Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  linux/mm/swapfile.c
0004  *
0005  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
0006  *  Swap reorganised 29.12.95, Stephen Tweedie
0007  */
0008 
0009 #include <linux/blkdev.h>
0010 #include <linux/mm.h>
0011 #include <linux/sched/mm.h>
0012 #include <linux/sched/task.h>
0013 #include <linux/hugetlb.h>
0014 #include <linux/mman.h>
0015 #include <linux/slab.h>
0016 #include <linux/kernel_stat.h>
0017 #include <linux/swap.h>
0018 #include <linux/vmalloc.h>
0019 #include <linux/pagemap.h>
0020 #include <linux/namei.h>
0021 #include <linux/shmem_fs.h>
0022 #include <linux/blk-cgroup.h>
0023 #include <linux/random.h>
0024 #include <linux/writeback.h>
0025 #include <linux/proc_fs.h>
0026 #include <linux/seq_file.h>
0027 #include <linux/init.h>
0028 #include <linux/ksm.h>
0029 #include <linux/rmap.h>
0030 #include <linux/security.h>
0031 #include <linux/backing-dev.h>
0032 #include <linux/mutex.h>
0033 #include <linux/capability.h>
0034 #include <linux/syscalls.h>
0035 #include <linux/memcontrol.h>
0036 #include <linux/poll.h>
0037 #include <linux/oom.h>
0038 #include <linux/frontswap.h>
0039 #include <linux/swapfile.h>
0040 #include <linux/export.h>
0041 #include <linux/swap_slots.h>
0042 #include <linux/sort.h>
0043 #include <linux/completion.h>
0044 
0045 #include <asm/tlbflush.h>
0046 #include <linux/swapops.h>
0047 #include <linux/swap_cgroup.h>
0048 #include "swap.h"
0049 
0050 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
0051                  unsigned char);
0052 static void free_swap_count_continuations(struct swap_info_struct *);
0053 
0054 static DEFINE_SPINLOCK(swap_lock);
0055 static unsigned int nr_swapfiles;
0056 atomic_long_t nr_swap_pages;
0057 /*
0058  * Some modules use swappable objects and may try to swap them out under
0059  * memory pressure (via the shrinker). Before doing so, they may wish to
0060  * check to see if any swap space is available.
0061  */
0062 EXPORT_SYMBOL_GPL(nr_swap_pages);
0063 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
0064 long total_swap_pages;
0065 static int least_priority = -1;
0066 
0067 static const char Bad_file[] = "Bad swap file entry ";
0068 static const char Unused_file[] = "Unused swap file entry ";
0069 static const char Bad_offset[] = "Bad swap offset entry ";
0070 static const char Unused_offset[] = "Unused swap offset entry ";
0071 
0072 /*
0073  * all active swap_info_structs
0074  * protected with swap_lock, and ordered by priority.
0075  */
0076 static PLIST_HEAD(swap_active_head);
0077 
0078 /*
0079  * all available (active, not full) swap_info_structs
0080  * protected with swap_avail_lock, ordered by priority.
0081  * This is used by folio_alloc_swap() instead of swap_active_head
0082  * because swap_active_head includes all swap_info_structs,
0083  * but folio_alloc_swap() doesn't need to look at full ones.
0084  * This uses its own lock instead of swap_lock because when a
0085  * swap_info_struct changes between not-full/full, it needs to
0086  * add/remove itself to/from this list, but the swap_info_struct->lock
0087  * is held and the locking order requires swap_lock to be taken
0088  * before any swap_info_struct->lock.
0089  */
0090 static struct plist_head *swap_avail_heads;
0091 static DEFINE_SPINLOCK(swap_avail_lock);
0092 
0093 struct swap_info_struct *swap_info[MAX_SWAPFILES];
0094 
0095 static DEFINE_MUTEX(swapon_mutex);
0096 
0097 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
0098 /* Activity counter to indicate that a swapon or swapoff has occurred */
0099 static atomic_t proc_poll_event = ATOMIC_INIT(0);
0100 
0101 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
0102 
0103 static struct swap_info_struct *swap_type_to_swap_info(int type)
0104 {
0105     if (type >= MAX_SWAPFILES)
0106         return NULL;
0107 
0108     return READ_ONCE(swap_info[type]); /* rcu_dereference() */
0109 }
0110 
0111 static inline unsigned char swap_count(unsigned char ent)
0112 {
0113     return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
0114 }
0115 
0116 /* Reclaim the swap entry anyway if possible */
0117 #define TTRS_ANYWAY     0x1
0118 /*
0119  * Reclaim the swap entry if there are no more mappings of the
0120  * corresponding page
0121  */
0122 #define TTRS_UNMAPPED       0x2
0123 /* Reclaim the swap entry if swap is getting full*/
0124 #define TTRS_FULL       0x4
0125 
0126 /* returns 1 if swap entry is freed */
0127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
0128                  unsigned long offset, unsigned long flags)
0129 {
0130     swp_entry_t entry = swp_entry(si->type, offset);
0131     struct page *page;
0132     int ret = 0;
0133 
0134     page = find_get_page(swap_address_space(entry), offset);
0135     if (!page)
0136         return 0;
0137     /*
0138      * When this function is called from scan_swap_map_slots() and it's
0139      * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
0140      * here. We have to use trylock for avoiding deadlock. This is a special
0141      * case and you should use try_to_free_swap() with explicit lock_page()
0142      * in usual operations.
0143      */
0144     if (trylock_page(page)) {
0145         if ((flags & TTRS_ANYWAY) ||
0146             ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
0147             ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
0148             ret = try_to_free_swap(page);
0149         unlock_page(page);
0150     }
0151     put_page(page);
0152     return ret;
0153 }
0154 
0155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
0156 {
0157     struct rb_node *rb = rb_first(&sis->swap_extent_root);
0158     return rb_entry(rb, struct swap_extent, rb_node);
0159 }
0160 
0161 static inline struct swap_extent *next_se(struct swap_extent *se)
0162 {
0163     struct rb_node *rb = rb_next(&se->rb_node);
0164     return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
0165 }
0166 
0167 /*
0168  * swapon tell device that all the old swap contents can be discarded,
0169  * to allow the swap device to optimize its wear-levelling.
0170  */
0171 static int discard_swap(struct swap_info_struct *si)
0172 {
0173     struct swap_extent *se;
0174     sector_t start_block;
0175     sector_t nr_blocks;
0176     int err = 0;
0177 
0178     /* Do not discard the swap header page! */
0179     se = first_se(si);
0180     start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
0181     nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
0182     if (nr_blocks) {
0183         err = blkdev_issue_discard(si->bdev, start_block,
0184                 nr_blocks, GFP_KERNEL);
0185         if (err)
0186             return err;
0187         cond_resched();
0188     }
0189 
0190     for (se = next_se(se); se; se = next_se(se)) {
0191         start_block = se->start_block << (PAGE_SHIFT - 9);
0192         nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
0193 
0194         err = blkdev_issue_discard(si->bdev, start_block,
0195                 nr_blocks, GFP_KERNEL);
0196         if (err)
0197             break;
0198 
0199         cond_resched();
0200     }
0201     return err;     /* That will often be -EOPNOTSUPP */
0202 }
0203 
0204 static struct swap_extent *
0205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
0206 {
0207     struct swap_extent *se;
0208     struct rb_node *rb;
0209 
0210     rb = sis->swap_extent_root.rb_node;
0211     while (rb) {
0212         se = rb_entry(rb, struct swap_extent, rb_node);
0213         if (offset < se->start_page)
0214             rb = rb->rb_left;
0215         else if (offset >= se->start_page + se->nr_pages)
0216             rb = rb->rb_right;
0217         else
0218             return se;
0219     }
0220     /* It *must* be present */
0221     BUG();
0222 }
0223 
0224 sector_t swap_page_sector(struct page *page)
0225 {
0226     struct swap_info_struct *sis = page_swap_info(page);
0227     struct swap_extent *se;
0228     sector_t sector;
0229     pgoff_t offset;
0230 
0231     offset = __page_file_index(page);
0232     se = offset_to_swap_extent(sis, offset);
0233     sector = se->start_block + (offset - se->start_page);
0234     return sector << (PAGE_SHIFT - 9);
0235 }
0236 
0237 /*
0238  * swap allocation tell device that a cluster of swap can now be discarded,
0239  * to allow the swap device to optimize its wear-levelling.
0240  */
0241 static void discard_swap_cluster(struct swap_info_struct *si,
0242                  pgoff_t start_page, pgoff_t nr_pages)
0243 {
0244     struct swap_extent *se = offset_to_swap_extent(si, start_page);
0245 
0246     while (nr_pages) {
0247         pgoff_t offset = start_page - se->start_page;
0248         sector_t start_block = se->start_block + offset;
0249         sector_t nr_blocks = se->nr_pages - offset;
0250 
0251         if (nr_blocks > nr_pages)
0252             nr_blocks = nr_pages;
0253         start_page += nr_blocks;
0254         nr_pages -= nr_blocks;
0255 
0256         start_block <<= PAGE_SHIFT - 9;
0257         nr_blocks <<= PAGE_SHIFT - 9;
0258         if (blkdev_issue_discard(si->bdev, start_block,
0259                     nr_blocks, GFP_NOIO))
0260             break;
0261 
0262         se = next_se(se);
0263     }
0264 }
0265 
0266 #ifdef CONFIG_THP_SWAP
0267 #define SWAPFILE_CLUSTER    HPAGE_PMD_NR
0268 
0269 #define swap_entry_size(size)   (size)
0270 #else
0271 #define SWAPFILE_CLUSTER    256
0272 
0273 /*
0274  * Define swap_entry_size() as constant to let compiler to optimize
0275  * out some code if !CONFIG_THP_SWAP
0276  */
0277 #define swap_entry_size(size)   1
0278 #endif
0279 #define LATENCY_LIMIT       256
0280 
0281 static inline void cluster_set_flag(struct swap_cluster_info *info,
0282     unsigned int flag)
0283 {
0284     info->flags = flag;
0285 }
0286 
0287 static inline unsigned int cluster_count(struct swap_cluster_info *info)
0288 {
0289     return info->data;
0290 }
0291 
0292 static inline void cluster_set_count(struct swap_cluster_info *info,
0293                      unsigned int c)
0294 {
0295     info->data = c;
0296 }
0297 
0298 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
0299                      unsigned int c, unsigned int f)
0300 {
0301     info->flags = f;
0302     info->data = c;
0303 }
0304 
0305 static inline unsigned int cluster_next(struct swap_cluster_info *info)
0306 {
0307     return info->data;
0308 }
0309 
0310 static inline void cluster_set_next(struct swap_cluster_info *info,
0311                     unsigned int n)
0312 {
0313     info->data = n;
0314 }
0315 
0316 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
0317                      unsigned int n, unsigned int f)
0318 {
0319     info->flags = f;
0320     info->data = n;
0321 }
0322 
0323 static inline bool cluster_is_free(struct swap_cluster_info *info)
0324 {
0325     return info->flags & CLUSTER_FLAG_FREE;
0326 }
0327 
0328 static inline bool cluster_is_null(struct swap_cluster_info *info)
0329 {
0330     return info->flags & CLUSTER_FLAG_NEXT_NULL;
0331 }
0332 
0333 static inline void cluster_set_null(struct swap_cluster_info *info)
0334 {
0335     info->flags = CLUSTER_FLAG_NEXT_NULL;
0336     info->data = 0;
0337 }
0338 
0339 static inline bool cluster_is_huge(struct swap_cluster_info *info)
0340 {
0341     if (IS_ENABLED(CONFIG_THP_SWAP))
0342         return info->flags & CLUSTER_FLAG_HUGE;
0343     return false;
0344 }
0345 
0346 static inline void cluster_clear_huge(struct swap_cluster_info *info)
0347 {
0348     info->flags &= ~CLUSTER_FLAG_HUGE;
0349 }
0350 
0351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
0352                              unsigned long offset)
0353 {
0354     struct swap_cluster_info *ci;
0355 
0356     ci = si->cluster_info;
0357     if (ci) {
0358         ci += offset / SWAPFILE_CLUSTER;
0359         spin_lock(&ci->lock);
0360     }
0361     return ci;
0362 }
0363 
0364 static inline void unlock_cluster(struct swap_cluster_info *ci)
0365 {
0366     if (ci)
0367         spin_unlock(&ci->lock);
0368 }
0369 
0370 /*
0371  * Determine the locking method in use for this device.  Return
0372  * swap_cluster_info if SSD-style cluster-based locking is in place.
0373  */
0374 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
0375         struct swap_info_struct *si, unsigned long offset)
0376 {
0377     struct swap_cluster_info *ci;
0378 
0379     /* Try to use fine-grained SSD-style locking if available: */
0380     ci = lock_cluster(si, offset);
0381     /* Otherwise, fall back to traditional, coarse locking: */
0382     if (!ci)
0383         spin_lock(&si->lock);
0384 
0385     return ci;
0386 }
0387 
0388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
0389                            struct swap_cluster_info *ci)
0390 {
0391     if (ci)
0392         unlock_cluster(ci);
0393     else
0394         spin_unlock(&si->lock);
0395 }
0396 
0397 static inline bool cluster_list_empty(struct swap_cluster_list *list)
0398 {
0399     return cluster_is_null(&list->head);
0400 }
0401 
0402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
0403 {
0404     return cluster_next(&list->head);
0405 }
0406 
0407 static void cluster_list_init(struct swap_cluster_list *list)
0408 {
0409     cluster_set_null(&list->head);
0410     cluster_set_null(&list->tail);
0411 }
0412 
0413 static void cluster_list_add_tail(struct swap_cluster_list *list,
0414                   struct swap_cluster_info *ci,
0415                   unsigned int idx)
0416 {
0417     if (cluster_list_empty(list)) {
0418         cluster_set_next_flag(&list->head, idx, 0);
0419         cluster_set_next_flag(&list->tail, idx, 0);
0420     } else {
0421         struct swap_cluster_info *ci_tail;
0422         unsigned int tail = cluster_next(&list->tail);
0423 
0424         /*
0425          * Nested cluster lock, but both cluster locks are
0426          * only acquired when we held swap_info_struct->lock
0427          */
0428         ci_tail = ci + tail;
0429         spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
0430         cluster_set_next(ci_tail, idx);
0431         spin_unlock(&ci_tail->lock);
0432         cluster_set_next_flag(&list->tail, idx, 0);
0433     }
0434 }
0435 
0436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
0437                        struct swap_cluster_info *ci)
0438 {
0439     unsigned int idx;
0440 
0441     idx = cluster_next(&list->head);
0442     if (cluster_next(&list->tail) == idx) {
0443         cluster_set_null(&list->head);
0444         cluster_set_null(&list->tail);
0445     } else
0446         cluster_set_next_flag(&list->head,
0447                       cluster_next(&ci[idx]), 0);
0448 
0449     return idx;
0450 }
0451 
0452 /* Add a cluster to discard list and schedule it to do discard */
0453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
0454         unsigned int idx)
0455 {
0456     /*
0457      * If scan_swap_map_slots() can't find a free cluster, it will check
0458      * si->swap_map directly. To make sure the discarding cluster isn't
0459      * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
0460      * It will be cleared after discard
0461      */
0462     memset(si->swap_map + idx * SWAPFILE_CLUSTER,
0463             SWAP_MAP_BAD, SWAPFILE_CLUSTER);
0464 
0465     cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
0466 
0467     schedule_work(&si->discard_work);
0468 }
0469 
0470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
0471 {
0472     struct swap_cluster_info *ci = si->cluster_info;
0473 
0474     cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
0475     cluster_list_add_tail(&si->free_clusters, ci, idx);
0476 }
0477 
0478 /*
0479  * Doing discard actually. After a cluster discard is finished, the cluster
0480  * will be added to free cluster list. caller should hold si->lock.
