Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * mm/rmap.c - physical to virtual reverse mappings
0003  *
0004  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
0005  * Released under the General Public License (GPL).
0006  *
0007  * Simple, low overhead reverse mapping scheme.
0008  * Please try to keep this thing as modular as possible.
0009  *
0010  * Provides methods for unmapping each kind of mapped page:
0011  * the anon methods track anonymous pages, and
0012  * the file methods track pages belonging to an inode.
0013  *
0014  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
0015  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
0016  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
0017  * Contributions by Hugh Dickins 2003, 2004
0018  */
0019 
0020 /*
0021  * Lock ordering in mm:
0022  *
0023  * inode->i_rwsem   (while writing or truncating, not reading or faulting)
0024  *   mm->mmap_lock
0025  *     mapping->invalidate_lock (in filemap_fault)
0026  *       page->flags PG_locked (lock_page)   * (see hugetlbfs below)
0027  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
0028  *           mapping->i_mmap_rwsem
0029  *             hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
0030  *             anon_vma->rwsem
0031  *               mm->page_table_lock or pte_lock
0032  *                 swap_lock (in swap_duplicate, swap_info_get)
0033  *                   mmlist_lock (in mmput, drain_mmlist and others)
0034  *                   mapping->private_lock (in block_dirty_folio)
0035  *                     folio_lock_memcg move_lock (in block_dirty_folio)
0036  *                       i_pages lock (widely used)
0037  *                         lruvec->lru_lock (in folio_lruvec_lock_irq)
0038  *                   inode->i_lock (in set_page_dirty's __mark_inode_dirty)
0039  *                   bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
0040  *                     sb_lock (within inode_lock in fs/fs-writeback.c)
0041  *                     i_pages lock (widely used, in set_page_dirty,
0042  *                               in arch-dependent flush_dcache_mmap_lock,
0043  *                               within bdi.wb->list_lock in __sync_single_inode)
0044  *
0045  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
0046  *   ->tasklist_lock
0047  *     pte map lock
0048  *
0049  * * hugetlbfs PageHuge() pages take locks in this order:
0050  *         mapping->i_mmap_rwsem
0051  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
0052  *             page->flags PG_locked (lock_page)
0053  */
0054 
0055 #include <linux/mm.h>
0056 #include <linux/sched/mm.h>
0057 #include <linux/sched/task.h>
0058 #include <linux/pagemap.h>
0059 #include <linux/swap.h>
0060 #include <linux/swapops.h>
0061 #include <linux/slab.h>
0062 #include <linux/init.h>
0063 #include <linux/ksm.h>
0064 #include <linux/rmap.h>
0065 #include <linux/rcupdate.h>
0066 #include <linux/export.h>
0067 #include <linux/memcontrol.h>
0068 #include <linux/mmu_notifier.h>
0069 #include <linux/migrate.h>
0070 #include <linux/hugetlb.h>
0071 #include <linux/huge_mm.h>
0072 #include <linux/backing-dev.h>
0073 #include <linux/page_idle.h>
0074 #include <linux/memremap.h>
0075 #include <linux/userfaultfd_k.h>
0076 #include <linux/mm_inline.h>
0077 
0078 #include <asm/tlbflush.h>
0079 
0080 #define CREATE_TRACE_POINTS
0081 #include <trace/events/tlb.h>
0082 #include <trace/events/migrate.h>
0083 
0084 #include "internal.h"
0085 
0086 static struct kmem_cache *anon_vma_cachep;
0087 static struct kmem_cache *anon_vma_chain_cachep;
0088 
0089 static inline struct anon_vma *anon_vma_alloc(void)
0090 {
0091     struct anon_vma *anon_vma;
0092 
0093     anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
0094     if (anon_vma) {
0095         atomic_set(&anon_vma->refcount, 1);
0096         anon_vma->num_children = 0;
0097         anon_vma->num_active_vmas = 0;
0098         anon_vma->parent = anon_vma;
0099         /*
0100          * Initialise the anon_vma root to point to itself. If called
0101          * from fork, the root will be reset to the parents anon_vma.
0102          */
0103         anon_vma->root = anon_vma;
0104     }
0105 
0106     return anon_vma;
0107 }
0108 
0109 static inline void anon_vma_free(struct anon_vma *anon_vma)
0110 {
0111     VM_BUG_ON(atomic_read(&anon_vma->refcount));
0112 
0113     /*
0114      * Synchronize against folio_lock_anon_vma_read() such that
0115      * we can safely hold the lock without the anon_vma getting
0116      * freed.
0117      *
0118      * Relies on the full mb implied by the atomic_dec_and_test() from
0119      * put_anon_vma() against the acquire barrier implied by
0120      * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
0121      *
0122      * folio_lock_anon_vma_read()   VS  put_anon_vma()
0123      *   down_read_trylock()          atomic_dec_and_test()
0124      *   LOCK                 MB
0125      *   atomic_read()            rwsem_is_locked()
0126      *
0127      * LOCK should suffice since the actual taking of the lock must
0128      * happen _before_ what follows.
0129      */
0130     might_sleep();
0131     if (rwsem_is_locked(&anon_vma->root->rwsem)) {
0132         anon_vma_lock_write(anon_vma);
0133         anon_vma_unlock_write(anon_vma);
0134     }
0135 
0136     kmem_cache_free(anon_vma_cachep, anon_vma);
0137 }
0138 
0139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
0140 {
0141     return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
0142 }
0143 
0144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
0145 {
0146     kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
0147 }
0148 
0149 static void anon_vma_chain_link(struct vm_area_struct *vma,
0150                 struct anon_vma_chain *avc,
0151                 struct anon_vma *anon_vma)
0152 {
0153     avc->vma = vma;
0154     avc->anon_vma = anon_vma;
0155     list_add(&avc->same_vma, &vma->anon_vma_chain);
0156     anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
0157 }
0158 
0159 /**
0160  * __anon_vma_prepare - attach an anon_vma to a memory region
0161  * @vma: the memory region in question
0162  *
0163  * This makes sure the memory mapping described by 'vma' has
0164  * an 'anon_vma' attached to it, so that we can associate the
0165  * anonymous pages mapped into it with that anon_vma.
0166  *
0167  * The common case will be that we already have one, which
0168  * is handled inline by anon_vma_prepare(). But if
0169  * not we either need to find an adjacent mapping that we
0170  * can re-use the anon_vma from (very common when the only
0171  * reason for splitting a vma has been mprotect()), or we
0172  * allocate a new one.
0173  *
0174  * Anon-vma allocations are very subtle, because we may have
0175  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
0176  * and that may actually touch the rwsem even in the newly
0177  * allocated vma (it depends on RCU to make sure that the
0178  * anon_vma isn't actually destroyed).
0179  *
0180  * As a result, we need to do proper anon_vma locking even
0181  * for the new allocation. At the same time, we do not want
0182  * to do any locking for the common case of already having
0183  * an anon_vma.
0184  *
0185  * This must be called with the mmap_lock held for reading.
0186  */
0187 int __anon_vma_prepare(struct vm_area_struct *vma)
0188 {
0189     struct mm_struct *mm = vma->vm_mm;
0190     struct anon_vma *anon_vma, *allocated;
0191     struct anon_vma_chain *avc;
0192 
0193     might_sleep();
0194 
0195     avc = anon_vma_chain_alloc(GFP_KERNEL);
0196     if (!avc)
0197         goto out_enomem;
0198 
0199     anon_vma = find_mergeable_anon_vma(vma);
0200     allocated = NULL;
0201     if (!anon_vma) {
0202         anon_vma = anon_vma_alloc();
0203         if (unlikely(!anon_vma))
0204             goto out_enomem_free_avc;
0205         anon_vma->num_children++; /* self-parent link for new root */
0206         allocated = anon_vma;
0207     }
0208 
0209     anon_vma_lock_write(anon_vma);
0210     /* page_table_lock to protect against threads */
0211     spin_lock(&mm->page_table_lock);
0212     if (likely(!vma->anon_vma)) {
0213         vma->anon_vma = anon_vma;
0214         anon_vma_chain_link(vma, avc, anon_vma);
0215         anon_vma->num_active_vmas++;
0216         allocated = NULL;
0217         avc = NULL;
0218     }
0219     spin_unlock(&mm->page_table_lock);
0220     anon_vma_unlock_write(anon_vma);
0221 
0222     if (unlikely(allocated))
0223         put_anon_vma(allocated);
0224     if (unlikely(avc))
0225         anon_vma_chain_free(avc);
0226 
0227     return 0;
0228 
0229  out_enomem_free_avc:
0230     anon_vma_chain_free(avc);
0231  out_enomem:
0232     return -ENOMEM;
0233 }
0234 
0235 /*
0236  * This is a useful helper function for locking the anon_vma root as
0237  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
0238  * have the same vma.
0239  *
0240  * Such anon_vma's should have the same root, so you'd expect to see
0241  * just a single mutex_lock for the whole traversal.
0242  */
0243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
0244 {
0245     struct anon_vma *new_root = anon_vma->root;
0246     if (new_root != root) {
0247         if (WARN_ON_ONCE(root))
0248             up_write(&root->rwsem);
0249         root = new_root;
0250         down_write(&root->rwsem);
0251     }
0252     return root;
0253 }
0254 
0255 static inline void unlock_anon_vma_root(struct anon_vma *root)
0256 {
0257     if (root)
0258         up_write(&root->rwsem);
0259 }
0260 
0261 /*
0262  * Attach the anon_vmas from src to dst.
0263  * Returns 0 on success, -ENOMEM on failure.
0264  *
0265  * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
0266  * anon_vma_fork(). The first three want an exact copy of src, while the last
0267  * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
0268  * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
0269  * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
0270  *
0271  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
0272  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
0273  * This prevents degradation of anon_vma hierarchy to endless linear chain in
0274  * case of constantly forking task. On the other hand, an anon_vma with more
0275  * than one child isn't reused even if there was no alive vma, thus rmap
0276  * walker has a good chance of avoiding scanning the whole hierarchy when it
0277  * searches where page is mapped.
0278  */
0279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
0280 {
0281     struct anon_vma_chain *avc, *pavc;
0282     struct anon_vma *root = NULL;
0283 
0284     list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
0285         struct anon_vma *anon_vma;
0286 
0287         avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
0288         if (unlikely(!avc)) {
0289             unlock_anon_vma_root(root);
0290             root = NULL;
0291             avc = anon_vma_chain_alloc(GFP_KERNEL);
0292             if (!avc)
0293                 goto enomem_failure;
0294         }
0295         anon_vma = pavc->anon_vma;
0296         root = lock_anon_vma_root(root, anon_vma);
0297         anon_vma_chain_link(dst, avc, anon_vma);
0298 
0299         /*
0300          * Reuse existing anon_vma if it has no vma and only one
0301          * anon_vma child.
