Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
0004  *
0005  *  Swap reorganised 29.12.95, Stephen Tweedie.
0006  *  kswapd added: 7.1.96  sct
0007  *  Removed kswapd_ctl limits, and swap out as many pages as needed
0008  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
0009  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
0010  *  Multiqueue VM started 5.8.00, Rik van Riel.
0011  */
0012 
0013 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0014 
0015 #include <linux/mm.h>
0016 #include <linux/sched/mm.h>
0017 #include <linux/module.h>
0018 #include <linux/gfp.h>
0019 #include <linux/kernel_stat.h>
0020 #include <linux/swap.h>
0021 #include <linux/pagemap.h>
0022 #include <linux/init.h>
0023 #include <linux/highmem.h>
0024 #include <linux/vmpressure.h>
0025 #include <linux/vmstat.h>
0026 #include <linux/file.h>
0027 #include <linux/writeback.h>
0028 #include <linux/blkdev.h>
0029 #include <linux/buffer_head.h>  /* for buffer_heads_over_limit */
0030 #include <linux/mm_inline.h>
0031 #include <linux/backing-dev.h>
0032 #include <linux/rmap.h>
0033 #include <linux/topology.h>
0034 #include <linux/cpu.h>
0035 #include <linux/cpuset.h>
0036 #include <linux/compaction.h>
0037 #include <linux/notifier.h>
0038 #include <linux/rwsem.h>
0039 #include <linux/delay.h>
0040 #include <linux/kthread.h>
0041 #include <linux/freezer.h>
0042 #include <linux/memcontrol.h>
0043 #include <linux/migrate.h>
0044 #include <linux/delayacct.h>
0045 #include <linux/sysctl.h>
0046 #include <linux/oom.h>
0047 #include <linux/pagevec.h>
0048 #include <linux/prefetch.h>
0049 #include <linux/printk.h>
0050 #include <linux/dax.h>
0051 #include <linux/psi.h>
0052 
0053 #include <asm/tlbflush.h>
0054 #include <asm/div64.h>
0055 
0056 #include <linux/swapops.h>
0057 #include <linux/balloon_compaction.h>
0058 #include <linux/sched/sysctl.h>
0059 
0060 #include "internal.h"
0061 #include "swap.h"
0062 
0063 #define CREATE_TRACE_POINTS
0064 #include <trace/events/vmscan.h>
0065 
0066 struct scan_control {
0067     /* How many pages shrink_list() should reclaim */
0068     unsigned long nr_to_reclaim;
0069 
0070     /*
0071      * Nodemask of nodes allowed by the caller. If NULL, all nodes
0072      * are scanned.
0073      */
0074     nodemask_t  *nodemask;
0075 
0076     /*
0077      * The memory cgroup that hit its limit and as a result is the
0078      * primary target of this reclaim invocation.
0079      */
0080     struct mem_cgroup *target_mem_cgroup;
0081 
0082     /*
0083      * Scan pressure balancing between anon and file LRUs
0084      */
0085     unsigned long   anon_cost;
0086     unsigned long   file_cost;
0087 
0088     /* Can active pages be deactivated as part of reclaim? */
0089 #define DEACTIVATE_ANON 1
0090 #define DEACTIVATE_FILE 2
0091     unsigned int may_deactivate:2;
0092     unsigned int force_deactivate:1;
0093     unsigned int skipped_deactivate:1;
0094 
0095     /* Writepage batching in laptop mode; RECLAIM_WRITE */
0096     unsigned int may_writepage:1;
0097 
0098     /* Can mapped pages be reclaimed? */
0099     unsigned int may_unmap:1;
0100 
0101     /* Can pages be swapped as part of reclaim? */
0102     unsigned int may_swap:1;
0103 
0104     /* Proactive reclaim invoked by userspace through memory.reclaim */
0105     unsigned int proactive:1;
0106 
0107     /*
0108      * Cgroup memory below memory.low is protected as long as we
0109      * don't threaten to OOM. If any cgroup is reclaimed at
0110      * reduced force or passed over entirely due to its memory.low
0111      * setting (memcg_low_skipped), and nothing is reclaimed as a
0112      * result, then go back for one more cycle that reclaims the protected
0113      * memory (memcg_low_reclaim) to avert OOM.
0114      */
0115     unsigned int memcg_low_reclaim:1;
0116     unsigned int memcg_low_skipped:1;
0117 
0118     unsigned int hibernation_mode:1;
0119 
0120     /* One of the zones is ready for compaction */
0121     unsigned int compaction_ready:1;
0122 
0123     /* There is easily reclaimable cold cache in the current node */
0124     unsigned int cache_trim_mode:1;
0125 
0126     /* The file pages on the current node are dangerously low */
0127     unsigned int file_is_tiny:1;
0128 
0129     /* Always discard instead of demoting to lower tier memory */
0130     unsigned int no_demotion:1;
0131 
0132     /* Allocation order */
0133     s8 order;
0134 
0135     /* Scan (total_size >> priority) pages at once */
0136     s8 priority;
0137 
0138     /* The highest zone to isolate pages for reclaim from */
0139     s8 reclaim_idx;
0140 
0141     /* This context's GFP mask */
0142     gfp_t gfp_mask;
0143 
0144     /* Incremented by the number of inactive pages that were scanned */
0145     unsigned long nr_scanned;
0146 
0147     /* Number of pages freed so far during a call to shrink_zones() */
0148     unsigned long nr_reclaimed;
0149 
0150     struct {
0151         unsigned int dirty;
0152         unsigned int unqueued_dirty;
0153         unsigned int congested;
0154         unsigned int writeback;
0155         unsigned int immediate;
0156         unsigned int file_taken;
0157         unsigned int taken;
0158     } nr;
0159 
0160     /* for recording the reclaimed slab by now */
0161     struct reclaim_state reclaim_state;
0162 };
0163 
0164 #ifdef ARCH_HAS_PREFETCHW
0165 #define prefetchw_prev_lru_folio(_folio, _base, _field)         \
0166     do {                                \
0167         if ((_folio)->lru.prev != _base) {          \
0168             struct folio *prev;             \
0169                                     \
0170             prev = lru_to_folio(&(_folio->lru));        \
0171             prefetchw(&prev->_field);           \
0172         }                           \
0173     } while (0)
0174 #else
0175 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
0176 #endif
0177 
0178 /*
0179  * From 0 .. 200.  Higher means more swappy.
0180  */
0181 int vm_swappiness = 60;
0182 
0183 static void set_task_reclaim_state(struct task_struct *task,
0184                    struct reclaim_state *rs)
0185 {
0186     /* Check for an overwrite */
0187     WARN_ON_ONCE(rs && task->reclaim_state);
0188 
0189     /* Check for the nulling of an already-nulled member */
0190     WARN_ON_ONCE(!rs && !task->reclaim_state);
0191 
0192     task->reclaim_state = rs;
0193 }
0194 
0195 LIST_HEAD(shrinker_list);
0196 DECLARE_RWSEM(shrinker_rwsem);
0197 
0198 #ifdef CONFIG_MEMCG
0199 static int shrinker_nr_max;
0200 
0201 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
0202 static inline int shrinker_map_size(int nr_items)
0203 {
0204     return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
0205 }
0206 
0207 static inline int shrinker_defer_size(int nr_items)
0208 {
0209     return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
0210 }
0211 
0212 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
0213                              int nid)
0214 {
0215     return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
0216                      lockdep_is_held(&shrinker_rwsem));
0217 }
0218 
0219 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
0220                     int map_size, int defer_size,
0221                     int old_map_size, int old_defer_size)
0222 {
0223     struct shrinker_info *new, *old;
0224     struct mem_cgroup_per_node *pn;
0225     int nid;
0226     int size = map_size + defer_size;
0227 
0228     for_each_node(nid) {
0229         pn = memcg->nodeinfo[nid];
0230         old = shrinker_info_protected(memcg, nid);
0231         /* Not yet online memcg */
0232         if (!old)
0233             return 0;
0234 
0235         new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0236         if (!new)
0237             return -ENOMEM;
0238 
0239         new->nr_deferred = (atomic_long_t *)(new + 1);
0240         new->map = (void *)new->nr_deferred + defer_size;
0241 
0242         /* map: set all old bits, clear all new bits */
0243         memset(new->map, (int)0xff, old_map_size);
0244         memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
0245         /* nr_deferred: copy old values, clear all new values */
0246         memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
0247         memset((void *)new->nr_deferred + old_defer_size, 0,
0248                defer_size - old_defer_size);
0249 
0250         rcu_assign_pointer(pn->shrinker_info, new);
0251         kvfree_rcu(old, rcu);
0252     }
0253 
0254     return 0;
0255 }
0256 
0257 void free_shrinker_info(struct mem_cgroup *memcg)
0258 {
0259     struct mem_cgroup_per_node *pn;
0260     struct shrinker_info *info;
0261     int nid;
0262 
0263     for_each_node(nid) {
0264         pn = memcg->nodeinfo[nid];
0265         info = rcu_dereference_protected(pn->shrinker_info, true);
0266         kvfree(info);
0267         rcu_assign_pointer(pn->shrinker_info, NULL);
0268     }
0269 }
0270 
0271 int alloc_shrinker_info(struct mem_cgroup *memcg)
0272 {
0273     struct shrinker_info *info;
0274     int nid, size, ret = 0;
0275     int map_size, defer_size = 0;
0276 
0277     down_write(&shrinker_rwsem);
0278     map_size = shrinker_map_size(shrinker_nr_max);
0279     defer_size = shrinker_defer_size(shrinker_nr_max);
0280     size = map_size + defer_size;
0281     for_each_node(nid) {
0282         info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
0283         if (!info) {
0284             free_shrinker_info(memcg);
0285             ret = -ENOMEM;
0286             break;
0287         }
0288         info->nr_deferred = (atomic_long_t *)(info + 1);
0289         info->map = (void *)info->nr_deferred + defer_size;
0290         rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
0291     }
0292     up_write(&shrinker_rwsem);
0293 
0294     return ret;
0295 }
0296 
0297 static inline bool need_expand(int nr_max)
0298 {
0299     return round_up(nr_max, BITS_PER_LONG) >
0300            round_up(shrinker_nr_max, BITS_PER_LONG);
0301 }
0302 
0303 static int expand_shrinker_info(int new_id)
0304 {
0305     int ret = 0;
0306     int new_nr_max = new_id + 1;
0307     int map_size, defer_size = 0;
0308     int old_map_size, old_defer_size = 0;
0309     struct mem_cgroup *memcg;
0310 
0311     if (!need_expand(new_nr_max))
0312         goto out;
0313 
0314     if (!root_mem_cgroup)
0315         goto out;
0316 
0317     lockdep_assert_held(&shrinker_rwsem);
0318 
0319     map_size = shrinker_map_size(new_nr_max);
0320     defer_size = shrinker_defer_size(new_nr_max);
0321     old_map_size = shrinker_map_size(shrinker_nr_max);
0322     old_defer_size = shrinker_defer_size(shrinker_nr_max);
0323 
0324     memcg = mem_cgroup_iter(NULL, NULL, NULL);
0325     do {
0326         ret = expand_one_shrinker_info(memcg, map_size, defer_size,
0327                            old_map_size, old_defer_size);
0328         if (ret) {
0329             mem_cgroup_iter_break(NULL, memcg);
0330             goto out;
0331         }
0332     } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
0333 out:
0334     if (!ret)
0335         shrinker_nr_max = new_nr_max;
0336 
0337     return ret;
0338 }
0339 
0340 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
0341 {
0342     if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
0343         struct shrinker_info *info;
0344 
0345         rcu_read_lock();
0346         info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
0347         /* Pairs with smp mb in shrink_slab() */
0348         smp_mb__before_atomic();
0349         set_bit(shrinker_id, info->map);
0350         rcu_read_unlock();
0351     }
0352 }
0353 
0354 static DEFINE_IDR(shrinker_idr);
0355 
0356 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
0357 {
0358     int id, ret = -ENOMEM;
0359 
0360     if (mem_cgroup_disabled())
0361         return -ENOSYS;
0362 
0363     down_write(&shrinker_rwsem);
0364     /* This may call shrinker, so it must use down_read_trylock() */
0365     id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
0366     if (id < 0)
0367         goto unlock;
0368 
0369     if (id >= shrinker_nr_max) {
0370         if (expand_shrinker_info(id)) {
0371             idr_remove(&shrinker_idr, id);
0372             goto unlock;
0373         }
0374     }
0375     shrinker->id = id;
0376     ret = 0;
0377 unlock:
0378     up_write(&shrinker_rwsem);
0379     return ret;
0380 }
0381 
0382 static void unregister_memcg_shrinker(struct shrinker *shrinker)
0383 {
0384     int id = shrinker->id;
0385 
0386     BUG_ON(id < 0);
0387 
0388     lockdep_assert_held(&shrinker_rwsem);
0389 
0390     idr_remove(&shrinker_idr, id);
0391 }
0392 
0393 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
0394                    struct mem_cgroup *memcg)
0395 {
0396     struct shrinker_info *info;
0397 
0398     info = shrinker_info_protected(memcg, nid);
0399     return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
0400 }
0401 
0402 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
0403                   struct mem_cgroup *memcg)
0404 {
0405     struct shrinker_info *info;
0406 
0407     info = shrinker_info_protected(memcg, nid);
0408     return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
0409 }
0410 
0411 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
0412 {
0413     int i, nid;
0414     long nr;
0415     struct mem_cgroup *parent;
0416     struct shrinker_info *child_info, *parent_info;
0417 
0418     parent = parent_mem_cgroup(memcg);
0419     if (!parent)
0420         parent = root_mem_cgroup;
0421 
0422     /* Prevent from concurrent shrinker_info expand */
0423     down_read(&shrinker_rwsem);
0424     for_each_node(nid) {
0425         child_info = shrinker_info_protected(memcg, nid);
0426         parent_info = shrinker_info_protected(parent, nid);
0427         for (i = 0; i < shrinker_nr_max; i++) {
0428             nr = atomic_long_read(&child_info->nr_deferred[i]);
0429             atomic_long_add(nr, &parent_info->nr_deferred[i]);
0430         }
0431     }
0432     up_read(&shrinker_rwsem);
0433 }
0434 
0435 static bool cgroup_reclaim(struct scan_control *sc)
0436 {
0437     return sc->target_mem_cgroup;
0438 }
0439 
0440 /**
0441  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
0442  * @sc: scan_control in question
0443  *
0444  * The normal page dirty throttling mechanism in balance_dirty_pages() is
0445  * completely broken with the legacy memcg and direct stalling in
0446  * shrink_page_list() is used for throttling instead, which lacks all the
0447  * niceties such as fairness, adaptive pausing, bandwidth proportional
0448  * allocation and configurability.
0449  *
0450  * This function tests whether the vmscan currently in progress can assume
0451  * that the normal dirty throttling mechanism is operational.
0452  */
0453 static bool writeback_throttling_sane(struct scan_control *sc)
0454 {
0455     if (!cgroup_reclaim(sc))
0456         return true;
0457 #ifdef CONFIG_CGROUP_WRITEBACK
0458     if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
0459         return true;
0460 #endif
0461     return false;
0462 }
0463 #else
0464 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
0465 {
0466     return -ENOSYS;
0467 }
0468 
0469 static void unregister_memcg_shrinker(struct shrinker *shrinker)
0470 {
0471 }
0472 
0473 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
0474                    struct mem_cgroup *memcg)
0475 {
0476     return 0;
0477 }
0478 
0479 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
0480                   struct mem_cgroup *memcg)
0481 {
0482     return 0;
0483 }
0484 
0485 static bool cgroup_reclaim(struct scan_control *sc)
0486 {
0487     return false;
0488 }
0489 
0490 static bool writeback_throttling_sane(struct scan_control *sc)
0491 {
0492     return true;
0493 }
0494 #endif
0495 
0496 static long xchg_nr_deferred(struct shrinker *shrinker,
0497                  struct shrink_control *sc)
0498 {
0499     int nid = sc->nid;
0500 
0501     if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
0502         nid = 0;
0503 
0504     if (sc->memcg &&
0505         (shrinker->flags & SHRINKER_MEMCG_AWARE))
0506         return xchg_nr_deferred_memcg(nid, shrinker,
0507                           sc->memcg);
0508 
0509     return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
0510 }
0511 
0512 
0513 static long add_nr_deferred(long nr, struct shrinker *shrinker,
0514                 struct shrink_control *sc)
0515 {
0516     int nid = sc->nid;
0517 
0518     if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
0519         nid = 0;
0520 
0521     if (sc->memcg &&
0522         (shrinker->flags & SHRINKER_MEMCG_AWARE))
0523         return add_nr_deferred_memcg(nr, nid, shrinker,
0524                          sc->memcg);
0525 
0526     return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
0527 }
0528 
0529 static bool can_demote(int nid, struct scan_control *sc)
0530 {
0531     if (!numa_demotion_enabled)
0532         return false;
0533     if (sc && sc->no_demotion)
0534         return false;
0535     if (next_demotion_node(nid) == NUMA_NO_NODE)
0536         return false;
0537 
0538     return true;
0539 }
0540 
0541 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
0542                       int nid,
0543                       struct scan_control *sc)
0544 {
0545     if (memcg == NULL) {
0546         /*
0547          * For non-memcg reclaim, is there
0548          * space in any swap device?
0549          */
0550         if (get_nr_swap_pages() > 0)
0551             return true;
0552     } else {
0553         /* Is the memcg below its swap limit? */
0554         if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
0555             return true;
0556     }
0557 
0558     /*
0559      * The page can not be swapped.
0560      *
0561      * Can it be reclaimed from this node via demotion?
0562      */
0563     return can_demote(nid, sc);
0564 }
0565 
0566 /*
0567  * This misses isolated pages which are not accounted for to save counters.
0568  * As the data only determines if reclaim or compaction continues, it is
0569  * not expected that isolated pages will be a dominating factor.
0570  */
0571 unsigned long zone_reclaimable_pages(struct zone *zone)
0572 {
0573     unsigned long nr;
0574 
0575     nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
0576         zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
0577     if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
0578         nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
0579             zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
0580 
0581     return nr;
0582 }
0583 
0584 /**
0585  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
0586  * @lruvec: lru vector
0587  * @lru: lru to use
0588  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
0589  */
0590 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
0591                      int zone_idx)
0592 {
0593     unsigned long size = 0;
0594     int zid;
0595 
0596     for (zid = 0; zid <= zone_idx; zid++) {
0597         struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
0598 
0599         if (!managed_zone(zone))
0600             continue;
0601 
0602         if (!mem_cgroup_disabled())
0603             size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
0604         else
0605             size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
0606     }
0607     return size;
0608 }
0609 
0610 /*
0611  * Add a shrinker callback to be called from the vm.
