
1468     ret = __dev_open(dev, extack);
1469     if (ret < 0)
1470         return ret;
1471 
1472     rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1473     call_netdevice_notifiers(NETDEV_UP, dev);
1474 
1475     return ret;
1476 }
1477 EXPORT_SYMBOL(dev_open);
1478 
1479 static void __dev_close_many(struct list_head *head)
1480 {
1481     struct net_device *dev;
1482 
1483     ASSERT_RTNL();
1484     might_sleep();
1485 
1486     list_for_each_entry(dev, head, close_list) {
1487         /* Temporarily disable netpoll until the interface is down */
1488         netpoll_poll_disable(dev);
1489 
1490         call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1491 
1492         clear_bit(__LINK_STATE_START, &dev->state);
1493 
1494         /* Synchronize to scheduled poll. We cannot touch poll list, it
1495          * can be even on different cpu. So just clear netif_running().
1496          *
1497          * dev->stop() will invoke napi_disable() on all of it's
1498          * napi_struct instances on this device.
1499          */
1500         smp_mb__after_atomic(); /* Commit netif_running(). */
1501     }
1502 
1503     dev_deactivate_many(head);
1504 
1505     list_for_each_entry(dev, head, close_list) {
1506         const struct net_device_ops *ops = dev->netdev_ops;
1507 
1508         /*
1509          *  Call the device specific close. This cannot fail.
1510          *  Only if device is UP
1511          *
1512          *  We allow it to be called even after a DETACH hot-plug
1513          *  event.
1514          */
1515         if (ops->ndo_stop)
1516             ops->ndo_stop(dev);
1517 
1518         dev->flags &= ~IFF_UP;
1519         netpoll_poll_enable(dev);
1520     }
1521 }
1522 
1523 static void __dev_close(struct net_device *dev)
1524 {
1525     LIST_HEAD(single);
1526 
1527     list_add(&dev->close_list, &single);
1528     __dev_close_many(&single);
1529     list_del(&single);
1530 }
1531 
1532 void dev_close_many(struct list_head *head, bool unlink)
1533 {
1534     struct net_device *dev, *tmp;
1535 
1536     /* Remove the devices that don't need to be closed */
1537     list_for_each_entry_safe(dev, tmp, head, close_list)
1538         if (!(dev->flags & IFF_UP))
1539             list_del_init(&dev->close_list);
1540 
1541     __dev_close_many(head);
1542 
1543     list_for_each_entry_safe(dev, tmp, head, close_list) {
1544         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1545         call_netdevice_notifiers(NETDEV_DOWN, dev);
1546         if (unlink)
1547             list_del_init(&dev->close_list);
1548     }
1549 }
1550 EXPORT_SYMBOL(dev_close_many);
1551 
1552 /**
1553  *  dev_close - shutdown an interface.
1554  *  @dev: device to shutdown
1555  *
1556  *  This function moves an active device into down state. A
1557  *  %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1558  *  is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1559  *  chain.
1560  */
1561 void dev_close(struct net_device *dev)
1562 {
1563     if (dev->flags & IFF_UP) {
1564         LIST_HEAD(single);
1565 
1566         list_add(&dev->close_list, &single);
1567         dev_close_many(&single, true);
1568         list_del(&single);
1569     }
1570 }
1571 EXPORT_SYMBOL(dev_close);
1572 
1573 
1574 /**
1575  *  dev_disable_lro - disable Large Receive Offload on a device
1576  *  @dev: device
1577  *
1578  *  Disable Large Receive Offload (LRO) on a net device.  Must be
1579  *  called under RTNL.  This is needed if received packets may be
1580  *  forwarded to another interface.
1581  */
1582 void dev_disable_lro(struct net_device *dev)
1583 {
1584     struct net_device *lower_dev;
1585     struct list_head *iter;
1586 
1587     dev->wanted_features &= ~NETIF_F_LRO;
1588     netdev_update_features(dev);
1589 
1590     if (unlikely(dev->features & NETIF_F_LRO))
1591         netdev_WARN(dev, "failed to disable LRO!\n");
1592 
1593     netdev_for_each_lower_dev(dev, lower_dev, iter)
1594         dev_disable_lro(lower_dev);
1595 }
1596 EXPORT_SYMBOL(dev_disable_lro);
1597 
1598 /**
1599  *  dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1600  *  @dev: device
1601  *
1602  *  Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1603  *  called under RTNL.  This is needed if Generic XDP is installed on
1604  *  the device.
1605  */
1606 static void dev_disable_gro_hw(struct net_device *dev)
1607 {
1608     dev->wanted_features &= ~NETIF_F_GRO_HW;
1609     netdev_update_features(dev);
1610 
1611     if (unlikely(dev->features & NETIF_F_GRO_HW))
1612         netdev_WARN(dev, "failed to disable GRO_HW!\n");
1613 }
1614 
1615 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1616 {
1617 #define N(val)                      \
1618     case NETDEV_##val:              \
1619         return "NETDEV_" __stringify(val);
1620     switch (cmd) {
1621     N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1622     N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1623     N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1624     N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1625     N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1626     N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1627     N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1628     N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1629     N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1630     N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1631     N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1632     }
1633 #undef N
1634     return "UNKNOWN_NETDEV_EVENT";
1635 }
1636 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1637 
1638 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1639                    struct net_device *dev)
1640 {
1641     struct netdev_notifier_info info = {
1642         .dev = dev,
1643     };
1644 
1645     return nb->notifier_call(nb, val, &info);
1646 }
1647 
1648 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1649                          struct net_device *dev)
1650 {
1651     int err;
1652 
1653     err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654     err = notifier_to_errno(err);
1655     if (err)
1656         return err;
1657 
1658     if (!(dev->flags & IFF_UP))
1659         return 0;
1660 
1661     call_netdevice_notifier(nb, NETDEV_UP, dev);
1662     return 0;
1663 }
1664 
1665 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1666                         struct net_device *dev)
1667 {
1668     if (dev->flags & IFF_UP) {
1669         call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670                     dev);
1671         call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1672     }
1673     call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674 }
1675 
1676 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1677                          struct net *net)
1678 {
1679     struct net_device *dev;
1680     int err;
1681 
1682     for_each_netdev(net, dev) {
1683         err = call_netdevice_register_notifiers(nb, dev);
1684         if (err)
1685             goto rollback;
1686     }
1687     return 0;
1688 
1689 rollback:
1690     for_each_netdev_continue_reverse(net, dev)
1691         call_netdevice_unregister_notifiers(nb, dev);
1692     return err;
1693 }
1694 
1695 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1696                             struct net *net)
1697 {
1698     struct net_device *dev;
1699 
1700     for_each_netdev(net, dev)
1701         call_netdevice_unregister_notifiers(nb, dev);
1702 }
1703 
1704 static int dev_boot_phase = 1;
1705 
1706 /**
1707  * register_netdevice_notifier - register a network notifier block
1708  * @nb: notifier
1709  *
1710  * Register a notifier to be called when network device events occur.
1711  * The notifier passed is linked into the kernel structures and must
1712  * not be reused until it has been unregistered. A negative errno code
1713  * is returned on a failure.
1714  *
1715  * When registered all registration and up events are replayed
1716  * to the new notifier to allow device to have a race free
1717  * view of the network device list.
1718  */
1719 
1720 int register_netdevice_notifier(struct notifier_block *nb)
1721 {
1722     struct net *net;
1723     int err;
1724 
1725     /* Close race with setup_net() and cleanup_net() */
1726     down_write(&pernet_ops_rwsem);
1727     rtnl_lock();
1728     err = raw_notifier_chain_register(&netdev_chain, nb);
1729     if (err)
1730         goto unlock;
1731     if (dev_boot_phase)
1732         goto unlock;
1733     for_each_net(net) {
1734         err = call_netdevice_register_net_notifiers(nb, net);
1735         if (err)
1736             goto rollback;
1737     }
1738 
1739 unlock:
1740     rtnl_unlock();
1741     up_write(&pernet_ops_rwsem);
1742     return err;
1743 
1744 rollback:
1745     for_each_net_continue_reverse(net)
1746         call_netdevice_unregister_net_notifiers(nb, net);
1747 
1748     raw_notifier_chain_unregister(&netdev_chain, nb);
1749     goto unlock;
1750 }
1751 EXPORT_SYMBOL(register_netdevice_notifier);
1752 
1753 /**
1754  * unregister_netdevice_notifier - unregister a network notifier block
1755  * @nb: notifier
1756  *
1757  * Unregister a notifier previously registered by
1758  * register_netdevice_notifier(). The notifier is unlinked into the
1759  * kernel structures and may then be reused. A negative errno code
1760  * is returned on a failure.
1761  *
1762  * After unregistering unregister and down device events are synthesized
1763  * for all devices on the device list to the removed notifier to remove
1764  * the need for special case cleanup code.
1765  */
1766 
1767 int unregister_netdevice_notifier(struct notifier_block *nb)
1768 {
1769     struct net *net;
1770     int err;
1771 
1772     /* Close race with setup_net() and cleanup_net() */
1773     down_write(&pernet_ops_rwsem);
1774     rtnl_lock();
1775     err = raw_notifier_chain_unregister(&netdev_chain, nb);
1776     if (err)
1777         goto unlock;
1778 
1779     for_each_net(net)
1780         call_netdevice_unregister_net_notifiers(nb, net);
1781 
1782 unlock:
1783     rtnl_unlock();
1784     up_write(&pernet_ops_rwsem);
1785     return err;
1786 }
1787 EXPORT_SYMBOL(unregister_netdevice_notifier);
1788 
1789 static int __register_netdevice_notifier_net(struct net *net,
1790                          struct notifier_block *nb,
1791                          bool ignore_call_fail)
1792 {
1793     int err;
1794 
1795     err = raw_notifier_chain_register(&net->netdev_chain, nb);
1796     if (err)
1797         return err;
1798     if (dev_boot_phase)
1799         return 0;
1800 
1801     err = call_netdevice_register_net_notifiers(nb, net);
1802     if (err && !ignore_call_fail)
1803         goto chain_unregister;
1804 
1805     return 0;
1806 
1807 chain_unregister:
1808     raw_notifier_chain_unregister(&net->netdev_chain, nb);
1809     return err;
1810 }
1811 
1812 static int __unregister_netdevice_notifier_net(struct net *net,
1813                            struct notifier_block *nb)
1814 {
1815     int err;
1816 
1817     err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1818     if (err)
1819         return err;
1820 
1821     call_netdevice_unregister_net_notifiers(nb, net);
1822     return 0;
1823 }
1824 
1825 /**
1826  * register_netdevice_notifier_net - register a per-netns network notifier block
1827  * @net: network namespace
1828  * @nb: notifier
1829  *
1830  * Register a notifier to be called when network device events occur.
1831  * The notifier passed is linked into the kernel structures and must
1832  * not be reused until it has been unregistered. A negative errno code
1833  * is returned on a failure.
1834  *
1835  * When registered all registration and up events are replayed
1836  * to the new notifier to allow device to have a race free
1837  * view of the network device list.
1838  */
1839 
1840 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1841 {
1842     int err;
1843 
1844     rtnl_lock();
1845     err = __register_netdevice_notifier_net(net, nb, false);
1846     rtnl_unlock();
1847     return err;
1848 }
1849 EXPORT_SYMBOL(register_netdevice_notifier_net);
1850 
1851 /**
1852  * unregister_netdevice_notifier_net - unregister a per-netns
1853  *                                     network notifier block
1854  * @net: network namespace
1855  * @nb: notifier
1856  *
1857  * Unregister a notifier previously registered by
1858  * register_netdevice_notifier(). The notifier is unlinked into the
1859  * kernel structures and may then be reused. A negative errno code
1860  * is returned on a failure.
1861  *
1862  * After unregistering unregister and down device events are synthesized
1863  * for all devices on the device list to the removed notifier to remove
1864  * the need for special case cleanup code.
1865  */
1866 
1867 int unregister_netdevice_notifier_net(struct net *net,
1868                       struct notifier_block *nb)
1869 {
1870     int err;
1871 
1872     rtnl_lock();
1873     err = __unregister_netdevice_notifier_net(net, nb);
1874     rtnl_unlock();
1875     return err;
1876 }
1877 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1878 
1879 int register_netdevice_notifier_dev_net(struct net_device *dev,
1880                     struct notifier_block *nb,
1881                     struct netdev_net_notifier *nn)
1882 {
1883     int err;
1884 
1885     rtnl_lock();
1886     err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1887     if (!err) {
1888         nn->nb = nb;
1889         list_add(&nn->list, &dev->net_notifier_list);
1890     }
1891     rtnl_unlock();
1892     return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1895 
1896 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1897                       struct notifier_block *nb,
1898                       struct netdev_net_notifier *nn)
1899 {
1900     int err;
1901 
1902     rtnl_lock();
1903     list_del(&nn->list);
1904     err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1905     rtnl_unlock();
1906     return err;
1907 }
1908 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1909 
1910 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1911                          struct net *net)
1912 {
1913     struct netdev_net_notifier *nn;
1914 
1915     list_for_each_entry(nn, &dev->net_notifier_list, list) {
1916         __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1917         __register_netdevice_notifier_net(net, nn->nb, true);
1918     }
1919 }
1920 
1921 /**
1922  *  call_netdevice_notifiers_info - call all network notifier blocks
1923  *  @val: value passed unmodified to notifier function
1924  *  @info: notifier information data
1925  *
1926  *  Call all network notifier blocks.  Parameters and return value
1927  *  are as for raw_notifier_call_chain().
1928  */
1929 
1930 static int call_netdevice_notifiers_info(unsigned long val,
1931                      struct netdev_notifier_info *info)
1932 {
1933     struct net *net = dev_net(info->dev);
1934     int ret;
1935 
1936     ASSERT_RTNL();
1937 
1938     /* Run per-netns notifier block chain first, then run the global one.
1939      * Hopefully, one day, the global one is going to be removed after
1940      * all notifier block registrators get converted to be per-netns.
1941      */
1942     ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1943     if (ret & NOTIFY_STOP_MASK)
1944         return ret;
1945     return raw_notifier_call_chain(&netdev_chain, val, info);
1946 }
1947 
1948 /**
1949  *  call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1950  *                                         for and rollback on error
1951  *  @val_up: value passed unmodified to notifier function
1952  *  @val_down: value passed unmodified to the notifier function when
1953  *             recovering from an error on @val_up
1954  *  @info: notifier information data
1955  *
1956  *  Call all per-netns network notifier blocks, but not notifier blocks on
1957  *  the global notifier chain. Parameters and return value are as for
1958  *  raw_notifier_call_chain_robust().
1959  */
1960 
1961 static int
1962 call_netdevice_notifiers_info_robust(unsigned long val_up,
1963                      unsigned long val_down,
1964                      struct netdev_notifier_info *info)
1965 {
1966     struct net *net = dev_net(info->dev);
1967 
1968     ASSERT_RTNL();
1969 
1970     return raw_notifier_call_chain_robust(&net->netdev_chain,
1971                           val_up, val_down, info);
1972 }
1973 
1974 static int call_netdevice_notifiers_extack(unsigned long val,
1975                        struct net_device *dev,
1976                        struct netlink_ext_ack *extack)
1977 {
1978     struct netdev_notifier_info info = {
1979         .dev = dev,
1980         .extack = extack,
1981     };
1982 
1983     return call_netdevice_notifiers_info(val, &info);
1984 }
1985 
1986 /**
1987  *  call_netdevice_notifiers - call all network notifier blocks
1988  *      @val: value passed unmodified to notifier function
1989  *      @dev: net_device pointer passed unmodified to notifier function
1990  *
1991  *  Call all network notifier blocks.  Parameters and return value
1992  *  are as for raw_notifier_call_chain().
1993  */
1994 
1995 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1996 {
1997     return call_netdevice_notifiers_extack(val, dev, NULL);
1998 }
1999 EXPORT_SYMBOL(call_netdevice_notifiers);
2000 
2001 /**
2002  *  call_netdevice_notifiers_mtu - call all network notifier blocks
2003  *  @val: value passed unmodified to notifier function
2004  *  @dev: net_device pointer passed unmodified to notifier function
2005  *  @arg: additional u32 argument passed to the notifier function
2006  *
2007  *  Call all network notifier blocks.  Parameters and return value
2008  *  are as for raw_notifier_call_chain().
2009  */
2010 static int call_netdevice_notifiers_mtu(unsigned long val,
2011                     struct net_device *dev, u32 arg)
2012 {
2013     struct netdev_notifier_info_ext info = {
2014         .info.dev = dev,
2015         .ext.mtu = arg,
2016     };
2017 
2018     BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2019 
2020     return call_netdevice_notifiers_info(val, &info.info);
2021 }
2022 
2023 #ifdef CONFIG_NET_INGRESS
2024 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2025 
2026 void net_inc_ingress_queue(void)
2027 {
2028     static_branch_inc(&ingress_needed_key);
2029 }
2030 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2031 
2032 void net_dec_ingress_queue(void)
2033 {
2034     static_branch_dec(&ingress_needed_key);
2035 }
2036 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2037 #endif
2038 
2039 #ifdef CONFIG_NET_EGRESS
2040 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2041 
2042 void net_inc_egress_queue(void)
2043 {
2044     static_branch_inc(&egress_needed_key);
2045 }
2046 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2047 
2048 void net_dec_egress_queue(void)
2049 {
2050     static_branch_dec(&egress_needed_key);
2051 }
2052 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2053 #endif
2054 
2055 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2056 EXPORT_SYMBOL(netstamp_needed_key);
2057 #ifdef CONFIG_JUMP_LABEL
2058 static atomic_t netstamp_needed_deferred;
2059 static atomic_t netstamp_wanted;
2060 static void netstamp_clear(struct work_struct *work)
2061 {
2062     int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2063     int wanted;
2064 
2065     wanted = atomic_add_return(deferred, &netstamp_wanted);
2066     if (wanted > 0)
2067         static_branch_enable(&netstamp_needed_key);
2068     else
2069         static_branch_disable(&netstamp_needed_key);
2070 }
2071 static DECLARE_WORK(netstamp_work, netstamp_clear);
2072 #endif
2073 
2074 void net_enable_timestamp(void)
2075 {
2076 #ifdef CONFIG_JUMP_LABEL
2077     int wanted;
2078 
2079     while (1) {
2080         wanted = atomic_read(&netstamp_wanted);
2081         if (wanted <= 0)
2082             break;
2083         if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2084             return;
2085     }
2086     atomic_inc(&netstamp_needed_deferred);
2087     schedule_work(&netstamp_work);
2088 #else
2089     static_branch_inc(&netstamp_needed_key);
2090 #endif
2091 }
2092 EXPORT_SYMBOL(net_enable_timestamp);
2093 
2094 void net_disable_timestamp(void)
2095 {
2096 #ifdef CONFIG_JUMP_LABEL
2097     int wanted;
2098 
2099     while (1) {
2100         wanted = atomic_read(&netstamp_wanted);
2101         if (wanted <= 1)
2102             break;
2103         if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2104             return;
2105     }
2106     atomic_dec(&netstamp_needed_deferred);
2107     schedule_work(&netstamp_work);
2108 #else
2109     static_branch_dec(&netstamp_needed_key);
2110 #endif
2111 }
2112 EXPORT_SYMBOL(net_disable_timestamp);
2113 
2114 static inline void net_timestamp_set(struct sk_buff *skb)
2115 {
2116     skb->tstamp = 0;
2117     skb->mono_delivery_time = 0;
2118     if (static_branch_unlikely(&netstamp_needed_key))
2119         skb->tstamp = ktime_get_real();
2120 }
2121 
2122 #define net_timestamp_check(COND, SKB)              \
2123     if (static_branch_unlikely(&netstamp_needed_key)) { \
2124         if ((COND) && !(SKB)->tstamp)           \
2125             (SKB)->tstamp = ktime_get_real();   \
2126     }                           \
2127 
2128 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2129 {
2130     return __is_skb_forwardable(dev, skb, true);
2131 }
2132 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2133 
2134 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2135                   bool check_mtu)
2136 {
2137     int ret = ____dev_forward_skb(dev, skb, check_mtu);
2138 
2139     if (likely(!ret)) {
2140         skb->protocol = eth_type_trans(skb, dev);
2141         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2142     }
2143 
2144     return ret;
2145 }
2146 
2147 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2148 {
2149     return __dev_forward_skb2(dev, skb, true);
2150 }
2151 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2152 
2153 /**
2154  * dev_forward_skb - loopback an skb to another netif
2155  *
2156  * @dev: destination network device
2157  * @skb: buffer to forward
2158  *
2159  * return values:
2160  *  NET_RX_SUCCESS  (no congestion)
2161  *  NET_RX_DROP     (packet was dropped, but freed)
2162  *
2163  * dev_forward_skb can be used for injecting an skb from the
2164  * start_xmit function of one device into the receive queue
2165  * of another device.
2166  *
2167  * The receiving device may be in another namespace, so
2168  * we have to clear all information in the skb that could
2169  * impact namespace isolation.
2170  */
2171 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2172 {
2173     return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2174 }
2175 EXPORT_SYMBOL_GPL(dev_forward_skb);
2176 
2177 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2178 {
2179     return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2180 }
2181 
2182 static inline int deliver_skb(struct sk_buff *skb,
2183                   struct packet_type *pt_prev,
2184                   struct net_device *orig_dev)
2185 {
2186     if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2187         return -ENOMEM;
2188     refcount_inc(&skb->users);
2189     return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2190 }
2191 
2192 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2193                       struct packet_type **pt,
2194                       struct net_device *orig_dev,
2195                       __be16 type,
2196                       struct list_head *ptype_list)
2197 {
2198     struct packet_type *ptype, *pt_prev = *pt;
2199 
2200     list_for_each_entry_rcu(ptype, ptype_list, list) {
2201         if (ptype->type != type)
2202             continue;
2203         if (pt_prev)
2204             deliver_skb(skb, pt_prev, orig_dev);
2205         pt_prev = ptype;
2206     }
2207     *pt = pt_prev;
2208 }
2209 
2210 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2211 {
2212     if (!ptype->af_packet_priv || !skb->sk)
2213         return false;
2214 
2215     if (ptype->id_match)
2216         return ptype->id_match(ptype, skb->sk);
2217     else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2218         return true;
2219 
2220     return false;
2221 }
2222 
2223 /**
2224  * dev_nit_active - return true if any network interface taps are in use
2225  *
2226  * @dev: network device to check for the presence of taps
2227  */
2228 bool dev_nit_active(struct net_device *dev)
2229 {
2230     return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2231 }
2232 EXPORT_SYMBOL_GPL(dev_nit_active);
2233 
2234 /*
2235  *  Support routine. Sends outgoing frames to any network
2236  *  taps currently in use.
2237  */
2238 
2239 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240 {
2241     struct packet_type *ptype;
2242     struct sk_buff *skb2 = NULL;
2243     struct packet_type *pt_prev = NULL;
2244     struct list_head *ptype_list = &ptype_all;
2245 
2246     rcu_read_lock();
2247 again:
2248     list_for_each_entry_rcu(ptype, ptype_list, list) {
2249         if (ptype->ignore_outgoing)
2250             continue;
2251 
2252         /* Never send packets back to the socket
2253          * they originated from - MvS (miquels@drinkel.ow.org)
2254          */
2255         if (skb_loop_sk(ptype, skb))
2256             continue;
2257 
2258         if (pt_prev) {
2259             deliver_skb(skb2, pt_prev, skb->dev);
2260             pt_prev = ptype;
2261             continue;
2262         }
2263 
2264         /* need to clone skb, done only once */
2265         skb2 = skb_clone(skb, GFP_ATOMIC);
2266         if (!skb2)
2267             goto out_unlock;
2268 
2269         net_timestamp_set(skb2);
2270 
2271         /* skb->nh should be correctly
2272          * set by sender, so that the second statement is
2273          * just protection against buggy protocols.
2274          */
2275         skb_reset_mac_header(skb2);
2276 
2277         if (skb_network_header(skb2) < skb2->data ||
2278             skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2279             net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2280                          ntohs(skb2->protocol),
2281                          dev->name);
2282             skb_reset_network_header(skb2);
2283         }
2284 
2285         skb2->transport_header = skb2->network_header;
2286         skb2->pkt_type = PACKET_OUTGOING;
2287         pt_prev = ptype;
2288     }
2289 
2290     if (ptype_list == &ptype_all) {
2291         ptype_list = &dev->ptype_all;
2292         goto again;
2293     }
2294 out_unlock:
2295     if (pt_prev) {
2296         if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2297             pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2298         else
2299             kfree_skb(skb2);
2300     }
2301     rcu_read_unlock();
2302 }
2303 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2304 
2305 /**
2306  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2307  * @dev: Network device
2308  * @txq: number of queues available
2309  *
2310  * If real_num_tx_queues is changed the tc mappings may no longer be
2311  * valid. To resolve this verify the tc mapping remains valid and if
2312  * not NULL the mapping. With no priorities mapping to this
2313  * offset/count pair it will no longer be used. In the worst case TC0
2314  * is invalid nothing can be done so disable priority mappings. If is
2315  * expected that drivers will fix this mapping if they can before
2316  * calling netif_set_real_num_tx_queues.
2317  */
2318 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2319 {
2320     int i;
2321     struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2322 
2323     /* If TC0 is invalidated disable TC mapping */
2324     if (tc->offset + tc->count > txq) {
2325         netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2326         dev->num_tc = 0;
2327         return;
2328     }
2329 
2330     /* Invalidated prio to tc mappings set to TC0 */
2331     for (i = 1; i < TC_BITMASK + 1; i++) {
2332         int q = netdev_get_prio_tc_map(dev, i);
2333 
2334         tc = &dev->tc_to_txq[q];
2335         if (tc->offset + tc->count > txq) {
2336             netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2337                     i, q);
2338             netdev_set_prio_tc_map(dev, i, 0);
2339         }
2340     }
2341 }
2342 
2343 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2344 {
2345     if (dev->num_tc) {
2346         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347         int i;
2348 
2349         /* walk through the TCs and see if it falls into any of them */
2350         for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2351             if ((txq - tc->offset) < tc->count)
2352                 return i;
2353         }
2354 
2355         /* didn't find it, just return -1 to indicate no match */
2356         return -1;
2357     }
2358 
2359     return 0;
2360 }
2361 EXPORT_SYMBOL(netdev_txq_to_tc);
2362 
2363 #ifdef CONFIG_XPS
2364 static struct static_key xps_needed __read_mostly;
2365 static struct static_key xps_rxqs_needed __read_mostly;
2366 static DEFINE_MUTEX(xps_map_mutex);
2367 #define xmap_dereference(P)     \
2368     rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2369 
2370 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2371                  struct xps_dev_maps *old_maps, int tci, u16 index)
2372 {
2373     struct xps_map *map = NULL;
2374     int pos;
2375 
2376     if (dev_maps)
2377         map = xmap_dereference(dev_maps->attr_map[tci]);
2378     if (!map)
2379         return false;
2380 
2381     for (pos = map->len; pos--;) {
2382         if (map->queues[pos] != index)
2383             continue;
2384 
2385         if (map->len > 1) {
2386             map->queues[pos] = map->queues[--map->len];
2387             break;
2388         }
2389 
2390         if (old_maps)
2391             RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2392         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2393         kfree_rcu(map, rcu);
2394         return false;
2395     }
2396 
2397     return true;
2398 }
2399 
2400 static bool remove_xps_queue_cpu(struct net_device *dev,
2401                  struct xps_dev_maps *dev_maps,
2402                  int cpu, u16 offset, u16 count)
2403 {
2404     int num_tc = dev_maps->num_tc;
2405     bool active = false;
2406     int tci;
2407 
2408     for (tci = cpu * num_tc; num_tc--; tci++) {
2409         int i, j;
2410 
2411         for (i = count, j = offset; i--; j++) {
2412             if (!remove_xps_queue(dev_maps, NULL, tci, j))
2413                 break;
2414         }
2415 
2416         active |= i < 0;
2417     }
2418 
2419     return active;
2420 }
2421 
2422 static void reset_xps_maps(struct net_device *dev,
2423                struct xps_dev_maps *dev_maps,
2424                enum xps_map_type type)
2425 {
2426     static_key_slow_dec_cpuslocked(&xps_needed);
2427     if (type == XPS_RXQS)
2428         static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2429 
2430     RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2431 
2432     kfree_rcu(dev_maps, rcu);
2433 }
2434 
2435 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2436                u16 offset, u16 count)
2437 {
2438     struct xps_dev_maps *dev_maps;
2439     bool active = false;
2440     int i, j;
2441 
2442     dev_maps = xmap_dereference(dev->xps_maps[type]);
2443     if (!dev_maps)
2444         return;
2445 
2446     for (j = 0; j < dev_maps->nr_ids; j++)
2447         active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2448     if (!active)
2449         reset_xps_maps(dev, dev_maps, type);
2450 
2451     if (type == XPS_CPUS) {
2452         for (i = offset + (count - 1); count--; i--)
2453             netdev_queue_numa_node_write(
2454                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2455     }
2456 }
2457 
2458 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2459                    u16 count)
2460 {
2461     if (!static_key_false(&xps_needed))
2462         return;
2463 
2464     cpus_read_lock();
2465     mutex_lock(&xps_map_mutex);
2466 
2467     if (static_key_false(&xps_rxqs_needed))
2468         clean_xps_maps(dev, XPS_RXQS, offset, count);
2469 
2470     clean_xps_maps(dev, XPS_CPUS, offset, count);
2471 
2472     mutex_unlock(&xps_map_mutex);
2473     cpus_read_unlock();
2474 }
2475 
2476 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2477 {
2478     netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2479 }
2480 
2481 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2482                       u16 index, bool is_rxqs_map)
2483 {
2484     struct xps_map *new_map;
2485     int alloc_len = XPS_MIN_MAP_ALLOC;
2486     int i, pos;
2487 
2488     for (pos = 0; map && pos < map->len; pos++) {
2489         if (map->queues[pos] != index)
2490             continue;
2491         return map;
2492     }
2493 
2494     /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2495     if (map) {
2496         if (pos < map->alloc_len)
2497             return map;
2498 
2499         alloc_len = map->alloc_len * 2;
2500     }
2501 
2502     /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2503      *  map
2504      */
2505     if (is_rxqs_map)
2506         new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2507     else
2508         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2509                        cpu_to_node(attr_index));
2510     if (!new_map)
2511         return NULL;
2512 
2513     for (i = 0; i < pos; i++)
2514         new_map->queues[i] = map->queues[i];
2515     new_map->alloc_len = alloc_len;
2516     new_map->len = pos;
2517 
2518     return new_map;
2519 }
2520 
2521 /* Copy xps maps at a given index */
2522 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2523                   struct xps_dev_maps *new_dev_maps, int index,
2524                   int tc, bool skip_tc)
2525 {
2526     int i, tci = index * dev_maps->num_tc;
2527     struct xps_map *map;
2528 
2529     /* copy maps belonging to foreign traffic classes */
2530     for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2531         if (i == tc && skip_tc)
2532             continue;
2533 
2534         /* fill in the new device map from the old device map */
2535         map = xmap_dereference(dev_maps->attr_map[tci]);
2536         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2537     }
2538 }
2539 
2540 /* Must be called under cpus_read_lock */
2541 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2542               u16 index, enum xps_map_type type)
2543 {
2544     struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2545     const unsigned long *online_mask = NULL;
2546     bool active = false, copy = false;
2547     int i, j, tci, numa_node_id = -2;
2548     int maps_sz, num_tc = 1, tc = 0;
2549     struct xps_map *map, *new_map;
2550     unsigned int nr_ids;
2551 
2552     if (dev->num_tc) {
2553         /* Do not allow XPS on subordinate device directly */
2554         num_tc = dev->num_tc;
2555         if (num_tc < 0)
2556             return -EINVAL;
2557 
2558         /* If queue belongs to subordinate dev use its map */
2559         dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560 
2561         tc = netdev_txq_to_tc(dev, index);
2562         if (tc < 0)
2563             return -EINVAL;
2564     }
2565 
2566     mutex_lock(&xps_map_mutex);
2567 
2568     dev_maps = xmap_dereference(dev->xps_maps[type]);
2569     if (type == XPS_RXQS) {
2570         maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571         nr_ids = dev->num_rx_queues;
2572     } else {
2573         maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574         if (num_possible_cpus() > 1)
2575             online_mask = cpumask_bits(cpu_online_mask);
2576         nr_ids = nr_cpu_ids;
2577     }
2578 
2579     if (maps_sz < L1_CACHE_BYTES)
2580         maps_sz = L1_CACHE_BYTES;
2581 
2582     /* The old dev_maps could be larger or smaller than the one we're
2583      * setting up now, as dev->num_tc or nr_ids could have been updated in
2584      * between. We could try to be smart, but let's be safe instead and only
2585      * copy foreign traffic classes if the two map sizes match.
2586      */
2587     if (dev_maps &&
2588         dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589         copy = true;
2590 
2591     /* allocate memory for queue storage */
2592     for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593          j < nr_ids;) {
2594         if (!new_dev_maps) {
2595             new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596             if (!new_dev_maps) {
2597                 mutex_unlock(&xps_map_mutex);
2598                 return -ENOMEM;
2599             }
2600 
2601             new_dev_maps->nr_ids = nr_ids;
2602             new_dev_maps->num_tc = num_tc;
2603         }
2604 
2605         tci = j * num_tc + tc;
2606         map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607 
2608         map = expand_xps_map(map, j, index, type == XPS_RXQS);
2609         if (!map)
2610             goto error;
2611 
2612         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613     }
2614 
2615     if (!new_dev_maps)
2616         goto out_no_new_maps;
2617 
2618     if (!dev_maps) {
2619         /* Increment static keys at most once per type */
2620         static_key_slow_inc_cpuslocked(&xps_needed);
2621         if (type == XPS_RXQS)
2622             static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623     }
2624 
2625     for (j = 0; j < nr_ids; j++) {
2626         bool skip_tc = false;
2627 
2628         tci = j * num_tc + tc;
2629         if (netif_attr_test_mask(j, mask, nr_ids) &&
2630             netif_attr_test_online(j, online_mask, nr_ids)) {
2631             /* add tx-queue to CPU/rx-queue maps */
2632             int pos = 0;
2633 
2634             skip_tc = true;
2635 
2636             map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637             while ((pos < map->len) && (map->queues[pos] != index))
2638                 pos++;
2639 
2640             if (pos == map->len)
2641                 map->queues[map->len++] = index;
2642 #ifdef CONFIG_NUMA
2643             if (type == XPS_CPUS) {
2644                 if (numa_node_id == -2)
2645                     numa_node_id = cpu_to_node(j);
2646                 else if (numa_node_id != cpu_to_node(j))
2647                     numa_node_id = -1;
2648             }
2649 #endif
2650         }
2651 
2652         if (copy)
2653             xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2654                       skip_tc);
2655     }
2656 
2657     rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658 
2659     /* Cleanup old maps */
2660     if (!dev_maps)
2661         goto out_no_old_maps;
2662 
2663     for (j = 0; j < dev_maps->nr_ids; j++) {
2664         for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665             map = xmap_dereference(dev_maps->attr_map[tci]);
2666             if (!map)
2667                 continue;
2668 
2669             if (copy) {
2670                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671                 if (map == new_map)
2672                     continue;
2673             }
2674 
2675             RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676             kfree_rcu(map, rcu);
2677         }
2678     }
2679 
2680     old_dev_maps = dev_maps;
2681 
2682 out_no_old_maps:
2683     dev_maps = new_dev_maps;
2684     active = true;
2685 
2686 out_no_new_maps:
2687     if (type == XPS_CPUS)
2688         /* update Tx queue numa node */
2689         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2690                          (numa_node_id >= 0) ?
2691                          numa_node_id : NUMA_NO_NODE);
2692 
2693     if (!dev_maps)
2694         goto out_no_maps;
2695 
2696     /* removes tx-queue from unused CPUs/rx-queues */
2697     for (j = 0; j < dev_maps->nr_ids; j++) {
2698         tci = j * dev_maps->num_tc;
2699 
2700         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701             if (i == tc &&
2702                 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2703                 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704                 continue;
2705 
2706             active |= remove_xps_queue(dev_maps,
2707                            copy ? old_dev_maps : NULL,
2708                            tci, index);
2709         }
2710     }
2711 
2712     if (old_dev_maps)
2713         kfree_rcu(old_dev_maps, rcu);
2714 
2715     /* free map if not active */
2716     if (!active)
2717         reset_xps_maps(dev, dev_maps, type);
2718 
2719 out_no_maps:
2720     mutex_unlock(&xps_map_mutex);
2721 
2722     return 0;
2723 error:
2724     /* remove any maps that we added */
2725     for (j = 0; j < nr_ids; j++) {
2726         for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727             new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728             map = copy ?
