Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  linux/mm/page_alloc.c
0004  *
0005  *  Manages the free list, the system allocates free pages here.
0006  *  Note that kmalloc() lives in slab.c
0007  *
0008  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
0009  *  Swap reorganised 29.12.95, Stephen Tweedie
0010  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
0011  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
0012  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
0013  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
0014  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
0015  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
0016  */
0017 
0018 #include <linux/stddef.h>
0019 #include <linux/mm.h>
0020 #include <linux/highmem.h>
0021 #include <linux/swap.h>
0022 #include <linux/swapops.h>
0023 #include <linux/interrupt.h>
0024 #include <linux/pagemap.h>
0025 #include <linux/jiffies.h>
0026 #include <linux/memblock.h>
0027 #include <linux/compiler.h>
0028 #include <linux/kernel.h>
0029 #include <linux/kasan.h>
0030 #include <linux/module.h>
0031 #include <linux/suspend.h>
0032 #include <linux/pagevec.h>
0033 #include <linux/blkdev.h>
0034 #include <linux/slab.h>
0035 #include <linux/ratelimit.h>
0036 #include <linux/oom.h>
0037 #include <linux/topology.h>
0038 #include <linux/sysctl.h>
0039 #include <linux/cpu.h>
0040 #include <linux/cpuset.h>
0041 #include <linux/memory_hotplug.h>
0042 #include <linux/nodemask.h>
0043 #include <linux/vmalloc.h>
0044 #include <linux/vmstat.h>
0045 #include <linux/mempolicy.h>
0046 #include <linux/memremap.h>
0047 #include <linux/stop_machine.h>
0048 #include <linux/random.h>
0049 #include <linux/sort.h>
0050 #include <linux/pfn.h>
0051 #include <linux/backing-dev.h>
0052 #include <linux/fault-inject.h>
0053 #include <linux/page-isolation.h>
0054 #include <linux/debugobjects.h>
0055 #include <linux/kmemleak.h>
0056 #include <linux/compaction.h>
0057 #include <trace/events/kmem.h>
0058 #include <trace/events/oom.h>
0059 #include <linux/prefetch.h>
0060 #include <linux/mm_inline.h>
0061 #include <linux/mmu_notifier.h>
0062 #include <linux/migrate.h>
0063 #include <linux/hugetlb.h>
0064 #include <linux/sched/rt.h>
0065 #include <linux/sched/mm.h>
0066 #include <linux/page_owner.h>
0067 #include <linux/page_table_check.h>
0068 #include <linux/kthread.h>
0069 #include <linux/memcontrol.h>
0070 #include <linux/ftrace.h>
0071 #include <linux/lockdep.h>
0072 #include <linux/nmi.h>
0073 #include <linux/psi.h>
0074 #include <linux/padata.h>
0075 #include <linux/khugepaged.h>
0076 #include <linux/buffer_head.h>
0077 #include <linux/delayacct.h>
0078 #include <asm/sections.h>
0079 #include <asm/tlbflush.h>
0080 #include <asm/div64.h>
0081 #include "internal.h"
0082 #include "shuffle.h"
0083 #include "page_reporting.h"
0084 #include "swap.h"
0085 
0086 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
0087 typedef int __bitwise fpi_t;
0088 
0089 /* No special request */
0090 #define FPI_NONE        ((__force fpi_t)0)
0091 
0092 /*
0093  * Skip free page reporting notification for the (possibly merged) page.
0094  * This does not hinder free page reporting from grabbing the page,
0095  * reporting it and marking it "reported" -  it only skips notifying
0096  * the free page reporting infrastructure about a newly freed page. For
0097  * example, used when temporarily pulling a page from a freelist and
0098  * putting it back unmodified.
0099  */
0100 #define FPI_SKIP_REPORT_NOTIFY  ((__force fpi_t)BIT(0))
0101 
0102 /*
0103  * Place the (possibly merged) page to the tail of the freelist. Will ignore
0104  * page shuffling (relevant code - e.g., memory onlining - is expected to
0105  * shuffle the whole zone).