0481 */
0482 static void swap_do_scheduled_discard(struct swap_info_struct *si)
0483 {
0484     struct swap_cluster_info *info, *ci;
0485     unsigned int idx;
0486 
0487     info = si->cluster_info;
0488 
0489     while (!cluster_list_empty(&si->discard_clusters)) {
0490         idx = cluster_list_del_first(&si->discard_clusters, info);
0491         spin_unlock(&si->lock);
0492 
0493         discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
0494                 SWAPFILE_CLUSTER);
0495 
0496         spin_lock(&si->lock);
0497         ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
0498         __free_cluster(si, idx);
0499         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
0500                 0, SWAPFILE_CLUSTER);
0501         unlock_cluster(ci);
0502     }
0503 }
0504 
0505 static void swap_discard_work(struct work_struct *work)
0506 {
0507     struct swap_info_struct *si;
0508 
0509     si = container_of(work, struct swap_info_struct, discard_work);
0510 
0511     spin_lock(&si->lock);
0512     swap_do_scheduled_discard(si);
0513     spin_unlock(&si->lock);
0514 }
0515 
0516 static void swap_users_ref_free(struct percpu_ref *ref)
0517 {
0518     struct swap_info_struct *si;
0519 
0520     si = container_of(ref, struct swap_info_struct, users);
0521     complete(&si->comp);
0522 }
0523 
0524 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
0525 {
0526     struct swap_cluster_info *ci = si->cluster_info;
0527 
0528     VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
0529     cluster_list_del_first(&si->free_clusters, ci);
0530     cluster_set_count_flag(ci + idx, 0, 0);
0531 }
0532 
0533 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
0534 {
0535     struct swap_cluster_info *ci = si->cluster_info + idx;
0536 
0537     VM_BUG_ON(cluster_count(ci) != 0);
0538     /*
0539      * If the swap is discardable, prepare discard the cluster
0540      * instead of free it immediately. The cluster will be freed
0541      * after discard.
0542      */
0543     if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
0544         (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
0545         swap_cluster_schedule_discard(si, idx);
0546         return;
0547     }
0548 
0549     __free_cluster(si, idx);
0550 }
0551 
0552 /*
0553  * The cluster corresponding to page_nr will be used. The cluster will be
0554  * removed from free cluster list and its usage counter will be increased.
0555  */
0556 static void inc_cluster_info_page(struct swap_info_struct *p,
0557     struct swap_cluster_info *cluster_info, unsigned long page_nr)
0558 {
0559     unsigned long idx = page_nr / SWAPFILE_CLUSTER;
0560 
0561     if (!cluster_info)
0562         return;
0563     if (cluster_is_free(&cluster_info[idx]))
0564         alloc_cluster(p, idx);
0565 
0566     VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
0567     cluster_set_count(&cluster_info[idx],
0568         cluster_count(&cluster_info[idx]) + 1);
0569 }
0570 
0571 /*
0572  * The cluster corresponding to page_nr decreases one usage. If the usage
0573  * counter becomes 0, which means no page in the cluster is in using, we can
0574  * optionally discard the cluster and add it to free cluster list.
0575  */
0576 static void dec_cluster_info_page(struct swap_info_struct *p,
0577     struct swap_cluster_info *cluster_info, unsigned long page_nr)
0578 {
0579     unsigned long idx = page_nr / SWAPFILE_CLUSTER;
0580 
0581     if (!cluster_info)
0582         return;
0583 
0584     VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
0585     cluster_set_count(&cluster_info[idx],
0586         cluster_count(&cluster_info[idx]) - 1);
0587 
0588     if (cluster_count(&cluster_info[idx]) == 0)
0589         free_cluster(p, idx);
0590 }
0591 
0592 /*
0593  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
0594  * cluster list. Avoiding such abuse to avoid list corruption.
0595  */
0596 static bool
0597 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
0598     unsigned long offset)
0599 {
0600     struct percpu_cluster *percpu_cluster;
0601     bool conflict;
0602 
0603     offset /= SWAPFILE_CLUSTER;
0604     conflict = !cluster_list_empty(&si->free_clusters) &&
0605         offset != cluster_list_first(&si->free_clusters) &&
0606         cluster_is_free(&si->cluster_info[offset]);
0607 
0608     if (!conflict)
0609         return false;
0610 
0611     percpu_cluster = this_cpu_ptr(si->percpu_cluster);
0612     cluster_set_null(&percpu_cluster->index);
0613     return true;
0614 }
0615 
0616 /*
0617  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
0618  * might involve allocating a new cluster for current CPU too.
0619  */
0620 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
0621     unsigned long *offset, unsigned long *scan_base)
0622 {
0623     struct percpu_cluster *cluster;
0624     struct swap_cluster_info *ci;
0625     unsigned long tmp, max;
0626 
0627 new_cluster:
0628     cluster = this_cpu_ptr(si->percpu_cluster);
0629     if (cluster_is_null(&cluster->index)) {
0630         if (!cluster_list_empty(&si->free_clusters)) {
0631             cluster->index = si->free_clusters.head;
0632             cluster->next = cluster_next(&cluster->index) *
0633                     SWAPFILE_CLUSTER;
0634         } else if (!cluster_list_empty(&si->discard_clusters)) {
0635             /*
0636              * we don't have free cluster but have some clusters in
0637              * discarding, do discard now and reclaim them, then
0638              * reread cluster_next_cpu since we dropped si->lock
0639              */
0640             swap_do_scheduled_discard(si);
0641             *scan_base = this_cpu_read(*si->cluster_next_cpu);
0642             *offset = *scan_base;
0643             goto new_cluster;
0644         } else
0645             return false;
0646     }
0647 
0648     /*
0649      * Other CPUs can use our cluster if they can't find a free cluster,
0650      * check if there is still free entry in the cluster
0651      */
0652     tmp = cluster->next;
0653     max = min_t(unsigned long, si->max,
0654             (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
0655     if (tmp < max) {
0656         ci = lock_cluster(si, tmp);
0657         while (tmp < max) {
0658             if (!si->swap_map[tmp])
0659                 break;
0660             tmp++;
0661         }
0662         unlock_cluster(ci);
0663     }
0664     if (tmp >= max) {
0665         cluster_set_null(&cluster->index);
0666         goto new_cluster;
0667     }
0668     cluster->next = tmp + 1;
0669     *offset = tmp;
0670     *scan_base = tmp;
0671     return true;
0672 }
0673 
0674 static void __del_from_avail_list(struct swap_info_struct *p)
0675 {
0676     int nid;
0677 
0678     for_each_node(nid)
0679         plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
0680 }
0681 
0682 static void del_from_avail_list(struct swap_info_struct *p)
0683 {
0684     spin_lock(&swap_avail_lock);
0685     __del_from_avail_list(p);
0686     spin_unlock(&swap_avail_lock);
0687 }
0688 
0689 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
0690                  unsigned int nr_entries)
0691 {
0692     unsigned int end = offset + nr_entries - 1;
0693 
0694     if (offset == si->lowest_bit)
0695         si->lowest_bit += nr_entries;
0696     if (end == si->highest_bit)
0697         WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
0698     WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
0699     if (si->inuse_pages == si->pages) {
0700         si->lowest_bit = si->max;
0701         si->highest_bit = 0;
0702         del_from_avail_list(si);
0703     }
0704 }
0705 
0706 static void add_to_avail_list(struct swap_info_struct *p)
0707 {
0708     int nid;
0709 
0710     spin_lock(&swap_avail_lock);
0711     for_each_node(nid) {
0712         WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
0713         plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
0714     }
0715     spin_unlock(&swap_avail_lock);
0716 }
0717 
0718 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
0719                 unsigned int nr_entries)
0720 {
0721     unsigned long begin = offset;
0722     unsigned long end = offset + nr_entries - 1;
0723     void (*swap_slot_free_notify)(struct block_device *, unsigned long);
0724 
0725     if (offset < si->lowest_bit)
0726         si->lowest_bit = offset;
0727     if (end > si->highest_bit) {
0728         bool was_full = !si->highest_bit;
0729 
0730         WRITE_ONCE(si->highest_bit, end);
0731         if (was_full && (si->flags & SWP_WRITEOK))
0732             add_to_avail_list(si);
0733     }
0734     atomic_long_add(nr_entries, &nr_swap_pages);
0735     WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
0736     if (si->flags & SWP_BLKDEV)
0737         swap_slot_free_notify =
0738             si->bdev->bd_disk->fops->swap_slot_free_notify;
0739     else
0740         swap_slot_free_notify = NULL;
0741     while (offset <= end) {
0742         arch_swap_invalidate_page(si->type, offset);
0743         frontswap_invalidate_page(si->type, offset);
0744         if (swap_slot_free_notify)
0745             swap_slot_free_notify(si->bdev, offset);
0746         offset++;
0747     }
0748     clear_shadow_from_swap_cache(si->type, begin, end);
0749 }
0750 
0751 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
0752 {
0753     unsigned long prev;
0754 
0755     if (!(si->flags & SWP_SOLIDSTATE)) {
0756         si->cluster_next = next;
0757         return;
0758     }
0759 
0760     prev = this_cpu_read(*si->cluster_next_cpu);
0761     /*
0762      * Cross the swap address space size aligned trunk, choose
0763      * another trunk randomly to avoid lock contention on swap
0764      * address space if possible.
0765      */
0766     if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
0767         (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
0768         /* No free swap slots available */
0769         if (si->highest_bit <= si->lowest_bit)
0770             return;
0771         next = si->lowest_bit +
0772             prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
0773         next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
0774         next = max_t(unsigned int, next, si->lowest_bit);
0775     }
0776     this_cpu_write(*si->cluster_next_cpu, next);
0777 }
0778 
0779 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
0780                          unsigned long offset)
0781 {
0782     if (data_race(!si->swap_map[offset])) {
0783         spin_lock(&si->lock);
0784         return true;
0785     }
0786 
0787     if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
0788         spin_lock(&si->lock);
0789         return true;
0790     }
0791 
0792     return false;
0793 }
0794 
0795 static int scan_swap_map_slots(struct swap_info_struct *si,
0796                    unsigned char usage, int nr,
0797                    swp_entry_t slots[])
0798 {
0799     struct swap_cluster_info *ci;
0800     unsigned long offset;
0801     unsigned long scan_base;
0802     unsigned long last_in_cluster = 0;
0803     int latency_ration = LATENCY_LIMIT;
0804     int n_ret = 0;
0805     bool scanned_many = false;
0806 
0807     /*
0808      * We try to cluster swap pages by allocating them sequentially
0809      * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
0810      * way, however, we resort to first-free allocation, starting
0811      * a new cluster.  This prevents us from scattering swap pages
0812      * all over the entire swap partition, so that we reduce
0813      * overall disk seek times between swap pages.  -- sct
0814      * But we do now try to find an empty cluster.  -Andrea
0815      * And we let swap pages go all over an SSD partition.  Hugh
0816      */
0817 
0818     si->flags += SWP_SCANNING;
0819     /*
0820      * Use percpu scan base for SSD to reduce lock contention on
0821      * cluster and swap cache.  For HDD, sequential access is more
0822      * important.
0823      */
0824     if (si->flags & SWP_SOLIDSTATE)
0825         scan_base = this_cpu_read(*si->cluster_next_cpu);
0826     else
0827         scan_base = si->cluster_next;
0828     offset = scan_base;
0829 
0830     /* SSD algorithm */
0831     if (si->cluster_info) {
0832         if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
0833             goto scan;
0834     } else if (unlikely(!si->cluster_nr--)) {
0835         if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
0836             si->cluster_nr = SWAPFILE_CLUSTER - 1;
0837             goto checks;
0838         }
0839 
0840         spin_unlock(&si->lock);
0841 
0842         /*
0843          * If seek is expensive, start searching for new cluster from
0844          * start of partition, to minimize the span of allocated swap.
0845          * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
0846          * case, just handled by scan_swap_map_try_ssd_cluster() above.