2729                   xmap_dereference(dev_maps->attr_map[tci]) :
2730                   NULL;
2731             if (new_map && new_map != map)
2732                 kfree(new_map);
2733         }
2734     }
2735 
2736     mutex_unlock(&xps_map_mutex);
2737 
2738     kfree(new_dev_maps);
2739     return -ENOMEM;
2740 }
2741 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742 
2743 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744             u16 index)
2745 {
2746     int ret;
2747 
2748     cpus_read_lock();
2749     ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750     cpus_read_unlock();
2751 
2752     return ret;
2753 }
2754 EXPORT_SYMBOL(netif_set_xps_queue);
2755 
2756 #endif
2757 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758 {
2759     struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760 
2761     /* Unbind any subordinate channels */
2762     while (txq-- != &dev->_tx[0]) {
2763         if (txq->sb_dev)
2764             netdev_unbind_sb_channel(dev, txq->sb_dev);
2765     }
2766 }
2767 
2768 void netdev_reset_tc(struct net_device *dev)
2769 {
2770 #ifdef CONFIG_XPS
2771     netif_reset_xps_queues_gt(dev, 0);
2772 #endif
2773     netdev_unbind_all_sb_channels(dev);
2774 
2775     /* Reset TC configuration of device */
2776     dev->num_tc = 0;
2777     memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778     memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779 }
2780 EXPORT_SYMBOL(netdev_reset_tc);
2781 
2782 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783 {
2784     if (tc >= dev->num_tc)
2785         return -EINVAL;
2786 
2787 #ifdef CONFIG_XPS
2788     netif_reset_xps_queues(dev, offset, count);
2789 #endif
2790     dev->tc_to_txq[tc].count = count;
2791     dev->tc_to_txq[tc].offset = offset;
2792     return 0;
2793 }
2794 EXPORT_SYMBOL(netdev_set_tc_queue);
2795 
2796 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797 {
2798     if (num_tc > TC_MAX_QUEUE)
2799         return -EINVAL;
2800 
2801 #ifdef CONFIG_XPS
2802     netif_reset_xps_queues_gt(dev, 0);
2803 #endif
2804     netdev_unbind_all_sb_channels(dev);
2805 
2806     dev->num_tc = num_tc;
2807     return 0;
2808 }
2809 EXPORT_SYMBOL(netdev_set_num_tc);
2810 
2811 void netdev_unbind_sb_channel(struct net_device *dev,
2812                   struct net_device *sb_dev)
2813 {
2814     struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815 
2816 #ifdef CONFIG_XPS
2817     netif_reset_xps_queues_gt(sb_dev, 0);
2818 #endif
2819     memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820     memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821 
2822     while (txq-- != &dev->_tx[0]) {
2823         if (txq->sb_dev == sb_dev)
2824             txq->sb_dev = NULL;
2825     }
2826 }
2827 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828 
2829 int netdev_bind_sb_channel_queue(struct net_device *dev,
2830                  struct net_device *sb_dev,
2831                  u8 tc, u16 count, u16 offset)
2832 {
2833     /* Make certain the sb_dev and dev are already configured */
2834     if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835         return -EINVAL;
2836 
2837     /* We cannot hand out queues we don't have */
2838     if ((offset + count) > dev->real_num_tx_queues)
2839         return -EINVAL;
2840 
2841     /* Record the mapping */
2842     sb_dev->tc_to_txq[tc].count = count;
2843     sb_dev->tc_to_txq[tc].offset = offset;
2844 
2845     /* Provide a way for Tx queue to find the tc_to_txq map or
2846      * XPS map for itself.
2847      */
2848     while (count--)
2849         netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2850 
2851     return 0;
2852 }
2853 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854 
2855 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856 {
2857     /* Do not use a multiqueue device to represent a subordinate channel */
2858     if (netif_is_multiqueue(dev))
2859         return -ENODEV;
2860 
2861     /* We allow channels 1 - 32767 to be used for subordinate channels.
2862      * Channel 0 is meant to be "native" mode and used only to represent
2863      * the main root device. We allow writing 0 to reset the device back
2864      * to normal mode after being used as a subordinate channel.
2865      */
2866     if (channel > S16_MAX)
2867         return -EINVAL;
2868 
2869     dev->num_tc = -channel;
2870 
2871     return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_set_sb_channel);
2874 
2875 /*
2876  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878  */
2879 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880 {
2881     bool disabling;
2882     int rc;
2883 
2884     disabling = txq < dev->real_num_tx_queues;
2885 
2886     if (txq < 1 || txq > dev->num_tx_queues)
2887         return -EINVAL;
2888 
2889     if (dev->reg_state == NETREG_REGISTERED ||
2890         dev->reg_state == NETREG_UNREGISTERING) {
2891         ASSERT_RTNL();
2892 
2893         rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2894                           txq);
2895         if (rc)
2896             return rc;
2897 
2898         if (dev->num_tc)
2899             netif_setup_tc(dev, txq);
2900 
2901         dev_qdisc_change_real_num_tx(dev, txq);
2902 
2903         dev->real_num_tx_queues = txq;
2904 
2905         if (disabling) {
2906             synchronize_net();
2907             qdisc_reset_all_tx_gt(dev, txq);
2908 #ifdef CONFIG_XPS
2909             netif_reset_xps_queues_gt(dev, txq);
2910 #endif
2911         }
2912     } else {
2913         dev->real_num_tx_queues = txq;
2914     }
2915 
2916     return 0;
2917 }
2918 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919 
2920 #ifdef CONFIG_SYSFS
2921 /**
2922  *  netif_set_real_num_rx_queues - set actual number of RX queues used
2923  *  @dev: Network device
2924  *  @rxq: Actual number of RX queues
2925  *
2926  *  This must be called either with the rtnl_lock held or before
2927  *  registration of the net device.  Returns 0 on success, or a
2928  *  negative error code.  If called before registration, it always
2929  *  succeeds.
2930  */
2931 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932 {
2933     int rc;
2934 
2935     if (rxq < 1 || rxq > dev->num_rx_queues)
2936         return -EINVAL;
2937 
2938     if (dev->reg_state == NETREG_REGISTERED) {
2939         ASSERT_RTNL();
2940 
2941         rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2942                           rxq);
2943         if (rc)
2944             return rc;
2945     }
2946 
2947     dev->real_num_rx_queues = rxq;
2948     return 0;
2949 }
2950 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951 #endif
2952 
2953 /**
2954  *  netif_set_real_num_queues - set actual number of RX and TX queues used
2955  *  @dev: Network device
2956  *  @txq: Actual number of TX queues
2957  *  @rxq: Actual number of RX queues
2958  *
2959  *  Set the real number of both TX and RX queues.
2960  *  Does nothing if the number of queues is already correct.
2961  */
2962 int netif_set_real_num_queues(struct net_device *dev,
2963                   unsigned int txq, unsigned int rxq)
2964 {
2965     unsigned int old_rxq = dev->real_num_rx_queues;
2966     int err;
2967 
2968     if (txq < 1 || txq > dev->num_tx_queues ||
2969         rxq < 1 || rxq > dev->num_rx_queues)
2970         return -EINVAL;
2971 
2972     /* Start from increases, so the error path only does decreases -
2973      * decreases can't fail.
2974      */
2975     if (rxq > dev->real_num_rx_queues) {
2976         err = netif_set_real_num_rx_queues(dev, rxq);
2977         if (err)
2978             return err;
2979     }
2980     if (txq > dev->real_num_tx_queues) {
2981         err = netif_set_real_num_tx_queues(dev, txq);
2982         if (err)
2983             goto undo_rx;
2984     }
2985     if (rxq < dev->real_num_rx_queues)
2986         WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987     if (txq < dev->real_num_tx_queues)
2988         WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989 
2990     return 0;
2991 undo_rx:
2992     WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993     return err;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_queues);
2996 
2997 /**
2998  * netif_set_tso_max_size() - set the max size of TSO frames supported
2999  * @dev:    netdev to update
3000  * @size:   max skb->len of a TSO frame
3001  *
3002  * Set the limit on the size of TSO super-frames the device can handle.
3003  * Unless explicitly set the stack will assume the value of
3004  * %GSO_LEGACY_MAX_SIZE.
3005  */
3006 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007 {
3008     dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009     if (size < READ_ONCE(dev->gso_max_size))
3010         netif_set_gso_max_size(dev, size);
3011 }
3012 EXPORT_SYMBOL(netif_set_tso_max_size);
3013 
3014 /**
3015  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3016  * @dev:    netdev to update
3017  * @segs:   max number of TCP segments
3018  *
3019  * Set the limit on the number of TCP segments the device can generate from
3020  * a single TSO super-frame.
3021  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3022  */
3023 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3024 {
3025     dev->tso_max_segs = segs;
3026     if (segs < READ_ONCE(dev->gso_max_segs))
3027         netif_set_gso_max_segs(dev, segs);
3028 }
3029 EXPORT_SYMBOL(netif_set_tso_max_segs);
3030 
3031 /**
3032  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3033  * @to:     netdev to update
3034  * @from:   netdev from which to copy the limits
3035  */
3036 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3037 {
3038     netif_set_tso_max_size(to, from->tso_max_size);
3039     netif_set_tso_max_segs(to, from->tso_max_segs);
3040 }
3041 EXPORT_SYMBOL(netif_inherit_tso_max);
3042 
3043 /**
3044  * netif_get_num_default_rss_queues - default number of RSS queues
3045  *
3046  * Default value is the number of physical cores if there are only 1 or 2, or
3047  * divided by 2 if there are more.
3048  */
3049 int netif_get_num_default_rss_queues(void)
3050 {
3051     cpumask_var_t cpus;
3052     int cpu, count = 0;
3053 
3054     if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3055         return 1;
3056 
3057     cpumask_copy(cpus, cpu_online_mask);
3058     for_each_cpu(cpu, cpus) {
3059         ++count;
3060         cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3061     }
3062     free_cpumask_var(cpus);
3063 
3064     return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3065 }
3066 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3067 
3068 static void __netif_reschedule(struct Qdisc *q)
3069 {
3070     struct softnet_data *sd;
3071     unsigned long flags;
3072 
3073     local_irq_save(flags);
3074     sd = this_cpu_ptr(&softnet_data);
3075     q->next_sched = NULL;
3076     *sd->output_queue_tailp = q;
3077     sd->output_queue_tailp = &q->next_sched;
3078     raise_softirq_irqoff(NET_TX_SOFTIRQ);
3079     local_irq_restore(flags);
3080 }
3081 
3082 void __netif_schedule(struct Qdisc *q)
3083 {
3084     if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3085         __netif_reschedule(q);
3086 }
3087 EXPORT_SYMBOL(__netif_schedule);
3088 
3089 struct dev_kfree_skb_cb {
3090     enum skb_free_reason reason;
3091 };
3092 
3093 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3094 {
3095     return (struct dev_kfree_skb_cb *)skb->cb;
3096 }
3097 
3098 void netif_schedule_queue(struct netdev_queue *txq)
3099 {
3100     rcu_read_lock();
3101     if (!netif_xmit_stopped(txq)) {
3102         struct Qdisc *q = rcu_dereference(txq->qdisc);
3103 
3104         __netif_schedule(q);
3105     }
3106     rcu_read_unlock();
3107 }
3108 EXPORT_SYMBOL(netif_schedule_queue);
3109 
3110 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3111 {
3112     if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3113         struct Qdisc *q;
3114 
3115         rcu_read_lock();
3116         q = rcu_dereference(dev_queue->qdisc);
3117         __netif_schedule(q);
3118         rcu_read_unlock();
3119     }
3120 }
3121 EXPORT_SYMBOL(netif_tx_wake_queue);
3122 
3123 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3124 {
3125     unsigned long flags;
3126 
3127     if (unlikely(!skb))
3128         return;
3129 
3130     if (likely(refcount_read(&skb->users) == 1)) {
3131         smp_rmb();
3132         refcount_set(&skb->users, 0);
3133     } else if (likely(!refcount_dec_and_test(&skb->users))) {
3134         return;
3135     }
3136     get_kfree_skb_cb(skb)->reason = reason;
3137     local_irq_save(flags);
3138     skb->next = __this_cpu_read(softnet_data.completion_queue);
3139     __this_cpu_write(softnet_data.completion_queue, skb);
3140     raise_softirq_irqoff(NET_TX_SOFTIRQ);
3141     local_irq_restore(flags);
3142 }
3143 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3144 
3145 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3146 {
3147     if (in_hardirq() || irqs_disabled())
3148         __dev_kfree_skb_irq(skb, reason);
3149     else
3150         dev_kfree_skb(skb);
3151 }
3152 EXPORT_SYMBOL(__dev_kfree_skb_any);
3153 
3154 
3155 /**
3156  * netif_device_detach - mark device as removed
3157  * @dev: network device
3158  *
3159  * Mark device as removed from system and therefore no longer available.
3160  */
3161 void netif_device_detach(struct net_device *dev)
3162 {
3163     if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3164         netif_running(dev)) {
3165         netif_tx_stop_all_queues(dev);
3166     }
3167 }
3168 EXPORT_SYMBOL(netif_device_detach);
3169 
3170 /**
3171  * netif_device_attach - mark device as attached
3172  * @dev: network device
3173  *
3174  * Mark device as attached from system and restart if needed.
3175  */
3176 void netif_device_attach(struct net_device *dev)
3177 {
3178     if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3179         netif_running(dev)) {
3180         netif_tx_wake_all_queues(dev);
3181         __netdev_watchdog_up(dev);
3182     }
3183 }
3184 EXPORT_SYMBOL(netif_device_attach);
3185 
3186 /*
3187  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3188  * to be used as a distribution range.
3189  */
3190 static u16 skb_tx_hash(const struct net_device *dev,
3191                const struct net_device *sb_dev,
3192                struct sk_buff *skb)
3193 {
3194     u32 hash;
3195     u16 qoffset = 0;
3196     u16 qcount = dev->real_num_tx_queues;
3197 
3198     if (dev->num_tc) {
3199         u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3200 
3201         qoffset = sb_dev->tc_to_txq[tc].offset;
3202         qcount = sb_dev->tc_to_txq[tc].count;
3203         if (unlikely(!qcount)) {
3204             net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3205                          sb_dev->name, qoffset, tc);
3206             qoffset = 0;
3207             qcount = dev->real_num_tx_queues;
3208         }
3209     }
3210 
3211     if (skb_rx_queue_recorded(skb)) {
3212         hash = skb_get_rx_queue(skb);
3213         if (hash >= qoffset)
3214             hash -= qoffset;
3215         while (unlikely(hash >= qcount))
3216             hash -= qcount;
3217         return hash + qoffset;
3218     }
3219 
3220     return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3221 }
3222 
3223 static void skb_warn_bad_offload(const struct sk_buff *skb)
3224 {
3225     static const netdev_features_t null_features;
3226     struct net_device *dev = skb->dev;
3227     const char *name = "";
3228 
3229     if (!net_ratelimit())
3230         return;
3231 
3232     if (dev) {
3233         if (dev->dev.parent)
3234             name = dev_driver_string(dev->dev.parent);
3235         else
3236             name = netdev_name(dev);
3237     }
3238     skb_dump(KERN_WARNING, skb, false);
3239     WARN(1, "%s: caps=(%pNF, %pNF)\n",
3240          name, dev ? &dev->features : &null_features,
3241          skb->sk ? &skb->sk->sk_route_caps : &null_features);
3242 }
3243 
3244 /*
3245  * Invalidate hardware checksum when packet is to be mangled, and
3246  * complete checksum manually on outgoing path.
3247  */
3248 int skb_checksum_help(struct sk_buff *skb)
3249 {
3250     __wsum csum;
3251     int ret = 0, offset;
3252 
3253     if (skb->ip_summed == CHECKSUM_COMPLETE)
3254         goto out_set_summed;
3255 
3256     if (unlikely(skb_is_gso(skb))) {
3257         skb_warn_bad_offload(skb);
3258         return -EINVAL;
3259     }
3260 
3261     /* Before computing a checksum, we should make sure no frag could
3262      * be modified by an external entity : checksum could be wrong.
3263      */
3264     if (skb_has_shared_frag(skb)) {
3265         ret = __skb_linearize(skb);
3266         if (ret)
3267             goto out;
3268     }
3269 
3270     offset = skb_checksum_start_offset(skb);
3271     ret = -EINVAL;
3272     if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3273         DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3274         goto out;
3275     }
3276     csum = skb_checksum(skb, offset, skb->len - offset, 0);
3277 
3278     offset += skb->csum_offset;
3279     if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3280         DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3281         goto out;
3282     }
3283     ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3284     if (ret)
3285         goto out;
3286 
3287     *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3288 out_set_summed:
3289     skb->ip_summed = CHECKSUM_NONE;
3290 out:
3291     return ret;
3292 }
3293 EXPORT_SYMBOL(skb_checksum_help);
3294 
3295 int skb_crc32c_csum_help(struct sk_buff *skb)
3296 {
3297     __le32 crc32c_csum;
3298     int ret = 0, offset, start;
3299 
3300     if (skb->ip_summed != CHECKSUM_PARTIAL)
3301         goto out;
3302 
3303     if (unlikely(skb_is_gso(skb)))
3304         goto out;
3305 
3306     /* Before computing a checksum, we should make sure no frag could
3307      * be modified by an external entity : checksum could be wrong.
3308      */
3309     if (unlikely(skb_has_shared_frag(skb))) {
3310         ret = __skb_linearize(skb);
3311         if (ret)
3312             goto out;
3313     }
3314     start = skb_checksum_start_offset(skb);
3315     offset = start + offsetof(struct sctphdr, checksum);
3316     if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3317         ret = -EINVAL;
3318         goto out;
3319     }
3320 
3321     ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3322     if (ret)
3323         goto out;
3324 
3325     crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3326                           skb->len - start, ~(__u32)0,
3327                           crc32c_csum_stub));
3328     *(__le32 *)(skb->data + offset) = crc32c_csum;
3329     skb->ip_summed = CHECKSUM_NONE;
3330     skb->csum_not_inet = 0;
3331 out:
3332     return ret;
3333 }
3334 
3335 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3336 {
3337     __be16 type = skb->protocol;
3338 
3339     /* Tunnel gso handlers can set protocol to ethernet. */
3340     if (type == htons(ETH_P_TEB)) {
3341         struct ethhdr *eth;
3342 
3343         if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3344             return 0;
3345 
3346         eth = (struct ethhdr *)skb->data;
3347         type = eth->h_proto;
3348     }
3349 
3350     return __vlan_get_protocol(skb, type, depth);
3351 }
3352 
3353 /* openvswitch calls this on rx path, so we need a different check.
3354  */
3355 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3356 {
3357     if (tx_path)
3358         return skb->ip_summed != CHECKSUM_PARTIAL &&
3359                skb->ip_summed != CHECKSUM_UNNECESSARY;
3360 
3361     return skb->ip_summed == CHECKSUM_NONE;
3362 }
3363 
3364 /**
3365  *  __skb_gso_segment - Perform segmentation on skb.
3366  *  @skb: buffer to segment
3367  *  @features: features for the output path (see dev->features)
3368  *  @tx_path: whether it is called in TX path
3369  *
3370  *  This function segments the given skb and returns a list of segments.
3371  *
3372  *  It may return NULL if the skb requires no segmentation.  This is
3373  *  only possible when GSO is used for verifying header integrity.
3374  *
3375  *  Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3376  */
3377 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3378                   netdev_features_t features, bool tx_path)
3379 {
3380     struct sk_buff *segs;
3381 
3382     if (unlikely(skb_needs_check(skb, tx_path))) {
3383         int err;
3384 
3385         /* We're going to init ->check field in TCP or UDP header */
3386         err = skb_cow_head(skb, 0);
3387         if (err < 0)
3388             return ERR_PTR(err);
3389     }
3390 
3391     /* Only report GSO partial support if it will enable us to
3392      * support segmentation on this frame without needing additional
3393      * work.
3394      */
3395     if (features & NETIF_F_GSO_PARTIAL) {
3396         netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3397         struct net_device *dev = skb->dev;
3398 
3399         partial_features |= dev->features & dev->gso_partial_features;
3400         if (!skb_gso_ok(skb, features | partial_features))
3401             features &= ~NETIF_F_GSO_PARTIAL;
3402     }
3403 
3404     BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3405              sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3406 
3407     SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3408     SKB_GSO_CB(skb)->encap_level = 0;
3409 
3410     skb_reset_mac_header(skb);
3411     skb_reset_mac_len(skb);
3412 
3413     segs = skb_mac_gso_segment(skb, features);
3414 
3415     if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3416         skb_warn_bad_offload(skb);
3417 
3418     return segs;
3419 }
3420 EXPORT_SYMBOL(__skb_gso_segment);
3421 
3422 /* Take action when hardware reception checksum errors are detected. */
3423 #ifdef CONFIG_BUG
3424 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3425 {
3426     netdev_err(dev, "hw csum failure\n");
3427     skb_dump(KERN_ERR, skb, true);
3428     dump_stack();
3429 }
3430 
3431 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3432 {
3433     DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3434 }
3435 EXPORT_SYMBOL(netdev_rx_csum_fault);
3436 #endif
3437 
3438 /* XXX: check that highmem exists at all on the given machine. */
3439 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3440 {
3441 #ifdef CONFIG_HIGHMEM
3442     int i;
3443 
3444     if (!(dev->features & NETIF_F_HIGHDMA)) {
3445         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3446             skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3447 
3448             if (PageHighMem(skb_frag_page(frag)))
3449                 return 1;
3450         }
3451     }
3452 #endif
3453     return 0;
3454 }
3455 
3456 /* If MPLS offload request, verify we are testing hardware MPLS features
3457  * instead of standard features for the netdev.
3458  */
3459 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3460 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3461                        netdev_features_t features,
3462                        __be16 type)
3463 {
3464     if (eth_p_mpls(type))
3465         features &= skb->dev->mpls_features;
3466 
3467     return features;
3468 }
3469 #else
3470 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3471                        netdev_features_t features,
3472                        __be16 type)
3473 {
3474     return features;
3475 }
3476 #endif
3477 
3478 static netdev_features_t harmonize_features(struct sk_buff *skb,
3479     netdev_features_t features)
3480 {
3481     __be16 type;
3482 
3483     type = skb_network_protocol(skb, NULL);
3484     features = net_mpls_features(skb, features, type);
3485 
3486     if (skb->ip_summed != CHECKSUM_NONE &&
3487         !can_checksum_protocol(features, type)) {
3488         features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3489     }
3490     if (illegal_highdma(skb->dev, skb))
3491         features &= ~NETIF_F_SG;
3492 
3493     return features;
3494 }
3495 
3496 netdev_features_t passthru_features_check(struct sk_buff *skb,
3497                       struct net_device *dev,
3498                       netdev_features_t features)
3499 {
3500     return features;
3501 }
3502 EXPORT_SYMBOL(passthru_features_check);
3503 
3504 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3505                          struct net_device *dev,
3506                          netdev_features_t features)
3507 {
3508     return vlan_features_check(skb, features);
3509 }
3510 
3511 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3512                         struct net_device *dev,
3513                         netdev_features_t features)
3514 {
3515     u16 gso_segs = skb_shinfo(skb)->gso_segs;
3516 
3517     if (gso_segs > READ_ONCE(dev->gso_max_segs))
3518         return features & ~NETIF_F_GSO_MASK;
3519 
3520     if (!skb_shinfo(skb)->gso_type) {
3521         skb_warn_bad_offload(skb);
3522         return features & ~NETIF_F_GSO_MASK;
3523     }
3524 
3525     /* Support for GSO partial features requires software
3526      * intervention before we can actually process the packets
3527      * so we need to strip support for any partial features now
3528      * and we can pull them back in after we have partially
3529      * segmented the frame.
3530      */
3531     if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3532         features &= ~dev->gso_partial_features;
3533 
3534     /* Make sure to clear the IPv4 ID mangling feature if the
3535      * IPv4 header has the potential to be fragmented.
3536      */
3537     if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3538         struct iphdr *iph = skb->encapsulation ?
3539                     inner_ip_hdr(skb) : ip_hdr(skb);
3540 
3541         if (!(iph->frag_off & htons(IP_DF)))
3542             features &= ~NETIF_F_TSO_MANGLEID;
3543     }
3544 
3545     return features;
3546 }
3547 
3548 netdev_features_t netif_skb_features(struct sk_buff *skb)
3549 {
3550     struct net_device *dev = skb->dev;
3551     netdev_features_t features = dev->features;
3552 
3553     if (skb_is_gso(skb))
3554         features = gso_features_check(skb, dev, features);
3555 
3556     /* If encapsulation offload request, verify we are testing
3557      * hardware encapsulation features instead of standard
3558      * features for the netdev
3559      */
3560     if (skb->encapsulation)
3561         features &= dev->hw_enc_features;
3562 
3563     if (skb_vlan_tagged(skb))
3564         features = netdev_intersect_features(features,
3565                              dev->vlan_features |
3566                              NETIF_F_HW_VLAN_CTAG_TX |
3567                              NETIF_F_HW_VLAN_STAG_TX);
3568 
3569     if (dev->netdev_ops->ndo_features_check)
3570         features &= dev->netdev_ops->ndo_features_check(skb, dev,
3571                                 features);
3572     else
3573         features &= dflt_features_check(skb, dev, features);
3574 
3575     return harmonize_features(skb, features);
3576 }
3577 EXPORT_SYMBOL(netif_skb_features);
3578 
3579 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3580             struct netdev_queue *txq, bool more)
3581 {
3582     unsigned int len;
3583     int rc;
3584 
3585     if (dev_nit_active(dev))
3586         dev_queue_xmit_nit(skb, dev);
3587 
3588     len = skb->len;
3589     trace_net_dev_start_xmit(skb, dev);
3590     rc = netdev_start_xmit(skb, dev, txq, more);
3591     trace_net_dev_xmit(skb, rc, dev, len);
3592 
3593     return rc;
3594 }
3595 
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597                     struct netdev_queue *txq, int *ret)
3598 {
3599     struct sk_buff *skb = first;
3600     int rc = NETDEV_TX_OK;
3601 
3602     while (skb) {
3603         struct sk_buff *next = skb->next;
3604 
3605         skb_mark_not_on_list(skb);
3606         rc = xmit_one(skb, dev, txq, next != NULL);
3607         if (unlikely(!dev_xmit_complete(rc))) {
3608             skb->next = next;
3609             goto out;
3610         }
3611 
3612         skb = next;
3613         if (netif_tx_queue_stopped(txq) && skb) {
3614             rc = NETDEV_TX_BUSY;
3615             break;
3616         }
3617     }
3618 
3619 out:
3620     *ret = rc;
3621     return skb;
3622 }
3623 
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625                       netdev_features_t features)
3626 {
3627     if (skb_vlan_tag_present(skb) &&
3628         !vlan_hw_offload_capable(features, skb->vlan_proto))
3629         skb = __vlan_hwaccel_push_inside(skb);
3630     return skb;
3631 }
3632 
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634                 const netdev_features_t features)
3635 {
3636     if (unlikely(skb_csum_is_sctp(skb)))
3637         return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638             skb_crc32c_csum_help(skb);
3639 
3640     if (features & NETIF_F_HW_CSUM)
3641         return 0;
3642 
3643     if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644         switch (skb->csum_offset) {
3645         case offsetof(struct tcphdr, check):
3646         case offsetof(struct udphdr, check):
3647             return 0;
3648         }
3649     }
3650 
3651     return skb_checksum_help(skb);
3652 }
3653 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654 
3655 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656 {
3657     netdev_features_t features;
3658 
3659     features = netif_skb_features(skb);
3660     skb = validate_xmit_vlan(skb, features);
3661     if (unlikely(!skb))
3662         goto out_null;
3663 
3664     skb = sk_validate_xmit_skb(skb, dev);
3665     if (unlikely(!skb))
3666         goto out_null;
3667 
3668     if (netif_needs_gso(skb, features)) {
3669         struct sk_buff *segs;
3670 
3671         segs = skb_gso_segment(skb, features);
3672         if (IS_ERR(segs)) {
3673             goto out_kfree_skb;
3674         } else if (segs) {
3675             consume_skb(skb);
3676             skb = segs;
3677         }
3678     } else {
3679         if (skb_needs_linearize(skb, features) &&
3680             __skb_linearize(skb))
3681             goto out_kfree_skb;
3682 
3683         /* If packet is not checksummed and device does not
3684          * support checksumming for this protocol, complete
3685          * checksumming here.
3686          */
3687         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688             if (skb->encapsulation)
3689                 skb_set_inner_transport_header(skb,
3690                                    skb_checksum_start_offset(skb));
3691             else
3692                 skb_set_transport_header(skb,
3693                              skb_checksum_start_offset(skb));
3694             if (skb_csum_hwoffload_help(skb, features))
3695                 goto out_kfree_skb;
3696         }
3697     }
3698 
3699     skb = validate_xmit_xfrm(skb, features, again);
3700 
3701     return skb;
3702 
3703 out_kfree_skb:
3704     kfree_skb(skb);
3705 out_null:
3706     dev_core_stats_tx_dropped_inc(dev);
3707     return NULL;
3708 }
3709 
3710 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711 {
3712     struct sk_buff *next, *head = NULL, *tail;
3713 
3714     for (; skb != NULL; skb = next) {
3715         next = skb->next;
3716         skb_mark_not_on_list(skb);
3717 
3718         /* in case skb wont be segmented, point to itself */
3719         skb->prev = skb;
3720 
3721         skb = validate_xmit_skb(skb, dev, again);
3722         if (!skb)
3723             continue;
3724 
3725         if (!head)
3726             head = skb;
3727         else
3728             tail->next = skb;
3729         /* If skb was segmented, skb->prev points to
3730          * the last segment. If not, it still contains skb.
3731          */
3732         tail = skb->prev;
3733     }
3734     return head;
3735 }
3736 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737 
3738 static void qdisc_pkt_len_init(struct sk_buff *skb)
3739 {
3740     const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741 
3742     qdisc_skb_cb(skb)->pkt_len = skb->len;
3743 
3744     /* To get more precise estimation of bytes sent on wire,
3745      * we add to pkt_len the headers size of all segments
3746      */
3747     if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748         unsigned int hdr_len;
3749         u16 gso_segs = shinfo->gso_segs;
3750 
3751         /* mac layer + network layer */
3752         hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753 
3754         /* + transport layer */
3755         if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756             const struct tcphdr *th;
3757             struct tcphdr _tcphdr;
3758 
3759             th = skb_header_pointer(skb, skb_transport_offset(skb),
3760                         sizeof(_tcphdr), &_tcphdr);
3761             if (likely(th))
3762                 hdr_len += __tcp_hdrlen(th);
3763         } else {
3764             struct udphdr _udphdr;
3765 
3766             if (skb_header_pointer(skb, skb_transport_offset(skb),
3767                            sizeof(_udphdr), &_udphdr))
3768                 hdr_len += sizeof(struct udphdr);
3769         }
3770 
3771         if (shinfo->gso_type & SKB_GSO_DODGY)
3772             gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773                         shinfo->gso_size);
3774 
3775         qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776     }
3777 }
3778 
3779 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780                  struct sk_buff **to_free,
3781                  struct netdev_queue *txq)
3782 {
3783     int rc;
3784 
3785     rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786     if (rc == NET_XMIT_SUCCESS)
3787         trace_qdisc_enqueue(q, txq, skb);
3788     return rc;
3789 }
3790 
3791 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792                  struct net_device *dev,
3793                  struct netdev_queue *txq)
3794 {
3795     spinlock_t *root_lock = qdisc_lock(q);
3796     struct sk_buff *to_free = NULL;
3797     bool contended;
3798     int rc;
3799 
3800     qdisc_calculate_pkt_len(skb, q);
3801 
3802     if (q->flags & TCQ_F_NOLOCK) {
3803         if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804             qdisc_run_begin(q)) {
3805             /* Retest nolock_qdisc_is_empty() within the protection
3806              * of q->seqlock to protect from racing with requeuing.
3807              */
3808             if (unlikely(!nolock_qdisc_is_empty(q))) {
3809                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810                 __qdisc_run(q);
3811                 qdisc_run_end(q);
3812 
3813                 goto no_lock_out;
3814             }
3815 
3816             qdisc_bstats_cpu_update(q, skb);
3817             if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818                 !nolock_qdisc_is_empty(q))
3819                 __qdisc_run(q);
3820 
3821             qdisc_run_end(q);
3822             return NET_XMIT_SUCCESS;
3823         }
3824 
3825         rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826         qdisc_run(q);
3827 
3828 no_lock_out:
3829         if (unlikely(to_free))
3830             kfree_skb_list_reason(to_free,
3831                           SKB_DROP_REASON_QDISC_DROP);
3832         return rc;
3833     }
3834 
3835     /*
3836      * Heuristic to force contended enqueues to serialize on a
3837      * separate lock before trying to get qdisc main lock.
3838      * This permits qdisc->running owner to get the lock more
3839      * often and dequeue packets faster.
3840      * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3841      * and then other tasks will only enqueue packets. The packets will be
3842      * sent after the qdisc owner is scheduled again. To prevent this
3843      * scenario the task always serialize on the lock.
3844      */
3845     contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3846     if (unlikely(contended))
3847         spin_lock(&q->busylock);
3848 
3849     spin_lock(root_lock);
3850     if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3851         __qdisc_drop(skb, &to_free);
3852         rc = NET_XMIT_DROP;
3853     } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3854            qdisc_run_begin(q)) {
3855         /*
3856          * This is a work-conserving queue; there are no old skbs
3857          * waiting to be sent out; and the qdisc is not running -
3858          * xmit the skb directly.
3859          */
3860 
3861         qdisc_bstats_update(q, skb);
3862 
3863         if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3864             if (unlikely(contended)) {
3865                 spin_unlock(&q->busylock);
3866                 contended = false;
3867             }
3868             __qdisc_run(q);
3869         }
3870 
3871         qdisc_run_end(q);
3872         rc = NET_XMIT_SUCCESS;
3873     } else {
3874         rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3875         if (qdisc_run_begin(q)) {
3876             if (unlikely(contended)) {
3877                 spin_unlock(&q->busylock);
3878                 contended = false;
3879             }
3880             __qdisc_run(q);
3881             qdisc_run_end(q);
3882         }
3883     }
3884     spin_unlock(root_lock);
3885     if (unlikely(to_free))
3886         kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3887     if (unlikely(contended))
3888         spin_unlock(&q->busylock);
3889     return rc;
3890 }
3891 
3892 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3893 static void skb_update_prio(struct sk_buff *skb)
3894 {
3895     const struct netprio_map *map;
3896     const struct sock *sk;
3897     unsigned int prioidx;
3898 
3899     if (skb->priority)
3900         return;
3901     map = rcu_dereference_bh(skb->dev->priomap);
3902     if (!map)
3903         return;
3904     sk = skb_to_full_sk(skb);
3905     if (!sk)
3906         return;
3907 
3908     prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3909 
3910     if (prioidx < map->priomap_len)
3911         skb->priority = map->priomap[prioidx];
3912 }
3913 #else
3914 #define skb_update_prio(skb)
3915 #endif
3916 
3917 /**
3918  *  dev_loopback_xmit - loop back @skb
3919  *  @net: network namespace this loopback is happening in
3920  *  @sk:  sk needed to be a netfilter okfn
3921  *  @skb: buffer to transmit
3922  */
3923 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3924 {
3925     skb_reset_mac_header(skb);
3926     __skb_pull(skb, skb_network_offset(skb));
3927     skb->pkt_type = PACKET_LOOPBACK;
3928     if (skb->ip_summed == CHECKSUM_NONE)
3929         skb->ip_summed = CHECKSUM_UNNECESSARY;
3930     DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3931     skb_dst_force(skb);
3932     netif_rx(skb);
3933     return 0;
3934 }
3935 EXPORT_SYMBOL(dev_loopback_xmit);
3936 
3937 #ifdef CONFIG_NET_EGRESS
3938 static struct sk_buff *
3939 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3940 {
3941 #ifdef CONFIG_NET_CLS_ACT
3942     struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3943     struct tcf_result cl_res;
3944 
3945     if (!miniq)
3946         return skb;
3947 
3948     /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3949     tc_skb_cb(skb)->mru = 0;
3950     tc_skb_cb(skb)->post_ct = false;
3951     mini_qdisc_bstats_cpu_update(miniq, skb);
3952 
3953     switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3954     case TC_ACT_OK:
3955     case TC_ACT_RECLASSIFY:
3956         skb->tc_index = TC_H_MIN(cl_res.classid);
3957         break;
3958     case TC_ACT_SHOT:
3959         mini_qdisc_qstats_cpu_drop(miniq);
3960         *ret = NET_XMIT_DROP;
3961         kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3962         return NULL;
3963     case TC_ACT_STOLEN:
3964     case TC_ACT_QUEUED:
3965     case TC_ACT_TRAP:
3966         *ret = NET_XMIT_SUCCESS;
3967         consume_skb(skb);
3968         return NULL;
3969     case TC_ACT_REDIRECT:
3970         /* No need to push/pop skb's mac_header here on egress! */
3971         skb_do_redirect(skb);
3972         *ret = NET_XMIT_SUCCESS;
3973         return NULL;
3974     default:
3975         break;
3976     }
3977 #endif /* CONFIG_NET_CLS_ACT */
3978 
3979     return skb;
3980 }
3981 
3982 static struct netdev_queue *
3983 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3984 {
3985     int qm = skb_get_queue_mapping(skb);
3986 
3987     return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3988 }
3989 
3990 static bool netdev_xmit_txqueue_skipped(void)
3991 {
3992     return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3993 }
3994 
3995 void netdev_xmit_skip_txqueue(bool skip)
3996 {
3997     __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3998 }
3999 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4000 #endif /* CONFIG_NET_EGRESS */
4001 
4002 #ifdef CONFIG_XPS
4003 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4004                    struct xps_dev_maps *dev_maps, unsigned int tci)
4005 {
4006     int tc = netdev_get_prio_tc_map(dev, skb->priority);
4007     struct xps_map *map;
4008     int queue_index = -1;
4009 
4010     if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4011         return queue_index;
4012 
4013     tci *= dev_maps->num_tc;
4014     tci += tc;
4015 
4016     map = rcu_dereference(dev_maps->attr_map[tci]);
4017     if (map) {
4018         if (map->len == 1)
4019             queue_index = map->queues[0];
4020         else
4021             queue_index = map->queues[reciprocal_scale(
4022                         skb_get_hash(skb), map->len)];
4023         if (unlikely(queue_index >= dev->real_num_tx_queues))
4024             queue_index = -1;
4025     }
4026     return queue_index;
4027 }
4028 #endif
4029 
4030 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4031              struct sk_buff *skb)
4032 {
4033 #ifdef CONFIG_XPS
4034     struct xps_dev_maps *dev_maps;
4035     struct sock *sk = skb->sk;
4036     int queue_index = -1;
4037 
4038     if (!static_key_false(&xps_needed))
4039         return -1;
4040 
4041     rcu_read_lock();
4042     if (!static_key_false(&xps_rxqs_needed))
4043         goto get_cpus_map;
4044 
4045     dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4046     if (dev_maps) {
4047         int tci = sk_rx_queue_get(sk);
4048 
4049         if (tci >= 0)
4050             queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4051                               tci);
4052     }
4053 
4054 get_cpus_map:
4055     if (queue_index < 0) {
4056         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4057         if (dev_maps) {
4058             unsigned int tci = skb->sender_cpu - 1;
4059 
4060             queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4061                               tci);
4062         }
4063     }
4064     rcu_read_unlock();
4065 
4066     return queue_index;
4067 #else
4068     return -1;
4069 #endif
4070 }
4071 
4072 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4073              struct net_device *sb_dev)
4074 {
4075     return 0;
4076 }
4077 EXPORT_SYMBOL(dev_pick_tx_zero);
4078 
4079 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4080                struct net_device *sb_dev)
4081 {
4082     return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4083 }
4084 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4085 
4086 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4087              struct net_device *sb_dev)
4088 {
4089     struct sock *sk = skb->sk;
4090     int queue_index = sk_tx_queue_get(sk);
4091 
4092     sb_dev = sb_dev ? : dev;
4093 
4094     if (queue_index < 0 || skb->ooo_okay ||
4095         queue_index >= dev->real_num_tx_queues) {
4096         int new_index = get_xps_queue(dev, sb_dev, skb);
4097 
4098         if (new_index < 0)
4099             new_index = skb_tx_hash(dev, sb_dev, skb);
4100 
4101         if (queue_index != new_index && sk &&
4102             sk_fullsock(sk) &&
4103             rcu_access_pointer(sk->sk_dst_cache))
4104             sk_tx_queue_set(sk, new_index);
4105 
4106         queue_index = new_index;
4107     }
4108 
4109     return queue_index;
4110 }
4111 EXPORT_SYMBOL(netdev_pick_tx);
4112 
4113 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4114                      struct sk_buff *skb,
4115                      struct net_device *sb_dev)
4116 {
4117     int queue_index = 0;
4118 
4119 #ifdef CONFIG_XPS
4120     u32 sender_cpu = skb->sender_cpu - 1;
4121 
4122     if (sender_cpu >= (u32)NR_CPUS)
4123         skb->sender_cpu = raw_smp_processor_id() + 1;
4124 #endif
4125 
4126     if (dev->real_num_tx_queues != 1) {
4127         const struct net_device_ops *ops = dev->netdev_ops;
4128 
4129         if (ops->ndo_select_queue)
4130             queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4131         else
4132             queue_index = netdev_pick_tx(dev, skb, sb_dev);
4133 
4134         queue_index = netdev_cap_txqueue(dev, queue_index);
4135     }
4136 
4137     skb_set_queue_mapping(skb, queue_index);
4138     return netdev_get_tx_queue(dev, queue_index);
4139 }
4140 
4141 /**
4142  * __dev_queue_xmit() - transmit a buffer
4143  * @skb:    buffer to transmit
4144  * @sb_dev: suboordinate device used for L2 forwarding offload
4145  *
4146  * Queue a buffer for transmission to a network device. The caller must
4147  * have set the device and priority and built the buffer before calling
4148  * this function. The function can be called from an interrupt.