0302          *
0303          * Root anon_vma is never reused:
0304          * it has self-parent reference and at least one child.
0305          */
0306         if (!dst->anon_vma && src->anon_vma &&
0307             anon_vma->num_children < 2 &&
0308             anon_vma->num_active_vmas == 0)
0309             dst->anon_vma = anon_vma;
0310     }
0311     if (dst->anon_vma)
0312         dst->anon_vma->num_active_vmas++;
0313     unlock_anon_vma_root(root);
0314     return 0;
0315 
0316  enomem_failure:
0317     /*
0318      * dst->anon_vma is dropped here otherwise its degree can be incorrectly
0319      * decremented in unlink_anon_vmas().
0320      * We can safely do this because callers of anon_vma_clone() don't care
0321      * about dst->anon_vma if anon_vma_clone() failed.
0322      */
0323     dst->anon_vma = NULL;
0324     unlink_anon_vmas(dst);
0325     return -ENOMEM;
0326 }
0327 
0328 /*
0329  * Attach vma to its own anon_vma, as well as to the anon_vmas that
0330  * the corresponding VMA in the parent process is attached to.
0331  * Returns 0 on success, non-zero on failure.
0332  */
0333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
0334 {
0335     struct anon_vma_chain *avc;
0336     struct anon_vma *anon_vma;
0337     int error;
0338 
0339     /* Don't bother if the parent process has no anon_vma here. */
0340     if (!pvma->anon_vma)
0341         return 0;
0342 
0343     /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
0344     vma->anon_vma = NULL;
0345 
0346     /*
0347      * First, attach the new VMA to the parent VMA's anon_vmas,
0348      * so rmap can find non-COWed pages in child processes.
0349      */
0350     error = anon_vma_clone(vma, pvma);
0351     if (error)
0352         return error;
0353 
0354     /* An existing anon_vma has been reused, all done then. */
0355     if (vma->anon_vma)
0356         return 0;
0357 
0358     /* Then add our own anon_vma. */
0359     anon_vma = anon_vma_alloc();
0360     if (!anon_vma)
0361         goto out_error;
0362     anon_vma->num_active_vmas++;
0363     avc = anon_vma_chain_alloc(GFP_KERNEL);
0364     if (!avc)
0365         goto out_error_free_anon_vma;
0366 
0367     /*
0368      * The root anon_vma's rwsem is the lock actually used when we
0369      * lock any of the anon_vmas in this anon_vma tree.
0370      */
0371     anon_vma->root = pvma->anon_vma->root;
0372     anon_vma->parent = pvma->anon_vma;
0373     /*
0374      * With refcounts, an anon_vma can stay around longer than the
0375      * process it belongs to. The root anon_vma needs to be pinned until
0376      * this anon_vma is freed, because the lock lives in the root.
0377      */
0378     get_anon_vma(anon_vma->root);
0379     /* Mark this anon_vma as the one where our new (COWed) pages go. */
0380     vma->anon_vma = anon_vma;
0381     anon_vma_lock_write(anon_vma);
0382     anon_vma_chain_link(vma, avc, anon_vma);
0383     anon_vma->parent->num_children++;
0384     anon_vma_unlock_write(anon_vma);
0385 
0386     return 0;
0387 
0388  out_error_free_anon_vma:
0389     put_anon_vma(anon_vma);
0390  out_error:
0391     unlink_anon_vmas(vma);
0392     return -ENOMEM;
0393 }
0394 
0395 void unlink_anon_vmas(struct vm_area_struct *vma)
0396 {
0397     struct anon_vma_chain *avc, *next;
0398     struct anon_vma *root = NULL;
0399 
0400     /*
0401      * Unlink each anon_vma chained to the VMA.  This list is ordered
0402      * from newest to oldest, ensuring the root anon_vma gets freed last.
0403      */
0404     list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
0405         struct anon_vma *anon_vma = avc->anon_vma;
0406 
0407         root = lock_anon_vma_root(root, anon_vma);
0408         anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
0409 
0410         /*
0411          * Leave empty anon_vmas on the list - we'll need
0412          * to free them outside the lock.
0413          */
0414         if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
0415             anon_vma->parent->num_children--;
0416             continue;
0417         }
0418 
0419         list_del(&avc->same_vma);
0420         anon_vma_chain_free(avc);
0421     }
0422     if (vma->anon_vma) {
0423         vma->anon_vma->num_active_vmas--;
0424 
0425         /*
0426          * vma would still be needed after unlink, and anon_vma will be prepared
0427          * when handle fault.
0428          */
0429         vma->anon_vma = NULL;
0430     }
0431     unlock_anon_vma_root(root);
0432 
0433     /*
0434      * Iterate the list once more, it now only contains empty and unlinked
0435      * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
0436      * needing to write-acquire the anon_vma->root->rwsem.
0437      */
0438     list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
0439         struct anon_vma *anon_vma = avc->anon_vma;
0440 
0441         VM_WARN_ON(anon_vma->num_children);
0442         VM_WARN_ON(anon_vma->num_active_vmas);
0443         put_anon_vma(anon_vma);
0444 
0445         list_del(&avc->same_vma);
0446         anon_vma_chain_free(avc);
0447     }
0448 }
0449 
0450 static void anon_vma_ctor(void *data)
0451 {
0452     struct anon_vma *anon_vma = data;
0453 
0454     init_rwsem(&anon_vma->rwsem);
0455     atomic_set(&anon_vma->refcount, 0);
0456     anon_vma->rb_root = RB_ROOT_CACHED;
0457 }
0458 
0459 void __init anon_vma_init(void)
0460 {
0461     anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
0462             0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
0463             anon_vma_ctor);
0464     anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
0465             SLAB_PANIC|SLAB_ACCOUNT);
0466 }
0467 
0468 /*
0469  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
0470  *
0471  * Since there is no serialization what so ever against page_remove_rmap()
0472  * the best this function can do is return a refcount increased anon_vma
0473  * that might have been relevant to this page.
0474  *
0475  * The page might have been remapped to a different anon_vma or the anon_vma
0476  * returned may already be freed (and even reused).
0477  *
0478  * In case it was remapped to a different anon_vma, the new anon_vma will be a
0479  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
0480  * ensure that any anon_vma obtained from the page will still be valid for as
0481  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
0482  *
0483  * All users of this function must be very careful when walking the anon_vma
0484  * chain and verify that the page in question is indeed mapped in it
0485  * [ something equivalent to page_mapped_in_vma() ].
0486  *
0487  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
0488  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
0489  * if there is a mapcount, we can dereference the anon_vma after observing
0490  * those.
0491  */
0492 struct anon_vma *page_get_anon_vma(struct page *page)
0493 {
0494     struct anon_vma *anon_vma = NULL;
0495     unsigned long anon_mapping;
0496 
0497     rcu_read_lock();
0498     anon_mapping = (unsigned long)READ_ONCE(page->mapping);
0499     if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
0500         goto out;
0501     if (!page_mapped(page))
0502         goto out;
0503 
0504     anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
0505     if (!atomic_inc_not_zero(&anon_vma->refcount)) {
0506         anon_vma = NULL;
0507         goto out;
0508     }
0509 
0510     /*
0511      * If this page is still mapped, then its anon_vma cannot have been
0512      * freed.  But if it has been unmapped, we have no security against the
0513      * anon_vma structure being freed and reused (for another anon_vma:
0514      * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
0515      * above cannot corrupt).
0516      */
0517     if (!page_mapped(page)) {
0518         rcu_read_unlock();
0519         put_anon_vma(anon_vma);
0520         return NULL;
0521     }
0522 out:
0523     rcu_read_unlock();
0524 
0525     return anon_vma;
0526 }
0527 
0528 /*
0529  * Similar to page_get_anon_vma() except it locks the anon_vma.
0530  *
0531  * Its a little more complex as it tries to keep the fast path to a single
0532  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
0533  * reference like with page_get_anon_vma() and then block on the mutex
0534  * on !rwc->try_lock case.
0535  */
0536 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
0537                       struct rmap_walk_control *rwc)
0538 {
0539     struct anon_vma *anon_vma = NULL;
0540     struct anon_vma *root_anon_vma;
0541     unsigned long anon_mapping;
0542 
0543     rcu_read_lock();
0544     anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
0545     if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
0546         goto out;
0547     if (!folio_mapped(folio))
0548         goto out;
0549 
0550     anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
0551     root_anon_vma = READ_ONCE(anon_vma->root);
0552     if (down_read_trylock(&root_anon_vma->rwsem)) {
0553         /*
0554          * If the folio is still mapped, then this anon_vma is still
0555          * its anon_vma, and holding the mutex ensures that it will
0556          * not go away, see anon_vma_free().
0557          */
0558         if (!folio_mapped(folio)) {
0559             up_read(&root_anon_vma->rwsem);
0560             anon_vma = NULL;
0561         }
0562         goto out;
0563     }
0564 
0565     if (rwc && rwc->try_lock) {
0566         anon_vma = NULL;
0567         rwc->contended = true;
0568         goto out;
0569     }
0570 
0571     /* trylock failed, we got to sleep */
0572     if (!atomic_inc_not_zero(&anon_vma->refcount)) {
0573         anon_vma = NULL;
0574         goto out;
0575     }
0576 
0577     if (!folio_mapped(folio)) {
0578         rcu_read_unlock();
0579         put_anon_vma(anon_vma);
0580         return NULL;
0581     }
0582 
0583     /* we pinned the anon_vma, its safe to sleep */
0584     rcu_read_unlock();
0585     anon_vma_lock_read(anon_vma);
0586 
0587     if (atomic_dec_and_test(&anon_vma->refcount)) {
0588         /*
0589          * Oops, we held the last refcount, release the lock
0590          * and bail -- can't simply use put_anon_vma() because
0591          * we'll deadlock on the anon_vma_lock_write() recursion.
0592          */
0593         anon_vma_unlock_read(anon_vma);
0594         __put_anon_vma(anon_vma);
0595         anon_vma = NULL;
0596     }
0597 
0598     return anon_vma;
0599 
0600 out:
0601     rcu_read_unlock();
0602     return anon_vma;
0603 }
0604 
0605 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
0606 {
0607     anon_vma_unlock_read(anon_vma);
0608 }
0609 
0610 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
0611 /*
0612  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
0613  * important if a PTE was dirty when it was unmapped that it's flushed
0614  * before any IO is initiated on the page to prevent lost writes. Similarly,
0615  * it must be flushed before freeing to prevent data leakage.