0847          */
0848         scan_base = offset = si->lowest_bit;
0849         last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
0850 
0851         /* Locate the first empty (unaligned) cluster */
0852         for (; last_in_cluster <= si->highest_bit; offset++) {
0853             if (si->swap_map[offset])
0854                 last_in_cluster = offset + SWAPFILE_CLUSTER;
0855             else if (offset == last_in_cluster) {
0856                 spin_lock(&si->lock);
0857                 offset -= SWAPFILE_CLUSTER - 1;
0858                 si->cluster_next = offset;
0859                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
0860                 goto checks;
0861             }
0862             if (unlikely(--latency_ration < 0)) {
0863                 cond_resched();
0864                 latency_ration = LATENCY_LIMIT;
0865             }
0866         }
0867 
0868         offset = scan_base;
0869         spin_lock(&si->lock);
0870         si->cluster_nr = SWAPFILE_CLUSTER - 1;
0871     }
0872 
0873 checks:
0874     if (si->cluster_info) {
0875         while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
0876         /* take a break if we already got some slots */
0877             if (n_ret)
0878                 goto done;
0879             if (!scan_swap_map_try_ssd_cluster(si, &offset,
0880                             &scan_base))
0881                 goto scan;
0882         }
0883     }
0884     if (!(si->flags & SWP_WRITEOK))
0885         goto no_page;
0886     if (!si->highest_bit)
0887         goto no_page;
0888     if (offset > si->highest_bit)
0889         scan_base = offset = si->lowest_bit;
0890 
0891     ci = lock_cluster(si, offset);
0892     /* reuse swap entry of cache-only swap if not busy. */
0893     if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
0894         int swap_was_freed;
0895         unlock_cluster(ci);
0896         spin_unlock(&si->lock);
0897         swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
0898         spin_lock(&si->lock);
0899         /* entry was freed successfully, try to use this again */
0900         if (swap_was_freed)
0901             goto checks;
0902         goto scan; /* check next one */
0903     }
0904 
0905     if (si->swap_map[offset]) {
0906         unlock_cluster(ci);
0907         if (!n_ret)
0908             goto scan;
0909         else
0910             goto done;
0911     }
0912     WRITE_ONCE(si->swap_map[offset], usage);
0913     inc_cluster_info_page(si, si->cluster_info, offset);
0914     unlock_cluster(ci);
0915 
0916     swap_range_alloc(si, offset, 1);
0917     slots[n_ret++] = swp_entry(si->type, offset);
0918 
0919     /* got enough slots or reach max slots? */
0920     if ((n_ret == nr) || (offset >= si->highest_bit))
0921         goto done;
0922 
0923     /* search for next available slot */
0924 
0925     /* time to take a break? */
0926     if (unlikely(--latency_ration < 0)) {
0927         if (n_ret)
0928             goto done;
0929         spin_unlock(&si->lock);
0930         cond_resched();
0931         spin_lock(&si->lock);
0932         latency_ration = LATENCY_LIMIT;
0933     }
0934 
0935     /* try to get more slots in cluster */
0936     if (si->cluster_info) {
0937         if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
0938             goto checks;
0939     } else if (si->cluster_nr && !si->swap_map[++offset]) {
0940         /* non-ssd case, still more slots in cluster? */
0941         --si->cluster_nr;
0942         goto checks;
0943     }
0944 
0945     /*
0946      * Even if there's no free clusters available (fragmented),
0947      * try to scan a little more quickly with lock held unless we
0948      * have scanned too many slots already.
0949      */
0950     if (!scanned_many) {
0951         unsigned long scan_limit;
0952 
0953         if (offset < scan_base)
0954             scan_limit = scan_base;
0955         else
0956             scan_limit = si->highest_bit;
0957         for (; offset <= scan_limit && --latency_ration > 0;
0958              offset++) {
0959             if (!si->swap_map[offset])
0960                 goto checks;
0961         }
0962     }
0963 
0964 done:
0965     set_cluster_next(si, offset + 1);
0966     si->flags -= SWP_SCANNING;
0967     return n_ret;
0968 
0969 scan:
0970     spin_unlock(&si->lock);
0971     while (++offset <= READ_ONCE(si->highest_bit)) {
0972         if (swap_offset_available_and_locked(si, offset))
0973             goto checks;
0974         if (unlikely(--latency_ration < 0)) {
0975             cond_resched();
0976             latency_ration = LATENCY_LIMIT;
0977             scanned_many = true;
0978         }
0979     }
0980     offset = si->lowest_bit;
0981     while (offset < scan_base) {
0982         if (swap_offset_available_and_locked(si, offset))
0983             goto checks;
0984         if (unlikely(--latency_ration < 0)) {
0985             cond_resched();
0986             latency_ration = LATENCY_LIMIT;
0987             scanned_many = true;
0988         }
0989         offset++;
0990     }
0991     spin_lock(&si->lock);
0992 
0993 no_page:
0994     si->flags -= SWP_SCANNING;
0995     return n_ret;
0996 }
0997 
0998 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
0999 {
1000     unsigned long idx;
1001     struct swap_cluster_info *ci;
1002     unsigned long offset;
1003 
1004     /*
1005      * Should not even be attempting cluster allocations when huge
1006      * page swap is disabled.  Warn and fail the allocation.
1007      */
1008     if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1009         VM_WARN_ON_ONCE(1);
1010         return 0;
1011     }
1012 
1013     if (cluster_list_empty(&si->free_clusters))
1014         return 0;
1015 
1016     idx = cluster_list_first(&si->free_clusters);
1017     offset = idx * SWAPFILE_CLUSTER;
1018     ci = lock_cluster(si, offset);
1019     alloc_cluster(si, idx);
1020     cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1021 
1022     memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1023     unlock_cluster(ci);
1024     swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1025     *slot = swp_entry(si->type, offset);
1026 
1027     return 1;
1028 }
1029 
1030 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1031 {
1032     unsigned long offset = idx * SWAPFILE_CLUSTER;
1033     struct swap_cluster_info *ci;
1034 
1035     ci = lock_cluster(si, offset);
1036     memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1037     cluster_set_count_flag(ci, 0, 0);
1038     free_cluster(si, idx);
1039     unlock_cluster(ci);
1040     swap_range_free(si, offset, SWAPFILE_CLUSTER);
1041 }
1042 
1043 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1044 {
1045     unsigned long size = swap_entry_size(entry_size);
1046     struct swap_info_struct *si, *next;
1047     long avail_pgs;
1048     int n_ret = 0;
1049     int node;
1050 
1051     /* Only single cluster request supported */
1052     WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1053 
1054     spin_lock(&swap_avail_lock);
1055 
1056     avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1057     if (avail_pgs <= 0) {
1058         spin_unlock(&swap_avail_lock);
1059         goto noswap;
1060     }
1061 
1062     n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1063 
1064     atomic_long_sub(n_goal * size, &nr_swap_pages);
1065 
1066 start_over:
1067     node = numa_node_id();
1068     plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1069         /* requeue si to after same-priority siblings */
1070         plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1071         spin_unlock(&swap_avail_lock);
1072         spin_lock(&si->lock);
1073         if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1074             spin_lock(&swap_avail_lock);
1075             if (plist_node_empty(&si->avail_lists[node])) {
1076                 spin_unlock(&si->lock);
1077                 goto nextsi;
1078             }
1079             WARN(!si->highest_bit,
1080                  "swap_info %d in list but !highest_bit\n",
1081                  si->type);
1082             WARN(!(si->flags & SWP_WRITEOK),
1083                  "swap_info %d in list but !SWP_WRITEOK\n",
1084                  si->type);
1085             __del_from_avail_list(si);
1086             spin_unlock(&si->lock);
1087             goto nextsi;
1088         }
1089         if (size == SWAPFILE_CLUSTER) {
1090             if (si->flags & SWP_BLKDEV)
1091                 n_ret = swap_alloc_cluster(si, swp_entries);
1092         } else
1093             n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1094                             n_goal, swp_entries);
1095         spin_unlock(&si->lock);
1096         if (n_ret || size == SWAPFILE_CLUSTER)
1097             goto check_out;
1098         pr_debug("scan_swap_map of si %d failed to find offset\n",
1099             si->type);
1100 
1101         spin_lock(&swap_avail_lock);
1102 nextsi:
1103         /*
1104          * if we got here, it's likely that si was almost full before,
1105          * and since scan_swap_map_slots() can drop the si->lock,
1106          * multiple callers probably all tried to get a page from the
1107          * same si and it filled up before we could get one; or, the si
1108          * filled up between us dropping swap_avail_lock and taking
1109          * si->lock. Since we dropped the swap_avail_lock, the
1110          * swap_avail_head list may have been modified; so if next is
1111          * still in the swap_avail_head list then try it, otherwise
1112          * start over if we have not gotten any slots.
1113          */
1114         if (plist_node_empty(&next->avail_lists[node]))
1115             goto start_over;
1116     }
1117 
1118     spin_unlock(&swap_avail_lock);
1119 
1120 check_out:
1121     if (n_ret < n_goal)
1122         atomic_long_add((long)(n_goal - n_ret) * size,
1123                 &nr_swap_pages);
1124 noswap:
1125     return n_ret;
1126 }
1127 
1128 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1129 {
1130     struct swap_info_struct *p;
1131     unsigned long offset;
1132 
1133     if (!entry.val)
1134         goto out;
1135     p = swp_swap_info(entry);
1136     if (!p)
1137         goto bad_nofile;
1138     if (data_race(!(p->flags & SWP_USED)))
1139         goto bad_device;
1140     offset = swp_offset(entry);
1141     if (offset >= p->max)
1142         goto bad_offset;
1143     if (data_race(!p->swap_map[swp_offset(entry)]))
1144         goto bad_free;
1145     return p;
1146 
1147 bad_free:
1148     pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1149     goto out;
1150 bad_offset:
1151     pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1152     goto out;
1153 bad_device:
1154     pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1155     goto out;
1156 bad_nofile:
1157     pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1158 out:
1159     return NULL;
1160 }
1161 
1162 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1163                     struct swap_info_struct *q)
1164 {
1165     struct swap_info_struct *p;
1166 
1167     p = _swap_info_get(entry);
1168 
1169     if (p != q) {
1170         if (q != NULL)
1171             spin_unlock(&q->lock);
1172         if (p != NULL)
1173             spin_lock(&p->lock);
1174     }
1175     return p;
1176 }
1177 
1178 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1179                           unsigned long offset,
1180                           unsigned char usage)
1181 {
1182     unsigned char count;
1183     unsigned char has_cache;
1184 
1185     count = p->swap_map[offset];
1186 
1187     has_cache = count & SWAP_HAS_CACHE;
1188     count &= ~SWAP_HAS_CACHE;
1189 
1190     if (usage == SWAP_HAS_CACHE) {
1191         VM_BUG_ON(!has_cache);
1192         has_cache = 0;
1193     } else if (count == SWAP_MAP_SHMEM) {
1194         /*
1195          * Or we could insist on shmem.c using a special
1196          * swap_shmem_free() and free_shmem_swap_and_cache()...
1197          */
1198         count = 0;
1199     } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1200         if (count == COUNT_CONTINUED) {
1201             if (swap_count_continued(p, offset, count))
1202                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1203             else
1204                 count = SWAP_MAP_MAX;
1205         } else
1206             count--;
1207     }
1208 
1209     usage = count | has_cache;
1210     if (usage)
1211         WRITE_ONCE(p->swap_map[offset], usage);
1212     else
1213         WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1214 
1215     return usage;
1216 }
1217 
1218 /*
1219  * Check whether swap entry is valid in the swap device.  If so,
1220  * return pointer to swap_info_struct, and keep the swap entry valid
1221  * via preventing the swap device from being swapoff, until
1222  * put_swap_device() is called.  Otherwise return NULL.
1223  *
1224  * Notice that swapoff or swapoff+swapon can still happen before the
1225  * percpu_ref_tryget_live() in get_swap_device() or after the
1226  * percpu_ref_put() in put_swap_device() if there isn't any other way
1227  * to prevent swapoff, such as page lock, page table lock, etc.  The
1228  * caller must be prepared for that.  For example, the following
1229  * situation is possible.
1230  *
1231  *   CPU1               CPU2
1232  *   do_swap_page()
1233  *     ...              swapoff+swapon
1234  *     __read_swap_cache_async()
1235  *       swapcache_prepare()
1236  *         __swap_duplicate()
1237  *           // check swap_map
1238  *     // verify PTE not changed
1239  *
1240  * In __swap_duplicate(), the swap_map need to be checked before
1241  * changing partly because the specified swap entry may be for another
1242  * swap device which has been swapoff.  And in do_swap_page(), after
1243  * the page is read from the swap device, the PTE is verified not
1244  * changed with the page table locked to check whether the swap device
1245  * has been swapoff or swapoff+swapon.
1246  */
1247 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1248 {
1249     struct swap_info_struct *si;
1250     unsigned long offset;
1251 
1252     if (!entry.val)
1253         goto out;
1254     si = swp_swap_info(entry);
1255     if (!si)
1256         goto bad_nofile;
1257     if (!percpu_ref_tryget_live(&si->users))
1258         goto out;
1259     /*
1260      * Guarantee the si->users are checked before accessing other
1261      * fields of swap_info_struct.
1262      *
1263      * Paired with the spin_unlock() after setup_swap_info() in
1264      * enable_swap_info().
1265      */
1266     smp_rmb();
1267     offset = swp_offset(entry);
1268     if (offset >= si->max)
1269         goto put_out;
1270 
1271     return si;
1272 bad_nofile:
1273     pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1274 out:
1275     return NULL;
1276 put_out:
1277     pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1278     percpu_ref_put(&si->users);
1279     return NULL;
1280 }
1281 
1282 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1283                        swp_entry_t entry)
1284 {
1285     struct swap_cluster_info *ci;
1286     unsigned long offset = swp_offset(entry);
1287     unsigned char usage;
1288 
1289     ci = lock_cluster_or_swap_info(p, offset);
1290     usage = __swap_entry_free_locked(p, offset, 1);
1291     unlock_cluster_or_swap_info(p, ci);
1292     if (!usage)
1293         free_swap_slot(entry);
1294 
1295     return usage;
1296 }
1297 
1298 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1299 {
1300     struct swap_cluster_info *ci;
1301     unsigned long offset = swp_offset(entry);
1302     unsigned char count;
1303 
1304     ci = lock_cluster(p, offset);
1305     count = p->swap_map[offset];
1306     VM_BUG_ON(count != SWAP_HAS_CACHE);
1307     p->swap_map[offset] = 0;
1308     dec_cluster_info_page(p, p->cluster_info, offset);
1309     unlock_cluster(ci);
1310 
1311     mem_cgroup_uncharge_swap(entry, 1);
1312     swap_range_free(p, offset, 1);
1313 }
1314 
1315 /*
1316  * Caller has made sure that the swap device corresponding to entry
1317  * is still around or has not been recycled.
1318  */
1319 void swap_free(swp_entry_t entry)
1320 {
1321     struct swap_info_struct *p;
1322 
1323     p = _swap_info_get(entry);
1324     if (p)
1325         __swap_entry_free(p, entry);
1326 }
1327 
1328 /*
1329  * Called after dropping swapcache to decrease refcnt to swap entries.