0612  */
0613 static int __prealloc_shrinker(struct shrinker *shrinker)
0614 {
0615     unsigned int size;
0616     int err;
0617 
0618     if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
0619         err = prealloc_memcg_shrinker(shrinker);
0620         if (err != -ENOSYS)
0621             return err;
0622 
0623         shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
0624     }
0625 
0626     size = sizeof(*shrinker->nr_deferred);
0627     if (shrinker->flags & SHRINKER_NUMA_AWARE)
0628         size *= nr_node_ids;
0629 
0630     shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
0631     if (!shrinker->nr_deferred)
0632         return -ENOMEM;
0633 
0634     return 0;
0635 }
0636 
0637 #ifdef CONFIG_SHRINKER_DEBUG
0638 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
0639 {
0640     va_list ap;
0641     int err;
0642 
0643     va_start(ap, fmt);
0644     shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
0645     va_end(ap);
0646     if (!shrinker->name)
0647         return -ENOMEM;
0648 
0649     err = __prealloc_shrinker(shrinker);
0650     if (err) {
0651         kfree_const(shrinker->name);
0652         shrinker->name = NULL;
0653     }
0654 
0655     return err;
0656 }
0657 #else
0658 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
0659 {
0660     return __prealloc_shrinker(shrinker);
0661 }
0662 #endif
0663 
0664 void free_prealloced_shrinker(struct shrinker *shrinker)
0665 {
0666 #ifdef CONFIG_SHRINKER_DEBUG
0667     kfree_const(shrinker->name);
0668     shrinker->name = NULL;
0669 #endif
0670     if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
0671         down_write(&shrinker_rwsem);
0672         unregister_memcg_shrinker(shrinker);
0673         up_write(&shrinker_rwsem);
0674         return;
0675     }
0676 
0677     kfree(shrinker->nr_deferred);
0678     shrinker->nr_deferred = NULL;
0679 }
0680 
0681 void register_shrinker_prepared(struct shrinker *shrinker)
0682 {
0683     down_write(&shrinker_rwsem);
0684     list_add_tail(&shrinker->list, &shrinker_list);
0685     shrinker->flags |= SHRINKER_REGISTERED;
0686     shrinker_debugfs_add(shrinker);
0687     up_write(&shrinker_rwsem);
0688 }
0689 
0690 static int __register_shrinker(struct shrinker *shrinker)
0691 {
0692     int err = __prealloc_shrinker(shrinker);
0693 
0694     if (err)
0695         return err;
0696     register_shrinker_prepared(shrinker);
0697     return 0;
0698 }
0699 
0700 #ifdef CONFIG_SHRINKER_DEBUG
0701 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
0702 {
0703     va_list ap;
0704     int err;
0705 
0706     va_start(ap, fmt);
0707     shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
0708     va_end(ap);
0709     if (!shrinker->name)
0710         return -ENOMEM;
0711 
0712     err = __register_shrinker(shrinker);
0713     if (err) {
0714         kfree_const(shrinker->name);
0715         shrinker->name = NULL;
0716     }
0717     return err;
0718 }
0719 #else
0720 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
0721 {
0722     return __register_shrinker(shrinker);
0723 }
0724 #endif
0725 EXPORT_SYMBOL(register_shrinker);
0726 
0727 /*
0728  * Remove one
0729  */
0730 void unregister_shrinker(struct shrinker *shrinker)
0731 {
0732     if (!(shrinker->flags & SHRINKER_REGISTERED))
0733         return;
0734 
0735     down_write(&shrinker_rwsem);
0736     list_del(&shrinker->list);
0737     shrinker->flags &= ~SHRINKER_REGISTERED;
0738     if (shrinker->flags & SHRINKER_MEMCG_AWARE)
0739         unregister_memcg_shrinker(shrinker);
0740     shrinker_debugfs_remove(shrinker);
0741     up_write(&shrinker_rwsem);
0742 
0743     kfree(shrinker->nr_deferred);
0744     shrinker->nr_deferred = NULL;
0745 }
0746 EXPORT_SYMBOL(unregister_shrinker);
0747 
0748 /**
0749  * synchronize_shrinkers - Wait for all running shrinkers to complete.
0750  *
0751  * This is equivalent to calling unregister_shrink() and register_shrinker(),
0752  * but atomically and with less overhead. This is useful to guarantee that all
0753  * shrinker invocations have seen an update, before freeing memory, similar to
0754  * rcu.
0755  */
0756 void synchronize_shrinkers(void)
0757 {
0758     down_write(&shrinker_rwsem);
0759     up_write(&shrinker_rwsem);
0760 }
0761 EXPORT_SYMBOL(synchronize_shrinkers);
0762 
0763 #define SHRINK_BATCH 128
0764 
0765 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
0766                     struct shrinker *shrinker, int priority)
0767 {
0768     unsigned long freed = 0;
0769     unsigned long long delta;
0770     long total_scan;
0771     long freeable;
0772     long nr;
0773     long new_nr;
0774     long batch_size = shrinker->batch ? shrinker->batch
0775                       : SHRINK_BATCH;
0776     long scanned = 0, next_deferred;
0777 
0778     freeable = shrinker->count_objects(shrinker, shrinkctl);
0779     if (freeable == 0 || freeable == SHRINK_EMPTY)
0780         return freeable;
0781 
0782     /*
0783      * copy the current shrinker scan count into a local variable
0784      * and zero it so that other concurrent shrinker invocations
0785      * don't also do this scanning work.
0786      */
0787     nr = xchg_nr_deferred(shrinker, shrinkctl);
0788 
0789     if (shrinker->seeks) {
0790         delta = freeable >> priority;
0791         delta *= 4;
0792         do_div(delta, shrinker->seeks);
0793     } else {
0794         /*
0795          * These objects don't require any IO to create. Trim
0796          * them aggressively under memory pressure to keep
0797          * them from causing refetches in the IO caches.
0798          */
0799         delta = freeable / 2;
0800     }
0801 
0802     total_scan = nr >> priority;
0803     total_scan += delta;
0804     total_scan = min(total_scan, (2 * freeable));
0805 
0806     trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
0807                    freeable, delta, total_scan, priority);
0808 
0809     /*
0810      * Normally, we should not scan less than batch_size objects in one
0811      * pass to avoid too frequent shrinker calls, but if the slab has less
0812      * than batch_size objects in total and we are really tight on memory,
0813      * we will try to reclaim all available objects, otherwise we can end
0814      * up failing allocations although there are plenty of reclaimable
0815      * objects spread over several slabs with usage less than the
0816      * batch_size.
0817      *
0818      * We detect the "tight on memory" situations by looking at the total
0819      * number of objects we want to scan (total_scan). If it is greater
0820      * than the total number of objects on slab (freeable), we must be
0821      * scanning at high prio and therefore should try to reclaim as much as
0822      * possible.
0823      */
0824     while (total_scan >= batch_size ||
0825            total_scan >= freeable) {
0826         unsigned long ret;
0827         unsigned long nr_to_scan = min(batch_size, total_scan);
0828 
0829         shrinkctl->nr_to_scan = nr_to_scan;
0830         shrinkctl->nr_scanned = nr_to_scan;
0831         ret = shrinker->scan_objects(shrinker, shrinkctl);
0832         if (ret == SHRINK_STOP)
0833             break;
0834         freed += ret;
0835 
0836         count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
0837         total_scan -= shrinkctl->nr_scanned;
0838         scanned += shrinkctl->nr_scanned;
0839 
0840         cond_resched();
0841     }
0842 
0843     /*
0844      * The deferred work is increased by any new work (delta) that wasn't
0845      * done, decreased by old deferred work that was done now.
0846      *
0847      * And it is capped to two times of the freeable items.
0848      */
0849     next_deferred = max_t(long, (nr + delta - scanned), 0);
0850     next_deferred = min(next_deferred, (2 * freeable));
0851 
0852     /*
0853      * move the unused scan count back into the shrinker in a
0854      * manner that handles concurrent updates.
0855      */
0856     new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
0857 
0858     trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
0859     return freed;
0860 }
0861 
0862 #ifdef CONFIG_MEMCG
0863 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
0864             struct mem_cgroup *memcg, int priority)
0865 {
0866     struct shrinker_info *info;
0867     unsigned long ret, freed = 0;
0868     int i;
0869 
0870     if (!mem_cgroup_online(memcg))
0871         return 0;
0872 
0873     if (!down_read_trylock(&shrinker_rwsem))
0874         return 0;
0875 
0876     info = shrinker_info_protected(memcg, nid);
0877     if (unlikely(!info))
0878         goto unlock;
0879 
0880     for_each_set_bit(i, info->map, shrinker_nr_max) {
0881         struct shrink_control sc = {
0882             .gfp_mask = gfp_mask,
0883             .nid = nid,
0884             .memcg = memcg,
0885         };
0886         struct shrinker *shrinker;
0887 
0888         shrinker = idr_find(&shrinker_idr, i);
0889         if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
0890             if (!shrinker)
0891                 clear_bit(i, info->map);
0892             continue;
0893         }
0894 
0895         /* Call non-slab shrinkers even though kmem is disabled */
0896         if (!memcg_kmem_enabled() &&
0897             !(shrinker->flags & SHRINKER_NONSLAB))
0898             continue;
0899 
0900         ret = do_shrink_slab(&sc, shrinker, priority);
0901         if (ret == SHRINK_EMPTY) {
0902             clear_bit(i, info->map);
0903             /*
0904              * After the shrinker reported that it had no objects to
0905              * free, but before we cleared the corresponding bit in
0906              * the memcg shrinker map, a new object might have been
0907              * added. To make sure, we have the bit set in this
0908              * case, we invoke the shrinker one more time and reset
0909              * the bit if it reports that it is not empty anymore.
0910              * The memory barrier here pairs with the barrier in
0911              * set_shrinker_bit():
0912              *
0913              * list_lru_add()     shrink_slab_memcg()
0914              *   list_add_tail()    clear_bit()
0915              *   <MB>               <MB>
0916              *   set_bit()          do_shrink_slab()
0917              */
0918             smp_mb__after_atomic();
0919             ret = do_shrink_slab(&sc, shrinker, priority);
0920             if (ret == SHRINK_EMPTY)
0921                 ret = 0;
0922             else
0923                 set_shrinker_bit(memcg, nid, i);
0924         }
0925         freed += ret;
0926 
0927         if (rwsem_is_contended(&shrinker_rwsem)) {
0928             freed = freed ? : 1;
0929             break;
0930         }
0931     }
0932 unlock:
0933     up_read(&shrinker_rwsem);
0934     return freed;
0935 }
0936 #else /* CONFIG_MEMCG */
0937 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
0938             struct mem_cgroup *memcg, int priority)
0939 {
0940     return 0;
0941 }
0942 #endif /* CONFIG_MEMCG */
0943 
0944 /**
0945  * shrink_slab - shrink slab caches
0946  * @gfp_mask: allocation context
0947  * @nid: node whose slab caches to target
0948  * @memcg: memory cgroup whose slab caches to target
0949  * @priority: the reclaim priority
0950  *
0951  * Call the shrink functions to age shrinkable caches.
0952  *
0953  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
0954  * unaware shrinkers will receive a node id of 0 instead.
0955  *
0956  * @memcg specifies the memory cgroup to target. Unaware shrinkers
0957  * are called only if it is the root cgroup.
0958  *
0959  * @priority is sc->priority, we take the number of objects and >> by priority
0960  * in order to get the scan target.
0961  *
0962  * Returns the number of reclaimed slab objects.
0963  */
0964 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
0965                  struct mem_cgroup *memcg,
0966                  int priority)
0967 {
0968     unsigned long ret, freed = 0;
0969     struct shrinker *shrinker;
0970 
0971     /*
0972      * The root memcg might be allocated even though memcg is disabled
0973      * via "cgroup_disable=memory" boot parameter.  This could make
0974      * mem_cgroup_is_root() return false, then just run memcg slab
0975      * shrink, but skip global shrink.  This may result in premature
0976      * oom.
0977      */
0978     if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
0979         return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
0980 
0981     if (!down_read_trylock(&shrinker_rwsem))
0982         goto out;
0983 
0984     list_for_each_entry(shrinker, &shrinker_list, list) {
0985         struct shrink_control sc = {
0986             .gfp_mask = gfp_mask,
0987             .nid = nid,
0988             .memcg = memcg,
0989         };
0990 
0991         ret = do_shrink_slab(&sc, shrinker, priority);
0992         if (ret == SHRINK_EMPTY)
0993             ret = 0;
0994         freed += ret;
0995         /*
0996          * Bail out if someone want to register a new shrinker to
0997          * prevent the registration from being stalled for long periods
0998          * by parallel ongoing shrinking.
0999          */
1000         if (rwsem_is_contended(&shrinker_rwsem)) {
1001             freed = freed ? : 1;
1002             break;
1003         }
1004     }
1005 
1006     up_read(&shrinker_rwsem);
1007 out:
1008     cond_resched();
1009     return freed;
1010 }
1011 
1012 static void drop_slab_node(int nid)
1013 {
1014     unsigned long freed;
1015     int shift = 0;
1016 
1017     do {
1018         struct mem_cgroup *memcg = NULL;
1019 
1020         if (fatal_signal_pending(current))
1021             return;
1022 
1023         freed = 0;
1024         memcg = mem_cgroup_iter(NULL, NULL, NULL);
1025         do {
1026             freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1027         } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1028     } while ((freed >> shift++) > 1);
1029 }
1030 
1031 void drop_slab(void)
1032 {
1033     int nid;
1034 
1035     for_each_online_node(nid)
1036         drop_slab_node(nid);
1037 }
1038 
1039 static inline int is_page_cache_freeable(struct folio *folio)
1040 {
1041     /*
1042      * A freeable page cache page is referenced only by the caller
1043      * that isolated the page, the page cache and optional buffer
1044      * heads at page->private.
1045      */
1046     return folio_ref_count(folio) - folio_test_private(folio) ==
1047         1 + folio_nr_pages(folio);
1048 }
1049 
1050 /*
1051  * We detected a synchronous write error writing a folio out.  Probably
1052  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1053  * fsync(), msync() or close().
1054  *
1055  * The tricky part is that after writepage we cannot touch the mapping: nothing
1056  * prevents it from being freed up.  But we have a ref on the folio and once
1057  * that folio is locked, the mapping is pinned.
1058  *
1059  * We're allowed to run sleeping folio_lock() here because we know the caller has
1060  * __GFP_FS.
1061  */
1062 static void handle_write_error(struct address_space *mapping,
1063                 struct folio *folio, int error)
1064 {
1065     folio_lock(folio);
1066     if (folio_mapping(folio) == mapping)
1067         mapping_set_error(mapping, error);
1068     folio_unlock(folio);
1069 }
1070 
1071 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1072 {
1073     int reclaimable = 0, write_pending = 0;
1074     int i;
1075 
1076     /*
1077      * If kswapd is disabled, reschedule if necessary but do not
1078      * throttle as the system is likely near OOM.
1079      */
1080     if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1081         return true;
1082 
1083     /*
1084      * If there are a lot of dirty/writeback pages then do not
1085      * throttle as throttling will occur when the pages cycle
1086      * towards the end of the LRU if still under writeback.
1087      */
1088     for (i = 0; i < MAX_NR_ZONES; i++) {
1089         struct zone *zone = pgdat->node_zones + i;
1090 
1091         if (!managed_zone(zone))
1092             continue;
1093 
1094         reclaimable += zone_reclaimable_pages(zone);
1095         write_pending += zone_page_state_snapshot(zone,
1096                           NR_ZONE_WRITE_PENDING);
1097     }
1098     if (2 * write_pending <= reclaimable)
1099         return true;
1100 
1101     return false;
1102 }
1103 
1104 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1105 {
1106     wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1107     long timeout, ret;
1108     DEFINE_WAIT(wait);
1109 
1110     /*
1111      * Do not throttle IO workers, kthreads other than kswapd or
1112      * workqueues. They may be required for reclaim to make
1113      * forward progress (e.g. journalling workqueues or kthreads).
1114      */
1115     if (!current_is_kswapd() &&
1116         current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1117         cond_resched();
1118         return;
1119     }
1120 
1121     /*
1122      * These figures are pulled out of thin air.
1123      * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1124      * parallel reclaimers which is a short-lived event so the timeout is
1125      * short. Failing to make progress or waiting on writeback are
1126      * potentially long-lived events so use a longer timeout. This is shaky
1127      * logic as a failure to make progress could be due to anything from
1128      * writeback to a slow device to excessive references pages at the tail
1129      * of the inactive LRU.
1130      */
1131     switch(reason) {
1132     case VMSCAN_THROTTLE_WRITEBACK:
1133         timeout = HZ/10;
1134 
1135         if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1136             WRITE_ONCE(pgdat->nr_reclaim_start,
1137                 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1138         }
1139 
1140         break;
1141     case VMSCAN_THROTTLE_CONGESTED:
1142         fallthrough;
1143     case VMSCAN_THROTTLE_NOPROGRESS:
1144         if (skip_throttle_noprogress(pgdat)) {
1145             cond_resched();
1146             return;
1147         }
1148 
1149         timeout = 1;
1150 
1151         break;
1152     case VMSCAN_THROTTLE_ISOLATED:
1153         timeout = HZ/50;
1154         break;
1155     default:
1156         WARN_ON_ONCE(1);
1157         timeout = HZ;
1158         break;
1159     }
1160 
1161     prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1162     ret = schedule_timeout(timeout);
1163     finish_wait(wqh, &wait);
1164 
1165     if (reason == VMSCAN_THROTTLE_WRITEBACK)
1166         atomic_dec(&pgdat->nr_writeback_throttled);
1167 
1168     trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1169                 jiffies_to_usecs(timeout - ret),
1170                 reason);
1171 }
1172 
1173 /*
1174  * Account for pages written if tasks are throttled waiting on dirty
1175  * pages to clean. If enough pages have been cleaned since throttling
1176  * started then wakeup the throttled tasks.
1177  */
1178 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1179                             int nr_throttled)
1180 {
1181     unsigned long nr_written;
1182 
1183     node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1184 
1185     /*
1186      * This is an inaccurate read as the per-cpu deltas may not
1187      * be synchronised. However, given that the system is
1188      * writeback throttled, it is not worth taking the penalty
1189      * of getting an accurate count. At worst, the throttle
1190      * timeout guarantees forward progress.
1191      */
1192     nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1193         READ_ONCE(pgdat->nr_reclaim_start);
1194 
1195     if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1196         wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1197 }
1198 
1199 /* possible outcome of pageout() */
1200 typedef enum {
1201     /* failed to write page out, page is locked */
1202     PAGE_KEEP,
1203     /* move page to the active list, page is locked */
1204     PAGE_ACTIVATE,
1205     /* page has been sent to the disk successfully, page is unlocked */
1206     PAGE_SUCCESS,
1207     /* page is clean and locked */
1208     PAGE_CLEAN,
1209 } pageout_t;
1210 
1211 /*
1212  * pageout is called by shrink_page_list() for each dirty page.
1213  * Calls ->writepage().
1214  */
1215 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1216              struct swap_iocb **plug)
1217 {
1218     /*
1219      * If the folio is dirty, only perform writeback if that write
1220      * will be non-blocking.  To prevent this allocation from being
1221      * stalled by pagecache activity.  But note that there may be
1222      * stalls if we need to run get_block().  We could test
1223      * PagePrivate for that.
1224      *
1225      * If this process is currently in __generic_file_write_iter() against
1226      * this folio's queue, we can perform writeback even if that
1227      * will block.
1228      *
1229      * If the folio is swapcache, write it back even if that would
1230      * block, for some throttling. This happens by accident, because
1231      * swap_backing_dev_info is bust: it doesn't reflect the
1232      * congestion state of the swapdevs.  Easy to fix, if needed.
1233      */
1234     if (!is_page_cache_freeable(folio))
1235         return PAGE_KEEP;
1236     if (!mapping) {
1237         /*
1238          * Some data journaling orphaned folios can have
1239          * folio->mapping == NULL while being dirty with clean buffers.
1240          */
1241         if (folio_test_private(folio)) {
1242             if (try_to_free_buffers(folio)) {
1243                 folio_clear_dirty(folio);
1244                 pr_info("%s: orphaned folio\n", __func__);
1245                 return PAGE_CLEAN;
1246             }
1247         }
1248         return PAGE_KEEP;
1249     }
1250     if (mapping->a_ops->writepage == NULL)
1251         return PAGE_ACTIVATE;
1252 
1253     if (folio_clear_dirty_for_io(folio)) {
1254         int res;
1255         struct writeback_control wbc = {
1256             .sync_mode = WB_SYNC_NONE,
1257             .nr_to_write = SWAP_CLUSTER_MAX,
1258             .range_start = 0,
1259             .range_end = LLONG_MAX,
1260             .for_reclaim = 1,
1261             .swap_plug = plug,
1262         };
1263 
1264         folio_set_reclaim(folio);
1265         res = mapping->a_ops->writepage(&folio->page, &wbc);
1266         if (res < 0)
1267             handle_write_error(mapping, folio, res);
1268         if (res == AOP_WRITEPAGE_ACTIVATE) {
1269             folio_clear_reclaim(folio);
1270             return PAGE_ACTIVATE;
1271         }
1272 
1273         if (!folio_test_writeback(folio)) {
1274             /* synchronous write or broken a_ops? */
1275             folio_clear_reclaim(folio);
1276         }
1277         trace_mm_vmscan_write_folio(folio);
1278         node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1279         return PAGE_SUCCESS;
1280     }
1281 
1282     return PAGE_CLEAN;
1283 }
1284 
1285 /*
1286  * Same as remove_mapping, but if the page is removed from the mapping, it
1287  * gets returned with a refcount of 0.