4149  *
4150  * When calling this method, interrupts MUST be enabled. This is because
4151  * the BH enable code must have IRQs enabled so that it will not deadlock.
4152  *
4153  * Regardless of the return value, the skb is consumed, so it is currently
4154  * difficult to retry a send to this method. (You can bump the ref count
4155  * before sending to hold a reference for retry if you are careful.)
4156  *
4157  * Return:
4158  * * 0              - buffer successfully transmitted
4159  * * positive qdisc return code - NET_XMIT_DROP etc.
4160  * * negative errno     - other errors
4161  */
4162 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4163 {
4164     struct net_device *dev = skb->dev;
4165     struct netdev_queue *txq = NULL;
4166     struct Qdisc *q;
4167     int rc = -ENOMEM;
4168     bool again = false;
4169 
4170     skb_reset_mac_header(skb);
4171     skb_assert_len(skb);
4172 
4173     if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4174         __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4175 
4176     /* Disable soft irqs for various locks below. Also
4177      * stops preemption for RCU.
4178      */
4179     rcu_read_lock_bh();
4180 
4181     skb_update_prio(skb);
4182 
4183     qdisc_pkt_len_init(skb);
4184 #ifdef CONFIG_NET_CLS_ACT
4185     skb->tc_at_ingress = 0;
4186 #endif
4187 #ifdef CONFIG_NET_EGRESS
4188     if (static_branch_unlikely(&egress_needed_key)) {
4189         if (nf_hook_egress_active()) {
4190             skb = nf_hook_egress(skb, &rc, dev);
4191             if (!skb)
4192                 goto out;
4193         }
4194 
4195         netdev_xmit_skip_txqueue(false);
4196 
4197         nf_skip_egress(skb, true);
4198         skb = sch_handle_egress(skb, &rc, dev);
4199         if (!skb)
4200             goto out;
4201         nf_skip_egress(skb, false);
4202 
4203         if (netdev_xmit_txqueue_skipped())
4204             txq = netdev_tx_queue_mapping(dev, skb);
4205     }
4206 #endif
4207     /* If device/qdisc don't need skb->dst, release it right now while
4208      * its hot in this cpu cache.
4209      */
4210     if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4211         skb_dst_drop(skb);
4212     else
4213         skb_dst_force(skb);
4214 
4215     if (!txq)
4216         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4217 
4218     q = rcu_dereference_bh(txq->qdisc);
4219 
4220     trace_net_dev_queue(skb);
4221     if (q->enqueue) {
4222         rc = __dev_xmit_skb(skb, q, dev, txq);
4223         goto out;
4224     }
4225 
4226     /* The device has no queue. Common case for software devices:
4227      * loopback, all the sorts of tunnels...
4228 
4229      * Really, it is unlikely that netif_tx_lock protection is necessary
4230      * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4231      * counters.)
4232      * However, it is possible, that they rely on protection
4233      * made by us here.
4234 
4235      * Check this and shot the lock. It is not prone from deadlocks.
4236      *Either shot noqueue qdisc, it is even simpler 8)
4237      */
4238     if (dev->flags & IFF_UP) {
4239         int cpu = smp_processor_id(); /* ok because BHs are off */
4240 
4241         /* Other cpus might concurrently change txq->xmit_lock_owner
4242          * to -1 or to their cpu id, but not to our id.
4243          */
4244         if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4245             if (dev_xmit_recursion())
4246                 goto recursion_alert;
4247 
4248             skb = validate_xmit_skb(skb, dev, &again);
4249             if (!skb)
4250                 goto out;
4251 
4252             HARD_TX_LOCK(dev, txq, cpu);
4253 
4254             if (!netif_xmit_stopped(txq)) {
4255                 dev_xmit_recursion_inc();
4256                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4257                 dev_xmit_recursion_dec();
4258                 if (dev_xmit_complete(rc)) {
4259                     HARD_TX_UNLOCK(dev, txq);
4260                     goto out;
4261                 }
4262             }
4263             HARD_TX_UNLOCK(dev, txq);
4264             net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4265                          dev->name);
4266         } else {
4267             /* Recursion is detected! It is possible,
4268              * unfortunately
4269              */
4270 recursion_alert:
4271             net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4272                          dev->name);
4273         }
4274     }
4275 
4276     rc = -ENETDOWN;
4277     rcu_read_unlock_bh();
4278 
4279     dev_core_stats_tx_dropped_inc(dev);
4280     kfree_skb_list(skb);
4281     return rc;
4282 out:
4283     rcu_read_unlock_bh();
4284     return rc;
4285 }
4286 EXPORT_SYMBOL(__dev_queue_xmit);
4287 
4288 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4289 {
4290     struct net_device *dev = skb->dev;
4291     struct sk_buff *orig_skb = skb;
4292     struct netdev_queue *txq;
4293     int ret = NETDEV_TX_BUSY;
4294     bool again = false;
4295 
4296     if (unlikely(!netif_running(dev) ||
4297              !netif_carrier_ok(dev)))
4298         goto drop;
4299 
4300     skb = validate_xmit_skb_list(skb, dev, &again);
4301     if (skb != orig_skb)
4302         goto drop;
4303 
4304     skb_set_queue_mapping(skb, queue_id);
4305     txq = skb_get_tx_queue(dev, skb);
4306 
4307     local_bh_disable();
4308 
4309     dev_xmit_recursion_inc();
4310     HARD_TX_LOCK(dev, txq, smp_processor_id());
4311     if (!netif_xmit_frozen_or_drv_stopped(txq))
4312         ret = netdev_start_xmit(skb, dev, txq, false);
4313     HARD_TX_UNLOCK(dev, txq);
4314     dev_xmit_recursion_dec();
4315 
4316     local_bh_enable();
4317     return ret;
4318 drop:
4319     dev_core_stats_tx_dropped_inc(dev);
4320     kfree_skb_list(skb);
4321     return NET_XMIT_DROP;
4322 }
4323 EXPORT_SYMBOL(__dev_direct_xmit);
4324 
4325 /*************************************************************************
4326  *          Receiver routines
4327  *************************************************************************/
4328 
4329 int netdev_max_backlog __read_mostly = 1000;
4330 EXPORT_SYMBOL(netdev_max_backlog);
4331 
4332 int netdev_tstamp_prequeue __read_mostly = 1;
4333 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4334 int netdev_budget __read_mostly = 300;
4335 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4336 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4337 int weight_p __read_mostly = 64;           /* old backlog weight */
4338 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4339 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4340 int dev_rx_weight __read_mostly = 64;
4341 int dev_tx_weight __read_mostly = 64;
4342 
4343 /* Called with irq disabled */
4344 static inline void ____napi_schedule(struct softnet_data *sd,
4345                      struct napi_struct *napi)
4346 {
4347     struct task_struct *thread;
4348 
4349     lockdep_assert_irqs_disabled();
4350 
4351     if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4352         /* Paired with smp_mb__before_atomic() in
4353          * napi_enable()/dev_set_threaded().
4354          * Use READ_ONCE() to guarantee a complete
4355          * read on napi->thread. Only call
4356          * wake_up_process() when it's not NULL.
4357          */
4358         thread = READ_ONCE(napi->thread);
4359         if (thread) {
4360             /* Avoid doing set_bit() if the thread is in
4361              * INTERRUPTIBLE state, cause napi_thread_wait()
4362              * makes sure to proceed with napi polling
4363              * if the thread is explicitly woken from here.
4364              */
4365             if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4366                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4367             wake_up_process(thread);
4368             return;
4369         }
4370     }
4371 
4372     list_add_tail(&napi->poll_list, &sd->poll_list);
4373     __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4374 }
4375 
4376 #ifdef CONFIG_RPS
4377 
4378 /* One global table that all flow-based protocols share. */
4379 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4380 EXPORT_SYMBOL(rps_sock_flow_table);
4381 u32 rps_cpu_mask __read_mostly;
4382 EXPORT_SYMBOL(rps_cpu_mask);
4383 
4384 struct static_key_false rps_needed __read_mostly;
4385 EXPORT_SYMBOL(rps_needed);
4386 struct static_key_false rfs_needed __read_mostly;
4387 EXPORT_SYMBOL(rfs_needed);
4388 
4389 static struct rps_dev_flow *
4390 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4391         struct rps_dev_flow *rflow, u16 next_cpu)
4392 {
4393     if (next_cpu < nr_cpu_ids) {
4394 #ifdef CONFIG_RFS_ACCEL
4395         struct netdev_rx_queue *rxqueue;
4396         struct rps_dev_flow_table *flow_table;
4397         struct rps_dev_flow *old_rflow;
4398         u32 flow_id;
4399         u16 rxq_index;
4400         int rc;
4401 
4402         /* Should we steer this flow to a different hardware queue? */
4403         if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4404             !(dev->features & NETIF_F_NTUPLE))
4405             goto out;
4406         rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4407         if (rxq_index == skb_get_rx_queue(skb))
4408             goto out;
4409 
4410         rxqueue = dev->_rx + rxq_index;
4411         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4412         if (!flow_table)
4413             goto out;
4414         flow_id = skb_get_hash(skb) & flow_table->mask;
4415         rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4416                             rxq_index, flow_id);
4417         if (rc < 0)
4418             goto out;
4419         old_rflow = rflow;
4420         rflow = &flow_table->flows[flow_id];
4421         rflow->filter = rc;
4422         if (old_rflow->filter == rflow->filter)
4423             old_rflow->filter = RPS_NO_FILTER;
4424     out:
4425 #endif
4426         rflow->last_qtail =
4427             per_cpu(softnet_data, next_cpu).input_queue_head;
4428     }
4429 
4430     rflow->cpu = next_cpu;
4431     return rflow;
4432 }
4433 
4434 /*
4435  * get_rps_cpu is called from netif_receive_skb and returns the target
4436  * CPU from the RPS map of the receiving queue for a given skb.
4437  * rcu_read_lock must be held on entry.
4438  */
4439 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4440                struct rps_dev_flow **rflowp)
4441 {
4442     const struct rps_sock_flow_table *sock_flow_table;
4443     struct netdev_rx_queue *rxqueue = dev->_rx;
4444     struct rps_dev_flow_table *flow_table;
4445     struct rps_map *map;
4446     int cpu = -1;
4447     u32 tcpu;
4448     u32 hash;
4449 
4450     if (skb_rx_queue_recorded(skb)) {
4451         u16 index = skb_get_rx_queue(skb);
4452 
4453         if (unlikely(index >= dev->real_num_rx_queues)) {
4454             WARN_ONCE(dev->real_num_rx_queues > 1,
4455                   "%s received packet on queue %u, but number "
4456                   "of RX queues is %u\n",
4457                   dev->name, index, dev->real_num_rx_queues);
4458             goto done;
4459         }
4460         rxqueue += index;
4461     }
4462 
4463     /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4464 
4465     flow_table = rcu_dereference(rxqueue->rps_flow_table);
4466     map = rcu_dereference(rxqueue->rps_map);
4467     if (!flow_table && !map)
4468         goto done;
4469 
4470     skb_reset_network_header(skb);
4471     hash = skb_get_hash(skb);
4472     if (!hash)
4473         goto done;
4474 
4475     sock_flow_table = rcu_dereference(rps_sock_flow_table);
4476     if (flow_table && sock_flow_table) {
4477         struct rps_dev_flow *rflow;
4478         u32 next_cpu;
4479         u32 ident;
4480 
4481         /* First check into global flow table if there is a match */
4482         ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4483         if ((ident ^ hash) & ~rps_cpu_mask)
4484             goto try_rps;
4485 
4486         next_cpu = ident & rps_cpu_mask;
4487 
4488         /* OK, now we know there is a match,
4489          * we can look at the local (per receive queue) flow table
4490          */
4491         rflow = &flow_table->flows[hash & flow_table->mask];
4492         tcpu = rflow->cpu;
4493 
4494         /*
4495          * If the desired CPU (where last recvmsg was done) is
4496          * different from current CPU (one in the rx-queue flow
4497          * table entry), switch if one of the following holds:
4498          *   - Current CPU is unset (>= nr_cpu_ids).
4499          *   - Current CPU is offline.
4500          *   - The current CPU's queue tail has advanced beyond the
4501          *     last packet that was enqueued using this table entry.
4502          *     This guarantees that all previous packets for the flow
4503          *     have been dequeued, thus preserving in order delivery.
4504          */
4505         if (unlikely(tcpu != next_cpu) &&
4506             (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4507              ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4508               rflow->last_qtail)) >= 0)) {
4509             tcpu = next_cpu;
4510             rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4511         }
4512 
4513         if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4514             *rflowp = rflow;
4515             cpu = tcpu;
4516             goto done;
4517         }
4518     }
4519 
4520 try_rps:
4521 
4522     if (map) {
4523         tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4524         if (cpu_online(tcpu)) {
4525             cpu = tcpu;
4526             goto done;
4527         }
4528     }
4529 
4530 done:
4531     return cpu;
4532 }
4533 
4534 #ifdef CONFIG_RFS_ACCEL
4535 
4536 /**
4537  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4538  * @dev: Device on which the filter was set
4539  * @rxq_index: RX queue index
4540  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4541  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4542  *
4543  * Drivers that implement ndo_rx_flow_steer() should periodically call
4544  * this function for each installed filter and remove the filters for
4545  * which it returns %true.
4546  */
4547 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4548              u32 flow_id, u16 filter_id)
4549 {
4550     struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4551     struct rps_dev_flow_table *flow_table;
4552     struct rps_dev_flow *rflow;
4553     bool expire = true;
4554     unsigned int cpu;
4555 
4556     rcu_read_lock();
4557     flow_table = rcu_dereference(rxqueue->rps_flow_table);
4558     if (flow_table && flow_id <= flow_table->mask) {
4559         rflow = &flow_table->flows[flow_id];
4560         cpu = READ_ONCE(rflow->cpu);
4561         if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4562             ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4563                rflow->last_qtail) <
4564              (int)(10 * flow_table->mask)))
4565             expire = false;
4566     }
4567     rcu_read_unlock();
4568     return expire;
4569 }
4570 EXPORT_SYMBOL(rps_may_expire_flow);
4571 
4572 #endif /* CONFIG_RFS_ACCEL */
4573 
4574 /* Called from hardirq (IPI) context */
4575 static void rps_trigger_softirq(void *data)
4576 {
4577     struct softnet_data *sd = data;
4578 
4579     ____napi_schedule(sd, &sd->backlog);
4580     sd->received_rps++;
4581 }
4582 
4583 #endif /* CONFIG_RPS */
4584 
4585 /* Called from hardirq (IPI) context */
4586 static void trigger_rx_softirq(void *data)
4587 {
4588     struct softnet_data *sd = data;
4589 
4590     __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4591     smp_store_release(&sd->defer_ipi_scheduled, 0);
4592 }
4593 
4594 /*
4595  * Check if this softnet_data structure is another cpu one
4596  * If yes, queue it to our IPI list and return 1
4597  * If no, return 0
4598  */
4599 static int napi_schedule_rps(struct softnet_data *sd)
4600 {
4601     struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4602 
4603 #ifdef CONFIG_RPS
4604     if (sd != mysd) {
4605         sd->rps_ipi_next = mysd->rps_ipi_list;
4606         mysd->rps_ipi_list = sd;
4607 
4608         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4609         return 1;
4610     }
4611 #endif /* CONFIG_RPS */
4612     __napi_schedule_irqoff(&mysd->backlog);
4613     return 0;
4614 }
4615 
4616 #ifdef CONFIG_NET_FLOW_LIMIT
4617 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4618 #endif
4619 
4620 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4621 {
4622 #ifdef CONFIG_NET_FLOW_LIMIT
4623     struct sd_flow_limit *fl;
4624     struct softnet_data *sd;
4625     unsigned int old_flow, new_flow;
4626 
4627     if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4628         return false;
4629 
4630     sd = this_cpu_ptr(&softnet_data);
4631 
4632     rcu_read_lock();
4633     fl = rcu_dereference(sd->flow_limit);
4634     if (fl) {
4635         new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4636         old_flow = fl->history[fl->history_head];
4637         fl->history[fl->history_head] = new_flow;
4638 
4639         fl->history_head++;
4640         fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4641 
4642         if (likely(fl->buckets[old_flow]))
4643             fl->buckets[old_flow]--;
4644 
4645         if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4646             fl->count++;
4647             rcu_read_unlock();
4648             return true;
4649         }
4650     }
4651     rcu_read_unlock();
4652 #endif
4653     return false;
4654 }
4655 
4656 /*
4657  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4658  * queue (may be a remote CPU queue).
4659  */
4660 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4661                   unsigned int *qtail)
4662 {
4663     enum skb_drop_reason reason;
4664     struct softnet_data *sd;
4665     unsigned long flags;
4666     unsigned int qlen;
4667 
4668     reason = SKB_DROP_REASON_NOT_SPECIFIED;
4669     sd = &per_cpu(softnet_data, cpu);
4670 
4671     rps_lock_irqsave(sd, &flags);
4672     if (!netif_running(skb->dev))
4673         goto drop;
4674     qlen = skb_queue_len(&sd->input_pkt_queue);
4675     if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4676         if (qlen) {
4677 enqueue:
4678             __skb_queue_tail(&sd->input_pkt_queue, skb);
4679             input_queue_tail_incr_save(sd, qtail);
4680             rps_unlock_irq_restore(sd, &flags);
4681             return NET_RX_SUCCESS;
4682         }
4683 
4684         /* Schedule NAPI for backlog device
4685          * We can use non atomic operation since we own the queue lock
4686          */
4687         if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4688             napi_schedule_rps(sd);
4689         goto enqueue;
4690     }
4691     reason = SKB_DROP_REASON_CPU_BACKLOG;
4692 
4693 drop:
4694     sd->dropped++;
4695     rps_unlock_irq_restore(sd, &flags);
4696 
4697     dev_core_stats_rx_dropped_inc(skb->dev);
4698     kfree_skb_reason(skb, reason);
4699     return NET_RX_DROP;
4700 }
4701 
4702 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4703 {
4704     struct net_device *dev = skb->dev;
4705     struct netdev_rx_queue *rxqueue;
4706 
4707     rxqueue = dev->_rx;
4708 
4709     if (skb_rx_queue_recorded(skb)) {
4710         u16 index = skb_get_rx_queue(skb);
4711 
4712         if (unlikely(index >= dev->real_num_rx_queues)) {
4713             WARN_ONCE(dev->real_num_rx_queues > 1,
4714                   "%s received packet on queue %u, but number "
4715                   "of RX queues is %u\n",
4716                   dev->name, index, dev->real_num_rx_queues);
4717 
4718             return rxqueue; /* Return first rxqueue */
4719         }
4720         rxqueue += index;
4721     }
4722     return rxqueue;
4723 }
4724 
4725 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4726                  struct bpf_prog *xdp_prog)
4727 {
4728     void *orig_data, *orig_data_end, *hard_start;
4729     struct netdev_rx_queue *rxqueue;
4730     bool orig_bcast, orig_host;
4731     u32 mac_len, frame_sz;
4732     __be16 orig_eth_type;
4733     struct ethhdr *eth;
4734     u32 metalen, act;
4735     int off;
4736 
4737     /* The XDP program wants to see the packet starting at the MAC
4738      * header.
4739      */
4740     mac_len = skb->data - skb_mac_header(skb);
4741     hard_start = skb->data - skb_headroom(skb);
4742 
4743     /* SKB "head" area always have tailroom for skb_shared_info */
4744     frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4745     frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4746 
4747     rxqueue = netif_get_rxqueue(skb);
4748     xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4749     xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4750              skb_headlen(skb) + mac_len, true);
4751 
4752     orig_data_end = xdp->data_end;
4753     orig_data = xdp->data;
4754     eth = (struct ethhdr *)xdp->data;
4755     orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4756     orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4757     orig_eth_type = eth->h_proto;
4758 
4759     act = bpf_prog_run_xdp(xdp_prog, xdp);
4760 
4761     /* check if bpf_xdp_adjust_head was used */
4762     off = xdp->data - orig_data;
4763     if (off) {
4764         if (off > 0)
4765             __skb_pull(skb, off);
4766         else if (off < 0)
4767             __skb_push(skb, -off);
4768 
4769         skb->mac_header += off;
4770         skb_reset_network_header(skb);
4771     }
4772 
4773     /* check if bpf_xdp_adjust_tail was used */
4774     off = xdp->data_end - orig_data_end;
4775     if (off != 0) {
4776         skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4777         skb->len += off; /* positive on grow, negative on shrink */
4778     }
4779 
4780     /* check if XDP changed eth hdr such SKB needs update */
4781     eth = (struct ethhdr *)xdp->data;
4782     if ((orig_eth_type != eth->h_proto) ||
4783         (orig_host != ether_addr_equal_64bits(eth->h_dest,
4784                           skb->dev->dev_addr)) ||
4785         (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4786         __skb_push(skb, ETH_HLEN);
4787         skb->pkt_type = PACKET_HOST;
4788         skb->protocol = eth_type_trans(skb, skb->dev);
4789     }
4790 
4791     /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4792      * before calling us again on redirect path. We do not call do_redirect
4793      * as we leave that up to the caller.
4794      *
4795      * Caller is responsible for managing lifetime of skb (i.e. calling
4796      * kfree_skb in response to actions it cannot handle/XDP_DROP).
4797      */
4798     switch (act) {
4799     case XDP_REDIRECT:
4800     case XDP_TX:
4801         __skb_push(skb, mac_len);
4802         break;
4803     case XDP_PASS:
4804         metalen = xdp->data - xdp->data_meta;
4805         if (metalen)
4806             skb_metadata_set(skb, metalen);
4807         break;
4808     }
4809 
4810     return act;
4811 }
4812 
4813 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4814                      struct xdp_buff *xdp,
4815                      struct bpf_prog *xdp_prog)
4816 {
4817     u32 act = XDP_DROP;
4818 
4819     /* Reinjected packets coming from act_mirred or similar should
4820      * not get XDP generic processing.
4821      */
4822     if (skb_is_redirected(skb))
4823         return XDP_PASS;
4824 
4825     /* XDP packets must be linear and must have sufficient headroom
4826      * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4827      * native XDP provides, thus we need to do it here as well.
4828      */
4829     if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4830         skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4831         int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4832         int troom = skb->tail + skb->data_len - skb->end;
4833 
4834         /* In case we have to go down the path and also linearize,
4835          * then lets do the pskb_expand_head() work just once here.
4836          */
4837         if (pskb_expand_head(skb,
4838                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4839                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4840             goto do_drop;
4841         if (skb_linearize(skb))
4842             goto do_drop;
4843     }
4844 
4845     act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4846     switch (act) {
4847     case XDP_REDIRECT:
4848     case XDP_TX:
4849     case XDP_PASS:
4850         break;
4851     default:
4852         bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4853         fallthrough;
4854     case XDP_ABORTED:
4855         trace_xdp_exception(skb->dev, xdp_prog, act);
4856         fallthrough;
4857     case XDP_DROP:
4858     do_drop:
4859         kfree_skb(skb);
4860         break;
4861     }
4862 
4863     return act;
4864 }
4865 
4866 /* When doing generic XDP we have to bypass the qdisc layer and the
4867  * network taps in order to match in-driver-XDP behavior. This also means
4868  * that XDP packets are able to starve other packets going through a qdisc,
4869  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4870  * queues, so they do not have this starvation issue.
4871  */
4872 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4873 {
4874     struct net_device *dev = skb->dev;
4875     struct netdev_queue *txq;
4876     bool free_skb = true;
4877     int cpu, rc;
4878 
4879     txq = netdev_core_pick_tx(dev, skb, NULL);
4880     cpu = smp_processor_id();
4881     HARD_TX_LOCK(dev, txq, cpu);
4882     if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4883         rc = netdev_start_xmit(skb, dev, txq, 0);
4884         if (dev_xmit_complete(rc))
4885             free_skb = false;
4886     }
4887     HARD_TX_UNLOCK(dev, txq);
4888     if (free_skb) {
4889         trace_xdp_exception(dev, xdp_prog, XDP_TX);
4890         dev_core_stats_tx_dropped_inc(dev);
4891         kfree_skb(skb);
4892     }
4893 }
4894 
4895 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4896 
4897 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4898 {
4899     if (xdp_prog) {
4900         struct xdp_buff xdp;
4901         u32 act;
4902         int err;
4903 
4904         act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4905         if (act != XDP_PASS) {
4906             switch (act) {
4907             case XDP_REDIRECT:
4908                 err = xdp_do_generic_redirect(skb->dev, skb,
4909                                   &xdp, xdp_prog);
4910                 if (err)
4911                     goto out_redir;
4912                 break;
4913             case XDP_TX:
4914                 generic_xdp_tx(skb, xdp_prog);
4915                 break;
4916             }
4917             return XDP_DROP;
4918         }
4919     }
4920     return XDP_PASS;
4921 out_redir:
4922     kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4923     return XDP_DROP;
4924 }
4925 EXPORT_SYMBOL_GPL(do_xdp_generic);
4926 
4927 static int netif_rx_internal(struct sk_buff *skb)
4928 {
4929     int ret;
4930 
4931     net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4932 
4933     trace_netif_rx(skb);
4934 
4935 #ifdef CONFIG_RPS
4936     if (static_branch_unlikely(&rps_needed)) {
4937         struct rps_dev_flow voidflow, *rflow = &voidflow;
4938         int cpu;
4939 
4940         rcu_read_lock();
4941 
4942         cpu = get_rps_cpu(skb->dev, skb, &rflow);
4943         if (cpu < 0)
4944             cpu = smp_processor_id();
4945 
4946         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4947 
4948         rcu_read_unlock();
4949     } else
4950 #endif
4951     {
4952         unsigned int qtail;
4953 
4954         ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4955     }
4956     return ret;
4957 }
4958 
4959 /**
4960  *  __netif_rx  -   Slightly optimized version of netif_rx
4961  *  @skb: buffer to post
4962  *
4963  *  This behaves as netif_rx except that it does not disable bottom halves.
4964  *  As a result this function may only be invoked from the interrupt context
4965  *  (either hard or soft interrupt).
4966  */
4967 int __netif_rx(struct sk_buff *skb)
4968 {
4969     int ret;
4970 
4971     lockdep_assert_once(hardirq_count() | softirq_count());
4972 
4973     trace_netif_rx_entry(skb);
4974     ret = netif_rx_internal(skb);
4975     trace_netif_rx_exit(ret);
4976     return ret;
4977 }
4978 EXPORT_SYMBOL(__netif_rx);
4979 
4980 /**
4981  *  netif_rx    -   post buffer to the network code
4982  *  @skb: buffer to post
4983  *
4984  *  This function receives a packet from a device driver and queues it for
4985  *  the upper (protocol) levels to process via the backlog NAPI device. It
4986  *  always succeeds. The buffer may be dropped during processing for
4987  *  congestion control or by the protocol layers.
4988  *  The network buffer is passed via the backlog NAPI device. Modern NIC
4989  *  driver should use NAPI and GRO.
4990  *  This function can used from interrupt and from process context. The
4991  *  caller from process context must not disable interrupts before invoking
4992  *  this function.
4993  *
4994  *  return values:
4995  *  NET_RX_SUCCESS  (no congestion)
4996  *  NET_RX_DROP     (packet was dropped)
4997  *
4998  */
4999 int netif_rx(struct sk_buff *skb)
5000 {
5001     bool need_bh_off = !(hardirq_count() | softirq_count());
5002     int ret;
5003 
5004     if (need_bh_off)
5005         local_bh_disable();
5006     trace_netif_rx_entry(skb);
5007     ret = netif_rx_internal(skb);
5008     trace_netif_rx_exit(ret);
5009     if (need_bh_off)
5010         local_bh_enable();
5011     return ret;
5012 }
5013 EXPORT_SYMBOL(netif_rx);
5014 
5015 static __latent_entropy void net_tx_action(struct softirq_action *h)
5016 {
5017     struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5018 
5019     if (sd->completion_queue) {
5020         struct sk_buff *clist;
5021 
5022         local_irq_disable();
5023         clist = sd->completion_queue;
5024         sd->completion_queue = NULL;
5025         local_irq_enable();
5026 
5027         while (clist) {
5028             struct sk_buff *skb = clist;
5029 
5030             clist = clist->next;
5031 
5032             WARN_ON(refcount_read(&skb->users));
5033             if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5034                 trace_consume_skb(skb);
5035             else
5036                 trace_kfree_skb(skb, net_tx_action,
5037                         SKB_DROP_REASON_NOT_SPECIFIED);
5038 
5039             if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5040                 __kfree_skb(skb);
5041             else
5042                 __kfree_skb_defer(skb);
5043         }
5044     }
5045 
5046     if (sd->output_queue) {
5047         struct Qdisc *head;
5048 
5049         local_irq_disable();
5050         head = sd->output_queue;
5051         sd->output_queue = NULL;
5052         sd->output_queue_tailp = &sd->output_queue;
5053         local_irq_enable();
5054 
5055         rcu_read_lock();
5056 
5057         while (head) {
5058             struct Qdisc *q = head;
5059             spinlock_t *root_lock = NULL;
5060 
5061             head = head->next_sched;
5062 
5063             /* We need to make sure head->next_sched is read
5064              * before clearing __QDISC_STATE_SCHED
5065              */
5066             smp_mb__before_atomic();
5067 
5068             if (!(q->flags & TCQ_F_NOLOCK)) {
5069                 root_lock = qdisc_lock(q);
5070                 spin_lock(root_lock);
5071             } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5072                              &q->state))) {
5073                 /* There is a synchronize_net() between
5074                  * STATE_DEACTIVATED flag being set and
5075                  * qdisc_reset()/some_qdisc_is_busy() in
5076                  * dev_deactivate(), so we can safely bail out
5077                  * early here to avoid data race between
5078                  * qdisc_deactivate() and some_qdisc_is_busy()
5079                  * for lockless qdisc.
5080                  */
5081                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5082                 continue;
5083             }
5084 
5085             clear_bit(__QDISC_STATE_SCHED, &q->state);
5086             qdisc_run(q);
5087             if (root_lock)
5088                 spin_unlock(root_lock);
5089         }
5090 
5091         rcu_read_unlock();
5092     }
5093 
5094     xfrm_dev_backlog(sd);
5095 }
5096 
5097 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5098 /* This hook is defined here for ATM LANE */
5099 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5100                  unsigned char *addr) __read_mostly;
5101 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5102 #endif
5103 
5104 static inline struct sk_buff *
5105 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5106            struct net_device *orig_dev, bool *another)
5107 {
5108 #ifdef CONFIG_NET_CLS_ACT
5109     struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5110     struct tcf_result cl_res;
5111 
5112     /* If there's at least one ingress present somewhere (so
5113      * we get here via enabled static key), remaining devices
5114      * that are not configured with an ingress qdisc will bail
5115      * out here.
5116      */
5117     if (!miniq)
5118         return skb;
5119 
5120     if (*pt_prev) {
5121         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5122         *pt_prev = NULL;
5123     }
5124 
5125     qdisc_skb_cb(skb)->pkt_len = skb->len;
5126     tc_skb_cb(skb)->mru = 0;
5127     tc_skb_cb(skb)->post_ct = false;
5128     skb->tc_at_ingress = 1;
5129     mini_qdisc_bstats_cpu_update(miniq, skb);
5130 
5131     switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5132     case TC_ACT_OK:
5133     case TC_ACT_RECLASSIFY:
5134         skb->tc_index = TC_H_MIN(cl_res.classid);
5135         break;
5136     case TC_ACT_SHOT:
5137         mini_qdisc_qstats_cpu_drop(miniq);
5138         kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5139         return NULL;
5140     case TC_ACT_STOLEN:
5141     case TC_ACT_QUEUED:
5142     case TC_ACT_TRAP:
5143         consume_skb(skb);
5144         return NULL;
5145     case TC_ACT_REDIRECT:
5146         /* skb_mac_header check was done by cls/act_bpf, so
5147          * we can safely push the L2 header back before
5148          * redirecting to another netdev
5149          */
5150         __skb_push(skb, skb->mac_len);
5151         if (skb_do_redirect(skb) == -EAGAIN) {
5152             __skb_pull(skb, skb->mac_len);
5153             *another = true;
5154             break;
5155         }
5156         return NULL;
5157     case TC_ACT_CONSUMED:
5158         return NULL;
5159     default:
5160         break;
5161     }
5162 #endif /* CONFIG_NET_CLS_ACT */
5163     return skb;
5164 }
5165 
5166 /**
5167  *  netdev_is_rx_handler_busy - check if receive handler is registered
5168  *  @dev: device to check
5169  *
5170  *  Check if a receive handler is already registered for a given device.
5171  *  Return true if there one.
5172  *
5173  *  The caller must hold the rtnl_mutex.
5174  */
5175 bool netdev_is_rx_handler_busy(struct net_device *dev)
5176 {
5177     ASSERT_RTNL();
5178     return dev && rtnl_dereference(dev->rx_handler);
5179 }
5180 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5181 
5182 /**
5183  *  netdev_rx_handler_register - register receive handler
5184  *  @dev: device to register a handler for
5185  *  @rx_handler: receive handler to register
5186  *  @rx_handler_data: data pointer that is used by rx handler
5187  *
5188  *  Register a receive handler for a device. This handler will then be
5189  *  called from __netif_receive_skb. A negative errno code is returned
5190  *  on a failure.
5191  *
5192  *  The caller must hold the rtnl_mutex.
5193  *
5194  *  For a general description of rx_handler, see enum rx_handler_result.