1330  */
1331 void put_swap_page(struct page *page, swp_entry_t entry)
1332 {
1333     unsigned long offset = swp_offset(entry);
1334     unsigned long idx = offset / SWAPFILE_CLUSTER;
1335     struct swap_cluster_info *ci;
1336     struct swap_info_struct *si;
1337     unsigned char *map;
1338     unsigned int i, free_entries = 0;
1339     unsigned char val;
1340     int size = swap_entry_size(thp_nr_pages(page));
1341 
1342     si = _swap_info_get(entry);
1343     if (!si)
1344         return;
1345 
1346     ci = lock_cluster_or_swap_info(si, offset);
1347     if (size == SWAPFILE_CLUSTER) {
1348         VM_BUG_ON(!cluster_is_huge(ci));
1349         map = si->swap_map + offset;
1350         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1351             val = map[i];
1352             VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1353             if (val == SWAP_HAS_CACHE)
1354                 free_entries++;
1355         }
1356         cluster_clear_huge(ci);
1357         if (free_entries == SWAPFILE_CLUSTER) {
1358             unlock_cluster_or_swap_info(si, ci);
1359             spin_lock(&si->lock);
1360             mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1361             swap_free_cluster(si, idx);
1362             spin_unlock(&si->lock);
1363             return;
1364         }
1365     }
1366     for (i = 0; i < size; i++, entry.val++) {
1367         if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1368             unlock_cluster_or_swap_info(si, ci);
1369             free_swap_slot(entry);
1370             if (i == size - 1)
1371                 return;
1372             lock_cluster_or_swap_info(si, offset);
1373         }
1374     }
1375     unlock_cluster_or_swap_info(si, ci);
1376 }
1377 
1378 #ifdef CONFIG_THP_SWAP
1379 int split_swap_cluster(swp_entry_t entry)
1380 {
1381     struct swap_info_struct *si;
1382     struct swap_cluster_info *ci;
1383     unsigned long offset = swp_offset(entry);
1384 
1385     si = _swap_info_get(entry);
1386     if (!si)
1387         return -EBUSY;
1388     ci = lock_cluster(si, offset);
1389     cluster_clear_huge(ci);
1390     unlock_cluster(ci);
1391     return 0;
1392 }
1393 #endif
1394 
1395 static int swp_entry_cmp(const void *ent1, const void *ent2)
1396 {
1397     const swp_entry_t *e1 = ent1, *e2 = ent2;
1398 
1399     return (int)swp_type(*e1) - (int)swp_type(*e2);
1400 }
1401 
1402 void swapcache_free_entries(swp_entry_t *entries, int n)
1403 {
1404     struct swap_info_struct *p, *prev;
1405     int i;
1406 
1407     if (n <= 0)
1408         return;
1409 
1410     prev = NULL;
1411     p = NULL;
1412 
1413     /*
1414      * Sort swap entries by swap device, so each lock is only taken once.
1415      * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1416      * so low that it isn't necessary to optimize further.
1417      */
1418     if (nr_swapfiles > 1)
1419         sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1420     for (i = 0; i < n; ++i) {
1421         p = swap_info_get_cont(entries[i], prev);
1422         if (p)
1423             swap_entry_free(p, entries[i]);
1424         prev = p;
1425     }
1426     if (p)
1427         spin_unlock(&p->lock);
1428 }
1429 
1430 /*
1431  * How many references to page are currently swapped out?
1432  * This does not give an exact answer when swap count is continued,
1433  * but does include the high COUNT_CONTINUED flag to allow for that.
1434  */
1435 static int page_swapcount(struct page *page)
1436 {
1437     int count = 0;
1438     struct swap_info_struct *p;
1439     struct swap_cluster_info *ci;
1440     swp_entry_t entry;
1441     unsigned long offset;
1442 
1443     entry.val = page_private(page);
1444     p = _swap_info_get(entry);
1445     if (p) {
1446         offset = swp_offset(entry);
1447         ci = lock_cluster_or_swap_info(p, offset);
1448         count = swap_count(p->swap_map[offset]);
1449         unlock_cluster_or_swap_info(p, ci);
1450     }
1451     return count;
1452 }
1453 
1454 int __swap_count(swp_entry_t entry)
1455 {
1456     struct swap_info_struct *si;
1457     pgoff_t offset = swp_offset(entry);
1458     int count = 0;
1459 
1460     si = get_swap_device(entry);
1461     if (si) {
1462         count = swap_count(si->swap_map[offset]);
1463         put_swap_device(si);
1464     }
1465     return count;
1466 }
1467 
1468 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1469 {
1470     int count = 0;
1471     pgoff_t offset = swp_offset(entry);
1472     struct swap_cluster_info *ci;
1473 
1474     ci = lock_cluster_or_swap_info(si, offset);
1475     count = swap_count(si->swap_map[offset]);
1476     unlock_cluster_or_swap_info(si, ci);
1477     return count;
1478 }
1479 
1480 /*
1481  * How many references to @entry are currently swapped out?
1482  * This does not give an exact answer when swap count is continued,
1483  * but does include the high COUNT_CONTINUED flag to allow for that.
1484  */
1485 int __swp_swapcount(swp_entry_t entry)
1486 {
1487     int count = 0;
1488     struct swap_info_struct *si;
1489 
1490     si = get_swap_device(entry);
1491     if (si) {
1492         count = swap_swapcount(si, entry);
1493         put_swap_device(si);
1494     }
1495     return count;
1496 }
1497 
1498 /*
1499  * How many references to @entry are currently swapped out?
1500  * This considers COUNT_CONTINUED so it returns exact answer.
1501  */
1502 int swp_swapcount(swp_entry_t entry)
1503 {
1504     int count, tmp_count, n;
1505     struct swap_info_struct *p;
1506     struct swap_cluster_info *ci;
1507     struct page *page;
1508     pgoff_t offset;
1509     unsigned char *map;
1510 
1511     p = _swap_info_get(entry);
1512     if (!p)
1513         return 0;
1514 
1515     offset = swp_offset(entry);
1516 
1517     ci = lock_cluster_or_swap_info(p, offset);
1518 
1519     count = swap_count(p->swap_map[offset]);
1520     if (!(count & COUNT_CONTINUED))
1521         goto out;
1522 
1523     count &= ~COUNT_CONTINUED;
1524     n = SWAP_MAP_MAX + 1;
1525 
1526     page = vmalloc_to_page(p->swap_map + offset);
1527     offset &= ~PAGE_MASK;
1528     VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1529 
1530     do {
1531         page = list_next_entry(page, lru);
1532         map = kmap_atomic(page);
1533         tmp_count = map[offset];
1534         kunmap_atomic(map);
1535 
1536         count += (tmp_count & ~COUNT_CONTINUED) * n;
1537         n *= (SWAP_CONT_MAX + 1);
1538     } while (tmp_count & COUNT_CONTINUED);
1539 out:
1540     unlock_cluster_or_swap_info(p, ci);
1541     return count;
1542 }
1543 
1544 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1545                      swp_entry_t entry)
1546 {
1547     struct swap_cluster_info *ci;
1548     unsigned char *map = si->swap_map;
1549     unsigned long roffset = swp_offset(entry);
1550     unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1551     int i;
1552     bool ret = false;
1553 
1554     ci = lock_cluster_or_swap_info(si, offset);
1555     if (!ci || !cluster_is_huge(ci)) {
1556         if (swap_count(map[roffset]))
1557             ret = true;
1558         goto unlock_out;
1559     }
1560     for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1561         if (swap_count(map[offset + i])) {
1562             ret = true;
1563             break;
1564         }
1565     }
1566 unlock_out:
1567     unlock_cluster_or_swap_info(si, ci);
1568     return ret;
1569 }
1570 
1571 static bool folio_swapped(struct folio *folio)
1572 {
1573     swp_entry_t entry;
1574     struct swap_info_struct *si;
1575 
1576     if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1577         return page_swapcount(&folio->page) != 0;
1578 
1579     entry = folio_swap_entry(folio);
1580     si = _swap_info_get(entry);
1581     if (si)
1582         return swap_page_trans_huge_swapped(si, entry);
1583     return false;
1584 }
1585 
1586 /*
1587  * If swap is getting full, or if there are no more mappings of this page,
1588  * then try_to_free_swap is called to free its swap space.
1589  */
1590 int try_to_free_swap(struct page *page)
1591 {
1592     struct folio *folio = page_folio(page);
1593     VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1594 
1595     if (!folio_test_swapcache(folio))
1596         return 0;
1597     if (folio_test_writeback(folio))
1598         return 0;
1599     if (folio_swapped(folio))
1600         return 0;
1601 
1602     /*
1603      * Once hibernation has begun to create its image of memory,
1604      * there's a danger that one of the calls to try_to_free_swap()
1605      * - most probably a call from __try_to_reclaim_swap() while
1606      * hibernation is allocating its own swap pages for the image,
1607      * but conceivably even a call from memory reclaim - will free
1608      * the swap from a page which has already been recorded in the
1609      * image as a clean swapcache page, and then reuse its swap for
1610      * another page of the image.  On waking from hibernation, the
1611      * original page might be freed under memory pressure, then
1612      * later read back in from swap, now with the wrong data.
1613      *
1614      * Hibernation suspends storage while it is writing the image
1615      * to disk so check that here.
1616      */
1617     if (pm_suspended_storage())
1618         return 0;
1619 
1620     delete_from_swap_cache(folio);
1621     folio_set_dirty(folio);
1622     return 1;
1623 }
1624 
1625 /*
1626  * Free the swap entry like above, but also try to
1627  * free the page cache entry if it is the last user.
1628  */
1629 int free_swap_and_cache(swp_entry_t entry)
1630 {
1631     struct swap_info_struct *p;
1632     unsigned char count;
1633 
1634     if (non_swap_entry(entry))
1635         return 1;
1636 
1637     p = _swap_info_get(entry);
1638     if (p) {
1639         count = __swap_entry_free(p, entry);
1640         if (count == SWAP_HAS_CACHE &&
1641             !swap_page_trans_huge_swapped(p, entry))
1642             __try_to_reclaim_swap(p, swp_offset(entry),
1643                           TTRS_UNMAPPED | TTRS_FULL);
1644     }
1645     return p != NULL;
1646 }
1647 
1648 #ifdef CONFIG_HIBERNATION
1649 
1650 swp_entry_t get_swap_page_of_type(int type)
1651 {
1652     struct swap_info_struct *si = swap_type_to_swap_info(type);
1653     swp_entry_t entry = {0};
1654 
1655     if (!si)
1656         goto fail;
1657 
1658     /* This is called for allocating swap entry, not cache */
1659     spin_lock(&si->lock);
1660     if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1661         atomic_long_dec(&nr_swap_pages);
1662     spin_unlock(&si->lock);
1663 fail:
1664     return entry;
1665 }
1666 
1667 /*
1668  * Find the swap type that corresponds to given device (if any).
1669  *
1670  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1671  * from 0, in which the swap header is expected to be located.
1672  *
1673  * This is needed for the suspend to disk (aka swsusp).
1674  */
1675 int swap_type_of(dev_t device, sector_t offset)
1676 {
1677     int type;
1678 
1679     if (!device)
1680         return -1;
1681 
1682     spin_lock(&swap_lock);
1683     for (type = 0; type < nr_swapfiles; type++) {
1684         struct swap_info_struct *sis = swap_info[type];
1685 
1686         if (!(sis->flags & SWP_WRITEOK))
1687             continue;
1688 
1689         if (device == sis->bdev->bd_dev) {
1690             struct swap_extent *se = first_se(sis);
1691 
1692             if (se->start_block == offset) {
1693                 spin_unlock(&swap_lock);
1694                 return type;
1695             }
1696         }
1697     }
1698     spin_unlock(&swap_lock);
1699     return -ENODEV;
1700 }
1701 
1702 int find_first_swap(dev_t *device)
1703 {
1704     int type;
1705 
1706     spin_lock(&swap_lock);
1707     for (type = 0; type < nr_swapfiles; type++) {
1708         struct swap_info_struct *sis = swap_info[type];
1709 
1710         if (!(sis->flags & SWP_WRITEOK))
1711             continue;
1712         *device = sis->bdev->bd_dev;
1713         spin_unlock(&swap_lock);
1714         return type;
1715     }
1716     spin_unlock(&swap_lock);
1717     return -ENODEV;
1718 }
1719 
1720 /*
1721  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1722  * corresponding to given index in swap_info (swap type).
1723  */
1724 sector_t swapdev_block(int type, pgoff_t offset)
1725 {
1726     struct swap_info_struct *si = swap_type_to_swap_info(type);
1727     struct swap_extent *se;
1728 
1729     if (!si || !(si->flags & SWP_WRITEOK))
1730         return 0;
1731     se = offset_to_swap_extent(si, offset);
1732     return se->start_block + (offset - se->start_page);
1733 }
1734 
1735 /*
1736  * Return either the total number of swap pages of given type, or the number
1737  * of free pages of that type (depending on @free)
1738  *
1739  * This is needed for software suspend
1740  */
1741 unsigned int count_swap_pages(int type, int free)
1742 {
1743     unsigned int n = 0;
1744 
1745     spin_lock(&swap_lock);
1746     if ((unsigned int)type < nr_swapfiles) {
1747         struct swap_info_struct *sis = swap_info[type];
1748 
1749         spin_lock(&sis->lock);
1750         if (sis->flags & SWP_WRITEOK) {
1751             n = sis->pages;
1752             if (free)
1753                 n -= sis->inuse_pages;
1754         }
1755         spin_unlock(&sis->lock);
1756     }
1757     spin_unlock(&swap_lock);
1758     return n;
1759 }
1760 #endif /* CONFIG_HIBERNATION */
1761 
1762 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1763 {
1764     return pte_same(pte_swp_clear_flags(pte), swp_pte);
1765 }
1766 
1767 /*
1768  * No need to decide whether this PTE shares the swap entry with others,
1769  * just let do_wp_page work it out if a write is requested later - to
1770  * force COW, vm_page_prot omits write permission from any private vma.
1771  */
1772 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1773         unsigned long addr, swp_entry_t entry, struct page *page)
1774 {
1775     struct page *swapcache;
1776     spinlock_t *ptl;
1777     pte_t *pte, new_pte;
1778     int ret = 1;
1779 
1780     swapcache = page;
1781     page = ksm_might_need_to_copy(page, vma, addr);
1782     if (unlikely(!page))
1783         return -ENOMEM;
1784 
1785     pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1786     if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1787         ret = 0;
1788         goto out;
1789     }
1790 
1791     if (unlikely(!PageUptodate(page))) {
1792         pte_t pteval;
1793 
1794         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1795         pteval = swp_entry_to_pte(make_swapin_error_entry(page));
1796         set_pte_at(vma->vm_mm, addr, pte, pteval);
1797         swap_free(entry);
1798         ret = 0;
1799         goto out;
1800     }
1801 
1802     /* See do_swap_page() */
1803     BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1804     BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1805 
1806     dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1807     inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1808     get_page(page);
1809     if (page == swapcache) {
1810         rmap_t rmap_flags = RMAP_NONE;
1811 
1812         /*
1813          * See do_swap_page(): PageWriteback() would be problematic.
1814          * However, we do a wait_on_page_writeback() just before this
1815          * call and have the page locked.