0616  */
0617 void try_to_unmap_flush(void)
0618 {
0619     struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
0620 
0621     if (!tlb_ubc->flush_required)
0622         return;
0623 
0624     arch_tlbbatch_flush(&tlb_ubc->arch);
0625     tlb_ubc->flush_required = false;
0626     tlb_ubc->writable = false;
0627 }
0628 
0629 /* Flush iff there are potentially writable TLB entries that can race with IO */
0630 void try_to_unmap_flush_dirty(void)
0631 {
0632     struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
0633 
0634     if (tlb_ubc->writable)
0635         try_to_unmap_flush();
0636 }
0637 
0638 /*
0639  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
0640  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
0641  */
0642 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT   16
0643 #define TLB_FLUSH_BATCH_PENDING_MASK            \
0644     ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
0645 #define TLB_FLUSH_BATCH_PENDING_LARGE           \
0646     (TLB_FLUSH_BATCH_PENDING_MASK / 2)
0647 
0648 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
0649 {
0650     struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
0651     int batch, nbatch;
0652 
0653     arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
0654     tlb_ubc->flush_required = true;
0655 
0656     /*
0657      * Ensure compiler does not re-order the setting of tlb_flush_batched
0658      * before the PTE is cleared.
0659      */
0660     barrier();
0661     batch = atomic_read(&mm->tlb_flush_batched);
0662 retry:
0663     if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
0664         /*
0665          * Prevent `pending' from catching up with `flushed' because of
0666          * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
0667          * `pending' becomes large.
0668          */
0669         nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
0670         if (nbatch != batch) {
0671             batch = nbatch;
0672             goto retry;
0673         }
0674     } else {
0675         atomic_inc(&mm->tlb_flush_batched);
0676     }
0677 
0678     /*
0679      * If the PTE was dirty then it's best to assume it's writable. The
0680      * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
0681      * before the page is queued for IO.
0682      */
0683     if (writable)
0684         tlb_ubc->writable = true;
0685 }
0686 
0687 /*
0688  * Returns true if the TLB flush should be deferred to the end of a batch of
0689  * unmap operations to reduce IPIs.
0690  */
0691 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
0692 {
0693     bool should_defer = false;
0694 
0695     if (!(flags & TTU_BATCH_FLUSH))
0696         return false;
0697 
0698     /* If remote CPUs need to be flushed then defer batch the flush */
0699     if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
0700         should_defer = true;
0701     put_cpu();
0702 
0703     return should_defer;
0704 }
0705 
0706 /*
0707  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
0708  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
0709  * operation such as mprotect or munmap to race between reclaim unmapping
0710  * the page and flushing the page. If this race occurs, it potentially allows
0711  * access to data via a stale TLB entry. Tracking all mm's that have TLB
0712  * batching in flight would be expensive during reclaim so instead track
0713  * whether TLB batching occurred in the past and if so then do a flush here
0714  * if required. This will cost one additional flush per reclaim cycle paid
0715  * by the first operation at risk such as mprotect and mumap.
0716  *
0717  * This must be called under the PTL so that an access to tlb_flush_batched
0718  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
0719  * via the PTL.
0720  */
0721 void flush_tlb_batched_pending(struct mm_struct *mm)
0722 {
0723     int batch = atomic_read(&mm->tlb_flush_batched);
0724     int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
0725     int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
0726 
0727     if (pending != flushed) {
0728         flush_tlb_mm(mm);
0729         /*
0730          * If the new TLB flushing is pending during flushing, leave
0731          * mm->tlb_flush_batched as is, to avoid losing flushing.
0732          */
0733         atomic_cmpxchg(&mm->tlb_flush_batched, batch,
0734                    pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
0735     }
0736 }
0737 #else
0738 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
0739 {
0740 }
0741 
0742 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
0743 {
0744     return false;
0745 }
0746 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
0747 
0748 /*
0749  * At what user virtual address is page expected in vma?
0750  * Caller should check the page is actually part of the vma.
0751  */
0752 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
0753 {
0754     struct folio *folio = page_folio(page);
0755     if (folio_test_anon(folio)) {
0756         struct anon_vma *page__anon_vma = folio_anon_vma(folio);
0757         /*
0758          * Note: swapoff's unuse_vma() is more efficient with this
0759          * check, and needs it to match anon_vma when KSM is active.
0760          */
0761         if (!vma->anon_vma || !page__anon_vma ||
0762             vma->anon_vma->root != page__anon_vma->root)
0763             return -EFAULT;
0764     } else if (!vma->vm_file) {
0765         return -EFAULT;
0766     } else if (vma->vm_file->f_mapping != folio->mapping) {
0767         return -EFAULT;
0768     }
0769 
0770     return vma_address(page, vma);
0771 }
0772 
0773 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
0774 {
0775     pgd_t *pgd;
0776     p4d_t *p4d;
0777     pud_t *pud;
0778     pmd_t *pmd = NULL;
0779     pmd_t pmde;
0780 
0781     pgd = pgd_offset(mm, address);
0782     if (!pgd_present(*pgd))
0783         goto out;
0784 
0785     p4d = p4d_offset(pgd, address);
0786     if (!p4d_present(*p4d))
0787         goto out;
0788 
0789     pud = pud_offset(p4d, address);
0790     if (!pud_present(*pud))
0791         goto out;
0792 
0793     pmd = pmd_offset(pud, address);
0794     /*
0795      * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
0796      * without holding anon_vma lock for write.  So when looking for a
0797      * genuine pmde (in which to find pte), test present and !THP together.
0798      */
0799     pmde = *pmd;
0800     barrier();
0801     if (!pmd_present(pmde) || pmd_trans_huge(pmde))
0802         pmd = NULL;
0803 out:
0804     return pmd;
0805 }
0806 
0807 struct folio_referenced_arg {
0808     int mapcount;
0809     int referenced;
0810     unsigned long vm_flags;
0811     struct mem_cgroup *memcg;
0812 };
0813 /*
0814  * arg: folio_referenced_arg will be passed
0815  */
0816 static bool folio_referenced_one(struct folio *folio,
0817         struct vm_area_struct *vma, unsigned long address, void *arg)
0818 {
0819     struct folio_referenced_arg *pra = arg;
0820     DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
0821     int referenced = 0;
0822 
0823     while (page_vma_mapped_walk(&pvmw)) {
0824         address = pvmw.address;
0825 
0826         if ((vma->vm_flags & VM_LOCKED) &&
0827             (!folio_test_large(folio) || !pvmw.pte)) {
0828             /* Restore the mlock which got missed */
0829             mlock_vma_folio(folio, vma, !pvmw.pte);
0830             page_vma_mapped_walk_done(&pvmw);
0831             pra->vm_flags |= VM_LOCKED;
0832             return false; /* To break the loop */
0833         }
0834 
0835         if (pvmw.pte) {
0836             if (ptep_clear_flush_young_notify(vma, address,
0837                         pvmw.pte)) {
0838                 /*
0839                  * Don't treat a reference through
0840                  * a sequentially read mapping as such.
0841                  * If the folio has been used in another mapping,
0842                  * we will catch it; if this other mapping is
0843                  * already gone, the unmap path will have set
0844                  * the referenced flag or activated the folio.
0845                  */
0846                 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
0847                     referenced++;
0848             }
0849         } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
0850             if (pmdp_clear_flush_young_notify(vma, address,
0851                         pvmw.pmd))
0852                 referenced++;
0853         } else {
0854             /* unexpected pmd-mapped folio? */
0855             WARN_ON_ONCE(1);
0856         }
0857 
0858         pra->mapcount--;
0859     }
0860 
0861     if (referenced)
0862         folio_clear_idle(folio);
0863     if (folio_test_clear_young(folio))
0864         referenced++;
0865 
0866     if (referenced) {
0867         pra->referenced++;
0868         pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
0869     }
0870 
0871     if (!pra->mapcount)
0872         return false; /* To break the loop */
0873 
0874     return true;
0875 }
0876 
0877 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
0878 {
0879     struct folio_referenced_arg *pra = arg;
0880     struct mem_cgroup *memcg = pra->memcg;
0881 
0882     if (!mm_match_cgroup(vma->vm_mm, memcg))
0883         return true;
0884 
0885     return false;
0886 }
0887 
0888 /**
0889  * folio_referenced() - Test if the folio was referenced.
0890  * @folio: The folio to test.
0891  * @is_locked: Caller holds lock on the folio.
0892  * @memcg: target memory cgroup
0893  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
0894  *
0895  * Quick test_and_clear_referenced for all mappings of a folio,
0896  *
0897  * Return: The number of mappings which referenced the folio. Return -1 if
0898  * the function bailed out due to rmap lock contention.
0899  */
0900 int folio_referenced(struct folio *folio, int is_locked,
0901              struct mem_cgroup *memcg, unsigned long *vm_flags)
0902 {
0903     int we_locked = 0;
0904     struct folio_referenced_arg pra = {
0905         .mapcount = folio_mapcount(folio),
0906         .memcg = memcg,
0907     };
0908     struct rmap_walk_control rwc = {
0909         .rmap_one = folio_referenced_one,
0910         .arg = (void *)&pra,
0911         .anon_lock = folio_lock_anon_vma_read,
0912         .try_lock = true,
0913     };
0914 
0915     *vm_flags = 0;
0916     if (!pra.mapcount)
0917         return 0;
0918 
0919     if (!folio_raw_mapping(folio))
0920         return 0;
0921 
0922     if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
0923         we_locked = folio_trylock(folio);
0924         if (!we_locked)
0925             return 1;
0926     }
0927 
0928     /*
0929      * If we are reclaiming on behalf of a cgroup, skip
0930      * counting on behalf of references from different
0931      * cgroups
0932      */
0933     if (memcg) {
0934         rwc.invalid_vma = invalid_folio_referenced_vma;
0935     }
0936 
0937     rmap_walk(folio, &rwc);
0938     *vm_flags = pra.vm_flags;
0939 
0940     if (we_locked)
0941         folio_unlock(folio);
0942 
0943     return rwc.contended ? -1 : pra.referenced;
0944 }
0945 
0946 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
0947 {
0948     int cleaned = 0;
0949     struct vm_area_struct *vma = pvmw->vma;
0950     struct mmu_notifier_range range;
0951     unsigned long address = pvmw->address;
0952 
0953     /*
0954      * We have to assume the worse case ie pmd for invalidation. Note that
0955      * the folio can not be freed from this function.
