Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  linux/mm/vmstat.c
0004  *
0005  *  Manages VM statistics
0006  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
0007  *
0008  *  zoned VM statistics
0009  *  Copyright (C) 2006 Silicon Graphics, Inc.,
0010  *      Christoph Lameter <christoph@lameter.com>
0011  *  Copyright (C) 2008-2014 Christoph Lameter
0012  */
0013 #include <linux/fs.h>
0014 #include <linux/mm.h>
0015 #include <linux/err.h>
0016 #include <linux/module.h>
0017 #include <linux/slab.h>
0018 #include <linux/cpu.h>
0019 #include <linux/cpumask.h>
0020 #include <linux/vmstat.h>
0021 #include <linux/proc_fs.h>
0022 #include <linux/seq_file.h>
0023 #include <linux/debugfs.h>
0024 #include <linux/sched.h>
0025 #include <linux/math64.h>
0026 #include <linux/writeback.h>
0027 #include <linux/compaction.h>
0028 #include <linux/mm_inline.h>
0029 #include <linux/page_ext.h>
0030 #include <linux/page_owner.h>
0031 #include <linux/migrate.h>
0032 
0033 #include "internal.h"
0034 
0035 #ifdef CONFIG_NUMA
0036 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
0037 
0038 /* zero numa counters within a zone */
0039 static void zero_zone_numa_counters(struct zone *zone)
0040 {
0041     int item, cpu;
0042 
0043     for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
0044         atomic_long_set(&zone->vm_numa_event[item], 0);
0045         for_each_online_cpu(cpu) {
0046             per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
0047                         = 0;
0048         }
0049     }
0050 }
0051 
0052 /* zero numa counters of all the populated zones */
0053 static void zero_zones_numa_counters(void)
0054 {
0055     struct zone *zone;
0056 
0057     for_each_populated_zone(zone)
0058         zero_zone_numa_counters(zone);
0059 }
0060 
0061 /* zero global numa counters */
0062 static void zero_global_numa_counters(void)
0063 {
0064     int item;
0065 
0066     for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
0067         atomic_long_set(&vm_numa_event[item], 0);
0068 }
0069 
0070 static void invalid_numa_statistics(void)
0071 {
0072     zero_zones_numa_counters();
0073     zero_global_numa_counters();
0074 }
0075 
0076 static DEFINE_MUTEX(vm_numa_stat_lock);
0077 
0078 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
0079         void *buffer, size_t *length, loff_t *ppos)
0080 {
0081     int ret, oldval;
0082 
0083     mutex_lock(&vm_numa_stat_lock);
0084     if (write)
0085         oldval = sysctl_vm_numa_stat;
0086     ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
0087     if (ret || !write)
0088         goto out;
0089 
0090     if (oldval == sysctl_vm_numa_stat)
0091         goto out;
0092     else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
0093         static_branch_enable(&vm_numa_stat_key);
0094         pr_info("enable numa statistics\n");
0095     } else {
0096         static_branch_disable(&vm_numa_stat_key);
0097         invalid_numa_statistics();
0098         pr_info("disable numa statistics, and clear numa counters\n");
0099     }
0100 
0101 out:
0102     mutex_unlock(&vm_numa_stat_lock);
0103     return ret;
0104 }
0105 #endif
0106 
0107 #ifdef CONFIG_VM_EVENT_COUNTERS
0108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
0109 EXPORT_PER_CPU_SYMBOL(vm_event_states);
0110 
0111 static void sum_vm_events(unsigned long *ret)
0112 {
0113     int cpu;
0114     int i;
0115 
0116     memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
0117 
0118     for_each_online_cpu(cpu) {
0119         struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
0120 
0121         for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
0122             ret[i] += this->event[i];
0123     }
0124 }
0125 
0126 /*
0127  * Accumulate the vm event counters across all CPUs.
0128  * The result is unavoidably approximate - it can change
0129  * during and after execution of this function.
0130 */
0131 void all_vm_events(unsigned long *ret)
0132 {
0133     cpus_read_lock();
0134     sum_vm_events(ret);
0135     cpus_read_unlock();
0136 }
0137 EXPORT_SYMBOL_GPL(all_vm_events);
0138 
0139 /*
0140  * Fold the foreign cpu events into our own.
0141  *
0142  * This is adding to the events on one processor
0143  * but keeps the global counts constant.
0144  */
0145 void vm_events_fold_cpu(int cpu)
0146 {
0147     struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
0148     int i;
0149 
0150     for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
0151         count_vm_events(i, fold_state->event[i]);
0152         fold_state->event[i] = 0;
0153     }
0154 }
0155 
0156 #endif /* CONFIG_VM_EVENT_COUNTERS */
0157 
0158 /*
0159  * Manage combined zone based / global counters
0160  *
0161  * vm_stat contains the global counters
0162  */
0163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
0164 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
0165 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
0166 EXPORT_SYMBOL(vm_zone_stat);
0167 EXPORT_SYMBOL(vm_node_stat);
0168 
0169 #ifdef CONFIG_NUMA
0170 static void fold_vm_zone_numa_events(struct zone *zone)
0171 {
0172     unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
0173     int cpu;
0174     enum numa_stat_item item;
0175 
0176     for_each_online_cpu(cpu) {
0177         struct per_cpu_zonestat *pzstats;
0178 
0179         pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
0180         for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
0181             zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
0182     }
0183 
0184     for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
0185         zone_numa_event_add(zone_numa_events[item], zone, item);
0186 }
0187 
0188 void fold_vm_numa_events(void)
0189 {
0190     struct zone *zone;
0191 
0192     for_each_populated_zone(zone)
0193         fold_vm_zone_numa_events(zone);
0194 }
0195 #endif
0196 
0197 #ifdef CONFIG_SMP
0198 
0199 int calculate_pressure_threshold(struct zone *zone)
0200 {
0201     int threshold;
0202     int watermark_distance;
0203 
0204     /*
0205      * As vmstats are not up to date, there is drift between the estimated
0206      * and real values. For high thresholds and a high number of CPUs, it
0207      * is possible for the min watermark to be breached while the estimated
0208      * value looks fine. The pressure threshold is a reduced value such
0209      * that even the maximum amount of drift will not accidentally breach
0210      * the min watermark
0211      */
0212     watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
0213     threshold = max(1, (int)(watermark_distance / num_online_cpus()));
0214 
0215     /*
0216      * Maximum threshold is 125
0217      */
0218     threshold = min(125, threshold);
0219 
0220     return threshold;
0221 }
0222 
0223 int calculate_normal_threshold(struct zone *zone)
0224 {
0225     int threshold;
0226     int mem;    /* memory in 128 MB units */
0227 
0228     /*
0229      * The threshold scales with the number of processors and the amount
0230      * of memory per zone. More memory means that we can defer updates for
0231      * longer, more processors could lead to more contention.
0232      * fls() is used to have a cheap way of logarithmic scaling.
0233      *
0234      * Some sample thresholds:
0235      *
0236      * Threshold    Processors  (fls)   Zonesize    fls(mem)+1
0237      * ------------------------------------------------------------------
0238      * 8        1       1   0.9-1 GB    4
0239      * 16       2       2   0.9-1 GB    4
0240      * 20       2       2   1-2 GB      5
0241      * 24       2       2   2-4 GB      6
0242      * 28       2       2   4-8 GB      7
0243      * 32       2       2   8-16 GB     8
0244      * 4        2       2   <128M       1
0245      * 30       4       3   2-4 GB      5
0246      * 48       4       3   8-16 GB     8
0247      * 32       8       4   1-2 GB      4
0248      * 32       8       4   0.9-1GB     4
0249      * 10       16      5   <128M       1
0250      * 40       16      5   900M        4
0251      * 70       64      7   2-4 GB      5
0252      * 84       64      7   4-8 GB      6
0253      * 108      512     9   4-8 GB      6
0254      * 125      1024        10  8-16 GB     8
0255      * 125      1024        10  16-32 GB    9
0256      */
0257 
0258     mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
0259 
0260     threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
0261 
0262     /*
0263      * Maximum threshold is 125
0264      */
0265     threshold = min(125, threshold);
0266 
0267     return threshold;
0268 }
0269 
0270 /*
0271  * Refresh the thresholds for each zone.
