Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 #include <linux/ceph/ceph_debug.h>
0003 
0004 #include <linux/crc32c.h>
0005 #include <linux/ctype.h>
0006 #include <linux/highmem.h>
0007 #include <linux/inet.h>
0008 #include <linux/kthread.h>
0009 #include <linux/net.h>
0010 #include <linux/nsproxy.h>
0011 #include <linux/sched/mm.h>
0012 #include <linux/slab.h>
0013 #include <linux/socket.h>
0014 #include <linux/string.h>
0015 #ifdef  CONFIG_BLOCK
0016 #include <linux/bio.h>
0017 #endif  /* CONFIG_BLOCK */
0018 #include <linux/dns_resolver.h>
0019 #include <net/tcp.h>
0020 
0021 #include <linux/ceph/ceph_features.h>
0022 #include <linux/ceph/libceph.h>
0023 #include <linux/ceph/messenger.h>
0024 #include <linux/ceph/decode.h>
0025 #include <linux/ceph/pagelist.h>
0026 #include <linux/export.h>
0027 
0028 /*
0029  * Ceph uses the messenger to exchange ceph_msg messages with other
0030  * hosts in the system.  The messenger provides ordered and reliable
0031  * delivery.  We tolerate TCP disconnects by reconnecting (with
0032  * exponential backoff) in the case of a fault (disconnection, bad
0033  * crc, protocol error).  Acks allow sent messages to be discarded by
0034  * the sender.
0035  */
0036 
0037 /*
0038  * We track the state of the socket on a given connection using
0039  * values defined below.  The transition to a new socket state is
0040  * handled by a function which verifies we aren't coming from an
0041  * unexpected state.
0042  *
0043  *      --------
0044  *      | NEW* |  transient initial state
0045  *      --------
0046  *          | con_sock_state_init()
0047  *          v
0048  *      ----------
0049  *      | CLOSED |  initialized, but no socket (and no
0050  *      ----------  TCP connection)
0051  *       ^      \
0052  *       |       \ con_sock_state_connecting()
0053  *       |        ----------------------
0054  *       |                              \
0055  *       + con_sock_state_closed()       \
0056  *       |+---------------------------    \
0057  *       | \                          \    \
0058  *       |  -----------                \    \
0059  *       |  | CLOSING |  socket event;  \    \
0060  *       |  -----------  await close     \    \
0061  *       |       ^                        \   |
0062  *       |       |                         \  |
0063  *       |       + con_sock_state_closing() \ |
0064  *       |      / \                         | |
0065  *       |     /   ---------------          | |
0066  *       |    /                   \         v v
0067  *       |   /                    --------------
0068  *       |  /    -----------------| CONNECTING |  socket created, TCP
0069  *       |  |   /                 --------------  connect initiated
0070  *       |  |   | con_sock_state_connected()
0071  *       |  |   v
0072  *      -------------
0073  *      | CONNECTED |  TCP connection established
0074  *      -------------
0075  *
0076  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
0077  */
0078 
0079 #define CON_SOCK_STATE_NEW      0   /* -> CLOSED */
0080 #define CON_SOCK_STATE_CLOSED       1   /* -> CONNECTING */
0081 #define CON_SOCK_STATE_CONNECTING   2   /* -> CONNECTED or -> CLOSING */
0082 #define CON_SOCK_STATE_CONNECTED    3   /* -> CLOSING or -> CLOSED */
0083 #define CON_SOCK_STATE_CLOSING      4   /* -> CLOSED */
0084 
0085 static bool con_flag_valid(unsigned long con_flag)
0086 {
0087     switch (con_flag) {
0088     case CEPH_CON_F_LOSSYTX:
0089     case CEPH_CON_F_KEEPALIVE_PENDING:
0090     case CEPH_CON_F_WRITE_PENDING:
0091     case CEPH_CON_F_SOCK_CLOSED:
0092     case CEPH_CON_F_BACKOFF:
0093         return true;
0094     default:
0095         return false;
0096     }
0097 }
0098 
0099 void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
0100 {
0101     BUG_ON(!con_flag_valid(con_flag));
0102 
0103     clear_bit(con_flag, &con->flags);
0104 }
0105 
0106 void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
0107 {
0108     BUG_ON(!con_flag_valid(con_flag));
0109 
0110     set_bit(con_flag, &con->flags);
0111 }
0112 
0113 bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
0114 {
0115     BUG_ON(!con_flag_valid(con_flag));
0116 
0117     return test_bit(con_flag, &con->flags);
0118 }
0119 
0120 bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
0121                   unsigned long con_flag)
0122 {
0123     BUG_ON(!con_flag_valid(con_flag));
0124 
0125     return test_and_clear_bit(con_flag, &con->flags);
0126 }
0127 
0128 bool ceph_con_flag_test_and_set(struct ceph_connection *con,
0129                 unsigned long con_flag)
0130 {
0131     BUG_ON(!con_flag_valid(con_flag));
0132 
0133     return test_and_set_bit(con_flag, &con->flags);
0134 }
0135 
0136 /* Slab caches for frequently-allocated structures */
0137 
0138 static struct kmem_cache    *ceph_msg_cache;
0139 
0140 #ifdef CONFIG_LOCKDEP
0141 static struct lock_class_key socket_class;
0142 #endif
0143 
0144 static void queue_con(struct ceph_connection *con);
0145 static void cancel_con(struct ceph_connection *con);
0146 static void ceph_con_workfn(struct work_struct *);
0147 static void con_fault(struct ceph_connection *con);
0148 
0149 /*
0150  * Nicely render a sockaddr as a string.  An array of formatted
0151  * strings is used, to approximate reentrancy.
0152  */
0153 #define ADDR_STR_COUNT_LOG  5   /* log2(# address strings in array) */
0154 #define ADDR_STR_COUNT      (1 << ADDR_STR_COUNT_LOG)
0155 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
0156 #define MAX_ADDR_STR_LEN    64  /* 54 is enough */
0157 
0158 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
0159 static atomic_t addr_str_seq = ATOMIC_INIT(0);
0160 
0161 struct page *ceph_zero_page;        /* used in certain error cases */
0162 
0163 const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
0164 {
0165     int i;
0166     char *s;
0167     struct sockaddr_storage ss = addr->in_addr; /* align */
0168     struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
0169     struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
0170 
0171     i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
0172     s = addr_str[i];
0173 
0174     switch (ss.ss_family) {
0175     case AF_INET:
0176         snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
0177              le32_to_cpu(addr->type), &in4->sin_addr,
0178              ntohs(in4->sin_port));
0179         break;
0180 
0181     case AF_INET6:
0182         snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
0183              le32_to_cpu(addr->type), &in6->sin6_addr,
0184              ntohs(in6->sin6_port));
0185         break;
0186 
0187     default:
0188         snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
0189              ss.ss_family);
0190     }
0191 
0192     return s;
0193 }
0194 EXPORT_SYMBOL(ceph_pr_addr);
0195 
0196 void ceph_encode_my_addr(struct ceph_messenger *msgr)
0197 {
0198     if (!ceph_msgr2(from_msgr(msgr))) {
0199         memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
0200                sizeof(msgr->my_enc_addr));
0201         ceph_encode_banner_addr(&msgr->my_enc_addr);
0202     }
0203 }
0204 
0205 /*
0206  * work queue for all reading and writing to/from the socket.
0207  */
0208 static struct workqueue_struct *ceph_msgr_wq;
0209 
0210 static int ceph_msgr_slab_init(void)
0211 {
0212     BUG_ON(ceph_msg_cache);
0213     ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
0214     if (!ceph_msg_cache)
0215         return -ENOMEM;
0216 
0217     return 0;
0218 }
0219 
0220 static void ceph_msgr_slab_exit(void)
0221 {
0222     BUG_ON(!ceph_msg_cache);
0223     kmem_cache_destroy(ceph_msg_cache);
0224     ceph_msg_cache = NULL;
0225 }
0226 
0227 static void _ceph_msgr_exit(void)
0228 {
0229     if (ceph_msgr_wq) {
0230         destroy_workqueue(ceph_msgr_wq);
0231         ceph_msgr_wq = NULL;
0232     }
0233 
0234     BUG_ON(!ceph_zero_page);
0235     put_page(ceph_zero_page);
0236     ceph_zero_page = NULL;
0237 
0238     ceph_msgr_slab_exit();
0239 }
0240 
0241 int __init ceph_msgr_init(void)
0242 {
0243     if (ceph_msgr_slab_init())
0244         return -ENOMEM;
0245 
0246     BUG_ON(ceph_zero_page);
0247     ceph_zero_page = ZERO_PAGE(0);
0248     get_page(ceph_zero_page);
0249 
0250     /*
0251      * The number of active work items is limited by the number of
0252      * connections, so leave @max_active at default.