1288  */
1289 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1290                 bool reclaimed, struct mem_cgroup *target_memcg)
1291 {
1292     int refcount;
1293     void *shadow = NULL;
1294 
1295     BUG_ON(!folio_test_locked(folio));
1296     BUG_ON(mapping != folio_mapping(folio));
1297 
1298     if (!folio_test_swapcache(folio))
1299         spin_lock(&mapping->host->i_lock);
1300     xa_lock_irq(&mapping->i_pages);
1301     /*
1302      * The non racy check for a busy page.
1303      *
1304      * Must be careful with the order of the tests. When someone has
1305      * a ref to the page, it may be possible that they dirty it then
1306      * drop the reference. So if PageDirty is tested before page_count
1307      * here, then the following race may occur:
1308      *
1309      * get_user_pages(&page);
1310      * [user mapping goes away]
1311      * write_to(page);
1312      *              !PageDirty(page)    [good]
1313      * SetPageDirty(page);
1314      * put_page(page);
1315      *              !page_count(page)   [good, discard it]
1316      *
1317      * [oops, our write_to data is lost]
1318      *
1319      * Reversing the order of the tests ensures such a situation cannot
1320      * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1321      * load is not satisfied before that of page->_refcount.
1322      *
1323      * Note that if SetPageDirty is always performed via set_page_dirty,
1324      * and thus under the i_pages lock, then this ordering is not required.
1325      */
1326     refcount = 1 + folio_nr_pages(folio);
1327     if (!folio_ref_freeze(folio, refcount))
1328         goto cannot_free;
1329     /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1330     if (unlikely(folio_test_dirty(folio))) {
1331         folio_ref_unfreeze(folio, refcount);
1332         goto cannot_free;
1333     }
1334 
1335     if (folio_test_swapcache(folio)) {
1336         swp_entry_t swap = folio_swap_entry(folio);
1337         mem_cgroup_swapout(folio, swap);
1338         if (reclaimed && !mapping_exiting(mapping))
1339             shadow = workingset_eviction(folio, target_memcg);
1340         __delete_from_swap_cache(folio, swap, shadow);
1341         xa_unlock_irq(&mapping->i_pages);
1342         put_swap_page(&folio->page, swap);
1343     } else {
1344         void (*free_folio)(struct folio *);
1345 
1346         free_folio = mapping->a_ops->free_folio;
1347         /*
1348          * Remember a shadow entry for reclaimed file cache in
1349          * order to detect refaults, thus thrashing, later on.
1350          *
1351          * But don't store shadows in an address space that is
1352          * already exiting.  This is not just an optimization,
1353          * inode reclaim needs to empty out the radix tree or
1354          * the nodes are lost.  Don't plant shadows behind its
1355          * back.
1356          *
1357          * We also don't store shadows for DAX mappings because the
1358          * only page cache pages found in these are zero pages
1359          * covering holes, and because we don't want to mix DAX
1360          * exceptional entries and shadow exceptional entries in the
1361          * same address_space.
1362          */
1363         if (reclaimed && folio_is_file_lru(folio) &&
1364             !mapping_exiting(mapping) && !dax_mapping(mapping))
1365             shadow = workingset_eviction(folio, target_memcg);
1366         __filemap_remove_folio(folio, shadow);
1367         xa_unlock_irq(&mapping->i_pages);
1368         if (mapping_shrinkable(mapping))
1369             inode_add_lru(mapping->host);
1370         spin_unlock(&mapping->host->i_lock);
1371 
1372         if (free_folio)
1373             free_folio(folio);
1374     }
1375 
1376     return 1;
1377 
1378 cannot_free:
1379     xa_unlock_irq(&mapping->i_pages);
1380     if (!folio_test_swapcache(folio))
1381         spin_unlock(&mapping->host->i_lock);
1382     return 0;
1383 }
1384 
1385 /**
1386  * remove_mapping() - Attempt to remove a folio from its mapping.
1387  * @mapping: The address space.
1388  * @folio: The folio to remove.
1389  *
1390  * If the folio is dirty, under writeback or if someone else has a ref
1391  * on it, removal will fail.
1392  * Return: The number of pages removed from the mapping.  0 if the folio
1393  * could not be removed.
1394  * Context: The caller should have a single refcount on the folio and
1395  * hold its lock.
1396  */
1397 long remove_mapping(struct address_space *mapping, struct folio *folio)
1398 {
1399     if (__remove_mapping(mapping, folio, false, NULL)) {
1400         /*
1401          * Unfreezing the refcount with 1 effectively
1402          * drops the pagecache ref for us without requiring another
1403          * atomic operation.
1404          */
1405         folio_ref_unfreeze(folio, 1);
1406         return folio_nr_pages(folio);
1407     }
1408     return 0;
1409 }
1410 
1411 /**
1412  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1413  * @folio: Folio to be returned to an LRU list.
1414  *
1415  * Add previously isolated @folio to appropriate LRU list.
1416  * The folio may still be unevictable for other reasons.
1417  *
1418  * Context: lru_lock must not be held, interrupts must be enabled.
1419  */
1420 void folio_putback_lru(struct folio *folio)
1421 {
1422     folio_add_lru(folio);
1423     folio_put(folio);       /* drop ref from isolate */
1424 }
1425 
1426 enum page_references {
1427     PAGEREF_RECLAIM,
1428     PAGEREF_RECLAIM_CLEAN,
1429     PAGEREF_KEEP,
1430     PAGEREF_ACTIVATE,
1431 };
1432 
1433 static enum page_references folio_check_references(struct folio *folio,
1434                           struct scan_control *sc)
1435 {
1436     int referenced_ptes, referenced_folio;
1437     unsigned long vm_flags;
1438 
1439     referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1440                        &vm_flags);
1441     referenced_folio = folio_test_clear_referenced(folio);
1442 
1443     /*
1444      * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1445      * Let the folio, now marked Mlocked, be moved to the unevictable list.
1446      */
1447     if (vm_flags & VM_LOCKED)
1448         return PAGEREF_ACTIVATE;
1449 
1450     /* rmap lock contention: rotate */
1451     if (referenced_ptes == -1)
1452         return PAGEREF_KEEP;
1453 
1454     if (referenced_ptes) {
1455         /*
1456          * All mapped folios start out with page table
1457          * references from the instantiating fault, so we need
1458          * to look twice if a mapped file/anon folio is used more
1459          * than once.
1460          *
1461          * Mark it and spare it for another trip around the
1462          * inactive list.  Another page table reference will
1463          * lead to its activation.
1464          *
1465          * Note: the mark is set for activated folios as well
1466          * so that recently deactivated but used folios are
1467          * quickly recovered.
1468          */
1469         folio_set_referenced(folio);
1470 
1471         if (referenced_folio || referenced_ptes > 1)
1472             return PAGEREF_ACTIVATE;
1473 
1474         /*
1475          * Activate file-backed executable folios after first usage.
1476          */
1477         if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1478             return PAGEREF_ACTIVATE;
1479 
1480         return PAGEREF_KEEP;
1481     }
1482 
1483     /* Reclaim if clean, defer dirty folios to writeback */
1484     if (referenced_folio && folio_is_file_lru(folio))
1485         return PAGEREF_RECLAIM_CLEAN;
1486 
1487     return PAGEREF_RECLAIM;
1488 }
1489 
1490 /* Check if a page is dirty or under writeback */
1491 static void folio_check_dirty_writeback(struct folio *folio,
1492                        bool *dirty, bool *writeback)
1493 {
1494     struct address_space *mapping;
1495 
1496     /*
1497      * Anonymous pages are not handled by flushers and must be written
1498      * from reclaim context. Do not stall reclaim based on them.
1499      * MADV_FREE anonymous pages are put into inactive file list too.
1500      * They could be mistakenly treated as file lru. So further anon
1501      * test is needed.
1502      */
1503     if (!folio_is_file_lru(folio) ||
1504         (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1505         *dirty = false;
1506         *writeback = false;
1507         return;
1508     }
1509 
1510     /* By default assume that the folio flags are accurate */
1511     *dirty = folio_test_dirty(folio);
1512     *writeback = folio_test_writeback(folio);
1513 
1514     /* Verify dirty/writeback state if the filesystem supports it */
1515     if (!folio_test_private(folio))
1516         return;
1517 
1518     mapping = folio_mapping(folio);
1519     if (mapping && mapping->a_ops->is_dirty_writeback)
1520         mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1521 }
1522 
1523 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1524 {
1525     struct migration_target_control mtc = {
1526         /*
1527          * Allocate from 'node', or fail quickly and quietly.
1528          * When this happens, 'page' will likely just be discarded
1529          * instead of migrated.
1530          */
1531         .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1532                 __GFP_THISNODE  | __GFP_NOWARN |
1533                 __GFP_NOMEMALLOC | GFP_NOWAIT,
1534         .nid = node
1535     };
1536 
1537     return alloc_migration_target(page, (unsigned long)&mtc);
1538 }
1539 
1540 /*
1541  * Take pages on @demote_list and attempt to demote them to
1542  * another node.  Pages which are not demoted are left on
1543  * @demote_pages.
1544  */
1545 static unsigned int demote_page_list(struct list_head *demote_pages,
1546                      struct pglist_data *pgdat)
1547 {
1548     int target_nid = next_demotion_node(pgdat->node_id);
1549     unsigned int nr_succeeded;
1550 
1551     if (list_empty(demote_pages))
1552         return 0;
1553 
1554     if (target_nid == NUMA_NO_NODE)
1555         return 0;
1556 
1557     /* Demotion ignores all cpuset and mempolicy settings */
1558     migrate_pages(demote_pages, alloc_demote_page, NULL,
1559                 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1560                 &nr_succeeded);
1561 
1562     if (current_is_kswapd())
1563         __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1564     else
1565         __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1566 
1567     return nr_succeeded;
1568 }
1569 
1570 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1571 {
1572     if (gfp_mask & __GFP_FS)
1573         return true;
1574     if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1575         return false;
1576     /*
1577      * We can "enter_fs" for swap-cache with only __GFP_IO
1578      * providing this isn't SWP_FS_OPS.
1579      * ->flags can be updated non-atomicially (scan_swap_map_slots),
1580      * but that will never affect SWP_FS_OPS, so the data_race
1581      * is safe.
1582      */
1583     return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1584 }
1585 
1586 /*
1587  * shrink_page_list() returns the number of reclaimed pages
1588  */
1589 static unsigned int shrink_page_list(struct list_head *page_list,
1590                      struct pglist_data *pgdat,
1591                      struct scan_control *sc,
1592                      struct reclaim_stat *stat,
1593                      bool ignore_references)
1594 {
1595     LIST_HEAD(ret_pages);
1596     LIST_HEAD(free_pages);
1597     LIST_HEAD(demote_pages);
1598     unsigned int nr_reclaimed = 0;
1599     unsigned int pgactivate = 0;
1600     bool do_demote_pass;
1601     struct swap_iocb *plug = NULL;
1602 
1603     memset(stat, 0, sizeof(*stat));
1604     cond_resched();
1605     do_demote_pass = can_demote(pgdat->node_id, sc);
1606 
1607 retry:
1608     while (!list_empty(page_list)) {
1609         struct address_space *mapping;
1610         struct folio *folio;
1611         enum page_references references = PAGEREF_RECLAIM;
1612         bool dirty, writeback;
1613         unsigned int nr_pages;
1614 
1615         cond_resched();
1616 
1617         folio = lru_to_folio(page_list);
1618         list_del(&folio->lru);
1619 
1620         if (!folio_trylock(folio))
1621             goto keep;
1622 
1623         VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1624 
1625         nr_pages = folio_nr_pages(folio);
1626 
1627         /* Account the number of base pages */
1628         sc->nr_scanned += nr_pages;
1629 
1630         if (unlikely(!folio_evictable(folio)))
1631             goto activate_locked;
1632 
1633         if (!sc->may_unmap && folio_mapped(folio))
1634             goto keep_locked;
1635 
1636         /*
1637          * The number of dirty pages determines if a node is marked
1638          * reclaim_congested. kswapd will stall and start writing
1639          * folios if the tail of the LRU is all dirty unqueued folios.
1640          */
1641         folio_check_dirty_writeback(folio, &dirty, &writeback);
1642         if (dirty || writeback)
1643             stat->nr_dirty += nr_pages;
1644 
1645         if (dirty && !writeback)
1646             stat->nr_unqueued_dirty += nr_pages;
1647 
1648         /*
1649          * Treat this folio as congested if folios are cycling
1650          * through the LRU so quickly that the folios marked
1651          * for immediate reclaim are making it to the end of
1652          * the LRU a second time.
1653          */
1654         if (writeback && folio_test_reclaim(folio))
1655             stat->nr_congested += nr_pages;
1656 
1657         /*
1658          * If a folio at the tail of the LRU is under writeback, there
1659          * are three cases to consider.
1660          *
1661          * 1) If reclaim is encountering an excessive number
1662          *    of folios under writeback and this folio has both
1663          *    the writeback and reclaim flags set, then it
1664          *    indicates that folios are being queued for I/O but
1665          *    are being recycled through the LRU before the I/O
1666          *    can complete. Waiting on the folio itself risks an
1667          *    indefinite stall if it is impossible to writeback
1668          *    the folio due to I/O error or disconnected storage
1669          *    so instead note that the LRU is being scanned too
1670          *    quickly and the caller can stall after the folio
1671          *    list has been processed.
1672          *
1673          * 2) Global or new memcg reclaim encounters a folio that is
1674          *    not marked for immediate reclaim, or the caller does not
1675          *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1676          *    not to fs). In this case mark the folio for immediate
1677          *    reclaim and continue scanning.
1678          *
1679          *    Require may_enter_fs() because we would wait on fs, which
1680          *    may not have submitted I/O yet. And the loop driver might
1681          *    enter reclaim, and deadlock if it waits on a folio for
1682          *    which it is needed to do the write (loop masks off
1683          *    __GFP_IO|__GFP_FS for this reason); but more thought
1684          *    would probably show more reasons.
1685          *
1686          * 3) Legacy memcg encounters a folio that already has the
1687          *    reclaim flag set. memcg does not have any dirty folio
1688          *    throttling so we could easily OOM just because too many
1689          *    folios are in writeback and there is nothing else to
1690          *    reclaim. Wait for the writeback to complete.
1691          *
1692          * In cases 1) and 2) we activate the folios to get them out of
1693          * the way while we continue scanning for clean folios on the
1694          * inactive list and refilling from the active list. The
1695          * observation here is that waiting for disk writes is more
1696          * expensive than potentially causing reloads down the line.
1697          * Since they're marked for immediate reclaim, they won't put
1698          * memory pressure on the cache working set any longer than it
1699          * takes to write them to disk.
1700          */
1701         if (folio_test_writeback(folio)) {
1702             /* Case 1 above */
1703             if (current_is_kswapd() &&
1704                 folio_test_reclaim(folio) &&
1705                 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1706                 stat->nr_immediate += nr_pages;
1707                 goto activate_locked;
1708 
1709             /* Case 2 above */
1710             } else if (writeback_throttling_sane(sc) ||
1711                 !folio_test_reclaim(folio) ||
1712                 !may_enter_fs(folio, sc->gfp_mask)) {
1713                 /*
1714                  * This is slightly racy -
1715                  * folio_end_writeback() might have
1716                  * just cleared the reclaim flag, then
1717                  * setting the reclaim flag here ends up
1718                  * interpreted as the readahead flag - but
1719                  * that does not matter enough to care.
1720                  * What we do want is for this folio to
1721                  * have the reclaim flag set next time
1722                  * memcg reclaim reaches the tests above,
1723                  * so it will then wait for writeback to
1724                  * avoid OOM; and it's also appropriate
1725                  * in global reclaim.
1726                  */
1727                 folio_set_reclaim(folio);
1728                 stat->nr_writeback += nr_pages;
1729                 goto activate_locked;
1730 
1731             /* Case 3 above */
1732             } else {
1733                 folio_unlock(folio);
1734                 folio_wait_writeback(folio);
1735                 /* then go back and try same folio again */
1736                 list_add_tail(&folio->lru, page_list);
1737                 continue;
1738             }
1739         }
1740 
1741         if (!ignore_references)
1742             references = folio_check_references(folio, sc);
1743 
1744         switch (references) {
1745         case PAGEREF_ACTIVATE:
1746             goto activate_locked;
1747         case PAGEREF_KEEP:
1748             stat->nr_ref_keep += nr_pages;
1749             goto keep_locked;
1750         case PAGEREF_RECLAIM:
1751         case PAGEREF_RECLAIM_CLEAN:
1752             ; /* try to reclaim the folio below */
1753         }
1754 
1755         /*
1756          * Before reclaiming the folio, try to relocate
1757          * its contents to another node.
1758          */
1759         if (do_demote_pass &&
1760             (thp_migration_supported() || !folio_test_large(folio))) {
1761             list_add(&folio->lru, &demote_pages);
1762             folio_unlock(folio);
1763             continue;
1764         }
1765 
1766         /*
1767          * Anonymous process memory has backing store?
1768          * Try to allocate it some swap space here.
1769          * Lazyfree folio could be freed directly
1770          */
1771         if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1772             if (!folio_test_swapcache(folio)) {
1773                 if (!(sc->gfp_mask & __GFP_IO))
1774                     goto keep_locked;
1775                 if (folio_maybe_dma_pinned(folio))
1776                     goto keep_locked;
1777                 if (folio_test_large(folio)) {
1778                     /* cannot split folio, skip it */
1779                     if (!can_split_folio(folio, NULL))
1780                         goto activate_locked;
1781                     /*
1782                      * Split folios without a PMD map right
1783                      * away. Chances are some or all of the
1784                      * tail pages can be freed without IO.
1785                      */
1786                     if (!folio_entire_mapcount(folio) &&
1787                         split_folio_to_list(folio,
1788                                 page_list))
1789                         goto activate_locked;
1790                 }
1791                 if (!add_to_swap(folio)) {
1792                     if (!folio_test_large(folio))
1793                         goto activate_locked_split;
1794                     /* Fallback to swap normal pages */
1795                     if (split_folio_to_list(folio,
1796                                 page_list))
1797                         goto activate_locked;
1798 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1799                     count_vm_event(THP_SWPOUT_FALLBACK);
1800 #endif
1801                     if (!add_to_swap(folio))
1802                         goto activate_locked_split;
1803                 }
1804             }
1805         } else if (folio_test_swapbacked(folio) &&
1806                folio_test_large(folio)) {
1807             /* Split shmem folio */
1808             if (split_folio_to_list(folio, page_list))
1809                 goto keep_locked;
1810         }
1811 
1812         /*
1813          * If the folio was split above, the tail pages will make
1814          * their own pass through this function and be accounted
1815          * then.
1816          */
1817         if ((nr_pages > 1) && !folio_test_large(folio)) {
1818             sc->nr_scanned -= (nr_pages - 1);
1819             nr_pages = 1;
1820         }
1821 
1822         /*
1823          * The folio is mapped into the page tables of one or more
1824          * processes. Try to unmap it here.
1825          */
1826         if (folio_mapped(folio)) {
1827             enum ttu_flags flags = TTU_BATCH_FLUSH;
1828             bool was_swapbacked = folio_test_swapbacked(folio);
1829 
1830             if (folio_test_pmd_mappable(folio))
1831                 flags |= TTU_SPLIT_HUGE_PMD;
1832 
1833             try_to_unmap(folio, flags);
1834             if (folio_mapped(folio)) {
1835                 stat->nr_unmap_fail += nr_pages;
1836                 if (!was_swapbacked &&
1837                     folio_test_swapbacked(folio))
1838                     stat->nr_lazyfree_fail += nr_pages;
1839                 goto activate_locked;
1840             }
1841         }
1842 
1843         mapping = folio_mapping(folio);
1844         if (folio_test_dirty(folio)) {
1845             /*
1846              * Only kswapd can writeback filesystem folios
1847              * to avoid risk of stack overflow. But avoid
1848              * injecting inefficient single-folio I/O into
1849              * flusher writeback as much as possible: only
1850              * write folios when we've encountered many
1851              * dirty folios, and when we've already scanned
1852              * the rest of the LRU for clean folios and see
1853              * the same dirty folios again (with the reclaim
1854              * flag set).