0956      */
0957     mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
0958                 0, vma, vma->vm_mm, address,
0959                 vma_address_end(pvmw));
0960     mmu_notifier_invalidate_range_start(&range);
0961 
0962     while (page_vma_mapped_walk(pvmw)) {
0963         int ret = 0;
0964 
0965         address = pvmw->address;
0966         if (pvmw->pte) {
0967             pte_t entry;
0968             pte_t *pte = pvmw->pte;
0969 
0970             if (!pte_dirty(*pte) && !pte_write(*pte))
0971                 continue;
0972 
0973             flush_cache_page(vma, address, pte_pfn(*pte));
0974             entry = ptep_clear_flush(vma, address, pte);
0975             entry = pte_wrprotect(entry);
0976             entry = pte_mkclean(entry);
0977             set_pte_at(vma->vm_mm, address, pte, entry);
0978             ret = 1;
0979         } else {
0980 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0981             pmd_t *pmd = pvmw->pmd;
0982             pmd_t entry;
0983 
0984             if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
0985                 continue;
0986 
0987             flush_cache_range(vma, address,
0988                       address + HPAGE_PMD_SIZE);
0989             entry = pmdp_invalidate(vma, address, pmd);
0990             entry = pmd_wrprotect(entry);
0991             entry = pmd_mkclean(entry);
0992             set_pmd_at(vma->vm_mm, address, pmd, entry);
0993             ret = 1;
0994 #else
0995             /* unexpected pmd-mapped folio? */
0996             WARN_ON_ONCE(1);
0997 #endif
0998         }
0999 
1000         /*
1001          * No need to call mmu_notifier_invalidate_range() as we are
1002          * downgrading page table protection not changing it to point
1003          * to a new page.
1004          *
1005          * See Documentation/mm/mmu_notifier.rst
1006          */
1007         if (ret)
1008             cleaned++;
1009     }
1010 
1011     mmu_notifier_invalidate_range_end(&range);
1012 
1013     return cleaned;
1014 }
1015 
1016 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1017                  unsigned long address, void *arg)
1018 {
1019     DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1020     int *cleaned = arg;
1021 
1022     *cleaned += page_vma_mkclean_one(&pvmw);
1023 
1024     return true;
1025 }
1026 
1027 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1028 {
1029     if (vma->vm_flags & VM_SHARED)
1030         return false;
1031 
1032     return true;
1033 }
1034 
1035 int folio_mkclean(struct folio *folio)
1036 {
1037     int cleaned = 0;
1038     struct address_space *mapping;
1039     struct rmap_walk_control rwc = {
1040         .arg = (void *)&cleaned,
1041         .rmap_one = page_mkclean_one,
1042         .invalid_vma = invalid_mkclean_vma,
1043     };
1044 
1045     BUG_ON(!folio_test_locked(folio));
1046 
1047     if (!folio_mapped(folio))
1048         return 0;
1049 
1050     mapping = folio_mapping(folio);
1051     if (!mapping)
1052         return 0;
1053 
1054     rmap_walk(folio, &rwc);
1055 
1056     return cleaned;
1057 }
1058 EXPORT_SYMBOL_GPL(folio_mkclean);
1059 
1060 /**
1061  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1062  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1063  *                     within the @vma of shared mappings. And since clean PTEs
1064  *                     should also be readonly, write protects them too.
1065  * @pfn: start pfn.
1066  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1067  * @pgoff: page offset that the @pfn mapped with.
1068  * @vma: vma that @pfn mapped within.
1069  *
1070  * Returns the number of cleaned PTEs (including PMDs).
1071  */
1072 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1073               struct vm_area_struct *vma)
1074 {
1075     struct page_vma_mapped_walk pvmw = {
1076         .pfn        = pfn,
1077         .nr_pages   = nr_pages,
1078         .pgoff      = pgoff,
1079         .vma        = vma,
1080         .flags      = PVMW_SYNC,
1081     };
1082 
1083     if (invalid_mkclean_vma(vma, NULL))
1084         return 0;
1085 
1086     pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1087     VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1088 
1089     return page_vma_mkclean_one(&pvmw);
1090 }
1091 
1092 /**
1093  * page_move_anon_rmap - move a page to our anon_vma
1094  * @page:   the page to move to our anon_vma
1095  * @vma:    the vma the page belongs to
1096  *
1097  * When a page belongs exclusively to one process after a COW event,
1098  * that page can be moved into the anon_vma that belongs to just that
1099  * process, so the rmap code will not search the parent or sibling
1100  * processes.
1101  */
1102 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1103 {
1104     struct anon_vma *anon_vma = vma->anon_vma;
1105     struct page *subpage = page;
1106 
1107     page = compound_head(page);
1108 
1109     VM_BUG_ON_PAGE(!PageLocked(page), page);
1110     VM_BUG_ON_VMA(!anon_vma, vma);
1111 
1112     anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1113     /*
1114      * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1115      * simultaneously, so a concurrent reader (eg folio_referenced()'s
1116      * folio_test_anon()) will not see one without the other.
1117      */
1118     WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1119     SetPageAnonExclusive(subpage);
1120 }
1121 
1122 /**
1123  * __page_set_anon_rmap - set up new anonymous rmap
1124  * @page:   Page or Hugepage to add to rmap
1125  * @vma:    VM area to add page to.
1126  * @address:    User virtual address of the mapping 
1127  * @exclusive:  the page is exclusively owned by the current process
1128  */
1129 static void __page_set_anon_rmap(struct page *page,
1130     struct vm_area_struct *vma, unsigned long address, int exclusive)
1131 {
1132     struct anon_vma *anon_vma = vma->anon_vma;
1133 
1134     BUG_ON(!anon_vma);
1135 
1136     if (PageAnon(page))
1137         goto out;
1138 
1139     /*
1140      * If the page isn't exclusively mapped into this vma,
1141      * we must use the _oldest_ possible anon_vma for the
1142      * page mapping!
1143      */
1144     if (!exclusive)
1145         anon_vma = anon_vma->root;
1146 
1147     /*
1148      * page_idle does a lockless/optimistic rmap scan on page->mapping.
1149      * Make sure the compiler doesn't split the stores of anon_vma and
1150      * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1151      * could mistake the mapping for a struct address_space and crash.
1152      */
1153     anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1154     WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1155     page->index = linear_page_index(vma, address);
1156 out:
1157     if (exclusive)
1158         SetPageAnonExclusive(page);
1159 }
1160 
1161 /**
1162  * __page_check_anon_rmap - sanity check anonymous rmap addition
1163  * @page:   the page to add the mapping to
1164  * @vma:    the vm area in which the mapping is added
1165  * @address:    the user virtual address mapped
1166  */
1167 static void __page_check_anon_rmap(struct page *page,
1168     struct vm_area_struct *vma, unsigned long address)
1169 {
1170     struct folio *folio = page_folio(page);
1171     /*
1172      * The page's anon-rmap details (mapping and index) are guaranteed to
1173      * be set up correctly at this point.
1174      *
1175      * We have exclusion against page_add_anon_rmap because the caller
1176      * always holds the page locked.
1177      *
1178      * We have exclusion against page_add_new_anon_rmap because those pages
1179      * are initially only visible via the pagetables, and the pte is locked
1180      * over the call to page_add_new_anon_rmap.
1181      */
1182     VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1183             folio);
1184     VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1185                page);
1186 }
1187 
1188 /**
1189  * page_add_anon_rmap - add pte mapping to an anonymous page
1190  * @page:   the page to add the mapping to
1191  * @vma:    the vm area in which the mapping is added
1192  * @address:    the user virtual address mapped
1193  * @flags:  the rmap flags
1194  *
1195  * The caller needs to hold the pte lock, and the page must be locked in
1196  * the anon_vma case: to serialize mapping,index checking after setting,
1197  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1198  * (but PageKsm is never downgraded to PageAnon).
1199  */
1200 void page_add_anon_rmap(struct page *page,
1201     struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1202 {
1203     bool compound = flags & RMAP_COMPOUND;
1204     bool first;
1205 
1206     if (unlikely(PageKsm(page)))
1207         lock_page_memcg(page);
1208     else
1209         VM_BUG_ON_PAGE(!PageLocked(page), page);
1210 
1211     if (compound) {
1212         atomic_t *mapcount;
1213         VM_BUG_ON_PAGE(!PageLocked(page), page);
1214         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1215         mapcount = compound_mapcount_ptr(page);
1216         first = atomic_inc_and_test(mapcount);
1217     } else {
1218         first = atomic_inc_and_test(&page->_mapcount);
1219     }
1220     VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1221     VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1222 
1223     if (first) {
1224         int nr = compound ? thp_nr_pages(page) : 1;
1225         /*
1226          * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1227          * these counters are not modified in interrupt context, and
1228          * pte lock(a spinlock) is held, which implies preemption
1229          * disabled.
1230          */
1231         if (compound)
1232             __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1233         __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1234     }
1235 
1236     if (unlikely(PageKsm(page)))
1237         unlock_page_memcg(page);
1238 
1239     /* address might be in next vma when migration races vma_adjust */
1240     else if (first)
1241         __page_set_anon_rmap(page, vma, address,
1242                      !!(flags & RMAP_EXCLUSIVE));
1243     else
1244         __page_check_anon_rmap(page, vma, address);
1245 
1246     mlock_vma_page(page, vma, compound);
1247 }
1248 
1249 /**
1250  * page_add_new_anon_rmap - add mapping to a new anonymous page
1251  * @page:   the page to add the mapping to
1252  * @vma:    the vm area in which the mapping is added
1253  * @address:    the user virtual address mapped
1254  *
1255  * If it's a compound page, it is accounted as a compound page. As the page
1256  * is new, it's assume to get mapped exclusively by a single process.
1257  *
1258  * Same as page_add_anon_rmap but must only be called on *new* pages.
1259  * This means the inc-and-test can be bypassed.
1260  * Page does not have to be locked.
1261  */
1262 void page_add_new_anon_rmap(struct page *page,
1263     struct vm_area_struct *vma, unsigned long address)
1264 {
1265     const bool compound = PageCompound(page);
1266     int nr = compound ? thp_nr_pages(page) : 1;
1267 
1268     VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1269     __SetPageSwapBacked(page);
1270     if (compound) {
1271         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1272         /* increment count (starts at -1) */
1273         atomic_set(compound_mapcount_ptr(page), 0);
1274         atomic_set(compound_pincount_ptr(page), 0);
1275 
1276         __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1277     } else {
1278         /* increment count (starts at -1) */
1279         atomic_set(&page->_mapcount, 0);
1280     }
1281     __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1282     __page_set_anon_rmap(page, vma, address, 1);
1283 }
1284 
1285 /**
1286  * page_add_file_rmap - add pte mapping to a file page
1287  * @page:   the page to add the mapping to
1288  * @vma:    the vm area in which the mapping is added
1289  * @compound:   charge the page as compound or small page
1290  *
1291  * The caller needs to hold the pte lock.