0253      */
0254     ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
0255     if (ceph_msgr_wq)
0256         return 0;
0257 
0258     pr_err("msgr_init failed to create workqueue\n");
0259     _ceph_msgr_exit();
0260 
0261     return -ENOMEM;
0262 }
0263 
0264 void ceph_msgr_exit(void)
0265 {
0266     BUG_ON(ceph_msgr_wq == NULL);
0267 
0268     _ceph_msgr_exit();
0269 }
0270 
0271 void ceph_msgr_flush(void)
0272 {
0273     flush_workqueue(ceph_msgr_wq);
0274 }
0275 EXPORT_SYMBOL(ceph_msgr_flush);
0276 
0277 /* Connection socket state transition functions */
0278 
0279 static void con_sock_state_init(struct ceph_connection *con)
0280 {
0281     int old_state;
0282 
0283     old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
0284     if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
0285         printk("%s: unexpected old state %d\n", __func__, old_state);
0286     dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
0287          CON_SOCK_STATE_CLOSED);
0288 }
0289 
0290 static void con_sock_state_connecting(struct ceph_connection *con)
0291 {
0292     int old_state;
0293 
0294     old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
0295     if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
0296         printk("%s: unexpected old state %d\n", __func__, old_state);
0297     dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
0298          CON_SOCK_STATE_CONNECTING);
0299 }
0300 
0301 static void con_sock_state_connected(struct ceph_connection *con)
0302 {
0303     int old_state;
0304 
0305     old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
0306     if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
0307         printk("%s: unexpected old state %d\n", __func__, old_state);
0308     dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
0309          CON_SOCK_STATE_CONNECTED);
0310 }
0311 
0312 static void con_sock_state_closing(struct ceph_connection *con)
0313 {
0314     int old_state;
0315 
0316     old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
0317     if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
0318             old_state != CON_SOCK_STATE_CONNECTED &&
0319             old_state != CON_SOCK_STATE_CLOSING))
0320         printk("%s: unexpected old state %d\n", __func__, old_state);
0321     dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
0322          CON_SOCK_STATE_CLOSING);
0323 }
0324 
0325 static void con_sock_state_closed(struct ceph_connection *con)
0326 {
0327     int old_state;
0328 
0329     old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
0330     if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
0331             old_state != CON_SOCK_STATE_CLOSING &&
0332             old_state != CON_SOCK_STATE_CONNECTING &&
0333             old_state != CON_SOCK_STATE_CLOSED))
0334         printk("%s: unexpected old state %d\n", __func__, old_state);
0335     dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
0336          CON_SOCK_STATE_CLOSED);
0337 }
0338 
0339 /*
0340  * socket callback functions
0341  */
0342 
0343 /* data available on socket, or listen socket received a connect */
0344 static void ceph_sock_data_ready(struct sock *sk)
0345 {
0346     struct ceph_connection *con = sk->sk_user_data;
0347     if (atomic_read(&con->msgr->stopping)) {
0348         return;
0349     }
0350 
0351     if (sk->sk_state != TCP_CLOSE_WAIT) {
0352         dout("%s %p state = %d, queueing work\n", __func__,
0353              con, con->state);
0354         queue_con(con);
0355     }
0356 }
0357 
0358 /* socket has buffer space for writing */
0359 static void ceph_sock_write_space(struct sock *sk)
0360 {
0361     struct ceph_connection *con = sk->sk_user_data;
0362 
0363     /* only queue to workqueue if there is data we want to write,
0364      * and there is sufficient space in the socket buffer to accept
0365      * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
0366      * doesn't get called again until try_write() fills the socket
0367      * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
0368      * and net/core/stream.c:sk_stream_write_space().
0369      */
0370     if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
0371         if (sk_stream_is_writeable(sk)) {
0372             dout("%s %p queueing write work\n", __func__, con);
0373             clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
0374             queue_con(con);
0375         }
0376     } else {
0377         dout("%s %p nothing to write\n", __func__, con);
0378     }
0379 }
0380 
0381 /* socket's state has changed */
0382 static void ceph_sock_state_change(struct sock *sk)
0383 {
0384     struct ceph_connection *con = sk->sk_user_data;
0385 
0386     dout("%s %p state = %d sk_state = %u\n", __func__,
0387          con, con->state, sk->sk_state);
0388 
0389     switch (sk->sk_state) {
0390     case TCP_CLOSE:
0391         dout("%s TCP_CLOSE\n", __func__);
0392         fallthrough;
0393     case TCP_CLOSE_WAIT:
0394         dout("%s TCP_CLOSE_WAIT\n", __func__);
0395         con_sock_state_closing(con);
0396         ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
0397         queue_con(con);
0398         break;
0399     case TCP_ESTABLISHED:
0400         dout("%s TCP_ESTABLISHED\n", __func__);
0401         con_sock_state_connected(con);
0402         queue_con(con);
0403         break;
0404     default:    /* Everything else is uninteresting */
0405         break;
0406     }
0407 }
0408 
0409 /*
0410  * set up socket callbacks
0411  */
0412 static void set_sock_callbacks(struct socket *sock,
0413                    struct ceph_connection *con)
0414 {
0415     struct sock *sk = sock->sk;
0416     sk->sk_user_data = con;
0417     sk->sk_data_ready = ceph_sock_data_ready;
0418     sk->sk_write_space = ceph_sock_write_space;
0419     sk->sk_state_change = ceph_sock_state_change;
0420 }
0421 
0422 
0423 /*
0424  * socket helpers
0425  */
0426 
0427 /*
0428  * initiate connection to a remote socket.
0429  */
0430 int ceph_tcp_connect(struct ceph_connection *con)
0431 {
0432     struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
0433     struct socket *sock;
0434     unsigned int noio_flag;
0435     int ret;
0436 
0437     dout("%s con %p peer_addr %s\n", __func__, con,
0438          ceph_pr_addr(&con->peer_addr));
0439     BUG_ON(con->sock);
0440 
0441     /* sock_create_kern() allocates with GFP_KERNEL */
0442     noio_flag = memalloc_noio_save();
0443     ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
0444                    SOCK_STREAM, IPPROTO_TCP, &sock);
0445     memalloc_noio_restore(noio_flag);
0446     if (ret)
0447         return ret;
0448     sock->sk->sk_allocation = GFP_NOFS;
0449 
0450 #ifdef CONFIG_LOCKDEP
0451     lockdep_set_class(&sock->sk->sk_lock, &socket_class);
0452 #endif
0453 
0454     set_sock_callbacks(sock, con);
0455 
0456     con_sock_state_connecting(con);
0457     ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
0458                  O_NONBLOCK);
0459     if (ret == -EINPROGRESS) {
0460         dout("connect %s EINPROGRESS sk_state = %u\n",
0461              ceph_pr_addr(&con->peer_addr),
0462              sock->sk->sk_state);
0463     } else if (ret < 0) {
0464         pr_err("connect %s error %d\n",
0465                ceph_pr_addr(&con->peer_addr), ret);
0466         sock_release(sock);
0467         return ret;
0468     }
0469 
0470     if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
0471         tcp_sock_set_nodelay(sock->sk);
0472 
0473     con->sock = sock;
0474     return 0;
0475 }
0476 
0477 /*
0478  * Shutdown/close the socket for the given connection.
0479  */
0480 int ceph_con_close_socket(struct ceph_connection *con)
0481 {
0482     int rc = 0;
0483 
0484     dout("%s con %p sock %p\n", __func__, con, con->sock);
0485     if (con->sock) {
0486         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
0487         sock_release(con->sock);
0488         con->sock = NULL;
0489     }
0490 
0491     /*
0492      * Forcibly clear the SOCK_CLOSED flag.  It gets set
0493      * independent of the connection mutex, and we could have
0494      * received a socket close event before we had the chance to
0495      * shut the socket down.
0496      */
0497     ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
0498 
0499     con_sock_state_closed(con);
0500     return rc;
0501 }
0502 
0503 static void ceph_con_reset_protocol(struct ceph_connection *con)
0504 {
0505     dout("%s con %p\n", __func__, con);
0506 
0507     ceph_con_close_socket(con);
0508     if (con->in_msg) {
0509         WARN_ON(con->in_msg->con != con);
0510         ceph_msg_put(con->in_msg);
0511         con->in_msg = NULL;
0512     }
0513     if (con->out_msg) {
0514         WARN_ON(con->out_msg->con != con);
0515         ceph_msg_put(con->out_msg);
0516         con->out_msg = NULL;
0517     }
0518     if (con->bounce_page) {
0519         __free_page(con->bounce_page);
0520         con->bounce_page = NULL;
0521     }
0522 
0523     if (ceph_msgr2(from_msgr(con->msgr)))
0524         ceph_con_v2_reset_protocol(con);
0525     else
0526         ceph_con_v1_reset_protocol(con);
0527 }
0528 
0529 /*
0530  * Reset a connection.  Discard all incoming and outgoing messages
0531  * and clear *_seq state.