5195  */
5196 int netdev_rx_handler_register(struct net_device *dev,
5197                    rx_handler_func_t *rx_handler,
5198                    void *rx_handler_data)
5199 {
5200     if (netdev_is_rx_handler_busy(dev))
5201         return -EBUSY;
5202 
5203     if (dev->priv_flags & IFF_NO_RX_HANDLER)
5204         return -EINVAL;
5205 
5206     /* Note: rx_handler_data must be set before rx_handler */
5207     rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5208     rcu_assign_pointer(dev->rx_handler, rx_handler);
5209 
5210     return 0;
5211 }
5212 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5213 
5214 /**
5215  *  netdev_rx_handler_unregister - unregister receive handler
5216  *  @dev: device to unregister a handler from
5217  *
5218  *  Unregister a receive handler from a device.
5219  *
5220  *  The caller must hold the rtnl_mutex.
5221  */
5222 void netdev_rx_handler_unregister(struct net_device *dev)
5223 {
5224 
5225     ASSERT_RTNL();
5226     RCU_INIT_POINTER(dev->rx_handler, NULL);
5227     /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5228      * section has a guarantee to see a non NULL rx_handler_data
5229      * as well.
5230      */
5231     synchronize_net();
5232     RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5233 }
5234 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5235 
5236 /*
5237  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5238  * the special handling of PFMEMALLOC skbs.
5239  */
5240 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5241 {
5242     switch (skb->protocol) {
5243     case htons(ETH_P_ARP):
5244     case htons(ETH_P_IP):
5245     case htons(ETH_P_IPV6):
5246     case htons(ETH_P_8021Q):
5247     case htons(ETH_P_8021AD):
5248         return true;
5249     default:
5250         return false;
5251     }
5252 }
5253 
5254 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5255                  int *ret, struct net_device *orig_dev)
5256 {
5257     if (nf_hook_ingress_active(skb)) {
5258         int ingress_retval;
5259 
5260         if (*pt_prev) {
5261             *ret = deliver_skb(skb, *pt_prev, orig_dev);
5262             *pt_prev = NULL;
5263         }
5264 
5265         rcu_read_lock();
5266         ingress_retval = nf_hook_ingress(skb);
5267         rcu_read_unlock();
5268         return ingress_retval;
5269     }
5270     return 0;
5271 }
5272 
5273 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5274                     struct packet_type **ppt_prev)
5275 {
5276     struct packet_type *ptype, *pt_prev;
5277     rx_handler_func_t *rx_handler;
5278     struct sk_buff *skb = *pskb;
5279     struct net_device *orig_dev;
5280     bool deliver_exact = false;
5281     int ret = NET_RX_DROP;
5282     __be16 type;
5283 
5284     net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5285 
5286     trace_netif_receive_skb(skb);
5287 
5288     orig_dev = skb->dev;
5289 
5290     skb_reset_network_header(skb);
5291     if (!skb_transport_header_was_set(skb))
5292         skb_reset_transport_header(skb);
5293     skb_reset_mac_len(skb);
5294 
5295     pt_prev = NULL;
5296 
5297 another_round:
5298     skb->skb_iif = skb->dev->ifindex;
5299 
5300     __this_cpu_inc(softnet_data.processed);
5301 
5302     if (static_branch_unlikely(&generic_xdp_needed_key)) {
5303         int ret2;
5304 
5305         migrate_disable();
5306         ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5307         migrate_enable();
5308 
5309         if (ret2 != XDP_PASS) {
5310             ret = NET_RX_DROP;
5311             goto out;
5312         }
5313     }
5314 
5315     if (eth_type_vlan(skb->protocol)) {
5316         skb = skb_vlan_untag(skb);
5317         if (unlikely(!skb))
5318             goto out;
5319     }
5320 
5321     if (skb_skip_tc_classify(skb))
5322         goto skip_classify;
5323 
5324     if (pfmemalloc)
5325         goto skip_taps;
5326 
5327     list_for_each_entry_rcu(ptype, &ptype_all, list) {
5328         if (pt_prev)
5329             ret = deliver_skb(skb, pt_prev, orig_dev);
5330         pt_prev = ptype;
5331     }
5332 
5333     list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5334         if (pt_prev)
5335             ret = deliver_skb(skb, pt_prev, orig_dev);
5336         pt_prev = ptype;
5337     }
5338 
5339 skip_taps:
5340 #ifdef CONFIG_NET_INGRESS
5341     if (static_branch_unlikely(&ingress_needed_key)) {
5342         bool another = false;
5343 
5344         nf_skip_egress(skb, true);
5345         skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5346                      &another);
5347         if (another)
5348             goto another_round;
5349         if (!skb)
5350             goto out;
5351 
5352         nf_skip_egress(skb, false);
5353         if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5354             goto out;
5355     }
5356 #endif
5357     skb_reset_redirect(skb);
5358 skip_classify:
5359     if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5360         goto drop;
5361 
5362     if (skb_vlan_tag_present(skb)) {
5363         if (pt_prev) {
5364             ret = deliver_skb(skb, pt_prev, orig_dev);
5365             pt_prev = NULL;
5366         }
5367         if (vlan_do_receive(&skb))
5368             goto another_round;
5369         else if (unlikely(!skb))
5370             goto out;
5371     }
5372 
5373     rx_handler = rcu_dereference(skb->dev->rx_handler);
5374     if (rx_handler) {
5375         if (pt_prev) {
5376             ret = deliver_skb(skb, pt_prev, orig_dev);
5377             pt_prev = NULL;
5378         }
5379         switch (rx_handler(&skb)) {
5380         case RX_HANDLER_CONSUMED:
5381             ret = NET_RX_SUCCESS;
5382             goto out;
5383         case RX_HANDLER_ANOTHER:
5384             goto another_round;
5385         case RX_HANDLER_EXACT:
5386             deliver_exact = true;
5387             break;
5388         case RX_HANDLER_PASS:
5389             break;
5390         default:
5391             BUG();
5392         }
5393     }
5394 
5395     if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5396 check_vlan_id:
5397         if (skb_vlan_tag_get_id(skb)) {
5398             /* Vlan id is non 0 and vlan_do_receive() above couldn't
5399              * find vlan device.
5400              */
5401             skb->pkt_type = PACKET_OTHERHOST;
5402         } else if (eth_type_vlan(skb->protocol)) {
5403             /* Outer header is 802.1P with vlan 0, inner header is
5404              * 802.1Q or 802.1AD and vlan_do_receive() above could
5405              * not find vlan dev for vlan id 0.
5406              */
5407             __vlan_hwaccel_clear_tag(skb);
5408             skb = skb_vlan_untag(skb);
5409             if (unlikely(!skb))
5410                 goto out;
5411             if (vlan_do_receive(&skb))
5412                 /* After stripping off 802.1P header with vlan 0
5413                  * vlan dev is found for inner header.
5414                  */
5415                 goto another_round;
5416             else if (unlikely(!skb))
5417                 goto out;
5418             else
5419                 /* We have stripped outer 802.1P vlan 0 header.
5420                  * But could not find vlan dev.
5421                  * check again for vlan id to set OTHERHOST.
5422                  */
5423                 goto check_vlan_id;
5424         }
5425         /* Note: we might in the future use prio bits
5426          * and set skb->priority like in vlan_do_receive()
5427          * For the time being, just ignore Priority Code Point
5428          */
5429         __vlan_hwaccel_clear_tag(skb);
5430     }
5431 
5432     type = skb->protocol;
5433 
5434     /* deliver only exact match when indicated */
5435     if (likely(!deliver_exact)) {
5436         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5437                        &ptype_base[ntohs(type) &
5438                            PTYPE_HASH_MASK]);
5439     }
5440 
5441     deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5442                    &orig_dev->ptype_specific);
5443 
5444     if (unlikely(skb->dev != orig_dev)) {
5445         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5446                        &skb->dev->ptype_specific);
5447     }
5448 
5449     if (pt_prev) {
5450         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5451             goto drop;
5452         *ppt_prev = pt_prev;
5453     } else {
5454 drop:
5455         if (!deliver_exact)
5456             dev_core_stats_rx_dropped_inc(skb->dev);
5457         else
5458             dev_core_stats_rx_nohandler_inc(skb->dev);
5459         kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5460         /* Jamal, now you will not able to escape explaining
5461          * me how you were going to use this. :-)
5462          */
5463         ret = NET_RX_DROP;
5464     }
5465 
5466 out:
5467     /* The invariant here is that if *ppt_prev is not NULL
5468      * then skb should also be non-NULL.
5469      *
5470      * Apparently *ppt_prev assignment above holds this invariant due to
5471      * skb dereferencing near it.
5472      */
5473     *pskb = skb;
5474     return ret;
5475 }
5476 
5477 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5478 {
5479     struct net_device *orig_dev = skb->dev;
5480     struct packet_type *pt_prev = NULL;
5481     int ret;
5482 
5483     ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5484     if (pt_prev)
5485         ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5486                      skb->dev, pt_prev, orig_dev);
5487     return ret;
5488 }
5489 
5490 /**
5491  *  netif_receive_skb_core - special purpose version of netif_receive_skb
5492  *  @skb: buffer to process
5493  *
5494  *  More direct receive version of netif_receive_skb().  It should
5495  *  only be used by callers that have a need to skip RPS and Generic XDP.
5496  *  Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5497  *
5498  *  This function may only be called from softirq context and interrupts
5499  *  should be enabled.
5500  *
5501  *  Return values (usually ignored):
5502  *  NET_RX_SUCCESS: no congestion
5503  *  NET_RX_DROP: packet was dropped
5504  */
5505 int netif_receive_skb_core(struct sk_buff *skb)
5506 {
5507     int ret;
5508 
5509     rcu_read_lock();
5510     ret = __netif_receive_skb_one_core(skb, false);
5511     rcu_read_unlock();
5512 
5513     return ret;
5514 }
5515 EXPORT_SYMBOL(netif_receive_skb_core);
5516 
5517 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5518                           struct packet_type *pt_prev,
5519                           struct net_device *orig_dev)
5520 {
5521     struct sk_buff *skb, *next;
5522 
5523     if (!pt_prev)
5524         return;
5525     if (list_empty(head))
5526         return;
5527     if (pt_prev->list_func != NULL)
5528         INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5529                    ip_list_rcv, head, pt_prev, orig_dev);
5530     else
5531         list_for_each_entry_safe(skb, next, head, list) {
5532             skb_list_del_init(skb);
5533             pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5534         }
5535 }
5536 
5537 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5538 {
5539     /* Fast-path assumptions:
5540      * - There is no RX handler.
5541      * - Only one packet_type matches.
5542      * If either of these fails, we will end up doing some per-packet
5543      * processing in-line, then handling the 'last ptype' for the whole
5544      * sublist.  This can't cause out-of-order delivery to any single ptype,
5545      * because the 'last ptype' must be constant across the sublist, and all
5546      * other ptypes are handled per-packet.
5547      */
5548     /* Current (common) ptype of sublist */
5549     struct packet_type *pt_curr = NULL;
5550     /* Current (common) orig_dev of sublist */
5551     struct net_device *od_curr = NULL;
5552     struct list_head sublist;
5553     struct sk_buff *skb, *next;
5554 
5555     INIT_LIST_HEAD(&sublist);
5556     list_for_each_entry_safe(skb, next, head, list) {
5557         struct net_device *orig_dev = skb->dev;
5558         struct packet_type *pt_prev = NULL;
5559 
5560         skb_list_del_init(skb);
5561         __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5562         if (!pt_prev)
5563             continue;
5564         if (pt_curr != pt_prev || od_curr != orig_dev) {
5565             /* dispatch old sublist */
5566             __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5567             /* start new sublist */
5568             INIT_LIST_HEAD(&sublist);
5569             pt_curr = pt_prev;
5570             od_curr = orig_dev;
5571         }
5572         list_add_tail(&skb->list, &sublist);
5573     }
5574 
5575     /* dispatch final sublist */
5576     __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5577 }
5578 
5579 static int __netif_receive_skb(struct sk_buff *skb)
5580 {
5581     int ret;
5582 
5583     if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5584         unsigned int noreclaim_flag;
5585 
5586         /*
5587          * PFMEMALLOC skbs are special, they should
5588          * - be delivered to SOCK_MEMALLOC sockets only
5589          * - stay away from userspace
5590          * - have bounded memory usage
5591          *
5592          * Use PF_MEMALLOC as this saves us from propagating the allocation
5593          * context down to all allocation sites.
5594          */
5595         noreclaim_flag = memalloc_noreclaim_save();
5596         ret = __netif_receive_skb_one_core(skb, true);
5597         memalloc_noreclaim_restore(noreclaim_flag);
5598     } else
5599         ret = __netif_receive_skb_one_core(skb, false);
5600 
5601     return ret;
5602 }
5603 
5604 static void __netif_receive_skb_list(struct list_head *head)
5605 {
5606     unsigned long noreclaim_flag = 0;
5607     struct sk_buff *skb, *next;
5608     bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5609 
5610     list_for_each_entry_safe(skb, next, head, list) {
5611         if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5612             struct list_head sublist;
5613 
5614             /* Handle the previous sublist */
5615             list_cut_before(&sublist, head, &skb->list);
5616             if (!list_empty(&sublist))
5617                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5618             pfmemalloc = !pfmemalloc;
5619             /* See comments in __netif_receive_skb */
5620             if (pfmemalloc)
5621                 noreclaim_flag = memalloc_noreclaim_save();
5622             else
5623                 memalloc_noreclaim_restore(noreclaim_flag);
5624         }
5625     }
5626     /* Handle the remaining sublist */
5627     if (!list_empty(head))
5628         __netif_receive_skb_list_core(head, pfmemalloc);
5629     /* Restore pflags */
5630     if (pfmemalloc)
5631         memalloc_noreclaim_restore(noreclaim_flag);
5632 }
5633 
5634 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5635 {
5636     struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5637     struct bpf_prog *new = xdp->prog;
5638     int ret = 0;
5639 
5640     switch (xdp->command) {
5641     case XDP_SETUP_PROG:
5642         rcu_assign_pointer(dev->xdp_prog, new);
5643         if (old)
5644             bpf_prog_put(old);
5645 
5646         if (old && !new) {
5647             static_branch_dec(&generic_xdp_needed_key);
5648         } else if (new && !old) {
5649             static_branch_inc(&generic_xdp_needed_key);
5650             dev_disable_lro(dev);
5651             dev_disable_gro_hw(dev);
5652         }
5653         break;
5654 
5655     default:
5656         ret = -EINVAL;
5657         break;
5658     }
5659 
5660     return ret;
5661 }
5662 
5663 static int netif_receive_skb_internal(struct sk_buff *skb)
5664 {
5665     int ret;
5666 
5667     net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5668 
5669     if (skb_defer_rx_timestamp(skb))
5670         return NET_RX_SUCCESS;
5671 
5672     rcu_read_lock();
5673 #ifdef CONFIG_RPS
5674     if (static_branch_unlikely(&rps_needed)) {
5675         struct rps_dev_flow voidflow, *rflow = &voidflow;
5676         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5677 
5678         if (cpu >= 0) {
5679             ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5680             rcu_read_unlock();
5681             return ret;
5682         }
5683     }
5684 #endif
5685     ret = __netif_receive_skb(skb);
5686     rcu_read_unlock();
5687     return ret;
5688 }
5689 
5690 void netif_receive_skb_list_internal(struct list_head *head)
5691 {
5692     struct sk_buff *skb, *next;
5693     struct list_head sublist;
5694 
5695     INIT_LIST_HEAD(&sublist);
5696     list_for_each_entry_safe(skb, next, head, list) {
5697         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5698         skb_list_del_init(skb);
5699         if (!skb_defer_rx_timestamp(skb))
5700             list_add_tail(&skb->list, &sublist);
5701     }
5702     list_splice_init(&sublist, head);
5703 
5704     rcu_read_lock();
5705 #ifdef CONFIG_RPS
5706     if (static_branch_unlikely(&rps_needed)) {
5707         list_for_each_entry_safe(skb, next, head, list) {
5708             struct rps_dev_flow voidflow, *rflow = &voidflow;
5709             int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5710 
5711             if (cpu >= 0) {
5712                 /* Will be handled, remove from list */
5713                 skb_list_del_init(skb);
5714                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5715             }
5716         }
5717     }
5718 #endif
5719     __netif_receive_skb_list(head);
5720     rcu_read_unlock();
5721 }
5722 
5723 /**
5724  *  netif_receive_skb - process receive buffer from network
5725  *  @skb: buffer to process
5726  *
5727  *  netif_receive_skb() is the main receive data processing function.
5728  *  It always succeeds. The buffer may be dropped during processing
5729  *  for congestion control or by the protocol layers.
5730  *
5731  *  This function may only be called from softirq context and interrupts
5732  *  should be enabled.
5733  *
5734  *  Return values (usually ignored):
5735  *  NET_RX_SUCCESS: no congestion
5736  *  NET_RX_DROP: packet was dropped
5737  */
5738 int netif_receive_skb(struct sk_buff *skb)
5739 {
5740     int ret;
5741 
5742     trace_netif_receive_skb_entry(skb);
5743 
5744     ret = netif_receive_skb_internal(skb);
5745     trace_netif_receive_skb_exit(ret);
5746 
5747     return ret;
5748 }
5749 EXPORT_SYMBOL(netif_receive_skb);
5750 
5751 /**
5752  *  netif_receive_skb_list - process many receive buffers from network
5753  *  @head: list of skbs to process.
5754  *
5755  *  Since return value of netif_receive_skb() is normally ignored, and
5756  *  wouldn't be meaningful for a list, this function returns void.
5757  *
5758  *  This function may only be called from softirq context and interrupts
5759  *  should be enabled.
5760  */
5761 void netif_receive_skb_list(struct list_head *head)
5762 {
5763     struct sk_buff *skb;
5764 
5765     if (list_empty(head))
5766         return;
5767     if (trace_netif_receive_skb_list_entry_enabled()) {
5768         list_for_each_entry(skb, head, list)
5769             trace_netif_receive_skb_list_entry(skb);
5770     }
5771     netif_receive_skb_list_internal(head);
5772     trace_netif_receive_skb_list_exit(0);
5773 }
5774 EXPORT_SYMBOL(netif_receive_skb_list);
5775 
5776 static DEFINE_PER_CPU(struct work_struct, flush_works);
5777 
5778 /* Network device is going away, flush any packets still pending */
5779 static void flush_backlog(struct work_struct *work)
5780 {
5781     struct sk_buff *skb, *tmp;
5782     struct softnet_data *sd;
5783 
5784     local_bh_disable();
5785     sd = this_cpu_ptr(&softnet_data);
5786 
5787     rps_lock_irq_disable(sd);
5788     skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5789         if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5790             __skb_unlink(skb, &sd->input_pkt_queue);
5791             dev_kfree_skb_irq(skb);
5792             input_queue_head_incr(sd);
5793         }
5794     }
5795     rps_unlock_irq_enable(sd);
5796 
5797     skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5798         if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5799             __skb_unlink(skb, &sd->process_queue);
5800             kfree_skb(skb);
5801             input_queue_head_incr(sd);
5802         }
5803     }
5804     local_bh_enable();
5805 }
5806 
5807 static bool flush_required(int cpu)
5808 {
5809 #if IS_ENABLED(CONFIG_RPS)
5810     struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5811     bool do_flush;
5812 
5813     rps_lock_irq_disable(sd);
5814 
5815     /* as insertion into process_queue happens with the rps lock held,
5816      * process_queue access may race only with dequeue
5817      */
5818     do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5819            !skb_queue_empty_lockless(&sd->process_queue);
5820     rps_unlock_irq_enable(sd);
5821 
5822     return do_flush;
5823 #endif
5824     /* without RPS we can't safely check input_pkt_queue: during a
5825      * concurrent remote skb_queue_splice() we can detect as empty both
5826      * input_pkt_queue and process_queue even if the latter could end-up
5827      * containing a lot of packets.
5828      */
5829     return true;
5830 }
5831 
5832 static void flush_all_backlogs(void)
5833 {
5834     static cpumask_t flush_cpus;
5835     unsigned int cpu;
5836 
5837     /* since we are under rtnl lock protection we can use static data
5838      * for the cpumask and avoid allocating on stack the possibly
5839      * large mask
5840      */
5841     ASSERT_RTNL();
5842 
5843     cpus_read_lock();
5844 
5845     cpumask_clear(&flush_cpus);
5846     for_each_online_cpu(cpu) {
5847         if (flush_required(cpu)) {
5848             queue_work_on(cpu, system_highpri_wq,
5849                       per_cpu_ptr(&flush_works, cpu));
5850             cpumask_set_cpu(cpu, &flush_cpus);
5851         }
5852     }
5853 
5854     /* we can have in flight packet[s] on the cpus we are not flushing,
5855      * synchronize_net() in unregister_netdevice_many() will take care of
5856      * them
5857      */
5858     for_each_cpu(cpu, &flush_cpus)
5859         flush_work(per_cpu_ptr(&flush_works, cpu));
5860 
5861     cpus_read_unlock();
5862 }
5863 
5864 static void net_rps_send_ipi(struct softnet_data *remsd)
5865 {
5866 #ifdef CONFIG_RPS
5867     while (remsd) {
5868         struct softnet_data *next = remsd->rps_ipi_next;
5869 
5870         if (cpu_online(remsd->cpu))
5871             smp_call_function_single_async(remsd->cpu, &remsd->csd);
5872         remsd = next;
5873     }
5874 #endif
5875 }
5876 
5877 /*
5878  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5879  * Note: called with local irq disabled, but exits with local irq enabled.
5880  */
5881 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5882 {
5883 #ifdef CONFIG_RPS
5884     struct softnet_data *remsd = sd->rps_ipi_list;
5885 
5886     if (remsd) {
5887         sd->rps_ipi_list = NULL;
5888 
5889         local_irq_enable();
5890 
5891         /* Send pending IPI's to kick RPS processing on remote cpus. */
5892         net_rps_send_ipi(remsd);
5893     } else
5894 #endif
5895         local_irq_enable();
5896 }
5897 
5898 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5899 {
5900 #ifdef CONFIG_RPS
5901     return sd->rps_ipi_list != NULL;
5902 #else
5903     return false;
5904 #endif
5905 }
5906 
5907 static int process_backlog(struct napi_struct *napi, int quota)
5908 {
5909     struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5910     bool again = true;
5911     int work = 0;
5912 
5913     /* Check if we have pending ipi, its better to send them now,
5914      * not waiting net_rx_action() end.
5915      */
5916     if (sd_has_rps_ipi_waiting(sd)) {
5917         local_irq_disable();
5918         net_rps_action_and_irq_enable(sd);
5919     }
5920 
5921     napi->weight = READ_ONCE(dev_rx_weight);
5922     while (again) {
5923         struct sk_buff *skb;
5924 
5925         while ((skb = __skb_dequeue(&sd->process_queue))) {
5926             rcu_read_lock();
5927             __netif_receive_skb(skb);
5928             rcu_read_unlock();
5929             input_queue_head_incr(sd);
5930             if (++work >= quota)
5931                 return work;
5932 
5933         }
5934 
5935         rps_lock_irq_disable(sd);
5936         if (skb_queue_empty(&sd->input_pkt_queue)) {
5937             /*
5938              * Inline a custom version of __napi_complete().
5939              * only current cpu owns and manipulates this napi,
5940              * and NAPI_STATE_SCHED is the only possible flag set
5941              * on backlog.
5942              * We can use a plain write instead of clear_bit(),
5943              * and we dont need an smp_mb() memory barrier.
5944              */
5945             napi->state = 0;
5946             again = false;
5947         } else {
5948             skb_queue_splice_tail_init(&sd->input_pkt_queue,
5949                            &sd->process_queue);
5950         }
5951         rps_unlock_irq_enable(sd);
5952     }
5953 
5954     return work;
5955 }
5956 
5957 /**
5958  * __napi_schedule - schedule for receive
5959  * @n: entry to schedule
5960  *
5961  * The entry's receive function will be scheduled to run.
5962  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5963  */
5964 void __napi_schedule(struct napi_struct *n)
5965 {
5966     unsigned long flags;
5967 
5968     local_irq_save(flags);
5969     ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5970     local_irq_restore(flags);
5971 }
5972 EXPORT_SYMBOL(__napi_schedule);
5973 
5974 /**
5975  *  napi_schedule_prep - check if napi can be scheduled
5976  *  @n: napi context
5977  *
5978  * Test if NAPI routine is already running, and if not mark
5979  * it as running.  This is used as a condition variable to
5980  * insure only one NAPI poll instance runs.  We also make
5981  * sure there is no pending NAPI disable.
5982  */
5983 bool napi_schedule_prep(struct napi_struct *n)
5984 {
5985     unsigned long val, new;
5986 
5987     do {
5988         val = READ_ONCE(n->state);
5989         if (unlikely(val & NAPIF_STATE_DISABLE))
5990             return false;
5991         new = val | NAPIF_STATE_SCHED;
5992 
5993         /* Sets STATE_MISSED bit if STATE_SCHED was already set
5994          * This was suggested by Alexander Duyck, as compiler
5995          * emits better code than :
5996          * if (val & NAPIF_STATE_SCHED)
5997          *     new |= NAPIF_STATE_MISSED;
5998          */
5999         new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6000                            NAPIF_STATE_MISSED;
6001     } while (cmpxchg(&n->state, val, new) != val);
6002 
6003     return !(val & NAPIF_STATE_SCHED);
6004 }
6005 EXPORT_SYMBOL(napi_schedule_prep);
6006 
6007 /**
6008  * __napi_schedule_irqoff - schedule for receive
6009  * @n: entry to schedule
6010  *
6011  * Variant of __napi_schedule() assuming hard irqs are masked.
6012  *
6013  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6014  * because the interrupt disabled assumption might not be true
6015  * due to force-threaded interrupts and spinlock substitution.
6016  */
6017 void __napi_schedule_irqoff(struct napi_struct *n)
6018 {
6019     if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6020         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6021     else
6022         __napi_schedule(n);
6023 }
6024 EXPORT_SYMBOL(__napi_schedule_irqoff);
6025 
6026 bool napi_complete_done(struct napi_struct *n, int work_done)
6027 {
6028     unsigned long flags, val, new, timeout = 0;
6029     bool ret = true;
6030 
6031     /*
6032      * 1) Don't let napi dequeue from the cpu poll list
6033      *    just in case its running on a different cpu.
6034      * 2) If we are busy polling, do nothing here, we have
6035      *    the guarantee we will be called later.
6036      */
6037     if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6038                  NAPIF_STATE_IN_BUSY_POLL)))
6039         return false;
6040 
6041     if (work_done) {
6042         if (n->gro_bitmask)
6043             timeout = READ_ONCE(n->dev->gro_flush_timeout);
6044         n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6045     }
6046     if (n->defer_hard_irqs_count > 0) {
6047         n->defer_hard_irqs_count--;
6048         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6049         if (timeout)
6050             ret = false;
6051     }
6052     if (n->gro_bitmask) {
6053         /* When the NAPI instance uses a timeout and keeps postponing
6054          * it, we need to bound somehow the time packets are kept in
6055          * the GRO layer
6056          */
6057         napi_gro_flush(n, !!timeout);
6058     }
6059 
6060     gro_normal_list(n);
6061 
6062     if (unlikely(!list_empty(&n->poll_list))) {
6063         /* If n->poll_list is not empty, we need to mask irqs */
6064         local_irq_save(flags);
6065         list_del_init(&n->poll_list);
6066         local_irq_restore(flags);
6067     }
6068 
6069     do {
6070         val = READ_ONCE(n->state);
6071 
6072         WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6073 
6074         new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6075                   NAPIF_STATE_SCHED_THREADED |
6076                   NAPIF_STATE_PREFER_BUSY_POLL);
6077 
6078         /* If STATE_MISSED was set, leave STATE_SCHED set,
6079          * because we will call napi->poll() one more time.
6080          * This C code was suggested by Alexander Duyck to help gcc.
6081          */
6082         new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6083                             NAPIF_STATE_SCHED;
6084     } while (cmpxchg(&n->state, val, new) != val);
6085 
6086     if (unlikely(val & NAPIF_STATE_MISSED)) {
6087         __napi_schedule(n);
6088         return false;
6089     }
6090 
6091     if (timeout)
6092         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6093                   HRTIMER_MODE_REL_PINNED);
6094     return ret;
6095 }
6096 EXPORT_SYMBOL(napi_complete_done);
6097 
6098 /* must be called under rcu_read_lock(), as we dont take a reference */
6099 static struct napi_struct *napi_by_id(unsigned int napi_id)
6100 {
6101     unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6102     struct napi_struct *napi;
6103 
6104     hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6105         if (napi->napi_id == napi_id)
6106             return napi;
6107 
6108     return NULL;
6109 }
6110 
6111 #if defined(CONFIG_NET_RX_BUSY_POLL)
6112 
6113 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6114 {
6115     if (!skip_schedule) {
6116         gro_normal_list(napi);
6117         __napi_schedule(napi);
6118         return;
6119     }
6120 
6121     if (napi->gro_bitmask) {
6122         /* flush too old packets
6123          * If HZ < 1000, flush all packets.
6124          */
6125         napi_gro_flush(napi, HZ >= 1000);
6126     }
6127 
6128     gro_normal_list(napi);
6129     clear_bit(NAPI_STATE_SCHED, &napi->state);
6130 }
6131 
6132 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6133                u16 budget)
6134 {
6135     bool skip_schedule = false;
6136     unsigned long timeout;
6137     int rc;
6138 
6139     /* Busy polling means there is a high chance device driver hard irq
6140      * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6141      * set in napi_schedule_prep().
6142      * Since we are about to call napi->poll() once more, we can safely
6143      * clear NAPI_STATE_MISSED.
6144      *
6145      * Note: x86 could use a single "lock and ..." instruction
6146      * to perform these two clear_bit()
6147      */
6148     clear_bit(NAPI_STATE_MISSED, &napi->state);
6149     clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6150 
6151     local_bh_disable();
6152 
6153     if (prefer_busy_poll) {
6154         napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6155         timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6156         if (napi->defer_hard_irqs_count && timeout) {
6157             hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6158             skip_schedule = true;
6159         }
6160     }
6161 
6162     /* All we really want here is to re-enable device interrupts.
6163      * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6164      */
6165     rc = napi->poll(napi, budget);
6166     /* We can't gro_normal_list() here, because napi->poll() might have
6167      * rearmed the napi (napi_complete_done()) in which case it could
6168      * already be running on another CPU.
6169      */
6170     trace_napi_poll(napi, rc, budget);
6171     netpoll_poll_unlock(have_poll_lock);
6172     if (rc == budget)
6173         __busy_poll_stop(napi, skip_schedule);
6174     local_bh_enable();
6175 }
6176 
6177 void napi_busy_loop(unsigned int napi_id,
6178             bool (*loop_end)(void *, unsigned long),
6179             void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6180 {
6181     unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6182     int (*napi_poll)(struct napi_struct *napi, int budget);
6183     void *have_poll_lock = NULL;
6184     struct napi_struct *napi;
6185 
6186 restart:
6187     napi_poll = NULL;
6188 
6189     rcu_read_lock();
6190 
6191     napi = napi_by_id(napi_id);
6192     if (!napi)
6193         goto out;
6194 
6195     preempt_disable();
6196     for (;;) {
6197         int work = 0;
6198 
6199         local_bh_disable();
6200         if (!napi_poll) {
6201             unsigned long val = READ_ONCE(napi->state);
6202 
6203             /* If multiple threads are competing for this napi,
6204              * we avoid dirtying napi->state as much as we can.
6205              */
6206             if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6207                    NAPIF_STATE_IN_BUSY_POLL)) {
6208                 if (prefer_busy_poll)
6209                     set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6210                 goto count;
6211             }
6212             if (cmpxchg(&napi->state, val,
6213                     val | NAPIF_STATE_IN_BUSY_POLL |
6214                       NAPIF_STATE_SCHED) != val) {
6215                 if (prefer_busy_poll)
6216                     set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6217                 goto count;
6218             }
6219             have_poll_lock = netpoll_poll_lock(napi);
6220             napi_poll = napi->poll;
6221         }
6222         work = napi_poll(napi, budget);
6223         trace_napi_poll(napi, work, budget);
6224         gro_normal_list(napi);
6225 count:
6226         if (work > 0)
6227             __NET_ADD_STATS(dev_net(napi->dev),
6228                     LINUX_MIB_BUSYPOLLRXPACKETS, work);
6229         local_bh_enable();
6230 
6231         if (!loop_end || loop_end(loop_end_arg, start_time))
6232             break;
6233 
6234         if (unlikely(need_resched())) {
6235             if (napi_poll)
6236                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6237             preempt_enable();
6238             rcu_read_unlock();
6239             cond_resched();
6240             if (loop_end(loop_end_arg, start_time))
6241                 return;
6242             goto restart;
6243         }
6244         cpu_relax();
6245     }
6246     if (napi_poll)
6247         busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6248     preempt_enable();
6249 out:
6250     rcu_read_unlock();
6251 }
6252 EXPORT_SYMBOL(napi_busy_loop);
6253 
6254 #endif /* CONFIG_NET_RX_BUSY_POLL */
6255 
6256 static void napi_hash_add(struct napi_struct *napi)
6257 {
6258     if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6259         return;
6260 
6261     spin_lock(&napi_hash_lock);
6262 
6263     /* 0..NR_CPUS range is reserved for sender_cpu use */
6264     do {
6265         if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6266             napi_gen_id = MIN_NAPI_ID;
6267     } while (napi_by_id(napi_gen_id));
6268     napi->napi_id = napi_gen_id;
6269 
6270     hlist_add_head_rcu(&napi->napi_hash_node,
6271                &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6272 
6273     spin_unlock(&napi_hash_lock);
6274 }
6275 
6276 /* Warning : caller is responsible to make sure rcu grace period
6277  * is respected before freeing memory containing @napi
6278  */
6279 static void napi_hash_del(struct napi_struct *napi)
6280 {
6281     spin_lock(&napi_hash_lock);
6282 
6283     hlist_del_init_rcu(&napi->napi_hash_node);
6284 
6285     spin_unlock(&napi_hash_lock);
6286 }
6287 
6288 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6289 {
6290     struct napi_struct *napi;
6291 
6292     napi = container_of(timer, struct napi_struct, timer);
6293 
6294     /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6295      * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6296      */
6297     if (!napi_disable_pending(napi) &&
6298         !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6299         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6300         __napi_schedule_irqoff(napi);
6301     }
6302 
6303     return HRTIMER_NORESTART;
6304 }
6305 
6306 static void init_gro_hash(struct napi_struct *napi)
6307 {
6308     int i;
6309 
6310     for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6311         INIT_LIST_HEAD(&napi->gro_hash[i].list);
6312         napi->gro_hash[i].count = 0;
6313     }
6314     napi->gro_bitmask = 0;
6315 }
6316 
6317 int dev_set_threaded(struct net_device *dev, bool threaded)
6318 {
6319     struct napi_struct *napi;
6320     int err = 0;
6321 
6322     if (dev->threaded == threaded)
6323         return 0;
6324 
6325     if (threaded) {
6326         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6327             if (!napi->thread) {
6328                 err = napi_kthread_create(napi);
6329                 if (err) {
6330                     threaded = false;
6331                     break;
6332                 }
6333             }
6334         }
6335     }
6336 
6337     dev->threaded = threaded;
6338 
6339     /* Make sure kthread is created before THREADED bit
6340      * is set.
6341      */
6342     smp_mb__before_atomic();
6343 
6344     /* Setting/unsetting threaded mode on a napi might not immediately
6345      * take effect, if the current napi instance is actively being
6346      * polled. In this case, the switch between threaded mode and
6347      * softirq mode will happen in the next round of napi_schedule().
6348      * This should not cause hiccups/stalls to the live traffic.
6349      */
6350     list_for_each_entry(napi, &dev->napi_list, dev_list) {
6351         if (threaded)
6352             set_bit(NAPI_STATE_THREADED, &napi->state);
6353         else
6354             clear_bit(NAPI_STATE_THREADED, &napi->state);
6355     }
6356 
6357     return err;
6358 }
6359 EXPORT_SYMBOL(dev_set_threaded);
6360 
6361 /* Double check that napi_get_frags() allocates skbs with
6362  * skb->head being backed by slab, not a page fragment.
6363  * This is to make sure bug fixed in 3226b158e67c
6364  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
6365  * does not accidentally come back.
6366  */
6367 static void napi_get_frags_check(struct napi_struct *napi)
6368 {
6369     struct sk_buff *skb;
6370 
6371     local_bh_disable();
6372     skb = napi_get_frags(napi);
6373     WARN_ON_ONCE(skb && skb->head_frag);
6374     napi_free_frags(napi);
6375     local_bh_enable();
6376 }
6377 
6378 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6379                int (*poll)(struct napi_struct *, int), int weight)
6380 {
6381     if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6382         return;
6383 
6384     INIT_LIST_HEAD(&napi->poll_list);
6385     INIT_HLIST_NODE(&napi->napi_hash_node);
6386     hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6387     napi->timer.function = napi_watchdog;
6388     init_gro_hash(napi);
6389     napi->skb = NULL;
6390     INIT_LIST_HEAD(&napi->rx_list);
6391     napi->rx_count = 0;
6392     napi->poll = poll;
6393     if (weight > NAPI_POLL_WEIGHT)
6394         netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6395                 weight);
6396     napi->weight = weight;
6397     napi->dev = dev;
6398 #ifdef CONFIG_NETPOLL
6399     napi->poll_owner = -1;
6400 #endif
6401     set_bit(NAPI_STATE_SCHED, &napi->state);
6402     set_bit(NAPI_STATE_NPSVC, &napi->state);
6403     list_add_rcu(&napi->dev_list, &dev->napi_list);
6404     napi_hash_add(napi);
6405     napi_get_frags_check(napi);
6406     /* Create kthread for this napi if dev->threaded is set.