1855              */
1856             if (folio_is_file_lru(folio) &&
1857                 (!current_is_kswapd() ||
1858                  !folio_test_reclaim(folio) ||
1859                  !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1860                 /*
1861                  * Immediately reclaim when written back.
1862                  * Similar in principle to deactivate_page()
1863                  * except we already have the folio isolated
1864                  * and know it's dirty
1865                  */
1866                 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1867                         nr_pages);
1868                 folio_set_reclaim(folio);
1869 
1870                 goto activate_locked;
1871             }
1872 
1873             if (references == PAGEREF_RECLAIM_CLEAN)
1874                 goto keep_locked;
1875             if (!may_enter_fs(folio, sc->gfp_mask))
1876                 goto keep_locked;
1877             if (!sc->may_writepage)
1878                 goto keep_locked;
1879 
1880             /*
1881              * Folio is dirty. Flush the TLB if a writable entry
1882              * potentially exists to avoid CPU writes after I/O
1883              * starts and then write it out here.
1884              */
1885             try_to_unmap_flush_dirty();
1886             switch (pageout(folio, mapping, &plug)) {
1887             case PAGE_KEEP:
1888                 goto keep_locked;
1889             case PAGE_ACTIVATE:
1890                 goto activate_locked;
1891             case PAGE_SUCCESS:
1892                 stat->nr_pageout += nr_pages;
1893 
1894                 if (folio_test_writeback(folio))
1895                     goto keep;
1896                 if (folio_test_dirty(folio))
1897                     goto keep;
1898 
1899                 /*
1900                  * A synchronous write - probably a ramdisk.  Go
1901                  * ahead and try to reclaim the folio.
1902                  */
1903                 if (!folio_trylock(folio))
1904                     goto keep;
1905                 if (folio_test_dirty(folio) ||
1906                     folio_test_writeback(folio))
1907                     goto keep_locked;
1908                 mapping = folio_mapping(folio);
1909                 fallthrough;
1910             case PAGE_CLEAN:
1911                 ; /* try to free the folio below */
1912             }
1913         }
1914 
1915         /*
1916          * If the folio has buffers, try to free the buffer
1917          * mappings associated with this folio. If we succeed
1918          * we try to free the folio as well.
1919          *
1920          * We do this even if the folio is dirty.
1921          * filemap_release_folio() does not perform I/O, but it
1922          * is possible for a folio to have the dirty flag set,
1923          * but it is actually clean (all its buffers are clean).
1924          * This happens if the buffers were written out directly,
1925          * with submit_bh(). ext3 will do this, as well as
1926          * the blockdev mapping.  filemap_release_folio() will
1927          * discover that cleanness and will drop the buffers
1928          * and mark the folio clean - it can be freed.
1929          *
1930          * Rarely, folios can have buffers and no ->mapping.
1931          * These are the folios which were not successfully
1932          * invalidated in truncate_cleanup_folio().  We try to
1933          * drop those buffers here and if that worked, and the
1934          * folio is no longer mapped into process address space
1935          * (refcount == 1) it can be freed.  Otherwise, leave
1936          * the folio on the LRU so it is swappable.
1937          */
1938         if (folio_has_private(folio)) {
1939             if (!filemap_release_folio(folio, sc->gfp_mask))
1940                 goto activate_locked;
1941             if (!mapping && folio_ref_count(folio) == 1) {
1942                 folio_unlock(folio);
1943                 if (folio_put_testzero(folio))
1944                     goto free_it;
1945                 else {
1946                     /*
1947                      * rare race with speculative reference.
1948                      * the speculative reference will free
1949                      * this folio shortly, so we may
1950                      * increment nr_reclaimed here (and
1951                      * leave it off the LRU).
1952                      */
1953                     nr_reclaimed += nr_pages;
1954                     continue;
1955                 }
1956             }
1957         }
1958 
1959         if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1960             /* follow __remove_mapping for reference */
1961             if (!folio_ref_freeze(folio, 1))
1962                 goto keep_locked;
1963             /*
1964              * The folio has only one reference left, which is
1965              * from the isolation. After the caller puts the
1966              * folio back on the lru and drops the reference, the
1967              * folio will be freed anyway. It doesn't matter
1968              * which lru it goes on. So we don't bother checking
1969              * the dirty flag here.
1970              */
1971             count_vm_events(PGLAZYFREED, nr_pages);
1972             count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1973         } else if (!mapping || !__remove_mapping(mapping, folio, true,
1974                              sc->target_mem_cgroup))
1975             goto keep_locked;
1976 
1977         folio_unlock(folio);
1978 free_it:
1979         /*
1980          * Folio may get swapped out as a whole, need to account
1981          * all pages in it.
1982          */
1983         nr_reclaimed += nr_pages;
1984 
1985         /*
1986          * Is there need to periodically free_page_list? It would
1987          * appear not as the counts should be low
1988          */
1989         if (unlikely(folio_test_large(folio)))
1990             destroy_large_folio(folio);
1991         else
1992             list_add(&folio->lru, &free_pages);
1993         continue;
1994 
1995 activate_locked_split:
1996         /*
1997          * The tail pages that are failed to add into swap cache
1998          * reach here.  Fixup nr_scanned and nr_pages.
1999          */
2000         if (nr_pages > 1) {
2001             sc->nr_scanned -= (nr_pages - 1);
2002             nr_pages = 1;
2003         }
2004 activate_locked:
2005         /* Not a candidate for swapping, so reclaim swap space. */
2006         if (folio_test_swapcache(folio) &&
2007             (mem_cgroup_swap_full(&folio->page) ||
2008              folio_test_mlocked(folio)))
2009             try_to_free_swap(&folio->page);
2010         VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2011         if (!folio_test_mlocked(folio)) {
2012             int type = folio_is_file_lru(folio);
2013             folio_set_active(folio);
2014             stat->nr_activate[type] += nr_pages;
2015             count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2016         }
2017 keep_locked:
2018         folio_unlock(folio);
2019 keep:
2020         list_add(&folio->lru, &ret_pages);
2021         VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2022                 folio_test_unevictable(folio), folio);
2023     }
2024     /* 'page_list' is always empty here */
2025 
2026     /* Migrate folios selected for demotion */
2027     nr_reclaimed += demote_page_list(&demote_pages, pgdat);
2028     /* Folios that could not be demoted are still in @demote_pages */
2029     if (!list_empty(&demote_pages)) {
2030         /* Folios which weren't demoted go back on @page_list for retry: */
2031         list_splice_init(&demote_pages, page_list);
2032         do_demote_pass = false;
2033         goto retry;
2034     }
2035 
2036     pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2037 
2038     mem_cgroup_uncharge_list(&free_pages);
2039     try_to_unmap_flush();
2040     free_unref_page_list(&free_pages);
2041 
2042     list_splice(&ret_pages, page_list);
2043     count_vm_events(PGACTIVATE, pgactivate);
2044 
2045     if (plug)
2046         swap_write_unplug(plug);
2047     return nr_reclaimed;
2048 }
2049 
2050 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2051                         struct list_head *folio_list)
2052 {
2053     struct scan_control sc = {
2054         .gfp_mask = GFP_KERNEL,
2055         .may_unmap = 1,
2056     };
2057     struct reclaim_stat stat;
2058     unsigned int nr_reclaimed;
2059     struct folio *folio, *next;
2060     LIST_HEAD(clean_folios);
2061     unsigned int noreclaim_flag;
2062 
2063     list_for_each_entry_safe(folio, next, folio_list, lru) {
2064         if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2065             !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2066             !folio_test_unevictable(folio)) {
2067             folio_clear_active(folio);
2068             list_move(&folio->lru, &clean_folios);
2069         }
2070     }
2071 
2072     /*
2073      * We should be safe here since we are only dealing with file pages and
2074      * we are not kswapd and therefore cannot write dirty file pages. But
2075      * call memalloc_noreclaim_save() anyway, just in case these conditions
2076      * change in the future.
2077      */
2078     noreclaim_flag = memalloc_noreclaim_save();
2079     nr_reclaimed = shrink_page_list(&clean_folios, zone->zone_pgdat, &sc,
2080                     &stat, true);
2081     memalloc_noreclaim_restore(noreclaim_flag);
2082 
2083     list_splice(&clean_folios, folio_list);
2084     mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2085                 -(long)nr_reclaimed);
2086     /*
2087      * Since lazyfree pages are isolated from file LRU from the beginning,
2088      * they will rotate back to anonymous LRU in the end if it failed to
2089      * discard so isolated count will be mismatched.
2090      * Compensate the isolated count for both LRU lists.
2091      */
2092     mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2093                 stat.nr_lazyfree_fail);
2094     mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2095                 -(long)stat.nr_lazyfree_fail);
2096     return nr_reclaimed;
2097 }
2098 
2099 /*
2100  * Update LRU sizes after isolating pages. The LRU size updates must
2101  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2102  */
2103 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2104             enum lru_list lru, unsigned long *nr_zone_taken)
2105 {
2106     int zid;
2107 
2108     for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2109         if (!nr_zone_taken[zid])
2110             continue;
2111 
2112         update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2113     }
2114 
2115 }
2116 
2117 /*
2118  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2119  *
2120  * lruvec->lru_lock is heavily contended.  Some of the functions that
2121  * shrink the lists perform better by taking out a batch of pages
2122  * and working on them outside the LRU lock.
2123  *
2124  * For pagecache intensive workloads, this function is the hottest
2125  * spot in the kernel (apart from copy_*_user functions).
2126  *
2127  * Lru_lock must be held before calling this function.
2128  *
2129  * @nr_to_scan: The number of eligible pages to look through on the list.
2130  * @lruvec: The LRU vector to pull pages from.
2131  * @dst:    The temp list to put pages on to.
2132  * @nr_scanned: The number of pages that were scanned.
2133  * @sc:     The scan_control struct for this reclaim session
2134  * @lru:    LRU list id for isolating
2135  *
2136  * returns how many pages were moved onto *@dst.
2137  */
2138 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2139         struct lruvec *lruvec, struct list_head *dst,
2140         unsigned long *nr_scanned, struct scan_control *sc,
2141         enum lru_list lru)
2142 {
2143     struct list_head *src = &lruvec->lists[lru];
2144     unsigned long nr_taken = 0;
2145     unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2146     unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2147     unsigned long skipped = 0;
2148     unsigned long scan, total_scan, nr_pages;
2149     LIST_HEAD(folios_skipped);
2150 
2151     total_scan = 0;
2152     scan = 0;
2153     while (scan < nr_to_scan && !list_empty(src)) {
2154         struct list_head *move_to = src;
2155         struct folio *folio;
2156 
2157         folio = lru_to_folio(src);
2158         prefetchw_prev_lru_folio(folio, src, flags);
2159 
2160         nr_pages = folio_nr_pages(folio);
2161         total_scan += nr_pages;
2162 
2163         if (folio_zonenum(folio) > sc->reclaim_idx) {
2164             nr_skipped[folio_zonenum(folio)] += nr_pages;
2165             move_to = &folios_skipped;
2166             goto move;
2167         }
2168 
2169         /*
2170          * Do not count skipped folios because that makes the function
2171          * return with no isolated folios if the LRU mostly contains
2172          * ineligible folios.  This causes the VM to not reclaim any
2173          * folios, triggering a premature OOM.
2174          * Account all pages in a folio.
2175          */
2176         scan += nr_pages;
2177 
2178         if (!folio_test_lru(folio))
2179             goto move;
2180         if (!sc->may_unmap && folio_mapped(folio))
2181             goto move;
2182 
2183         /*
2184          * Be careful not to clear the lru flag until after we're
2185          * sure the folio is not being freed elsewhere -- the
2186          * folio release code relies on it.
2187          */
2188         if (unlikely(!folio_try_get(folio)))
2189             goto move;
2190 
2191         if (!folio_test_clear_lru(folio)) {
2192             /* Another thread is already isolating this folio */
2193             folio_put(folio);
2194             goto move;
2195         }
2196 
2197         nr_taken += nr_pages;
2198         nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2199         move_to = dst;
2200 move:
2201         list_move(&folio->lru, move_to);
2202     }
2203 
2204     /*
2205      * Splice any skipped folios to the start of the LRU list. Note that
2206      * this disrupts the LRU order when reclaiming for lower zones but
2207      * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2208      * scanning would soon rescan the same folios to skip and waste lots
2209      * of cpu cycles.
2210      */
2211     if (!list_empty(&folios_skipped)) {
2212         int zid;
2213 
2214         list_splice(&folios_skipped, src);
2215         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2216             if (!nr_skipped[zid])
2217                 continue;
2218 
2219             __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2220             skipped += nr_skipped[zid];
2221         }
2222     }
2223     *nr_scanned = total_scan;
2224     trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2225                     total_scan, skipped, nr_taken,
2226                     sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2227     update_lru_sizes(lruvec, lru, nr_zone_taken);
2228     return nr_taken;
2229 }
2230 
2231 /**
2232  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2233  * @folio: Folio to isolate from its LRU list.
2234  *
2235  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2236  * corresponding to whatever LRU list the folio was on.
2237  *
2238  * The folio will have its LRU flag cleared.  If it was found on the
2239  * active list, it will have the Active flag set.  If it was found on the
2240  * unevictable list, it will have the Unevictable flag set.  These flags
2241  * may need to be cleared by the caller before letting the page go.
2242  *
2243  * Context:
2244  *
2245  * (1) Must be called with an elevated refcount on the page. This is a
2246  *     fundamental difference from isolate_lru_pages() (which is called
2247  *     without a stable reference).
2248  * (2) The lru_lock must not be held.
2249  * (3) Interrupts must be enabled.
2250  *
2251  * Return: 0 if the folio was removed from an LRU list.
2252  * -EBUSY if the folio was not on an LRU list.
2253  */
2254 int folio_isolate_lru(struct folio *folio)
2255 {
2256     int ret = -EBUSY;
2257 
2258     VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2259 
2260     if (folio_test_clear_lru(folio)) {
2261         struct lruvec *lruvec;
2262 
2263         folio_get(folio);
2264         lruvec = folio_lruvec_lock_irq(folio);
2265         lruvec_del_folio(lruvec, folio);
2266         unlock_page_lruvec_irq(lruvec);
2267         ret = 0;
2268     }
2269 
2270     return ret;
2271 }
2272 
2273 /*
2274  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2275  * then get rescheduled. When there are massive number of tasks doing page
2276  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2277  * the LRU list will go small and be scanned faster than necessary, leading to
2278  * unnecessary swapping, thrashing and OOM.
2279  */
2280 static int too_many_isolated(struct pglist_data *pgdat, int file,
2281         struct scan_control *sc)
2282 {
2283     unsigned long inactive, isolated;
2284     bool too_many;
2285 
2286     if (current_is_kswapd())
2287         return 0;
2288 
2289     if (!writeback_throttling_sane(sc))
2290         return 0;
2291 
2292     if (file) {
2293         inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2294         isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2295     } else {
2296         inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2297         isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2298     }
2299 
2300     /*
2301      * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2302      * won't get blocked by normal direct-reclaimers, forming a circular
2303      * deadlock.
2304      */
2305     if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2306         inactive >>= 3;
2307 
2308     too_many = isolated > inactive;
2309 
2310     /* Wake up tasks throttled due to too_many_isolated. */
2311     if (!too_many)
2312         wake_throttle_isolated(pgdat);
2313 
2314     return too_many;
2315 }
2316 
2317 /*
2318  * move_pages_to_lru() moves folios from private @list to appropriate LRU list.
2319  * On return, @list is reused as a list of folios to be freed by the caller.
2320  *
2321  * Returns the number of pages moved to the given lruvec.
2322  */
2323 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2324                       struct list_head *list)
2325 {
2326     int nr_pages, nr_moved = 0;
2327     LIST_HEAD(folios_to_free);
2328 
2329     while (!list_empty(list)) {
2330         struct folio *folio = lru_to_folio(list);
2331 
2332         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2333         list_del(&folio->lru);
2334         if (unlikely(!folio_evictable(folio))) {
2335             spin_unlock_irq(&lruvec->lru_lock);
2336             folio_putback_lru(folio);
2337             spin_lock_irq(&lruvec->lru_lock);
2338             continue;
2339         }
2340 
2341         /*
2342          * The folio_set_lru needs to be kept here for list integrity.
2343          * Otherwise:
2344          *   #0 move_pages_to_lru             #1 release_pages
2345          *   if (!folio_put_testzero())
2346          *                    if (folio_put_testzero())
2347          *                      !lru //skip lru_lock
2348          *     folio_set_lru()
2349          *     list_add(&folio->lru,)
2350          *                                        list_add(&folio->lru,)
2351          */
2352         folio_set_lru(folio);
2353 
2354         if (unlikely(folio_put_testzero(folio))) {
2355             __folio_clear_lru_flags(folio);
2356 
2357             if (unlikely(folio_test_large(folio))) {
2358                 spin_unlock_irq(&lruvec->lru_lock);
2359                 destroy_large_folio(folio);
2360                 spin_lock_irq(&lruvec->lru_lock);
2361             } else
2362                 list_add(&folio->lru, &folios_to_free);
2363 
2364             continue;
2365         }
2366 
2367         /*
2368          * All pages were isolated from the same lruvec (and isolation
2369          * inhibits memcg migration).
2370          */
2371         VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2372         lruvec_add_folio(lruvec, folio);
2373         nr_pages = folio_nr_pages(folio);
2374         nr_moved += nr_pages;
2375         if (folio_test_active(folio))
2376             workingset_age_nonresident(lruvec, nr_pages);
2377     }
2378 
2379     /*
2380      * To save our caller's stack, now use input list for pages to free.
2381      */
2382     list_splice(&folios_to_free, list);
2383 
2384     return nr_moved;
2385 }
2386 
2387 /*
2388  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2389  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2390  * we should not throttle.  Otherwise it is safe to do so.
2391  */
2392 static int current_may_throttle(void)
2393 {
2394     return !(current->flags & PF_LOCAL_THROTTLE);
2395 }
2396 
2397 /*
2398  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2399  * of reclaimed pages
2400  */
2401 static unsigned long
2402 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2403              struct scan_control *sc, enum lru_list lru)
2404 {
2405     LIST_HEAD(page_list);
2406     unsigned long nr_scanned;
2407     unsigned int nr_reclaimed = 0;
2408     unsigned long nr_taken;
2409     struct reclaim_stat stat;
2410     bool file = is_file_lru(lru);
2411     enum vm_event_item item;
2412     struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2413     bool stalled = false;
2414 
2415     while (unlikely(too_many_isolated(pgdat, file, sc))) {
2416         if (stalled)
2417             return 0;
2418 
2419         /* wait a bit for the reclaimer. */
2420         stalled = true;
2421         reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2422 
2423         /* We are about to die and free our memory. Return now. */
2424         if (fatal_signal_pending(current))
2425             return SWAP_CLUSTER_MAX;
2426     }
2427 
2428     lru_add_drain();
2429 
2430     spin_lock_irq(&lruvec->lru_lock);
2431 
2432     nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2433                      &nr_scanned, sc, lru);
2434 
2435     __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2436     item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2437     if (!cgroup_reclaim(sc))
2438         __count_vm_events(item, nr_scanned);
2439     __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2440     __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2441 
2442     spin_unlock_irq(&lruvec->lru_lock);
2443 
2444     if (nr_taken == 0)
2445         return 0;
2446 
2447     nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2448 
2449     spin_lock_irq(&lruvec->lru_lock);
2450     move_pages_to_lru(lruvec, &page_list);
2451 
2452     __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2453     item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2454     if (!cgroup_reclaim(sc))
2455         __count_vm_events(item, nr_reclaimed);
2456     __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2457     __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2458     spin_unlock_irq(&lruvec->lru_lock);
2459 
2460     lru_note_cost(lruvec, file, stat.nr_pageout);
2461     mem_cgroup_uncharge_list(&page_list);
2462     free_unref_page_list(&page_list);
2463 
2464     /*
2465      * If dirty pages are scanned that are not queued for IO, it
2466      * implies that flushers are not doing their job. This can
2467      * happen when memory pressure pushes dirty pages to the end of
2468      * the LRU before the dirty limits are breached and the dirty
2469      * data has expired. It can also happen when the proportion of
2470      * dirty pages grows not through writes but through memory
2471      * pressure reclaiming all the clean cache. And in some cases,
2472      * the flushers simply cannot keep up with the allocation
2473      * rate. Nudge the flusher threads in case they are asleep.