0532  */
0533 static void ceph_msg_remove(struct ceph_msg *msg)
0534 {
0535     list_del_init(&msg->list_head);
0536 
0537     ceph_msg_put(msg);
0538 }
0539 
0540 static void ceph_msg_remove_list(struct list_head *head)
0541 {
0542     while (!list_empty(head)) {
0543         struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
0544                             list_head);
0545         ceph_msg_remove(msg);
0546     }
0547 }
0548 
0549 void ceph_con_reset_session(struct ceph_connection *con)
0550 {
0551     dout("%s con %p\n", __func__, con);
0552 
0553     WARN_ON(con->in_msg);
0554     WARN_ON(con->out_msg);
0555     ceph_msg_remove_list(&con->out_queue);
0556     ceph_msg_remove_list(&con->out_sent);
0557     con->out_seq = 0;
0558     con->in_seq = 0;
0559     con->in_seq_acked = 0;
0560 
0561     if (ceph_msgr2(from_msgr(con->msgr)))
0562         ceph_con_v2_reset_session(con);
0563     else
0564         ceph_con_v1_reset_session(con);
0565 }
0566 
0567 /*
0568  * mark a peer down.  drop any open connections.
0569  */
0570 void ceph_con_close(struct ceph_connection *con)
0571 {
0572     mutex_lock(&con->mutex);
0573     dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
0574     con->state = CEPH_CON_S_CLOSED;
0575 
0576     ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX);  /* so we retry next
0577                               connect */
0578     ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
0579     ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
0580     ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
0581 
0582     ceph_con_reset_protocol(con);
0583     ceph_con_reset_session(con);
0584     cancel_con(con);
0585     mutex_unlock(&con->mutex);
0586 }
0587 EXPORT_SYMBOL(ceph_con_close);
0588 
0589 /*
0590  * Reopen a closed connection, with a new peer address.
0591  */
0592 void ceph_con_open(struct ceph_connection *con,
0593            __u8 entity_type, __u64 entity_num,
0594            struct ceph_entity_addr *addr)
0595 {
0596     mutex_lock(&con->mutex);
0597     dout("con_open %p %s\n", con, ceph_pr_addr(addr));
0598 
0599     WARN_ON(con->state != CEPH_CON_S_CLOSED);
0600     con->state = CEPH_CON_S_PREOPEN;
0601 
0602     con->peer_name.type = (__u8) entity_type;
0603     con->peer_name.num = cpu_to_le64(entity_num);
0604 
0605     memcpy(&con->peer_addr, addr, sizeof(*addr));
0606     con->delay = 0;      /* reset backoff memory */
0607     mutex_unlock(&con->mutex);
0608     queue_con(con);
0609 }
0610 EXPORT_SYMBOL(ceph_con_open);
0611 
0612 /*
0613  * return true if this connection ever successfully opened
0614  */
0615 bool ceph_con_opened(struct ceph_connection *con)
0616 {
0617     if (ceph_msgr2(from_msgr(con->msgr)))
0618         return ceph_con_v2_opened(con);
0619 
0620     return ceph_con_v1_opened(con);
0621 }
0622 
0623 /*
0624  * initialize a new connection.
0625  */
0626 void ceph_con_init(struct ceph_connection *con, void *private,
0627     const struct ceph_connection_operations *ops,
0628     struct ceph_messenger *msgr)
0629 {
0630     dout("con_init %p\n", con);
0631     memset(con, 0, sizeof(*con));
0632     con->private = private;
0633     con->ops = ops;
0634     con->msgr = msgr;
0635 
0636     con_sock_state_init(con);
0637 
0638     mutex_init(&con->mutex);
0639     INIT_LIST_HEAD(&con->out_queue);
0640     INIT_LIST_HEAD(&con->out_sent);
0641     INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
0642 
0643     con->state = CEPH_CON_S_CLOSED;
0644 }
0645 EXPORT_SYMBOL(ceph_con_init);
0646 
0647 /*
0648  * We maintain a global counter to order connection attempts.  Get
0649  * a unique seq greater than @gt.
0650  */
0651 u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
0652 {
0653     u32 ret;
0654 
0655     spin_lock(&msgr->global_seq_lock);
0656     if (msgr->global_seq < gt)
0657         msgr->global_seq = gt;
0658     ret = ++msgr->global_seq;
0659     spin_unlock(&msgr->global_seq_lock);
0660     return ret;
0661 }
0662 
0663 /*
0664  * Discard messages that have been acked by the server.
0665  */
0666 void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
0667 {
0668     struct ceph_msg *msg;
0669     u64 seq;
0670 
0671     dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
0672     while (!list_empty(&con->out_sent)) {
0673         msg = list_first_entry(&con->out_sent, struct ceph_msg,
0674                        list_head);
0675         WARN_ON(msg->needs_out_seq);
0676         seq = le64_to_cpu(msg->hdr.seq);
0677         if (seq > ack_seq)
0678             break;
0679 
0680         dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
0681              msg, seq);
0682         ceph_msg_remove(msg);
0683     }
0684 }
0685 
0686 /*
0687  * Discard messages that have been requeued in con_fault(), up to
0688  * reconnect_seq.  This avoids gratuitously resending messages that
0689  * the server had received and handled prior to reconnect.
0690  */
0691 void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
0692 {
0693     struct ceph_msg *msg;
0694     u64 seq;
0695 
0696     dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
0697     while (!list_empty(&con->out_queue)) {
0698         msg = list_first_entry(&con->out_queue, struct ceph_msg,
0699                        list_head);
0700         if (msg->needs_out_seq)
0701             break;
0702         seq = le64_to_cpu(msg->hdr.seq);
0703         if (seq > reconnect_seq)
0704             break;
0705 
0706         dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
0707              msg, seq);
0708         ceph_msg_remove(msg);
0709     }
0710 }
0711 
0712 #ifdef CONFIG_BLOCK
0713 
0714 /*
0715  * For a bio data item, a piece is whatever remains of the next
0716  * entry in the current bio iovec, or the first entry in the next
0717  * bio in the list.
0718  */
0719 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
0720                     size_t length)
0721 {
0722     struct ceph_msg_data *data = cursor->data;
0723     struct ceph_bio_iter *it = &cursor->bio_iter;
0724 
0725     cursor->resid = min_t(size_t, length, data->bio_length);
0726     *it = data->bio_pos;
0727     if (cursor->resid < it->iter.bi_size)
0728         it->iter.bi_size = cursor->resid;
0729 
0730     BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
0731     cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
0732 }
0733 
0734 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
0735                         size_t *page_offset,
0736                         size_t *length)
0737 {
0738     struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
0739                        cursor->bio_iter.iter);
0740 
0741     *page_offset = bv.bv_offset;
0742     *length = bv.bv_len;
0743     return bv.bv_page;
0744 }
0745 
0746 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
0747                     size_t bytes)
0748 {
0749     struct ceph_bio_iter *it = &cursor->bio_iter;
0750     struct page *page = bio_iter_page(it->bio, it->iter);
0751 
0752     BUG_ON(bytes > cursor->resid);
0753     BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
0754     cursor->resid -= bytes;
0755     bio_advance_iter(it->bio, &it->iter, bytes);
0756 
0757     if (!cursor->resid) {
0758         BUG_ON(!cursor->last_piece);
0759         return false;   /* no more data */
0760     }
0761 
0762     if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
0763                page == bio_iter_page(it->bio, it->iter)))
0764         return false;   /* more bytes to process in this segment */
0765 
0766     if (!it->iter.bi_size) {
0767         it->bio = it->bio->bi_next;
0768         it->iter = it->bio->bi_iter;
0769         if (cursor->resid < it->iter.bi_size)
0770             it->iter.bi_size = cursor->resid;
0771     }
0772 
0773     BUG_ON(cursor->last_piece);
0774     BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
0775     cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
0776     return true;
0777 }
0778 #endif /* CONFIG_BLOCK */
0779 
0780 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
0781                     size_t length)
0782 {
0783     struct ceph_msg_data *data = cursor->data;
0784     struct bio_vec *bvecs = data->bvec_pos.bvecs;
0785 
0786     cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
0787     cursor->bvec_iter = data->bvec_pos.iter;
0788     cursor->bvec_iter.bi_size = cursor->resid;
0789 
0790     BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
0791     cursor->last_piece =
0792         cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
0793 }
0794 
0795 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
0796                         size_t *page_offset,
0797                         size_t *length)
0798 {
0799     struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
0800                        cursor->bvec_iter);
0801 
0802     *page_offset = bv.bv_offset;
0803     *length = bv.bv_len;
0804     return bv.bv_page;
0805 }
0806 
0807 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
0808                     size_t bytes)
0809 {
0810     struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
0811     struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
0812 
0813     BUG_ON(bytes > cursor->resid);
0814     BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
0815     cursor->resid -= bytes;
0816     bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
0817 
0818     if (!cursor->resid) {
0819         BUG_ON(!cursor->last_piece);
0820         return false;   /* no more data */
0821     }
0822 
0823     if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
0824                page == bvec_iter_page(bvecs, cursor->bvec_iter)))
0825         return false;   /* more bytes to process in this segment */
0826 
0827     BUG_ON(cursor->last_piece);
0828     BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
0829     cursor->last_piece =
0830         cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
0831     return true;
0832 }
0833 
0834 /*
0835  * For a page array, a piece comes from the first page in the array
0836  * that has not already been fully consumed.