6407      * Clear dev->threaded if kthread creation failed so that
6408      * threaded mode will not be enabled in napi_enable().
6409      */
6410     if (dev->threaded && napi_kthread_create(napi))
6411         dev->threaded = 0;
6412 }
6413 EXPORT_SYMBOL(netif_napi_add_weight);
6414 
6415 void napi_disable(struct napi_struct *n)
6416 {
6417     unsigned long val, new;
6418 
6419     might_sleep();
6420     set_bit(NAPI_STATE_DISABLE, &n->state);
6421 
6422     for ( ; ; ) {
6423         val = READ_ONCE(n->state);
6424         if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6425             usleep_range(20, 200);
6426             continue;
6427         }
6428 
6429         new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6430         new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6431 
6432         if (cmpxchg(&n->state, val, new) == val)
6433             break;
6434     }
6435 
6436     hrtimer_cancel(&n->timer);
6437 
6438     clear_bit(NAPI_STATE_DISABLE, &n->state);
6439 }
6440 EXPORT_SYMBOL(napi_disable);
6441 
6442 /**
6443  *  napi_enable - enable NAPI scheduling
6444  *  @n: NAPI context
6445  *
6446  * Resume NAPI from being scheduled on this context.
6447  * Must be paired with napi_disable.
6448  */
6449 void napi_enable(struct napi_struct *n)
6450 {
6451     unsigned long val, new;
6452 
6453     do {
6454         val = READ_ONCE(n->state);
6455         BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6456 
6457         new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6458         if (n->dev->threaded && n->thread)
6459             new |= NAPIF_STATE_THREADED;
6460     } while (cmpxchg(&n->state, val, new) != val);
6461 }
6462 EXPORT_SYMBOL(napi_enable);
6463 
6464 static void flush_gro_hash(struct napi_struct *napi)
6465 {
6466     int i;
6467 
6468     for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6469         struct sk_buff *skb, *n;
6470 
6471         list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6472             kfree_skb(skb);
6473         napi->gro_hash[i].count = 0;
6474     }
6475 }
6476 
6477 /* Must be called in process context */
6478 void __netif_napi_del(struct napi_struct *napi)
6479 {
6480     if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6481         return;
6482 
6483     napi_hash_del(napi);
6484     list_del_rcu(&napi->dev_list);
6485     napi_free_frags(napi);
6486 
6487     flush_gro_hash(napi);
6488     napi->gro_bitmask = 0;
6489 
6490     if (napi->thread) {
6491         kthread_stop(napi->thread);
6492         napi->thread = NULL;
6493     }
6494 }
6495 EXPORT_SYMBOL(__netif_napi_del);
6496 
6497 static int __napi_poll(struct napi_struct *n, bool *repoll)
6498 {
6499     int work, weight;
6500 
6501     weight = n->weight;
6502 
6503     /* This NAPI_STATE_SCHED test is for avoiding a race
6504      * with netpoll's poll_napi().  Only the entity which
6505      * obtains the lock and sees NAPI_STATE_SCHED set will
6506      * actually make the ->poll() call.  Therefore we avoid
6507      * accidentally calling ->poll() when NAPI is not scheduled.
6508      */
6509     work = 0;
6510     if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6511         work = n->poll(n, weight);
6512         trace_napi_poll(n, work, weight);
6513     }
6514 
6515     if (unlikely(work > weight))
6516         netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6517                 n->poll, work, weight);
6518 
6519     if (likely(work < weight))
6520         return work;
6521 
6522     /* Drivers must not modify the NAPI state if they
6523      * consume the entire weight.  In such cases this code
6524      * still "owns" the NAPI instance and therefore can
6525      * move the instance around on the list at-will.
6526      */
6527     if (unlikely(napi_disable_pending(n))) {
6528         napi_complete(n);
6529         return work;
6530     }
6531 
6532     /* The NAPI context has more processing work, but busy-polling
6533      * is preferred. Exit early.
6534      */
6535     if (napi_prefer_busy_poll(n)) {
6536         if (napi_complete_done(n, work)) {
6537             /* If timeout is not set, we need to make sure
6538              * that the NAPI is re-scheduled.
6539              */
6540             napi_schedule(n);
6541         }
6542         return work;
6543     }
6544 
6545     if (n->gro_bitmask) {
6546         /* flush too old packets
6547          * If HZ < 1000, flush all packets.
6548          */
6549         napi_gro_flush(n, HZ >= 1000);
6550     }
6551 
6552     gro_normal_list(n);
6553 
6554     /* Some drivers may have called napi_schedule
6555      * prior to exhausting their budget.
6556      */
6557     if (unlikely(!list_empty(&n->poll_list))) {
6558         pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6559                  n->dev ? n->dev->name : "backlog");
6560         return work;
6561     }
6562 
6563     *repoll = true;
6564 
6565     return work;
6566 }
6567 
6568 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6569 {
6570     bool do_repoll = false;
6571     void *have;
6572     int work;
6573 
6574     list_del_init(&n->poll_list);
6575 
6576     have = netpoll_poll_lock(n);
6577 
6578     work = __napi_poll(n, &do_repoll);
6579 
6580     if (do_repoll)
6581         list_add_tail(&n->poll_list, repoll);
6582 
6583     netpoll_poll_unlock(have);
6584 
6585     return work;
6586 }
6587 
6588 static int napi_thread_wait(struct napi_struct *napi)
6589 {
6590     bool woken = false;
6591 
6592     set_current_state(TASK_INTERRUPTIBLE);
6593 
6594     while (!kthread_should_stop()) {
6595         /* Testing SCHED_THREADED bit here to make sure the current
6596          * kthread owns this napi and could poll on this napi.
6597          * Testing SCHED bit is not enough because SCHED bit might be
6598          * set by some other busy poll thread or by napi_disable().
6599          */
6600         if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6601             WARN_ON(!list_empty(&napi->poll_list));
6602             __set_current_state(TASK_RUNNING);
6603             return 0;
6604         }
6605 
6606         schedule();
6607         /* woken being true indicates this thread owns this napi. */
6608         woken = true;
6609         set_current_state(TASK_INTERRUPTIBLE);
6610     }
6611     __set_current_state(TASK_RUNNING);
6612 
6613     return -1;
6614 }
6615 
6616 static int napi_threaded_poll(void *data)
6617 {
6618     struct napi_struct *napi = data;
6619     void *have;
6620 
6621     while (!napi_thread_wait(napi)) {
6622         for (;;) {
6623             bool repoll = false;
6624 
6625             local_bh_disable();
6626 
6627             have = netpoll_poll_lock(napi);
6628             __napi_poll(napi, &repoll);
6629             netpoll_poll_unlock(have);
6630 
6631             local_bh_enable();
6632 
6633             if (!repoll)
6634                 break;
6635 
6636             cond_resched();
6637         }
6638     }
6639     return 0;
6640 }
6641 
6642 static void skb_defer_free_flush(struct softnet_data *sd)
6643 {
6644     struct sk_buff *skb, *next;
6645     unsigned long flags;
6646 
6647     /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6648     if (!READ_ONCE(sd->defer_list))
6649         return;
6650 
6651     spin_lock_irqsave(&sd->defer_lock, flags);
6652     skb = sd->defer_list;
6653     sd->defer_list = NULL;
6654     sd->defer_count = 0;
6655     spin_unlock_irqrestore(&sd->defer_lock, flags);
6656 
6657     while (skb != NULL) {
6658         next = skb->next;
6659         napi_consume_skb(skb, 1);
6660         skb = next;
6661     }
6662 }
6663 
6664 static __latent_entropy void net_rx_action(struct softirq_action *h)
6665 {
6666     struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6667     unsigned long time_limit = jiffies +
6668         usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6669     int budget = READ_ONCE(netdev_budget);
6670     LIST_HEAD(list);
6671     LIST_HEAD(repoll);
6672 
6673     local_irq_disable();
6674     list_splice_init(&sd->poll_list, &list);
6675     local_irq_enable();
6676 
6677     for (;;) {
6678         struct napi_struct *n;
6679 
6680         skb_defer_free_flush(sd);
6681 
6682         if (list_empty(&list)) {
6683             if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6684                 goto end;
6685             break;
6686         }
6687 
6688         n = list_first_entry(&list, struct napi_struct, poll_list);
6689         budget -= napi_poll(n, &repoll);
6690 
6691         /* If softirq window is exhausted then punt.
6692          * Allow this to run for 2 jiffies since which will allow
6693          * an average latency of 1.5/HZ.
6694          */
6695         if (unlikely(budget <= 0 ||
6696                  time_after_eq(jiffies, time_limit))) {
6697             sd->time_squeeze++;
6698             break;
6699         }
6700     }
6701 
6702     local_irq_disable();
6703 
6704     list_splice_tail_init(&sd->poll_list, &list);
6705     list_splice_tail(&repoll, &list);
6706     list_splice(&list, &sd->poll_list);
6707     if (!list_empty(&sd->poll_list))
6708         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6709 
6710     net_rps_action_and_irq_enable(sd);
6711 end:;
6712 }
6713 
6714 struct netdev_adjacent {
6715     struct net_device *dev;
6716     netdevice_tracker dev_tracker;
6717 
6718     /* upper master flag, there can only be one master device per list */
6719     bool master;
6720 
6721     /* lookup ignore flag */
6722     bool ignore;
6723 
6724     /* counter for the number of times this device was added to us */
6725     u16 ref_nr;
6726 
6727     /* private field for the users */
6728     void *private;
6729 
6730     struct list_head list;
6731     struct rcu_head rcu;
6732 };
6733 
6734 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6735                          struct list_head *adj_list)
6736 {
6737     struct netdev_adjacent *adj;
6738 
6739     list_for_each_entry(adj, adj_list, list) {
6740         if (adj->dev == adj_dev)
6741             return adj;
6742     }
6743     return NULL;
6744 }
6745 
6746 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6747                     struct netdev_nested_priv *priv)
6748 {
6749     struct net_device *dev = (struct net_device *)priv->data;
6750 
6751     return upper_dev == dev;
6752 }
6753 
6754 /**
6755  * netdev_has_upper_dev - Check if device is linked to an upper device
6756  * @dev: device
6757  * @upper_dev: upper device to check
6758  *
6759  * Find out if a device is linked to specified upper device and return true
6760  * in case it is. Note that this checks only immediate upper device,
6761  * not through a complete stack of devices. The caller must hold the RTNL lock.
6762  */
6763 bool netdev_has_upper_dev(struct net_device *dev,
6764               struct net_device *upper_dev)
6765 {
6766     struct netdev_nested_priv priv = {
6767         .data = (void *)upper_dev,
6768     };
6769 
6770     ASSERT_RTNL();
6771 
6772     return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6773                          &priv);
6774 }
6775 EXPORT_SYMBOL(netdev_has_upper_dev);
6776 
6777 /**
6778  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6779  * @dev: device
6780  * @upper_dev: upper device to check
6781  *
6782  * Find out if a device is linked to specified upper device and return true
6783  * in case it is. Note that this checks the entire upper device chain.
6784  * The caller must hold rcu lock.
6785  */
6786 
6787 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6788                   struct net_device *upper_dev)
6789 {
6790     struct netdev_nested_priv priv = {
6791         .data = (void *)upper_dev,
6792     };
6793 
6794     return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6795                            &priv);
6796 }
6797 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6798 
6799 /**
6800  * netdev_has_any_upper_dev - Check if device is linked to some device
6801  * @dev: device
6802  *
6803  * Find out if a device is linked to an upper device and return true in case
6804  * it is. The caller must hold the RTNL lock.
6805  */
6806 bool netdev_has_any_upper_dev(struct net_device *dev)
6807 {
6808     ASSERT_RTNL();
6809 
6810     return !list_empty(&dev->adj_list.upper);
6811 }
6812 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6813 
6814 /**
6815  * netdev_master_upper_dev_get - Get master upper device
6816  * @dev: device
6817  *
6818  * Find a master upper device and return pointer to it or NULL in case
6819  * it's not there. The caller must hold the RTNL lock.
6820  */
6821 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6822 {
6823     struct netdev_adjacent *upper;
6824 
6825     ASSERT_RTNL();
6826 
6827     if (list_empty(&dev->adj_list.upper))
6828         return NULL;
6829 
6830     upper = list_first_entry(&dev->adj_list.upper,
6831                  struct netdev_adjacent, list);
6832     if (likely(upper->master))
6833         return upper->dev;
6834     return NULL;
6835 }
6836 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6837 
6838 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6839 {
6840     struct netdev_adjacent *upper;
6841 
6842     ASSERT_RTNL();
6843 
6844     if (list_empty(&dev->adj_list.upper))
6845         return NULL;
6846 
6847     upper = list_first_entry(&dev->adj_list.upper,
6848                  struct netdev_adjacent, list);
6849     if (likely(upper->master) && !upper->ignore)
6850         return upper->dev;
6851     return NULL;
6852 }
6853 
6854 /**
6855  * netdev_has_any_lower_dev - Check if device is linked to some device
6856  * @dev: device
6857  *
6858  * Find out if a device is linked to a lower device and return true in case
6859  * it is. The caller must hold the RTNL lock.
6860  */
6861 static bool netdev_has_any_lower_dev(struct net_device *dev)
6862 {
6863     ASSERT_RTNL();
6864 
6865     return !list_empty(&dev->adj_list.lower);
6866 }
6867 
6868 void *netdev_adjacent_get_private(struct list_head *adj_list)
6869 {
6870     struct netdev_adjacent *adj;
6871 
6872     adj = list_entry(adj_list, struct netdev_adjacent, list);
6873 
6874     return adj->private;
6875 }
6876 EXPORT_SYMBOL(netdev_adjacent_get_private);
6877 
6878 /**
6879  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6880  * @dev: device
6881  * @iter: list_head ** of the current position
6882  *
6883  * Gets the next device from the dev's upper list, starting from iter
6884  * position. The caller must hold RCU read lock.
6885  */
6886 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6887                          struct list_head **iter)
6888 {
6889     struct netdev_adjacent *upper;
6890 
6891     WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6892 
6893     upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6894 
6895     if (&upper->list == &dev->adj_list.upper)
6896         return NULL;
6897 
6898     *iter = &upper->list;
6899 
6900     return upper->dev;
6901 }
6902 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6903 
6904 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6905                           struct list_head **iter,
6906                           bool *ignore)
6907 {
6908     struct netdev_adjacent *upper;
6909 
6910     upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6911 
6912     if (&upper->list == &dev->adj_list.upper)
6913         return NULL;
6914 
6915     *iter = &upper->list;
6916     *ignore = upper->ignore;
6917 
6918     return upper->dev;
6919 }
6920 
6921 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6922                             struct list_head **iter)
6923 {
6924     struct netdev_adjacent *upper;
6925 
6926     WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6927 
6928     upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6929 
6930     if (&upper->list == &dev->adj_list.upper)
6931         return NULL;
6932 
6933     *iter = &upper->list;
6934 
6935     return upper->dev;
6936 }
6937 
6938 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6939                        int (*fn)(struct net_device *dev,
6940                      struct netdev_nested_priv *priv),
6941                        struct netdev_nested_priv *priv)
6942 {
6943     struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6944     struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6945     int ret, cur = 0;
6946     bool ignore;
6947 
6948     now = dev;
6949     iter = &dev->adj_list.upper;
6950 
6951     while (1) {
6952         if (now != dev) {
6953             ret = fn(now, priv);
6954             if (ret)
6955                 return ret;
6956         }
6957 
6958         next = NULL;
6959         while (1) {
6960             udev = __netdev_next_upper_dev(now, &iter, &ignore);
6961             if (!udev)
6962                 break;
6963             if (ignore)
6964                 continue;
6965 
6966             next = udev;
6967             niter = &udev->adj_list.upper;
6968             dev_stack[cur] = now;
6969             iter_stack[cur++] = iter;
6970             break;
6971         }
6972 
6973         if (!next) {
6974             if (!cur)
6975                 return 0;
6976             next = dev_stack[--cur];
6977             niter = iter_stack[cur];
6978         }
6979 
6980         now = next;
6981         iter = niter;
6982     }
6983 
6984     return 0;
6985 }
6986 
6987 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6988                   int (*fn)(struct net_device *dev,
6989                         struct netdev_nested_priv *priv),
6990                   struct netdev_nested_priv *priv)
6991 {
6992     struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6993     struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6994     int ret, cur = 0;
6995 
6996     now = dev;
6997     iter = &dev->adj_list.upper;
6998 
6999     while (1) {
7000         if (now != dev) {
7001             ret = fn(now, priv);
7002             if (ret)
7003                 return ret;
7004         }
7005 
7006         next = NULL;
7007         while (1) {
7008             udev = netdev_next_upper_dev_rcu(now, &iter);
7009             if (!udev)
7010                 break;
7011 
7012             next = udev;
7013             niter = &udev->adj_list.upper;
7014             dev_stack[cur] = now;
7015             iter_stack[cur++] = iter;
7016             break;
7017         }
7018 
7019         if (!next) {
7020             if (!cur)
7021                 return 0;
7022             next = dev_stack[--cur];
7023             niter = iter_stack[cur];
7024         }
7025 
7026         now = next;
7027         iter = niter;
7028     }
7029 
7030     return 0;
7031 }
7032 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7033 
7034 static bool __netdev_has_upper_dev(struct net_device *dev,
7035                    struct net_device *upper_dev)
7036 {
7037     struct netdev_nested_priv priv = {
7038         .flags = 0,
7039         .data = (void *)upper_dev,
7040     };
7041 
7042     ASSERT_RTNL();
7043 
7044     return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7045                        &priv);
7046 }
7047 
7048 /**
7049  * netdev_lower_get_next_private - Get the next ->private from the
7050  *                 lower neighbour list
7051  * @dev: device
7052  * @iter: list_head ** of the current position
7053  *
7054  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7055  * list, starting from iter position. The caller must hold either hold the
7056  * RTNL lock or its own locking that guarantees that the neighbour lower
7057  * list will remain unchanged.
7058  */
7059 void *netdev_lower_get_next_private(struct net_device *dev,
7060                     struct list_head **iter)
7061 {
7062     struct netdev_adjacent *lower;
7063 
7064     lower = list_entry(*iter, struct netdev_adjacent, list);
7065 
7066     if (&lower->list == &dev->adj_list.lower)
7067         return NULL;
7068 
7069     *iter = lower->list.next;
7070 
7071     return lower->private;
7072 }
7073 EXPORT_SYMBOL(netdev_lower_get_next_private);
7074 
7075 /**
7076  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7077  *                     lower neighbour list, RCU
7078  *                     variant
7079  * @dev: device
7080  * @iter: list_head ** of the current position
7081  *
7082  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7083  * list, starting from iter position. The caller must hold RCU read lock.
7084  */
7085 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7086                     struct list_head **iter)
7087 {
7088     struct netdev_adjacent *lower;
7089 
7090     WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7091 
7092     lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7093 
7094     if (&lower->list == &dev->adj_list.lower)
7095         return NULL;
7096 
7097     *iter = &lower->list;
7098 
7099     return lower->private;
7100 }
7101 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7102 
7103 /**
7104  * netdev_lower_get_next - Get the next device from the lower neighbour
7105  *                         list
7106  * @dev: device
7107  * @iter: list_head ** of the current position
7108  *
7109  * Gets the next netdev_adjacent from the dev's lower neighbour
7110  * list, starting from iter position. The caller must hold RTNL lock or
7111  * its own locking that guarantees that the neighbour lower
7112  * list will remain unchanged.
7113  */
7114 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7115 {
7116     struct netdev_adjacent *lower;
7117 
7118     lower = list_entry(*iter, struct netdev_adjacent, list);
7119 
7120     if (&lower->list == &dev->adj_list.lower)
7121         return NULL;
7122 
7123     *iter = lower->list.next;
7124 
7125     return lower->dev;
7126 }
7127 EXPORT_SYMBOL(netdev_lower_get_next);
7128 
7129 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7130                         struct list_head **iter)
7131 {
7132     struct netdev_adjacent *lower;
7133 
7134     lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7135 
7136     if (&lower->list == &dev->adj_list.lower)
7137         return NULL;
7138 
7139     *iter = &lower->list;
7140 
7141     return lower->dev;
7142 }
7143 
7144 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7145                           struct list_head **iter,
7146                           bool *ignore)
7147 {
7148     struct netdev_adjacent *lower;
7149 
7150     lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7151 
7152     if (&lower->list == &dev->adj_list.lower)
7153         return NULL;
7154 
7155     *iter = &lower->list;
7156     *ignore = lower->ignore;
7157 
7158     return lower->dev;
7159 }
7160 
7161 int netdev_walk_all_lower_dev(struct net_device *dev,
7162                   int (*fn)(struct net_device *dev,
7163                     struct netdev_nested_priv *priv),
7164                   struct netdev_nested_priv *priv)
7165 {
7166     struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7167     struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7168     int ret, cur = 0;
7169 
7170     now = dev;
7171     iter = &dev->adj_list.lower;
7172 
7173     while (1) {
7174         if (now != dev) {
7175             ret = fn(now, priv);
7176             if (ret)
7177                 return ret;
7178         }
7179 
7180         next = NULL;
7181         while (1) {
7182             ldev = netdev_next_lower_dev(now, &iter);
7183             if (!ldev)
7184                 break;
7185 
7186             next = ldev;
7187             niter = &ldev->adj_list.lower;
7188             dev_stack[cur] = now;
7189             iter_stack[cur++] = iter;
7190             break;
7191         }
7192 
7193         if (!next) {
7194             if (!cur)
7195                 return 0;
7196             next = dev_stack[--cur];
7197             niter = iter_stack[cur];
7198         }
7199 
7200         now = next;
7201         iter = niter;
7202     }
7203 
7204     return 0;
7205 }
7206 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7207 
7208 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7209                        int (*fn)(struct net_device *dev,
7210                      struct netdev_nested_priv *priv),
7211                        struct netdev_nested_priv *priv)
7212 {
7213     struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7214     struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7215     int ret, cur = 0;
7216     bool ignore;
7217 
7218     now = dev;
7219     iter = &dev->adj_list.lower;
7220 
7221     while (1) {
7222         if (now != dev) {
7223             ret = fn(now, priv);
7224             if (ret)
7225                 return ret;
7226         }
7227 
7228         next = NULL;
7229         while (1) {
7230             ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7231             if (!ldev)
7232                 break;
7233             if (ignore)
7234                 continue;
7235 
7236             next = ldev;
7237             niter = &ldev->adj_list.lower;
7238             dev_stack[cur] = now;
7239             iter_stack[cur++] = iter;
7240             break;
7241         }
7242 
7243         if (!next) {
7244             if (!cur)
7245                 return 0;
7246             next = dev_stack[--cur];
7247             niter = iter_stack[cur];
7248         }
7249 
7250         now = next;
7251         iter = niter;
7252     }
7253 
7254     return 0;
7255 }
7256 
7257 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7258                          struct list_head **iter)
7259 {
7260     struct netdev_adjacent *lower;
7261 
7262     lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7263     if (&lower->list == &dev->adj_list.lower)
7264         return NULL;
7265 
7266     *iter = &lower->list;
7267 
7268     return lower->dev;
7269 }
7270 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7271 
7272 static u8 __netdev_upper_depth(struct net_device *dev)
7273 {
7274     struct net_device *udev;
7275     struct list_head *iter;
7276     u8 max_depth = 0;
7277     bool ignore;
7278 
7279     for (iter = &dev->adj_list.upper,
7280          udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7281          udev;
7282          udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7283         if (ignore)
7284             continue;
7285         if (max_depth < udev->upper_level)
7286             max_depth = udev->upper_level;
7287     }
7288 
7289     return max_depth;
7290 }
7291 
7292 static u8 __netdev_lower_depth(struct net_device *dev)
7293 {
7294     struct net_device *ldev;
7295     struct list_head *iter;
7296     u8 max_depth = 0;
7297     bool ignore;
7298 
7299     for (iter = &dev->adj_list.lower,
7300          ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7301          ldev;
7302          ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7303         if (ignore)
7304             continue;
7305         if (max_depth < ldev->lower_level)
7306             max_depth = ldev->lower_level;
7307     }
7308 
7309     return max_depth;
7310 }
7311 
7312 static int __netdev_update_upper_level(struct net_device *dev,
7313                        struct netdev_nested_priv *__unused)
7314 {
7315     dev->upper_level = __netdev_upper_depth(dev) + 1;
7316     return 0;
7317 }
7318 
7319 #ifdef CONFIG_LOCKDEP
7320 static LIST_HEAD(net_unlink_list);
7321 
7322 static void net_unlink_todo(struct net_device *dev)
7323 {
7324     if (list_empty(&dev->unlink_list))
7325         list_add_tail(&dev->unlink_list, &net_unlink_list);
7326 }
7327 #endif
7328 
7329 static int __netdev_update_lower_level(struct net_device *dev,
7330                        struct netdev_nested_priv *priv)
7331 {
7332     dev->lower_level = __netdev_lower_depth(dev) + 1;
7333 
7334 #ifdef CONFIG_LOCKDEP
7335     if (!priv)
7336         return 0;
7337 
7338     if (priv->flags & NESTED_SYNC_IMM)
7339         dev->nested_level = dev->lower_level - 1;
7340     if (priv->flags & NESTED_SYNC_TODO)
7341         net_unlink_todo(dev);
7342 #endif
7343     return 0;
7344 }
7345 
7346 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7347                   int (*fn)(struct net_device *dev,
7348                         struct netdev_nested_priv *priv),
7349                   struct netdev_nested_priv *priv)
7350 {
7351     struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7352     struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7353     int ret, cur = 0;
7354 
7355     now = dev;
7356     iter = &dev->adj_list.lower;
7357 
7358     while (1) {
7359         if (now != dev) {
7360             ret = fn(now, priv);
7361             if (ret)
7362                 return ret;
7363         }
7364 
7365         next = NULL;
7366         while (1) {
7367             ldev = netdev_next_lower_dev_rcu(now, &iter);
7368             if (!ldev)
7369                 break;
7370 
7371             next = ldev;
7372             niter = &ldev->adj_list.lower;
7373             dev_stack[cur] = now;
7374             iter_stack[cur++] = iter;
7375             break;
7376         }
7377 
7378         if (!next) {
7379             if (!cur)
7380                 return 0;
7381             next = dev_stack[--cur];
7382             niter = iter_stack[cur];
7383         }
7384 
7385         now = next;
7386         iter = niter;
7387     }
7388 
7389     return 0;
7390 }
7391 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7392 
7393 /**
7394  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7395  *                     lower neighbour list, RCU
7396  *                     variant
7397  * @dev: device
7398  *
7399  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7400  * list. The caller must hold RCU read lock.
7401  */
7402 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7403 {
7404     struct netdev_adjacent *lower;
7405 
7406     lower = list_first_or_null_rcu(&dev->adj_list.lower,
7407             struct netdev_adjacent, list);
7408     if (lower)
7409         return lower->private;
7410     return NULL;
7411 }
7412 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7413 
7414 /**
7415  * netdev_master_upper_dev_get_rcu - Get master upper device
7416  * @dev: device
7417  *
7418  * Find a master upper device and return pointer to it or NULL in case
7419  * it's not there. The caller must hold the RCU read lock.
7420  */
7421 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7422 {
7423     struct netdev_adjacent *upper;
7424 
7425     upper = list_first_or_null_rcu(&dev->adj_list.upper,
7426                        struct netdev_adjacent, list);
7427     if (upper && likely(upper->master))
7428         return upper->dev;
7429     return NULL;
7430 }
7431 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7432 
7433 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7434                   struct net_device *adj_dev,
7435                   struct list_head *dev_list)
7436 {
7437     char linkname[IFNAMSIZ+7];
7438 
7439     sprintf(linkname, dev_list == &dev->adj_list.upper ?
7440         "upper_%s" : "lower_%s", adj_dev->name);
7441     return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7442                  linkname);
7443 }
7444 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7445                    char *name,
7446                    struct list_head *dev_list)
7447 {
7448     char linkname[IFNAMSIZ+7];
7449 
7450     sprintf(linkname, dev_list == &dev->adj_list.upper ?
7451         "upper_%s" : "lower_%s", name);
7452     sysfs_remove_link(&(dev->dev.kobj), linkname);
7453 }
7454 
7455 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7456                          struct net_device *adj_dev,
7457                          struct list_head *dev_list)
7458 {
7459     return (dev_list == &dev->adj_list.upper ||
7460         dev_list == &dev->adj_list.lower) &&
7461         net_eq(dev_net(dev), dev_net(adj_dev));
7462 }
7463 
7464 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7465                     struct net_device *adj_dev,
7466                     struct list_head *dev_list,
7467                     void *private, bool master)
7468 {
7469     struct netdev_adjacent *adj;
7470     int ret;
7471 
7472     adj = __netdev_find_adj(adj_dev, dev_list);
7473 
7474     if (adj) {
7475         adj->ref_nr += 1;
7476         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7477              dev->name, adj_dev->name, adj->ref_nr);
7478 
7479         return 0;
7480     }
7481 
7482     adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7483     if (!adj)
7484         return -ENOMEM;
7485 
7486     adj->dev = adj_dev;
7487     adj->master = master;
7488     adj->ref_nr = 1;
7489     adj->private = private;
7490     adj->ignore = false;
7491     netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7492 
7493     pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7494          dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7495 
7496     if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7497         ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7498         if (ret)
7499             goto free_adj;
7500     }
7501 
7502     /* Ensure that master link is always the first item in list. */
7503     if (master) {
7504         ret = sysfs_create_link(&(dev->dev.kobj),
7505                     &(adj_dev->dev.kobj), "master");
7506         if (ret)
7507             goto remove_symlinks;
7508 
7509         list_add_rcu(&adj->list, dev_list);
7510     } else {
7511         list_add_tail_rcu(&adj->list, dev_list);
7512     }
7513 
7514     return 0;
7515 
7516 remove_symlinks:
7517     if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7518         netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7519 free_adj:
7520     netdev_put(adj_dev, &adj->dev_tracker);
7521     kfree(adj);
7522 
7523     return ret;
7524 }
7525 
7526 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7527                      struct net_device *adj_dev,
7528                      u16 ref_nr,
7529                      struct list_head *dev_list)
7530 {
7531     struct netdev_adjacent *adj;
7532 
7533     pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7534          dev->name, adj_dev->name, ref_nr);
7535 
7536     adj = __netdev_find_adj(adj_dev, dev_list);
7537 
7538     if (!adj) {
7539         pr_err("Adjacency does not exist for device %s from %s\n",
7540                dev->name, adj_dev->name);
7541         WARN_ON(1);
7542         return;
7543     }
7544 
7545     if (adj->ref_nr > ref_nr) {
7546         pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7547              dev->name, adj_dev->name, ref_nr,
7548              adj->ref_nr - ref_nr);
7549         adj->ref_nr -= ref_nr;
7550         return;
7551     }
7552 
7553     if (adj->master)
7554         sysfs_remove_link(&(dev->dev.kobj), "master");
7555 
7556     if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7557         netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7558 
7559     list_del_rcu(&adj->list);
7560     pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7561          adj_dev->name, dev->name, adj_dev->name);
7562     netdev_put(adj_dev, &adj->dev_tracker);
7563     kfree_rcu(adj, rcu);
7564 }
7565 
7566 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7567                         struct net_device *upper_dev,
7568                         struct list_head *up_list,
7569                         struct list_head *down_list,
7570                         void *private, bool master)
7571 {
7572     int ret;
7573 
7574     ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7575                        private, master);
7576     if (ret)
7577         return ret;
7578 
7579     ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7580                        private, false);
7581     if (ret) {
7582         __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7583         return ret;
7584     }
7585 
7586     return 0;
7587 }
7588 
7589 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7590                            struct net_device *upper_dev,
7591                            u16 ref_nr,
7592                            struct list_head *up_list,
7593                            struct list_head *down_list)
7594 {
7595     __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7596     __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7597 }
7598 
7599 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7600                         struct net_device *upper_dev,
7601                         void *private, bool master)
7602 {
7603     return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7604                         &dev->adj_list.upper,
7605                         &upper_dev->adj_list.lower,
7606                         private, master);
7607 }
7608 
7609 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7610                            struct net_device *upper_dev)
7611 {
7612     __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7613                        &dev->adj_list.upper,
7614                        &upper_dev->adj_list.lower);
7615 }
7616 
7617 static int __netdev_upper_dev_link(struct net_device *dev,
7618                    struct net_device *upper_dev, bool master,
7619                    void *upper_priv, void *upper_info,
7620                    struct netdev_nested_priv *priv,
7621                    struct netlink_ext_ack *extack)
7622 {
7623     struct netdev_notifier_changeupper_info changeupper_info = {
7624         .info = {
7625             .dev = dev,
7626             .extack = extack,
7627         },
7628         .upper_dev = upper_dev,
7629         .master = master,
7630         .linking = true,
7631         .upper_info = upper_info,
7632     };
7633     struct net_device *master_dev;
7634     int ret = 0;
7635 
7636     ASSERT_RTNL();
7637 
7638     if (dev == upper_dev)
7639         return -EBUSY;
7640 
7641     /* To prevent loops, check if dev is not upper device to upper_dev. */
7642     if (__netdev_has_upper_dev(upper_dev, dev))
7643         return -EBUSY;
7644 
7645     if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7646         return -EMLINK;
7647 
7648     if (!master) {
7649         if (__netdev_has_upper_dev(dev, upper_dev))
7650             return -EEXIST;
7651     } else {
7652         master_dev = __netdev_master_upper_dev_get(dev);
7653         if (master_dev)
7654             return master_dev == upper_dev ? -EEXIST : -EBUSY;
7655     }
7656 
7657     ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7658                         &changeupper_info.info);
7659     ret = notifier_to_errno(ret);
7660     if (ret)
7661         return ret;
7662 
7663     ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7664                            master);
7665     if (ret)
7666         return ret;
7667 
7668     ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7669                         &changeupper_info.info);
7670     ret = notifier_to_errno(ret);
7671     if (ret)
7672         goto rollback;
7673 
7674     __netdev_update_upper_level(dev, NULL);
7675     __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7676 
7677     __netdev_update_lower_level(upper_dev, priv);
7678     __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7679                     priv);
7680 
7681     return 0;
7682 
7683 rollback:
7684     __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7685 
7686     return ret;
7687 }
7688 
7689 /**
7690  * netdev_upper_dev_link - Add a link to the upper device
7691  * @dev: device
7692  * @upper_dev: new upper device
7693  * @extack: netlink extended ack
7694  *
7695  * Adds a link to device which is upper to this one. The caller must hold
7696  * the RTNL lock. On a failure a negative errno code is returned.
7697  * On success the reference counts are adjusted and the function
7698  * returns zero.
7699  */
7700 int netdev_upper_dev_link(struct net_device *dev,
7701               struct net_device *upper_dev,
7702               struct netlink_ext_ack *extack)
7703 {
7704     struct netdev_nested_priv priv = {
7705         .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7706         .data = NULL,
7707     };
7708 
7709     return __netdev_upper_dev_link(dev, upper_dev, false,
7710                        NULL, NULL, &priv, extack);
7711 }
7712 EXPORT_SYMBOL(netdev_upper_dev_link);
7713 
7714 /**
7715  * netdev_master_upper_dev_link - Add a master link to the upper device
7716  * @dev: device
7717  * @upper_dev: new upper device
7718  * @upper_priv: upper device private
7719  * @upper_info: upper info to be passed down via notifier
7720  * @extack: netlink extended ack
7721  *
7722  * Adds a link to device which is upper to this one. In this case, only
7723  * one master upper device can be linked, although other non-master devices
7724  * might be linked as well. The caller must hold the RTNL lock.
7725  * On a failure a negative errno code is returned. On success the reference
7726  * counts are adjusted and the function returns zero.
7727  */
7728 int netdev_master_upper_dev_link(struct net_device *dev,
7729                  struct net_device *upper_dev,
7730                  void *upper_priv, void *upper_info,
7731                  struct netlink_ext_ack *extack)
7732 {
7733     struct netdev_nested_priv priv = {
7734         .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7735         .data = NULL,
7736     };
7737 
7738     return __netdev_upper_dev_link(dev, upper_dev, true,
7739                        upper_priv, upper_info, &priv, extack);
7740 }
7741 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7742 
7743 static void __netdev_upper_dev_unlink(struct net_device *dev,
7744                       struct net_device *upper_dev,
7745                       struct netdev_nested_priv *priv)
7746 {
7747     struct netdev_notifier_changeupper_info changeupper_info = {
7748         .info = {
7749             .dev = dev,
7750         },
7751         .upper_dev = upper_dev,
7752         .linking = false,
7753     };
7754 
7755     ASSERT_RTNL();
7756 
7757     changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7758 
7759     call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7760                       &changeupper_info.info);
7761 
7762     __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7763 
7764     call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7765                       &changeupper_info.info);
7766 
7767     __netdev_update_upper_level(dev, NULL);
7768     __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7769 
7770     __netdev_update_lower_level(upper_dev, priv);
7771     __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7772                     priv);
7773 }
7774 
7775 /**
7776  * netdev_upper_dev_unlink - Removes a link to upper device
7777  * @dev: device
7778  * @upper_dev: new upper device
7779  *
7780  * Removes a link to device which is upper to this one. The caller must hold
7781  * the RTNL lock.