2474      */
2475     if (stat.nr_unqueued_dirty == nr_taken)
2476         wakeup_flusher_threads(WB_REASON_VMSCAN);
2477 
2478     sc->nr.dirty += stat.nr_dirty;
2479     sc->nr.congested += stat.nr_congested;
2480     sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2481     sc->nr.writeback += stat.nr_writeback;
2482     sc->nr.immediate += stat.nr_immediate;
2483     sc->nr.taken += nr_taken;
2484     if (file)
2485         sc->nr.file_taken += nr_taken;
2486 
2487     trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2488             nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2489     return nr_reclaimed;
2490 }
2491 
2492 /*
2493  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2494  *
2495  * We move them the other way if the folio is referenced by one or more
2496  * processes.
2497  *
2498  * If the folios are mostly unmapped, the processing is fast and it is
2499  * appropriate to hold lru_lock across the whole operation.  But if
2500  * the folios are mapped, the processing is slow (folio_referenced()), so
2501  * we should drop lru_lock around each folio.  It's impossible to balance
2502  * this, so instead we remove the folios from the LRU while processing them.
2503  * It is safe to rely on the active flag against the non-LRU folios in here
2504  * because nobody will play with that bit on a non-LRU folio.
2505  *
2506  * The downside is that we have to touch folio->_refcount against each folio.
2507  * But we had to alter folio->flags anyway.
2508  */
2509 static void shrink_active_list(unsigned long nr_to_scan,
2510                    struct lruvec *lruvec,
2511                    struct scan_control *sc,
2512                    enum lru_list lru)
2513 {
2514     unsigned long nr_taken;
2515     unsigned long nr_scanned;
2516     unsigned long vm_flags;
2517     LIST_HEAD(l_hold);  /* The folios which were snipped off */
2518     LIST_HEAD(l_active);
2519     LIST_HEAD(l_inactive);
2520     unsigned nr_deactivate, nr_activate;
2521     unsigned nr_rotated = 0;
2522     int file = is_file_lru(lru);
2523     struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2524 
2525     lru_add_drain();
2526 
2527     spin_lock_irq(&lruvec->lru_lock);
2528 
2529     nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2530                      &nr_scanned, sc, lru);
2531 
2532     __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2533 
2534     if (!cgroup_reclaim(sc))
2535         __count_vm_events(PGREFILL, nr_scanned);
2536     __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2537 
2538     spin_unlock_irq(&lruvec->lru_lock);
2539 
2540     while (!list_empty(&l_hold)) {
2541         struct folio *folio;
2542 
2543         cond_resched();
2544         folio = lru_to_folio(&l_hold);
2545         list_del(&folio->lru);
2546 
2547         if (unlikely(!folio_evictable(folio))) {
2548             folio_putback_lru(folio);
2549             continue;
2550         }
2551 
2552         if (unlikely(buffer_heads_over_limit)) {
2553             if (folio_test_private(folio) && folio_trylock(folio)) {
2554                 if (folio_test_private(folio))
2555                     filemap_release_folio(folio, 0);
2556                 folio_unlock(folio);
2557             }
2558         }
2559 
2560         /* Referenced or rmap lock contention: rotate */
2561         if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2562                      &vm_flags) != 0) {
2563             /*
2564              * Identify referenced, file-backed active folios and
2565              * give them one more trip around the active list. So
2566              * that executable code get better chances to stay in
2567              * memory under moderate memory pressure.  Anon folios
2568              * are not likely to be evicted by use-once streaming
2569              * IO, plus JVM can create lots of anon VM_EXEC folios,
2570              * so we ignore them here.
2571              */
2572             if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2573                 nr_rotated += folio_nr_pages(folio);
2574                 list_add(&folio->lru, &l_active);
2575                 continue;
2576             }
2577         }
2578 
2579         folio_clear_active(folio);  /* we are de-activating */
2580         folio_set_workingset(folio);
2581         list_add(&folio->lru, &l_inactive);
2582     }
2583 
2584     /*
2585      * Move folios back to the lru list.
2586      */
2587     spin_lock_irq(&lruvec->lru_lock);
2588 
2589     nr_activate = move_pages_to_lru(lruvec, &l_active);
2590     nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2591     /* Keep all free folios in l_active list */
2592     list_splice(&l_inactive, &l_active);
2593 
2594     __count_vm_events(PGDEACTIVATE, nr_deactivate);
2595     __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2596 
2597     __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2598     spin_unlock_irq(&lruvec->lru_lock);
2599 
2600     mem_cgroup_uncharge_list(&l_active);
2601     free_unref_page_list(&l_active);
2602     trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2603             nr_deactivate, nr_rotated, sc->priority, file);
2604 }
2605 
2606 static unsigned int reclaim_page_list(struct list_head *page_list,
2607                       struct pglist_data *pgdat)
2608 {
2609     struct reclaim_stat dummy_stat;
2610     unsigned int nr_reclaimed;
2611     struct folio *folio;
2612     struct scan_control sc = {
2613         .gfp_mask = GFP_KERNEL,
2614         .may_writepage = 1,
2615         .may_unmap = 1,
2616         .may_swap = 1,
2617         .no_demotion = 1,
2618     };
2619 
2620     nr_reclaimed = shrink_page_list(page_list, pgdat, &sc, &dummy_stat, false);
2621     while (!list_empty(page_list)) {
2622         folio = lru_to_folio(page_list);
2623         list_del(&folio->lru);
2624         folio_putback_lru(folio);
2625     }
2626 
2627     return nr_reclaimed;
2628 }
2629 
2630 unsigned long reclaim_pages(struct list_head *folio_list)
2631 {
2632     int nid;
2633     unsigned int nr_reclaimed = 0;
2634     LIST_HEAD(node_folio_list);
2635     unsigned int noreclaim_flag;
2636 
2637     if (list_empty(folio_list))
2638         return nr_reclaimed;
2639 
2640     noreclaim_flag = memalloc_noreclaim_save();
2641 
2642     nid = folio_nid(lru_to_folio(folio_list));
2643     do {
2644         struct folio *folio = lru_to_folio(folio_list);
2645 
2646         if (nid == folio_nid(folio)) {
2647             folio_clear_active(folio);
2648             list_move(&folio->lru, &node_folio_list);
2649             continue;
2650         }
2651 
2652         nr_reclaimed += reclaim_page_list(&node_folio_list, NODE_DATA(nid));
2653         nid = folio_nid(lru_to_folio(folio_list));
2654     } while (!list_empty(folio_list));
2655 
2656     nr_reclaimed += reclaim_page_list(&node_folio_list, NODE_DATA(nid));
2657 
2658     memalloc_noreclaim_restore(noreclaim_flag);
2659 
2660     return nr_reclaimed;
2661 }
2662 
2663 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2664                  struct lruvec *lruvec, struct scan_control *sc)
2665 {
2666     if (is_active_lru(lru)) {
2667         if (sc->may_deactivate & (1 << is_file_lru(lru)))
2668             shrink_active_list(nr_to_scan, lruvec, sc, lru);
2669         else
2670             sc->skipped_deactivate = 1;
2671         return 0;
2672     }
2673 
2674     return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2675 }
2676 
2677 /*
2678  * The inactive anon list should be small enough that the VM never has
2679  * to do too much work.
2680  *
2681  * The inactive file list should be small enough to leave most memory
2682  * to the established workingset on the scan-resistant active list,
2683  * but large enough to avoid thrashing the aggregate readahead window.
2684  *
2685  * Both inactive lists should also be large enough that each inactive
2686  * page has a chance to be referenced again before it is reclaimed.
2687  *
2688  * If that fails and refaulting is observed, the inactive list grows.
2689  *
2690  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2691  * on this LRU, maintained by the pageout code. An inactive_ratio
2692  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2693  *
2694  * total     target    max
2695  * memory    ratio     inactive
2696  * -------------------------------------
2697  *   10MB       1         5MB
2698  *  100MB       1        50MB
2699  *    1GB       3       250MB
2700  *   10GB      10       0.9GB
2701  *  100GB      31         3GB
2702  *    1TB     101        10GB
2703  *   10TB     320        32GB
2704  */
2705 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2706 {
2707     enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2708     unsigned long inactive, active;
2709     unsigned long inactive_ratio;
2710     unsigned long gb;
2711 
2712     inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2713     active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2714 
2715     gb = (inactive + active) >> (30 - PAGE_SHIFT);
2716     if (gb)
2717         inactive_ratio = int_sqrt(10 * gb);
2718     else
2719         inactive_ratio = 1;
2720 
2721     return inactive * inactive_ratio < active;
2722 }
2723 
2724 enum scan_balance {
2725     SCAN_EQUAL,
2726     SCAN_FRACT,
2727     SCAN_ANON,
2728     SCAN_FILE,
2729 };
2730 
2731 /*
2732  * Determine how aggressively the anon and file LRU lists should be
2733  * scanned.
2734  *
2735  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2736  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2737  */
2738 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2739                unsigned long *nr)
2740 {
2741     struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2742     struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2743     unsigned long anon_cost, file_cost, total_cost;
2744     int swappiness = mem_cgroup_swappiness(memcg);
2745     u64 fraction[ANON_AND_FILE];
2746     u64 denominator = 0;    /* gcc */
2747     enum scan_balance scan_balance;
2748     unsigned long ap, fp;
2749     enum lru_list lru;
2750 
2751     /* If we have no swap space, do not bother scanning anon pages. */
2752     if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2753         scan_balance = SCAN_FILE;
2754         goto out;
2755     }
2756 
2757     /*
2758      * Global reclaim will swap to prevent OOM even with no
2759      * swappiness, but memcg users want to use this knob to
2760      * disable swapping for individual groups completely when
2761      * using the memory controller's swap limit feature would be
2762      * too expensive.
2763      */
2764     if (cgroup_reclaim(sc) && !swappiness) {
2765         scan_balance = SCAN_FILE;
2766         goto out;
2767     }
2768 
2769     /*
2770      * Do not apply any pressure balancing cleverness when the
2771      * system is close to OOM, scan both anon and file equally
2772      * (unless the swappiness setting disagrees with swapping).
2773      */
2774     if (!sc->priority && swappiness) {
2775         scan_balance = SCAN_EQUAL;
2776         goto out;
2777     }
2778 
2779     /*
2780      * If the system is almost out of file pages, force-scan anon.
2781      */
2782     if (sc->file_is_tiny) {
2783         scan_balance = SCAN_ANON;
2784         goto out;
2785     }
2786 
2787     /*
2788      * If there is enough inactive page cache, we do not reclaim
2789      * anything from the anonymous working right now.
2790      */
2791     if (sc->cache_trim_mode) {
2792         scan_balance = SCAN_FILE;
2793         goto out;
2794     }
2795 
2796     scan_balance = SCAN_FRACT;
2797     /*
2798      * Calculate the pressure balance between anon and file pages.
2799      *
2800      * The amount of pressure we put on each LRU is inversely
2801      * proportional to the cost of reclaiming each list, as
2802      * determined by the share of pages that are refaulting, times
2803      * the relative IO cost of bringing back a swapped out
2804      * anonymous page vs reloading a filesystem page (swappiness).
2805      *
2806      * Although we limit that influence to ensure no list gets
2807      * left behind completely: at least a third of the pressure is
2808      * applied, before swappiness.
2809      *
2810      * With swappiness at 100, anon and file have equal IO cost.
2811      */
2812     total_cost = sc->anon_cost + sc->file_cost;
2813     anon_cost = total_cost + sc->anon_cost;
2814     file_cost = total_cost + sc->file_cost;
2815     total_cost = anon_cost + file_cost;
2816 
2817     ap = swappiness * (total_cost + 1);
2818     ap /= anon_cost + 1;
2819 
2820     fp = (200 - swappiness) * (total_cost + 1);
2821     fp /= file_cost + 1;
2822 
2823     fraction[0] = ap;
2824     fraction[1] = fp;
2825     denominator = ap + fp;
2826 out:
2827     for_each_evictable_lru(lru) {
2828         int file = is_file_lru(lru);
2829         unsigned long lruvec_size;
2830         unsigned long low, min;
2831         unsigned long scan;
2832 
2833         lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2834         mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2835                       &min, &low);
2836 
2837         if (min || low) {
2838             /*
2839              * Scale a cgroup's reclaim pressure by proportioning
2840              * its current usage to its memory.low or memory.min
2841              * setting.
2842              *
2843              * This is important, as otherwise scanning aggression
2844              * becomes extremely binary -- from nothing as we
2845              * approach the memory protection threshold, to totally
2846              * nominal as we exceed it.  This results in requiring
2847              * setting extremely liberal protection thresholds. It
2848              * also means we simply get no protection at all if we
2849              * set it too low, which is not ideal.
2850              *
2851              * If there is any protection in place, we reduce scan
2852              * pressure by how much of the total memory used is
2853              * within protection thresholds.
2854              *
2855              * There is one special case: in the first reclaim pass,
2856              * we skip over all groups that are within their low
2857              * protection. If that fails to reclaim enough pages to
2858              * satisfy the reclaim goal, we come back and override
2859              * the best-effort low protection. However, we still
2860              * ideally want to honor how well-behaved groups are in
2861              * that case instead of simply punishing them all
2862              * equally. As such, we reclaim them based on how much
2863              * memory they are using, reducing the scan pressure
2864              * again by how much of the total memory used is under
2865              * hard protection.
2866              */
2867             unsigned long cgroup_size = mem_cgroup_size(memcg);
2868             unsigned long protection;
2869 
2870             /* memory.low scaling, make sure we retry before OOM */
2871             if (!sc->memcg_low_reclaim && low > min) {
2872                 protection = low;
2873                 sc->memcg_low_skipped = 1;
2874             } else {
2875                 protection = min;
2876             }
2877 
2878             /* Avoid TOCTOU with earlier protection check */
2879             cgroup_size = max(cgroup_size, protection);
2880 
2881             scan = lruvec_size - lruvec_size * protection /
2882                 (cgroup_size + 1);
2883 
2884             /*
2885              * Minimally target SWAP_CLUSTER_MAX pages to keep
2886              * reclaim moving forwards, avoiding decrementing
2887              * sc->priority further than desirable.
2888              */
2889             scan = max(scan, SWAP_CLUSTER_MAX);
2890         } else {
2891             scan = lruvec_size;
2892         }
2893 
2894         scan >>= sc->priority;
2895 
2896         /*
2897          * If the cgroup's already been deleted, make sure to
2898          * scrape out the remaining cache.
2899          */
2900         if (!scan && !mem_cgroup_online(memcg))
2901             scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2902 
2903         switch (scan_balance) {
2904         case SCAN_EQUAL:
2905             /* Scan lists relative to size */
2906             break;
2907         case SCAN_FRACT:
2908             /*
2909              * Scan types proportional to swappiness and
2910              * their relative recent reclaim efficiency.
2911              * Make sure we don't miss the last page on
2912              * the offlined memory cgroups because of a
2913              * round-off error.
2914              */
2915             scan = mem_cgroup_online(memcg) ?
2916                    div64_u64(scan * fraction[file], denominator) :
2917                    DIV64_U64_ROUND_UP(scan * fraction[file],
2918                           denominator);
2919             break;
2920         case SCAN_FILE:
2921         case SCAN_ANON:
2922             /* Scan one type exclusively */
2923             if ((scan_balance == SCAN_FILE) != file)
2924                 scan = 0;
2925             break;
2926         default:
2927             /* Look ma, no brain */
2928             BUG();
2929         }
2930 
2931         nr[lru] = scan;
2932     }
2933 }
2934 
2935 /*
2936  * Anonymous LRU management is a waste if there is
2937  * ultimately no way to reclaim the memory.
2938  */
2939 static bool can_age_anon_pages(struct pglist_data *pgdat,
2940                    struct scan_control *sc)
2941 {
2942     /* Aging the anon LRU is valuable if swap is present: */
2943     if (total_swap_pages > 0)
2944         return true;
2945 
2946     /* Also valuable if anon pages can be demoted: */
2947     return can_demote(pgdat->node_id, sc);
2948 }
2949 
2950 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2951 {
2952     unsigned long nr[NR_LRU_LISTS];
2953     unsigned long targets[NR_LRU_LISTS];
2954     unsigned long nr_to_scan;
2955     enum lru_list lru;
2956     unsigned long nr_reclaimed = 0;
2957     unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2958     struct blk_plug plug;
2959     bool scan_adjusted;
2960 
2961     get_scan_count(lruvec, sc, nr);
2962 
2963     /* Record the original scan target for proportional adjustments later */
2964     memcpy(targets, nr, sizeof(nr));
2965 
2966     /*
2967      * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2968      * event that can occur when there is little memory pressure e.g.
2969      * multiple streaming readers/writers. Hence, we do not abort scanning
2970      * when the requested number of pages are reclaimed when scanning at
2971      * DEF_PRIORITY on the assumption that the fact we are direct
2972      * reclaiming implies that kswapd is not keeping up and it is best to
2973      * do a batch of work at once. For memcg reclaim one check is made to
2974      * abort proportional reclaim if either the file or anon lru has already
2975      * dropped to zero at the first pass.
2976      */
2977     scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2978              sc->priority == DEF_PRIORITY);
2979 
2980     blk_start_plug(&plug);
2981     while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2982                     nr[LRU_INACTIVE_FILE]) {
2983         unsigned long nr_anon, nr_file, percentage;
2984         unsigned long nr_scanned;
2985 
2986         for_each_evictable_lru(lru) {
2987             if (nr[lru]) {
2988                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2989                 nr[lru] -= nr_to_scan;
2990 
2991                 nr_reclaimed += shrink_list(lru, nr_to_scan,
2992                                 lruvec, sc);
2993             }
2994         }
2995 
2996         cond_resched();
2997 
2998         if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2999             continue;
3000 
3001         /*
3002          * For kswapd and memcg, reclaim at least the number of pages
3003          * requested. Ensure that the anon and file LRUs are scanned
3004          * proportionally what was requested by get_scan_count(). We
3005          * stop reclaiming one LRU and reduce the amount scanning
3006          * proportional to the original scan target.
3007          */
3008         nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
3009         nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
3010 
3011         /*
3012          * It's just vindictive to attack the larger once the smaller
3013          * has gone to zero.  And given the way we stop scanning the
3014          * smaller below, this makes sure that we only make one nudge
3015          * towards proportionality once we've got nr_to_reclaim.