0837  */
0838 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
0839                     size_t length)
0840 {
0841     struct ceph_msg_data *data = cursor->data;
0842     int page_count;
0843 
0844     BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
0845 
0846     BUG_ON(!data->pages);
0847     BUG_ON(!data->length);
0848 
0849     cursor->resid = min(length, data->length);
0850     page_count = calc_pages_for(data->alignment, (u64)data->length);
0851     cursor->page_offset = data->alignment & ~PAGE_MASK;
0852     cursor->page_index = 0;
0853     BUG_ON(page_count > (int)USHRT_MAX);
0854     cursor->page_count = (unsigned short)page_count;
0855     BUG_ON(length > SIZE_MAX - cursor->page_offset);
0856     cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
0857 }
0858 
0859 static struct page *
0860 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
0861                     size_t *page_offset, size_t *length)
0862 {
0863     struct ceph_msg_data *data = cursor->data;
0864 
0865     BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
0866 
0867     BUG_ON(cursor->page_index >= cursor->page_count);
0868     BUG_ON(cursor->page_offset >= PAGE_SIZE);
0869 
0870     *page_offset = cursor->page_offset;
0871     if (cursor->last_piece)
0872         *length = cursor->resid;
0873     else
0874         *length = PAGE_SIZE - *page_offset;
0875 
0876     return data->pages[cursor->page_index];
0877 }
0878 
0879 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
0880                         size_t bytes)
0881 {
0882     BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
0883 
0884     BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
0885 
0886     /* Advance the cursor page offset */
0887 
0888     cursor->resid -= bytes;
0889     cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
0890     if (!bytes || cursor->page_offset)
0891         return false;   /* more bytes to process in the current page */
0892 
0893     if (!cursor->resid)
0894         return false;   /* no more data */
0895 
0896     /* Move on to the next page; offset is already at 0 */
0897 
0898     BUG_ON(cursor->page_index >= cursor->page_count);
0899     cursor->page_index++;
0900     cursor->last_piece = cursor->resid <= PAGE_SIZE;
0901 
0902     return true;
0903 }
0904 
0905 /*
0906  * For a pagelist, a piece is whatever remains to be consumed in the
0907  * first page in the list, or the front of the next page.
0908  */
0909 static void
0910 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
0911                     size_t length)
0912 {
0913     struct ceph_msg_data *data = cursor->data;
0914     struct ceph_pagelist *pagelist;
0915     struct page *page;
0916 
0917     BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
0918 
0919     pagelist = data->pagelist;
0920     BUG_ON(!pagelist);
0921 
0922     if (!length)
0923         return;     /* pagelist can be assigned but empty */
0924 
0925     BUG_ON(list_empty(&pagelist->head));
0926     page = list_first_entry(&pagelist->head, struct page, lru);
0927 
0928     cursor->resid = min(length, pagelist->length);
0929     cursor->page = page;
0930     cursor->offset = 0;
0931     cursor->last_piece = cursor->resid <= PAGE_SIZE;
0932 }
0933 
0934 static struct page *
0935 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
0936                 size_t *page_offset, size_t *length)
0937 {
0938     struct ceph_msg_data *data = cursor->data;
0939     struct ceph_pagelist *pagelist;
0940 
0941     BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
0942 
0943     pagelist = data->pagelist;
0944     BUG_ON(!pagelist);
0945 
0946     BUG_ON(!cursor->page);
0947     BUG_ON(cursor->offset + cursor->resid != pagelist->length);
0948 
0949     /* offset of first page in pagelist is always 0 */
0950     *page_offset = cursor->offset & ~PAGE_MASK;
0951     if (cursor->last_piece)
0952         *length = cursor->resid;
0953     else
0954         *length = PAGE_SIZE - *page_offset;
0955 
0956     return cursor->page;
0957 }
0958 
0959 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
0960                         size_t bytes)
0961 {
0962     struct ceph_msg_data *data = cursor->data;
0963     struct ceph_pagelist *pagelist;
0964 
0965     BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
0966 
0967     pagelist = data->pagelist;
0968     BUG_ON(!pagelist);
0969 
0970     BUG_ON(cursor->offset + cursor->resid != pagelist->length);
0971     BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
0972 
0973     /* Advance the cursor offset */
0974 
0975     cursor->resid -= bytes;
0976     cursor->offset += bytes;
0977     /* offset of first page in pagelist is always 0 */
0978     if (!bytes || cursor->offset & ~PAGE_MASK)
0979         return false;   /* more bytes to process in the current page */
0980 
0981     if (!cursor->resid)
0982         return false;   /* no more data */
0983 
0984     /* Move on to the next page */
0985 
0986     BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
0987     cursor->page = list_next_entry(cursor->page, lru);
0988     cursor->last_piece = cursor->resid <= PAGE_SIZE;
0989 
0990     return true;
0991 }
0992 
0993 /*
0994  * Message data is handled (sent or received) in pieces, where each
0995  * piece resides on a single page.  The network layer might not
0996  * consume an entire piece at once.  A data item's cursor keeps
0997  * track of which piece is next to process and how much remains to
0998  * be processed in that piece.  It also tracks whether the current
0999  * piece is the last one in the data item.
1000  */
1001 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1002 {
1003     size_t length = cursor->total_resid;
1004 
1005     switch (cursor->data->type) {
1006     case CEPH_MSG_DATA_PAGELIST:
1007         ceph_msg_data_pagelist_cursor_init(cursor, length);
1008         break;
1009     case CEPH_MSG_DATA_PAGES:
1010         ceph_msg_data_pages_cursor_init(cursor, length);
1011         break;
1012 #ifdef CONFIG_BLOCK
1013     case CEPH_MSG_DATA_BIO:
1014         ceph_msg_data_bio_cursor_init(cursor, length);
1015         break;
1016 #endif /* CONFIG_BLOCK */
1017     case CEPH_MSG_DATA_BVECS:
1018         ceph_msg_data_bvecs_cursor_init(cursor, length);
1019         break;
1020     case CEPH_MSG_DATA_NONE:
1021     default:
1022         /* BUG(); */
1023         break;
1024     }
1025     cursor->need_crc = true;
1026 }
1027 
1028 void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1029                    struct ceph_msg *msg, size_t length)
1030 {
1031     BUG_ON(!length);
1032     BUG_ON(length > msg->data_length);
1033     BUG_ON(!msg->num_data_items);
1034 
1035     cursor->total_resid = length;
1036     cursor->data = msg->data;
1037 
1038     __ceph_msg_data_cursor_init(cursor);
1039 }
1040 
1041 /*
1042  * Return the page containing the next piece to process for a given
1043  * data item, and supply the page offset and length of that piece.
1044  * Indicate whether this is the last piece in this data item.
1045  */
1046 struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1047                 size_t *page_offset, size_t *length,
1048                 bool *last_piece)
1049 {
1050     struct page *page;
1051 
1052     switch (cursor->data->type) {
1053     case CEPH_MSG_DATA_PAGELIST:
1054         page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1055         break;
1056     case CEPH_MSG_DATA_PAGES:
1057         page = ceph_msg_data_pages_next(cursor, page_offset, length);
1058         break;
1059 #ifdef CONFIG_BLOCK
1060     case CEPH_MSG_DATA_BIO:
1061         page = ceph_msg_data_bio_next(cursor, page_offset, length);
1062         break;
1063 #endif /* CONFIG_BLOCK */
1064     case CEPH_MSG_DATA_BVECS:
1065         page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1066         break;
1067     case CEPH_MSG_DATA_NONE:
1068     default:
1069         page = NULL;
1070         break;
1071     }
1072 
1073     BUG_ON(!page);
1074     BUG_ON(*page_offset + *length > PAGE_SIZE);
1075     BUG_ON(!*length);
1076     BUG_ON(*length > cursor->resid);
1077     if (last_piece)
1078         *last_piece = cursor->last_piece;
1079 
1080     return page;
1081 }
1082 
1083 /*
1084  * Returns true if the result moves the cursor on to the next piece
1085  * of the data item.