7782  */
7783 void netdev_upper_dev_unlink(struct net_device *dev,
7784                  struct net_device *upper_dev)
7785 {
7786     struct netdev_nested_priv priv = {
7787         .flags = NESTED_SYNC_TODO,
7788         .data = NULL,
7789     };
7790 
7791     __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7792 }
7793 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7794 
7795 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7796                       struct net_device *lower_dev,
7797                       bool val)
7798 {
7799     struct netdev_adjacent *adj;
7800 
7801     adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7802     if (adj)
7803         adj->ignore = val;
7804 
7805     adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7806     if (adj)
7807         adj->ignore = val;
7808 }
7809 
7810 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7811                     struct net_device *lower_dev)
7812 {
7813     __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7814 }
7815 
7816 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7817                        struct net_device *lower_dev)
7818 {
7819     __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7820 }
7821 
7822 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7823                    struct net_device *new_dev,
7824                    struct net_device *dev,
7825                    struct netlink_ext_ack *extack)
7826 {
7827     struct netdev_nested_priv priv = {
7828         .flags = 0,
7829         .data = NULL,
7830     };
7831     int err;
7832 
7833     if (!new_dev)
7834         return 0;
7835 
7836     if (old_dev && new_dev != old_dev)
7837         netdev_adjacent_dev_disable(dev, old_dev);
7838     err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7839                       extack);
7840     if (err) {
7841         if (old_dev && new_dev != old_dev)
7842             netdev_adjacent_dev_enable(dev, old_dev);
7843         return err;
7844     }
7845 
7846     return 0;
7847 }
7848 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7849 
7850 void netdev_adjacent_change_commit(struct net_device *old_dev,
7851                    struct net_device *new_dev,
7852                    struct net_device *dev)
7853 {
7854     struct netdev_nested_priv priv = {
7855         .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7856         .data = NULL,
7857     };
7858 
7859     if (!new_dev || !old_dev)
7860         return;
7861 
7862     if (new_dev == old_dev)
7863         return;
7864 
7865     netdev_adjacent_dev_enable(dev, old_dev);
7866     __netdev_upper_dev_unlink(old_dev, dev, &priv);
7867 }
7868 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7869 
7870 void netdev_adjacent_change_abort(struct net_device *old_dev,
7871                   struct net_device *new_dev,
7872                   struct net_device *dev)
7873 {
7874     struct netdev_nested_priv priv = {
7875         .flags = 0,
7876         .data = NULL,
7877     };
7878 
7879     if (!new_dev)
7880         return;
7881 
7882     if (old_dev && new_dev != old_dev)
7883         netdev_adjacent_dev_enable(dev, old_dev);
7884 
7885     __netdev_upper_dev_unlink(new_dev, dev, &priv);
7886 }
7887 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7888 
7889 /**
7890  * netdev_bonding_info_change - Dispatch event about slave change
7891  * @dev: device
7892  * @bonding_info: info to dispatch
7893  *
7894  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7895  * The caller must hold the RTNL lock.
7896  */
7897 void netdev_bonding_info_change(struct net_device *dev,
7898                 struct netdev_bonding_info *bonding_info)
7899 {
7900     struct netdev_notifier_bonding_info info = {
7901         .info.dev = dev,
7902     };
7903 
7904     memcpy(&info.bonding_info, bonding_info,
7905            sizeof(struct netdev_bonding_info));
7906     call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7907                       &info.info);
7908 }
7909 EXPORT_SYMBOL(netdev_bonding_info_change);
7910 
7911 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7912                        struct netlink_ext_ack *extack)
7913 {
7914     struct netdev_notifier_offload_xstats_info info = {
7915         .info.dev = dev,
7916         .info.extack = extack,
7917         .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7918     };
7919     int err;
7920     int rc;
7921 
7922     dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7923                      GFP_KERNEL);
7924     if (!dev->offload_xstats_l3)
7925         return -ENOMEM;
7926 
7927     rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7928                           NETDEV_OFFLOAD_XSTATS_DISABLE,
7929                           &info.info);
7930     err = notifier_to_errno(rc);
7931     if (err)
7932         goto free_stats;
7933 
7934     return 0;
7935 
7936 free_stats:
7937     kfree(dev->offload_xstats_l3);
7938     dev->offload_xstats_l3 = NULL;
7939     return err;
7940 }
7941 
7942 int netdev_offload_xstats_enable(struct net_device *dev,
7943                  enum netdev_offload_xstats_type type,
7944                  struct netlink_ext_ack *extack)
7945 {
7946     ASSERT_RTNL();
7947 
7948     if (netdev_offload_xstats_enabled(dev, type))
7949         return -EALREADY;
7950 
7951     switch (type) {
7952     case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7953         return netdev_offload_xstats_enable_l3(dev, extack);
7954     }
7955 
7956     WARN_ON(1);
7957     return -EINVAL;
7958 }
7959 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7960 
7961 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7962 {
7963     struct netdev_notifier_offload_xstats_info info = {
7964         .info.dev = dev,
7965         .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7966     };
7967 
7968     call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7969                       &info.info);
7970     kfree(dev->offload_xstats_l3);
7971     dev->offload_xstats_l3 = NULL;
7972 }
7973 
7974 int netdev_offload_xstats_disable(struct net_device *dev,
7975                   enum netdev_offload_xstats_type type)
7976 {
7977     ASSERT_RTNL();
7978 
7979     if (!netdev_offload_xstats_enabled(dev, type))
7980         return -EALREADY;
7981 
7982     switch (type) {
7983     case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7984         netdev_offload_xstats_disable_l3(dev);
7985         return 0;
7986     }
7987 
7988     WARN_ON(1);
7989     return -EINVAL;
7990 }
7991 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7992 
7993 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7994 {
7995     netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7996 }
7997 
7998 static struct rtnl_hw_stats64 *
7999 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8000                   enum netdev_offload_xstats_type type)
8001 {
8002     switch (type) {
8003     case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8004         return dev->offload_xstats_l3;
8005     }
8006 
8007     WARN_ON(1);
8008     return NULL;
8009 }
8010 
8011 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8012                    enum netdev_offload_xstats_type type)
8013 {
8014     ASSERT_RTNL();
8015 
8016     return netdev_offload_xstats_get_ptr(dev, type);
8017 }
8018 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8019 
8020 struct netdev_notifier_offload_xstats_ru {
8021     bool used;
8022 };
8023 
8024 struct netdev_notifier_offload_xstats_rd {
8025     struct rtnl_hw_stats64 stats;
8026     bool used;
8027 };
8028 
8029 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8030                   const struct rtnl_hw_stats64 *src)
8031 {
8032     dest->rx_packets      += src->rx_packets;
8033     dest->tx_packets      += src->tx_packets;
8034     dest->rx_bytes        += src->rx_bytes;
8035     dest->tx_bytes        += src->tx_bytes;
8036     dest->rx_errors       += src->rx_errors;
8037     dest->tx_errors       += src->tx_errors;
8038     dest->rx_dropped      += src->rx_dropped;
8039     dest->tx_dropped      += src->tx_dropped;
8040     dest->multicast       += src->multicast;
8041 }
8042 
8043 static int netdev_offload_xstats_get_used(struct net_device *dev,
8044                       enum netdev_offload_xstats_type type,
8045                       bool *p_used,
8046                       struct netlink_ext_ack *extack)
8047 {
8048     struct netdev_notifier_offload_xstats_ru report_used = {};
8049     struct netdev_notifier_offload_xstats_info info = {
8050         .info.dev = dev,
8051         .info.extack = extack,
8052         .type = type,
8053         .report_used = &report_used,
8054     };
8055     int rc;
8056 
8057     WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8058     rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8059                        &info.info);
8060     *p_used = report_used.used;
8061     return notifier_to_errno(rc);
8062 }
8063 
8064 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8065                        enum netdev_offload_xstats_type type,
8066                        struct rtnl_hw_stats64 *p_stats,
8067                        bool *p_used,
8068                        struct netlink_ext_ack *extack)
8069 {
8070     struct netdev_notifier_offload_xstats_rd report_delta = {};
8071     struct netdev_notifier_offload_xstats_info info = {
8072         .info.dev = dev,
8073         .info.extack = extack,
8074         .type = type,
8075         .report_delta = &report_delta,
8076     };
8077     struct rtnl_hw_stats64 *stats;
8078     int rc;
8079 
8080     stats = netdev_offload_xstats_get_ptr(dev, type);
8081     if (WARN_ON(!stats))
8082         return -EINVAL;
8083 
8084     rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8085                        &info.info);
8086 
8087     /* Cache whatever we got, even if there was an error, otherwise the
8088      * successful stats retrievals would get lost.
8089      */
8090     netdev_hw_stats64_add(stats, &report_delta.stats);
8091 
8092     if (p_stats)
8093         *p_stats = *stats;
8094     *p_used = report_delta.used;
8095 
8096     return notifier_to_errno(rc);
8097 }
8098 
8099 int netdev_offload_xstats_get(struct net_device *dev,
8100                   enum netdev_offload_xstats_type type,
8101                   struct rtnl_hw_stats64 *p_stats, bool *p_used,
8102                   struct netlink_ext_ack *extack)
8103 {
8104     ASSERT_RTNL();
8105 
8106     if (p_stats)
8107         return netdev_offload_xstats_get_stats(dev, type, p_stats,
8108                                p_used, extack);
8109     else
8110         return netdev_offload_xstats_get_used(dev, type, p_used,
8111                               extack);
8112 }
8113 EXPORT_SYMBOL(netdev_offload_xstats_get);
8114 
8115 void
8116 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8117                    const struct rtnl_hw_stats64 *stats)
8118 {
8119     report_delta->used = true;
8120     netdev_hw_stats64_add(&report_delta->stats, stats);
8121 }
8122 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8123 
8124 void
8125 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8126 {
8127     report_used->used = true;
8128 }
8129 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8130 
8131 void netdev_offload_xstats_push_delta(struct net_device *dev,
8132                       enum netdev_offload_xstats_type type,
8133                       const struct rtnl_hw_stats64 *p_stats)
8134 {
8135     struct rtnl_hw_stats64 *stats;
8136 
8137     ASSERT_RTNL();
8138 
8139     stats = netdev_offload_xstats_get_ptr(dev, type);
8140     if (WARN_ON(!stats))
8141         return;
8142 
8143     netdev_hw_stats64_add(stats, p_stats);
8144 }
8145 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8146 
8147 /**
8148  * netdev_get_xmit_slave - Get the xmit slave of master device
8149  * @dev: device
8150  * @skb: The packet
8151  * @all_slaves: assume all the slaves are active
8152  *
8153  * The reference counters are not incremented so the caller must be
8154  * careful with locks. The caller must hold RCU lock.
8155  * %NULL is returned if no slave is found.
8156  */
8157 
8158 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8159                      struct sk_buff *skb,
8160                      bool all_slaves)
8161 {
8162     const struct net_device_ops *ops = dev->netdev_ops;
8163 
8164     if (!ops->ndo_get_xmit_slave)
8165         return NULL;
8166     return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8167 }
8168 EXPORT_SYMBOL(netdev_get_xmit_slave);
8169 
8170 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8171                           struct sock *sk)
8172 {
8173     const struct net_device_ops *ops = dev->netdev_ops;
8174 
8175     if (!ops->ndo_sk_get_lower_dev)
8176         return NULL;
8177     return ops->ndo_sk_get_lower_dev(dev, sk);
8178 }
8179 
8180 /**
8181  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8182  * @dev: device
8183  * @sk: the socket
8184  *
8185  * %NULL is returned if no lower device is found.
8186  */
8187 
8188 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8189                         struct sock *sk)
8190 {
8191     struct net_device *lower;
8192 
8193     lower = netdev_sk_get_lower_dev(dev, sk);
8194     while (lower) {
8195         dev = lower;
8196         lower = netdev_sk_get_lower_dev(dev, sk);
8197     }
8198 
8199     return dev;
8200 }
8201 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8202 
8203 static void netdev_adjacent_add_links(struct net_device *dev)
8204 {
8205     struct netdev_adjacent *iter;
8206 
8207     struct net *net = dev_net(dev);
8208 
8209     list_for_each_entry(iter, &dev->adj_list.upper, list) {
8210         if (!net_eq(net, dev_net(iter->dev)))
8211             continue;
8212         netdev_adjacent_sysfs_add(iter->dev, dev,
8213                       &iter->dev->adj_list.lower);
8214         netdev_adjacent_sysfs_add(dev, iter->dev,
8215                       &dev->adj_list.upper);
8216     }
8217 
8218     list_for_each_entry(iter, &dev->adj_list.lower, list) {
8219         if (!net_eq(net, dev_net(iter->dev)))
8220             continue;
8221         netdev_adjacent_sysfs_add(iter->dev, dev,
8222                       &iter->dev->adj_list.upper);
8223         netdev_adjacent_sysfs_add(dev, iter->dev,
8224                       &dev->adj_list.lower);
8225     }
8226 }
8227 
8228 static void netdev_adjacent_del_links(struct net_device *dev)
8229 {
8230     struct netdev_adjacent *iter;
8231 
8232     struct net *net = dev_net(dev);
8233 
8234     list_for_each_entry(iter, &dev->adj_list.upper, list) {
8235         if (!net_eq(net, dev_net(iter->dev)))
8236             continue;
8237         netdev_adjacent_sysfs_del(iter->dev, dev->name,
8238                       &iter->dev->adj_list.lower);
8239         netdev_adjacent_sysfs_del(dev, iter->dev->name,
8240                       &dev->adj_list.upper);
8241     }
8242 
8243     list_for_each_entry(iter, &dev->adj_list.lower, list) {
8244         if (!net_eq(net, dev_net(iter->dev)))
8245             continue;
8246         netdev_adjacent_sysfs_del(iter->dev, dev->name,
8247                       &iter->dev->adj_list.upper);
8248         netdev_adjacent_sysfs_del(dev, iter->dev->name,
8249                       &dev->adj_list.lower);
8250     }
8251 }
8252 
8253 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8254 {
8255     struct netdev_adjacent *iter;
8256 
8257     struct net *net = dev_net(dev);
8258 
8259     list_for_each_entry(iter, &dev->adj_list.upper, list) {
8260         if (!net_eq(net, dev_net(iter->dev)))
8261             continue;
8262         netdev_adjacent_sysfs_del(iter->dev, oldname,
8263                       &iter->dev->adj_list.lower);
8264         netdev_adjacent_sysfs_add(iter->dev, dev,
8265                       &iter->dev->adj_list.lower);
8266     }
8267 
8268     list_for_each_entry(iter, &dev->adj_list.lower, list) {
8269         if (!net_eq(net, dev_net(iter->dev)))
8270             continue;
8271         netdev_adjacent_sysfs_del(iter->dev, oldname,
8272                       &iter->dev->adj_list.upper);
8273         netdev_adjacent_sysfs_add(iter->dev, dev,
8274                       &iter->dev->adj_list.upper);
8275     }
8276 }
8277 
8278 void *netdev_lower_dev_get_private(struct net_device *dev,
8279                    struct net_device *lower_dev)
8280 {
8281     struct netdev_adjacent *lower;
8282 
8283     if (!lower_dev)
8284         return NULL;
8285     lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8286     if (!lower)
8287         return NULL;
8288 
8289     return lower->private;
8290 }
8291 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8292 
8293 
8294 /**
8295  * netdev_lower_state_changed - Dispatch event about lower device state change
8296  * @lower_dev: device
8297  * @lower_state_info: state to dispatch
8298  *
8299  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8300  * The caller must hold the RTNL lock.
8301  */
8302 void netdev_lower_state_changed(struct net_device *lower_dev,
8303                 void *lower_state_info)
8304 {
8305     struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8306         .info.dev = lower_dev,
8307     };
8308 
8309     ASSERT_RTNL();
8310     changelowerstate_info.lower_state_info = lower_state_info;
8311     call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8312                       &changelowerstate_info.info);
8313 }
8314 EXPORT_SYMBOL(netdev_lower_state_changed);
8315 
8316 static void dev_change_rx_flags(struct net_device *dev, int flags)
8317 {
8318     const struct net_device_ops *ops = dev->netdev_ops;
8319 
8320     if (ops->ndo_change_rx_flags)
8321         ops->ndo_change_rx_flags(dev, flags);
8322 }
8323 
8324 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8325 {
8326     unsigned int old_flags = dev->flags;
8327     kuid_t uid;
8328     kgid_t gid;
8329 
8330     ASSERT_RTNL();
8331 
8332     dev->flags |= IFF_PROMISC;
8333     dev->promiscuity += inc;
8334     if (dev->promiscuity == 0) {
8335         /*
8336          * Avoid overflow.
8337          * If inc causes overflow, untouch promisc and return error.
8338          */
8339         if (inc < 0)
8340             dev->flags &= ~IFF_PROMISC;
8341         else {
8342             dev->promiscuity -= inc;
8343             netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8344             return -EOVERFLOW;
8345         }
8346     }
8347     if (dev->flags != old_flags) {
8348         pr_info("device %s %s promiscuous mode\n",
8349             dev->name,
8350             dev->flags & IFF_PROMISC ? "entered" : "left");
8351         if (audit_enabled) {
8352             current_uid_gid(&uid, &gid);
8353             audit_log(audit_context(), GFP_ATOMIC,
8354                   AUDIT_ANOM_PROMISCUOUS,
8355                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8356                   dev->name, (dev->flags & IFF_PROMISC),
8357                   (old_flags & IFF_PROMISC),
8358                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8359                   from_kuid(&init_user_ns, uid),
8360                   from_kgid(&init_user_ns, gid),
8361                   audit_get_sessionid(current));
8362         }
8363 
8364         dev_change_rx_flags(dev, IFF_PROMISC);
8365     }
8366     if (notify)
8367         __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8368     return 0;
8369 }
8370 
8371 /**
8372  *  dev_set_promiscuity - update promiscuity count on a device
8373  *  @dev: device
8374  *  @inc: modifier
8375  *
8376  *  Add or remove promiscuity from a device. While the count in the device
8377  *  remains above zero the interface remains promiscuous. Once it hits zero
8378  *  the device reverts back to normal filtering operation. A negative inc
8379  *  value is used to drop promiscuity on the device.
8380  *  Return 0 if successful or a negative errno code on error.
8381  */
8382 int dev_set_promiscuity(struct net_device *dev, int inc)
8383 {
8384     unsigned int old_flags = dev->flags;
8385     int err;
8386 
8387     err = __dev_set_promiscuity(dev, inc, true);
8388     if (err < 0)
8389         return err;
8390     if (dev->flags != old_flags)
8391         dev_set_rx_mode(dev);
8392     return err;
8393 }
8394 EXPORT_SYMBOL(dev_set_promiscuity);
8395 
8396 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8397 {
8398     unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8399 
8400     ASSERT_RTNL();
8401 
8402     dev->flags |= IFF_ALLMULTI;
8403     dev->allmulti += inc;
8404     if (dev->allmulti == 0) {
8405         /*
8406          * Avoid overflow.
8407          * If inc causes overflow, untouch allmulti and return error.
8408          */
8409         if (inc < 0)
8410             dev->flags &= ~IFF_ALLMULTI;
8411         else {
8412             dev->allmulti -= inc;
8413             netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8414             return -EOVERFLOW;
8415         }
8416     }
8417     if (dev->flags ^ old_flags) {
8418         dev_change_rx_flags(dev, IFF_ALLMULTI);
8419         dev_set_rx_mode(dev);
8420         if (notify)
8421             __dev_notify_flags(dev, old_flags,
8422                        dev->gflags ^ old_gflags);
8423     }
8424     return 0;
8425 }
8426 
8427 /**
8428  *  dev_set_allmulti    - update allmulti count on a device
8429  *  @dev: device
8430  *  @inc: modifier
8431  *
8432  *  Add or remove reception of all multicast frames to a device. While the
8433  *  count in the device remains above zero the interface remains listening
8434  *  to all interfaces. Once it hits zero the device reverts back to normal
8435  *  filtering operation. A negative @inc value is used to drop the counter
8436  *  when releasing a resource needing all multicasts.
8437  *  Return 0 if successful or a negative errno code on error.
8438  */
8439 
8440 int dev_set_allmulti(struct net_device *dev, int inc)
8441 {
8442     return __dev_set_allmulti(dev, inc, true);
8443 }
8444 EXPORT_SYMBOL(dev_set_allmulti);
8445 
8446 /*
8447  *  Upload unicast and multicast address lists to device and
8448  *  configure RX filtering. When the device doesn't support unicast
8449  *  filtering it is put in promiscuous mode while unicast addresses
8450  *  are present.
8451  */
8452 void __dev_set_rx_mode(struct net_device *dev)
8453 {
8454     const struct net_device_ops *ops = dev->netdev_ops;
8455 
8456     /* dev_open will call this function so the list will stay sane. */
8457     if (!(dev->flags&IFF_UP))
8458         return;
8459 
8460     if (!netif_device_present(dev))
8461         return;
8462 
8463     if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8464         /* Unicast addresses changes may only happen under the rtnl,
8465          * therefore calling __dev_set_promiscuity here is safe.
8466          */
8467         if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8468             __dev_set_promiscuity(dev, 1, false);
8469             dev->uc_promisc = true;
8470         } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8471             __dev_set_promiscuity(dev, -1, false);
8472             dev->uc_promisc = false;
8473         }
8474     }
8475 
8476     if (ops->ndo_set_rx_mode)
8477         ops->ndo_set_rx_mode(dev);
8478 }
8479 
8480 void dev_set_rx_mode(struct net_device *dev)
8481 {
8482     netif_addr_lock_bh(dev);
8483     __dev_set_rx_mode(dev);
8484     netif_addr_unlock_bh(dev);
8485 }
8486 
8487 /**
8488  *  dev_get_flags - get flags reported to userspace
8489  *  @dev: device
8490  *
8491  *  Get the combination of flag bits exported through APIs to userspace.
8492  */
8493 unsigned int dev_get_flags(const struct net_device *dev)
8494 {
8495     unsigned int flags;
8496 
8497     flags = (dev->flags & ~(IFF_PROMISC |
8498                 IFF_ALLMULTI |
8499                 IFF_RUNNING |
8500                 IFF_LOWER_UP |
8501                 IFF_DORMANT)) |
8502         (dev->gflags & (IFF_PROMISC |
8503                 IFF_ALLMULTI));
8504 
8505     if (netif_running(dev)) {
8506         if (netif_oper_up(dev))
8507             flags |= IFF_RUNNING;
8508         if (netif_carrier_ok(dev))
8509             flags |= IFF_LOWER_UP;
8510         if (netif_dormant(dev))
8511             flags |= IFF_DORMANT;
8512     }
8513 
8514     return flags;
8515 }
8516 EXPORT_SYMBOL(dev_get_flags);
8517 
8518 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8519                struct netlink_ext_ack *extack)
8520 {
8521     unsigned int old_flags = dev->flags;
8522     int ret;
8523 
8524     ASSERT_RTNL();
8525 
8526     /*
8527      *  Set the flags on our device.
8528      */
8529 
8530     dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8531                    IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8532                    IFF_AUTOMEDIA)) |
8533              (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8534                     IFF_ALLMULTI));
8535 
8536     /*
8537      *  Load in the correct multicast list now the flags have changed.
8538      */
8539 
8540     if ((old_flags ^ flags) & IFF_MULTICAST)
8541         dev_change_rx_flags(dev, IFF_MULTICAST);
8542 
8543     dev_set_rx_mode(dev);
8544 
8545     /*
8546      *  Have we downed the interface. We handle IFF_UP ourselves
8547      *  according to user attempts to set it, rather than blindly
8548      *  setting it.
8549      */
8550 
8551     ret = 0;
8552     if ((old_flags ^ flags) & IFF_UP) {
8553         if (old_flags & IFF_UP)
8554             __dev_close(dev);
8555         else
8556             ret = __dev_open(dev, extack);
8557     }
8558 
8559     if ((flags ^ dev->gflags) & IFF_PROMISC) {
8560         int inc = (flags & IFF_PROMISC) ? 1 : -1;
8561         unsigned int old_flags = dev->flags;
8562 
8563         dev->gflags ^= IFF_PROMISC;
8564 
8565         if (__dev_set_promiscuity(dev, inc, false) >= 0)
8566             if (dev->flags != old_flags)
8567                 dev_set_rx_mode(dev);
8568     }
8569 
8570     /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8571      * is important. Some (broken) drivers set IFF_PROMISC, when
8572      * IFF_ALLMULTI is requested not asking us and not reporting.
8573      */
8574     if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8575         int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8576 
8577         dev->gflags ^= IFF_ALLMULTI;
8578         __dev_set_allmulti(dev, inc, false);
8579     }
8580 
8581     return ret;
8582 }
8583 
8584 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8585             unsigned int gchanges)
8586 {
8587     unsigned int changes = dev->flags ^ old_flags;
8588 
8589     if (gchanges)
8590         rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8591 
8592     if (changes & IFF_UP) {
8593         if (dev->flags & IFF_UP)
8594             call_netdevice_notifiers(NETDEV_UP, dev);
8595         else
8596             call_netdevice_notifiers(NETDEV_DOWN, dev);
8597     }
8598 
8599     if (dev->flags & IFF_UP &&
8600         (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8601         struct netdev_notifier_change_info change_info = {
8602             .info = {
8603                 .dev = dev,
8604             },
8605             .flags_changed = changes,
8606         };
8607 
8608         call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8609     }
8610 }
8611 
8612 /**
8613  *  dev_change_flags - change device settings
8614  *  @dev: device
8615  *  @flags: device state flags
8616  *  @extack: netlink extended ack
8617  *
8618  *  Change settings on device based state flags. The flags are
8619  *  in the userspace exported format.
8620  */
8621 int dev_change_flags(struct net_device *dev, unsigned int flags,
8622              struct netlink_ext_ack *extack)
8623 {
8624     int ret;
8625     unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8626 
8627     ret = __dev_change_flags(dev, flags, extack);
8628     if (ret < 0)
8629         return ret;
8630 
8631     changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8632     __dev_notify_flags(dev, old_flags, changes);
8633     return ret;
8634 }
8635 EXPORT_SYMBOL(dev_change_flags);
8636 
8637 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8638 {
8639     const struct net_device_ops *ops = dev->netdev_ops;
8640 
8641     if (ops->ndo_change_mtu)
8642         return ops->ndo_change_mtu(dev, new_mtu);
8643 
8644     /* Pairs with all the lockless reads of dev->mtu in the stack */
8645     WRITE_ONCE(dev->mtu, new_mtu);
8646     return 0;
8647 }
8648 EXPORT_SYMBOL(__dev_set_mtu);
8649 
8650 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8651              struct netlink_ext_ack *extack)
8652 {
8653     /* MTU must be positive, and in range */
8654     if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8655         NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8656         return -EINVAL;
8657     }
8658 
8659     if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8660         NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8661         return -EINVAL;
8662     }
8663     return 0;
8664 }
8665 
8666 /**
8667  *  dev_set_mtu_ext - Change maximum transfer unit
8668  *  @dev: device
8669  *  @new_mtu: new transfer unit
8670  *  @extack: netlink extended ack
8671  *
8672  *  Change the maximum transfer size of the network device.
8673  */
8674 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8675             struct netlink_ext_ack *extack)
8676 {
8677     int err, orig_mtu;
8678 
8679     if (new_mtu == dev->mtu)
8680         return 0;
8681 
8682     err = dev_validate_mtu(dev, new_mtu, extack);
8683     if (err)
8684         return err;
8685 
8686     if (!netif_device_present(dev))
8687         return -ENODEV;
8688 
8689     err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8690     err = notifier_to_errno(err);
8691     if (err)
8692         return err;
8693 
8694     orig_mtu = dev->mtu;
8695     err = __dev_set_mtu(dev, new_mtu);
8696 
8697     if (!err) {
8698         err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8699                            orig_mtu);
8700         err = notifier_to_errno(err);
8701         if (err) {
8702             /* setting mtu back and notifying everyone again,
8703              * so that they have a chance to revert changes.
8704              */
8705             __dev_set_mtu(dev, orig_mtu);
8706             call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8707                              new_mtu);
8708         }
8709     }
8710     return err;
8711 }
8712 
8713 int dev_set_mtu(struct net_device *dev, int new_mtu)
8714 {
8715     struct netlink_ext_ack extack;
8716     int err;
8717 
8718     memset(&extack, 0, sizeof(extack));
8719     err = dev_set_mtu_ext(dev, new_mtu, &extack);
8720     if (err && extack._msg)
8721         net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8722     return err;
8723 }
8724 EXPORT_SYMBOL(dev_set_mtu);
8725 
8726 /**
8727  *  dev_change_tx_queue_len - Change TX queue length of a netdevice
8728  *  @dev: device
8729  *  @new_len: new tx queue length
8730  */
8731 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8732 {
8733     unsigned int orig_len = dev->tx_queue_len;
8734     int res;
8735 
8736     if (new_len != (unsigned int)new_len)
8737         return -ERANGE;
8738 
8739     if (new_len != orig_len) {
8740         dev->tx_queue_len = new_len;
8741         res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8742         res = notifier_to_errno(res);
8743         if (res)
8744             goto err_rollback;
8745         res = dev_qdisc_change_tx_queue_len(dev);
8746         if (res)
8747             goto err_rollback;
8748     }
8749 
8750     return 0;
8751 
8752 err_rollback:
8753     netdev_err(dev, "refused to change device tx_queue_len\n");
8754     dev->tx_queue_len = orig_len;
8755     return res;
8756 }
8757 
8758 /**
8759  *  dev_set_group - Change group this device belongs to
8760  *  @dev: device
8761  *  @new_group: group this device should belong to
8762  */
8763 void dev_set_group(struct net_device *dev, int new_group)
8764 {
8765     dev->group = new_group;
8766 }
8767 
8768 /**
8769  *  dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8770  *  @dev: device
8771  *  @addr: new address
8772  *  @extack: netlink extended ack
8773  */
8774 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8775                   struct netlink_ext_ack *extack)
8776 {
8777     struct netdev_notifier_pre_changeaddr_info info = {
8778         .info.dev = dev,
8779         .info.extack = extack,
8780         .dev_addr = addr,
8781     };
8782     int rc;
8783 
8784     rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8785     return notifier_to_errno(rc);
8786 }
8787 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8788 
8789 /**
8790  *  dev_set_mac_address - Change Media Access Control Address
8791  *  @dev: device
8792  *  @sa: new address
8793  *  @extack: netlink extended ack
8794  *
8795  *  Change the hardware (MAC) address of the device
8796  */
8797 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8798             struct netlink_ext_ack *extack)
8799 {
8800     const struct net_device_ops *ops = dev->netdev_ops;
8801     int err;
8802 
8803     if (!ops->ndo_set_mac_address)
8804         return -EOPNOTSUPP;
8805     if (sa->sa_family != dev->type)
8806         return -EINVAL;
8807     if (!netif_device_present(dev))
8808         return -ENODEV;
8809     err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8810     if (err)
8811         return err;
8812     err = ops->ndo_set_mac_address(dev, sa);
8813     if (err)
8814         return err;
8815     dev->addr_assign_type = NET_ADDR_SET;
8816     call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8817     add_device_randomness(dev->dev_addr, dev->addr_len);
8818     return 0;
8819 }
8820 EXPORT_SYMBOL(dev_set_mac_address);
8821 
8822 static DECLARE_RWSEM(dev_addr_sem);
8823 
8824 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8825                  struct netlink_ext_ack *extack)
8826 {
8827     int ret;
8828 
8829     down_write(&dev_addr_sem);
8830     ret = dev_set_mac_address(dev, sa, extack);
8831     up_write(&dev_addr_sem);
8832     return ret;
8833 }
8834 EXPORT_SYMBOL(dev_set_mac_address_user);
8835 
8836 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8837 {
8838     size_t size = sizeof(sa->sa_data);
8839     struct net_device *dev;
8840     int ret = 0;
8841 
8842     down_read(&dev_addr_sem);
8843     rcu_read_lock();
8844 
8845     dev = dev_get_by_name_rcu(net, dev_name);
8846     if (!dev) {
8847         ret = -ENODEV;
8848         goto unlock;
8849     }
8850     if (!dev->addr_len)
8851         memset(sa->sa_data, 0, size);
8852     else
8853         memcpy(sa->sa_data, dev->dev_addr,
8854                min_t(size_t, size, dev->addr_len));
8855     sa->sa_family = dev->type;
8856 
8857 unlock:
8858     rcu_read_unlock();
8859     up_read(&dev_addr_sem);
8860     return ret;
8861 }
8862 EXPORT_SYMBOL(dev_get_mac_address);
8863 
8864 /**
8865  *  dev_change_carrier - Change device carrier
8866  *  @dev: device
8867  *  @new_carrier: new value
8868  *
8869  *  Change device carrier
8870  */
8871 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8872 {
8873     const struct net_device_ops *ops = dev->netdev_ops;
8874 
8875     if (!ops->ndo_change_carrier)
8876         return -EOPNOTSUPP;
8877     if (!netif_device_present(dev))
8878         return -ENODEV;
8879     return ops->ndo_change_carrier(dev, new_carrier);
8880 }
8881 
8882 /**
8883  *  dev_get_phys_port_id - Get device physical port ID
8884  *  @dev: device
8885  *  @ppid: port ID
8886  *
8887  *  Get device physical port ID
8888  */
8889 int dev_get_phys_port_id(struct net_device *dev,
8890              struct netdev_phys_item_id *ppid)
8891 {
8892     const struct net_device_ops *ops = dev->netdev_ops;
8893 
8894     if (!ops->ndo_get_phys_port_id)
8895         return -EOPNOTSUPP;
8896     return ops->ndo_get_phys_port_id(dev, ppid);
8897 }
8898 
8899 /**
8900  *  dev_get_phys_port_name - Get device physical port name
8901  *  @dev: device
8902  *  @name: port name
8903  *  @len: limit of bytes to copy to name
8904  *
8905  *  Get device physical port name
8906  */
8907 int dev_get_phys_port_name(struct net_device *dev,
8908                char *name, size_t len)
8909 {
8910     const struct net_device_ops *ops = dev->netdev_ops;
8911     int err;
8912 
8913     if (ops->ndo_get_phys_port_name) {
8914         err = ops->ndo_get_phys_port_name(dev, name, len);
8915         if (err != -EOPNOTSUPP)
8916             return err;
8917     }
8918     return devlink_compat_phys_port_name_get(dev, name, len);
8919 }
8920 
8921 /**
8922  *  dev_get_port_parent_id - Get the device's port parent identifier
8923  *  @dev: network device
8924  *  @ppid: pointer to a storage for the port's parent identifier
8925  *  @recurse: allow/disallow recursion to lower devices
8926  *
8927  *  Get the devices's port parent identifier
8928  */
8929 int dev_get_port_parent_id(struct net_device *dev,
8930                struct netdev_phys_item_id *ppid,
8931                bool recurse)
8932 {
8933     const struct net_device_ops *ops = dev->netdev_ops;
8934     struct netdev_phys_item_id first = { };
8935     struct net_device *lower_dev;
8936     struct list_head *iter;
8937     int err;
8938 
8939     if (ops->ndo_get_port_parent_id) {
8940         err = ops->ndo_get_port_parent_id(dev, ppid);
8941         if (err != -EOPNOTSUPP)
8942             return err;
8943     }
8944 
8945     err = devlink_compat_switch_id_get(dev, ppid);
8946     if (!recurse || err != -EOPNOTSUPP)
8947         return err;
8948 
8949     netdev_for_each_lower_dev(dev, lower_dev, iter) {
8950         err = dev_get_port_parent_id(lower_dev, ppid, true);
8951         if (err)
8952             break;
8953         if (!first.id_len)
8954             first = *ppid;
8955         else if (memcmp(&first, ppid, sizeof(*ppid)))
8956             return -EOPNOTSUPP;
8957     }
8958 
8959     return err;
8960 }
8961 EXPORT_SYMBOL(dev_get_port_parent_id);
8962 
8963 /**
8964  *  netdev_port_same_parent_id - Indicate if two network devices have
8965  *  the same port parent identifier
8966  *  @a: first network device
8967  *  @b: second network device
8968  */
8969 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8970 {
8971     struct netdev_phys_item_id a_id = { };
8972     struct netdev_phys_item_id b_id = { };
8973 
8974     if (dev_get_port_parent_id(a, &a_id, true) ||
8975         dev_get_port_parent_id(b, &b_id, true))
8976         return false;
8977 
8978     return netdev_phys_item_id_same(&a_id, &b_id);
8979 }
8980 EXPORT_SYMBOL(netdev_port_same_parent_id);
8981 
8982 /**
8983  *  dev_change_proto_down - set carrier according to proto_down.