0272  */
0273 void refresh_zone_stat_thresholds(void)
0274 {
0275     struct pglist_data *pgdat;
0276     struct zone *zone;
0277     int cpu;
0278     int threshold;
0279 
0280     /* Zero current pgdat thresholds */
0281     for_each_online_pgdat(pgdat) {
0282         for_each_online_cpu(cpu) {
0283             per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
0284         }
0285     }
0286 
0287     for_each_populated_zone(zone) {
0288         struct pglist_data *pgdat = zone->zone_pgdat;
0289         unsigned long max_drift, tolerate_drift;
0290 
0291         threshold = calculate_normal_threshold(zone);
0292 
0293         for_each_online_cpu(cpu) {
0294             int pgdat_threshold;
0295 
0296             per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
0297                             = threshold;
0298 
0299             /* Base nodestat threshold on the largest populated zone. */
0300             pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
0301             per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
0302                 = max(threshold, pgdat_threshold);
0303         }
0304 
0305         /*
0306          * Only set percpu_drift_mark if there is a danger that
0307          * NR_FREE_PAGES reports the low watermark is ok when in fact
0308          * the min watermark could be breached by an allocation
0309          */
0310         tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
0311         max_drift = num_online_cpus() * threshold;
0312         if (max_drift > tolerate_drift)
0313             zone->percpu_drift_mark = high_wmark_pages(zone) +
0314                     max_drift;
0315     }
0316 }
0317 
0318 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
0319                 int (*calculate_pressure)(struct zone *))
0320 {
0321     struct zone *zone;
0322     int cpu;
0323     int threshold;
0324     int i;
0325 
0326     for (i = 0; i < pgdat->nr_zones; i++) {
0327         zone = &pgdat->node_zones[i];
0328         if (!zone->percpu_drift_mark)
0329             continue;
0330 
0331         threshold = (*calculate_pressure)(zone);
0332         for_each_online_cpu(cpu)
0333             per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
0334                             = threshold;
0335     }
0336 }
0337 
0338 /*
0339  * For use when we know that interrupts are disabled,
0340  * or when we know that preemption is disabled and that
0341  * particular counter cannot be updated from interrupt context.
0342  */
0343 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
0344                long delta)
0345 {
0346     struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
0347     s8 __percpu *p = pcp->vm_stat_diff + item;
0348     long x;
0349     long t;
0350 
0351     /*
0352      * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
0353      * atomicity is provided by IRQs being disabled -- either explicitly
0354      * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
0355      * CPU migrations and preemption potentially corrupts a counter so
0356      * disable preemption.
0357      */
0358     if (IS_ENABLED(CONFIG_PREEMPT_RT))
0359         preempt_disable();
0360 
0361     x = delta + __this_cpu_read(*p);
0362 
0363     t = __this_cpu_read(pcp->stat_threshold);
0364 
0365     if (unlikely(abs(x) > t)) {
0366         zone_page_state_add(x, zone, item);
0367         x = 0;
0368     }
0369     __this_cpu_write(*p, x);
0370 
0371     if (IS_ENABLED(CONFIG_PREEMPT_RT))
0372         preempt_enable();
0373 }
0374 EXPORT_SYMBOL(__mod_zone_page_state);
0375 
0376 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
0377                 long delta)
0378 {
0379     struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
0380     s8 __percpu *p = pcp->vm_node_stat_diff + item;
0381     long x;
0382     long t;
0383 
0384     if (vmstat_item_in_bytes(item)) {
0385         /*
0386          * Only cgroups use subpage accounting right now; at
0387          * the global level, these items still change in
0388          * multiples of whole pages. Store them as pages
0389          * internally to keep the per-cpu counters compact.
0390          */
0391         VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
0392         delta >>= PAGE_SHIFT;
0393     }
0394 
0395     /* See __mod_node_page_state */
0396     if (IS_ENABLED(CONFIG_PREEMPT_RT))
0397         preempt_disable();
0398 
0399     x = delta + __this_cpu_read(*p);
0400 
0401     t = __this_cpu_read(pcp->stat_threshold);
0402 
0403     if (unlikely(abs(x) > t)) {
0404         node_page_state_add(x, pgdat, item);
0405         x = 0;
0406     }
0407     __this_cpu_write(*p, x);
0408 
0409     if (IS_ENABLED(CONFIG_PREEMPT_RT))
0410         preempt_enable();
0411 }
0412 EXPORT_SYMBOL(__mod_node_page_state);
0413 
0414 /*
0415  * Optimized increment and decrement functions.
0416  *
0417  * These are only for a single page and therefore can take a struct page *
0418  * argument instead of struct zone *. This allows the inclusion of the code
0419  * generated for page_zone(page) into the optimized functions.
0420  *
0421  * No overflow check is necessary and therefore the differential can be
0422  * incremented or decremented in place which may allow the compilers to
0423  * generate better code.
0424  * The increment or decrement is known and therefore one boundary check can
0425  * be omitted.
0426  *
0427  * NOTE: These functions are very performance sensitive. Change only
0428  * with care.
0429  *
0430  * Some processors have inc/dec instructions that are atomic vs an interrupt.
0431  * However, the code must first determine the differential location in a zone
0432  * based on the processor number and then inc/dec the counter. There is no
0433  * guarantee without disabling preemption that the processor will not change
0434  * in between and therefore the atomicity vs. interrupt cannot be exploited
0435  * in a useful way here.
0436  */
0437 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
0438 {
0439     struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
0440     s8 __percpu *p = pcp->vm_stat_diff + item;
0441     s8 v, t;
0442 
0443     /* See __mod_node_page_state */
0444     if (IS_ENABLED(CONFIG_PREEMPT_RT))
0445         preempt_disable();
0446 
0447     v = __this_cpu_inc_return(*p);
0448     t = __this_cpu_read(pcp->stat_threshold);
0449     if (unlikely(v > t)) {
0450         s8 overstep = t >> 1;
0451 
0452         zone_page_state_add(v + overstep, zone, item);
0453         __this_cpu_write(*p, -overstep);
0454     }
0455 
0456     if (IS_ENABLED(CONFIG_PREEMPT_RT))
0457         preempt_enable();
0458 }
0459 
0460 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
0461 {
0462     struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
0463     s8 __percpu *p = pcp->vm_node_stat_diff + item;
0464     s8 v, t;
0465 
0466     VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
0467 
0468     /* See __mod_node_page_state */
0469     if (IS_ENABLED(CONFIG_PREEMPT_RT))
0470         preempt_disable();
0471 
0472     v = __this_cpu_inc_return(*p);
0473     t = __this_cpu_read(pcp->stat_threshold);
0474     if (unlikely(v > t)) {
0475         s8 overstep = t >> 1;
0476 
0477         node_page_state_add(v + overstep, pgdat, item);
0478         __this_cpu_write(*p, -overstep);
0479     }
0480 
0481     if (IS_ENABLED(CONFIG_PREEMPT_RT))
0482         preempt_enable();
0483 }
0484 
0485 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
0486 {
0487     __inc_zone_state(page_zone(page), item);
0488 }
0489 EXPORT_SYMBOL(__inc_zone_page_state);
0490 
0491 void __inc_node_page_state(struct page *page, enum node_stat_item item)
0492 {
0493     __inc_node_state(page_pgdat(page), item);
0494 }
0495 EXPORT_SYMBOL(__inc_node_page_state);
0496 
0497 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
0498 {
0499     struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
0500     s8 __percpu *p = pcp->vm_stat_diff + item;
0501     s8 v, t;
0502 
0503     /* See __mod_node_page_state */
0504     if (IS_ENABLED(CONFIG_PREEMPT_RT))
0505         preempt_disable();
0506 
0507     v = __this_cpu_dec_return(*p);
0508     t = __this_cpu_read(pcp->stat_threshold);
0509     if (unlikely(v < - t)) {
0510         s8 overstep = t >> 1;
0511 
0512         zone_page_state_add(v - overstep, zone, item);
0513         __this_cpu_write(*p, overstep);
0514     }
0515 
0516     if (IS_ENABLED(CONFIG_PREEMPT_RT))
0517         preempt_enable();
0518 }
0519 
0520 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
0521 {
0522     struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
0523     s8 __percpu *p = pcp->vm_node_stat_diff + item;
0524     s8 v, t;
0525 
0526     VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
0527 
0528     /* See __mod_node_page_state */
0529     if (IS_ENABLED(CONFIG_PREEMPT_RT))
0530         preempt_disable();
0531 
0532     v = __this_cpu_dec_return(*p);
0533     t = __this_cpu_read(pcp->stat_threshold);
0534     if (unlikely(v < - t)) {
0535         s8 overstep = t >> 1;
0536 
0537         node_page_state_add(v - overstep, pgdat, item);
0538         __this_cpu_write(*p, overstep);
0539     }
0540 
0541     if (IS_ENABLED(CONFIG_PREEMPT_RT))
0542         preempt_enable();
0543 }
0544 
0545 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
0546 {
0547     __dec_zone_state(page_zone(page), item);
0548 }
0549 EXPORT_SYMBOL(__dec_zone_page_state);
0550 
0551 void __dec_node_page_state(struct page *page, enum node_stat_item item)
0552 {
0553     __dec_node_state(page_pgdat(page), item);
0554 }
0555 EXPORT_SYMBOL(__dec_node_page_state);
0556 
0557 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
0558 /*
0559  * If we have cmpxchg_local support then we do not need to incur the overhead
0560  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
0561  *
0562  * mod_state() modifies the zone counter state through atomic per cpu
0563  * operations.