1086  */
1087 void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1088 {
1089     bool new_piece;
1090 
1091     BUG_ON(bytes > cursor->resid);
1092     switch (cursor->data->type) {
1093     case CEPH_MSG_DATA_PAGELIST:
1094         new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1095         break;
1096     case CEPH_MSG_DATA_PAGES:
1097         new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1098         break;
1099 #ifdef CONFIG_BLOCK
1100     case CEPH_MSG_DATA_BIO:
1101         new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1102         break;
1103 #endif /* CONFIG_BLOCK */
1104     case CEPH_MSG_DATA_BVECS:
1105         new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1106         break;
1107     case CEPH_MSG_DATA_NONE:
1108     default:
1109         BUG();
1110         break;
1111     }
1112     cursor->total_resid -= bytes;
1113 
1114     if (!cursor->resid && cursor->total_resid) {
1115         WARN_ON(!cursor->last_piece);
1116         cursor->data++;
1117         __ceph_msg_data_cursor_init(cursor);
1118         new_piece = true;
1119     }
1120     cursor->need_crc = new_piece;
1121 }
1122 
1123 u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1124              unsigned int length)
1125 {
1126     char *kaddr;
1127 
1128     kaddr = kmap(page);
1129     BUG_ON(kaddr == NULL);
1130     crc = crc32c(crc, kaddr + page_offset, length);
1131     kunmap(page);
1132 
1133     return crc;
1134 }
1135 
1136 bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1137 {
1138     struct sockaddr_storage ss = addr->in_addr; /* align */
1139     struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1140     struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1141 
1142     switch (ss.ss_family) {
1143     case AF_INET:
1144         return addr4->s_addr == htonl(INADDR_ANY);
1145     case AF_INET6:
1146         return ipv6_addr_any(addr6);
1147     default:
1148         return true;
1149     }
1150 }
1151 
1152 int ceph_addr_port(const struct ceph_entity_addr *addr)
1153 {
1154     switch (get_unaligned(&addr->in_addr.ss_family)) {
1155     case AF_INET:
1156         return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1157     case AF_INET6:
1158         return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1159     }
1160     return 0;
1161 }
1162 
1163 void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1164 {
1165     switch (get_unaligned(&addr->in_addr.ss_family)) {
1166     case AF_INET:
1167         put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1168         break;
1169     case AF_INET6:
1170         put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1171         break;
1172     }
1173 }
1174 
1175 /*
1176  * Unlike other *_pton function semantics, zero indicates success.
1177  */
1178 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1179         char delim, const char **ipend)
1180 {
1181     memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1182 
1183     if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1184         put_unaligned(AF_INET, &addr->in_addr.ss_family);
1185         return 0;
1186     }
1187 
1188     if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1189         put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1190         return 0;
1191     }
1192 
1193     return -EINVAL;
1194 }
1195 
1196 /*
1197  * Extract hostname string and resolve using kernel DNS facility.
1198  */
1199 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1200 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1201         struct ceph_entity_addr *addr, char delim, const char **ipend)
1202 {
1203     const char *end, *delim_p;
1204     char *colon_p, *ip_addr = NULL;
1205     int ip_len, ret;
1206 
1207     /*
1208      * The end of the hostname occurs immediately preceding the delimiter or
1209      * the port marker (':') where the delimiter takes precedence.
1210      */
1211     delim_p = memchr(name, delim, namelen);
1212     colon_p = memchr(name, ':', namelen);
1213 
1214     if (delim_p && colon_p)
1215         end = delim_p < colon_p ? delim_p : colon_p;
1216     else if (!delim_p && colon_p)
1217         end = colon_p;
1218     else {
1219         end = delim_p;
1220         if (!end) /* case: hostname:/ */
1221             end = name + namelen;
1222     }
1223 
1224     if (end <= name)
1225         return -EINVAL;
1226 
1227     /* do dns_resolve upcall */
1228     ip_len = dns_query(current->nsproxy->net_ns,
1229                NULL, name, end - name, NULL, &ip_addr, NULL, false);
1230     if (ip_len > 0)
1231         ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1232     else
1233         ret = -ESRCH;
1234 
1235     kfree(ip_addr);
1236 
1237     *ipend = end;
1238 
1239     pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1240             ret, ret ? "failed" : ceph_pr_addr(addr));
1241 
1242     return ret;
1243 }
1244 #else
1245 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1246         struct ceph_entity_addr *addr, char delim, const char **ipend)
1247 {
1248     return -EINVAL;
1249 }
1250 #endif
1251 
1252 /*
1253  * Parse a server name (IP or hostname). If a valid IP address is not found
1254  * then try to extract a hostname to resolve using userspace DNS upcall.
1255  */
1256 static int ceph_parse_server_name(const char *name, size_t namelen,
1257         struct ceph_entity_addr *addr, char delim, const char **ipend)
1258 {
1259     int ret;
1260 
1261     ret = ceph_pton(name, namelen, addr, delim, ipend);
1262     if (ret)
1263         ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1264 
1265     return ret;
1266 }
1267 
1268 /*
1269  * Parse an ip[:port] list into an addr array.  Use the default
1270  * monitor port if a port isn't specified.
1271  */
1272 int ceph_parse_ips(const char *c, const char *end,
1273            struct ceph_entity_addr *addr,
1274            int max_count, int *count, char delim)
1275 {
1276     int i, ret = -EINVAL;
1277     const char *p = c;
1278 
1279     dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1280     for (i = 0; i < max_count; i++) {
1281         char cur_delim = delim;
1282         const char *ipend;
1283         int port;
1284 
1285         if (*p == '[') {
1286             cur_delim = ']';
1287             p++;
1288         }
1289 
1290         ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1291                          &ipend);
1292         if (ret)
1293             goto bad;
1294         ret = -EINVAL;
1295 
1296         p = ipend;
1297 
1298         if (cur_delim == ']') {
1299             if (*p != ']') {
1300                 dout("missing matching ']'\n");
1301                 goto bad;
1302             }
1303             p++;
1304         }
1305 
1306         /* port? */
1307         if (p < end && *p == ':') {
1308             port = 0;
1309             p++;
1310             while (p < end && *p >= '0' && *p <= '9') {
1311                 port = (port * 10) + (*p - '0');
1312                 p++;
1313             }
1314             if (port == 0)
1315                 port = CEPH_MON_PORT;
1316             else if (port > 65535)
1317                 goto bad;
1318         } else {
1319             port = CEPH_MON_PORT;
1320         }
1321 
1322         ceph_addr_set_port(&addr[i], port);
1323         /*
1324          * We want the type to be set according to ms_mode
1325          * option, but options are normally parsed after mon
1326          * addresses.  Rather than complicating parsing, set
1327          * to LEGACY and override in build_initial_monmap()
1328          * for mon addresses and ceph_messenger_init() for
1329          * ip option.
1330          */
1331         addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1332         addr[i].nonce = 0;
1333 
1334         dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1335 
1336         if (p == end)
1337             break;
1338         if (*p != delim)
1339             goto bad;
1340         p++;
1341     }
1342 
1343     if (p != end)
1344         goto bad;
1345 
1346     if (count)
1347         *count = i + 1;
1348     return 0;
1349 
1350 bad:
1351     return ret;
1352 }
1353 
1354 /*
1355  * Process message.  This happens in the worker thread.  The callback should
1356  * be careful not to do anything that waits on other incoming messages or it
1357  * may deadlock.
1358  */
1359 void ceph_con_process_message(struct ceph_connection *con)
1360 {
1361     struct ceph_msg *msg = con->in_msg;
1362 
1363     BUG_ON(con->in_msg->con != con);
1364     con->in_msg = NULL;
1365 
1366     /* if first message, set peer_name */
1367     if (con->peer_name.type == 0)
1368         con->peer_name = msg->hdr.src;
1369 
1370     con->in_seq++;
1371     mutex_unlock(&con->mutex);
1372 
1373     dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1374          msg, le64_to_cpu(msg->hdr.seq),
1375          ENTITY_NAME(msg->hdr.src),
1376          le16_to_cpu(msg->hdr.type),
1377          ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1378          le32_to_cpu(msg->hdr.front_len),
1379          le32_to_cpu(msg->hdr.middle_len),
1380          le32_to_cpu(msg->hdr.data_len),
1381          con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1382     con->ops->dispatch(con, msg);
1383 
1384     mutex_lock(&con->mutex);
1385 }
1386 
1387 /*
1388  * Atomically queue work on a connection after the specified delay.