1292  */
1293 void page_add_file_rmap(struct page *page,
1294     struct vm_area_struct *vma, bool compound)
1295 {
1296     int i, nr = 0;
1297 
1298     VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1299     lock_page_memcg(page);
1300     if (compound && PageTransHuge(page)) {
1301         int nr_pages = thp_nr_pages(page);
1302 
1303         for (i = 0; i < nr_pages; i++) {
1304             if (atomic_inc_and_test(&page[i]._mapcount))
1305                 nr++;
1306         }
1307         if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1308             goto out;
1309 
1310         /*
1311          * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
1312          * but page lock is held by all page_add_file_rmap() compound
1313          * callers, and SetPageDoubleMap below warns if !PageLocked:
1314          * so here is a place that DoubleMap can be safely cleared.
1315          */
1316         VM_WARN_ON_ONCE(!PageLocked(page));
1317         if (nr == nr_pages && PageDoubleMap(page))
1318             ClearPageDoubleMap(page);
1319 
1320         if (PageSwapBacked(page))
1321             __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1322                         nr_pages);
1323         else
1324             __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1325                         nr_pages);
1326     } else {
1327         if (PageTransCompound(page) && page_mapping(page)) {
1328             VM_WARN_ON_ONCE(!PageLocked(page));
1329             SetPageDoubleMap(compound_head(page));
1330         }
1331         if (atomic_inc_and_test(&page->_mapcount))
1332             nr++;
1333     }
1334 out:
1335     if (nr)
1336         __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1337     unlock_page_memcg(page);
1338 
1339     mlock_vma_page(page, vma, compound);
1340 }
1341 
1342 static void page_remove_file_rmap(struct page *page, bool compound)
1343 {
1344     int i, nr = 0;
1345 
1346     VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1347 
1348     /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1349     if (unlikely(PageHuge(page))) {
1350         /* hugetlb pages are always mapped with pmds */
1351         atomic_dec(compound_mapcount_ptr(page));
1352         return;
1353     }
1354 
1355     /* page still mapped by someone else? */
1356     if (compound && PageTransHuge(page)) {
1357         int nr_pages = thp_nr_pages(page);
1358 
1359         for (i = 0; i < nr_pages; i++) {
1360             if (atomic_add_negative(-1, &page[i]._mapcount))
1361                 nr++;
1362         }
1363         if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1364             goto out;
1365         if (PageSwapBacked(page))
1366             __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1367                         -nr_pages);
1368         else
1369             __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1370                         -nr_pages);
1371     } else {
1372         if (atomic_add_negative(-1, &page->_mapcount))
1373             nr++;
1374     }
1375 out:
1376     if (nr)
1377         __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1378 }
1379 
1380 static void page_remove_anon_compound_rmap(struct page *page)
1381 {
1382     int i, nr;
1383 
1384     if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1385         return;
1386 
1387     /* Hugepages are not counted in NR_ANON_PAGES for now. */
1388     if (unlikely(PageHuge(page)))
1389         return;
1390 
1391     if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1392         return;
1393 
1394     __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1395 
1396     if (TestClearPageDoubleMap(page)) {
1397         /*
1398          * Subpages can be mapped with PTEs too. Check how many of
1399          * them are still mapped.
1400          */
1401         for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1402             if (atomic_add_negative(-1, &page[i]._mapcount))
1403                 nr++;
1404         }
1405 
1406         /*
1407          * Queue the page for deferred split if at least one small
1408          * page of the compound page is unmapped, but at least one
1409          * small page is still mapped.
1410          */
1411         if (nr && nr < thp_nr_pages(page))
1412             deferred_split_huge_page(page);
1413     } else {
1414         nr = thp_nr_pages(page);
1415     }
1416 
1417     if (nr)
1418         __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1419 }
1420 
1421 /**
1422  * page_remove_rmap - take down pte mapping from a page
1423  * @page:   page to remove mapping from
1424  * @vma:    the vm area from which the mapping is removed
1425  * @compound:   uncharge the page as compound or small page
1426  *
1427  * The caller needs to hold the pte lock.
1428  */
1429 void page_remove_rmap(struct page *page,
1430     struct vm_area_struct *vma, bool compound)
1431 {
1432     lock_page_memcg(page);
1433 
1434     if (!PageAnon(page)) {
1435         page_remove_file_rmap(page, compound);
1436         goto out;
1437     }
1438 
1439     if (compound) {
1440         page_remove_anon_compound_rmap(page);
1441         goto out;
1442     }
1443 
1444     /* page still mapped by someone else? */
1445     if (!atomic_add_negative(-1, &page->_mapcount))
1446         goto out;
1447 
1448     /*
1449      * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1450      * these counters are not modified in interrupt context, and
1451      * pte lock(a spinlock) is held, which implies preemption disabled.
1452      */
1453     __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1454 
1455     if (PageTransCompound(page))
1456         deferred_split_huge_page(compound_head(page));
1457 
1458     /*
1459      * It would be tidy to reset the PageAnon mapping here,
1460      * but that might overwrite a racing page_add_anon_rmap
1461      * which increments mapcount after us but sets mapping
1462      * before us: so leave the reset to free_unref_page,
1463      * and remember that it's only reliable while mapped.
1464      * Leaving it set also helps swapoff to reinstate ptes
1465      * faster for those pages still in swapcache.
1466      */
1467 out:
1468     unlock_page_memcg(page);
1469 
1470     munlock_vma_page(page, vma, compound);
1471 }
1472 
1473 /*
1474  * @arg: enum ttu_flags will be passed to this argument
1475  */
1476 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1477              unsigned long address, void *arg)
1478 {
1479     struct mm_struct *mm = vma->vm_mm;
1480     DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1481     pte_t pteval;
1482     struct page *subpage;
1483     bool anon_exclusive, ret = true;
1484     struct mmu_notifier_range range;
1485     enum ttu_flags flags = (enum ttu_flags)(long)arg;
1486 
1487     /*
1488      * When racing against e.g. zap_pte_range() on another cpu,
1489      * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1490      * try_to_unmap() may return before page_mapped() has become false,
1491      * if page table locking is skipped: use TTU_SYNC to wait for that.
1492      */
1493     if (flags & TTU_SYNC)
1494         pvmw.flags = PVMW_SYNC;
1495 
1496     if (flags & TTU_SPLIT_HUGE_PMD)
1497         split_huge_pmd_address(vma, address, false, folio);
1498 
1499     /*
1500      * For THP, we have to assume the worse case ie pmd for invalidation.
1501      * For hugetlb, it could be much worse if we need to do pud
1502      * invalidation in the case of pmd sharing.
1503      *
1504      * Note that the folio can not be freed in this function as call of
1505      * try_to_unmap() must hold a reference on the folio.
1506      */
1507     range.end = vma_address_end(&pvmw);
1508     mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1509                 address, range.end);
1510     if (folio_test_hugetlb(folio)) {
1511         /*
1512          * If sharing is possible, start and end will be adjusted
1513          * accordingly.
1514          */
1515         adjust_range_if_pmd_sharing_possible(vma, &range.start,
1516                              &range.end);
1517     }
1518     mmu_notifier_invalidate_range_start(&range);
1519 
1520     while (page_vma_mapped_walk(&pvmw)) {
1521         /* Unexpected PMD-mapped THP? */
1522         VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1523 
1524         /*
1525          * If the folio is in an mlock()d vma, we must not swap it out.
1526          */
1527         if (!(flags & TTU_IGNORE_MLOCK) &&
1528             (vma->vm_flags & VM_LOCKED)) {
1529             /* Restore the mlock which got missed */
1530             mlock_vma_folio(folio, vma, false);
1531             page_vma_mapped_walk_done(&pvmw);
1532             ret = false;
1533             break;
1534         }
1535 
1536         subpage = folio_page(folio,
1537                     pte_pfn(*pvmw.pte) - folio_pfn(folio));
1538         address = pvmw.address;
1539         anon_exclusive = folio_test_anon(folio) &&
1540                  PageAnonExclusive(subpage);
1541 
1542         if (folio_test_hugetlb(folio)) {
1543             bool anon = folio_test_anon(folio);
1544 
1545             /*
1546              * The try_to_unmap() is only passed a hugetlb page
1547              * in the case where the hugetlb page is poisoned.
1548              */
1549             VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1550             /*
1551              * huge_pmd_unshare may unmap an entire PMD page.
1552              * There is no way of knowing exactly which PMDs may
1553              * be cached for this mm, so we must flush them all.
1554              * start/end were already adjusted above to cover this
1555              * range.
1556              */
1557             flush_cache_range(vma, range.start, range.end);
1558 
1559             /*
1560              * To call huge_pmd_unshare, i_mmap_rwsem must be
1561              * held in write mode.  Caller needs to explicitly
1562              * do this outside rmap routines.
1563              */
1564             VM_BUG_ON(!anon && !(flags & TTU_RMAP_LOCKED));
1565             if (!anon && huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1566                 flush_tlb_range(vma, range.start, range.end);
1567                 mmu_notifier_invalidate_range(mm, range.start,
1568                                   range.end);
1569 
1570                 /*
1571                  * The ref count of the PMD page was dropped
1572                  * which is part of the way map counting
1573                  * is done for shared PMDs.  Return 'true'
1574                  * here.  When there is no other sharing,
1575                  * huge_pmd_unshare returns false and we will
1576                  * unmap the actual page and drop map count
1577                  * to zero.
1578                  */
1579                 page_vma_mapped_walk_done(&pvmw);
1580                 break;
1581             }
1582             pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1583         } else {
1584             flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1585             /*
1586              * Nuke the page table entry. When having to clear
1587              * PageAnonExclusive(), we always have to flush.
1588              */
1589             if (should_defer_flush(mm, flags) && !anon_exclusive) {
1590                 /*
1591                  * We clear the PTE but do not flush so potentially
1592                  * a remote CPU could still be writing to the folio.
1593                  * If the entry was previously clean then the
1594                  * architecture must guarantee that a clear->dirty
1595                  * transition on a cached TLB entry is written through
1596                  * and traps if the PTE is unmapped.
1597                  */
1598                 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1599 
1600                 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1601             } else {
1602                 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1603             }
1604         }
1605 
1606         /*
1607          * Now the pte is cleared. If this pte was uffd-wp armed,
1608          * we may want to replace a none pte with a marker pte if
1609          * it's file-backed, so we don't lose the tracking info.