0564  *
0565  * Overstep mode specifies how overstep should handled:
0566  *     0       No overstepping
0567  *     1       Overstepping half of threshold
0568  *     -1      Overstepping minus half of threshold
0569 */
0570 static inline void mod_zone_state(struct zone *zone,
0571        enum zone_stat_item item, long delta, int overstep_mode)
0572 {
0573     struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
0574     s8 __percpu *p = pcp->vm_stat_diff + item;
0575     long o, n, t, z;
0576 
0577     do {
0578         z = 0;  /* overflow to zone counters */
0579 
0580         /*
0581          * The fetching of the stat_threshold is racy. We may apply
0582          * a counter threshold to the wrong the cpu if we get
0583          * rescheduled while executing here. However, the next
0584          * counter update will apply the threshold again and
0585          * therefore bring the counter under the threshold again.
0586          *
0587          * Most of the time the thresholds are the same anyways
0588          * for all cpus in a zone.
0589          */
0590         t = this_cpu_read(pcp->stat_threshold);
0591 
0592         o = this_cpu_read(*p);
0593         n = delta + o;
0594 
0595         if (abs(n) > t) {
0596             int os = overstep_mode * (t >> 1) ;
0597 
0598             /* Overflow must be added to zone counters */
0599             z = n + os;
0600             n = -os;
0601         }
0602     } while (this_cpu_cmpxchg(*p, o, n) != o);
0603 
0604     if (z)
0605         zone_page_state_add(z, zone, item);
0606 }
0607 
0608 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
0609              long delta)
0610 {
0611     mod_zone_state(zone, item, delta, 0);
0612 }
0613 EXPORT_SYMBOL(mod_zone_page_state);
0614 
0615 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
0616 {
0617     mod_zone_state(page_zone(page), item, 1, 1);
0618 }
0619 EXPORT_SYMBOL(inc_zone_page_state);
0620 
0621 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
0622 {
0623     mod_zone_state(page_zone(page), item, -1, -1);
0624 }
0625 EXPORT_SYMBOL(dec_zone_page_state);
0626 
0627 static inline void mod_node_state(struct pglist_data *pgdat,
0628        enum node_stat_item item, int delta, int overstep_mode)
0629 {
0630     struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
0631     s8 __percpu *p = pcp->vm_node_stat_diff + item;
0632     long o, n, t, z;
0633 
0634     if (vmstat_item_in_bytes(item)) {
0635         /*
0636          * Only cgroups use subpage accounting right now; at
0637          * the global level, these items still change in
0638          * multiples of whole pages. Store them as pages
0639          * internally to keep the per-cpu counters compact.
0640          */
0641         VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
0642         delta >>= PAGE_SHIFT;
0643     }
0644 
0645     do {
0646         z = 0;  /* overflow to node counters */
0647 
0648         /*
0649          * The fetching of the stat_threshold is racy. We may apply
0650          * a counter threshold to the wrong the cpu if we get
0651          * rescheduled while executing here. However, the next
0652          * counter update will apply the threshold again and
0653          * therefore bring the counter under the threshold again.
0654          *
0655          * Most of the time the thresholds are the same anyways
0656          * for all cpus in a node.
0657          */
0658         t = this_cpu_read(pcp->stat_threshold);
0659 
0660         o = this_cpu_read(*p);
0661         n = delta + o;
0662 
0663         if (abs(n) > t) {
0664             int os = overstep_mode * (t >> 1) ;
0665 
0666             /* Overflow must be added to node counters */
0667             z = n + os;
0668             n = -os;
0669         }
0670     } while (this_cpu_cmpxchg(*p, o, n) != o);
0671 
0672     if (z)
0673         node_page_state_add(z, pgdat, item);
0674 }
0675 
0676 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
0677                     long delta)
0678 {
0679     mod_node_state(pgdat, item, delta, 0);
0680 }
0681 EXPORT_SYMBOL(mod_node_page_state);
0682 
0683 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
0684 {
0685     mod_node_state(pgdat, item, 1, 1);
0686 }
0687 
0688 void inc_node_page_state(struct page *page, enum node_stat_item item)
0689 {
0690     mod_node_state(page_pgdat(page), item, 1, 1);
0691 }
0692 EXPORT_SYMBOL(inc_node_page_state);
0693 
0694 void dec_node_page_state(struct page *page, enum node_stat_item item)
0695 {
0696     mod_node_state(page_pgdat(page), item, -1, -1);
0697 }
0698 EXPORT_SYMBOL(dec_node_page_state);
0699 #else
0700 /*
0701  * Use interrupt disable to serialize counter updates
0702  */
0703 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
0704              long delta)
0705 {
0706     unsigned long flags;
0707 
0708     local_irq_save(flags);
0709     __mod_zone_page_state(zone, item, delta);
0710     local_irq_restore(flags);
0711 }
0712 EXPORT_SYMBOL(mod_zone_page_state);
0713 
0714 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
0715 {
0716     unsigned long flags;
0717     struct zone *zone;
0718 
0719     zone = page_zone(page);
0720     local_irq_save(flags);
0721     __inc_zone_state(zone, item);
0722     local_irq_restore(flags);
0723 }
0724 EXPORT_SYMBOL(inc_zone_page_state);
0725 
0726 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
0727 {
0728     unsigned long flags;
0729 
0730     local_irq_save(flags);
0731     __dec_zone_page_state(page, item);
0732     local_irq_restore(flags);
0733 }
0734 EXPORT_SYMBOL(dec_zone_page_state);
0735 
0736 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
0737 {
0738     unsigned long flags;
0739 
0740     local_irq_save(flags);
0741     __inc_node_state(pgdat, item);
0742     local_irq_restore(flags);
0743 }
0744 EXPORT_SYMBOL(inc_node_state);
0745 
0746 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
0747                     long delta)
0748 {
0749     unsigned long flags;
0750 
0751     local_irq_save(flags);
0752     __mod_node_page_state(pgdat, item, delta);
0753     local_irq_restore(flags);
0754 }
0755 EXPORT_SYMBOL(mod_node_page_state);
0756 
0757 void inc_node_page_state(struct page *page, enum node_stat_item item)
0758 {
0759     unsigned long flags;
0760     struct pglist_data *pgdat;
0761 
0762     pgdat = page_pgdat(page);
0763     local_irq_save(flags);
0764     __inc_node_state(pgdat, item);
0765     local_irq_restore(flags);
0766 }
0767 EXPORT_SYMBOL(inc_node_page_state);
0768 
0769 void dec_node_page_state(struct page *page, enum node_stat_item item)
0770 {
0771     unsigned long flags;
0772 
0773     local_irq_save(flags);
0774     __dec_node_page_state(page, item);
0775     local_irq_restore(flags);
0776 }
0777 EXPORT_SYMBOL(dec_node_page_state);
0778 #endif
0779 
0780 /*
0781  * Fold a differential into the global counters.
0782  * Returns the number of counters updated.
0783  */
0784 static int fold_diff(int *zone_diff, int *node_diff)
0785 {
0786     int i;
0787     int changes = 0;
0788 
0789     for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
0790         if (zone_diff[i]) {
0791             atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
0792             changes++;
0793     }
0794 
0795     for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
0796         if (node_diff[i]) {
0797             atomic_long_add(node_diff[i], &vm_node_stat[i]);
0798             changes++;
0799     }
0800     return changes;
0801 }
0802 
0803 /*
0804  * Update the zone counters for the current cpu.
0805  *
0806  * Note that refresh_cpu_vm_stats strives to only access
0807  * node local memory. The per cpu pagesets on remote zones are placed
0808  * in the memory local to the processor using that pageset. So the
0809  * loop over all zones will access a series of cachelines local to
0810  * the processor.
0811  *
0812  * The call to zone_page_state_add updates the cachelines with the
0813  * statistics in the remote zone struct as well as the global cachelines
0814  * with the global counters. These could cause remote node cache line
0815  * bouncing and will have to be only done when necessary.
0816  *
0817  * The function returns the number of global counters updated.
0818  */
0819 static int refresh_cpu_vm_stats(bool do_pagesets)
0820 {
0821     struct pglist_data *pgdat;
0822     struct zone *zone;
0823     int i;
0824     int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
0825     int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
0826     int changes = 0;
0827 
0828     for_each_populated_zone(zone) {
0829         struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
0830 #ifdef CONFIG_NUMA
0831         struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
0832 #endif
0833 
0834         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
0835             int v;
0836 
0837             v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
0838             if (v) {
0839 
0840                 atomic_long_add(v, &zone->vm_stat[i]);
0841                 global_zone_diff[i] += v;
0842 #ifdef CONFIG_NUMA
0843                 /* 3 seconds idle till flush */
0844                 __this_cpu_write(pcp->expire, 3);
0845 #endif
0846             }
0847         }
0848 #ifdef CONFIG_NUMA
0849 
0850         if (do_pagesets) {
0851             cond_resched();
0852             /*
0853              * Deal with draining the remote pageset of this
0854              * processor
0855              *
0856              * Check if there are pages remaining in this pageset
0857              * if not then there is nothing to expire.