0106  *
0107  * Note: No code should rely on this flag for correctness - it's purely
0108  *       to allow for optimizations when handing back either fresh pages
0109  *       (memory onlining) or untouched pages (page isolation, free page
0110  *       reporting).
0111  */
0112 #define FPI_TO_TAIL     ((__force fpi_t)BIT(1))
0113 
0114 /*
0115  * Don't poison memory with KASAN (only for the tag-based modes).
0116  * During boot, all non-reserved memblock memory is exposed to page_alloc.
0117  * Poisoning all that memory lengthens boot time, especially on systems with
0118  * large amount of RAM. This flag is used to skip that poisoning.
0119  * This is only done for the tag-based KASAN modes, as those are able to
0120  * detect memory corruptions with the memory tags assigned by default.
0121  * All memory allocated normally after boot gets poisoned as usual.
0122  */
0123 #define FPI_SKIP_KASAN_POISON   ((__force fpi_t)BIT(2))
0124 
0125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
0126 static DEFINE_MUTEX(pcp_batch_high_lock);
0127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
0128 
0129 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
0130 /*
0131  * On SMP, spin_trylock is sufficient protection.
0132  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
0133  */
0134 #define pcp_trylock_prepare(flags)  do { } while (0)
0135 #define pcp_trylock_finish(flag)    do { } while (0)
0136 #else
0137 
0138 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
0139 #define pcp_trylock_prepare(flags)  local_irq_save(flags)
0140 #define pcp_trylock_finish(flags)   local_irq_restore(flags)
0141 #endif
0142 
0143 /*
0144  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
0145  * a migration causing the wrong PCP to be locked and remote memory being
0146  * potentially allocated, pin the task to the CPU for the lookup+lock.
0147  * preempt_disable is used on !RT because it is faster than migrate_disable.
0148  * migrate_disable is used on RT because otherwise RT spinlock usage is
0149  * interfered with and a high priority task cannot preempt the allocator.
0150  */
0151 #ifndef CONFIG_PREEMPT_RT
0152 #define pcpu_task_pin()     preempt_disable()
0153 #define pcpu_task_unpin()   preempt_enable()
0154 #else
0155 #define pcpu_task_pin()     migrate_disable()
0156 #define pcpu_task_unpin()   migrate_enable()
0157 #endif
0158 
0159 /*
0160  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
0161  * Return value should be used with equivalent unlock helper.
0162  */
0163 #define pcpu_spin_lock(type, member, ptr)               \
0164 ({                                  \
0165     type *_ret;                         \
0166     pcpu_task_pin();                        \
0167     _ret = this_cpu_ptr(ptr);                   \
0168     spin_lock(&_ret->member);                   \
0169     _ret;                               \
0170 })
0171 
0172 #define pcpu_spin_lock_irqsave(type, member, ptr, flags)        \
0173 ({                                  \
0174     type *_ret;                         \
0175     pcpu_task_pin();                        \
0176     _ret = this_cpu_ptr(ptr);                   \
0177     spin_lock_irqsave(&_ret->member, flags);            \
0178     _ret;                               \
0179 })
0180 
0181 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags)     \
0182 ({                                  \
0183     type *_ret;                         \
0184     pcpu_task_pin();                        \
0185     _ret = this_cpu_ptr(ptr);                   \
0186     if (!spin_trylock_irqsave(&_ret->member, flags)) {      \
0187         pcpu_task_unpin();                  \
0188         _ret = NULL;                        \
0189     }                               \
0190     _ret;                               \
0191 })
0192 
0193 #define pcpu_spin_unlock(member, ptr)                   \
0194 ({                                  \
0195     spin_unlock(&ptr->member);                  \
0196     pcpu_task_unpin();                      \
0197 })
0198 
0199 #define pcpu_spin_unlock_irqrestore(member, ptr, flags)         \
0200 ({                                  \
0201     spin_unlock_irqrestore(&ptr->member, flags);            \
0202     pcpu_task_unpin();                      \
0203 })
0204 
0205 /* struct per_cpu_pages specific helpers. */
0206 #define pcp_spin_lock(ptr)                      \
0207     pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
0208 
0209 #define pcp_spin_lock_irqsave(ptr, flags)               \
0210     pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
0211 
0212 #define pcp_spin_trylock_irqsave(ptr, flags)                \
0213     pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
0214 
0215 #define pcp_spin_unlock(ptr)                        \
0216     pcpu_spin_unlock(lock, ptr)
0217 
0218 #define pcp_spin_unlock_irqrestore(ptr, flags)              \
0219     pcpu_spin_unlock_irqrestore(lock, ptr, flags)
0220 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
0221 DEFINE_PER_CPU(int, numa_node);
0222 EXPORT_PER_CPU_SYMBOL(numa_node);
0223 #endif
0224 
0225 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
0226 
0227 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
0228 /*
0229  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
0230  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
0231  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
0232  * defined in <linux/topology.h>.