1816          */
1817         VM_BUG_ON_PAGE(PageWriteback(page), page);
1818         if (pte_swp_exclusive(*pte))
1819             rmap_flags |= RMAP_EXCLUSIVE;
1820 
1821         page_add_anon_rmap(page, vma, addr, rmap_flags);
1822     } else { /* ksm created a completely new copy */
1823         page_add_new_anon_rmap(page, vma, addr);
1824         lru_cache_add_inactive_or_unevictable(page, vma);
1825     }
1826     new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1827     if (pte_swp_soft_dirty(*pte))
1828         new_pte = pte_mksoft_dirty(new_pte);
1829     if (pte_swp_uffd_wp(*pte))
1830         new_pte = pte_mkuffd_wp(new_pte);
1831     set_pte_at(vma->vm_mm, addr, pte, new_pte);
1832     swap_free(entry);
1833 out:
1834     pte_unmap_unlock(pte, ptl);
1835     if (page != swapcache) {
1836         unlock_page(page);
1837         put_page(page);
1838     }
1839     return ret;
1840 }
1841 
1842 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1843             unsigned long addr, unsigned long end,
1844             unsigned int type)
1845 {
1846     struct page *page;
1847     swp_entry_t entry;
1848     pte_t *pte;
1849     struct swap_info_struct *si;
1850     unsigned long offset;
1851     int ret = 0;
1852     volatile unsigned char *swap_map;
1853 
1854     si = swap_info[type];
1855     pte = pte_offset_map(pmd, addr);
1856     do {
1857         if (!is_swap_pte(*pte))
1858             continue;
1859 
1860         entry = pte_to_swp_entry(*pte);
1861         if (swp_type(entry) != type)
1862             continue;
1863 
1864         offset = swp_offset(entry);
1865         pte_unmap(pte);
1866         swap_map = &si->swap_map[offset];
1867         page = lookup_swap_cache(entry, vma, addr);
1868         if (!page) {
1869             struct vm_fault vmf = {
1870                 .vma = vma,
1871                 .address = addr,
1872                 .real_address = addr,
1873                 .pmd = pmd,
1874             };
1875 
1876             page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1877                         &vmf);
1878         }
1879         if (!page) {
1880             if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1881                 goto try_next;
1882             return -ENOMEM;
1883         }
1884 
1885         lock_page(page);
1886         wait_on_page_writeback(page);
1887         ret = unuse_pte(vma, pmd, addr, entry, page);
1888         if (ret < 0) {
1889             unlock_page(page);
1890             put_page(page);
1891             goto out;
1892         }
1893 
1894         try_to_free_swap(page);
1895         unlock_page(page);
1896         put_page(page);
1897 try_next:
1898         pte = pte_offset_map(pmd, addr);
1899     } while (pte++, addr += PAGE_SIZE, addr != end);
1900     pte_unmap(pte - 1);
1901 
1902     ret = 0;
1903 out:
1904     return ret;
1905 }
1906 
1907 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1908                 unsigned long addr, unsigned long end,
1909                 unsigned int type)
1910 {
1911     pmd_t *pmd;
1912     unsigned long next;
1913     int ret;
1914 
1915     pmd = pmd_offset(pud, addr);
1916     do {
1917         cond_resched();
1918         next = pmd_addr_end(addr, end);
1919         if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1920             continue;
1921         ret = unuse_pte_range(vma, pmd, addr, next, type);
1922         if (ret)
1923             return ret;
1924     } while (pmd++, addr = next, addr != end);
1925     return 0;
1926 }
1927 
1928 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1929                 unsigned long addr, unsigned long end,
1930                 unsigned int type)
1931 {
1932     pud_t *pud;
1933     unsigned long next;
1934     int ret;
1935 
1936     pud = pud_offset(p4d, addr);
1937     do {
1938         next = pud_addr_end(addr, end);
1939         if (pud_none_or_clear_bad(pud))
1940             continue;
1941         ret = unuse_pmd_range(vma, pud, addr, next, type);
1942         if (ret)
1943             return ret;
1944     } while (pud++, addr = next, addr != end);
1945     return 0;
1946 }
1947 
1948 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1949                 unsigned long addr, unsigned long end,
1950                 unsigned int type)
1951 {
1952     p4d_t *p4d;
1953     unsigned long next;
1954     int ret;
1955 
1956     p4d = p4d_offset(pgd, addr);
1957     do {
1958         next = p4d_addr_end(addr, end);
1959         if (p4d_none_or_clear_bad(p4d))
1960             continue;
1961         ret = unuse_pud_range(vma, p4d, addr, next, type);
1962         if (ret)
1963             return ret;
1964     } while (p4d++, addr = next, addr != end);
1965     return 0;
1966 }
1967 
1968 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1969 {
1970     pgd_t *pgd;
1971     unsigned long addr, end, next;
1972     int ret;
1973 
1974     addr = vma->vm_start;
1975     end = vma->vm_end;
1976 
1977     pgd = pgd_offset(vma->vm_mm, addr);
1978     do {
1979         next = pgd_addr_end(addr, end);
1980         if (pgd_none_or_clear_bad(pgd))
1981             continue;
1982         ret = unuse_p4d_range(vma, pgd, addr, next, type);
1983         if (ret)
1984             return ret;
1985     } while (pgd++, addr = next, addr != end);
1986     return 0;
1987 }
1988 
1989 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1990 {
1991     struct vm_area_struct *vma;
1992     int ret = 0;
1993 
1994     mmap_read_lock(mm);
1995     for (vma = mm->mmap; vma; vma = vma->vm_next) {
1996         if (vma->anon_vma) {
1997             ret = unuse_vma(vma, type);
1998             if (ret)
1999                 break;
2000         }
2001         cond_resched();
2002     }
2003     mmap_read_unlock(mm);
2004     return ret;
2005 }
2006 
2007 /*
2008  * Scan swap_map from current position to next entry still in use.
2009  * Return 0 if there are no inuse entries after prev till end of
2010  * the map.
2011  */
2012 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2013                     unsigned int prev)
2014 {
2015     unsigned int i;
2016     unsigned char count;
2017 
2018     /*
2019      * No need for swap_lock here: we're just looking
2020      * for whether an entry is in use, not modifying it; false
2021      * hits are okay, and sys_swapoff() has already prevented new
2022      * allocations from this area (while holding swap_lock).
2023      */
2024     for (i = prev + 1; i < si->max; i++) {
2025         count = READ_ONCE(si->swap_map[i]);
2026         if (count && swap_count(count) != SWAP_MAP_BAD)
2027             break;
2028         if ((i % LATENCY_LIMIT) == 0)
2029             cond_resched();
2030     }
2031 
2032     if (i == si->max)
2033         i = 0;
2034 
2035     return i;
2036 }
2037 
2038 static int try_to_unuse(unsigned int type)
2039 {
2040     struct mm_struct *prev_mm;
2041     struct mm_struct *mm;
2042     struct list_head *p;
2043     int retval = 0;
2044     struct swap_info_struct *si = swap_info[type];
2045     struct page *page;
2046     swp_entry_t entry;
2047     unsigned int i;
2048 
2049     if (!READ_ONCE(si->inuse_pages))
2050         return 0;
2051 
2052 retry:
2053     retval = shmem_unuse(type);
2054     if (retval)
2055         return retval;
2056 
2057     prev_mm = &init_mm;
2058     mmget(prev_mm);
2059 
2060     spin_lock(&mmlist_lock);
2061     p = &init_mm.mmlist;
2062     while (READ_ONCE(si->inuse_pages) &&
2063            !signal_pending(current) &&
2064            (p = p->next) != &init_mm.mmlist) {
2065 
2066         mm = list_entry(p, struct mm_struct, mmlist);
2067         if (!mmget_not_zero(mm))
2068             continue;
2069         spin_unlock(&mmlist_lock);
2070         mmput(prev_mm);
2071         prev_mm = mm;
2072         retval = unuse_mm(mm, type);
2073         if (retval) {
2074             mmput(prev_mm);
2075             return retval;
2076         }
2077 
2078         /*
2079          * Make sure that we aren't completely killing
2080          * interactive performance.
2081          */
2082         cond_resched();
2083         spin_lock(&mmlist_lock);
2084     }
2085     spin_unlock(&mmlist_lock);
2086 
2087     mmput(prev_mm);
2088 
2089     i = 0;
2090     while (READ_ONCE(si->inuse_pages) &&
2091            !signal_pending(current) &&
2092            (i = find_next_to_unuse(si, i)) != 0) {
2093 
2094         entry = swp_entry(type, i);
2095         page = find_get_page(swap_address_space(entry), i);
2096         if (!page)
2097             continue;
2098 
2099         /*
2100          * It is conceivable that a racing task removed this page from
2101          * swap cache just before we acquired the page lock. The page
2102          * might even be back in swap cache on another swap area. But
2103          * that is okay, try_to_free_swap() only removes stale pages.
2104          */
2105         lock_page(page);
2106         wait_on_page_writeback(page);
2107         try_to_free_swap(page);
2108         unlock_page(page);
2109         put_page(page);
2110     }
2111 
2112     /*
2113      * Lets check again to see if there are still swap entries in the map.
2114      * If yes, we would need to do retry the unuse logic again.
2115      * Under global memory pressure, swap entries can be reinserted back
2116      * into process space after the mmlist loop above passes over them.
2117      *
2118      * Limit the number of retries? No: when mmget_not_zero()
2119      * above fails, that mm is likely to be freeing swap from
2120      * exit_mmap(), which proceeds at its own independent pace;
2121      * and even shmem_writepage() could have been preempted after
2122      * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2123      * and robust (though cpu-intensive) just to keep retrying.
2124      */
2125     if (READ_ONCE(si->inuse_pages)) {
2126         if (!signal_pending(current))
2127             goto retry;
2128         return -EINTR;
2129     }
2130 
2131     return 0;
2132 }
2133 
2134 /*
2135  * After a successful try_to_unuse, if no swap is now in use, we know
2136  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2137  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2138  * added to the mmlist just after page_duplicate - before would be racy.
2139  */
2140 static void drain_mmlist(void)
2141 {
2142     struct list_head *p, *next;
2143     unsigned int type;
2144 
2145     for (type = 0; type < nr_swapfiles; type++)
2146         if (swap_info[type]->inuse_pages)
2147             return;
2148     spin_lock(&mmlist_lock);
2149     list_for_each_safe(p, next, &init_mm.mmlist)
2150         list_del_init(p);
2151     spin_unlock(&mmlist_lock);
2152 }
2153 
2154 /*
2155  * Free all of a swapdev's extent information
2156  */
2157 static void destroy_swap_extents(struct swap_info_struct *sis)
2158 {
2159     while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2160         struct rb_node *rb = sis->swap_extent_root.rb_node;
2161         struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2162 
2163         rb_erase(rb, &sis->swap_extent_root);
2164         kfree(se);
2165     }
2166 
2167     if (sis->flags & SWP_ACTIVATED) {
2168         struct file *swap_file = sis->swap_file;
2169         struct address_space *mapping = swap_file->f_mapping;
2170 
2171         sis->flags &= ~SWP_ACTIVATED;
2172         if (mapping->a_ops->swap_deactivate)
2173             mapping->a_ops->swap_deactivate(swap_file);
2174     }
2175 }
2176 
2177 /*
2178  * Add a block range (and the corresponding page range) into this swapdev's
2179  * extent tree.
2180  *
2181  * This function rather assumes that it is called in ascending page order.
2182  */
2183 int
2184 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2185         unsigned long nr_pages, sector_t start_block)
2186 {
2187     struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2188     struct swap_extent *se;
2189     struct swap_extent *new_se;
2190 
2191     /*
2192      * place the new node at the right most since the
2193      * function is called in ascending page order.
2194      */
2195     while (*link) {
2196         parent = *link;
2197         link = &parent->rb_right;
2198     }
2199 
2200     if (parent) {
2201         se = rb_entry(parent, struct swap_extent, rb_node);
2202         BUG_ON(se->start_page + se->nr_pages != start_page);
2203         if (se->start_block + se->nr_pages == start_block) {
2204             /* Merge it */
2205             se->nr_pages += nr_pages;
2206             return 0;
2207         }
2208     }
2209 
2210     /* No merge, insert a new extent. */
2211     new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2212     if (new_se == NULL)
2213         return -ENOMEM;
2214     new_se->start_page = start_page;
2215     new_se->nr_pages = nr_pages;
2216     new_se->start_block = start_block;
2217 
2218     rb_link_node(&new_se->rb_node, parent, link);
2219     rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2220     return 1;
2221 }
2222 EXPORT_SYMBOL_GPL(add_swap_extent);
2223 
2224 /*
2225  * A `swap extent' is a simple thing which maps a contiguous range of pages
2226  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2227  * built at swapon time and is then used at swap_writepage/swap_readpage
2228  * time for locating where on disk a page belongs.
2229  *
2230  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2231  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2232  * swap files identically.
2233  *
2234  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2235  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2236  * swapfiles are handled *identically* after swapon time.
2237  *
2238  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2239  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2240  * blocks are found which do not fall within the PAGE_SIZE alignment
2241  * requirements, they are simply tossed out - we will never use those blocks
2242  * for swapping.
2243  *
2244  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2245  * prevents users from writing to the swap device, which will corrupt memory.
2246  *
2247  * The amount of disk space which a single swap extent represents varies.
2248  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2249  * extents in the rbtree. - akpm.
2250  */
2251 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2252 {
2253     struct file *swap_file = sis->swap_file;
2254     struct address_space *mapping = swap_file->f_mapping;
2255     struct inode *inode = mapping->host;
2256     int ret;
2257 
2258     if (S_ISBLK(inode->i_mode)) {
2259         ret = add_swap_extent(sis, 0, sis->max, 0);
2260         *span = sis->pages;
2261         return ret;
2262     }
2263 
2264     if (mapping->a_ops->swap_activate) {
2265         ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2266         if (ret < 0)
2267             return ret;
2268         sis->flags |= SWP_ACTIVATED;
2269         if ((sis->flags & SWP_FS_OPS) &&
2270             sio_pool_init() != 0) {
2271             destroy_swap_extents(sis);
2272             return -ENOMEM;
2273         }
2274         return ret;
2275     }
2276 
2277     return generic_swapfile_activate(sis, swap_file, span);
2278 }
2279 
2280 static int swap_node(struct swap_info_struct *p)
2281 {
2282     struct block_device *bdev;
2283 
2284     if (p->bdev)
2285         bdev = p->bdev;
2286     else
2287         bdev = p->swap_file->f_inode->i_sb->s_bdev;
2288 
2289     return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2290 }
2291 
2292 static void setup_swap_info(struct swap_info_struct *p, int prio,
2293                 unsigned char *swap_map,
2294                 struct swap_cluster_info *cluster_info)
2295 {
2296     int i;
2297 
2298     if (prio >= 0)
2299         p->prio = prio;
2300     else
2301         p->prio = --least_priority;
2302     /*
2303      * the plist prio is negated because plist ordering is
2304      * low-to-high, while swap ordering is high-to-low
2305      */
2306     p->list.prio = -p->prio;
2307     for_each_node(i) {
2308         if (p->prio >= 0)
2309             p->avail_lists[i].prio = -p->prio;
2310         else {
2311             if (swap_node(p) == i)
2312                 p->avail_lists[i].prio = 1;
2313             else
2314                 p->avail_lists[i].prio = -p->prio;
2315         }
2316     }
2317     p->swap_map = swap_map;
2318     p->cluster_info = cluster_info;
2319 }
2320 
2321 static void _enable_swap_info(struct swap_info_struct *p)
2322 {
2323     p->flags |= SWP_WRITEOK;
2324     atomic_long_add(p->pages, &nr_swap_pages);
2325     total_swap_pages += p->pages;
2326 
2327     assert_spin_locked(&swap_lock);
2328     /*
2329      * both lists are plists, and thus priority ordered.