0858              */
0859             if (!__this_cpu_read(pcp->expire) ||
0860                    !__this_cpu_read(pcp->count))
0861                 continue;
0862 
0863             /*
0864              * We never drain zones local to this processor.
0865              */
0866             if (zone_to_nid(zone) == numa_node_id()) {
0867                 __this_cpu_write(pcp->expire, 0);
0868                 continue;
0869             }
0870 
0871             if (__this_cpu_dec_return(pcp->expire))
0872                 continue;
0873 
0874             if (__this_cpu_read(pcp->count)) {
0875                 drain_zone_pages(zone, this_cpu_ptr(pcp));
0876                 changes++;
0877             }
0878         }
0879 #endif
0880     }
0881 
0882     for_each_online_pgdat(pgdat) {
0883         struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
0884 
0885         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
0886             int v;
0887 
0888             v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
0889             if (v) {
0890                 atomic_long_add(v, &pgdat->vm_stat[i]);
0891                 global_node_diff[i] += v;
0892             }
0893         }
0894     }
0895 
0896     changes += fold_diff(global_zone_diff, global_node_diff);
0897     return changes;
0898 }
0899 
0900 /*
0901  * Fold the data for an offline cpu into the global array.
0902  * There cannot be any access by the offline cpu and therefore
0903  * synchronization is simplified.
0904  */
0905 void cpu_vm_stats_fold(int cpu)
0906 {
0907     struct pglist_data *pgdat;
0908     struct zone *zone;
0909     int i;
0910     int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
0911     int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
0912 
0913     for_each_populated_zone(zone) {
0914         struct per_cpu_zonestat *pzstats;
0915 
0916         pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
0917 
0918         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
0919             if (pzstats->vm_stat_diff[i]) {
0920                 int v;
0921 
0922                 v = pzstats->vm_stat_diff[i];
0923                 pzstats->vm_stat_diff[i] = 0;
0924                 atomic_long_add(v, &zone->vm_stat[i]);
0925                 global_zone_diff[i] += v;
0926             }
0927         }
0928 #ifdef CONFIG_NUMA
0929         for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
0930             if (pzstats->vm_numa_event[i]) {
0931                 unsigned long v;
0932 
0933                 v = pzstats->vm_numa_event[i];
0934                 pzstats->vm_numa_event[i] = 0;
0935                 zone_numa_event_add(v, zone, i);
0936             }
0937         }
0938 #endif
0939     }
0940 
0941     for_each_online_pgdat(pgdat) {
0942         struct per_cpu_nodestat *p;
0943 
0944         p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
0945 
0946         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
0947             if (p->vm_node_stat_diff[i]) {
0948                 int v;
0949 
0950                 v = p->vm_node_stat_diff[i];
0951                 p->vm_node_stat_diff[i] = 0;
0952                 atomic_long_add(v, &pgdat->vm_stat[i]);
0953                 global_node_diff[i] += v;
0954             }
0955     }
0956 
0957     fold_diff(global_zone_diff, global_node_diff);
0958 }
0959 
0960 /*
0961  * this is only called if !populated_zone(zone), which implies no other users of
0962  * pset->vm_stat_diff[] exist.
0963  */
0964 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
0965 {
0966     unsigned long v;
0967     int i;
0968 
0969     for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
0970         if (pzstats->vm_stat_diff[i]) {
0971             v = pzstats->vm_stat_diff[i];
0972             pzstats->vm_stat_diff[i] = 0;
0973             zone_page_state_add(v, zone, i);
0974         }
0975     }
0976 
0977 #ifdef CONFIG_NUMA
0978     for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
0979         if (pzstats->vm_numa_event[i]) {
0980             v = pzstats->vm_numa_event[i];
0981             pzstats->vm_numa_event[i] = 0;
0982             zone_numa_event_add(v, zone, i);
0983         }
0984     }
0985 #endif
0986 }
0987 #endif
0988 
0989 #ifdef CONFIG_NUMA
0990 /*
0991  * Determine the per node value of a stat item. This function
0992  * is called frequently in a NUMA machine, so try to be as
0993  * frugal as possible.
0994  */
0995 unsigned long sum_zone_node_page_state(int node,
0996                  enum zone_stat_item item)
0997 {
0998     struct zone *zones = NODE_DATA(node)->node_zones;
0999     int i;
1000     unsigned long count = 0;
1001 
1002     for (i = 0; i < MAX_NR_ZONES; i++)
1003         count += zone_page_state(zones + i, item);
1004 
1005     return count;
1006 }
1007 
1008 /* Determine the per node value of a numa stat item. */
1009 unsigned long sum_zone_numa_event_state(int node,
1010                  enum numa_stat_item item)
1011 {
1012     struct zone *zones = NODE_DATA(node)->node_zones;
1013     unsigned long count = 0;
1014     int i;
1015 
1016     for (i = 0; i < MAX_NR_ZONES; i++)
1017         count += zone_numa_event_state(zones + i, item);
1018 
1019     return count;
1020 }
1021 
1022 /*
1023  * Determine the per node value of a stat item.
1024  */
1025 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1026                     enum node_stat_item item)
1027 {
1028     long x = atomic_long_read(&pgdat->vm_stat[item]);
1029 #ifdef CONFIG_SMP
1030     if (x < 0)
1031         x = 0;
1032 #endif
1033     return x;
1034 }
1035 
1036 unsigned long node_page_state(struct pglist_data *pgdat,
1037                   enum node_stat_item item)
1038 {
1039     VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1040 
1041     return node_page_state_pages(pgdat, item);
1042 }
1043 #endif
1044 
1045 #ifdef CONFIG_COMPACTION
1046 
1047 struct contig_page_info {
1048     unsigned long free_pages;
1049     unsigned long free_blocks_total;
1050     unsigned long free_blocks_suitable;
1051 };
1052 
1053 /*
1054  * Calculate the number of free pages in a zone, how many contiguous
1055  * pages are free and how many are large enough to satisfy an allocation of
1056  * the target size. Note that this function makes no attempt to estimate
1057  * how many suitable free blocks there *might* be if MOVABLE pages were
1058  * migrated. Calculating that is possible, but expensive and can be
1059  * figured out from userspace
1060  */
1061 static void fill_contig_page_info(struct zone *zone,
1062                 unsigned int suitable_order,
1063                 struct contig_page_info *info)
1064 {
1065     unsigned int order;
1066 
1067     info->free_pages = 0;
1068     info->free_blocks_total = 0;
1069     info->free_blocks_suitable = 0;
1070 
1071     for (order = 0; order < MAX_ORDER; order++) {
1072         unsigned long blocks;
1073 
1074         /*
1075          * Count number of free blocks.
1076          *
1077          * Access to nr_free is lockless as nr_free is used only for
1078          * diagnostic purposes. Use data_race to avoid KCSAN warning.
1079          */
1080         blocks = data_race(zone->free_area[order].nr_free);
1081         info->free_blocks_total += blocks;
1082 
1083         /* Count free base pages */
1084         info->free_pages += blocks << order;
1085 
1086         /* Count the suitable free blocks */
1087         if (order >= suitable_order)
1088             info->free_blocks_suitable += blocks <<
1089                         (order - suitable_order);
1090     }
1091 }
1092 
1093 /*
1094  * A fragmentation index only makes sense if an allocation of a requested
1095  * size would fail. If that is true, the fragmentation index indicates
1096  * whether external fragmentation or a lack of memory was the problem.
1097  * The value can be used to determine if page reclaim or compaction
1098  * should be used
1099  */
1100 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1101 {
1102     unsigned long requested = 1UL << order;
1103 
1104     if (WARN_ON_ONCE(order >= MAX_ORDER))
1105         return 0;
1106 
1107     if (!info->free_blocks_total)
1108         return 0;
1109 
1110     /* Fragmentation index only makes sense when a request would fail */
1111     if (info->free_blocks_suitable)
1112         return -1000;
1113 
1114     /*
1115      * Index is between 0 and 1 so return within 3 decimal places
1116      *
1117      * 0 => allocation would fail due to lack of memory
1118      * 1 => allocation would fail due to fragmentation
1119      */
1120     return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1121 }
1122 
1123 /*
1124  * Calculates external fragmentation within a zone wrt the given order.
1125  * It is defined as the percentage of pages found in blocks of size
1126  * less than 1 << order. It returns values in range [0, 100].