1610          */
1611         pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1612 
1613         /* Set the dirty flag on the folio now the pte is gone. */
1614         if (pte_dirty(pteval))
1615             folio_mark_dirty(folio);
1616 
1617         /* Update high watermark before we lower rss */
1618         update_hiwater_rss(mm);
1619 
1620         if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
1621             pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1622             if (folio_test_hugetlb(folio)) {
1623                 hugetlb_count_sub(folio_nr_pages(folio), mm);
1624                 set_huge_pte_at(mm, address, pvmw.pte, pteval);
1625             } else {
1626                 dec_mm_counter(mm, mm_counter(&folio->page));
1627                 set_pte_at(mm, address, pvmw.pte, pteval);
1628             }
1629 
1630         } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1631             /*
1632              * The guest indicated that the page content is of no
1633              * interest anymore. Simply discard the pte, vmscan
1634              * will take care of the rest.
1635              * A future reference will then fault in a new zero
1636              * page. When userfaultfd is active, we must not drop
1637              * this page though, as its main user (postcopy
1638              * migration) will not expect userfaults on already
1639              * copied pages.
1640              */
1641             dec_mm_counter(mm, mm_counter(&folio->page));
1642             /* We have to invalidate as we cleared the pte */
1643             mmu_notifier_invalidate_range(mm, address,
1644                               address + PAGE_SIZE);
1645         } else if (folio_test_anon(folio)) {
1646             swp_entry_t entry = { .val = page_private(subpage) };
1647             pte_t swp_pte;
1648             /*
1649              * Store the swap location in the pte.
1650              * See handle_pte_fault() ...
1651              */
1652             if (unlikely(folio_test_swapbacked(folio) !=
1653                     folio_test_swapcache(folio))) {
1654                 WARN_ON_ONCE(1);
1655                 ret = false;
1656                 /* We have to invalidate as we cleared the pte */
1657                 mmu_notifier_invalidate_range(mm, address,
1658                             address + PAGE_SIZE);
1659                 page_vma_mapped_walk_done(&pvmw);
1660                 break;
1661             }
1662 
1663             /* MADV_FREE page check */
1664             if (!folio_test_swapbacked(folio)) {
1665                 int ref_count, map_count;
1666 
1667                 /*
1668                  * Synchronize with gup_pte_range():
1669                  * - clear PTE; barrier; read refcount
1670                  * - inc refcount; barrier; read PTE
1671                  */
1672                 smp_mb();
1673 
1674                 ref_count = folio_ref_count(folio);
1675                 map_count = folio_mapcount(folio);
1676 
1677                 /*
1678                  * Order reads for page refcount and dirty flag
1679                  * (see comments in __remove_mapping()).
1680                  */
1681                 smp_rmb();
1682 
1683                 /*
1684                  * The only page refs must be one from isolation
1685                  * plus the rmap(s) (dropped by discard:).
1686                  */
1687                 if (ref_count == 1 + map_count &&
1688                     !folio_test_dirty(folio)) {
1689                     /* Invalidate as we cleared the pte */
1690                     mmu_notifier_invalidate_range(mm,
1691                         address, address + PAGE_SIZE);
1692                     dec_mm_counter(mm, MM_ANONPAGES);
1693                     goto discard;
1694                 }
1695 
1696                 /*
1697                  * If the folio was redirtied, it cannot be
1698                  * discarded. Remap the page to page table.
1699                  */
1700                 set_pte_at(mm, address, pvmw.pte, pteval);
1701                 folio_set_swapbacked(folio);
1702                 ret = false;
1703                 page_vma_mapped_walk_done(&pvmw);
1704                 break;
1705             }
1706 
1707             if (swap_duplicate(entry) < 0) {
1708                 set_pte_at(mm, address, pvmw.pte, pteval);
1709                 ret = false;
1710                 page_vma_mapped_walk_done(&pvmw);
1711                 break;
1712             }
1713             if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1714                 swap_free(entry);
1715                 set_pte_at(mm, address, pvmw.pte, pteval);
1716                 ret = false;
1717                 page_vma_mapped_walk_done(&pvmw);
1718                 break;
1719             }
1720             if (anon_exclusive &&
1721                 page_try_share_anon_rmap(subpage)) {
1722                 swap_free(entry);
1723                 set_pte_at(mm, address, pvmw.pte, pteval);
1724                 ret = false;
1725                 page_vma_mapped_walk_done(&pvmw);
1726                 break;
1727             }
1728             /*
1729              * Note: We *don't* remember if the page was mapped
1730              * exclusively in the swap pte if the architecture
1731              * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In
1732              * that case, swapin code has to re-determine that
1733              * manually and might detect the page as possibly
1734              * shared, for example, if there are other references on
1735              * the page or if the page is under writeback. We made
1736              * sure that there are no GUP pins on the page that
1737              * would rely on it, so for GUP pins this is fine.
1738              */
1739             if (list_empty(&mm->mmlist)) {
1740                 spin_lock(&mmlist_lock);
1741                 if (list_empty(&mm->mmlist))
1742                     list_add(&mm->mmlist, &init_mm.mmlist);
1743                 spin_unlock(&mmlist_lock);
1744             }
1745             dec_mm_counter(mm, MM_ANONPAGES);
1746             inc_mm_counter(mm, MM_SWAPENTS);
1747             swp_pte = swp_entry_to_pte(entry);
1748             if (anon_exclusive)
1749                 swp_pte = pte_swp_mkexclusive(swp_pte);
1750             if (pte_soft_dirty(pteval))
1751                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1752             if (pte_uffd_wp(pteval))
1753                 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1754             set_pte_at(mm, address, pvmw.pte, swp_pte);
1755             /* Invalidate as we cleared the pte */
1756             mmu_notifier_invalidate_range(mm, address,
1757                               address + PAGE_SIZE);
1758         } else {
1759             /*
1760              * This is a locked file-backed folio,
1761              * so it cannot be removed from the page
1762              * cache and replaced by a new folio before
1763              * mmu_notifier_invalidate_range_end, so no
1764              * concurrent thread might update its page table
1765              * to point at a new folio while a device is
1766              * still using this folio.
1767              *
1768              * See Documentation/mm/mmu_notifier.rst
1769              */
1770             dec_mm_counter(mm, mm_counter_file(&folio->page));
1771         }
1772 discard:
1773         /*
1774          * No need to call mmu_notifier_invalidate_range() it has be
1775          * done above for all cases requiring it to happen under page
1776          * table lock before mmu_notifier_invalidate_range_end()
1777          *
1778          * See Documentation/mm/mmu_notifier.rst
1779          */
1780         page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1781         if (vma->vm_flags & VM_LOCKED)
1782             mlock_page_drain_local();
1783         folio_put(folio);
1784     }
1785 
1786     mmu_notifier_invalidate_range_end(&range);
1787 
1788     return ret;
1789 }
1790 
1791 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1792 {
1793     return vma_is_temporary_stack(vma);
1794 }
1795 
1796 static int page_not_mapped(struct folio *folio)
1797 {
1798     return !folio_mapped(folio);
1799 }
1800 
1801 /**
1802  * try_to_unmap - Try to remove all page table mappings to a folio.
1803  * @folio: The folio to unmap.
1804  * @flags: action and flags
1805  *
1806  * Tries to remove all the page table entries which are mapping this
1807  * folio.  It is the caller's responsibility to check if the folio is
1808  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1809  *
1810  * Context: Caller must hold the folio lock.
1811  */
1812 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1813 {
1814     struct rmap_walk_control rwc = {
1815         .rmap_one = try_to_unmap_one,
1816         .arg = (void *)flags,
1817         .done = page_not_mapped,
1818         .anon_lock = folio_lock_anon_vma_read,
1819     };
1820 
1821     if (flags & TTU_RMAP_LOCKED)
1822         rmap_walk_locked(folio, &rwc);
1823     else
1824         rmap_walk(folio, &rwc);
1825 }
1826 
1827 /*
1828  * @arg: enum ttu_flags will be passed to this argument.
1829  *
1830  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1831  * containing migration entries.
1832  */
1833 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1834              unsigned long address, void *arg)
1835 {
1836     struct mm_struct *mm = vma->vm_mm;
1837     DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1838     pte_t pteval;
1839     struct page *subpage;
1840     bool anon_exclusive, ret = true;
1841     struct mmu_notifier_range range;
1842     enum ttu_flags flags = (enum ttu_flags)(long)arg;
1843 
1844     /*
1845      * When racing against e.g. zap_pte_range() on another cpu,
1846      * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1847      * try_to_migrate() may return before page_mapped() has become false,
1848      * if page table locking is skipped: use TTU_SYNC to wait for that.
1849      */
1850     if (flags & TTU_SYNC)
1851         pvmw.flags = PVMW_SYNC;
1852 
1853     /*
1854      * unmap_page() in mm/huge_memory.c is the only user of migration with
1855      * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1856      */
1857     if (flags & TTU_SPLIT_HUGE_PMD)
1858         split_huge_pmd_address(vma, address, true, folio);
1859 
1860     /*
1861      * For THP, we have to assume the worse case ie pmd for invalidation.
1862      * For hugetlb, it could be much worse if we need to do pud
1863      * invalidation in the case of pmd sharing.
1864      *
1865      * Note that the page can not be free in this function as call of
1866      * try_to_unmap() must hold a reference on the page.
1867      */
1868     range.end = vma_address_end(&pvmw);
1869     mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1870                 address, range.end);
1871     if (folio_test_hugetlb(folio)) {
1872         /*
1873          * If sharing is possible, start and end will be adjusted
1874          * accordingly.
1875          */
1876         adjust_range_if_pmd_sharing_possible(vma, &range.start,
1877                              &range.end);
1878     }
1879     mmu_notifier_invalidate_range_start(&range);
1880 
1881     while (page_vma_mapped_walk(&pvmw)) {
1882 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1883         /* PMD-mapped THP migration entry */
1884         if (!pvmw.pte) {
1885             subpage = folio_page(folio,
1886                 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1887             VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1888                     !folio_test_pmd_mappable(folio), folio);
1889 
1890             if (set_pmd_migration_entry(&pvmw, subpage)) {
1891                 ret = false;
1892                 page_vma_mapped_walk_done(&pvmw);
1893                 break;
1894             }
1895             continue;
1896         }
1897 #endif
1898 
1899         /* Unexpected PMD-mapped THP? */
1900         VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1901 
1902         if (folio_is_zone_device(folio)) {
1903             /*
1904              * Our PTE is a non-present device exclusive entry and
1905              * calculating the subpage as for the common case would
1906              * result in an invalid pointer.
1907              *
1908              * Since only PAGE_SIZE pages can currently be
1909              * migrated, just set it to page. This will need to be
1910              * changed when hugepage migrations to device private
1911              * memory are supported.