3016          */
3017         if (!nr_file || !nr_anon)
3018             break;
3019 
3020         if (nr_file > nr_anon) {
3021             unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
3022                         targets[LRU_ACTIVE_ANON] + 1;
3023             lru = LRU_BASE;
3024             percentage = nr_anon * 100 / scan_target;
3025         } else {
3026             unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
3027                         targets[LRU_ACTIVE_FILE] + 1;
3028             lru = LRU_FILE;
3029             percentage = nr_file * 100 / scan_target;
3030         }
3031 
3032         /* Stop scanning the smaller of the LRU */
3033         nr[lru] = 0;
3034         nr[lru + LRU_ACTIVE] = 0;
3035 
3036         /*
3037          * Recalculate the other LRU scan count based on its original
3038          * scan target and the percentage scanning already complete
3039          */
3040         lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
3041         nr_scanned = targets[lru] - nr[lru];
3042         nr[lru] = targets[lru] * (100 - percentage) / 100;
3043         nr[lru] -= min(nr[lru], nr_scanned);
3044 
3045         lru += LRU_ACTIVE;
3046         nr_scanned = targets[lru] - nr[lru];
3047         nr[lru] = targets[lru] * (100 - percentage) / 100;
3048         nr[lru] -= min(nr[lru], nr_scanned);
3049 
3050         scan_adjusted = true;
3051     }
3052     blk_finish_plug(&plug);
3053     sc->nr_reclaimed += nr_reclaimed;
3054 
3055     /*
3056      * Even if we did not try to evict anon pages at all, we want to
3057      * rebalance the anon lru active/inactive ratio.
3058      */
3059     if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3060         inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3061         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3062                    sc, LRU_ACTIVE_ANON);
3063 }
3064 
3065 /* Use reclaim/compaction for costly allocs or under memory pressure */
3066 static bool in_reclaim_compaction(struct scan_control *sc)
3067 {
3068     if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3069             (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3070              sc->priority < DEF_PRIORITY - 2))
3071         return true;
3072 
3073     return false;
3074 }
3075 
3076 /*
3077  * Reclaim/compaction is used for high-order allocation requests. It reclaims
3078  * order-0 pages before compacting the zone. should_continue_reclaim() returns
3079  * true if more pages should be reclaimed such that when the page allocator
3080  * calls try_to_compact_pages() that it will have enough free pages to succeed.
3081  * It will give up earlier than that if there is difficulty reclaiming pages.
3082  */
3083 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3084                     unsigned long nr_reclaimed,
3085                     struct scan_control *sc)
3086 {
3087     unsigned long pages_for_compaction;
3088     unsigned long inactive_lru_pages;
3089     int z;
3090 
3091     /* If not in reclaim/compaction mode, stop */
3092     if (!in_reclaim_compaction(sc))
3093         return false;
3094 
3095     /*
3096      * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3097      * number of pages that were scanned. This will return to the caller
3098      * with the risk reclaim/compaction and the resulting allocation attempt
3099      * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3100      * allocations through requiring that the full LRU list has been scanned
3101      * first, by assuming that zero delta of sc->nr_scanned means full LRU
3102      * scan, but that approximation was wrong, and there were corner cases
3103      * where always a non-zero amount of pages were scanned.
3104      */
3105     if (!nr_reclaimed)
3106         return false;
3107 
3108     /* If compaction would go ahead or the allocation would succeed, stop */
3109     for (z = 0; z <= sc->reclaim_idx; z++) {
3110         struct zone *zone = &pgdat->node_zones[z];
3111         if (!managed_zone(zone))
3112             continue;
3113 
3114         switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3115         case COMPACT_SUCCESS:
3116         case COMPACT_CONTINUE:
3117             return false;
3118         default:
3119             /* check next zone */
3120             ;
3121         }
3122     }
3123 
3124     /*
3125      * If we have not reclaimed enough pages for compaction and the
3126      * inactive lists are large enough, continue reclaiming
3127      */
3128     pages_for_compaction = compact_gap(sc->order);
3129     inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3130     if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3131         inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3132 
3133     return inactive_lru_pages > pages_for_compaction;
3134 }
3135 
3136 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3137 {
3138     struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3139     struct mem_cgroup *memcg;
3140 
3141     memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3142     do {
3143         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3144         unsigned long reclaimed;
3145         unsigned long scanned;
3146 
3147         /*
3148          * This loop can become CPU-bound when target memcgs
3149          * aren't eligible for reclaim - either because they
3150          * don't have any reclaimable pages, or because their
3151          * memory is explicitly protected. Avoid soft lockups.
3152          */
3153         cond_resched();
3154 
3155         mem_cgroup_calculate_protection(target_memcg, memcg);
3156 
3157         if (mem_cgroup_below_min(memcg)) {
3158             /*
3159              * Hard protection.
3160              * If there is no reclaimable memory, OOM.
3161              */
3162             continue;
3163         } else if (mem_cgroup_below_low(memcg)) {
3164             /*
3165              * Soft protection.
3166              * Respect the protection only as long as
3167              * there is an unprotected supply
3168              * of reclaimable memory from other cgroups.
3169              */
3170             if (!sc->memcg_low_reclaim) {
3171                 sc->memcg_low_skipped = 1;
3172                 continue;
3173             }
3174             memcg_memory_event(memcg, MEMCG_LOW);
3175         }
3176 
3177         reclaimed = sc->nr_reclaimed;
3178         scanned = sc->nr_scanned;
3179 
3180         shrink_lruvec(lruvec, sc);
3181 
3182         shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3183                 sc->priority);
3184 
3185         /* Record the group's reclaim efficiency */
3186         if (!sc->proactive)
3187             vmpressure(sc->gfp_mask, memcg, false,
3188                    sc->nr_scanned - scanned,
3189                    sc->nr_reclaimed - reclaimed);
3190 
3191     } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3192 }
3193 
3194 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3195 {
3196     struct reclaim_state *reclaim_state = current->reclaim_state;
3197     unsigned long nr_reclaimed, nr_scanned;
3198     struct lruvec *target_lruvec;
3199     bool reclaimable = false;
3200     unsigned long file;
3201 
3202     target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3203 
3204 again:
3205     /*
3206      * Flush the memory cgroup stats, so that we read accurate per-memcg
3207      * lruvec stats for heuristics.
3208      */
3209     mem_cgroup_flush_stats();
3210 
3211     memset(&sc->nr, 0, sizeof(sc->nr));
3212 
3213     nr_reclaimed = sc->nr_reclaimed;
3214     nr_scanned = sc->nr_scanned;
3215 
3216     /*
3217      * Determine the scan balance between anon and file LRUs.
3218      */
3219     spin_lock_irq(&target_lruvec->lru_lock);
3220     sc->anon_cost = target_lruvec->anon_cost;
3221     sc->file_cost = target_lruvec->file_cost;
3222     spin_unlock_irq(&target_lruvec->lru_lock);
3223 
3224     /*
3225      * Target desirable inactive:active list ratios for the anon
3226      * and file LRU lists.
3227      */
3228     if (!sc->force_deactivate) {
3229         unsigned long refaults;
3230 
3231         refaults = lruvec_page_state(target_lruvec,
3232                 WORKINGSET_ACTIVATE_ANON);
3233         if (refaults != target_lruvec->refaults[0] ||
3234             inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3235             sc->may_deactivate |= DEACTIVATE_ANON;
3236         else
3237             sc->may_deactivate &= ~DEACTIVATE_ANON;
3238 
3239         /*
3240          * When refaults are being observed, it means a new
3241          * workingset is being established. Deactivate to get
3242          * rid of any stale active pages quickly.
3243          */
3244         refaults = lruvec_page_state(target_lruvec,
3245                 WORKINGSET_ACTIVATE_FILE);
3246         if (refaults != target_lruvec->refaults[1] ||
3247             inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3248             sc->may_deactivate |= DEACTIVATE_FILE;
3249         else
3250             sc->may_deactivate &= ~DEACTIVATE_FILE;
3251     } else
3252         sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3253 
3254     /*
3255      * If we have plenty of inactive file pages that aren't
3256      * thrashing, try to reclaim those first before touching
3257      * anonymous pages.
3258      */
3259     file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3260     if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3261         sc->cache_trim_mode = 1;
3262     else
3263         sc->cache_trim_mode = 0;
3264 
3265     /*
3266      * Prevent the reclaimer from falling into the cache trap: as
3267      * cache pages start out inactive, every cache fault will tip
3268      * the scan balance towards the file LRU.  And as the file LRU
3269      * shrinks, so does the window for rotation from references.
3270      * This means we have a runaway feedback loop where a tiny
3271      * thrashing file LRU becomes infinitely more attractive than
3272      * anon pages.  Try to detect this based on file LRU size.
3273      */
3274     if (!cgroup_reclaim(sc)) {
3275         unsigned long total_high_wmark = 0;
3276         unsigned long free, anon;
3277         int z;
3278 
3279         free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3280         file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3281                node_page_state(pgdat, NR_INACTIVE_FILE);
3282 
3283         for (z = 0; z < MAX_NR_ZONES; z++) {
3284             struct zone *zone = &pgdat->node_zones[z];
3285             if (!managed_zone(zone))
3286                 continue;
3287 
3288             total_high_wmark += high_wmark_pages(zone);
3289         }
3290 
3291         /*
3292          * Consider anon: if that's low too, this isn't a
3293          * runaway file reclaim problem, but rather just
3294          * extreme pressure. Reclaim as per usual then.
3295          */
3296         anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3297 
3298         sc->file_is_tiny =
3299             file + free <= total_high_wmark &&
3300             !(sc->may_deactivate & DEACTIVATE_ANON) &&
3301             anon >> sc->priority;
3302     }
3303 
3304     shrink_node_memcgs(pgdat, sc);
3305 
3306     if (reclaim_state) {
3307         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3308         reclaim_state->reclaimed_slab = 0;
3309     }
3310 
3311     /* Record the subtree's reclaim efficiency */
3312     if (!sc->proactive)
3313         vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3314                sc->nr_scanned - nr_scanned,
3315                sc->nr_reclaimed - nr_reclaimed);
3316 
3317     if (sc->nr_reclaimed - nr_reclaimed)
3318         reclaimable = true;
3319 
3320     if (current_is_kswapd()) {
3321         /*
3322          * If reclaim is isolating dirty pages under writeback,
3323          * it implies that the long-lived page allocation rate
3324          * is exceeding the page laundering rate. Either the
3325          * global limits are not being effective at throttling
3326          * processes due to the page distribution throughout
3327          * zones or there is heavy usage of a slow backing
3328          * device. The only option is to throttle from reclaim
3329          * context which is not ideal as there is no guarantee
3330          * the dirtying process is throttled in the same way
3331          * balance_dirty_pages() manages.
3332          *
3333          * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3334          * count the number of pages under pages flagged for
3335          * immediate reclaim and stall if any are encountered
3336          * in the nr_immediate check below.
3337          */
3338         if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3339             set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3340 
3341         /* Allow kswapd to start writing pages during reclaim.*/
3342         if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3343             set_bit(PGDAT_DIRTY, &pgdat->flags);
3344 
3345         /*
3346          * If kswapd scans pages marked for immediate
3347          * reclaim and under writeback (nr_immediate), it
3348          * implies that pages are cycling through the LRU
3349          * faster than they are written so forcibly stall
3350          * until some pages complete writeback.
3351          */
3352         if (sc->nr.immediate)
3353             reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3354     }
3355 
3356     /*
3357      * Tag a node/memcg as congested if all the dirty pages were marked
3358      * for writeback and immediate reclaim (counted in nr.congested).
3359      *
3360      * Legacy memcg will stall in page writeback so avoid forcibly
3361      * stalling in reclaim_throttle().
3362      */
3363     if ((current_is_kswapd() ||
3364          (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3365         sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3366         set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3367 
3368     /*
3369      * Stall direct reclaim for IO completions if the lruvec is
3370      * node is congested. Allow kswapd to continue until it
3371      * starts encountering unqueued dirty pages or cycling through
3372      * the LRU too quickly.
3373      */
3374     if (!current_is_kswapd() && current_may_throttle() &&
3375         !sc->hibernation_mode &&
3376         test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3377         reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3378 
3379     if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3380                     sc))
3381         goto again;
3382 
3383     /*
3384      * Kswapd gives up on balancing particular nodes after too
3385      * many failures to reclaim anything from them and goes to
3386      * sleep. On reclaim progress, reset the failure counter. A
3387      * successful direct reclaim run will revive a dormant kswapd.
3388      */
3389     if (reclaimable)
3390         pgdat->kswapd_failures = 0;
3391 }
3392 
3393 /*
3394  * Returns true if compaction should go ahead for a costly-order request, or
3395  * the allocation would already succeed without compaction. Return false if we
3396  * should reclaim first.
3397  */
3398 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3399 {
3400     unsigned long watermark;
3401     enum compact_result suitable;
3402 
3403     suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3404     if (suitable == COMPACT_SUCCESS)
3405         /* Allocation should succeed already. Don't reclaim. */
3406         return true;
3407     if (suitable == COMPACT_SKIPPED)
3408         /* Compaction cannot yet proceed. Do reclaim. */
3409         return false;
3410 
3411     /*
3412      * Compaction is already possible, but it takes time to run and there
3413      * are potentially other callers using the pages just freed. So proceed
3414      * with reclaim to make a buffer of free pages available to give
3415      * compaction a reasonable chance of completing and allocating the page.
3416      * Note that we won't actually reclaim the whole buffer in one attempt
3417      * as the target watermark in should_continue_reclaim() is lower. But if
3418      * we are already above the high+gap watermark, don't reclaim at all.
3419      */
3420     watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3421 
3422     return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3423 }
3424 
3425 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3426 {
3427     /*
3428      * If reclaim is making progress greater than 12% efficiency then
3429      * wake all the NOPROGRESS throttled tasks.
3430      */
3431     if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3432         wait_queue_head_t *wqh;
3433 
3434         wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3435         if (waitqueue_active(wqh))
3436             wake_up(wqh);
3437 
3438         return;
3439     }
3440 
3441     /*
3442      * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3443      * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3444      * under writeback and marked for immediate reclaim at the tail of the
3445      * LRU.
3446      */
3447     if (current_is_kswapd() || cgroup_reclaim(sc))
3448         return;
3449 
3450     /* Throttle if making no progress at high prioities. */
3451     if (sc->priority == 1 && !sc->nr_reclaimed)
3452         reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3453 }
3454 
3455 /*
3456  * This is the direct reclaim path, for page-allocating processes.  We only
3457  * try to reclaim pages from zones which will satisfy the caller's allocation
3458  * request.
3459  *
3460  * If a zone is deemed to be full of pinned pages then just give it a light
3461  * scan then give up on it.
3462  */
3463 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3464 {
3465     struct zoneref *z;
3466     struct zone *zone;
3467     unsigned long nr_soft_reclaimed;
3468     unsigned long nr_soft_scanned;
3469     gfp_t orig_mask;
3470     pg_data_t *last_pgdat = NULL;
3471     pg_data_t *first_pgdat = NULL;
3472 
3473     /*
3474      * If the number of buffer_heads in the machine exceeds the maximum
3475      * allowed level, force direct reclaim to scan the highmem zone as
3476      * highmem pages could be pinning lowmem pages storing buffer_heads
3477      */
3478     orig_mask = sc->gfp_mask;
3479     if (buffer_heads_over_limit) {
3480         sc->gfp_mask |= __GFP_HIGHMEM;
3481         sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3482     }
3483 
3484     for_each_zone_zonelist_nodemask(zone, z, zonelist,
3485                     sc->reclaim_idx, sc->nodemask) {
3486         /*
3487          * Take care memory controller reclaiming has small influence
3488          * to global LRU.
3489          */
3490         if (!cgroup_reclaim(sc)) {
3491             if (!cpuset_zone_allowed(zone,
3492                          GFP_KERNEL | __GFP_HARDWALL))
3493                 continue;
3494 
3495             /*
3496              * If we already have plenty of memory free for
3497              * compaction in this zone, don't free any more.
3498              * Even though compaction is invoked for any
3499              * non-zero order, only frequent costly order
3500              * reclamation is disruptive enough to become a
3501              * noticeable problem, like transparent huge
3502              * page allocations.
3503              */
3504             if (IS_ENABLED(CONFIG_COMPACTION) &&
3505                 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3506                 compaction_ready(zone, sc)) {
3507                 sc->compaction_ready = true;
3508                 continue;
3509             }
3510 
3511             /*
3512              * Shrink each node in the zonelist once. If the
3513              * zonelist is ordered by zone (not the default) then a
3514              * node may be shrunk multiple times but in that case
3515              * the user prefers lower zones being preserved.
3516              */
3517             if (zone->zone_pgdat == last_pgdat)
3518                 continue;
3519 
3520             /*
3521              * This steals pages from memory cgroups over softlimit
3522              * and returns the number of reclaimed pages and
3523              * scanned pages. This works for global memory pressure
3524              * and balancing, not for a memcg's limit.
3525              */
3526             nr_soft_scanned = 0;
3527             nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3528                         sc->order, sc->gfp_mask,
3529                         &nr_soft_scanned);
3530             sc->nr_reclaimed += nr_soft_reclaimed;
3531             sc->nr_scanned += nr_soft_scanned;
3532             /* need some check for avoid more shrink_zone() */
3533         }
3534 
3535         if (!first_pgdat)
3536             first_pgdat = zone->zone_pgdat;
3537 
3538         /* See comment about same check for global reclaim above */
3539         if (zone->zone_pgdat == last_pgdat)
3540             continue;
3541         last_pgdat = zone->zone_pgdat;
3542         shrink_node(zone->zone_pgdat, sc);
3543     }
3544 
3545     if (first_pgdat)
3546         consider_reclaim_throttle(first_pgdat, sc);
3547 
3548     /*
3549      * Restore to original mask to avoid the impact on the caller if we
3550      * promoted it to __GFP_HIGHMEM.
3551      */
3552     sc->gfp_mask = orig_mask;
3553 }
3554 
3555 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3556 {
3557     struct lruvec *target_lruvec;
3558     unsigned long refaults;
3559 
3560     target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3561     refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3562     target_lruvec->refaults[0] = refaults;
3563     refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3564     target_lruvec->refaults[1] = refaults;
3565 }
3566 
3567 /*
3568  * This is the main entry point to direct page reclaim.
3569  *
3570  * If a full scan of the inactive list fails to free enough memory then we
3571  * are "out of memory" and something needs to be killed.
3572  *
3573  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3574  * high - the zone may be full of dirty or under-writeback pages, which this
3575  * caller can't do much about.  We kick the writeback threads and take explicit
3576  * naps in the hope that some of these pages can be written.  But if the
3577  * allocating task holds filesystem locks which prevent writeout this might not
3578  * work, and the allocation attempt will fail.
3579  *
3580  * returns: 0, if no pages reclaimed
3581  *      else, the number of pages reclaimed
3582  */
3583 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3584                       struct scan_control *sc)
3585 {
3586     int initial_priority = sc->priority;
3587     pg_data_t *last_pgdat;
3588     struct zoneref *z;
3589     struct zone *zone;
3590 retry:
3591     delayacct_freepages_start();
3592 
3593     if (!cgroup_reclaim(sc))
3594         __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3595 
3596     do {
3597         if (!sc->proactive)
3598             vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3599                     sc->priority);
3600         sc->nr_scanned = 0;
3601         shrink_zones(zonelist, sc);
3602 
3603         if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3604             break;
3605 
3606         if (sc->compaction_ready)
3607             break;
3608 
3609         /*
3610          * If we're getting trouble reclaiming, start doing
3611          * writepage even in laptop mode.
3612          */
3613         if (sc->priority < DEF_PRIORITY - 2)
3614             sc->may_writepage = 1;
3615     } while (--sc->priority >= 0);
3616 
3617     last_pgdat = NULL;
3618     for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3619                     sc->nodemask) {
3620         if (zone->zone_pgdat == last_pgdat)
3621             continue;
3622         last_pgdat = zone->zone_pgdat;
3623 
3624         snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3625 
3626         if (cgroup_reclaim(sc)) {
3627             struct lruvec *lruvec;
3628 
3629             lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3630                            zone->zone_pgdat);
3631             clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3632         }
3633     }
3634 
3635     delayacct_freepages_end();
3636 
3637     if (sc->nr_reclaimed)
3638         return sc->nr_reclaimed;
3639 
3640     /* Aborted reclaim to try compaction? don't OOM, then */
3641     if (sc->compaction_ready)
3642         return 1;
3643 
3644     /*
3645      * We make inactive:active ratio decisions based on the node's
3646      * composition of memory, but a restrictive reclaim_idx or a
3647      * memory.low cgroup setting can exempt large amounts of
3648      * memory from reclaim. Neither of which are very common, so
3649      * instead of doing costly eligibility calculations of the
3650      * entire cgroup subtree up front, we assume the estimates are
3651      * good, and retry with forcible deactivation if that fails.