1127  */
1128 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1129 {
1130     struct contig_page_info info;
1131 
1132     fill_contig_page_info(zone, order, &info);
1133     if (info.free_pages == 0)
1134         return 0;
1135 
1136     return div_u64((info.free_pages -
1137             (info.free_blocks_suitable << order)) * 100,
1138             info.free_pages);
1139 }
1140 
1141 /* Same as __fragmentation index but allocs contig_page_info on stack */
1142 int fragmentation_index(struct zone *zone, unsigned int order)
1143 {
1144     struct contig_page_info info;
1145 
1146     fill_contig_page_info(zone, order, &info);
1147     return __fragmentation_index(order, &info);
1148 }
1149 #endif
1150 
1151 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1152     defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1153 #ifdef CONFIG_ZONE_DMA
1154 #define TEXT_FOR_DMA(xx) xx "_dma",
1155 #else
1156 #define TEXT_FOR_DMA(xx)
1157 #endif
1158 
1159 #ifdef CONFIG_ZONE_DMA32
1160 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1161 #else
1162 #define TEXT_FOR_DMA32(xx)
1163 #endif
1164 
1165 #ifdef CONFIG_HIGHMEM
1166 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1167 #else
1168 #define TEXT_FOR_HIGHMEM(xx)
1169 #endif
1170 
1171 #ifdef CONFIG_ZONE_DEVICE
1172 #define TEXT_FOR_DEVICE(xx) xx "_device",
1173 #else
1174 #define TEXT_FOR_DEVICE(xx)
1175 #endif
1176 
1177 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1178                     TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1179                     TEXT_FOR_DEVICE(xx)
1180 
1181 const char * const vmstat_text[] = {
1182     /* enum zone_stat_item counters */
1183     "nr_free_pages",
1184     "nr_zone_inactive_anon",
1185     "nr_zone_active_anon",
1186     "nr_zone_inactive_file",
1187     "nr_zone_active_file",
1188     "nr_zone_unevictable",
1189     "nr_zone_write_pending",
1190     "nr_mlock",
1191     "nr_bounce",
1192 #if IS_ENABLED(CONFIG_ZSMALLOC)
1193     "nr_zspages",
1194 #endif
1195     "nr_free_cma",
1196 
1197     /* enum numa_stat_item counters */
1198 #ifdef CONFIG_NUMA
1199     "numa_hit",
1200     "numa_miss",
1201     "numa_foreign",
1202     "numa_interleave",
1203     "numa_local",
1204     "numa_other",
1205 #endif
1206 
1207     /* enum node_stat_item counters */
1208     "nr_inactive_anon",
1209     "nr_active_anon",
1210     "nr_inactive_file",
1211     "nr_active_file",
1212     "nr_unevictable",
1213     "nr_slab_reclaimable",
1214     "nr_slab_unreclaimable",
1215     "nr_isolated_anon",
1216     "nr_isolated_file",
1217     "workingset_nodes",
1218     "workingset_refault_anon",
1219     "workingset_refault_file",
1220     "workingset_activate_anon",
1221     "workingset_activate_file",
1222     "workingset_restore_anon",
1223     "workingset_restore_file",
1224     "workingset_nodereclaim",
1225     "nr_anon_pages",
1226     "nr_mapped",
1227     "nr_file_pages",
1228     "nr_dirty",
1229     "nr_writeback",
1230     "nr_writeback_temp",
1231     "nr_shmem",
1232     "nr_shmem_hugepages",
1233     "nr_shmem_pmdmapped",
1234     "nr_file_hugepages",
1235     "nr_file_pmdmapped",
1236     "nr_anon_transparent_hugepages",
1237     "nr_vmscan_write",
1238     "nr_vmscan_immediate_reclaim",
1239     "nr_dirtied",
1240     "nr_written",
1241     "nr_throttled_written",
1242     "nr_kernel_misc_reclaimable",
1243     "nr_foll_pin_acquired",
1244     "nr_foll_pin_released",
1245     "nr_kernel_stack",
1246 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1247     "nr_shadow_call_stack",
1248 #endif
1249     "nr_page_table_pages",
1250 #ifdef CONFIG_SWAP
1251     "nr_swapcached",
1252 #endif
1253 #ifdef CONFIG_NUMA_BALANCING
1254     "pgpromote_success",
1255 #endif
1256 
1257     /* enum writeback_stat_item counters */
1258     "nr_dirty_threshold",
1259     "nr_dirty_background_threshold",
1260 
1261 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1262     /* enum vm_event_item counters */
1263     "pgpgin",
1264     "pgpgout",
1265     "pswpin",
1266     "pswpout",
1267 
1268     TEXTS_FOR_ZONES("pgalloc")
1269     TEXTS_FOR_ZONES("allocstall")
1270     TEXTS_FOR_ZONES("pgskip")
1271 
1272     "pgfree",
1273     "pgactivate",
1274     "pgdeactivate",
1275     "pglazyfree",
1276 
1277     "pgfault",
1278     "pgmajfault",
1279     "pglazyfreed",
1280 
1281     "pgrefill",
1282     "pgreuse",
1283     "pgsteal_kswapd",
1284     "pgsteal_direct",
1285     "pgdemote_kswapd",
1286     "pgdemote_direct",
1287     "pgscan_kswapd",
1288     "pgscan_direct",
1289     "pgscan_direct_throttle",
1290     "pgscan_anon",
1291     "pgscan_file",
1292     "pgsteal_anon",
1293     "pgsteal_file",
1294 
1295 #ifdef CONFIG_NUMA
1296     "zone_reclaim_failed",
1297 #endif
1298     "pginodesteal",
1299     "slabs_scanned",
1300     "kswapd_inodesteal",
1301     "kswapd_low_wmark_hit_quickly",
1302     "kswapd_high_wmark_hit_quickly",
1303     "pageoutrun",
1304 
1305     "pgrotated",
1306 
1307     "drop_pagecache",
1308     "drop_slab",
1309     "oom_kill",
1310 
1311 #ifdef CONFIG_NUMA_BALANCING
1312     "numa_pte_updates",
1313     "numa_huge_pte_updates",
1314     "numa_hint_faults",
1315     "numa_hint_faults_local",
1316     "numa_pages_migrated",
1317 #endif
1318 #ifdef CONFIG_MIGRATION
1319     "pgmigrate_success",
1320     "pgmigrate_fail",
1321     "thp_migration_success",
1322     "thp_migration_fail",
1323     "thp_migration_split",
1324 #endif
1325 #ifdef CONFIG_COMPACTION
1326     "compact_migrate_scanned",
1327     "compact_free_scanned",
1328     "compact_isolated",
1329     "compact_stall",
1330     "compact_fail",
1331     "compact_success",
1332     "compact_daemon_wake",
1333     "compact_daemon_migrate_scanned",
1334     "compact_daemon_free_scanned",
1335 #endif
1336 
1337 #ifdef CONFIG_HUGETLB_PAGE
1338     "htlb_buddy_alloc_success",
1339     "htlb_buddy_alloc_fail",
1340 #endif
1341 #ifdef CONFIG_CMA
1342     "cma_alloc_success",
1343     "cma_alloc_fail",
1344 #endif
1345     "unevictable_pgs_culled",
1346     "unevictable_pgs_scanned",
1347     "unevictable_pgs_rescued",
1348     "unevictable_pgs_mlocked",
1349     "unevictable_pgs_munlocked",
1350     "unevictable_pgs_cleared",
1351     "unevictable_pgs_stranded",
1352 
1353 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1354     "thp_fault_alloc",
1355     "thp_fault_fallback",
1356     "thp_fault_fallback_charge",
1357     "thp_collapse_alloc",
1358     "thp_collapse_alloc_failed",
1359     "thp_file_alloc",
1360     "thp_file_fallback",
1361     "thp_file_fallback_charge",
1362     "thp_file_mapped",
1363     "thp_split_page",
1364     "thp_split_page_failed",
1365     "thp_deferred_split_page",
1366     "thp_split_pmd",
1367     "thp_scan_exceed_none_pte",
1368     "thp_scan_exceed_swap_pte",
1369     "thp_scan_exceed_share_pte",
1370 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1371     "thp_split_pud",
1372 #endif
1373     "thp_zero_page_alloc",
1374     "thp_zero_page_alloc_failed",
1375     "thp_swpout",
1376     "thp_swpout_fallback",
1377 #endif
1378 #ifdef CONFIG_MEMORY_BALLOON
1379     "balloon_inflate",
1380     "balloon_deflate",
1381 #ifdef CONFIG_BALLOON_COMPACTION
1382     "balloon_migrate",
1383 #endif
1384 #endif /* CONFIG_MEMORY_BALLOON */
1385 #ifdef CONFIG_DEBUG_TLBFLUSH
1386     "nr_tlb_remote_flush",
1387     "nr_tlb_remote_flush_received",
1388     "nr_tlb_local_flush_all",
1389     "nr_tlb_local_flush_one",
1390 #endif /* CONFIG_DEBUG_TLBFLUSH */
1391 
1392 #ifdef CONFIG_DEBUG_VM_VMACACHE
1393     "vmacache_find_calls",
1394     "vmacache_find_hits",
1395 #endif
1396 #ifdef CONFIG_SWAP
1397     "swap_ra",
1398     "swap_ra_hit",
1399 #ifdef CONFIG_KSM
1400     "ksm_swpin_copy",
1401 #endif
1402 #endif
1403 #ifdef CONFIG_KSM
1404     "cow_ksm",
1405 #endif
1406 #ifdef CONFIG_ZSWAP
1407     "zswpin",
1408     "zswpout",
1409 #endif
1410 #ifdef CONFIG_X86
1411     "direct_map_level2_splits",
1412     "direct_map_level3_splits",
1413 #endif
1414 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1415 };
1416 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1417 
1418 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1419      defined(CONFIG_PROC_FS)
1420 static void *frag_start(struct seq_file *m, loff_t *pos)
1421 {
1422     pg_data_t *pgdat;
1423     loff_t node = *pos;
1424 
1425     for (pgdat = first_online_pgdat();
1426          pgdat && node;
1427          pgdat = next_online_pgdat(pgdat))
1428         --node;
1429 
1430     return pgdat;
1431 }
1432 
1433 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1434 {
1435     pg_data_t *pgdat = (pg_data_t *)arg;
1436 
1437     (*pos)++;
1438     return next_online_pgdat(pgdat);
1439 }
1440 
1441 static void frag_stop(struct seq_file *m, void *arg)
1442 {
1443 }
1444 
1445 /*
1446  * Walk zones in a node and print using a callback.