1912              */
1913             VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1914             subpage = &folio->page;
1915         } else {
1916             subpage = folio_page(folio,
1917                     pte_pfn(*pvmw.pte) - folio_pfn(folio));
1918         }
1919         address = pvmw.address;
1920         anon_exclusive = folio_test_anon(folio) &&
1921                  PageAnonExclusive(subpage);
1922 
1923         if (folio_test_hugetlb(folio)) {
1924             bool anon = folio_test_anon(folio);
1925 
1926             /*
1927              * huge_pmd_unshare may unmap an entire PMD page.
1928              * There is no way of knowing exactly which PMDs may
1929              * be cached for this mm, so we must flush them all.
1930              * start/end were already adjusted above to cover this
1931              * range.
1932              */
1933             flush_cache_range(vma, range.start, range.end);
1934 
1935             /*
1936              * To call huge_pmd_unshare, i_mmap_rwsem must be
1937              * held in write mode.  Caller needs to explicitly
1938              * do this outside rmap routines.
1939              */
1940             VM_BUG_ON(!anon && !(flags & TTU_RMAP_LOCKED));
1941             if (!anon && huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1942                 flush_tlb_range(vma, range.start, range.end);
1943                 mmu_notifier_invalidate_range(mm, range.start,
1944                                   range.end);
1945 
1946                 /*
1947                  * The ref count of the PMD page was dropped
1948                  * which is part of the way map counting
1949                  * is done for shared PMDs.  Return 'true'
1950                  * here.  When there is no other sharing,
1951                  * huge_pmd_unshare returns false and we will
1952                  * unmap the actual page and drop map count
1953                  * to zero.
1954                  */
1955                 page_vma_mapped_walk_done(&pvmw);
1956                 break;
1957             }
1958 
1959             /* Nuke the hugetlb page table entry */
1960             pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1961         } else {
1962             flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1963             /* Nuke the page table entry. */
1964             pteval = ptep_clear_flush(vma, address, pvmw.pte);
1965         }
1966 
1967         /* Set the dirty flag on the folio now the pte is gone. */
1968         if (pte_dirty(pteval))
1969             folio_mark_dirty(folio);
1970 
1971         /* Update high watermark before we lower rss */
1972         update_hiwater_rss(mm);
1973 
1974         if (folio_is_device_private(folio)) {
1975             unsigned long pfn = folio_pfn(folio);
1976             swp_entry_t entry;
1977             pte_t swp_pte;
1978 
1979             if (anon_exclusive)
1980                 BUG_ON(page_try_share_anon_rmap(subpage));
1981 
1982             /*
1983              * Store the pfn of the page in a special migration
1984              * pte. do_swap_page() will wait until the migration
1985              * pte is removed and then restart fault handling.
1986              */
1987             entry = pte_to_swp_entry(pteval);
1988             if (is_writable_device_private_entry(entry))
1989                 entry = make_writable_migration_entry(pfn);
1990             else if (anon_exclusive)
1991                 entry = make_readable_exclusive_migration_entry(pfn);
1992             else
1993                 entry = make_readable_migration_entry(pfn);
1994             swp_pte = swp_entry_to_pte(entry);
1995 
1996             /*
1997              * pteval maps a zone device page and is therefore
1998              * a swap pte.
1999              */
2000             if (pte_swp_soft_dirty(pteval))
2001                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2002             if (pte_swp_uffd_wp(pteval))
2003                 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2004             set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2005             trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2006                         compound_order(&folio->page));
2007             /*
2008              * No need to invalidate here it will synchronize on
2009              * against the special swap migration pte.
2010              */
2011         } else if (PageHWPoison(subpage)) {
2012             pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2013             if (folio_test_hugetlb(folio)) {
2014                 hugetlb_count_sub(folio_nr_pages(folio), mm);
2015                 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2016             } else {
2017                 dec_mm_counter(mm, mm_counter(&folio->page));
2018                 set_pte_at(mm, address, pvmw.pte, pteval);
2019             }
2020 
2021         } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2022             /*
2023              * The guest indicated that the page content is of no
2024              * interest anymore. Simply discard the pte, vmscan
2025              * will take care of the rest.
2026              * A future reference will then fault in a new zero
2027              * page. When userfaultfd is active, we must not drop
2028              * this page though, as its main user (postcopy
2029              * migration) will not expect userfaults on already
2030              * copied pages.
2031              */
2032             dec_mm_counter(mm, mm_counter(&folio->page));
2033             /* We have to invalidate as we cleared the pte */
2034             mmu_notifier_invalidate_range(mm, address,
2035                               address + PAGE_SIZE);
2036         } else {
2037             swp_entry_t entry;
2038             pte_t swp_pte;
2039 
2040             if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2041                 if (folio_test_hugetlb(folio))
2042                     set_huge_pte_at(mm, address, pvmw.pte, pteval);
2043                 else
2044                     set_pte_at(mm, address, pvmw.pte, pteval);
2045                 ret = false;
2046                 page_vma_mapped_walk_done(&pvmw);
2047                 break;
2048             }
2049             VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2050                        !anon_exclusive, subpage);
2051             if (anon_exclusive &&
2052                 page_try_share_anon_rmap(subpage)) {
2053                 if (folio_test_hugetlb(folio))
2054                     set_huge_pte_at(mm, address, pvmw.pte, pteval);
2055                 else
2056                     set_pte_at(mm, address, pvmw.pte, pteval);
2057                 ret = false;
2058                 page_vma_mapped_walk_done(&pvmw);
2059                 break;
2060             }
2061 
2062             /*
2063              * Store the pfn of the page in a special migration
2064              * pte. do_swap_page() will wait until the migration
2065              * pte is removed and then restart fault handling.
2066              */
2067             if (pte_write(pteval))
2068                 entry = make_writable_migration_entry(
2069                             page_to_pfn(subpage));
2070             else if (anon_exclusive)
2071                 entry = make_readable_exclusive_migration_entry(
2072                             page_to_pfn(subpage));
2073             else
2074                 entry = make_readable_migration_entry(
2075                             page_to_pfn(subpage));
2076 
2077             swp_pte = swp_entry_to_pte(entry);
2078             if (pte_soft_dirty(pteval))
2079                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2080             if (pte_uffd_wp(pteval))
2081                 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2082             if (folio_test_hugetlb(folio))
2083                 set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2084             else
2085                 set_pte_at(mm, address, pvmw.pte, swp_pte);
2086             trace_set_migration_pte(address, pte_val(swp_pte),
2087                         compound_order(&folio->page));
2088             /*
2089              * No need to invalidate here it will synchronize on
2090              * against the special swap migration pte.
2091              */
2092         }
2093 
2094         /*
2095          * No need to call mmu_notifier_invalidate_range() it has be
2096          * done above for all cases requiring it to happen under page
2097          * table lock before mmu_notifier_invalidate_range_end()
2098          *
2099          * See Documentation/mm/mmu_notifier.rst
2100          */
2101         page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2102         if (vma->vm_flags & VM_LOCKED)
2103             mlock_page_drain_local();
2104         folio_put(folio);
2105     }
2106 
2107     mmu_notifier_invalidate_range_end(&range);
2108 
2109     return ret;
2110 }
2111 
2112 /**
2113  * try_to_migrate - try to replace all page table mappings with swap entries
2114  * @folio: the folio to replace page table entries for
2115  * @flags: action and flags
2116  *
2117  * Tries to remove all the page table entries which are mapping this folio and
2118  * replace them with special swap entries. Caller must hold the folio lock.
2119  */
2120 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2121 {
2122     struct rmap_walk_control rwc = {
2123         .rmap_one = try_to_migrate_one,
2124         .arg = (void *)flags,
2125         .done = page_not_mapped,
2126         .anon_lock = folio_lock_anon_vma_read,
2127     };
2128 
2129     /*
2130      * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2131      * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
2132      */
2133     if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2134                     TTU_SYNC)))
2135         return;
2136 
2137     if (folio_is_zone_device(folio) &&
2138         (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2139         return;
2140 
2141     /*
2142      * During exec, a temporary VMA is setup and later moved.
2143      * The VMA is moved under the anon_vma lock but not the
2144      * page tables leading to a race where migration cannot
2145      * find the migration ptes. Rather than increasing the
2146      * locking requirements of exec(), migration skips
2147      * temporary VMAs until after exec() completes.
2148      */
2149     if (!folio_test_ksm(folio) && folio_test_anon(folio))
2150         rwc.invalid_vma = invalid_migration_vma;
2151 
2152     if (flags & TTU_RMAP_LOCKED)
2153         rmap_walk_locked(folio, &rwc);
2154     else
2155         rmap_walk(folio, &rwc);
2156 }
2157 
2158 #ifdef CONFIG_DEVICE_PRIVATE
2159 struct make_exclusive_args {
2160     struct mm_struct *mm;
2161     unsigned long address;
2162     void *owner;
2163     bool valid;
2164 };
2165 
2166 static bool page_make_device_exclusive_one(struct folio *folio,
2167         struct vm_area_struct *vma, unsigned long address, void *priv)
2168 {
2169     struct mm_struct *mm = vma->vm_mm;
2170     DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2171     struct make_exclusive_args *args = priv;
2172     pte_t pteval;
2173     struct page *subpage;
2174     bool ret = true;
2175     struct mmu_notifier_range range;
2176     swp_entry_t entry;
2177     pte_t swp_pte;
2178 
2179     mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2180                       vma->vm_mm, address, min(vma->vm_end,
2181                       address + folio_size(folio)),
2182                       args->owner);
2183     mmu_notifier_invalidate_range_start(&range);
2184 
2185     while (page_vma_mapped_walk(&pvmw)) {
2186         /* Unexpected PMD-mapped THP? */
2187         VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2188 
2189         if (!pte_present(*pvmw.pte)) {
2190             ret = false;
2191             page_vma_mapped_walk_done(&pvmw);
2192             break;
2193         }
2194 
2195         subpage = folio_page(folio,
2196                 pte_pfn(*pvmw.pte) - folio_pfn(folio));
2197         address = pvmw.address;
2198 
2199         /* Nuke the page table entry. */
2200         flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2201         pteval = ptep_clear_flush(vma, address, pvmw.pte);
2202 
2203         /* Set the dirty flag on the folio now the pte is gone. */
2204         if (pte_dirty(pteval))
2205             folio_mark_dirty(folio);
2206 
2207         /*
2208          * Check that our target page is still mapped at the expected
2209          * address.
2210          */
2211         if (args->mm == mm && args->address == address &&
2212             pte_write(pteval))
2213             args->valid = true;
2214 
2215         /*
2216          * Store the pfn of the page in a special migration
2217          * pte. do_swap_page() will wait until the migration
2218          * pte is removed and then restart fault handling.