0233  */
0234 DEFINE_PER_CPU(int, _numa_mem_);        /* Kernel "local memory" node */
0235 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
0236 #endif
0237 
0238 static DEFINE_MUTEX(pcpu_drain_mutex);
0239 
0240 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
0241 volatile unsigned long latent_entropy __latent_entropy;
0242 EXPORT_SYMBOL(latent_entropy);
0243 #endif
0244 
0245 /*
0246  * Array of node states.
0247  */
0248 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
0249     [N_POSSIBLE] = NODE_MASK_ALL,
0250     [N_ONLINE] = { { [0] = 1UL } },
0251 #ifndef CONFIG_NUMA
0252     [N_NORMAL_MEMORY] = { { [0] = 1UL } },
0253 #ifdef CONFIG_HIGHMEM
0254     [N_HIGH_MEMORY] = { { [0] = 1UL } },
0255 #endif
0256     [N_MEMORY] = { { [0] = 1UL } },
0257     [N_CPU] = { { [0] = 1UL } },
0258 #endif  /* NUMA */
0259 };
0260 EXPORT_SYMBOL(node_states);
0261 
0262 atomic_long_t _totalram_pages __read_mostly;
0263 EXPORT_SYMBOL(_totalram_pages);
0264 unsigned long totalreserve_pages __read_mostly;
0265 unsigned long totalcma_pages __read_mostly;
0266 
0267 int percpu_pagelist_high_fraction;
0268 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
0269 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
0270 EXPORT_SYMBOL(init_on_alloc);
0271 
0272 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
0273 EXPORT_SYMBOL(init_on_free);
0274 
0275 static bool _init_on_alloc_enabled_early __read_mostly
0276                 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
0277 static int __init early_init_on_alloc(char *buf)
0278 {
0279 
0280     return kstrtobool(buf, &_init_on_alloc_enabled_early);
0281 }
0282 early_param("init_on_alloc", early_init_on_alloc);
0283 
0284 static bool _init_on_free_enabled_early __read_mostly
0285                 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
0286 static int __init early_init_on_free(char *buf)
0287 {
0288     return kstrtobool(buf, &_init_on_free_enabled_early);
0289 }
0290 early_param("init_on_free", early_init_on_free);
0291 
0292 /*
0293  * A cached value of the page's pageblock's migratetype, used when the page is
0294  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
0295  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
0296  * Also the migratetype set in the page does not necessarily match the pcplist
0297  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
0298  * other index - this ensures that it will be put on the correct CMA freelist.
0299  */
0300 static inline int get_pcppage_migratetype(struct page *page)
0301 {
0302     return page->index;
0303 }
0304 
0305 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
0306 {
0307     page->index = migratetype;
0308 }
0309 
0310 #ifdef CONFIG_PM_SLEEP
0311 /*
0312  * The following functions are used by the suspend/hibernate code to temporarily
0313  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
0314  * while devices are suspended.  To avoid races with the suspend/hibernate code,
0315  * they should always be called with system_transition_mutex held
0316  * (gfp_allowed_mask also should only be modified with system_transition_mutex
0317  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
0318  * with that modification).