2330      * swap_active_head needs to be priority ordered for swapoff(),
2331      * which on removal of any swap_info_struct with an auto-assigned
2332      * (i.e. negative) priority increments the auto-assigned priority
2333      * of any lower-priority swap_info_structs.
2334      * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2335      * which allocates swap pages from the highest available priority
2336      * swap_info_struct.
2337      */
2338     plist_add(&p->list, &swap_active_head);
2339     add_to_avail_list(p);
2340 }
2341 
2342 static void enable_swap_info(struct swap_info_struct *p, int prio,
2343                 unsigned char *swap_map,
2344                 struct swap_cluster_info *cluster_info,
2345                 unsigned long *frontswap_map)
2346 {
2347     if (IS_ENABLED(CONFIG_FRONTSWAP))
2348         frontswap_init(p->type, frontswap_map);
2349     spin_lock(&swap_lock);
2350     spin_lock(&p->lock);
2351     setup_swap_info(p, prio, swap_map, cluster_info);
2352     spin_unlock(&p->lock);
2353     spin_unlock(&swap_lock);
2354     /*
2355      * Finished initializing swap device, now it's safe to reference it.
2356      */
2357     percpu_ref_resurrect(&p->users);
2358     spin_lock(&swap_lock);
2359     spin_lock(&p->lock);
2360     _enable_swap_info(p);
2361     spin_unlock(&p->lock);
2362     spin_unlock(&swap_lock);
2363 }
2364 
2365 static void reinsert_swap_info(struct swap_info_struct *p)
2366 {
2367     spin_lock(&swap_lock);
2368     spin_lock(&p->lock);
2369     setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2370     _enable_swap_info(p);
2371     spin_unlock(&p->lock);
2372     spin_unlock(&swap_lock);
2373 }
2374 
2375 bool has_usable_swap(void)
2376 {
2377     bool ret = true;
2378 
2379     spin_lock(&swap_lock);
2380     if (plist_head_empty(&swap_active_head))
2381         ret = false;
2382     spin_unlock(&swap_lock);
2383     return ret;
2384 }
2385 
2386 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2387 {
2388     struct swap_info_struct *p = NULL;
2389     unsigned char *swap_map;
2390     struct swap_cluster_info *cluster_info;
2391     unsigned long *frontswap_map;
2392     struct file *swap_file, *victim;
2393     struct address_space *mapping;
2394     struct inode *inode;
2395     struct filename *pathname;
2396     int err, found = 0;
2397     unsigned int old_block_size;
2398 
2399     if (!capable(CAP_SYS_ADMIN))
2400         return -EPERM;
2401 
2402     BUG_ON(!current->mm);
2403 
2404     pathname = getname(specialfile);
2405     if (IS_ERR(pathname))
2406         return PTR_ERR(pathname);
2407 
2408     victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2409     err = PTR_ERR(victim);
2410     if (IS_ERR(victim))
2411         goto out;
2412 
2413     mapping = victim->f_mapping;
2414     spin_lock(&swap_lock);
2415     plist_for_each_entry(p, &swap_active_head, list) {
2416         if (p->flags & SWP_WRITEOK) {
2417             if (p->swap_file->f_mapping == mapping) {
2418                 found = 1;
2419                 break;
2420             }
2421         }
2422     }
2423     if (!found) {
2424         err = -EINVAL;
2425         spin_unlock(&swap_lock);
2426         goto out_dput;
2427     }
2428     if (!security_vm_enough_memory_mm(current->mm, p->pages))
2429         vm_unacct_memory(p->pages);
2430     else {
2431         err = -ENOMEM;
2432         spin_unlock(&swap_lock);
2433         goto out_dput;
2434     }
2435     del_from_avail_list(p);
2436     spin_lock(&p->lock);
2437     if (p->prio < 0) {
2438         struct swap_info_struct *si = p;
2439         int nid;
2440 
2441         plist_for_each_entry_continue(si, &swap_active_head, list) {
2442             si->prio++;
2443             si->list.prio--;
2444             for_each_node(nid) {
2445                 if (si->avail_lists[nid].prio != 1)
2446                     si->avail_lists[nid].prio--;
2447             }
2448         }
2449         least_priority++;
2450     }
2451     plist_del(&p->list, &swap_active_head);
2452     atomic_long_sub(p->pages, &nr_swap_pages);
2453     total_swap_pages -= p->pages;
2454     p->flags &= ~SWP_WRITEOK;
2455     spin_unlock(&p->lock);
2456     spin_unlock(&swap_lock);
2457 
2458     disable_swap_slots_cache_lock();
2459 
2460     set_current_oom_origin();
2461     err = try_to_unuse(p->type);
2462     clear_current_oom_origin();
2463 
2464     if (err) {
2465         /* re-insert swap space back into swap_list */
2466         reinsert_swap_info(p);
2467         reenable_swap_slots_cache_unlock();
2468         goto out_dput;
2469     }
2470 
2471     reenable_swap_slots_cache_unlock();
2472 
2473     /*
2474      * Wait for swap operations protected by get/put_swap_device()
2475      * to complete.
2476      *
2477      * We need synchronize_rcu() here to protect the accessing to
2478      * the swap cache data structure.
2479      */
2480     percpu_ref_kill(&p->users);
2481     synchronize_rcu();
2482     wait_for_completion(&p->comp);
2483 
2484     flush_work(&p->discard_work);
2485 
2486     destroy_swap_extents(p);
2487     if (p->flags & SWP_CONTINUED)
2488         free_swap_count_continuations(p);
2489 
2490     if (!p->bdev || !bdev_nonrot(p->bdev))
2491         atomic_dec(&nr_rotate_swap);
2492 
2493     mutex_lock(&swapon_mutex);
2494     spin_lock(&swap_lock);
2495     spin_lock(&p->lock);
2496     drain_mmlist();
2497 
2498     /* wait for anyone still in scan_swap_map_slots */
2499     p->highest_bit = 0;     /* cuts scans short */
2500     while (p->flags >= SWP_SCANNING) {
2501         spin_unlock(&p->lock);
2502         spin_unlock(&swap_lock);
2503         schedule_timeout_uninterruptible(1);
2504         spin_lock(&swap_lock);
2505         spin_lock(&p->lock);
2506     }
2507 
2508     swap_file = p->swap_file;
2509     old_block_size = p->old_block_size;
2510     p->swap_file = NULL;
2511     p->max = 0;
2512     swap_map = p->swap_map;
2513     p->swap_map = NULL;
2514     cluster_info = p->cluster_info;
2515     p->cluster_info = NULL;
2516     frontswap_map = frontswap_map_get(p);
2517     spin_unlock(&p->lock);
2518     spin_unlock(&swap_lock);
2519     arch_swap_invalidate_area(p->type);
2520     frontswap_invalidate_area(p->type);
2521     frontswap_map_set(p, NULL);
2522     mutex_unlock(&swapon_mutex);
2523     free_percpu(p->percpu_cluster);
2524     p->percpu_cluster = NULL;
2525     free_percpu(p->cluster_next_cpu);
2526     p->cluster_next_cpu = NULL;
2527     vfree(swap_map);
2528     kvfree(cluster_info);
2529     kvfree(frontswap_map);
2530     /* Destroy swap account information */
2531     swap_cgroup_swapoff(p->type);
2532     exit_swap_address_space(p->type);
2533 
2534     inode = mapping->host;
2535     if (S_ISBLK(inode->i_mode)) {
2536         struct block_device *bdev = I_BDEV(inode);
2537 
2538         set_blocksize(bdev, old_block_size);
2539         blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2540     }
2541 
2542     inode_lock(inode);
2543     inode->i_flags &= ~S_SWAPFILE;
2544     inode_unlock(inode);
2545     filp_close(swap_file, NULL);
2546 
2547     /*
2548      * Clear the SWP_USED flag after all resources are freed so that swapon
2549      * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2550      * not hold p->lock after we cleared its SWP_WRITEOK.
2551      */
2552     spin_lock(&swap_lock);
2553     p->flags = 0;
2554     spin_unlock(&swap_lock);
2555 
2556     err = 0;
2557     atomic_inc(&proc_poll_event);
2558     wake_up_interruptible(&proc_poll_wait);
2559 
2560 out_dput:
2561     filp_close(victim, NULL);
2562 out:
2563     putname(pathname);
2564     return err;
2565 }
2566 
2567 #ifdef CONFIG_PROC_FS
2568 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2569 {
2570     struct seq_file *seq = file->private_data;
2571 
2572     poll_wait(file, &proc_poll_wait, wait);
2573 
2574     if (seq->poll_event != atomic_read(&proc_poll_event)) {
2575         seq->poll_event = atomic_read(&proc_poll_event);
2576         return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2577     }
2578 
2579     return EPOLLIN | EPOLLRDNORM;
2580 }
2581 
2582 /* iterator */
2583 static void *swap_start(struct seq_file *swap, loff_t *pos)
2584 {
2585     struct swap_info_struct *si;
2586     int type;
2587     loff_t l = *pos;
2588 
2589     mutex_lock(&swapon_mutex);
2590 
2591     if (!l)
2592         return SEQ_START_TOKEN;
2593 
2594     for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2595         if (!(si->flags & SWP_USED) || !si->swap_map)
2596             continue;
2597         if (!--l)
2598             return si;
2599     }
2600 
2601     return NULL;
2602 }
2603 
2604 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2605 {
2606     struct swap_info_struct *si = v;
2607     int type;
2608 
2609     if (v == SEQ_START_TOKEN)
2610         type = 0;
2611     else
2612         type = si->type + 1;
2613 
2614     ++(*pos);
2615     for (; (si = swap_type_to_swap_info(type)); type++) {
2616         if (!(si->flags & SWP_USED) || !si->swap_map)
2617             continue;
2618         return si;
2619     }
2620 
2621     return NULL;
2622 }
2623 
2624 static void swap_stop(struct seq_file *swap, void *v)
2625 {
2626     mutex_unlock(&swapon_mutex);
2627 }
2628 
2629 static int swap_show(struct seq_file *swap, void *v)
2630 {
2631     struct swap_info_struct *si = v;
2632     struct file *file;
2633     int len;
2634     unsigned long bytes, inuse;
2635 
2636     if (si == SEQ_START_TOKEN) {
2637         seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2638         return 0;
2639     }
2640 
2641     bytes = si->pages << (PAGE_SHIFT - 10);
2642     inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2643 
2644     file = si->swap_file;
2645     len = seq_file_path(swap, file, " \t\n\\");
2646     seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2647             len < 40 ? 40 - len : 1, " ",
2648             S_ISBLK(file_inode(file)->i_mode) ?
2649                 "partition" : "file\t",
2650             bytes, bytes < 10000000 ? "\t" : "",
2651             inuse, inuse < 10000000 ? "\t" : "",
2652             si->prio);
2653     return 0;
2654 }
2655 
2656 static const struct seq_operations swaps_op = {
2657     .start =    swap_start,
2658     .next =     swap_next,
2659     .stop =     swap_stop,
2660     .show =     swap_show
2661 };
2662 
2663 static int swaps_open(struct inode *inode, struct file *file)
2664 {
2665     struct seq_file *seq;
2666     int ret;
2667 
2668     ret = seq_open(file, &swaps_op);
2669     if (ret)
2670         return ret;
2671 
2672     seq = file->private_data;
2673     seq->poll_event = atomic_read(&proc_poll_event);
2674     return 0;
2675 }
2676 
2677 static const struct proc_ops swaps_proc_ops = {
2678     .proc_flags = PROC_ENTRY_PERMANENT,
2679     .proc_open  = swaps_open,
2680     .proc_read  = seq_read,
2681     .proc_lseek = seq_lseek,
2682     .proc_release   = seq_release,
2683     .proc_poll  = swaps_poll,
2684 };
2685 
2686 static int __init procswaps_init(void)
2687 {
2688     proc_create("swaps", 0, NULL, &swaps_proc_ops);
2689     return 0;
2690 }
2691 __initcall(procswaps_init);
2692 #endif /* CONFIG_PROC_FS */
2693 
2694 #ifdef MAX_SWAPFILES_CHECK
2695 static int __init max_swapfiles_check(void)
2696 {
2697     MAX_SWAPFILES_CHECK();
2698     return 0;
2699 }
2700 late_initcall(max_swapfiles_check);
2701 #endif
2702 
2703 static struct swap_info_struct *alloc_swap_info(void)
2704 {
2705     struct swap_info_struct *p;
2706     struct swap_info_struct *defer = NULL;
2707     unsigned int type;
2708     int i;
2709 
2710     p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2711     if (!p)
2712         return ERR_PTR(-ENOMEM);
2713 
2714     if (percpu_ref_init(&p->users, swap_users_ref_free,
2715                 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2716         kvfree(p);
2717         return ERR_PTR(-ENOMEM);
2718     }
2719 
2720     spin_lock(&swap_lock);
2721     for (type = 0; type < nr_swapfiles; type++) {
2722         if (!(swap_info[type]->flags & SWP_USED))
2723             break;
2724     }
2725     if (type >= MAX_SWAPFILES) {
2726         spin_unlock(&swap_lock);
2727         percpu_ref_exit(&p->users);
2728         kvfree(p);
2729         return ERR_PTR(-EPERM);
2730     }
2731     if (type >= nr_swapfiles) {
2732         p->type = type;
2733         /*
2734          * Publish the swap_info_struct after initializing it.
2735          * Note that kvzalloc() above zeroes all its fields.
2736          */
2737         smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2738         nr_swapfiles++;
2739     } else {
2740         defer = p;
2741         p = swap_info[type];
2742         /*
2743          * Do not memset this entry: a racing procfs swap_next()
2744          * would be relying on p->type to remain valid.