2219          */
2220         if (pte_write(pteval))
2221             entry = make_writable_device_exclusive_entry(
2222                             page_to_pfn(subpage));
2223         else
2224             entry = make_readable_device_exclusive_entry(
2225                             page_to_pfn(subpage));
2226         swp_pte = swp_entry_to_pte(entry);
2227         if (pte_soft_dirty(pteval))
2228             swp_pte = pte_swp_mksoft_dirty(swp_pte);
2229         if (pte_uffd_wp(pteval))
2230             swp_pte = pte_swp_mkuffd_wp(swp_pte);
2231 
2232         set_pte_at(mm, address, pvmw.pte, swp_pte);
2233 
2234         /*
2235          * There is a reference on the page for the swap entry which has
2236          * been removed, so shouldn't take another.
2237          */
2238         page_remove_rmap(subpage, vma, false);
2239     }
2240 
2241     mmu_notifier_invalidate_range_end(&range);
2242 
2243     return ret;
2244 }
2245 
2246 /**
2247  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2248  * @folio: The folio to replace page table entries for.
2249  * @mm: The mm_struct where the folio is expected to be mapped.
2250  * @address: Address where the folio is expected to be mapped.
2251  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2252  *
2253  * Tries to remove all the page table entries which are mapping this
2254  * folio and replace them with special device exclusive swap entries to
2255  * grant a device exclusive access to the folio.
2256  *
2257  * Context: Caller must hold the folio lock.
2258  * Return: false if the page is still mapped, or if it could not be unmapped
2259  * from the expected address. Otherwise returns true (success).
2260  */
2261 static bool folio_make_device_exclusive(struct folio *folio,
2262         struct mm_struct *mm, unsigned long address, void *owner)
2263 {
2264     struct make_exclusive_args args = {
2265         .mm = mm,
2266         .address = address,
2267         .owner = owner,
2268         .valid = false,
2269     };
2270     struct rmap_walk_control rwc = {
2271         .rmap_one = page_make_device_exclusive_one,
2272         .done = page_not_mapped,
2273         .anon_lock = folio_lock_anon_vma_read,
2274         .arg = &args,
2275     };
2276 
2277     /*
2278      * Restrict to anonymous folios for now to avoid potential writeback
2279      * issues.
2280      */
2281     if (!folio_test_anon(folio))
2282         return false;
2283 
2284     rmap_walk(folio, &rwc);
2285 
2286     return args.valid && !folio_mapcount(folio);
2287 }
2288 
2289 /**
2290  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2291  * @mm: mm_struct of associated target process
2292  * @start: start of the region to mark for exclusive device access
2293  * @end: end address of region
2294  * @pages: returns the pages which were successfully marked for exclusive access
2295  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2296  *
2297  * Returns: number of pages found in the range by GUP. A page is marked for
2298  * exclusive access only if the page pointer is non-NULL.
2299  *
2300  * This function finds ptes mapping page(s) to the given address range, locks
2301  * them and replaces mappings with special swap entries preventing userspace CPU
2302  * access. On fault these entries are replaced with the original mapping after
2303  * calling MMU notifiers.
2304  *
2305  * A driver using this to program access from a device must use a mmu notifier
2306  * critical section to hold a device specific lock during programming. Once
2307  * programming is complete it should drop the page lock and reference after
2308  * which point CPU access to the page will revoke the exclusive access.
2309  */
2310 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2311                 unsigned long end, struct page **pages,
2312                 void *owner)
2313 {
2314     long npages = (end - start) >> PAGE_SHIFT;
2315     long i;
2316 
2317     npages = get_user_pages_remote(mm, start, npages,
2318                        FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2319                        pages, NULL, NULL);
2320     if (npages < 0)
2321         return npages;
2322 
2323     for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2324         struct folio *folio = page_folio(pages[i]);
2325         if (PageTail(pages[i]) || !folio_trylock(folio)) {
2326             folio_put(folio);
2327             pages[i] = NULL;
2328             continue;
2329         }
2330 
2331         if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2332             folio_unlock(folio);
2333             folio_put(folio);
2334             pages[i] = NULL;
2335         }
2336     }
2337 
2338     return npages;
2339 }
2340 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2341 #endif
2342 
2343 void __put_anon_vma(struct anon_vma *anon_vma)
2344 {
2345     struct anon_vma *root = anon_vma->root;
2346 
2347     anon_vma_free(anon_vma);
2348     if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2349         anon_vma_free(root);
2350 }
2351 
2352 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2353                         struct rmap_walk_control *rwc)
2354 {
2355     struct anon_vma *anon_vma;
2356 
2357     if (rwc->anon_lock)
2358         return rwc->anon_lock(folio, rwc);
2359 
2360     /*
2361      * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2362      * because that depends on page_mapped(); but not all its usages
2363      * are holding mmap_lock. Users without mmap_lock are required to
2364      * take a reference count to prevent the anon_vma disappearing
2365      */
2366     anon_vma = folio_anon_vma(folio);
2367     if (!anon_vma)
2368         return NULL;
2369 
2370     if (anon_vma_trylock_read(anon_vma))
2371         goto out;
2372 
2373     if (rwc->try_lock) {
2374         anon_vma = NULL;
2375         rwc->contended = true;
2376         goto out;
2377     }
2378 
2379     anon_vma_lock_read(anon_vma);
2380 out:
2381     return anon_vma;
2382 }
2383 
2384 /*
2385  * rmap_walk_anon - do something to anonymous page using the object-based
2386  * rmap method
2387  * @page: the page to be handled
2388  * @rwc: control variable according to each walk type
2389  *
2390  * Find all the mappings of a page using the mapping pointer and the vma chains
2391  * contained in the anon_vma struct it points to.
2392  */
2393 static void rmap_walk_anon(struct folio *folio,
2394         struct rmap_walk_control *rwc, bool locked)
2395 {
2396     struct anon_vma *anon_vma;
2397     pgoff_t pgoff_start, pgoff_end;
2398     struct anon_vma_chain *avc;
2399 
2400     if (locked) {
2401         anon_vma = folio_anon_vma(folio);
2402         /* anon_vma disappear under us? */
2403         VM_BUG_ON_FOLIO(!anon_vma, folio);
2404     } else {
2405         anon_vma = rmap_walk_anon_lock(folio, rwc);
2406     }
2407     if (!anon_vma)
2408         return;
2409 
2410     pgoff_start = folio_pgoff(folio);
2411     pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2412     anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2413             pgoff_start, pgoff_end) {
2414         struct vm_area_struct *vma = avc->vma;
2415         unsigned long address = vma_address(&folio->page, vma);
2416 
2417         VM_BUG_ON_VMA(address == -EFAULT, vma);
2418         cond_resched();
2419 
2420         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2421             continue;
2422 
2423         if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2424             break;
2425         if (rwc->done && rwc->done(folio))
2426             break;
2427     }
2428 
2429     if (!locked)
2430         anon_vma_unlock_read(anon_vma);
2431 }
2432 
2433 /*
2434  * rmap_walk_file - do something to file page using the object-based rmap method
2435  * @page: the page to be handled
2436  * @rwc: control variable according to each walk type
2437  *
2438  * Find all the mappings of a page using the mapping pointer and the vma chains
2439  * contained in the address_space struct it points to.
2440  */
2441 static void rmap_walk_file(struct folio *folio,
2442         struct rmap_walk_control *rwc, bool locked)
2443 {
2444     struct address_space *mapping = folio_mapping(folio);
2445     pgoff_t pgoff_start, pgoff_end;
2446     struct vm_area_struct *vma;
2447 
2448     /*
2449      * The page lock not only makes sure that page->mapping cannot
2450      * suddenly be NULLified by truncation, it makes sure that the
2451      * structure at mapping cannot be freed and reused yet,
2452      * so we can safely take mapping->i_mmap_rwsem.
2453      */
2454     VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2455 
2456     if (!mapping)
2457         return;
2458 
2459     pgoff_start = folio_pgoff(folio);
2460     pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2461     if (!locked) {
2462         if (i_mmap_trylock_read(mapping))
2463             goto lookup;
2464 
2465         if (rwc->try_lock) {
2466             rwc->contended = true;
2467             return;
2468         }
2469 
2470         i_mmap_lock_read(mapping);
2471     }
2472 lookup:
2473     vma_interval_tree_foreach(vma, &mapping->i_mmap,
2474             pgoff_start, pgoff_end) {
2475         unsigned long address = vma_address(&folio->page, vma);
2476 
2477         VM_BUG_ON_VMA(address == -EFAULT, vma);
2478         cond_resched();
2479 
2480         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2481             continue;
2482 
2483         if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2484             goto done;
2485         if (rwc->done && rwc->done(folio))
2486             goto done;
2487     }
2488 
2489 done:
2490     if (!locked)
2491         i_mmap_unlock_read(mapping);
2492 }
2493 
2494 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2495 {
2496     if (unlikely(folio_test_ksm(folio)))
2497         rmap_walk_ksm(folio, rwc);
2498     else if (folio_test_anon(folio))
2499         rmap_walk_anon(folio, rwc, false);
2500     else
2501         rmap_walk_file(folio, rwc, false);
2502 }
2503 
2504 /* Like rmap_walk, but caller holds relevant rmap lock */
2505 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2506 {
2507     /* no ksm support for now */
2508     VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2509     if (folio_test_anon(folio))
2510         rmap_walk_anon(folio, rwc, true);
2511     else
2512         rmap_walk_file(folio, rwc, true);
2513 }
2514 
2515 #ifdef CONFIG_HUGETLB_PAGE
2516 /*
2517  * The following two functions are for anonymous (private mapped) hugepages.
2518  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2519  * and no lru code, because we handle hugepages differently from common pages.
2520  *
2521  * RMAP_COMPOUND is ignored.
2522  */
2523 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2524                 unsigned long address, rmap_t flags)
2525 {
2526     struct anon_vma *anon_vma = vma->anon_vma;
2527     int first;
2528 
2529     BUG_ON(!PageLocked(page));
2530     BUG_ON(!anon_vma);
2531     /* address might be in next vma when migration races vma_adjust */
2532     first = atomic_inc_and_test(compound_mapcount_ptr(page));
2533     VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2534     VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2535     if (first)
2536         __page_set_anon_rmap(page, vma, address,
2537                      !!(flags & RMAP_EXCLUSIVE));
2538 }
2539 
2540 void hugepage_add_new_anon_rmap(struct page *page,
2541             struct vm_area_struct *vma, unsigned long address)
2542 {
2543     BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2544     atomic_set(compound_mapcount_ptr(page), 0);
2545     atomic_set(compound_pincount_ptr(page), 0);
2546 
2547     __page_set_anon_rmap(page, vma, address, 1);
2548 }
2549 #endif /* CONFIG_HUGETLB_PAGE */