3652      */
3653     if (sc->skipped_deactivate) {
3654         sc->priority = initial_priority;
3655         sc->force_deactivate = 1;
3656         sc->skipped_deactivate = 0;
3657         goto retry;
3658     }
3659 
3660     /* Untapped cgroup reserves?  Don't OOM, retry. */
3661     if (sc->memcg_low_skipped) {
3662         sc->priority = initial_priority;
3663         sc->force_deactivate = 0;
3664         sc->memcg_low_reclaim = 1;
3665         sc->memcg_low_skipped = 0;
3666         goto retry;
3667     }
3668 
3669     return 0;
3670 }
3671 
3672 static bool allow_direct_reclaim(pg_data_t *pgdat)
3673 {
3674     struct zone *zone;
3675     unsigned long pfmemalloc_reserve = 0;
3676     unsigned long free_pages = 0;
3677     int i;
3678     bool wmark_ok;
3679 
3680     if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3681         return true;
3682 
3683     for (i = 0; i <= ZONE_NORMAL; i++) {
3684         zone = &pgdat->node_zones[i];
3685         if (!managed_zone(zone))
3686             continue;
3687 
3688         if (!zone_reclaimable_pages(zone))
3689             continue;
3690 
3691         pfmemalloc_reserve += min_wmark_pages(zone);
3692         free_pages += zone_page_state(zone, NR_FREE_PAGES);
3693     }
3694 
3695     /* If there are no reserves (unexpected config) then do not throttle */
3696     if (!pfmemalloc_reserve)
3697         return true;
3698 
3699     wmark_ok = free_pages > pfmemalloc_reserve / 2;
3700 
3701     /* kswapd must be awake if processes are being throttled */
3702     if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3703         if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3704             WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3705 
3706         wake_up_interruptible(&pgdat->kswapd_wait);
3707     }
3708 
3709     return wmark_ok;
3710 }
3711 
3712 /*
3713  * Throttle direct reclaimers if backing storage is backed by the network
3714  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3715  * depleted. kswapd will continue to make progress and wake the processes
3716  * when the low watermark is reached.
3717  *
3718  * Returns true if a fatal signal was delivered during throttling. If this
3719  * happens, the page allocator should not consider triggering the OOM killer.
3720  */
3721 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3722                     nodemask_t *nodemask)
3723 {
3724     struct zoneref *z;
3725     struct zone *zone;
3726     pg_data_t *pgdat = NULL;
3727 
3728     /*
3729      * Kernel threads should not be throttled as they may be indirectly
3730      * responsible for cleaning pages necessary for reclaim to make forward
3731      * progress. kjournald for example may enter direct reclaim while
3732      * committing a transaction where throttling it could forcing other
3733      * processes to block on log_wait_commit().
3734      */
3735     if (current->flags & PF_KTHREAD)
3736         goto out;
3737 
3738     /*
3739      * If a fatal signal is pending, this process should not throttle.
3740      * It should return quickly so it can exit and free its memory
3741      */
3742     if (fatal_signal_pending(current))
3743         goto out;
3744 
3745     /*
3746      * Check if the pfmemalloc reserves are ok by finding the first node
3747      * with a usable ZONE_NORMAL or lower zone. The expectation is that
3748      * GFP_KERNEL will be required for allocating network buffers when
3749      * swapping over the network so ZONE_HIGHMEM is unusable.
3750      *
3751      * Throttling is based on the first usable node and throttled processes
3752      * wait on a queue until kswapd makes progress and wakes them. There
3753      * is an affinity then between processes waking up and where reclaim
3754      * progress has been made assuming the process wakes on the same node.
3755      * More importantly, processes running on remote nodes will not compete
3756      * for remote pfmemalloc reserves and processes on different nodes
3757      * should make reasonable progress.
3758      */
3759     for_each_zone_zonelist_nodemask(zone, z, zonelist,
3760                     gfp_zone(gfp_mask), nodemask) {
3761         if (zone_idx(zone) > ZONE_NORMAL)
3762             continue;
3763 
3764         /* Throttle based on the first usable node */
3765         pgdat = zone->zone_pgdat;
3766         if (allow_direct_reclaim(pgdat))
3767             goto out;
3768         break;
3769     }
3770 
3771     /* If no zone was usable by the allocation flags then do not throttle */
3772     if (!pgdat)
3773         goto out;
3774 
3775     /* Account for the throttling */
3776     count_vm_event(PGSCAN_DIRECT_THROTTLE);
3777 
3778     /*
3779      * If the caller cannot enter the filesystem, it's possible that it
3780      * is due to the caller holding an FS lock or performing a journal
3781      * transaction in the case of a filesystem like ext[3|4]. In this case,
3782      * it is not safe to block on pfmemalloc_wait as kswapd could be
3783      * blocked waiting on the same lock. Instead, throttle for up to a
3784      * second before continuing.
3785      */
3786     if (!(gfp_mask & __GFP_FS))
3787         wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3788             allow_direct_reclaim(pgdat), HZ);
3789     else
3790         /* Throttle until kswapd wakes the process */
3791         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3792             allow_direct_reclaim(pgdat));
3793 
3794     if (fatal_signal_pending(current))
3795         return true;
3796 
3797 out:
3798     return false;
3799 }
3800 
3801 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3802                 gfp_t gfp_mask, nodemask_t *nodemask)
3803 {
3804     unsigned long nr_reclaimed;
3805     struct scan_control sc = {
3806         .nr_to_reclaim = SWAP_CLUSTER_MAX,
3807         .gfp_mask = current_gfp_context(gfp_mask),
3808         .reclaim_idx = gfp_zone(gfp_mask),
3809         .order = order,
3810         .nodemask = nodemask,
3811         .priority = DEF_PRIORITY,
3812         .may_writepage = !laptop_mode,
3813         .may_unmap = 1,
3814         .may_swap = 1,
3815     };
3816 
3817     /*
3818      * scan_control uses s8 fields for order, priority, and reclaim_idx.
3819      * Confirm they are large enough for max values.
3820      */
3821     BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3822     BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3823     BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3824 
3825     /*
3826      * Do not enter reclaim if fatal signal was delivered while throttled.
3827      * 1 is returned so that the page allocator does not OOM kill at this
3828      * point.
3829      */
3830     if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3831         return 1;
3832 
3833     set_task_reclaim_state(current, &sc.reclaim_state);
3834     trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3835 
3836     nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3837 
3838     trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3839     set_task_reclaim_state(current, NULL);
3840 
3841     return nr_reclaimed;
3842 }
3843 
3844 #ifdef CONFIG_MEMCG
3845 
3846 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3847 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3848                         gfp_t gfp_mask, bool noswap,
3849                         pg_data_t *pgdat,
3850                         unsigned long *nr_scanned)
3851 {
3852     struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3853     struct scan_control sc = {
3854         .nr_to_reclaim = SWAP_CLUSTER_MAX,
3855         .target_mem_cgroup = memcg,
3856         .may_writepage = !laptop_mode,
3857         .may_unmap = 1,
3858         .reclaim_idx = MAX_NR_ZONES - 1,
3859         .may_swap = !noswap,
3860     };
3861 
3862     WARN_ON_ONCE(!current->reclaim_state);
3863 
3864     sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3865             (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3866 
3867     trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3868                               sc.gfp_mask);
3869 
3870     /*
3871      * NOTE: Although we can get the priority field, using it
3872      * here is not a good idea, since it limits the pages we can scan.
3873      * if we don't reclaim here, the shrink_node from balance_pgdat
3874      * will pick up pages from other mem cgroup's as well. We hack
3875      * the priority and make it zero.
3876      */
3877     shrink_lruvec(lruvec, &sc);
3878 
3879     trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3880 
3881     *nr_scanned = sc.nr_scanned;
3882 
3883     return sc.nr_reclaimed;
3884 }
3885 
3886 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3887                        unsigned long nr_pages,
3888                        gfp_t gfp_mask,
3889                        unsigned int reclaim_options)
3890 {
3891     unsigned long nr_reclaimed;
3892     unsigned int noreclaim_flag;
3893     struct scan_control sc = {
3894         .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3895         .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3896                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3897         .reclaim_idx = MAX_NR_ZONES - 1,
3898         .target_mem_cgroup = memcg,
3899         .priority = DEF_PRIORITY,
3900         .may_writepage = !laptop_mode,
3901         .may_unmap = 1,
3902         .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
3903         .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
3904     };
3905     /*
3906      * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3907      * equal pressure on all the nodes. This is based on the assumption that
3908      * the reclaim does not bail out early.
3909      */
3910     struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3911 
3912     set_task_reclaim_state(current, &sc.reclaim_state);
3913     trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3914     noreclaim_flag = memalloc_noreclaim_save();
3915 
3916     nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3917 
3918     memalloc_noreclaim_restore(noreclaim_flag);
3919     trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3920     set_task_reclaim_state(current, NULL);
3921 
3922     return nr_reclaimed;
3923 }
3924 #endif
3925 
3926 static void age_active_anon(struct pglist_data *pgdat,
3927                 struct scan_control *sc)
3928 {
3929     struct mem_cgroup *memcg;
3930     struct lruvec *lruvec;
3931 
3932     if (!can_age_anon_pages(pgdat, sc))
3933         return;
3934 
3935     lruvec = mem_cgroup_lruvec(NULL, pgdat);
3936     if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3937         return;
3938 
3939     memcg = mem_cgroup_iter(NULL, NULL, NULL);
3940     do {
3941         lruvec = mem_cgroup_lruvec(memcg, pgdat);
3942         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3943                    sc, LRU_ACTIVE_ANON);
3944         memcg = mem_cgroup_iter(NULL, memcg, NULL);
3945     } while (memcg);
3946 }
3947 
3948 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3949 {
3950     int i;
3951     struct zone *zone;
3952 
3953     /*
3954      * Check for watermark boosts top-down as the higher zones
3955      * are more likely to be boosted. Both watermarks and boosts
3956      * should not be checked at the same time as reclaim would
3957      * start prematurely when there is no boosting and a lower
3958      * zone is balanced.
3959      */
3960     for (i = highest_zoneidx; i >= 0; i--) {
3961         zone = pgdat->node_zones + i;
3962         if (!managed_zone(zone))
3963             continue;
3964 
3965         if (zone->watermark_boost)
3966             return true;
3967     }
3968 
3969     return false;
3970 }
3971 
3972 /*
3973  * Returns true if there is an eligible zone balanced for the request order
3974  * and highest_zoneidx
3975  */
3976 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3977 {
3978     int i;
3979     unsigned long mark = -1;
3980     struct zone *zone;
3981 
3982     /*
3983      * Check watermarks bottom-up as lower zones are more likely to
3984      * meet watermarks.
3985      */
3986     for (i = 0; i <= highest_zoneidx; i++) {
3987         zone = pgdat->node_zones + i;
3988 
3989         if (!managed_zone(zone))
3990             continue;
3991 
3992         if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3993             mark = wmark_pages(zone, WMARK_PROMO);
3994         else
3995             mark = high_wmark_pages(zone);
3996         if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3997             return true;
3998     }
3999 
4000     /*
4001      * If a node has no managed zone within highest_zoneidx, it does not
4002      * need balancing by definition. This can happen if a zone-restricted
4003      * allocation tries to wake a remote kswapd.
4004      */
4005     if (mark == -1)
4006         return true;
4007 
4008     return false;
4009 }
4010 
4011 /* Clear pgdat state for congested, dirty or under writeback. */
4012 static void clear_pgdat_congested(pg_data_t *pgdat)
4013 {
4014     struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
4015 
4016     clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
4017     clear_bit(PGDAT_DIRTY, &pgdat->flags);
4018     clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
4019 }
4020 
4021 /*
4022  * Prepare kswapd for sleeping. This verifies that there are no processes
4023  * waiting in throttle_direct_reclaim() and that watermarks have been met.
4024  *
4025  * Returns true if kswapd is ready to sleep
4026  */
4027 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
4028                 int highest_zoneidx)
4029 {
4030     /*
4031      * The throttled processes are normally woken up in balance_pgdat() as
4032      * soon as allow_direct_reclaim() is true. But there is a potential
4033      * race between when kswapd checks the watermarks and a process gets
4034      * throttled. There is also a potential race if processes get
4035      * throttled, kswapd wakes, a large process exits thereby balancing the
4036      * zones, which causes kswapd to exit balance_pgdat() before reaching
4037      * the wake up checks. If kswapd is going to sleep, no process should
4038      * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
4039      * the wake up is premature, processes will wake kswapd and get
4040      * throttled again. The difference from wake ups in balance_pgdat() is
4041      * that here we are under prepare_to_wait().
4042      */
4043     if (waitqueue_active(&pgdat->pfmemalloc_wait))
4044         wake_up_all(&pgdat->pfmemalloc_wait);
4045 
4046     /* Hopeless node, leave it to direct reclaim */
4047     if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
4048         return true;
4049 
4050     if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
4051         clear_pgdat_congested(pgdat);
4052         return true;
4053     }
4054 
4055     return false;
4056 }
4057 
4058 /*
4059  * kswapd shrinks a node of pages that are at or below the highest usable
4060  * zone that is currently unbalanced.
4061  *
4062  * Returns true if kswapd scanned at least the requested number of pages to
4063  * reclaim or if the lack of progress was due to pages under writeback.
4064  * This is used to determine if the scanning priority needs to be raised.
4065  */
4066 static bool kswapd_shrink_node(pg_data_t *pgdat,
4067                    struct scan_control *sc)
4068 {
4069     struct zone *zone;
4070     int z;
4071 
4072     /* Reclaim a number of pages proportional to the number of zones */
4073     sc->nr_to_reclaim = 0;
4074     for (z = 0; z <= sc->reclaim_idx; z++) {
4075         zone = pgdat->node_zones + z;
4076         if (!managed_zone(zone))
4077             continue;
4078 
4079         sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4080     }
4081 
4082     /*
4083      * Historically care was taken to put equal pressure on all zones but
4084      * now pressure is applied based on node LRU order.
4085      */
4086     shrink_node(pgdat, sc);
4087 
4088     /*
4089      * Fragmentation may mean that the system cannot be rebalanced for
4090      * high-order allocations. If twice the allocation size has been
4091      * reclaimed then recheck watermarks only at order-0 to prevent
4092      * excessive reclaim. Assume that a process requested a high-order
4093      * can direct reclaim/compact.
4094      */
4095     if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4096         sc->order = 0;
4097 
4098     return sc->nr_scanned >= sc->nr_to_reclaim;
4099 }
4100 
4101 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4102 static inline void
4103 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4104 {
4105     int i;
4106     struct zone *zone;
4107 
4108     for (i = 0; i <= highest_zoneidx; i++) {
4109         zone = pgdat->node_zones + i;
4110 
4111         if (!managed_zone(zone))
4112             continue;
4113 
4114         if (active)
4115             set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4116         else
4117             clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4118     }
4119 }
4120 
4121 static inline void
4122 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4123 {
4124     update_reclaim_active(pgdat, highest_zoneidx, true);
4125 }
4126 
4127 static inline void
4128 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4129 {
4130     update_reclaim_active(pgdat, highest_zoneidx, false);
4131 }
4132 
4133 /*
4134  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4135  * that are eligible for use by the caller until at least one zone is
4136  * balanced.
4137  *
4138  * Returns the order kswapd finished reclaiming at.
4139  *
4140  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
4141  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4142  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4143  * or lower is eligible for reclaim until at least one usable zone is
4144  * balanced.
4145  */
4146 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4147 {
4148     int i;
4149     unsigned long nr_soft_reclaimed;
4150     unsigned long nr_soft_scanned;
4151     unsigned long pflags;
4152     unsigned long nr_boost_reclaim;
4153     unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4154     bool boosted;
4155     struct zone *zone;
4156     struct scan_control sc = {
4157         .gfp_mask = GFP_KERNEL,
4158         .order = order,
4159         .may_unmap = 1,
4160     };
4161 
4162     set_task_reclaim_state(current, &sc.reclaim_state);
4163     psi_memstall_enter(&pflags);
4164     __fs_reclaim_acquire(_THIS_IP_);
4165 
4166     count_vm_event(PAGEOUTRUN);
4167 
4168     /*
4169      * Account for the reclaim boost. Note that the zone boost is left in
4170      * place so that parallel allocations that are near the watermark will
4171      * stall or direct reclaim until kswapd is finished.
4172      */
4173     nr_boost_reclaim = 0;
4174     for (i = 0; i <= highest_zoneidx; i++) {
4175         zone = pgdat->node_zones + i;
4176         if (!managed_zone(zone))
4177             continue;
4178 
4179         nr_boost_reclaim += zone->watermark_boost;
4180         zone_boosts[i] = zone->watermark_boost;
4181     }
4182     boosted = nr_boost_reclaim;
4183 
4184 restart:
4185     set_reclaim_active(pgdat, highest_zoneidx);
4186     sc.priority = DEF_PRIORITY;
4187     do {
4188         unsigned long nr_reclaimed = sc.nr_reclaimed;
4189         bool raise_priority = true;
4190         bool balanced;
4191         bool ret;
4192 
4193         sc.reclaim_idx = highest_zoneidx;
4194 
4195         /*
4196          * If the number of buffer_heads exceeds the maximum allowed
4197          * then consider reclaiming from all zones. This has a dual
4198          * purpose -- on 64-bit systems it is expected that
4199          * buffer_heads are stripped during active rotation. On 32-bit
4200          * systems, highmem pages can pin lowmem memory and shrinking
4201          * buffers can relieve lowmem pressure. Reclaim may still not
4202          * go ahead if all eligible zones for the original allocation
4203          * request are balanced to avoid excessive reclaim from kswapd.
4204          */
4205         if (buffer_heads_over_limit) {
4206             for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4207                 zone = pgdat->node_zones + i;
4208                 if (!managed_zone(zone))
4209                     continue;
4210 
4211                 sc.reclaim_idx = i;
4212                 break;
4213             }
4214         }
4215 
4216         /*
4217          * If the pgdat is imbalanced then ignore boosting and preserve
4218          * the watermarks for a later time and restart. Note that the
4219          * zone watermarks will be still reset at the end of balancing
4220          * on the grounds that the normal reclaim should be enough to
4221          * re-evaluate if boosting is required when kswapd next wakes.
4222          */
4223         balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4224         if (!balanced && nr_boost_reclaim) {
4225             nr_boost_reclaim = 0;
4226             goto restart;
4227         }
4228 
4229         /*
4230          * If boosting is not active then only reclaim if there are no
4231          * eligible zones. Note that sc.reclaim_idx is not used as
4232          * buffer_heads_over_limit may have adjusted it.
4233          */
4234         if (!nr_boost_reclaim && balanced)
4235             goto out;
4236 
4237         /* Limit the priority of boosting to avoid reclaim writeback */
4238         if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4239             raise_priority = false;
4240 
4241         /*
4242          * Do not writeback or swap pages for boosted reclaim. The
4243          * intent is to relieve pressure not issue sub-optimal IO
4244          * from reclaim context. If no pages are reclaimed, the
4245          * reclaim will be aborted.
4246          */
4247         sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4248         sc.may_swap = !nr_boost_reclaim;
4249 
4250         /*
4251          * Do some background aging of the anon list, to give
4252          * pages a chance to be referenced before reclaiming. All
4253          * pages are rotated regardless of classzone as this is
4254          * about consistent aging.
4255          */
4256         age_active_anon(pgdat, &sc);
4257 
4258         /*
4259          * If we're getting trouble reclaiming, start doing writepage
4260          * even in laptop mode.
4261          */
4262         if (sc.priority < DEF_PRIORITY - 2)
4263             sc.may_writepage = 1;
4264 
4265         /* Call soft limit reclaim before calling shrink_node. */
4266         sc.nr_scanned = 0;
4267         nr_soft_scanned = 0;
4268         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4269                         sc.gfp_mask, &nr_soft_scanned);
4270         sc.nr_reclaimed += nr_soft_reclaimed;
4271 
4272         /*
4273          * There should be no need to raise the scanning priority if
4274          * enough pages are already being scanned that that high
4275          * watermark would be met at 100% efficiency.