2745          */
2746     }
2747     p->swap_extent_root = RB_ROOT;
2748     plist_node_init(&p->list, 0);
2749     for_each_node(i)
2750         plist_node_init(&p->avail_lists[i], 0);
2751     p->flags = SWP_USED;
2752     spin_unlock(&swap_lock);
2753     if (defer) {
2754         percpu_ref_exit(&defer->users);
2755         kvfree(defer);
2756     }
2757     spin_lock_init(&p->lock);
2758     spin_lock_init(&p->cont_lock);
2759     init_completion(&p->comp);
2760 
2761     return p;
2762 }
2763 
2764 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2765 {
2766     int error;
2767 
2768     if (S_ISBLK(inode->i_mode)) {
2769         p->bdev = blkdev_get_by_dev(inode->i_rdev,
2770                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2771         if (IS_ERR(p->bdev)) {
2772             error = PTR_ERR(p->bdev);
2773             p->bdev = NULL;
2774             return error;
2775         }
2776         p->old_block_size = block_size(p->bdev);
2777         error = set_blocksize(p->bdev, PAGE_SIZE);
2778         if (error < 0)
2779             return error;
2780         /*
2781          * Zoned block devices contain zones that have a sequential
2782          * write only restriction.  Hence zoned block devices are not
2783          * suitable for swapping.  Disallow them here.
2784          */
2785         if (bdev_is_zoned(p->bdev))
2786             return -EINVAL;
2787         p->flags |= SWP_BLKDEV;
2788     } else if (S_ISREG(inode->i_mode)) {
2789         p->bdev = inode->i_sb->s_bdev;
2790     }
2791 
2792     return 0;
2793 }
2794 
2795 
2796 /*
2797  * Find out how many pages are allowed for a single swap device. There
2798  * are two limiting factors:
2799  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2800  * 2) the number of bits in the swap pte, as defined by the different
2801  * architectures.
2802  *
2803  * In order to find the largest possible bit mask, a swap entry with
2804  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2805  * decoded to a swp_entry_t again, and finally the swap offset is
2806  * extracted.
2807  *
2808  * This will mask all the bits from the initial ~0UL mask that can't
2809  * be encoded in either the swp_entry_t or the architecture definition
2810  * of a swap pte.
2811  */
2812 unsigned long generic_max_swapfile_size(void)
2813 {
2814     return swp_offset(pte_to_swp_entry(
2815             swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2816 }
2817 
2818 /* Can be overridden by an architecture for additional checks. */
2819 __weak unsigned long max_swapfile_size(void)
2820 {
2821     return generic_max_swapfile_size();
2822 }
2823 
2824 static unsigned long read_swap_header(struct swap_info_struct *p,
2825                     union swap_header *swap_header,
2826                     struct inode *inode)
2827 {
2828     int i;
2829     unsigned long maxpages;
2830     unsigned long swapfilepages;
2831     unsigned long last_page;
2832 
2833     if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2834         pr_err("Unable to find swap-space signature\n");
2835         return 0;
2836     }
2837 
2838     /* swap partition endianness hack... */
2839     if (swab32(swap_header->info.version) == 1) {
2840         swab32s(&swap_header->info.version);
2841         swab32s(&swap_header->info.last_page);
2842         swab32s(&swap_header->info.nr_badpages);
2843         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2844             return 0;
2845         for (i = 0; i < swap_header->info.nr_badpages; i++)
2846             swab32s(&swap_header->info.badpages[i]);
2847     }
2848     /* Check the swap header's sub-version */
2849     if (swap_header->info.version != 1) {
2850         pr_warn("Unable to handle swap header version %d\n",
2851             swap_header->info.version);
2852         return 0;
2853     }
2854 
2855     p->lowest_bit  = 1;
2856     p->cluster_next = 1;
2857     p->cluster_nr = 0;
2858 
2859     maxpages = max_swapfile_size();
2860     last_page = swap_header->info.last_page;
2861     if (!last_page) {
2862         pr_warn("Empty swap-file\n");
2863         return 0;
2864     }
2865     if (last_page > maxpages) {
2866         pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2867             maxpages << (PAGE_SHIFT - 10),
2868             last_page << (PAGE_SHIFT - 10));
2869     }
2870     if (maxpages > last_page) {
2871         maxpages = last_page + 1;
2872         /* p->max is an unsigned int: don't overflow it */
2873         if ((unsigned int)maxpages == 0)
2874             maxpages = UINT_MAX;
2875     }
2876     p->highest_bit = maxpages - 1;
2877 
2878     if (!maxpages)
2879         return 0;
2880     swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2881     if (swapfilepages && maxpages > swapfilepages) {
2882         pr_warn("Swap area shorter than signature indicates\n");
2883         return 0;
2884     }
2885     if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2886         return 0;
2887     if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2888         return 0;
2889 
2890     return maxpages;
2891 }
2892 
2893 #define SWAP_CLUSTER_INFO_COLS                      \
2894     DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2895 #define SWAP_CLUSTER_SPACE_COLS                     \
2896     DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2897 #define SWAP_CLUSTER_COLS                       \
2898     max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2899 
2900 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2901                     union swap_header *swap_header,
2902                     unsigned char *swap_map,
2903                     struct swap_cluster_info *cluster_info,
2904                     unsigned long maxpages,
2905                     sector_t *span)
2906 {
2907     unsigned int j, k;
2908     unsigned int nr_good_pages;
2909     int nr_extents;
2910     unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2911     unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2912     unsigned long i, idx;
2913 
2914     nr_good_pages = maxpages - 1;   /* omit header page */
2915 
2916     cluster_list_init(&p->free_clusters);
2917     cluster_list_init(&p->discard_clusters);
2918 
2919     for (i = 0; i < swap_header->info.nr_badpages; i++) {
2920         unsigned int page_nr = swap_header->info.badpages[i];
2921         if (page_nr == 0 || page_nr > swap_header->info.last_page)
2922             return -EINVAL;
2923         if (page_nr < maxpages) {
2924             swap_map[page_nr] = SWAP_MAP_BAD;
2925             nr_good_pages--;
2926             /*
2927              * Haven't marked the cluster free yet, no list
2928              * operation involved
2929              */
2930             inc_cluster_info_page(p, cluster_info, page_nr);
2931         }
2932     }
2933 
2934     /* Haven't marked the cluster free yet, no list operation involved */
2935     for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2936         inc_cluster_info_page(p, cluster_info, i);
2937 
2938     if (nr_good_pages) {
2939         swap_map[0] = SWAP_MAP_BAD;
2940         /*
2941          * Not mark the cluster free yet, no list
2942          * operation involved
2943          */
2944         inc_cluster_info_page(p, cluster_info, 0);
2945         p->max = maxpages;
2946         p->pages = nr_good_pages;
2947         nr_extents = setup_swap_extents(p, span);
2948         if (nr_extents < 0)
2949             return nr_extents;
2950         nr_good_pages = p->pages;
2951     }
2952     if (!nr_good_pages) {
2953         pr_warn("Empty swap-file\n");
2954         return -EINVAL;
2955     }
2956 
2957     if (!cluster_info)
2958         return nr_extents;
2959 
2960 
2961     /*
2962      * Reduce false cache line sharing between cluster_info and
2963      * sharing same address space.
2964      */
2965     for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2966         j = (k + col) % SWAP_CLUSTER_COLS;
2967         for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2968             idx = i * SWAP_CLUSTER_COLS + j;
2969             if (idx >= nr_clusters)
2970                 continue;
2971             if (cluster_count(&cluster_info[idx]))
2972                 continue;
2973             cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2974             cluster_list_add_tail(&p->free_clusters, cluster_info,
2975                           idx);
2976         }
2977     }
2978     return nr_extents;
2979 }
2980 
2981 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2982 {
2983     struct swap_info_struct *p;
2984     struct filename *name;
2985     struct file *swap_file = NULL;
2986     struct address_space *mapping;
2987     struct dentry *dentry;
2988     int prio;
2989     int error;
2990     union swap_header *swap_header;
2991     int nr_extents;
2992     sector_t span;
2993     unsigned long maxpages;
2994     unsigned char *swap_map = NULL;
2995     struct swap_cluster_info *cluster_info = NULL;
2996     unsigned long *frontswap_map = NULL;
2997     struct page *page = NULL;
2998     struct inode *inode = NULL;
2999     bool inced_nr_rotate_swap = false;
3000 
3001     if (swap_flags & ~SWAP_FLAGS_VALID)
3002         return -EINVAL;
3003 
3004     if (!capable(CAP_SYS_ADMIN))
3005         return -EPERM;
3006 
3007     if (!swap_avail_heads)
3008         return -ENOMEM;
3009 
3010     p = alloc_swap_info();
3011     if (IS_ERR(p))
3012         return PTR_ERR(p);
3013 
3014     INIT_WORK(&p->discard_work, swap_discard_work);
3015 
3016     name = getname(specialfile);
3017     if (IS_ERR(name)) {
3018         error = PTR_ERR(name);
3019         name = NULL;
3020         goto bad_swap;
3021     }
3022     swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3023     if (IS_ERR(swap_file)) {
3024         error = PTR_ERR(swap_file);
3025         swap_file = NULL;
3026         goto bad_swap;
3027     }
3028 
3029     p->swap_file = swap_file;
3030     mapping = swap_file->f_mapping;
3031     dentry = swap_file->f_path.dentry;
3032     inode = mapping->host;
3033 
3034     error = claim_swapfile(p, inode);
3035     if (unlikely(error))
3036         goto bad_swap;
3037 
3038     inode_lock(inode);
3039     if (d_unlinked(dentry) || cant_mount(dentry)) {
3040         error = -ENOENT;
3041         goto bad_swap_unlock_inode;
3042     }
3043     if (IS_SWAPFILE(inode)) {
3044         error = -EBUSY;
3045         goto bad_swap_unlock_inode;
3046     }
3047 
3048     /*
3049      * Read the swap header.
3050      */
3051     if (!mapping->a_ops->read_folio) {
3052         error = -EINVAL;
3053         goto bad_swap_unlock_inode;
3054     }
3055     page = read_mapping_page(mapping, 0, swap_file);
3056     if (IS_ERR(page)) {
3057         error = PTR_ERR(page);
3058         goto bad_swap_unlock_inode;
3059     }
3060     swap_header = kmap(page);
3061 
3062     maxpages = read_swap_header(p, swap_header, inode);
3063     if (unlikely(!maxpages)) {
3064         error = -EINVAL;
3065         goto bad_swap_unlock_inode;
3066     }
3067 
3068     /* OK, set up the swap map and apply the bad block list */
3069     swap_map = vzalloc(maxpages);
3070     if (!swap_map) {
3071         error = -ENOMEM;
3072         goto bad_swap_unlock_inode;
3073     }
3074 
3075     if (p->bdev && bdev_stable_writes(p->bdev))
3076         p->flags |= SWP_STABLE_WRITES;
3077 
3078     if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3079         p->flags |= SWP_SYNCHRONOUS_IO;
3080 
3081     if (p->bdev && bdev_nonrot(p->bdev)) {
3082         int cpu;
3083         unsigned long ci, nr_cluster;
3084 
3085         p->flags |= SWP_SOLIDSTATE;
3086         p->cluster_next_cpu = alloc_percpu(unsigned int);
3087         if (!p->cluster_next_cpu) {
3088             error = -ENOMEM;
3089             goto bad_swap_unlock_inode;
3090         }
3091         /*
3092          * select a random position to start with to help wear leveling
3093          * SSD
3094          */
3095         for_each_possible_cpu(cpu) {
3096             per_cpu(*p->cluster_next_cpu, cpu) =
3097                 1 + prandom_u32_max(p->highest_bit);
3098         }
3099         nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3100 
3101         cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3102                     GFP_KERNEL);
3103         if (!cluster_info) {
3104             error = -ENOMEM;
3105             goto bad_swap_unlock_inode;
3106         }
3107 
3108         for (ci = 0; ci < nr_cluster; ci++)
3109             spin_lock_init(&((cluster_info + ci)->lock));
3110 
3111         p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3112         if (!p->percpu_cluster) {
3113             error = -ENOMEM;
3114             goto bad_swap_unlock_inode;
3115         }
3116         for_each_possible_cpu(cpu) {
3117             struct percpu_cluster *cluster;
3118             cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3119             cluster_set_null(&cluster->index);
3120         }
3121     } else {
3122         atomic_inc(&nr_rotate_swap);
3123         inced_nr_rotate_swap = true;
3124     }
3125 
3126     error = swap_cgroup_swapon(p->type, maxpages);
3127     if (error)
3128         goto bad_swap_unlock_inode;
3129 
3130     nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3131         cluster_info, maxpages, &span);
3132     if (unlikely(nr_extents < 0)) {
3133         error = nr_extents;
3134         goto bad_swap_unlock_inode;
3135     }
3136     /* frontswap enabled? set up bit-per-page map for frontswap */
3137     if (IS_ENABLED(CONFIG_FRONTSWAP))
3138         frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3139                      sizeof(long),
3140                      GFP_KERNEL);
3141 
3142     if ((swap_flags & SWAP_FLAG_DISCARD) &&
3143         p->bdev && bdev_max_discard_sectors(p->bdev)) {
3144         /*
3145          * When discard is enabled for swap with no particular
3146          * policy flagged, we set all swap discard flags here in
3147          * order to sustain backward compatibility with older
3148          * swapon(8) releases.
3149          */
3150         p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3151                  SWP_PAGE_DISCARD);
3152 
3153         /*
3154          * By flagging sys_swapon, a sysadmin can tell us to
3155          * either do single-time area discards only, or to just
3156          * perform discards for released swap page-clusters.
3157          * Now it's time to adjust the p->flags accordingly.
3158          */
3159         if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3160             p->flags &= ~SWP_PAGE_DISCARD;
3161         else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3162             p->flags &= ~SWP_AREA_DISCARD;
3163 
3164         /* issue a swapon-time discard if it's still required */
3165         if (p->flags & SWP_AREA_DISCARD) {
3166             int err = discard_swap(p);
3167             if (unlikely(err))
3168                 pr_err("swapon: discard_swap(%p): %d\n",
3169                     p, err);
3170         }
3171     }
3172 
3173     error = init_swap_address_space(p->type, maxpages);
3174     if (error)
3175         goto bad_swap_unlock_inode;
3176 
3177     /*
3178      * Flush any pending IO and dirty mappings before we start using this
3179      * swap device.