8984  *
8985  *  @dev: device
8986  *  @proto_down: new value
8987  */
8988 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8989 {
8990     if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8991         return -EOPNOTSUPP;
8992     if (!netif_device_present(dev))
8993         return -ENODEV;
8994     if (proto_down)
8995         netif_carrier_off(dev);
8996     else
8997         netif_carrier_on(dev);
8998     dev->proto_down = proto_down;
8999     return 0;
9000 }
9001 
9002 /**
9003  *  dev_change_proto_down_reason - proto down reason
9004  *
9005  *  @dev: device
9006  *  @mask: proto down mask
9007  *  @value: proto down value
9008  */
9009 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9010                   u32 value)
9011 {
9012     int b;
9013 
9014     if (!mask) {
9015         dev->proto_down_reason = value;
9016     } else {
9017         for_each_set_bit(b, &mask, 32) {
9018             if (value & (1 << b))
9019                 dev->proto_down_reason |= BIT(b);
9020             else
9021                 dev->proto_down_reason &= ~BIT(b);
9022         }
9023     }
9024 }
9025 
9026 struct bpf_xdp_link {
9027     struct bpf_link link;
9028     struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9029     int flags;
9030 };
9031 
9032 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9033 {
9034     if (flags & XDP_FLAGS_HW_MODE)
9035         return XDP_MODE_HW;
9036     if (flags & XDP_FLAGS_DRV_MODE)
9037         return XDP_MODE_DRV;
9038     if (flags & XDP_FLAGS_SKB_MODE)
9039         return XDP_MODE_SKB;
9040     return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9041 }
9042 
9043 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9044 {
9045     switch (mode) {
9046     case XDP_MODE_SKB:
9047         return generic_xdp_install;
9048     case XDP_MODE_DRV:
9049     case XDP_MODE_HW:
9050         return dev->netdev_ops->ndo_bpf;
9051     default:
9052         return NULL;
9053     }
9054 }
9055 
9056 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9057                      enum bpf_xdp_mode mode)
9058 {
9059     return dev->xdp_state[mode].link;
9060 }
9061 
9062 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9063                      enum bpf_xdp_mode mode)
9064 {
9065     struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9066 
9067     if (link)
9068         return link->link.prog;
9069     return dev->xdp_state[mode].prog;
9070 }
9071 
9072 u8 dev_xdp_prog_count(struct net_device *dev)
9073 {
9074     u8 count = 0;
9075     int i;
9076 
9077     for (i = 0; i < __MAX_XDP_MODE; i++)
9078         if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9079             count++;
9080     return count;
9081 }
9082 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9083 
9084 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9085 {
9086     struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9087 
9088     return prog ? prog->aux->id : 0;
9089 }
9090 
9091 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9092                  struct bpf_xdp_link *link)
9093 {
9094     dev->xdp_state[mode].link = link;
9095     dev->xdp_state[mode].prog = NULL;
9096 }
9097 
9098 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9099                  struct bpf_prog *prog)
9100 {
9101     dev->xdp_state[mode].link = NULL;
9102     dev->xdp_state[mode].prog = prog;
9103 }
9104 
9105 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9106                bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9107                u32 flags, struct bpf_prog *prog)
9108 {
9109     struct netdev_bpf xdp;
9110     int err;
9111 
9112     memset(&xdp, 0, sizeof(xdp));
9113     xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9114     xdp.extack = extack;
9115     xdp.flags = flags;
9116     xdp.prog = prog;
9117 
9118     /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9119      * "moved" into driver), so they don't increment it on their own, but
9120      * they do decrement refcnt when program is detached or replaced.
9121      * Given net_device also owns link/prog, we need to bump refcnt here
9122      * to prevent drivers from underflowing it.
9123      */
9124     if (prog)
9125         bpf_prog_inc(prog);
9126     err = bpf_op(dev, &xdp);
9127     if (err) {
9128         if (prog)
9129             bpf_prog_put(prog);
9130         return err;
9131     }
9132 
9133     if (mode != XDP_MODE_HW)
9134         bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9135 
9136     return 0;
9137 }
9138 
9139 static void dev_xdp_uninstall(struct net_device *dev)
9140 {
9141     struct bpf_xdp_link *link;
9142     struct bpf_prog *prog;
9143     enum bpf_xdp_mode mode;
9144     bpf_op_t bpf_op;
9145 
9146     ASSERT_RTNL();
9147 
9148     for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9149         prog = dev_xdp_prog(dev, mode);
9150         if (!prog)
9151             continue;
9152 
9153         bpf_op = dev_xdp_bpf_op(dev, mode);
9154         if (!bpf_op)
9155             continue;
9156 
9157         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9158 
9159         /* auto-detach link from net device */
9160         link = dev_xdp_link(dev, mode);
9161         if (link)
9162             link->dev = NULL;
9163         else
9164             bpf_prog_put(prog);
9165 
9166         dev_xdp_set_link(dev, mode, NULL);
9167     }
9168 }
9169 
9170 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9171               struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9172               struct bpf_prog *old_prog, u32 flags)
9173 {
9174     unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9175     struct bpf_prog *cur_prog;
9176     struct net_device *upper;
9177     struct list_head *iter;
9178     enum bpf_xdp_mode mode;
9179     bpf_op_t bpf_op;
9180     int err;
9181 
9182     ASSERT_RTNL();
9183 
9184     /* either link or prog attachment, never both */
9185     if (link && (new_prog || old_prog))
9186         return -EINVAL;
9187     /* link supports only XDP mode flags */
9188     if (link && (flags & ~XDP_FLAGS_MODES)) {
9189         NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9190         return -EINVAL;
9191     }
9192     /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9193     if (num_modes > 1) {
9194         NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9195         return -EINVAL;
9196     }
9197     /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9198     if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9199         NL_SET_ERR_MSG(extack,
9200                    "More than one program loaded, unset mode is ambiguous");
9201         return -EINVAL;
9202     }
9203     /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9204     if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9205         NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9206         return -EINVAL;
9207     }
9208 
9209     mode = dev_xdp_mode(dev, flags);
9210     /* can't replace attached link */
9211     if (dev_xdp_link(dev, mode)) {
9212         NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9213         return -EBUSY;
9214     }
9215 
9216     /* don't allow if an upper device already has a program */
9217     netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9218         if (dev_xdp_prog_count(upper) > 0) {
9219             NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9220             return -EEXIST;
9221         }
9222     }
9223 
9224     cur_prog = dev_xdp_prog(dev, mode);
9225     /* can't replace attached prog with link */
9226     if (link && cur_prog) {
9227         NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9228         return -EBUSY;
9229     }
9230     if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9231         NL_SET_ERR_MSG(extack, "Active program does not match expected");
9232         return -EEXIST;
9233     }
9234 
9235     /* put effective new program into new_prog */
9236     if (link)
9237         new_prog = link->link.prog;
9238 
9239     if (new_prog) {
9240         bool offload = mode == XDP_MODE_HW;
9241         enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9242                            ? XDP_MODE_DRV : XDP_MODE_SKB;
9243 
9244         if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9245             NL_SET_ERR_MSG(extack, "XDP program already attached");
9246             return -EBUSY;
9247         }
9248         if (!offload && dev_xdp_prog(dev, other_mode)) {
9249             NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9250             return -EEXIST;
9251         }
9252         if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9253             NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9254             return -EINVAL;
9255         }
9256         if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9257             NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9258             return -EINVAL;
9259         }
9260         if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9261             NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9262             return -EINVAL;
9263         }
9264     }
9265 
9266     /* don't call drivers if the effective program didn't change */
9267     if (new_prog != cur_prog) {
9268         bpf_op = dev_xdp_bpf_op(dev, mode);
9269         if (!bpf_op) {
9270             NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9271             return -EOPNOTSUPP;
9272         }
9273 
9274         err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9275         if (err)
9276             return err;
9277     }
9278 
9279     if (link)
9280         dev_xdp_set_link(dev, mode, link);
9281     else
9282         dev_xdp_set_prog(dev, mode, new_prog);
9283     if (cur_prog)
9284         bpf_prog_put(cur_prog);
9285 
9286     return 0;
9287 }
9288 
9289 static int dev_xdp_attach_link(struct net_device *dev,
9290                    struct netlink_ext_ack *extack,
9291                    struct bpf_xdp_link *link)
9292 {
9293     return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9294 }
9295 
9296 static int dev_xdp_detach_link(struct net_device *dev,
9297                    struct netlink_ext_ack *extack,
9298                    struct bpf_xdp_link *link)
9299 {
9300     enum bpf_xdp_mode mode;
9301     bpf_op_t bpf_op;
9302 
9303     ASSERT_RTNL();
9304 
9305     mode = dev_xdp_mode(dev, link->flags);
9306     if (dev_xdp_link(dev, mode) != link)
9307         return -EINVAL;
9308 
9309     bpf_op = dev_xdp_bpf_op(dev, mode);
9310     WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9311     dev_xdp_set_link(dev, mode, NULL);
9312     return 0;
9313 }
9314 
9315 static void bpf_xdp_link_release(struct bpf_link *link)
9316 {
9317     struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9318 
9319     rtnl_lock();
9320 
9321     /* if racing with net_device's tear down, xdp_link->dev might be
9322      * already NULL, in which case link was already auto-detached
9323      */
9324     if (xdp_link->dev) {
9325         WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9326         xdp_link->dev = NULL;
9327     }
9328 
9329     rtnl_unlock();
9330 }
9331 
9332 static int bpf_xdp_link_detach(struct bpf_link *link)
9333 {
9334     bpf_xdp_link_release(link);
9335     return 0;
9336 }
9337 
9338 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9339 {
9340     struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9341 
9342     kfree(xdp_link);
9343 }
9344 
9345 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9346                      struct seq_file *seq)
9347 {
9348     struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9349     u32 ifindex = 0;
9350 
9351     rtnl_lock();
9352     if (xdp_link->dev)
9353         ifindex = xdp_link->dev->ifindex;
9354     rtnl_unlock();
9355 
9356     seq_printf(seq, "ifindex:\t%u\n", ifindex);
9357 }
9358 
9359 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9360                        struct bpf_link_info *info)
9361 {
9362     struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9363     u32 ifindex = 0;
9364 
9365     rtnl_lock();
9366     if (xdp_link->dev)
9367         ifindex = xdp_link->dev->ifindex;
9368     rtnl_unlock();
9369 
9370     info->xdp.ifindex = ifindex;
9371     return 0;
9372 }
9373 
9374 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9375                    struct bpf_prog *old_prog)
9376 {
9377     struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9378     enum bpf_xdp_mode mode;
9379     bpf_op_t bpf_op;
9380     int err = 0;
9381 
9382     rtnl_lock();
9383 
9384     /* link might have been auto-released already, so fail */
9385     if (!xdp_link->dev) {
9386         err = -ENOLINK;
9387         goto out_unlock;
9388     }
9389 
9390     if (old_prog && link->prog != old_prog) {
9391         err = -EPERM;
9392         goto out_unlock;
9393     }
9394     old_prog = link->prog;
9395     if (old_prog->type != new_prog->type ||
9396         old_prog->expected_attach_type != new_prog->expected_attach_type) {
9397         err = -EINVAL;
9398         goto out_unlock;
9399     }
9400 
9401     if (old_prog == new_prog) {
9402         /* no-op, don't disturb drivers */
9403         bpf_prog_put(new_prog);
9404         goto out_unlock;
9405     }
9406 
9407     mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9408     bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9409     err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9410                   xdp_link->flags, new_prog);
9411     if (err)
9412         goto out_unlock;
9413 
9414     old_prog = xchg(&link->prog, new_prog);
9415     bpf_prog_put(old_prog);
9416 
9417 out_unlock:
9418     rtnl_unlock();
9419     return err;
9420 }
9421 
9422 static const struct bpf_link_ops bpf_xdp_link_lops = {
9423     .release = bpf_xdp_link_release,
9424     .dealloc = bpf_xdp_link_dealloc,
9425     .detach = bpf_xdp_link_detach,
9426     .show_fdinfo = bpf_xdp_link_show_fdinfo,
9427     .fill_link_info = bpf_xdp_link_fill_link_info,
9428     .update_prog = bpf_xdp_link_update,
9429 };
9430 
9431 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9432 {
9433     struct net *net = current->nsproxy->net_ns;
9434     struct bpf_link_primer link_primer;
9435     struct bpf_xdp_link *link;
9436     struct net_device *dev;
9437     int err, fd;
9438 
9439     rtnl_lock();
9440     dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9441     if (!dev) {
9442         rtnl_unlock();
9443         return -EINVAL;
9444     }
9445 
9446     link = kzalloc(sizeof(*link), GFP_USER);
9447     if (!link) {
9448         err = -ENOMEM;
9449         goto unlock;
9450     }
9451 
9452     bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9453     link->dev = dev;
9454     link->flags = attr->link_create.flags;
9455 
9456     err = bpf_link_prime(&link->link, &link_primer);
9457     if (err) {
9458         kfree(link);
9459         goto unlock;
9460     }
9461 
9462     err = dev_xdp_attach_link(dev, NULL, link);
9463     rtnl_unlock();
9464 
9465     if (err) {
9466         link->dev = NULL;
9467         bpf_link_cleanup(&link_primer);
9468         goto out_put_dev;
9469     }
9470 
9471     fd = bpf_link_settle(&link_primer);
9472     /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9473     dev_put(dev);
9474     return fd;
9475 
9476 unlock:
9477     rtnl_unlock();
9478 
9479 out_put_dev:
9480     dev_put(dev);
9481     return err;
9482 }
9483 
9484 /**
9485  *  dev_change_xdp_fd - set or clear a bpf program for a device rx path
9486  *  @dev: device
9487  *  @extack: netlink extended ack
9488  *  @fd: new program fd or negative value to clear
9489  *  @expected_fd: old program fd that userspace expects to replace or clear
9490  *  @flags: xdp-related flags
9491  *
9492  *  Set or clear a bpf program for a device
9493  */
9494 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9495               int fd, int expected_fd, u32 flags)
9496 {
9497     enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9498     struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9499     int err;
9500 
9501     ASSERT_RTNL();
9502 
9503     if (fd >= 0) {
9504         new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9505                          mode != XDP_MODE_SKB);
9506         if (IS_ERR(new_prog))
9507             return PTR_ERR(new_prog);
9508     }
9509 
9510     if (expected_fd >= 0) {
9511         old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9512                          mode != XDP_MODE_SKB);
9513         if (IS_ERR(old_prog)) {
9514             err = PTR_ERR(old_prog);
9515             old_prog = NULL;
9516             goto err_out;
9517         }
9518     }
9519 
9520     err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9521 
9522 err_out:
9523     if (err && new_prog)
9524         bpf_prog_put(new_prog);
9525     if (old_prog)
9526         bpf_prog_put(old_prog);
9527     return err;
9528 }
9529 
9530 /**
9531  *  dev_new_index   -   allocate an ifindex
9532  *  @net: the applicable net namespace
9533  *
9534  *  Returns a suitable unique value for a new device interface
9535  *  number.  The caller must hold the rtnl semaphore or the
9536  *  dev_base_lock to be sure it remains unique.
9537  */
9538 static int dev_new_index(struct net *net)
9539 {
9540     int ifindex = net->ifindex;
9541 
9542     for (;;) {
9543         if (++ifindex <= 0)
9544             ifindex = 1;
9545         if (!__dev_get_by_index(net, ifindex))
9546             return net->ifindex = ifindex;
9547     }
9548 }
9549 
9550 /* Delayed registration/unregisteration */
9551 LIST_HEAD(net_todo_list);
9552 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9553 
9554 static void net_set_todo(struct net_device *dev)
9555 {
9556     list_add_tail(&dev->todo_list, &net_todo_list);
9557     atomic_inc(&dev_net(dev)->dev_unreg_count);
9558 }
9559 
9560 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9561     struct net_device *upper, netdev_features_t features)
9562 {
9563     netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9564     netdev_features_t feature;
9565     int feature_bit;
9566 
9567     for_each_netdev_feature(upper_disables, feature_bit) {
9568         feature = __NETIF_F_BIT(feature_bit);
9569         if (!(upper->wanted_features & feature)
9570             && (features & feature)) {
9571             netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9572                    &feature, upper->name);
9573             features &= ~feature;
9574         }
9575     }
9576 
9577     return features;
9578 }
9579 
9580 static void netdev_sync_lower_features(struct net_device *upper,
9581     struct net_device *lower, netdev_features_t features)
9582 {
9583     netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9584     netdev_features_t feature;
9585     int feature_bit;
9586 
9587     for_each_netdev_feature(upper_disables, feature_bit) {
9588         feature = __NETIF_F_BIT(feature_bit);
9589         if (!(features & feature) && (lower->features & feature)) {
9590             netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9591                    &feature, lower->name);
9592             lower->wanted_features &= ~feature;
9593             __netdev_update_features(lower);
9594 
9595             if (unlikely(lower->features & feature))
9596                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9597                         &feature, lower->name);
9598             else
9599                 netdev_features_change(lower);
9600         }
9601     }
9602 }
9603 
9604 static netdev_features_t netdev_fix_features(struct net_device *dev,
9605     netdev_features_t features)
9606 {
9607     /* Fix illegal checksum combinations */
9608     if ((features & NETIF_F_HW_CSUM) &&
9609         (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9610         netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9611         features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9612     }
9613 
9614     /* TSO requires that SG is present as well. */
9615     if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9616         netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9617         features &= ~NETIF_F_ALL_TSO;
9618     }
9619 
9620     if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9621                     !(features & NETIF_F_IP_CSUM)) {
9622         netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9623         features &= ~NETIF_F_TSO;
9624         features &= ~NETIF_F_TSO_ECN;
9625     }
9626 
9627     if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9628                      !(features & NETIF_F_IPV6_CSUM)) {
9629         netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9630         features &= ~NETIF_F_TSO6;
9631     }
9632 
9633     /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9634     if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9635         features &= ~NETIF_F_TSO_MANGLEID;
9636 
9637     /* TSO ECN requires that TSO is present as well. */
9638     if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9639         features &= ~NETIF_F_TSO_ECN;
9640 
9641     /* Software GSO depends on SG. */
9642     if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9643         netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9644         features &= ~NETIF_F_GSO;
9645     }
9646 
9647     /* GSO partial features require GSO partial be set */
9648     if ((features & dev->gso_partial_features) &&
9649         !(features & NETIF_F_GSO_PARTIAL)) {
9650         netdev_dbg(dev,
9651                "Dropping partially supported GSO features since no GSO partial.\n");
9652         features &= ~dev->gso_partial_features;
9653     }
9654 
9655     if (!(features & NETIF_F_RXCSUM)) {
9656         /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9657          * successfully merged by hardware must also have the
9658          * checksum verified by hardware.  If the user does not
9659          * want to enable RXCSUM, logically, we should disable GRO_HW.
9660          */
9661         if (features & NETIF_F_GRO_HW) {
9662             netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9663             features &= ~NETIF_F_GRO_HW;
9664         }
9665     }
9666 
9667     /* LRO/HW-GRO features cannot be combined with RX-FCS */
9668     if (features & NETIF_F_RXFCS) {
9669         if (features & NETIF_F_LRO) {
9670             netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9671             features &= ~NETIF_F_LRO;
9672         }
9673 
9674         if (features & NETIF_F_GRO_HW) {
9675             netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9676             features &= ~NETIF_F_GRO_HW;
9677         }
9678     }
9679 
9680     if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9681         netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9682         features &= ~NETIF_F_LRO;
9683     }
9684 
9685     if (features & NETIF_F_HW_TLS_TX) {
9686         bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9687             (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9688         bool hw_csum = features & NETIF_F_HW_CSUM;
9689 
9690         if (!ip_csum && !hw_csum) {
9691             netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9692             features &= ~NETIF_F_HW_TLS_TX;
9693         }
9694     }
9695 
9696     if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9697         netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9698         features &= ~NETIF_F_HW_TLS_RX;
9699     }
9700 
9701     return features;
9702 }
9703 
9704 int __netdev_update_features(struct net_device *dev)
9705 {
9706     struct net_device *upper, *lower;
9707     netdev_features_t features;
9708     struct list_head *iter;
9709     int err = -1;
9710 
9711     ASSERT_RTNL();
9712 
9713     features = netdev_get_wanted_features(dev);
9714 
9715     if (dev->netdev_ops->ndo_fix_features)
9716         features = dev->netdev_ops->ndo_fix_features(dev, features);
9717 
9718     /* driver might be less strict about feature dependencies */
9719     features = netdev_fix_features(dev, features);
9720 
9721     /* some features can't be enabled if they're off on an upper device */
9722     netdev_for_each_upper_dev_rcu(dev, upper, iter)
9723         features = netdev_sync_upper_features(dev, upper, features);
9724 
9725     if (dev->features == features)
9726         goto sync_lower;
9727 
9728     netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9729         &dev->features, &features);
9730 
9731     if (dev->netdev_ops->ndo_set_features)
9732         err = dev->netdev_ops->ndo_set_features(dev, features);
9733     else
9734         err = 0;
9735 
9736     if (unlikely(err < 0)) {
9737         netdev_err(dev,
9738             "set_features() failed (%d); wanted %pNF, left %pNF\n",
9739             err, &features, &dev->features);
9740         /* return non-0 since some features might have changed and
9741          * it's better to fire a spurious notification than miss it
9742          */
9743         return -1;
9744     }
9745 
9746 sync_lower:
9747     /* some features must be disabled on lower devices when disabled
9748      * on an upper device (think: bonding master or bridge)
9749      */
9750     netdev_for_each_lower_dev(dev, lower, iter)
9751         netdev_sync_lower_features(dev, lower, features);
9752 
9753     if (!err) {
9754         netdev_features_t diff = features ^ dev->features;
9755 
9756         if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9757             /* udp_tunnel_{get,drop}_rx_info both need
9758              * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9759              * device, or they won't do anything.
9760              * Thus we need to update dev->features
9761              * *before* calling udp_tunnel_get_rx_info,
9762              * but *after* calling udp_tunnel_drop_rx_info.
9763              */
9764             if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9765                 dev->features = features;
9766                 udp_tunnel_get_rx_info(dev);
9767             } else {
9768                 udp_tunnel_drop_rx_info(dev);
9769             }
9770         }
9771 
9772         if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9773             if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9774                 dev->features = features;
9775                 err |= vlan_get_rx_ctag_filter_info(dev);
9776             } else {
9777                 vlan_drop_rx_ctag_filter_info(dev);
9778             }
9779         }
9780 
9781         if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9782             if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9783                 dev->features = features;
9784                 err |= vlan_get_rx_stag_filter_info(dev);
9785             } else {
9786                 vlan_drop_rx_stag_filter_info(dev);
9787             }
9788         }
9789 
9790         dev->features = features;
9791     }
9792 
9793     return err < 0 ? 0 : 1;
9794 }
9795 
9796 /**
9797  *  netdev_update_features - recalculate device features
9798  *  @dev: the device to check
9799  *
9800  *  Recalculate dev->features set and send notifications if it
9801  *  has changed. Should be called after driver or hardware dependent
9802  *  conditions might have changed that influence the features.
9803  */
9804 void netdev_update_features(struct net_device *dev)
9805 {
9806     if (__netdev_update_features(dev))
9807         netdev_features_change(dev);
9808 }
9809 EXPORT_SYMBOL(netdev_update_features);
9810 
9811 /**
9812  *  netdev_change_features - recalculate device features
9813  *  @dev: the device to check
9814  *
9815  *  Recalculate dev->features set and send notifications even
9816  *  if they have not changed. Should be called instead of
9817  *  netdev_update_features() if also dev->vlan_features might
9818  *  have changed to allow the changes to be propagated to stacked
9819  *  VLAN devices.
9820  */
9821 void netdev_change_features(struct net_device *dev)
9822 {
9823     __netdev_update_features(dev);
9824     netdev_features_change(dev);
9825 }
9826 EXPORT_SYMBOL(netdev_change_features);
9827 
9828 /**
9829  *  netif_stacked_transfer_operstate -  transfer operstate
9830  *  @rootdev: the root or lower level device to transfer state from
9831  *  @dev: the device to transfer operstate to
9832  *
9833  *  Transfer operational state from root to device. This is normally
9834  *  called when a stacking relationship exists between the root
9835  *  device and the device(a leaf device).
9836  */
9837 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9838                     struct net_device *dev)
9839 {
9840     if (rootdev->operstate == IF_OPER_DORMANT)
9841         netif_dormant_on(dev);
9842     else
9843         netif_dormant_off(dev);
9844 
9845     if (rootdev->operstate == IF_OPER_TESTING)
9846         netif_testing_on(dev);
9847     else
9848         netif_testing_off(dev);
9849 
9850     if (netif_carrier_ok(rootdev))
9851         netif_carrier_on(dev);
9852     else
9853         netif_carrier_off(dev);
9854 }
9855 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9856 
9857 static int netif_alloc_rx_queues(struct net_device *dev)
9858 {
9859     unsigned int i, count = dev->num_rx_queues;
9860     struct netdev_rx_queue *rx;
9861     size_t sz = count * sizeof(*rx);
9862     int err = 0;
9863 
9864     BUG_ON(count < 1);
9865 
9866     rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9867     if (!rx)
9868         return -ENOMEM;
9869 
9870     dev->_rx = rx;
9871 
9872     for (i = 0; i < count; i++) {
9873         rx[i].dev = dev;
9874 
9875         /* XDP RX-queue setup */
9876         err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9877         if (err < 0)
9878             goto err_rxq_info;
9879     }
9880     return 0;
9881 
9882 err_rxq_info:
9883     /* Rollback successful reg's and free other resources */
9884     while (i--)
9885         xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9886     kvfree(dev->_rx);
9887     dev->_rx = NULL;
9888     return err;
9889 }
9890 
9891 static void netif_free_rx_queues(struct net_device *dev)
9892 {
9893     unsigned int i, count = dev->num_rx_queues;
9894 
9895     /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9896     if (!dev->_rx)
9897         return;
9898 
9899     for (i = 0; i < count; i++)
9900         xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9901 
9902     kvfree(dev->_rx);
9903 }
9904 
9905 static void netdev_init_one_queue(struct net_device *dev,
9906                   struct netdev_queue *queue, void *_unused)
9907 {
9908     /* Initialize queue lock */
9909     spin_lock_init(&queue->_xmit_lock);
9910     netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9911     queue->xmit_lock_owner = -1;
9912     netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9913     queue->dev = dev;
9914 #ifdef CONFIG_BQL
9915     dql_init(&queue->dql, HZ);
9916 #endif
9917 }
9918 
9919 static void netif_free_tx_queues(struct net_device *dev)
9920 {
9921     kvfree(dev->_tx);
9922 }
9923 
9924 static int netif_alloc_netdev_queues(struct net_device *dev)
9925 {
9926     unsigned int count = dev->num_tx_queues;
9927     struct netdev_queue *tx;
9928     size_t sz = count * sizeof(*tx);
9929 
9930     if (count < 1 || count > 0xffff)
9931         return -EINVAL;
9932 
9933     tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9934     if (!tx)
9935         return -ENOMEM;
9936 
9937     dev->_tx = tx;
9938 
9939     netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9940     spin_lock_init(&dev->tx_global_lock);
9941 
9942     return 0;
9943 }
9944 
9945 void netif_tx_stop_all_queues(struct net_device *dev)
9946 {
9947     unsigned int i;
9948 
9949     for (i = 0; i < dev->num_tx_queues; i++) {
9950         struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9951 
9952         netif_tx_stop_queue(txq);
9953     }
9954 }
9955 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9956 
9957 /**
9958  * register_netdevice() - register a network device
9959  * @dev: device to register
9960  *
9961  * Take a prepared network device structure and make it externally accessible.
9962  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9963  * Callers must hold the rtnl lock - you may want register_netdev()
9964  * instead of this.
9965  */
9966 int register_netdevice(struct net_device *dev)
9967 {
9968     int ret;
9969     struct net *net = dev_net(dev);
9970 
9971     BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9972              NETDEV_FEATURE_COUNT);
9973     BUG_ON(dev_boot_phase);
9974     ASSERT_RTNL();
9975 
9976     might_sleep();
9977 
9978     /* When net_device's are persistent, this will be fatal. */
9979     BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9980     BUG_ON(!net);
9981 
9982     ret = ethtool_check_ops(dev->ethtool_ops);
9983     if (ret)
9984         return ret;
9985 
9986     spin_lock_init(&dev->addr_list_lock);
9987     netdev_set_addr_lockdep_class(dev);
9988 
9989     ret = dev_get_valid_name(net, dev, dev->name);
9990     if (ret < 0)
9991         goto out;
9992 
9993     ret = -ENOMEM;
9994     dev->name_node = netdev_name_node_head_alloc(dev);
9995     if (!dev->name_node)
9996         goto out;
9997 
9998     /* Init, if this function is available */
9999     if (dev->netdev_ops->ndo_init) {
10000         ret = dev->netdev_ops->ndo_init(dev);
10001         if (ret) {
10002             if (ret > 0)
10003                 ret = -EIO;
10004             goto err_free_name;
10005         }
10006     }
10007 
10008     if (((dev->hw_features | dev->features) &
10009          NETIF_F_HW_VLAN_CTAG_FILTER) &&
10010         (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10011          !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10012         netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10013         ret = -EINVAL;
10014         goto err_uninit;
10015     }
10016 
10017     ret = -EBUSY;
10018     if (!dev->ifindex)
10019         dev->ifindex = dev_new_index(net);
10020     else if (__dev_get_by_index(net, dev->ifindex))
10021         goto err_uninit;
10022 
10023     /* Transfer changeable features to wanted_features and enable
10024      * software offloads (GSO and GRO).
10025      */
10026     dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10027     dev->features |= NETIF_F_SOFT_FEATURES;
10028 
10029     if (dev->udp_tunnel_nic_info) {
10030         dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10031         dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10032     }
10033 
10034     dev->wanted_features = dev->features & dev->hw_features;
10035 
10036     if (!(dev->flags & IFF_LOOPBACK))
10037         dev->hw_features |= NETIF_F_NOCACHE_COPY;
10038 
10039     /* If IPv4 TCP segmentation offload is supported we should also
10040      * allow the device to enable segmenting the frame with the option
10041      * of ignoring a static IP ID value.  This doesn't enable the
10042      * feature itself but allows the user to enable it later.
10043      */
10044     if (dev->hw_features & NETIF_F_TSO)
10045         dev->hw_features |= NETIF_F_TSO_MANGLEID;
10046     if (dev->vlan_features & NETIF_F_TSO)
10047         dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10048     if (dev->mpls_features & NETIF_F_TSO)
10049         dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10050     if (dev->hw_enc_features & NETIF_F_TSO)
10051         dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10052 
10053     /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10054      */
10055     dev->vlan_features |= NETIF_F_HIGHDMA;
10056 
10057     /* Make NETIF_F_SG inheritable to tunnel devices.
10058      */
10059     dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10060 
10061     /* Make NETIF_F_SG inheritable to MPLS.
10062      */
10063     dev->mpls_features |= NETIF_F_SG;
10064 
10065     ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10066     ret = notifier_to_errno(ret);
10067     if (ret)
10068         goto err_uninit;
10069 
10070     ret = netdev_register_kobject(dev);
10071     write_lock(&dev_base_lock);
10072     dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10073     write_unlock(&dev_base_lock);
10074     if (ret)
10075         goto err_uninit;
10076 
10077     __netdev_update_features(dev);
10078 
10079     /*
10080      *  Default initial state at registry is that the
10081      *  device is present.
10082      */
10083 
10084     set_bit(__LINK_STATE_PRESENT, &dev->state);
10085 
10086     linkwatch_init_dev(dev);
10087 
10088     dev_init_scheduler(dev);
10089 
10090     netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10091     list_netdevice(dev);
10092 
10093     add_device_randomness(dev->dev_addr, dev->addr_len);
10094 
10095     /* If the device has permanent device address, driver should
10096      * set dev_addr and also addr_assign_type should be set to
10097      * NET_ADDR_PERM (default value).
10098      */
10099     if (dev->addr_assign_type == NET_ADDR_PERM)
10100         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10101 
10102     /* Notify protocols, that a new device appeared. */
10103     ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10104     ret = notifier_to_errno(ret);
10105     if (ret) {
10106         /* Expect explicit free_netdev() on failure */
10107         dev->needs_free_netdev = false;
10108         unregister_netdevice_queue(dev, NULL);
10109         goto out;
10110     }
10111     /*
10112      *  Prevent userspace races by waiting until the network
10113      *  device is fully setup before sending notifications.
10114      */
10115     if (!dev->rtnl_link_ops ||
10116         dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10117         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10118 
10119 out:
10120     return ret;
10121 
10122 err_uninit:
10123     if (dev->netdev_ops->ndo_uninit)
10124         dev->netdev_ops->ndo_uninit(dev);
10125     if (dev->priv_destructor)
10126         dev->priv_destructor(dev);
10127 err_free_name:
10128     netdev_name_node_free(dev->name_node);
10129     goto out;
10130 }
10131 EXPORT_SYMBOL(register_netdevice);
10132 
10133 /**
10134  *  init_dummy_netdev   - init a dummy network device for NAPI
10135  *  @dev: device to init
10136  *
10137  *  This takes a network device structure and initialize the minimum
10138  *  amount of fields so it can be used to schedule NAPI polls without
10139  *  registering a full blown interface. This is to be used by drivers
10140  *  that need to tie several hardware interfaces to a single NAPI
10141  *  poll scheduler due to HW limitations.
10142  */
10143 int init_dummy_netdev(struct net_device *dev)
10144 {
10145     /* Clear everything. Note we don't initialize spinlocks
10146      * are they aren't supposed to be taken by any of the
10147      * NAPI code and this dummy netdev is supposed to be
10148      * only ever used for NAPI polls
10149      */
10150     memset(dev, 0, sizeof(struct net_device));
10151 
10152     /* make sure we BUG if trying to hit standard
10153      * register/unregister code path
10154      */
10155     dev->reg_state = NETREG_DUMMY;
10156 
10157     /* NAPI wants this */
10158     INIT_LIST_HEAD(&dev->napi_list);
10159 
10160     /* a dummy interface is started by default */
10161     set_bit(__LINK_STATE_PRESENT, &dev->state);
10162     set_bit(__LINK_STATE_START, &dev->state);
10163 
10164     /* napi_busy_loop stats accounting wants this */
10165     dev_net_set(dev, &init_net);
10166 
10167     /* Note : We dont allocate pcpu_refcnt for dummy devices,
10168      * because users of this 'device' dont need to change
10169      * its refcount.
10170      */
10171 
10172     return 0;
10173 }
10174 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10175 
10176 
10177 /**
10178  *  register_netdev - register a network device
10179  *  @dev: device to register
10180  *
10181  *  Take a completed network device structure and add it to the kernel
10182  *  interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10183  *  chain. 0 is returned on success. A negative errno code is returned
10184  *  on a failure to set up the device, or if the name is a duplicate.
10185  *
10186  *  This is a wrapper around register_netdevice that takes the rtnl semaphore
10187  *  and expands the device name if you passed a format string to
10188  *  alloc_netdev.
10189  */
10190 int register_netdev(struct net_device *dev)
10191 {
10192     int err;
10193 
10194     if (rtnl_lock_killable())
10195         return -EINTR;
10196     err = register_netdevice(dev);
10197     rtnl_unlock();
10198     return err;
10199 }
10200 EXPORT_SYMBOL(register_netdev);
10201 
10202 int netdev_refcnt_read(const struct net_device *dev)
10203 {
10204 #ifdef CONFIG_PCPU_DEV_REFCNT
10205     int i, refcnt = 0;
10206 
10207     for_each_possible_cpu(i)
10208         refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10209     return refcnt;
10210 #else
10211     return refcount_read(&dev->dev_refcnt);
10212 #endif
10213 }
10214 EXPORT_SYMBOL(netdev_refcnt_read);
10215 
10216 int netdev_unregister_timeout_secs __read_mostly = 10;
10217 
10218 #define WAIT_REFS_MIN_MSECS 1
10219 #define WAIT_REFS_MAX_MSECS 250
10220 /**
10221  * netdev_wait_allrefs_any - wait until all references are gone.
10222  * @list: list of net_devices to wait on
10223  *
10224  * This is called when unregistering network devices.
10225  *
10226  * Any protocol or device that holds a reference should register
10227  * for netdevice notification, and cleanup and put back the
10228  * reference if they receive an UNREGISTER event.
10229  * We can get stuck here if buggy protocols don't correctly
10230  * call dev_put.
10231  */
10232 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10233 {
10234     unsigned long rebroadcast_time, warning_time;
10235     struct net_device *dev;
10236     int wait = 0;
10237 
10238     rebroadcast_time = warning_time = jiffies;
10239 
10240     list_for_each_entry(dev, list, todo_list)
10241         if (netdev_refcnt_read(dev) == 1)
10242             return dev;
10243 
10244     while (true) {
10245         if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10246             rtnl_lock();
10247 
10248             /* Rebroadcast unregister notification */
10249             list_for_each_entry(dev, list, todo_list)
10250                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10251 
10252             __rtnl_unlock();
10253             rcu_barrier();
10254             rtnl_lock();
10255 
10256             list_for_each_entry(dev, list, todo_list)
10257                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10258                          &dev->state)) {
10259                     /* We must not have linkwatch events
10260                      * pending on unregister. If this
10261                      * happens, we simply run the queue
10262                      * unscheduled, resulting in a noop
10263                      * for this device.
10264                      */
10265                     linkwatch_run_queue();
10266                     break;
10267                 }
10268 
10269             __rtnl_unlock();
10270 
10271             rebroadcast_time = jiffies;
10272         }
10273 
10274         if (!wait) {
10275             rcu_barrier();
10276             wait = WAIT_REFS_MIN_MSECS;
10277         } else {
10278             msleep(wait);
10279             wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10280         }
10281 
10282         list_for_each_entry(dev, list, todo_list)
10283             if (netdev_refcnt_read(dev) == 1)
10284                 return dev;
10285 
10286         if (time_after(jiffies, warning_time +
10287                    READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10288             list_for_each_entry(dev, list, todo_list) {
10289                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10290                      dev->name, netdev_refcnt_read(dev));
10291                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10292             }
10293 
10294             warning_time = jiffies;
10295         }
10296     }
10297 }
10298 
10299 /* The sequence is:
10300  *
10301  *  rtnl_lock();
10302  *  ...
10303  *  register_netdevice(x1);
10304  *  register_netdevice(x2);
10305  *  ...