1447  * If @assert_populated is true, only use callback for zones that are populated.
1448  */
1449 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1450         bool assert_populated, bool nolock,
1451         void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1452 {
1453     struct zone *zone;
1454     struct zone *node_zones = pgdat->node_zones;
1455     unsigned long flags;
1456 
1457     for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1458         if (assert_populated && !populated_zone(zone))
1459             continue;
1460 
1461         if (!nolock)
1462             spin_lock_irqsave(&zone->lock, flags);
1463         print(m, pgdat, zone);
1464         if (!nolock)
1465             spin_unlock_irqrestore(&zone->lock, flags);
1466     }
1467 }
1468 #endif
1469 
1470 #ifdef CONFIG_PROC_FS
1471 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1472                         struct zone *zone)
1473 {
1474     int order;
1475 
1476     seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1477     for (order = 0; order < MAX_ORDER; ++order)
1478         /*
1479          * Access to nr_free is lockless as nr_free is used only for
1480          * printing purposes. Use data_race to avoid KCSAN warning.
1481          */
1482         seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1483     seq_putc(m, '\n');
1484 }
1485 
1486 /*
1487  * This walks the free areas for each zone.
1488  */
1489 static int frag_show(struct seq_file *m, void *arg)
1490 {
1491     pg_data_t *pgdat = (pg_data_t *)arg;
1492     walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1493     return 0;
1494 }
1495 
1496 static void pagetypeinfo_showfree_print(struct seq_file *m,
1497                     pg_data_t *pgdat, struct zone *zone)
1498 {
1499     int order, mtype;
1500 
1501     for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1502         seq_printf(m, "Node %4d, zone %8s, type %12s ",
1503                     pgdat->node_id,
1504                     zone->name,
1505                     migratetype_names[mtype]);
1506         for (order = 0; order < MAX_ORDER; ++order) {
1507             unsigned long freecount = 0;
1508             struct free_area *area;
1509             struct list_head *curr;
1510             bool overflow = false;
1511 
1512             area = &(zone->free_area[order]);
1513 
1514             list_for_each(curr, &area->free_list[mtype]) {
1515                 /*
1516                  * Cap the free_list iteration because it might
1517                  * be really large and we are under a spinlock
1518                  * so a long time spent here could trigger a
1519                  * hard lockup detector. Anyway this is a
1520                  * debugging tool so knowing there is a handful
1521                  * of pages of this order should be more than
1522                  * sufficient.
1523                  */
1524                 if (++freecount >= 100000) {
1525                     overflow = true;
1526                     break;
1527                 }
1528             }
1529             seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1530             spin_unlock_irq(&zone->lock);
1531             cond_resched();
1532             spin_lock_irq(&zone->lock);
1533         }
1534         seq_putc(m, '\n');
1535     }
1536 }
1537 
1538 /* Print out the free pages at each order for each migatetype */
1539 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1540 {
1541     int order;
1542     pg_data_t *pgdat = (pg_data_t *)arg;
1543 
1544     /* Print header */
1545     seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1546     for (order = 0; order < MAX_ORDER; ++order)
1547         seq_printf(m, "%6d ", order);
1548     seq_putc(m, '\n');
1549 
1550     walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1551 }
1552 
1553 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1554                     pg_data_t *pgdat, struct zone *zone)
1555 {
1556     int mtype;
1557     unsigned long pfn;
1558     unsigned long start_pfn = zone->zone_start_pfn;
1559     unsigned long end_pfn = zone_end_pfn(zone);
1560     unsigned long count[MIGRATE_TYPES] = { 0, };
1561 
1562     for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1563         struct page *page;
1564 
1565         page = pfn_to_online_page(pfn);
1566         if (!page)
1567             continue;
1568 
1569         if (page_zone(page) != zone)
1570             continue;
1571 
1572         mtype = get_pageblock_migratetype(page);
1573 
1574         if (mtype < MIGRATE_TYPES)
1575             count[mtype]++;
1576     }
1577 
1578     /* Print counts */
1579     seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1580     for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1581         seq_printf(m, "%12lu ", count[mtype]);
1582     seq_putc(m, '\n');
1583 }
1584 
1585 /* Print out the number of pageblocks for each migratetype */
1586 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1587 {
1588     int mtype;
1589     pg_data_t *pgdat = (pg_data_t *)arg;
1590 
1591     seq_printf(m, "\n%-23s", "Number of blocks type ");
1592     for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1593         seq_printf(m, "%12s ", migratetype_names[mtype]);
1594     seq_putc(m, '\n');
1595     walk_zones_in_node(m, pgdat, true, false,
1596         pagetypeinfo_showblockcount_print);
1597 }
1598 
1599 /*
1600  * Print out the number of pageblocks for each migratetype that contain pages
1601  * of other types. This gives an indication of how well fallbacks are being
1602  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1603  * to determine what is going on
1604  */
1605 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1606 {
1607 #ifdef CONFIG_PAGE_OWNER
1608     int mtype;
1609 
1610     if (!static_branch_unlikely(&page_owner_inited))
1611         return;
1612 
1613     drain_all_pages(NULL);
1614 
1615     seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1616     for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1617         seq_printf(m, "%12s ", migratetype_names[mtype]);
1618     seq_putc(m, '\n');
1619 
1620     walk_zones_in_node(m, pgdat, true, true,
1621         pagetypeinfo_showmixedcount_print);
1622 #endif /* CONFIG_PAGE_OWNER */
1623 }
1624 
1625 /*
1626  * This prints out statistics in relation to grouping pages by mobility.
1627  * It is expensive to collect so do not constantly read the file.