3180      */
3181     inode->i_flags |= S_SWAPFILE;
3182     error = inode_drain_writes(inode);
3183     if (error) {
3184         inode->i_flags &= ~S_SWAPFILE;
3185         goto free_swap_address_space;
3186     }
3187 
3188     mutex_lock(&swapon_mutex);
3189     prio = -1;
3190     if (swap_flags & SWAP_FLAG_PREFER)
3191         prio =
3192           (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3193     enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3194 
3195     pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3196         p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3197         nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3198         (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3199         (p->flags & SWP_DISCARDABLE) ? "D" : "",
3200         (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3201         (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3202         (frontswap_map) ? "FS" : "");
3203 
3204     mutex_unlock(&swapon_mutex);
3205     atomic_inc(&proc_poll_event);
3206     wake_up_interruptible(&proc_poll_wait);
3207 
3208     error = 0;
3209     goto out;
3210 free_swap_address_space:
3211     exit_swap_address_space(p->type);
3212 bad_swap_unlock_inode:
3213     inode_unlock(inode);
3214 bad_swap:
3215     free_percpu(p->percpu_cluster);
3216     p->percpu_cluster = NULL;
3217     free_percpu(p->cluster_next_cpu);
3218     p->cluster_next_cpu = NULL;
3219     if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3220         set_blocksize(p->bdev, p->old_block_size);
3221         blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3222     }
3223     inode = NULL;
3224     destroy_swap_extents(p);
3225     swap_cgroup_swapoff(p->type);
3226     spin_lock(&swap_lock);
3227     p->swap_file = NULL;
3228     p->flags = 0;
3229     spin_unlock(&swap_lock);
3230     vfree(swap_map);
3231     kvfree(cluster_info);
3232     kvfree(frontswap_map);
3233     if (inced_nr_rotate_swap)
3234         atomic_dec(&nr_rotate_swap);
3235     if (swap_file)
3236         filp_close(swap_file, NULL);
3237 out:
3238     if (page && !IS_ERR(page)) {
3239         kunmap(page);
3240         put_page(page);
3241     }
3242     if (name)
3243         putname(name);
3244     if (inode)
3245         inode_unlock(inode);
3246     if (!error)
3247         enable_swap_slots_cache();
3248     return error;
3249 }
3250 
3251 void si_swapinfo(struct sysinfo *val)
3252 {
3253     unsigned int type;
3254     unsigned long nr_to_be_unused = 0;
3255 
3256     spin_lock(&swap_lock);
3257     for (type = 0; type < nr_swapfiles; type++) {
3258         struct swap_info_struct *si = swap_info[type];
3259 
3260         if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3261             nr_to_be_unused += READ_ONCE(si->inuse_pages);
3262     }
3263     val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3264     val->totalswap = total_swap_pages + nr_to_be_unused;
3265     spin_unlock(&swap_lock);
3266 }
3267 
3268 /*
3269  * Verify that a swap entry is valid and increment its swap map count.
3270  *
3271  * Returns error code in following case.
3272  * - success -> 0
3273  * - swp_entry is invalid -> EINVAL
3274  * - swp_entry is migration entry -> EINVAL
3275  * - swap-cache reference is requested but there is already one. -> EEXIST
3276  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3277  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3278  */
3279 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3280 {
3281     struct swap_info_struct *p;
3282     struct swap_cluster_info *ci;
3283     unsigned long offset;
3284     unsigned char count;
3285     unsigned char has_cache;
3286     int err;
3287 
3288     p = get_swap_device(entry);
3289     if (!p)
3290         return -EINVAL;
3291 
3292     offset = swp_offset(entry);
3293     ci = lock_cluster_or_swap_info(p, offset);
3294 
3295     count = p->swap_map[offset];
3296 
3297     /*
3298      * swapin_readahead() doesn't check if a swap entry is valid, so the
3299      * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3300      */
3301     if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3302         err = -ENOENT;
3303         goto unlock_out;
3304     }
3305 
3306     has_cache = count & SWAP_HAS_CACHE;
3307     count &= ~SWAP_HAS_CACHE;
3308     err = 0;
3309 
3310     if (usage == SWAP_HAS_CACHE) {
3311 
3312         /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3313         if (!has_cache && count)
3314             has_cache = SWAP_HAS_CACHE;
3315         else if (has_cache)     /* someone else added cache */
3316             err = -EEXIST;
3317         else                /* no users remaining */
3318             err = -ENOENT;
3319 
3320     } else if (count || has_cache) {
3321 
3322         if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3323             count += usage;
3324         else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3325             err = -EINVAL;
3326         else if (swap_count_continued(p, offset, count))
3327             count = COUNT_CONTINUED;
3328         else
3329             err = -ENOMEM;
3330     } else
3331         err = -ENOENT;          /* unused swap entry */
3332 
3333     WRITE_ONCE(p->swap_map[offset], count | has_cache);
3334 
3335 unlock_out:
3336     unlock_cluster_or_swap_info(p, ci);
3337     put_swap_device(p);
3338     return err;
3339 }
3340 
3341 /*
3342  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3343  * (in which case its reference count is never incremented).
3344  */
3345 void swap_shmem_alloc(swp_entry_t entry)
3346 {
3347     __swap_duplicate(entry, SWAP_MAP_SHMEM);
3348 }
3349 
3350 /*
3351  * Increase reference count of swap entry by 1.
3352  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3353  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3354  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3355  * might occur if a page table entry has got corrupted.
3356  */
3357 int swap_duplicate(swp_entry_t entry)
3358 {
3359     int err = 0;
3360 
3361     while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3362         err = add_swap_count_continuation(entry, GFP_ATOMIC);
3363     return err;
3364 }
3365 
3366 /*
3367  * @entry: swap entry for which we allocate swap cache.
3368  *
3369  * Called when allocating swap cache for existing swap entry,
3370  * This can return error codes. Returns 0 at success.
3371  * -EEXIST means there is a swap cache.
3372  * Note: return code is different from swap_duplicate().
3373  */
3374 int swapcache_prepare(swp_entry_t entry)
3375 {
3376     return __swap_duplicate(entry, SWAP_HAS_CACHE);
3377 }
3378 
3379 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3380 {
3381     return swap_type_to_swap_info(swp_type(entry));
3382 }
3383 
3384 struct swap_info_struct *page_swap_info(struct page *page)
3385 {
3386     swp_entry_t entry = { .val = page_private(page) };
3387     return swp_swap_info(entry);
3388 }
3389 
3390 /*
3391  * out-of-line methods to avoid include hell.
3392  */
3393 struct address_space *swapcache_mapping(struct folio *folio)
3394 {
3395     return page_swap_info(&folio->page)->swap_file->f_mapping;
3396 }
3397 EXPORT_SYMBOL_GPL(swapcache_mapping);
3398 
3399 pgoff_t __page_file_index(struct page *page)
3400 {
3401     swp_entry_t swap = { .val = page_private(page) };
3402     return swp_offset(swap);
3403 }
3404 EXPORT_SYMBOL_GPL(__page_file_index);
3405 
3406 /*
3407  * add_swap_count_continuation - called when a swap count is duplicated
3408  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3409  * page of the original vmalloc'ed swap_map, to hold the continuation count
3410  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3411  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3412  *
3413  * These continuation pages are seldom referenced: the common paths all work
3414  * on the original swap_map, only referring to a continuation page when the
3415  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3416  *
3417  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3418  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3419  * can be called after dropping locks.
3420  */
3421 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3422 {
3423     struct swap_info_struct *si;
3424     struct swap_cluster_info *ci;
3425     struct page *head;
3426     struct page *page;
3427     struct page *list_page;
3428     pgoff_t offset;
3429     unsigned char count;
3430     int ret = 0;
3431 
3432     /*
3433      * When debugging, it's easier to use __GFP_ZERO here; but it's better
3434      * for latency not to zero a page while GFP_ATOMIC and holding locks.
3435      */
3436     page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3437 
3438     si = get_swap_device(entry);
3439     if (!si) {
3440         /*
3441          * An acceptable race has occurred since the failing
3442          * __swap_duplicate(): the swap device may be swapoff
3443          */
3444         goto outer;
3445     }
3446     spin_lock(&si->lock);
3447 
3448     offset = swp_offset(entry);
3449 
3450     ci = lock_cluster(si, offset);
3451 
3452     count = swap_count(si->swap_map[offset]);
3453 
3454     if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3455         /*
3456          * The higher the swap count, the more likely it is that tasks
3457          * will race to add swap count continuation: we need to avoid
3458          * over-provisioning.
3459          */
3460         goto out;
3461     }
3462 
3463     if (!page) {
3464         ret = -ENOMEM;
3465         goto out;
3466     }
3467 
3468     /*
3469      * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3470      * no architecture is using highmem pages for kernel page tables: so it
3471      * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3472      */
3473     head = vmalloc_to_page(si->swap_map + offset);
3474     offset &= ~PAGE_MASK;
3475 
3476     spin_lock(&si->cont_lock);
3477     /*
3478      * Page allocation does not initialize the page's lru field,
3479      * but it does always reset its private field.
3480      */
3481     if (!page_private(head)) {
3482         BUG_ON(count & COUNT_CONTINUED);
3483         INIT_LIST_HEAD(&head->lru);
3484         set_page_private(head, SWP_CONTINUED);
3485         si->flags |= SWP_CONTINUED;
3486     }
3487 
3488     list_for_each_entry(list_page, &head->lru, lru) {
3489         unsigned char *map;
3490 
3491         /*
3492          * If the previous map said no continuation, but we've found
3493          * a continuation page, free our allocation and use this one.
3494          */
3495         if (!(count & COUNT_CONTINUED))
3496             goto out_unlock_cont;
3497 
3498         map = kmap_atomic(list_page) + offset;
3499         count = *map;
3500         kunmap_atomic(map);
3501 
3502         /*
3503          * If this continuation count now has some space in it,
3504          * free our allocation and use this one.
3505          */
3506         if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3507             goto out_unlock_cont;
3508     }
3509 
3510     list_add_tail(&page->lru, &head->lru);
3511     page = NULL;            /* now it's attached, don't free it */
3512 out_unlock_cont:
3513     spin_unlock(&si->cont_lock);
3514 out:
3515     unlock_cluster(ci);
3516     spin_unlock(&si->lock);
3517     put_swap_device(si);
3518 outer:
3519     if (page)
3520         __free_page(page);
3521     return ret;
3522 }
3523 
3524 /*
3525  * swap_count_continued - when the original swap_map count is incremented
3526  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3527  * into, carry if so, or else fail until a new continuation page is allocated;
3528  * when the original swap_map count is decremented from 0 with continuation,
3529  * borrow from the continuation and report whether it still holds more.
3530  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3531  * lock.
3532  */
3533 static bool swap_count_continued(struct swap_info_struct *si,
3534                  pgoff_t offset, unsigned char count)
3535 {
3536     struct page *head;
3537     struct page *page;
3538     unsigned char *map;
3539     bool ret;
3540 
3541     head = vmalloc_to_page(si->swap_map + offset);
3542     if (page_private(head) != SWP_CONTINUED) {
3543         BUG_ON(count & COUNT_CONTINUED);
3544         return false;       /* need to add count continuation */
3545     }
3546 
3547     spin_lock(&si->cont_lock);
3548     offset &= ~PAGE_MASK;
3549     page = list_next_entry(head, lru);
3550     map = kmap_atomic(page) + offset;
3551 
3552     if (count == SWAP_MAP_MAX)  /* initial increment from swap_map */
3553         goto init_map;      /* jump over SWAP_CONT_MAX checks */
3554 
3555     if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3556         /*
3557          * Think of how you add 1 to 999
3558          */
3559         while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3560             kunmap_atomic(map);
3561             page = list_next_entry(page, lru);
3562             BUG_ON(page == head);
3563             map = kmap_atomic(page) + offset;
3564         }
3565         if (*map == SWAP_CONT_MAX) {
3566             kunmap_atomic(map);
3567             page = list_next_entry(page, lru);
3568             if (page == head) {
3569                 ret = false;    /* add count continuation */
3570                 goto out;
3571             }
3572             map = kmap_atomic(page) + offset;
3573 init_map:       *map = 0;       /* we didn't zero the page */
3574         }
3575         *map += 1;
3576         kunmap_atomic(map);
3577         while ((page = list_prev_entry(page, lru)) != head) {
3578             map = kmap_atomic(page) + offset;
3579             *map = COUNT_CONTINUED;
3580             kunmap_atomic(map);
3581         }
3582         ret = true;         /* incremented */
3583 
3584     } else {                /* decrementing */
3585         /*
3586          * Think of how you subtract 1 from 1000
3587          */
3588         BUG_ON(count != COUNT_CONTINUED);
3589         while (*map == COUNT_CONTINUED) {
3590             kunmap_atomic(map);
3591             page = list_next_entry(page, lru);
3592             BUG_ON(page == head);
3593             map = kmap_atomic(page) + offset;
3594         }
3595         BUG_ON(*map == 0);
3596         *map -= 1;
3597         if (*map == 0)
3598             count = 0;
3599         kunmap_atomic(map);
3600         while ((page = list_prev_entry(page, lru)) != head) {
3601             map = kmap_atomic(page) + offset;
3602             *map = SWAP_CONT_MAX | count;
3603             count = COUNT_CONTINUED;
3604             kunmap_atomic(map);
3605         }
3606         ret = count == COUNT_CONTINUED;
3607     }
3608 out:
3609     spin_unlock(&si->cont_lock);
3610     return ret;
3611 }
3612 
3613 /*
3614  * free_swap_count_continuations - swapoff free all the continuation pages
3615  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3616  */
3617 static void free_swap_count_continuations(struct swap_info_struct *si)
3618 {
3619     pgoff_t offset;
3620 
3621     for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3622         struct page *head;
3623         head = vmalloc_to_page(si->swap_map + offset);
3624         if (page_private(head)) {
3625             struct page *page, *next;
3626 
3627             list_for_each_entry_safe(page, next, &head->lru, lru) {
3628                 list_del(&page->lru);
3629                 __free_page(page);
3630             }
3631         }
3632     }
3633 }
3634 
3635 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3636 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3637 {
3638     struct swap_info_struct *si, *next;
3639     int nid = page_to_nid(page);
3640 
3641     if (!(gfp_mask & __GFP_IO))
3642         return;
3643 
3644     if (!blk_cgroup_congested())
3645         return;
3646 
3647     /*
3648      * We've already scheduled a throttle, avoid taking the global swap
3649      * lock.
3650      */
3651     if (current->throttle_queue)
3652         return;
3653 
3654     spin_lock(&swap_avail_lock);
3655     plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3656                   avail_lists[nid]) {
3657         if (si->bdev) {
3658             blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3659             break;
3660         }
3661     }
3662     spin_unlock(&swap_avail_lock);
3663 }
3664 #endif
3665 
3666 static int __init swapfile_init(void)
3667 {
3668     int nid;
3669 
3670     swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3671                      GFP_KERNEL);
3672     if (!swap_avail_heads) {
3673         pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3674         return -ENOMEM;
3675     }
3676 
3677     for_each_node(nid)
3678         plist_head_init(&swap_avail_heads[nid]);
3679 
3680     return 0;
3681 }
3682 subsys_initcall(swapfile_init);