1389  * Bump @con reference to avoid races with connection teardown.
1390  * Returns 0 if work was queued, or an error code otherwise.
1391  */
1392 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1393 {
1394     if (!con->ops->get(con)) {
1395         dout("%s %p ref count 0\n", __func__, con);
1396         return -ENOENT;
1397     }
1398 
1399     if (delay >= HZ)
1400         delay = round_jiffies_relative(delay);
1401 
1402     dout("%s %p %lu\n", __func__, con, delay);
1403     if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1404         dout("%s %p - already queued\n", __func__, con);
1405         con->ops->put(con);
1406         return -EBUSY;
1407     }
1408 
1409     return 0;
1410 }
1411 
1412 static void queue_con(struct ceph_connection *con)
1413 {
1414     (void) queue_con_delay(con, 0);
1415 }
1416 
1417 static void cancel_con(struct ceph_connection *con)
1418 {
1419     if (cancel_delayed_work(&con->work)) {
1420         dout("%s %p\n", __func__, con);
1421         con->ops->put(con);
1422     }
1423 }
1424 
1425 static bool con_sock_closed(struct ceph_connection *con)
1426 {
1427     if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1428         return false;
1429 
1430 #define CASE(x)                             \
1431     case CEPH_CON_S_ ## x:                      \
1432         con->error_msg = "socket closed (con state " #x ")";    \
1433         break;
1434 
1435     switch (con->state) {
1436     CASE(CLOSED);
1437     CASE(PREOPEN);
1438     CASE(V1_BANNER);
1439     CASE(V1_CONNECT_MSG);
1440     CASE(V2_BANNER_PREFIX);
1441     CASE(V2_BANNER_PAYLOAD);
1442     CASE(V2_HELLO);
1443     CASE(V2_AUTH);
1444     CASE(V2_AUTH_SIGNATURE);
1445     CASE(V2_SESSION_CONNECT);
1446     CASE(V2_SESSION_RECONNECT);
1447     CASE(OPEN);
1448     CASE(STANDBY);
1449     default:
1450         BUG();
1451     }
1452 #undef CASE
1453 
1454     return true;
1455 }
1456 
1457 static bool con_backoff(struct ceph_connection *con)
1458 {
1459     int ret;
1460 
1461     if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1462         return false;
1463 
1464     ret = queue_con_delay(con, con->delay);
1465     if (ret) {
1466         dout("%s: con %p FAILED to back off %lu\n", __func__,
1467             con, con->delay);
1468         BUG_ON(ret == -ENOENT);
1469         ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1470     }
1471 
1472     return true;
1473 }
1474 
1475 /* Finish fault handling; con->mutex must *not* be held here */
1476 
1477 static void con_fault_finish(struct ceph_connection *con)
1478 {
1479     dout("%s %p\n", __func__, con);
1480 
1481     /*
1482      * in case we faulted due to authentication, invalidate our
1483      * current tickets so that we can get new ones.
1484      */
1485     if (con->v1.auth_retry) {
1486         dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1487         if (con->ops->invalidate_authorizer)
1488             con->ops->invalidate_authorizer(con);
1489         con->v1.auth_retry = 0;
1490     }
1491 
1492     if (con->ops->fault)
1493         con->ops->fault(con);
1494 }
1495 
1496 /*
1497  * Do some work on a connection.  Drop a connection ref when we're done.
1498  */
1499 static void ceph_con_workfn(struct work_struct *work)
1500 {
1501     struct ceph_connection *con = container_of(work, struct ceph_connection,
1502                            work.work);
1503     bool fault;
1504 
1505     mutex_lock(&con->mutex);
1506     while (true) {
1507         int ret;
1508 
1509         if ((fault = con_sock_closed(con))) {
1510             dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1511             break;
1512         }
1513         if (con_backoff(con)) {
1514             dout("%s: con %p BACKOFF\n", __func__, con);
1515             break;
1516         }
1517         if (con->state == CEPH_CON_S_STANDBY) {
1518             dout("%s: con %p STANDBY\n", __func__, con);
1519             break;
1520         }
1521         if (con->state == CEPH_CON_S_CLOSED) {
1522             dout("%s: con %p CLOSED\n", __func__, con);
1523             BUG_ON(con->sock);
1524             break;
1525         }
1526         if (con->state == CEPH_CON_S_PREOPEN) {
1527             dout("%s: con %p PREOPEN\n", __func__, con);
1528             BUG_ON(con->sock);
1529         }
1530 
1531         if (ceph_msgr2(from_msgr(con->msgr)))
1532             ret = ceph_con_v2_try_read(con);
1533         else
1534             ret = ceph_con_v1_try_read(con);
1535         if (ret < 0) {
1536             if (ret == -EAGAIN)
1537                 continue;
1538             if (!con->error_msg)
1539                 con->error_msg = "socket error on read";
1540             fault = true;
1541             break;
1542         }
1543 
1544         if (ceph_msgr2(from_msgr(con->msgr)))
1545             ret = ceph_con_v2_try_write(con);
1546         else
1547             ret = ceph_con_v1_try_write(con);
1548         if (ret < 0) {
1549             if (ret == -EAGAIN)
1550                 continue;
1551             if (!con->error_msg)
1552                 con->error_msg = "socket error on write";
1553             fault = true;
1554         }
1555 
1556         break;  /* If we make it to here, we're done */
1557     }
1558     if (fault)
1559         con_fault(con);
1560     mutex_unlock(&con->mutex);
1561 
1562     if (fault)
1563         con_fault_finish(con);
1564 
1565     con->ops->put(con);
1566 }
1567 
1568 /*
1569  * Generic error/fault handler.  A retry mechanism is used with
1570  * exponential backoff
1571  */
1572 static void con_fault(struct ceph_connection *con)
1573 {
1574     dout("fault %p state %d to peer %s\n",
1575          con, con->state, ceph_pr_addr(&con->peer_addr));
1576 
1577     pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1578         ceph_pr_addr(&con->peer_addr), con->error_msg);
1579     con->error_msg = NULL;
1580 
1581     WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1582         con->state == CEPH_CON_S_CLOSED);
1583 
1584     ceph_con_reset_protocol(con);
1585 
1586     if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1587         dout("fault on LOSSYTX channel, marking CLOSED\n");
1588         con->state = CEPH_CON_S_CLOSED;
1589         return;
1590     }
1591 
1592     /* Requeue anything that hasn't been acked */
1593     list_splice_init(&con->out_sent, &con->out_queue);
1594 
1595     /* If there are no messages queued or keepalive pending, place
1596      * the connection in a STANDBY state */
1597     if (list_empty(&con->out_queue) &&
1598         !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1599         dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1600         ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1601         con->state = CEPH_CON_S_STANDBY;
1602     } else {
1603         /* retry after a delay. */
1604         con->state = CEPH_CON_S_PREOPEN;
1605         if (!con->delay) {
1606             con->delay = BASE_DELAY_INTERVAL;
1607         } else if (con->delay < MAX_DELAY_INTERVAL) {
1608             con->delay *= 2;
1609             if (con->delay > MAX_DELAY_INTERVAL)
1610                 con->delay = MAX_DELAY_INTERVAL;
1611         }
1612         ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1613         queue_con(con);
1614     }
1615 }
1616 
1617 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1618 {
1619     u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1620     msgr->inst.addr.nonce = cpu_to_le32(nonce);
1621     ceph_encode_my_addr(msgr);
1622 }
1623 
1624 /*
1625  * initialize a new messenger instance
1626  */
1627 void ceph_messenger_init(struct ceph_messenger *msgr,
1628              struct ceph_entity_addr *myaddr)
1629 {
1630     spin_lock_init(&msgr->global_seq_lock);
1631 
1632     if (myaddr) {
1633         memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1634                sizeof(msgr->inst.addr.in_addr));
1635         ceph_addr_set_port(&msgr->inst.addr, 0);
1636     }
1637 
1638     /*
1639      * Since nautilus, clients are identified using type ANY.