10306  *  unregister_netdevice(y1);
10307  *  unregister_netdevice(y2);
10308  *      ...
10309  *  rtnl_unlock();
10310  *  free_netdev(y1);
10311  *  free_netdev(y2);
10312  *
10313  * We are invoked by rtnl_unlock().
10314  * This allows us to deal with problems:
10315  * 1) We can delete sysfs objects which invoke hotplug
10316  *    without deadlocking with linkwatch via keventd.
10317  * 2) Since we run with the RTNL semaphore not held, we can sleep
10318  *    safely in order to wait for the netdev refcnt to drop to zero.
10319  *
10320  * We must not return until all unregister events added during
10321  * the interval the lock was held have been completed.
10322  */
10323 void netdev_run_todo(void)
10324 {
10325     struct net_device *dev, *tmp;
10326     struct list_head list;
10327 #ifdef CONFIG_LOCKDEP
10328     struct list_head unlink_list;
10329 
10330     list_replace_init(&net_unlink_list, &unlink_list);
10331 
10332     while (!list_empty(&unlink_list)) {
10333         struct net_device *dev = list_first_entry(&unlink_list,
10334                               struct net_device,
10335                               unlink_list);
10336         list_del_init(&dev->unlink_list);
10337         dev->nested_level = dev->lower_level - 1;
10338     }
10339 #endif
10340 
10341     /* Snapshot list, allow later requests */
10342     list_replace_init(&net_todo_list, &list);
10343 
10344     __rtnl_unlock();
10345 
10346     /* Wait for rcu callbacks to finish before next phase */
10347     if (!list_empty(&list))
10348         rcu_barrier();
10349 
10350     list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10351         if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10352             netdev_WARN(dev, "run_todo but not unregistering\n");
10353             list_del(&dev->todo_list);
10354             continue;
10355         }
10356 
10357         write_lock(&dev_base_lock);
10358         dev->reg_state = NETREG_UNREGISTERED;
10359         write_unlock(&dev_base_lock);
10360         linkwatch_forget_dev(dev);
10361     }
10362 
10363     while (!list_empty(&list)) {
10364         dev = netdev_wait_allrefs_any(&list);
10365         list_del(&dev->todo_list);
10366 
10367         /* paranoia */
10368         BUG_ON(netdev_refcnt_read(dev) != 1);
10369         BUG_ON(!list_empty(&dev->ptype_all));
10370         BUG_ON(!list_empty(&dev->ptype_specific));
10371         WARN_ON(rcu_access_pointer(dev->ip_ptr));
10372         WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10373 #if IS_ENABLED(CONFIG_DECNET)
10374         WARN_ON(dev->dn_ptr);
10375 #endif
10376         if (dev->priv_destructor)
10377             dev->priv_destructor(dev);
10378         if (dev->needs_free_netdev)
10379             free_netdev(dev);
10380 
10381         if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10382             wake_up(&netdev_unregistering_wq);
10383 
10384         /* Free network device */
10385         kobject_put(&dev->dev.kobj);
10386     }
10387 }
10388 
10389 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10390  * all the same fields in the same order as net_device_stats, with only
10391  * the type differing, but rtnl_link_stats64 may have additional fields
10392  * at the end for newer counters.
10393  */
10394 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10395                  const struct net_device_stats *netdev_stats)
10396 {
10397 #if BITS_PER_LONG == 64
10398     BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10399     memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10400     /* zero out counters that only exist in rtnl_link_stats64 */
10401     memset((char *)stats64 + sizeof(*netdev_stats), 0,
10402            sizeof(*stats64) - sizeof(*netdev_stats));
10403 #else
10404     size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10405     const unsigned long *src = (const unsigned long *)netdev_stats;
10406     u64 *dst = (u64 *)stats64;
10407 
10408     BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10409     for (i = 0; i < n; i++)
10410         dst[i] = src[i];
10411     /* zero out counters that only exist in rtnl_link_stats64 */
10412     memset((char *)stats64 + n * sizeof(u64), 0,
10413            sizeof(*stats64) - n * sizeof(u64));
10414 #endif
10415 }
10416 EXPORT_SYMBOL(netdev_stats_to_stats64);
10417 
10418 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10419 {
10420     struct net_device_core_stats __percpu *p;
10421 
10422     p = alloc_percpu_gfp(struct net_device_core_stats,
10423                  GFP_ATOMIC | __GFP_NOWARN);
10424 
10425     if (p && cmpxchg(&dev->core_stats, NULL, p))
10426         free_percpu(p);
10427 
10428     /* This READ_ONCE() pairs with the cmpxchg() above */
10429     return READ_ONCE(dev->core_stats);
10430 }
10431 EXPORT_SYMBOL(netdev_core_stats_alloc);
10432 
10433 /**
10434  *  dev_get_stats   - get network device statistics
10435  *  @dev: device to get statistics from
10436  *  @storage: place to store stats
10437  *
10438  *  Get network statistics from device. Return @storage.
10439  *  The device driver may provide its own method by setting
10440  *  dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10441  *  otherwise the internal statistics structure is used.
10442  */
10443 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10444                     struct rtnl_link_stats64 *storage)
10445 {
10446     const struct net_device_ops *ops = dev->netdev_ops;
10447     const struct net_device_core_stats __percpu *p;
10448 
10449     if (ops->ndo_get_stats64) {
10450         memset(storage, 0, sizeof(*storage));
10451         ops->ndo_get_stats64(dev, storage);
10452     } else if (ops->ndo_get_stats) {
10453         netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10454     } else {
10455         netdev_stats_to_stats64(storage, &dev->stats);
10456     }
10457 
10458     /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10459     p = READ_ONCE(dev->core_stats);
10460     if (p) {
10461         const struct net_device_core_stats *core_stats;
10462         int i;
10463 
10464         for_each_possible_cpu(i) {
10465             core_stats = per_cpu_ptr(p, i);
10466             storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10467             storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10468             storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10469             storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10470         }
10471     }
10472     return storage;
10473 }
10474 EXPORT_SYMBOL(dev_get_stats);
10475 
10476 /**
10477  *  dev_fetch_sw_netstats - get per-cpu network device statistics
10478  *  @s: place to store stats
10479  *  @netstats: per-cpu network stats to read from
10480  *
10481  *  Read per-cpu network statistics and populate the related fields in @s.
10482  */
10483 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10484                const struct pcpu_sw_netstats __percpu *netstats)
10485 {
10486     int cpu;
10487 
10488     for_each_possible_cpu(cpu) {
10489         u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10490         const struct pcpu_sw_netstats *stats;
10491         unsigned int start;
10492 
10493         stats = per_cpu_ptr(netstats, cpu);
10494         do {
10495             start = u64_stats_fetch_begin_irq(&stats->syncp);
10496             rx_packets = u64_stats_read(&stats->rx_packets);
10497             rx_bytes   = u64_stats_read(&stats->rx_bytes);
10498             tx_packets = u64_stats_read(&stats->tx_packets);
10499             tx_bytes   = u64_stats_read(&stats->tx_bytes);
10500         } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10501 
10502         s->rx_packets += rx_packets;
10503         s->rx_bytes   += rx_bytes;
10504         s->tx_packets += tx_packets;
10505         s->tx_bytes   += tx_bytes;
10506     }
10507 }
10508 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10509 
10510 /**
10511  *  dev_get_tstats64 - ndo_get_stats64 implementation
10512  *  @dev: device to get statistics from
10513  *  @s: place to store stats
10514  *
10515  *  Populate @s from dev->stats and dev->tstats. Can be used as
10516  *  ndo_get_stats64() callback.
10517  */
10518 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10519 {
10520     netdev_stats_to_stats64(s, &dev->stats);
10521     dev_fetch_sw_netstats(s, dev->tstats);
10522 }
10523 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10524 
10525 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10526 {
10527     struct netdev_queue *queue = dev_ingress_queue(dev);
10528 
10529 #ifdef CONFIG_NET_CLS_ACT
10530     if (queue)
10531         return queue;
10532     queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10533     if (!queue)
10534         return NULL;
10535     netdev_init_one_queue(dev, queue, NULL);
10536     RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10537     queue->qdisc_sleeping = &noop_qdisc;
10538     rcu_assign_pointer(dev->ingress_queue, queue);
10539 #endif
10540     return queue;
10541 }
10542 
10543 static const struct ethtool_ops default_ethtool_ops;
10544 
10545 void netdev_set_default_ethtool_ops(struct net_device *dev,
10546                     const struct ethtool_ops *ops)
10547 {
10548     if (dev->ethtool_ops == &default_ethtool_ops)
10549         dev->ethtool_ops = ops;
10550 }
10551 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10552 
10553 void netdev_freemem(struct net_device *dev)
10554 {
10555     char *addr = (char *)dev - dev->padded;
10556 
10557     kvfree(addr);
10558 }
10559 
10560 /**
10561  * alloc_netdev_mqs - allocate network device
10562  * @sizeof_priv: size of private data to allocate space for
10563  * @name: device name format string
10564  * @name_assign_type: origin of device name
10565  * @setup: callback to initialize device
10566  * @txqs: the number of TX subqueues to allocate
10567  * @rxqs: the number of RX subqueues to allocate
10568  *
10569  * Allocates a struct net_device with private data area for driver use
10570  * and performs basic initialization.  Also allocates subqueue structs
10571  * for each queue on the device.
10572  */
10573 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10574         unsigned char name_assign_type,
10575         void (*setup)(struct net_device *),
10576         unsigned int txqs, unsigned int rxqs)
10577 {
10578     struct net_device *dev;
10579     unsigned int alloc_size;
10580     struct net_device *p;
10581 
10582     BUG_ON(strlen(name) >= sizeof(dev->name));
10583 
10584     if (txqs < 1) {
10585         pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10586         return NULL;
10587     }
10588 
10589     if (rxqs < 1) {
10590         pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10591         return NULL;
10592     }
10593 
10594     alloc_size = sizeof(struct net_device);
10595     if (sizeof_priv) {
10596         /* ensure 32-byte alignment of private area */
10597         alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10598         alloc_size += sizeof_priv;
10599     }
10600     /* ensure 32-byte alignment of whole construct */
10601     alloc_size += NETDEV_ALIGN - 1;
10602 
10603     p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10604     if (!p)
10605         return NULL;
10606 
10607     dev = PTR_ALIGN(p, NETDEV_ALIGN);
10608     dev->padded = (char *)dev - (char *)p;
10609 
10610     ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10611 #ifdef CONFIG_PCPU_DEV_REFCNT
10612     dev->pcpu_refcnt = alloc_percpu(int);
10613     if (!dev->pcpu_refcnt)
10614         goto free_dev;
10615     __dev_hold(dev);
10616 #else
10617     refcount_set(&dev->dev_refcnt, 1);
10618 #endif
10619 
10620     if (dev_addr_init(dev))
10621         goto free_pcpu;
10622 
10623     dev_mc_init(dev);
10624     dev_uc_init(dev);
10625 
10626     dev_net_set(dev, &init_net);
10627 
10628     dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10629     dev->gso_max_segs = GSO_MAX_SEGS;
10630     dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10631     dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10632     dev->tso_max_segs = TSO_MAX_SEGS;
10633     dev->upper_level = 1;
10634     dev->lower_level = 1;
10635 #ifdef CONFIG_LOCKDEP
10636     dev->nested_level = 0;
10637     INIT_LIST_HEAD(&dev->unlink_list);
10638 #endif
10639 
10640     INIT_LIST_HEAD(&dev->napi_list);
10641     INIT_LIST_HEAD(&dev->unreg_list);
10642     INIT_LIST_HEAD(&dev->close_list);
10643     INIT_LIST_HEAD(&dev->link_watch_list);
10644     INIT_LIST_HEAD(&dev->adj_list.upper);
10645     INIT_LIST_HEAD(&dev->adj_list.lower);
10646     INIT_LIST_HEAD(&dev->ptype_all);
10647     INIT_LIST_HEAD(&dev->ptype_specific);
10648     INIT_LIST_HEAD(&dev->net_notifier_list);
10649 #ifdef CONFIG_NET_SCHED
10650     hash_init(dev->qdisc_hash);
10651 #endif
10652     dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10653     setup(dev);
10654 
10655     if (!dev->tx_queue_len) {
10656         dev->priv_flags |= IFF_NO_QUEUE;
10657         dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10658     }
10659 
10660     dev->num_tx_queues = txqs;
10661     dev->real_num_tx_queues = txqs;
10662     if (netif_alloc_netdev_queues(dev))
10663         goto free_all;
10664 
10665     dev->num_rx_queues = rxqs;
10666     dev->real_num_rx_queues = rxqs;
10667     if (netif_alloc_rx_queues(dev))
10668         goto free_all;
10669 
10670     strcpy(dev->name, name);
10671     dev->name_assign_type = name_assign_type;
10672     dev->group = INIT_NETDEV_GROUP;
10673     if (!dev->ethtool_ops)
10674         dev->ethtool_ops = &default_ethtool_ops;
10675 
10676     nf_hook_netdev_init(dev);
10677 
10678     return dev;
10679 
10680 free_all:
10681     free_netdev(dev);
10682     return NULL;
10683 
10684 free_pcpu:
10685 #ifdef CONFIG_PCPU_DEV_REFCNT
10686     free_percpu(dev->pcpu_refcnt);
10687 free_dev:
10688 #endif
10689     netdev_freemem(dev);
10690     return NULL;
10691 }
10692 EXPORT_SYMBOL(alloc_netdev_mqs);
10693 
10694 /**
10695  * free_netdev - free network device
10696  * @dev: device
10697  *
10698  * This function does the last stage of destroying an allocated device
10699  * interface. The reference to the device object is released. If this
10700  * is the last reference then it will be freed.Must be called in process
10701  * context.
10702  */
10703 void free_netdev(struct net_device *dev)
10704 {
10705     struct napi_struct *p, *n;
10706 
10707     might_sleep();
10708 
10709     /* When called immediately after register_netdevice() failed the unwind
10710      * handling may still be dismantling the device. Handle that case by
10711      * deferring the free.
10712      */
10713     if (dev->reg_state == NETREG_UNREGISTERING) {
10714         ASSERT_RTNL();
10715         dev->needs_free_netdev = true;
10716         return;
10717     }
10718 
10719     netif_free_tx_queues(dev);
10720     netif_free_rx_queues(dev);
10721 
10722     kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10723 
10724     /* Flush device addresses */
10725     dev_addr_flush(dev);
10726 
10727     list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10728         netif_napi_del(p);
10729 
10730     ref_tracker_dir_exit(&dev->refcnt_tracker);
10731 #ifdef CONFIG_PCPU_DEV_REFCNT
10732     free_percpu(dev->pcpu_refcnt);
10733     dev->pcpu_refcnt = NULL;
10734 #endif
10735     free_percpu(dev->core_stats);
10736     dev->core_stats = NULL;
10737     free_percpu(dev->xdp_bulkq);
10738     dev->xdp_bulkq = NULL;
10739 
10740     /*  Compatibility with error handling in drivers */
10741     if (dev->reg_state == NETREG_UNINITIALIZED) {
10742         netdev_freemem(dev);
10743         return;
10744     }
10745 
10746     BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10747     dev->reg_state = NETREG_RELEASED;
10748 
10749     /* will free via device release */
10750     put_device(&dev->dev);
10751 }
10752 EXPORT_SYMBOL(free_netdev);
10753 
10754 /**
10755  *  synchronize_net -  Synchronize with packet receive processing
10756  *
10757  *  Wait for packets currently being received to be done.
10758  *  Does not block later packets from starting.
10759  */
10760 void synchronize_net(void)
10761 {
10762     might_sleep();
10763     if (rtnl_is_locked())
10764         synchronize_rcu_expedited();
10765     else
10766         synchronize_rcu();
10767 }
10768 EXPORT_SYMBOL(synchronize_net);
10769 
10770 /**
10771  *  unregister_netdevice_queue - remove device from the kernel
10772  *  @dev: device
10773  *  @head: list
10774  *
10775  *  This function shuts down a device interface and removes it
10776  *  from the kernel tables.
10777  *  If head not NULL, device is queued to be unregistered later.
10778  *
10779  *  Callers must hold the rtnl semaphore.  You may want
10780  *  unregister_netdev() instead of this.
10781  */
10782 
10783 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10784 {
10785     ASSERT_RTNL();
10786 
10787     if (head) {
10788         list_move_tail(&dev->unreg_list, head);
10789     } else {
10790         LIST_HEAD(single);
10791 
10792         list_add(&dev->unreg_list, &single);
10793         unregister_netdevice_many(&single);
10794     }
10795 }
10796 EXPORT_SYMBOL(unregister_netdevice_queue);
10797 
10798 /**
10799  *  unregister_netdevice_many - unregister many devices
10800  *  @head: list of devices
10801  *
10802  *  Note: As most callers use a stack allocated list_head,
10803  *  we force a list_del() to make sure stack wont be corrupted later.
10804  */
10805 void unregister_netdevice_many(struct list_head *head)
10806 {
10807     struct net_device *dev, *tmp;
10808     LIST_HEAD(close_head);
10809 
10810     BUG_ON(dev_boot_phase);
10811     ASSERT_RTNL();
10812 
10813     if (list_empty(head))
10814         return;
10815 
10816     list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10817         /* Some devices call without registering
10818          * for initialization unwind. Remove those
10819          * devices and proceed with the remaining.
10820          */
10821         if (dev->reg_state == NETREG_UNINITIALIZED) {
10822             pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10823                  dev->name, dev);
10824 
10825             WARN_ON(1);
10826             list_del(&dev->unreg_list);
10827             continue;
10828         }
10829         dev->dismantle = true;
10830         BUG_ON(dev->reg_state != NETREG_REGISTERED);
10831     }
10832 
10833     /* If device is running, close it first. */
10834     list_for_each_entry(dev, head, unreg_list)
10835         list_add_tail(&dev->close_list, &close_head);
10836     dev_close_many(&close_head, true);
10837 
10838     list_for_each_entry(dev, head, unreg_list) {
10839         /* And unlink it from device chain. */
10840         write_lock(&dev_base_lock);
10841         unlist_netdevice(dev, false);
10842         dev->reg_state = NETREG_UNREGISTERING;
10843         write_unlock(&dev_base_lock);
10844     }
10845     flush_all_backlogs();
10846 
10847     synchronize_net();
10848 
10849     list_for_each_entry(dev, head, unreg_list) {
10850         struct sk_buff *skb = NULL;
10851 
10852         /* Shutdown queueing discipline. */
10853         dev_shutdown(dev);
10854 
10855         dev_xdp_uninstall(dev);
10856 
10857         netdev_offload_xstats_disable_all(dev);
10858 
10859         /* Notify protocols, that we are about to destroy
10860          * this device. They should clean all the things.
10861          */
10862         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10863 
10864         if (!dev->rtnl_link_ops ||
10865             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10866             skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10867                              GFP_KERNEL, NULL, 0);
10868 
10869         /*
10870          *  Flush the unicast and multicast chains
10871          */
10872         dev_uc_flush(dev);
10873         dev_mc_flush(dev);
10874 
10875         netdev_name_node_alt_flush(dev);
10876         netdev_name_node_free(dev->name_node);
10877 
10878         if (dev->netdev_ops->ndo_uninit)
10879             dev->netdev_ops->ndo_uninit(dev);
10880 
10881         if (skb)
10882             rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10883 
10884         /* Notifier chain MUST detach us all upper devices. */
10885         WARN_ON(netdev_has_any_upper_dev(dev));
10886         WARN_ON(netdev_has_any_lower_dev(dev));
10887 
10888         /* Remove entries from kobject tree */
10889         netdev_unregister_kobject(dev);
10890 #ifdef CONFIG_XPS
10891         /* Remove XPS queueing entries */
10892         netif_reset_xps_queues_gt(dev, 0);
10893 #endif
10894     }
10895 
10896     synchronize_net();
10897 
10898     list_for_each_entry(dev, head, unreg_list) {
10899         netdev_put(dev, &dev->dev_registered_tracker);
10900         net_set_todo(dev);
10901     }
10902 
10903     list_del(head);
10904 }
10905 EXPORT_SYMBOL(unregister_netdevice_many);
10906 
10907 /**
10908  *  unregister_netdev - remove device from the kernel
10909  *  @dev: device
10910  *
10911  *  This function shuts down a device interface and removes it
10912  *  from the kernel tables.
10913  *
10914  *  This is just a wrapper for unregister_netdevice that takes
10915  *  the rtnl semaphore.  In general you want to use this and not
10916  *  unregister_netdevice.
10917  */
10918 void unregister_netdev(struct net_device *dev)
10919 {
10920     rtnl_lock();
10921     unregister_netdevice(dev);
10922     rtnl_unlock();
10923 }
10924 EXPORT_SYMBOL(unregister_netdev);
10925 
10926 /**
10927  *  __dev_change_net_namespace - move device to different nethost namespace
10928  *  @dev: device
10929  *  @net: network namespace
10930  *  @pat: If not NULL name pattern to try if the current device name
10931  *        is already taken in the destination network namespace.
10932  *  @new_ifindex: If not zero, specifies device index in the target
10933  *                namespace.
10934  *
10935  *  This function shuts down a device interface and moves it
10936  *  to a new network namespace. On success 0 is returned, on
10937  *  a failure a netagive errno code is returned.
10938  *
10939  *  Callers must hold the rtnl semaphore.
10940  */
10941 
10942 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10943                    const char *pat, int new_ifindex)
10944 {
10945     struct net *net_old = dev_net(dev);
10946     int err, new_nsid;
10947 
10948     ASSERT_RTNL();
10949 
10950     /* Don't allow namespace local devices to be moved. */
10951     err = -EINVAL;
10952     if (dev->features & NETIF_F_NETNS_LOCAL)
10953         goto out;
10954 
10955     /* Ensure the device has been registrered */
10956     if (dev->reg_state != NETREG_REGISTERED)
10957         goto out;
10958 
10959     /* Get out if there is nothing todo */
10960     err = 0;
10961     if (net_eq(net_old, net))
10962         goto out;
10963 
10964     /* Pick the destination device name, and ensure
10965      * we can use it in the destination network namespace.
10966      */
10967     err = -EEXIST;
10968     if (netdev_name_in_use(net, dev->name)) {
10969         /* We get here if we can't use the current device name */
10970         if (!pat)
10971             goto out;
10972         err = dev_get_valid_name(net, dev, pat);
10973         if (err < 0)
10974             goto out;
10975     }
10976 
10977     /* Check that new_ifindex isn't used yet. */
10978     err = -EBUSY;
10979     if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10980         goto out;
10981 
10982     /*
10983      * And now a mini version of register_netdevice unregister_netdevice.
10984      */
10985 
10986     /* If device is running close it first. */
10987     dev_close(dev);
10988 
10989     /* And unlink it from device chain */
10990     unlist_netdevice(dev, true);
10991 
10992     synchronize_net();
10993 
10994     /* Shutdown queueing discipline. */
10995     dev_shutdown(dev);
10996 
10997     /* Notify protocols, that we are about to destroy
10998      * this device. They should clean all the things.
10999      *
11000      * Note that dev->reg_state stays at NETREG_REGISTERED.
11001      * This is wanted because this way 8021q and macvlan know
11002      * the device is just moving and can keep their slaves up.
11003      */
11004     call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11005     rcu_barrier();
11006 
11007     new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11008     /* If there is an ifindex conflict assign a new one */
11009     if (!new_ifindex) {
11010         if (__dev_get_by_index(net, dev->ifindex))
11011             new_ifindex = dev_new_index(net);
11012         else
11013             new_ifindex = dev->ifindex;
11014     }
11015 
11016     rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11017                 new_ifindex);
11018 
11019     /*
11020      *  Flush the unicast and multicast chains
11021      */
11022     dev_uc_flush(dev);
11023     dev_mc_flush(dev);
11024 
11025     /* Send a netdev-removed uevent to the old namespace */
11026     kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11027     netdev_adjacent_del_links(dev);
11028 
11029     /* Move per-net netdevice notifiers that are following the netdevice */
11030     move_netdevice_notifiers_dev_net(dev, net);
11031 
11032     /* Actually switch the network namespace */
11033     dev_net_set(dev, net);
11034     dev->ifindex = new_ifindex;
11035 
11036     /* Send a netdev-add uevent to the new namespace */
11037     kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11038     netdev_adjacent_add_links(dev);
11039 
11040     /* Fixup kobjects */
11041     err = device_rename(&dev->dev, dev->name);
11042     WARN_ON(err);
11043 
11044     /* Adapt owner in case owning user namespace of target network
11045      * namespace is different from the original one.
11046      */
11047     err = netdev_change_owner(dev, net_old, net);
11048     WARN_ON(err);
11049 
11050     /* Add the device back in the hashes */
11051     list_netdevice(dev);
11052 
11053     /* Notify protocols, that a new device appeared. */
11054     call_netdevice_notifiers(NETDEV_REGISTER, dev);
11055 
11056     /*
11057      *  Prevent userspace races by waiting until the network
11058      *  device is fully setup before sending notifications.
11059      */
11060     rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11061 
11062     synchronize_net();
11063     err = 0;
11064 out:
11065     return err;
11066 }
11067 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11068 
11069 static int dev_cpu_dead(unsigned int oldcpu)
11070 {
11071     struct sk_buff **list_skb;
11072     struct sk_buff *skb;
11073     unsigned int cpu;
11074     struct softnet_data *sd, *oldsd, *remsd = NULL;
11075 
11076     local_irq_disable();
11077     cpu = smp_processor_id();
11078     sd = &per_cpu(softnet_data, cpu);
11079     oldsd = &per_cpu(softnet_data, oldcpu);
11080 
11081     /* Find end of our completion_queue. */
11082     list_skb = &sd->completion_queue;
11083     while (*list_skb)
11084         list_skb = &(*list_skb)->next;
11085     /* Append completion queue from offline CPU. */
11086     *list_skb = oldsd->completion_queue;
11087     oldsd->completion_queue = NULL;
11088 
11089     /* Append output queue from offline CPU. */
11090     if (oldsd->output_queue) {
11091         *sd->output_queue_tailp = oldsd->output_queue;
11092         sd->output_queue_tailp = oldsd->output_queue_tailp;
11093         oldsd->output_queue = NULL;
11094         oldsd->output_queue_tailp = &oldsd->output_queue;
11095     }
11096     /* Append NAPI poll list from offline CPU, with one exception :
11097      * process_backlog() must be called by cpu owning percpu backlog.
11098      * We properly handle process_queue & input_pkt_queue later.
11099      */
11100     while (!list_empty(&oldsd->poll_list)) {
11101         struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11102                                 struct napi_struct,
11103                                 poll_list);
11104 
11105         list_del_init(&napi->poll_list);
11106         if (napi->poll == process_backlog)
11107             napi->state = 0;
11108         else
11109             ____napi_schedule(sd, napi);
11110     }
11111 
11112     raise_softirq_irqoff(NET_TX_SOFTIRQ);
11113     local_irq_enable();
11114 
11115 #ifdef CONFIG_RPS
11116     remsd = oldsd->rps_ipi_list;
11117     oldsd->rps_ipi_list = NULL;
11118 #endif
11119     /* send out pending IPI's on offline CPU */
11120     net_rps_send_ipi(remsd);
11121 
11122     /* Process offline CPU's input_pkt_queue */
11123     while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11124         netif_rx(skb);
11125         input_queue_head_incr(oldsd);
11126     }
11127     while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11128         netif_rx(skb);
11129         input_queue_head_incr(oldsd);
11130     }
11131 
11132     return 0;
11133 }
11134 
11135 /**
11136  *  netdev_increment_features - increment feature set by one
11137  *  @all: current feature set
11138  *  @one: new feature set
11139  *  @mask: mask feature set
11140  *
11141  *  Computes a new feature set after adding a device with feature set
11142  *  @one to the master device with current feature set @all.  Will not
11143  *  enable anything that is off in @mask. Returns the new feature set.
11144  */
11145 netdev_features_t netdev_increment_features(netdev_features_t all,
11146     netdev_features_t one, netdev_features_t mask)
11147 {
11148     if (mask & NETIF_F_HW_CSUM)
11149         mask |= NETIF_F_CSUM_MASK;
11150     mask |= NETIF_F_VLAN_CHALLENGED;
11151 
11152     all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11153     all &= one | ~NETIF_F_ALL_FOR_ALL;
11154 
11155     /* If one device supports hw checksumming, set for all. */
11156     if (all & NETIF_F_HW_CSUM)
11157         all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11158 
11159     return all;
11160 }
11161 EXPORT_SYMBOL(netdev_increment_features);
11162 
11163 static struct hlist_head * __net_init netdev_create_hash(void)
11164 {
11165     int i;
11166     struct hlist_head *hash;
11167 
11168     hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11169     if (hash != NULL)
11170         for (i = 0; i < NETDEV_HASHENTRIES; i++)
11171             INIT_HLIST_HEAD(&hash[i]);
11172 
11173     return hash;
11174 }
11175 
11176 /* Initialize per network namespace state */
11177 static int __net_init netdev_init(struct net *net)
11178 {
11179     BUILD_BUG_ON(GRO_HASH_BUCKETS >
11180              8 * sizeof_field(struct napi_struct, gro_bitmask));
11181 
11182     INIT_LIST_HEAD(&net->dev_base_head);
11183 
11184     net->dev_name_head = netdev_create_hash();
11185     if (net->dev_name_head == NULL)
11186         goto err_name;
11187 
11188     net->dev_index_head = netdev_create_hash();
11189     if (net->dev_index_head == NULL)
11190         goto err_idx;
11191 
11192     RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11193 
11194     return 0;
11195 
11196 err_idx:
11197     kfree(net->dev_name_head);
11198 err_name:
11199     return -ENOMEM;
11200 }
11201 
11202 /**
11203  *  netdev_drivername - network driver for the device
11204  *  @dev: network device
11205  *
11206  *  Determine network driver for device.
11207  */
11208 const char *netdev_drivername(const struct net_device *dev)
11209 {
11210     const struct device_driver *driver;
11211     const struct device *parent;
11212     const char *empty = "";
11213 
11214     parent = dev->dev.parent;
11215     if (!parent)
11216         return empty;
11217 
11218     driver = parent->driver;
11219     if (driver && driver->name)
11220         return driver->name;
11221     return empty;
11222 }
11223 
11224 static void __netdev_printk(const char *level, const struct net_device *dev,
11225                 struct va_format *vaf)
11226 {
11227     if (dev && dev->dev.parent) {
11228         dev_printk_emit(level[1] - '0',
11229                 dev->dev.parent,
11230                 "%s %s %s%s: %pV",
11231                 dev_driver_string(dev->dev.parent),
11232                 dev_name(dev->dev.parent),
11233                 netdev_name(dev), netdev_reg_state(dev),
11234                 vaf);
11235     } else if (dev) {
11236         printk("%s%s%s: %pV",
11237                level, netdev_name(dev), netdev_reg_state(dev), vaf);
11238     } else {
11239         printk("%s(NULL net_device): %pV", level, vaf);
11240     }
11241 }
11242 
11243 void netdev_printk(const char *level, const struct net_device *dev,
11244            const char *format, ...)
11245 {
11246     struct va_format vaf;
11247     va_list args;
11248 
11249     va_start(args, format);
11250 
11251     vaf.fmt = format;
11252     vaf.va = &args;
11253 
11254     __netdev_printk(level, dev, &vaf);
11255 
11256     va_end(args);
11257 }
11258 EXPORT_SYMBOL(netdev_printk);
11259 
11260 #define define_netdev_printk_level(func, level)         \
11261 void func(const struct net_device *dev, const char *fmt, ...)   \
11262 {                               \
11263     struct va_format vaf;                   \
11264     va_list args;                       \
11265                                 \
11266     va_start(args, fmt);                    \
11267                                 \
11268     vaf.fmt = fmt;                      \
11269     vaf.va = &args;                     \
11270                                 \
11271     __netdev_printk(level, dev, &vaf);          \
11272                                 \
11273     va_end(args);                       \
11274 }                               \
11275 EXPORT_SYMBOL(func);
11276 
11277 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11278 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11279 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11280 define_netdev_printk_level(netdev_err, KERN_ERR);
11281 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11282 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11283 define_netdev_printk_level(netdev_info, KERN_INFO);
11284 
11285 static void __net_exit netdev_exit(struct net *net)
11286 {
11287     kfree(net->dev_name_head);
11288     kfree(net->dev_index_head);
11289     if (net != &init_net)
11290         WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11291 }
11292 
11293 static struct pernet_operations __net_initdata netdev_net_ops = {
11294     .init = netdev_init,
11295     .exit = netdev_exit,
11296 };
11297 
11298 static void __net_exit default_device_exit_net(struct net *net)
11299 {
11300     struct net_device *dev, *aux;
11301     /*
11302      * Push all migratable network devices back to the
11303      * initial network namespace
11304      */
11305     ASSERT_RTNL();
11306     for_each_netdev_safe(net, dev, aux) {
11307         int err;
11308         char fb_name[IFNAMSIZ];
11309 
11310         /* Ignore unmoveable devices (i.e. loopback) */
11311         if (dev->features & NETIF_F_NETNS_LOCAL)
11312             continue;
11313 
11314         /* Leave virtual devices for the generic cleanup */
11315         if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11316             continue;
11317 
11318         /* Push remaining network devices to init_net */
11319         snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11320         if (netdev_name_in_use(&init_net, fb_name))
11321             snprintf(fb_name, IFNAMSIZ, "dev%%d");
11322         err = dev_change_net_namespace(dev, &init_net, fb_name);
11323         if (err) {
11324             pr_emerg("%s: failed to move %s to init_net: %d\n",
11325                  __func__, dev->name, err);
11326             BUG();
11327         }
11328     }
11329 }
11330 
11331 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11332 {
11333     /* At exit all network devices most be removed from a network
11334      * namespace.  Do this in the reverse order of registration.
11335      * Do this across as many network namespaces as possible to
11336      * improve batching efficiency.
11337      */
11338     struct net_device *dev;
11339     struct net *net;
11340     LIST_HEAD(dev_kill_list);
11341 
11342     rtnl_lock();
11343     list_for_each_entry(net, net_list, exit_list) {
11344         default_device_exit_net(net);
11345         cond_resched();
11346     }
11347 
11348     list_for_each_entry(net, net_list, exit_list) {
11349         for_each_netdev_reverse(net, dev) {
11350             if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11351                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11352             else
11353                 unregister_netdevice_queue(dev, &dev_kill_list);
11354         }
11355     }
11356     unregister_netdevice_many(&dev_kill_list);
11357     rtnl_unlock();
11358 }
11359 
11360 static struct pernet_operations __net_initdata default_device_ops = {
11361     .exit_batch = default_device_exit_batch,
11362 };
11363 
11364 /*
11365  *  Initialize the DEV module. At boot time this walks the device list and
11366  *  unhooks any devices that fail to initialise (normally hardware not
11367  *  present) and leaves us with a valid list of present and active devices.
11368  *
11369  */
11370 
11371 /*
11372  *       This is called single threaded during boot, so no need
11373  *       to take the rtnl semaphore.
11374  */
11375 static int __init net_dev_init(void)
11376 {
11377     int i, rc = -ENOMEM;
11378 
11379     BUG_ON(!dev_boot_phase);
11380 
11381     if (dev_proc_init())
11382         goto out;
11383 
11384     if (netdev_kobject_init())
11385         goto out;
11386 
11387     INIT_LIST_HEAD(&ptype_all);
11388     for (i = 0; i < PTYPE_HASH_SIZE; i++)
11389         INIT_LIST_HEAD(&ptype_base[i]);
11390 
11391     if (register_pernet_subsys(&netdev_net_ops))
11392         goto out;
11393 
11394     /*
11395      *  Initialise the packet receive queues.
11396      */
11397 
11398     for_each_possible_cpu(i) {
11399         struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11400         struct softnet_data *sd = &per_cpu(softnet_data, i);
11401 
11402         INIT_WORK(flush, flush_backlog);
11403 
11404         skb_queue_head_init(&sd->input_pkt_queue);
11405         skb_queue_head_init(&sd->process_queue);
11406 #ifdef CONFIG_XFRM_OFFLOAD
11407         skb_queue_head_init(&sd->xfrm_backlog);
11408 #endif
11409         INIT_LIST_HEAD(&sd->poll_list);
11410         sd->output_queue_tailp = &sd->output_queue;
11411 #ifdef CONFIG_RPS
11412         INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11413         sd->cpu = i;
11414 #endif
11415         INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11416         spin_lock_init(&sd->defer_lock);
11417 
11418         init_gro_hash(&sd->backlog);
11419         sd->backlog.poll = process_backlog;
11420         sd->backlog.weight = weight_p;
11421     }
11422 
11423     dev_boot_phase = 0;
11424 
11425     /* The loopback device is special if any other network devices
11426      * is present in a network namespace the loopback device must
11427      * be present. Since we now dynamically allocate and free the
11428      * loopback device ensure this invariant is maintained by
11429      * keeping the loopback device as the first device on the
11430      * list of network devices.  Ensuring the loopback devices
11431      * is the first device that appears and the last network device
11432      * that disappears.
11433      */
11434     if (register_pernet_device(&loopback_net_ops))
11435         goto out;
11436 
11437     if (register_pernet_device(&default_device_ops))
11438         goto out;
11439 
11440     open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11441     open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11442 
11443     rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11444                        NULL, dev_cpu_dead);
11445     WARN_ON(rc < 0);
11446     rc = 0;
11447 out:
11448     return rc;
11449 }
11450 
11451 subsys_initcall(net_dev_init);