1628  */
1629 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1630 {
1631     pg_data_t *pgdat = (pg_data_t *)arg;
1632 
1633     /* check memoryless node */
1634     if (!node_state(pgdat->node_id, N_MEMORY))
1635         return 0;
1636 
1637     seq_printf(m, "Page block order: %d\n", pageblock_order);
1638     seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1639     seq_putc(m, '\n');
1640     pagetypeinfo_showfree(m, pgdat);
1641     pagetypeinfo_showblockcount(m, pgdat);
1642     pagetypeinfo_showmixedcount(m, pgdat);
1643 
1644     return 0;
1645 }
1646 
1647 static const struct seq_operations fragmentation_op = {
1648     .start  = frag_start,
1649     .next   = frag_next,
1650     .stop   = frag_stop,
1651     .show   = frag_show,
1652 };
1653 
1654 static const struct seq_operations pagetypeinfo_op = {
1655     .start  = frag_start,
1656     .next   = frag_next,
1657     .stop   = frag_stop,
1658     .show   = pagetypeinfo_show,
1659 };
1660 
1661 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1662 {
1663     int zid;
1664 
1665     for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1666         struct zone *compare = &pgdat->node_zones[zid];
1667 
1668         if (populated_zone(compare))
1669             return zone == compare;
1670     }
1671 
1672     return false;
1673 }
1674 
1675 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1676                             struct zone *zone)
1677 {
1678     int i;
1679     seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1680     if (is_zone_first_populated(pgdat, zone)) {
1681         seq_printf(m, "\n  per-node stats");
1682         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1683             unsigned long pages = node_page_state_pages(pgdat, i);
1684 
1685             if (vmstat_item_print_in_thp(i))
1686                 pages /= HPAGE_PMD_NR;
1687             seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1688                    pages);
1689         }
1690     }
1691     seq_printf(m,
1692            "\n  pages free     %lu"
1693            "\n        boost    %lu"
1694            "\n        min      %lu"
1695            "\n        low      %lu"
1696            "\n        high     %lu"
1697            "\n        spanned  %lu"
1698            "\n        present  %lu"
1699            "\n        managed  %lu"
1700            "\n        cma      %lu",
1701            zone_page_state(zone, NR_FREE_PAGES),
1702            zone->watermark_boost,
1703            min_wmark_pages(zone),
1704            low_wmark_pages(zone),
1705            high_wmark_pages(zone),
1706            zone->spanned_pages,
1707            zone->present_pages,
1708            zone_managed_pages(zone),
1709            zone_cma_pages(zone));
1710 
1711     seq_printf(m,
1712            "\n        protection: (%ld",
1713            zone->lowmem_reserve[0]);
1714     for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1715         seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1716     seq_putc(m, ')');
1717 
1718     /* If unpopulated, no other information is useful */
1719     if (!populated_zone(zone)) {
1720         seq_putc(m, '\n');
1721         return;
1722     }
1723 
1724     for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1725         seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1726                zone_page_state(zone, i));
1727 
1728 #ifdef CONFIG_NUMA
1729     for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1730         seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1731                zone_numa_event_state(zone, i));
1732 #endif
1733 
1734     seq_printf(m, "\n  pagesets");
1735     for_each_online_cpu(i) {
1736         struct per_cpu_pages *pcp;
1737         struct per_cpu_zonestat __maybe_unused *pzstats;
1738 
1739         pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1740         seq_printf(m,
1741                "\n    cpu: %i"
1742                "\n              count: %i"
1743                "\n              high:  %i"
1744                "\n              batch: %i",
1745                i,
1746                pcp->count,
1747                pcp->high,
1748                pcp->batch);
1749 #ifdef CONFIG_SMP
1750         pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1751         seq_printf(m, "\n  vm stats threshold: %d",
1752                 pzstats->stat_threshold);
1753 #endif
1754     }
1755     seq_printf(m,
1756            "\n  node_unreclaimable:  %u"
1757            "\n  start_pfn:           %lu",
1758            pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1759            zone->zone_start_pfn);
1760     seq_putc(m, '\n');
1761 }
1762 
1763 /*
1764  * Output information about zones in @pgdat.  All zones are printed regardless
1765  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1766  * set of all zones and userspace would not be aware of such zones if they are
1767  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1768  */
1769 static int zoneinfo_show(struct seq_file *m, void *arg)
1770 {
1771     pg_data_t *pgdat = (pg_data_t *)arg;
1772     walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1773     return 0;
1774 }
1775 
1776 static const struct seq_operations zoneinfo_op = {
1777     .start  = frag_start, /* iterate over all zones. The same as in
1778                    * fragmentation. */
1779     .next   = frag_next,
1780     .stop   = frag_stop,
1781     .show   = zoneinfo_show,
1782 };
1783 
1784 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1785              NR_VM_NUMA_EVENT_ITEMS + \
1786              NR_VM_NODE_STAT_ITEMS + \
1787              NR_VM_WRITEBACK_STAT_ITEMS + \
1788              (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1789               NR_VM_EVENT_ITEMS : 0))
1790 
1791 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1792 {
1793     unsigned long *v;
1794     int i;
1795 
1796     if (*pos >= NR_VMSTAT_ITEMS)
1797         return NULL;
1798 
1799     BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1800     fold_vm_numa_events();
1801     v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1802     m->private = v;
1803     if (!v)
1804         return ERR_PTR(-ENOMEM);
1805     for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1806         v[i] = global_zone_page_state(i);
1807     v += NR_VM_ZONE_STAT_ITEMS;
1808 
1809 #ifdef CONFIG_NUMA
1810     for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1811         v[i] = global_numa_event_state(i);
1812     v += NR_VM_NUMA_EVENT_ITEMS;
1813 #endif
1814 
1815     for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1816         v[i] = global_node_page_state_pages(i);
1817         if (vmstat_item_print_in_thp(i))
1818             v[i] /= HPAGE_PMD_NR;
1819     }
1820     v += NR_VM_NODE_STAT_ITEMS;
1821 
1822     global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1823                 v + NR_DIRTY_THRESHOLD);
1824     v += NR_VM_WRITEBACK_STAT_ITEMS;
1825 
1826 #ifdef CONFIG_VM_EVENT_COUNTERS
1827     all_vm_events(v);
1828     v[PGPGIN] /= 2;     /* sectors -> kbytes */
1829     v[PGPGOUT] /= 2;
1830 #endif
1831     return (unsigned long *)m->private + *pos;
1832 }
1833 
1834 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1835 {
1836     (*pos)++;
1837     if (*pos >= NR_VMSTAT_ITEMS)
1838         return NULL;
1839     return (unsigned long *)m->private + *pos;
1840 }
1841 
1842 static int vmstat_show(struct seq_file *m, void *arg)
1843 {
1844     unsigned long *l = arg;
1845     unsigned long off = l - (unsigned long *)m->private;
1846 
1847     seq_puts(m, vmstat_text[off]);
1848     seq_put_decimal_ull(m, " ", *l);
1849     seq_putc(m, '\n');
1850 
1851     if (off == NR_VMSTAT_ITEMS - 1) {
1852         /*
1853          * We've come to the end - add any deprecated counters to avoid
1854          * breaking userspace which might depend on them being present.
1855          */
1856         seq_puts(m, "nr_unstable 0\n");
1857     }
1858     return 0;
1859 }
1860 
1861 static void vmstat_stop(struct seq_file *m, void *arg)
1862 {
1863     kfree(m->private);
1864     m->private = NULL;
1865 }
1866 
1867 static const struct seq_operations vmstat_op = {
1868     .start  = vmstat_start,
1869     .next   = vmstat_next,
1870     .stop   = vmstat_stop,
1871     .show   = vmstat_show,
1872 };
1873 #endif /* CONFIG_PROC_FS */
1874 
1875 #ifdef CONFIG_SMP
1876 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1877 int sysctl_stat_interval __read_mostly = HZ;
1878 
1879 #ifdef CONFIG_PROC_FS
1880 static void refresh_vm_stats(struct work_struct *work)
1881 {
1882     refresh_cpu_vm_stats(true);
1883 }
1884 
1885 int vmstat_refresh(struct ctl_table *table, int write,
1886            void *buffer, size_t *lenp, loff_t *ppos)
1887 {
1888     long val;
1889     int err;
1890     int i;
1891 
1892     /*
1893      * The regular update, every sysctl_stat_interval, may come later
1894      * than expected: leaving a significant amount in per_cpu buckets.
1895      * This is particularly misleading when checking a quantity of HUGE
1896      * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1897      * which can equally be echo'ed to or cat'ted from (by root),
1898      * can be used to update the stats just before reading them.
1899      *
1900      * Oh, and since global_zone_page_state() etc. are so careful to hide
1901      * transiently negative values, report an error here if any of
1902      * the stats is negative, so we know to go looking for imbalance.
1903      */
1904     err = schedule_on_each_cpu(refresh_vm_stats);
1905     if (err)
1906         return err;
1907     for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1908         /*
1909          * Skip checking stats known to go negative occasionally.
1910          */
1911         switch (i) {
1912         case NR_ZONE_WRITE_PENDING:
1913         case NR_FREE_CMA_PAGES:
1914             continue;
1915         }
1916         val = atomic_long_read(&vm_zone_stat[i]);
1917         if (val < 0) {
1918             pr_warn("%s: %s %ld\n",
1919                 __func__, zone_stat_name(i), val);
1920         }
1921     }
1922     for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1923         /*
1924          * Skip checking stats known to go negative occasionally.
1925          */
1926         switch (i) {
1927         case NR_WRITEBACK:
1928             continue;
1929         }
1930         val = atomic_long_read(&vm_node_stat[i]);
1931         if (val < 0) {
1932             pr_warn("%s: %s %ld\n",
1933                 __func__, node_stat_name(i), val);
1934         }
1935     }
1936     if (write)
1937         *ppos += *lenp;
1938     else
1939         *lenp = 0;
1940     return 0;
1941 }
1942 #endif /* CONFIG_PROC_FS */
1943 
1944 static void vmstat_update(struct work_struct *w)
1945 {
1946     if (refresh_cpu_vm_stats(true)) {
1947         /*
1948          * Counters were updated so we expect more updates
1949          * to occur in the future. Keep on running the
1950          * update worker thread.
1951          */
1952         queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1953                 this_cpu_ptr(&vmstat_work),
1954                 round_jiffies_relative(sysctl_stat_interval));
1955     }
1956 }
1957 
1958 /*
1959  * Check if the diffs for a certain cpu indicate that
1960  * an update is needed.