1640      * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1641      */
1642     msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1643 
1644     /* generate a random non-zero nonce */
1645     do {
1646         get_random_bytes(&msgr->inst.addr.nonce,
1647                  sizeof(msgr->inst.addr.nonce));
1648     } while (!msgr->inst.addr.nonce);
1649     ceph_encode_my_addr(msgr);
1650 
1651     atomic_set(&msgr->stopping, 0);
1652     write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1653 
1654     dout("%s %p\n", __func__, msgr);
1655 }
1656 
1657 void ceph_messenger_fini(struct ceph_messenger *msgr)
1658 {
1659     put_net(read_pnet(&msgr->net));
1660 }
1661 
1662 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1663 {
1664     if (msg->con)
1665         msg->con->ops->put(msg->con);
1666 
1667     msg->con = con ? con->ops->get(con) : NULL;
1668     BUG_ON(msg->con != con);
1669 }
1670 
1671 static void clear_standby(struct ceph_connection *con)
1672 {
1673     /* come back from STANDBY? */
1674     if (con->state == CEPH_CON_S_STANDBY) {
1675         dout("clear_standby %p and ++connect_seq\n", con);
1676         con->state = CEPH_CON_S_PREOPEN;
1677         con->v1.connect_seq++;
1678         WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1679         WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1680     }
1681 }
1682 
1683 /*
1684  * Queue up an outgoing message on the given connection.
1685  *
1686  * Consumes a ref on @msg.
1687  */
1688 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1689 {
1690     /* set src+dst */
1691     msg->hdr.src = con->msgr->inst.name;
1692     BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1693     msg->needs_out_seq = true;
1694 
1695     mutex_lock(&con->mutex);
1696 
1697     if (con->state == CEPH_CON_S_CLOSED) {
1698         dout("con_send %p closed, dropping %p\n", con, msg);
1699         ceph_msg_put(msg);
1700         mutex_unlock(&con->mutex);
1701         return;
1702     }
1703 
1704     msg_con_set(msg, con);
1705 
1706     BUG_ON(!list_empty(&msg->list_head));
1707     list_add_tail(&msg->list_head, &con->out_queue);
1708     dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1709          ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1710          ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1711          le32_to_cpu(msg->hdr.front_len),
1712          le32_to_cpu(msg->hdr.middle_len),
1713          le32_to_cpu(msg->hdr.data_len));
1714 
1715     clear_standby(con);
1716     mutex_unlock(&con->mutex);
1717 
1718     /* if there wasn't anything waiting to send before, queue
1719      * new work */
1720     if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1721         queue_con(con);
1722 }
1723 EXPORT_SYMBOL(ceph_con_send);
1724 
1725 /*
1726  * Revoke a message that was previously queued for send
1727  */
1728 void ceph_msg_revoke(struct ceph_msg *msg)
1729 {
1730     struct ceph_connection *con = msg->con;
1731 
1732     if (!con) {
1733         dout("%s msg %p null con\n", __func__, msg);
1734         return;     /* Message not in our possession */
1735     }
1736 
1737     mutex_lock(&con->mutex);
1738     if (list_empty(&msg->list_head)) {
1739         WARN_ON(con->out_msg == msg);
1740         dout("%s con %p msg %p not linked\n", __func__, con, msg);
1741         mutex_unlock(&con->mutex);
1742         return;
1743     }
1744 
1745     dout("%s con %p msg %p was linked\n", __func__, con, msg);
1746     msg->hdr.seq = 0;
1747     ceph_msg_remove(msg);
1748 
1749     if (con->out_msg == msg) {
1750         WARN_ON(con->state != CEPH_CON_S_OPEN);
1751         dout("%s con %p msg %p was sending\n", __func__, con, msg);
1752         if (ceph_msgr2(from_msgr(con->msgr)))
1753             ceph_con_v2_revoke(con);
1754         else
1755             ceph_con_v1_revoke(con);
1756         ceph_msg_put(con->out_msg);
1757         con->out_msg = NULL;
1758     } else {
1759         dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1760              con, msg, con->out_msg);
1761     }
1762     mutex_unlock(&con->mutex);
1763 }
1764 
1765 /*
1766  * Revoke a message that we may be reading data into
1767  */
1768 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1769 {
1770     struct ceph_connection *con = msg->con;
1771 
1772     if (!con) {
1773         dout("%s msg %p null con\n", __func__, msg);
1774         return;     /* Message not in our possession */
1775     }
1776 
1777     mutex_lock(&con->mutex);
1778     if (con->in_msg == msg) {
1779         WARN_ON(con->state != CEPH_CON_S_OPEN);
1780         dout("%s con %p msg %p was recving\n", __func__, con, msg);
1781         if (ceph_msgr2(from_msgr(con->msgr)))
1782             ceph_con_v2_revoke_incoming(con);
1783         else
1784             ceph_con_v1_revoke_incoming(con);
1785         ceph_msg_put(con->in_msg);
1786         con->in_msg = NULL;
1787     } else {
1788         dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1789              con, msg, con->in_msg);
1790     }
1791     mutex_unlock(&con->mutex);
1792 }
1793 
1794 /*
1795  * Queue a keepalive byte to ensure the tcp connection is alive.
1796  */
1797 void ceph_con_keepalive(struct ceph_connection *con)
1798 {
1799     dout("con_keepalive %p\n", con);
1800     mutex_lock(&con->mutex);
1801     clear_standby(con);
1802     ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1803     mutex_unlock(&con->mutex);
1804 
1805     if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1806         queue_con(con);
1807 }
1808 EXPORT_SYMBOL(ceph_con_keepalive);
1809 
1810 bool ceph_con_keepalive_expired(struct ceph_connection *con,
1811                    unsigned long interval)
1812 {
1813     if (interval > 0 &&
1814         (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1815         struct timespec64 now;
1816         struct timespec64 ts;
1817         ktime_get_real_ts64(&now);
1818         jiffies_to_timespec64(interval, &ts);
1819         ts = timespec64_add(con->last_keepalive_ack, ts);
1820         return timespec64_compare(&now, &ts) >= 0;
1821     }
1822     return false;
1823 }
1824 
1825 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1826 {
1827     BUG_ON(msg->num_data_items >= msg->max_data_items);
1828     return &msg->data[msg->num_data_items++];
1829 }
1830 
1831 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1832 {
1833     if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1834         int num_pages = calc_pages_for(data->alignment, data->length);
1835         ceph_release_page_vector(data->pages, num_pages);
1836     } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1837         ceph_pagelist_release(data->pagelist);
1838     }
1839 }
1840 
1841 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1842                  size_t length, size_t alignment, bool own_pages)
1843 {
1844     struct ceph_msg_data *data;
1845 
1846     BUG_ON(!pages);
1847     BUG_ON(!length);
1848 
1849     data = ceph_msg_data_add(msg);
1850     data->type = CEPH_MSG_DATA_PAGES;
1851     data->pages = pages;
1852     data->length = length;
1853     data->alignment = alignment & ~PAGE_MASK;
1854     data->own_pages = own_pages;
1855 
1856     msg->data_length += length;
1857 }
1858 EXPORT_SYMBOL(ceph_msg_data_add_pages);
1859 
1860 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1861                 struct ceph_pagelist *pagelist)
1862 {
1863     struct ceph_msg_data *data;
1864 
1865     BUG_ON(!pagelist);
1866     BUG_ON(!pagelist->length);
1867 
1868     data = ceph_msg_data_add(msg);
1869     data->type = CEPH_MSG_DATA_PAGELIST;
1870     refcount_inc(&pagelist->refcnt);
1871     data->pagelist = pagelist;
1872 
1873     msg->data_length += pagelist->length;
1874 }
1875 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1876 
1877 #ifdef  CONFIG_BLOCK
1878 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1879                u32 length)
1880 {
1881     struct ceph_msg_data *data;
1882 
1883     data = ceph_msg_data_add(msg);
1884     data->type = CEPH_MSG_DATA_BIO;
1885     data->bio_pos = *bio_pos;
1886     data->bio_length = length;
1887 
1888     msg->data_length += length;
1889 }
1890 EXPORT_SYMBOL(ceph_msg_data_add_bio);
1891 #endif  /* CONFIG_BLOCK */
1892 
1893 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1894                  struct ceph_bvec_iter *bvec_pos)
1895 {
1896     struct ceph_msg_data *data;
1897 
1898     data = ceph_msg_data_add(msg);
1899     data->type = CEPH_MSG_DATA_BVECS;
1900     data->bvec_pos = *bvec_pos;
1901 
1902     msg->data_length += bvec_pos->iter.bi_size;
1903 }
1904 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1905 
1906 /*
1907  * construct a new message with given type, size
1908  * the new msg has a ref count of 1.