4276          */
4277         if (kswapd_shrink_node(pgdat, &sc))
4278             raise_priority = false;
4279 
4280         /*
4281          * If the low watermark is met there is no need for processes
4282          * to be throttled on pfmemalloc_wait as they should not be
4283          * able to safely make forward progress. Wake them
4284          */
4285         if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4286                 allow_direct_reclaim(pgdat))
4287             wake_up_all(&pgdat->pfmemalloc_wait);
4288 
4289         /* Check if kswapd should be suspending */
4290         __fs_reclaim_release(_THIS_IP_);
4291         ret = try_to_freeze();
4292         __fs_reclaim_acquire(_THIS_IP_);
4293         if (ret || kthread_should_stop())
4294             break;
4295 
4296         /*
4297          * Raise priority if scanning rate is too low or there was no
4298          * progress in reclaiming pages
4299          */
4300         nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4301         nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4302 
4303         /*
4304          * If reclaim made no progress for a boost, stop reclaim as
4305          * IO cannot be queued and it could be an infinite loop in
4306          * extreme circumstances.
4307          */
4308         if (nr_boost_reclaim && !nr_reclaimed)
4309             break;
4310 
4311         if (raise_priority || !nr_reclaimed)
4312             sc.priority--;
4313     } while (sc.priority >= 1);
4314 
4315     if (!sc.nr_reclaimed)
4316         pgdat->kswapd_failures++;
4317 
4318 out:
4319     clear_reclaim_active(pgdat, highest_zoneidx);
4320 
4321     /* If reclaim was boosted, account for the reclaim done in this pass */
4322     if (boosted) {
4323         unsigned long flags;
4324 
4325         for (i = 0; i <= highest_zoneidx; i++) {
4326             if (!zone_boosts[i])
4327                 continue;
4328 
4329             /* Increments are under the zone lock */
4330             zone = pgdat->node_zones + i;
4331             spin_lock_irqsave(&zone->lock, flags);
4332             zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4333             spin_unlock_irqrestore(&zone->lock, flags);
4334         }
4335 
4336         /*
4337          * As there is now likely space, wakeup kcompact to defragment
4338          * pageblocks.
4339          */
4340         wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4341     }
4342 
4343     snapshot_refaults(NULL, pgdat);
4344     __fs_reclaim_release(_THIS_IP_);
4345     psi_memstall_leave(&pflags);
4346     set_task_reclaim_state(current, NULL);
4347 
4348     /*
4349      * Return the order kswapd stopped reclaiming at as
4350      * prepare_kswapd_sleep() takes it into account. If another caller
4351      * entered the allocator slow path while kswapd was awake, order will
4352      * remain at the higher level.
4353      */
4354     return sc.order;
4355 }
4356 
4357 /*
4358  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4359  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4360  * not a valid index then either kswapd runs for first time or kswapd couldn't
4361  * sleep after previous reclaim attempt (node is still unbalanced). In that
4362  * case return the zone index of the previous kswapd reclaim cycle.
4363  */
4364 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4365                        enum zone_type prev_highest_zoneidx)
4366 {
4367     enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4368 
4369     return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4370 }
4371 
4372 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4373                 unsigned int highest_zoneidx)
4374 {
4375     long remaining = 0;
4376     DEFINE_WAIT(wait);
4377 
4378     if (freezing(current) || kthread_should_stop())
4379         return;
4380 
4381     prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4382 
4383     /*
4384      * Try to sleep for a short interval. Note that kcompactd will only be
4385      * woken if it is possible to sleep for a short interval. This is
4386      * deliberate on the assumption that if reclaim cannot keep an
4387      * eligible zone balanced that it's also unlikely that compaction will
4388      * succeed.
4389      */
4390     if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4391         /*
4392          * Compaction records what page blocks it recently failed to
4393          * isolate pages from and skips them in the future scanning.
4394          * When kswapd is going to sleep, it is reasonable to assume
4395          * that pages and compaction may succeed so reset the cache.
4396          */
4397         reset_isolation_suitable(pgdat);
4398 
4399         /*
4400          * We have freed the memory, now we should compact it to make
4401          * allocation of the requested order possible.
4402          */
4403         wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4404 
4405         remaining = schedule_timeout(HZ/10);
4406 
4407         /*
4408          * If woken prematurely then reset kswapd_highest_zoneidx and
4409          * order. The values will either be from a wakeup request or
4410          * the previous request that slept prematurely.
4411          */
4412         if (remaining) {
4413             WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4414                     kswapd_highest_zoneidx(pgdat,
4415                             highest_zoneidx));
4416 
4417             if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4418                 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4419         }
4420 
4421         finish_wait(&pgdat->kswapd_wait, &wait);
4422         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4423     }
4424 
4425     /*
4426      * After a short sleep, check if it was a premature sleep. If not, then
4427      * go fully to sleep until explicitly woken up.
4428      */
4429     if (!remaining &&
4430         prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4431         trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4432 
4433         /*
4434          * vmstat counters are not perfectly accurate and the estimated
4435          * value for counters such as NR_FREE_PAGES can deviate from the
4436          * true value by nr_online_cpus * threshold. To avoid the zone
4437          * watermarks being breached while under pressure, we reduce the
4438          * per-cpu vmstat threshold while kswapd is awake and restore
4439          * them before going back to sleep.
4440          */
4441         set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4442 
4443         if (!kthread_should_stop())
4444             schedule();
4445 
4446         set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4447     } else {
4448         if (remaining)
4449             count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4450         else
4451             count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4452     }
4453     finish_wait(&pgdat->kswapd_wait, &wait);
4454 }
4455 
4456 /*
4457  * The background pageout daemon, started as a kernel thread
4458  * from the init process.
4459  *
4460  * This basically trickles out pages so that we have _some_
4461  * free memory available even if there is no other activity
4462  * that frees anything up. This is needed for things like routing
4463  * etc, where we otherwise might have all activity going on in
4464  * asynchronous contexts that cannot page things out.
4465  *
4466  * If there are applications that are active memory-allocators
4467  * (most normal use), this basically shouldn't matter.
4468  */
4469 static int kswapd(void *p)
4470 {
4471     unsigned int alloc_order, reclaim_order;
4472     unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4473     pg_data_t *pgdat = (pg_data_t *)p;
4474     struct task_struct *tsk = current;
4475     const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4476 
4477     if (!cpumask_empty(cpumask))
4478         set_cpus_allowed_ptr(tsk, cpumask);
4479 
4480     /*
4481      * Tell the memory management that we're a "memory allocator",
4482      * and that if we need more memory we should get access to it
4483      * regardless (see "__alloc_pages()"). "kswapd" should
4484      * never get caught in the normal page freeing logic.
4485      *
4486      * (Kswapd normally doesn't need memory anyway, but sometimes
4487      * you need a small amount of memory in order to be able to
4488      * page out something else, and this flag essentially protects
4489      * us from recursively trying to free more memory as we're
4490      * trying to free the first piece of memory in the first place).
4491      */
4492     tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
4493     set_freezable();
4494 
4495     WRITE_ONCE(pgdat->kswapd_order, 0);
4496     WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4497     atomic_set(&pgdat->nr_writeback_throttled, 0);
4498     for ( ; ; ) {
4499         bool ret;
4500 
4501         alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4502         highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4503                             highest_zoneidx);
4504 
4505 kswapd_try_sleep:
4506         kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4507                     highest_zoneidx);
4508 
4509         /* Read the new order and highest_zoneidx */
4510         alloc_order = READ_ONCE(pgdat->kswapd_order);
4511         highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4512                             highest_zoneidx);
4513         WRITE_ONCE(pgdat->kswapd_order, 0);
4514         WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4515 
4516         ret = try_to_freeze();
4517         if (kthread_should_stop())
4518             break;
4519 
4520         /*
4521          * We can speed up thawing tasks if we don't call balance_pgdat
4522          * after returning from the refrigerator
4523          */
4524         if (ret)
4525             continue;
4526 
4527         /*
4528          * Reclaim begins at the requested order but if a high-order
4529          * reclaim fails then kswapd falls back to reclaiming for
4530          * order-0. If that happens, kswapd will consider sleeping
4531          * for the order it finished reclaiming at (reclaim_order)
4532          * but kcompactd is woken to compact for the original
4533          * request (alloc_order).
4534          */
4535         trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4536                         alloc_order);
4537         reclaim_order = balance_pgdat(pgdat, alloc_order,
4538                         highest_zoneidx);
4539         if (reclaim_order < alloc_order)
4540             goto kswapd_try_sleep;
4541     }
4542 
4543     tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
4544 
4545     return 0;
4546 }
4547 
4548 /*
4549  * A zone is low on free memory or too fragmented for high-order memory.  If
4550  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4551  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4552  * has failed or is not needed, still wake up kcompactd if only compaction is
4553  * needed.
4554  */
4555 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4556            enum zone_type highest_zoneidx)
4557 {
4558     pg_data_t *pgdat;
4559     enum zone_type curr_idx;
4560 
4561     if (!managed_zone(zone))
4562         return;
4563 
4564     if (!cpuset_zone_allowed(zone, gfp_flags))
4565         return;
4566 
4567     pgdat = zone->zone_pgdat;
4568     curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4569 
4570     if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4571         WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4572 
4573     if (READ_ONCE(pgdat->kswapd_order) < order)
4574         WRITE_ONCE(pgdat->kswapd_order, order);
4575 
4576     if (!waitqueue_active(&pgdat->kswapd_wait))
4577         return;
4578 
4579     /* Hopeless node, leave it to direct reclaim if possible */
4580     if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4581         (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4582          !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4583         /*
4584          * There may be plenty of free memory available, but it's too
4585          * fragmented for high-order allocations.  Wake up kcompactd
4586          * and rely on compaction_suitable() to determine if it's
4587          * needed.  If it fails, it will defer subsequent attempts to
4588          * ratelimit its work.
4589          */
4590         if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4591             wakeup_kcompactd(pgdat, order, highest_zoneidx);
4592         return;
4593     }
4594 
4595     trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4596                       gfp_flags);
4597     wake_up_interruptible(&pgdat->kswapd_wait);
4598 }
4599 
4600 #ifdef CONFIG_HIBERNATION
4601 /*
4602  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4603  * freed pages.
4604  *
4605  * Rather than trying to age LRUs the aim is to preserve the overall
4606  * LRU order by reclaiming preferentially
4607  * inactive > active > active referenced > active mapped
4608  */
4609 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4610 {
4611     struct scan_control sc = {
4612         .nr_to_reclaim = nr_to_reclaim,
4613         .gfp_mask = GFP_HIGHUSER_MOVABLE,
4614         .reclaim_idx = MAX_NR_ZONES - 1,
4615         .priority = DEF_PRIORITY,
4616         .may_writepage = 1,
4617         .may_unmap = 1,
4618         .may_swap = 1,
4619         .hibernation_mode = 1,
4620     };
4621     struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4622     unsigned long nr_reclaimed;
4623     unsigned int noreclaim_flag;
4624 
4625     fs_reclaim_acquire(sc.gfp_mask);
4626     noreclaim_flag = memalloc_noreclaim_save();
4627     set_task_reclaim_state(current, &sc.reclaim_state);
4628 
4629     nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4630 
4631     set_task_reclaim_state(current, NULL);
4632     memalloc_noreclaim_restore(noreclaim_flag);
4633     fs_reclaim_release(sc.gfp_mask);
4634 
4635     return nr_reclaimed;
4636 }
4637 #endif /* CONFIG_HIBERNATION */
4638 
4639 /*
4640  * This kswapd start function will be called by init and node-hot-add.
4641  */
4642 void kswapd_run(int nid)
4643 {
4644     pg_data_t *pgdat = NODE_DATA(nid);
4645 
4646     if (pgdat->kswapd)
4647         return;
4648 
4649     pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4650     if (IS_ERR(pgdat->kswapd)) {
4651         /* failure at boot is fatal */
4652         BUG_ON(system_state < SYSTEM_RUNNING);
4653         pr_err("Failed to start kswapd on node %d\n", nid);
4654         pgdat->kswapd = NULL;
4655     }
4656 }
4657 
4658 /*
4659  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4660  * be holding mem_hotplug_begin/done().
4661  */
4662 void kswapd_stop(int nid)
4663 {
4664     struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4665 
4666     if (kswapd) {
4667         kthread_stop(kswapd);
4668         NODE_DATA(nid)->kswapd = NULL;
4669     }
4670 }
4671 
4672 static int __init kswapd_init(void)
4673 {
4674     int nid;
4675 
4676     swap_setup();
4677     for_each_node_state(nid, N_MEMORY)
4678         kswapd_run(nid);
4679     return 0;
4680 }
4681 
4682 module_init(kswapd_init)
4683 
4684 #ifdef CONFIG_NUMA
4685 /*
4686  * Node reclaim mode
4687  *
4688  * If non-zero call node_reclaim when the number of free pages falls below
4689  * the watermarks.
4690  */
4691 int node_reclaim_mode __read_mostly;
4692 
4693 /*
4694  * Priority for NODE_RECLAIM. This determines the fraction of pages
4695  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4696  * a zone.
4697  */
4698 #define NODE_RECLAIM_PRIORITY 4
4699 
4700 /*
4701  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4702  * occur.
4703  */
4704 int sysctl_min_unmapped_ratio = 1;
4705 
4706 /*
4707  * If the number of slab pages in a zone grows beyond this percentage then
4708  * slab reclaim needs to occur.
4709  */
4710 int sysctl_min_slab_ratio = 5;
4711 
4712 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4713 {
4714     unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4715     unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4716         node_page_state(pgdat, NR_ACTIVE_FILE);
4717 
4718     /*
4719      * It's possible for there to be more file mapped pages than
4720      * accounted for by the pages on the file LRU lists because
4721      * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4722      */
4723     return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4724 }
4725 
4726 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4727 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4728 {
4729     unsigned long nr_pagecache_reclaimable;
4730     unsigned long delta = 0;
4731 
4732     /*
4733      * If RECLAIM_UNMAP is set, then all file pages are considered
4734      * potentially reclaimable. Otherwise, we have to worry about
4735      * pages like swapcache and node_unmapped_file_pages() provides
4736      * a better estimate
4737      */
4738     if (node_reclaim_mode & RECLAIM_UNMAP)
4739         nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4740     else
4741         nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4742 
4743     /* If we can't clean pages, remove dirty pages from consideration */
4744     if (!(node_reclaim_mode & RECLAIM_WRITE))
4745         delta += node_page_state(pgdat, NR_FILE_DIRTY);
4746 
4747     /* Watch for any possible underflows due to delta */
4748     if (unlikely(delta > nr_pagecache_reclaimable))
4749         delta = nr_pagecache_reclaimable;
4750 
4751     return nr_pagecache_reclaimable - delta;
4752 }
4753 
4754 /*
4755  * Try to free up some pages from this node through reclaim.
4756  */
4757 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4758 {
4759     /* Minimum pages needed in order to stay on node */
4760     const unsigned long nr_pages = 1 << order;
4761     struct task_struct *p = current;
4762     unsigned int noreclaim_flag;
4763     struct scan_control sc = {
4764         .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4765         .gfp_mask = current_gfp_context(gfp_mask),
4766         .order = order,
4767         .priority = NODE_RECLAIM_PRIORITY,
4768         .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4769         .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4770         .may_swap = 1,
4771         .reclaim_idx = gfp_zone(gfp_mask),
4772     };
4773     unsigned long pflags;
4774 
4775     trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4776                        sc.gfp_mask);
4777 
4778     cond_resched();
4779     psi_memstall_enter(&pflags);
4780     fs_reclaim_acquire(sc.gfp_mask);
4781     /*
4782      * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4783      */
4784     noreclaim_flag = memalloc_noreclaim_save();
4785     set_task_reclaim_state(p, &sc.reclaim_state);
4786 
4787     if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
4788         node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
4789         /*
4790          * Free memory by calling shrink node with increasing
4791          * priorities until we have enough memory freed.
4792          */
4793         do {
4794             shrink_node(pgdat, &sc);
4795         } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4796     }
4797 
4798     set_task_reclaim_state(p, NULL);
4799     memalloc_noreclaim_restore(noreclaim_flag);
4800     fs_reclaim_release(sc.gfp_mask);
4801     psi_memstall_leave(&pflags);
4802 
4803     trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4804 
4805     return sc.nr_reclaimed >= nr_pages;
4806 }
4807 
4808 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4809 {
4810     int ret;
4811 
4812     /*
4813      * Node reclaim reclaims unmapped file backed pages and
4814      * slab pages if we are over the defined limits.
4815      *
4816      * A small portion of unmapped file backed pages is needed for
4817      * file I/O otherwise pages read by file I/O will be immediately
4818      * thrown out if the node is overallocated. So we do not reclaim
4819      * if less than a specified percentage of the node is used by
4820      * unmapped file backed pages.
4821      */
4822     if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4823         node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4824         pgdat->min_slab_pages)
4825         return NODE_RECLAIM_FULL;
4826 
4827     /*
4828      * Do not scan if the allocation should not be delayed.
4829      */
4830     if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4831         return NODE_RECLAIM_NOSCAN;
4832 
4833     /*
4834      * Only run node reclaim on the local node or on nodes that do not
4835      * have associated processors. This will favor the local processor
4836      * over remote processors and spread off node memory allocations
4837      * as wide as possible.
4838      */
4839     if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4840         return NODE_RECLAIM_NOSCAN;
4841 
4842     if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4843         return NODE_RECLAIM_NOSCAN;
4844 
4845     ret = __node_reclaim(pgdat, gfp_mask, order);
4846     clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4847 
4848     if (!ret)
4849         count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4850 
4851     return ret;
4852 }
4853 #endif
4854 
4855 void check_move_unevictable_pages(struct pagevec *pvec)
4856 {
4857     struct folio_batch fbatch;
4858     unsigned i;
4859 
4860     folio_batch_init(&fbatch);
4861     for (i = 0; i < pvec->nr; i++) {
4862         struct page *page = pvec->pages[i];
4863 
4864         if (PageTransTail(page))
4865             continue;
4866         folio_batch_add(&fbatch, page_folio(page));
4867     }
4868     check_move_unevictable_folios(&fbatch);
4869 }
4870 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4871 
4872 /**
4873  * check_move_unevictable_folios - Move evictable folios to appropriate zone
4874  * lru list
4875  * @fbatch: Batch of lru folios to check.
4876  *
4877  * Checks folios for evictability, if an evictable folio is in the unevictable
4878  * lru list, moves it to the appropriate evictable lru list. This function
4879  * should be only used for lru folios.
4880  */
4881 void check_move_unevictable_folios(struct folio_batch *fbatch)
4882 {
4883     struct lruvec *lruvec = NULL;
4884     int pgscanned = 0;
4885     int pgrescued = 0;
4886     int i;
4887 
4888     for (i = 0; i < fbatch->nr; i++) {
4889         struct folio *folio = fbatch->folios[i];
4890         int nr_pages = folio_nr_pages(folio);
4891 
4892         pgscanned += nr_pages;
4893 
4894         /* block memcg migration while the folio moves between lrus */
4895         if (!folio_test_clear_lru(folio))
4896             continue;
4897 
4898         lruvec = folio_lruvec_relock_irq(folio, lruvec);
4899         if (folio_evictable(folio) && folio_test_unevictable(folio)) {
4900             lruvec_del_folio(lruvec, folio);
4901             folio_clear_unevictable(folio);
4902             lruvec_add_folio(lruvec, folio);
4903             pgrescued += nr_pages;
4904         }
4905         folio_set_lru(folio);
4906     }
4907 
4908     if (lruvec) {
4909         __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4910         __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4911         unlock_page_lruvec_irq(lruvec);
4912     } else if (pgscanned) {
4913         count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4914     }
4915 }
4916 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);