1961  */
1962 static bool need_update(int cpu)
1963 {
1964     pg_data_t *last_pgdat = NULL;
1965     struct zone *zone;
1966 
1967     for_each_populated_zone(zone) {
1968         struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1969         struct per_cpu_nodestat *n;
1970 
1971         /*
1972          * The fast way of checking if there are any vmstat diffs.
1973          */
1974         if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1975             return true;
1976 
1977         if (last_pgdat == zone->zone_pgdat)
1978             continue;
1979         last_pgdat = zone->zone_pgdat;
1980         n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1981         if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1982             return true;
1983     }
1984     return false;
1985 }
1986 
1987 /*
1988  * Switch off vmstat processing and then fold all the remaining differentials
1989  * until the diffs stay at zero. The function is used by NOHZ and can only be
1990  * invoked when tick processing is not active.
1991  */
1992 void quiet_vmstat(void)
1993 {
1994     if (system_state != SYSTEM_RUNNING)
1995         return;
1996 
1997     if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1998         return;
1999 
2000     if (!need_update(smp_processor_id()))
2001         return;
2002 
2003     /*
2004      * Just refresh counters and do not care about the pending delayed
2005      * vmstat_update. It doesn't fire that often to matter and canceling
2006      * it would be too expensive from this path.
2007      * vmstat_shepherd will take care about that for us.
2008      */
2009     refresh_cpu_vm_stats(false);
2010 }
2011 
2012 /*
2013  * Shepherd worker thread that checks the
2014  * differentials of processors that have their worker
2015  * threads for vm statistics updates disabled because of
2016  * inactivity.
2017  */
2018 static void vmstat_shepherd(struct work_struct *w);
2019 
2020 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2021 
2022 static void vmstat_shepherd(struct work_struct *w)
2023 {
2024     int cpu;
2025 
2026     cpus_read_lock();
2027     /* Check processors whose vmstat worker threads have been disabled */
2028     for_each_online_cpu(cpu) {
2029         struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2030 
2031         if (!delayed_work_pending(dw) && need_update(cpu))
2032             queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2033 
2034         cond_resched();
2035     }
2036     cpus_read_unlock();
2037 
2038     schedule_delayed_work(&shepherd,
2039         round_jiffies_relative(sysctl_stat_interval));
2040 }
2041 
2042 static void __init start_shepherd_timer(void)
2043 {
2044     int cpu;
2045 
2046     for_each_possible_cpu(cpu)
2047         INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2048             vmstat_update);
2049 
2050     schedule_delayed_work(&shepherd,
2051         round_jiffies_relative(sysctl_stat_interval));
2052 }
2053 
2054 static void __init init_cpu_node_state(void)
2055 {
2056     int node;
2057 
2058     for_each_online_node(node) {
2059         if (!cpumask_empty(cpumask_of_node(node)))
2060             node_set_state(node, N_CPU);
2061     }
2062 }
2063 
2064 static int vmstat_cpu_online(unsigned int cpu)
2065 {
2066     refresh_zone_stat_thresholds();
2067 
2068     if (!node_state(cpu_to_node(cpu), N_CPU)) {
2069         node_set_state(cpu_to_node(cpu), N_CPU);
2070         set_migration_target_nodes();
2071     }
2072 
2073     return 0;
2074 }
2075 
2076 static int vmstat_cpu_down_prep(unsigned int cpu)
2077 {
2078     cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2079     return 0;
2080 }
2081 
2082 static int vmstat_cpu_dead(unsigned int cpu)
2083 {
2084     const struct cpumask *node_cpus;
2085     int node;
2086 
2087     node = cpu_to_node(cpu);
2088 
2089     refresh_zone_stat_thresholds();
2090     node_cpus = cpumask_of_node(node);
2091     if (!cpumask_empty(node_cpus))
2092         return 0;
2093 
2094     node_clear_state(node, N_CPU);
2095     set_migration_target_nodes();
2096 
2097     return 0;
2098 }
2099 
2100 #endif
2101 
2102 struct workqueue_struct *mm_percpu_wq;
2103 
2104 void __init init_mm_internals(void)
2105 {
2106     int ret __maybe_unused;
2107 
2108     mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2109 
2110 #ifdef CONFIG_SMP
2111     ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2112                     NULL, vmstat_cpu_dead);
2113     if (ret < 0)
2114         pr_err("vmstat: failed to register 'dead' hotplug state\n");
2115 
2116     ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2117                     vmstat_cpu_online,
2118                     vmstat_cpu_down_prep);
2119     if (ret < 0)
2120         pr_err("vmstat: failed to register 'online' hotplug state\n");
2121 
2122     cpus_read_lock();
2123     init_cpu_node_state();
2124     cpus_read_unlock();
2125 
2126     start_shepherd_timer();
2127 #endif
2128     migrate_on_reclaim_init();
2129 #ifdef CONFIG_PROC_FS
2130     proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2131     proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2132     proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2133     proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2134 #endif
2135 }
2136 
2137 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2138 
2139 /*
2140  * Return an index indicating how much of the available free memory is
2141  * unusable for an allocation of the requested size.
2142  */
2143 static int unusable_free_index(unsigned int order,
2144                 struct contig_page_info *info)
2145 {
2146     /* No free memory is interpreted as all free memory is unusable */
2147     if (info->free_pages == 0)
2148         return 1000;
2149 
2150     /*
2151      * Index should be a value between 0 and 1. Return a value to 3
2152      * decimal places.
2153      *
2154      * 0 => no fragmentation
2155      * 1 => high fragmentation
2156      */
2157     return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2158 
2159 }
2160 
2161 static void unusable_show_print(struct seq_file *m,
2162                     pg_data_t *pgdat, struct zone *zone)
2163 {
2164     unsigned int order;
2165     int index;
2166     struct contig_page_info info;
2167 
2168     seq_printf(m, "Node %d, zone %8s ",
2169                 pgdat->node_id,
2170                 zone->name);
2171     for (order = 0; order < MAX_ORDER; ++order) {
2172         fill_contig_page_info(zone, order, &info);
2173         index = unusable_free_index(order, &info);
2174         seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2175     }
2176 
2177     seq_putc(m, '\n');
2178 }
2179 
2180 /*
2181  * Display unusable free space index
2182  *
2183  * The unusable free space index measures how much of the available free
2184  * memory cannot be used to satisfy an allocation of a given size and is a
2185  * value between 0 and 1. The higher the value, the more of free memory is
2186  * unusable and by implication, the worse the external fragmentation is. This
2187  * can be expressed as a percentage by multiplying by 100.
2188  */
2189 static int unusable_show(struct seq_file *m, void *arg)
2190 {
2191     pg_data_t *pgdat = (pg_data_t *)arg;
2192 
2193     /* check memoryless node */
2194     if (!node_state(pgdat->node_id, N_MEMORY))
2195         return 0;
2196 
2197     walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2198 
2199     return 0;
2200 }
2201 
2202 static const struct seq_operations unusable_sops = {
2203     .start  = frag_start,
2204     .next   = frag_next,
2205     .stop   = frag_stop,
2206     .show   = unusable_show,
2207 };
2208 
2209 DEFINE_SEQ_ATTRIBUTE(unusable);
2210 
2211 static void extfrag_show_print(struct seq_file *m,
2212                     pg_data_t *pgdat, struct zone *zone)
2213 {
2214     unsigned int order;
2215     int index;
2216 
2217     /* Alloc on stack as interrupts are disabled for zone walk */
2218     struct contig_page_info info;
2219 
2220     seq_printf(m, "Node %d, zone %8s ",
2221                 pgdat->node_id,
2222                 zone->name);
2223     for (order = 0; order < MAX_ORDER; ++order) {
2224         fill_contig_page_info(zone, order, &info);
2225         index = __fragmentation_index(order, &info);
2226         seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2227     }
2228 
2229     seq_putc(m, '\n');
2230 }
2231 
2232 /*
2233  * Display fragmentation index for orders that allocations would fail for
2234  */
2235 static int extfrag_show(struct seq_file *m, void *arg)
2236 {
2237     pg_data_t *pgdat = (pg_data_t *)arg;
2238 
2239     walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2240 
2241     return 0;
2242 }
2243 
2244 static const struct seq_operations extfrag_sops = {
2245     .start  = frag_start,
2246     .next   = frag_next,
2247     .stop   = frag_stop,
2248     .show   = extfrag_show,
2249 };
2250 
2251 DEFINE_SEQ_ATTRIBUTE(extfrag);
2252 
2253 static int __init extfrag_debug_init(void)
2254 {
2255     struct dentry *extfrag_debug_root;
2256 
2257     extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2258 
2259     debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2260                 &unusable_fops);
2261 
2262     debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2263                 &extfrag_fops);
2264 
2265     return 0;
2266 }
2267 
2268 module_init(extfrag_debug_init);
2269 #endif