1909  */
1910 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1911                    gfp_t flags, bool can_fail)
1912 {
1913     struct ceph_msg *m;
1914 
1915     m = kmem_cache_zalloc(ceph_msg_cache, flags);
1916     if (m == NULL)
1917         goto out;
1918 
1919     m->hdr.type = cpu_to_le16(type);
1920     m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1921     m->hdr.front_len = cpu_to_le32(front_len);
1922 
1923     INIT_LIST_HEAD(&m->list_head);
1924     kref_init(&m->kref);
1925 
1926     /* front */
1927     if (front_len) {
1928         m->front.iov_base = kvmalloc(front_len, flags);
1929         if (m->front.iov_base == NULL) {
1930             dout("ceph_msg_new can't allocate %d bytes\n",
1931                  front_len);
1932             goto out2;
1933         }
1934     } else {
1935         m->front.iov_base = NULL;
1936     }
1937     m->front_alloc_len = m->front.iov_len = front_len;
1938 
1939     if (max_data_items) {
1940         m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1941                     flags);
1942         if (!m->data)
1943             goto out2;
1944 
1945         m->max_data_items = max_data_items;
1946     }
1947 
1948     dout("ceph_msg_new %p front %d\n", m, front_len);
1949     return m;
1950 
1951 out2:
1952     ceph_msg_put(m);
1953 out:
1954     if (!can_fail) {
1955         pr_err("msg_new can't create type %d front %d\n", type,
1956                front_len);
1957         WARN_ON(1);
1958     } else {
1959         dout("msg_new can't create type %d front %d\n", type,
1960              front_len);
1961     }
1962     return NULL;
1963 }
1964 EXPORT_SYMBOL(ceph_msg_new2);
1965 
1966 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
1967                   bool can_fail)
1968 {
1969     return ceph_msg_new2(type, front_len, 0, flags, can_fail);
1970 }
1971 EXPORT_SYMBOL(ceph_msg_new);
1972 
1973 /*
1974  * Allocate "middle" portion of a message, if it is needed and wasn't
1975  * allocated by alloc_msg.  This allows us to read a small fixed-size
1976  * per-type header in the front and then gracefully fail (i.e.,
1977  * propagate the error to the caller based on info in the front) when
1978  * the middle is too large.
1979  */
1980 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
1981 {
1982     int type = le16_to_cpu(msg->hdr.type);
1983     int middle_len = le32_to_cpu(msg->hdr.middle_len);
1984 
1985     dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
1986          ceph_msg_type_name(type), middle_len);
1987     BUG_ON(!middle_len);
1988     BUG_ON(msg->middle);
1989 
1990     msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
1991     if (!msg->middle)
1992         return -ENOMEM;
1993     return 0;
1994 }
1995 
1996 /*
1997  * Allocate a message for receiving an incoming message on a
1998  * connection, and save the result in con->in_msg.  Uses the
1999  * connection's private alloc_msg op if available.
2000  *
2001  * Returns 0 on success, or a negative error code.
2002  *
2003  * On success, if we set *skip = 1:
2004  *  - the next message should be skipped and ignored.
2005  *  - con->in_msg == NULL
2006  * or if we set *skip = 0:
2007  *  - con->in_msg is non-null.
2008  * On error (ENOMEM, EAGAIN, ...),
2009  *  - con->in_msg == NULL
2010  */
2011 int ceph_con_in_msg_alloc(struct ceph_connection *con,
2012               struct ceph_msg_header *hdr, int *skip)
2013 {
2014     int middle_len = le32_to_cpu(hdr->middle_len);
2015     struct ceph_msg *msg;
2016     int ret = 0;
2017 
2018     BUG_ON(con->in_msg != NULL);
2019     BUG_ON(!con->ops->alloc_msg);
2020 
2021     mutex_unlock(&con->mutex);
2022     msg = con->ops->alloc_msg(con, hdr, skip);
2023     mutex_lock(&con->mutex);
2024     if (con->state != CEPH_CON_S_OPEN) {
2025         if (msg)
2026             ceph_msg_put(msg);
2027         return -EAGAIN;
2028     }
2029     if (msg) {
2030         BUG_ON(*skip);
2031         msg_con_set(msg, con);
2032         con->in_msg = msg;
2033     } else {
2034         /*
2035          * Null message pointer means either we should skip
2036          * this message or we couldn't allocate memory.  The
2037          * former is not an error.
2038          */
2039         if (*skip)
2040             return 0;
2041 
2042         con->error_msg = "error allocating memory for incoming message";
2043         return -ENOMEM;
2044     }
2045     memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2046 
2047     if (middle_len && !con->in_msg->middle) {
2048         ret = ceph_alloc_middle(con, con->in_msg);
2049         if (ret < 0) {
2050             ceph_msg_put(con->in_msg);
2051             con->in_msg = NULL;
2052         }
2053     }
2054 
2055     return ret;
2056 }
2057 
2058 void ceph_con_get_out_msg(struct ceph_connection *con)
2059 {
2060     struct ceph_msg *msg;
2061 
2062     BUG_ON(list_empty(&con->out_queue));
2063     msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2064     WARN_ON(msg->con != con);
2065 
2066     /*
2067      * Put the message on "sent" list using a ref from ceph_con_send().
2068      * It is put when the message is acked or revoked.
2069      */
2070     list_move_tail(&msg->list_head, &con->out_sent);
2071 
2072     /*
2073      * Only assign outgoing seq # if we haven't sent this message
2074      * yet.  If it is requeued, resend with it's original seq.
2075      */
2076     if (msg->needs_out_seq) {
2077         msg->hdr.seq = cpu_to_le64(++con->out_seq);
2078         msg->needs_out_seq = false;
2079 
2080         if (con->ops->reencode_message)
2081             con->ops->reencode_message(msg);
2082     }
2083 
2084     /*
2085      * Get a ref for out_msg.  It is put when we are done sending the
2086      * message or in case of a fault.
2087      */
2088     WARN_ON(con->out_msg);
2089     con->out_msg = ceph_msg_get(msg);
2090 }
2091 
2092 /*
2093  * Free a generically kmalloc'd message.
2094  */
2095 static void ceph_msg_free(struct ceph_msg *m)
2096 {
2097     dout("%s %p\n", __func__, m);
2098     kvfree(m->front.iov_base);
2099     kfree(m->data);
2100     kmem_cache_free(ceph_msg_cache, m);
2101 }
2102 
2103 static void ceph_msg_release(struct kref *kref)
2104 {
2105     struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2106     int i;
2107 
2108     dout("%s %p\n", __func__, m);
2109     WARN_ON(!list_empty(&m->list_head));
2110 
2111     msg_con_set(m, NULL);
2112 
2113     /* drop middle, data, if any */
2114     if (m->middle) {
2115         ceph_buffer_put(m->middle);
2116         m->middle = NULL;
2117     }
2118 
2119     for (i = 0; i < m->num_data_items; i++)
2120         ceph_msg_data_destroy(&m->data[i]);
2121 
2122     if (m->pool)
2123         ceph_msgpool_put(m->pool, m);
2124     else
2125         ceph_msg_free(m);
2126 }
2127 
2128 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2129 {
2130     dout("%s %p (was %d)\n", __func__, msg,
2131          kref_read(&msg->kref));
2132     kref_get(&msg->kref);
2133     return msg;
2134 }
2135 EXPORT_SYMBOL(ceph_msg_get);
2136 
2137 void ceph_msg_put(struct ceph_msg *msg)
2138 {
2139     dout("%s %p (was %d)\n", __func__, msg,
2140          kref_read(&msg->kref));
2141     kref_put(&msg->kref, ceph_msg_release);
2142 }
2143 EXPORT_SYMBOL(ceph_msg_put);
2144 
2145 void ceph_msg_dump(struct ceph_msg *msg)
2146 {
2147     pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2148          msg->front_alloc_len, msg->data_length);
2149     print_hex_dump(KERN_DEBUG, "header: ",
2150                DUMP_PREFIX_OFFSET, 16, 1,
2151                &msg->hdr, sizeof(msg->hdr), true);
2152     print_hex_dump(KERN_DEBUG, " front: ",
2153                DUMP_PREFIX_OFFSET, 16, 1,
2154                msg->front.iov_base, msg->front.iov_len, true);
2155     if (msg->middle)
2156         print_hex_dump(KERN_DEBUG, "middle: ",
2157                    DUMP_PREFIX_OFFSET, 16, 1,
2158                    msg->middle->vec.iov_base,
2159                    msg->middle->vec.iov_len, true);
2160     print_hex_dump(KERN_DEBUG, "footer: ",
2161                DUMP_PREFIX_OFFSET, 16, 1,
2162                &msg->footer, sizeof(msg->footer), true);
2163 }
2164 EXPORT_SYMBOL(ceph_msg_dump);