0319  */
0320 
0321 static gfp_t saved_gfp_mask;
0322 
0323 void pm_restore_gfp_mask(void)
0324 {
0325     WARN_ON(!mutex_is_locked(&system_transition_mutex));
0326     if (saved_gfp_mask) {
0327         gfp_allowed_mask = saved_gfp_mask;
0328         saved_gfp_mask = 0;
0329     }
0330 }
0331 
0332 void pm_restrict_gfp_mask(void)
0333 {
0334     WARN_ON(!mutex_is_locked(&system_transition_mutex));
0335     WARN_ON(saved_gfp_mask);
0336     saved_gfp_mask = gfp_allowed_mask;
0337     gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
0338 }
0339 
0340 bool pm_suspended_storage(void)
0341 {
0342     if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
0343         return false;
0344     return true;
0345 }
0346 #endif /* CONFIG_PM_SLEEP */
0347 
0348 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
0349 unsigned int pageblock_order __read_mostly;
0350 #endif
0351 
0352 static void __free_pages_ok(struct page *page, unsigned int order,
0353                 fpi_t fpi_flags);
0354 
0355 /*
0356  * results with 256, 32 in the lowmem_reserve sysctl:
0357  *  1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
0358  *  1G machine -> (16M dma, 784M normal, 224M high)
0359  *  NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
0360  *  HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
0361  *  HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
0362  *
0363  * TBD: should special case ZONE_DMA32 machines here - in those we normally
0364  * don't need any ZONE_NORMAL reservation
0365  */
0366 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
0367 #ifdef CONFIG_ZONE_DMA
0368     [ZONE_DMA] = 256,
0369 #endif
0370 #ifdef CONFIG_ZONE_DMA32
0371     [ZONE_DMA32] = 256,
0372 #endif
0373     [ZONE_NORMAL] = 32,
0374 #ifdef CONFIG_HIGHMEM
0375     [ZONE_HIGHMEM] = 0,
0376 #endif
0377     [ZONE_MOVABLE] = 0,
0378 };
0379 
0380 static char * const zone_names[MAX_NR_ZONES] = {
0381 #ifdef CONFIG_ZONE_DMA
0382      "DMA",
0383 #endif
0384 #ifdef CONFIG_ZONE_DMA32
0385      "DMA32",
0386 #endif
0387      "Normal",
0388 #ifdef CONFIG_HIGHMEM
0389      "HighMem",
0390 #endif
0391      "Movable",
0392 #ifdef CONFIG_ZONE_DEVICE
0393      "Device",
0394 #endif
0395 };
0396 
0397 const char * const migratetype_names[MIGRATE_TYPES] = {
0398     "Unmovable",
0399     "Movable",
0400     "Reclaimable",
0401     "HighAtomic",
0402 #ifdef CONFIG_CMA
0403     "CMA",
0404 #endif
0405 #ifdef CONFIG_MEMORY_ISOLATION
0406     "Isolate",
0407 #endif
0408 };
0409 
0410 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
0411     [NULL_COMPOUND_DTOR] = NULL,
0412     [COMPOUND_PAGE_DTOR] = free_compound_page,
0413 #ifdef CONFIG_HUGETLB_PAGE
0414     [HUGETLB_PAGE_DTOR] = free_huge_page,
0415 #endif
0416 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0417     [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
0418 #endif
0419 };
0420 
0421 int min_free_kbytes = 1024;
0422 int user_min_free_kbytes = -1;
0423 int watermark_boost_factor __read_mostly = 15000;
0424 int watermark_scale_factor = 10;
0425 
0426 static unsigned long nr_kernel_pages __initdata;
0427 static unsigned long nr_all_pages __initdata;
0428 static unsigned long dma_reserve __initdata;
0429 
0430 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
0431 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
0432 static unsigned long required_kernelcore __initdata;
0433 static unsigned long required_kernelcore_percent __initdata;
0434 static unsigned long required_movablecore __initdata;
0435 static unsigned long required_movablecore_percent __initdata;
0436 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
0437 bool mirrored_kernelcore __initdata_memblock;
0438 
0439 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
0440 int movable_zone;
0441 EXPORT_SYMBOL(movable_zone);
0442 
0443 #if MAX_NUMNODES > 1
0444 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
0445 unsigned int nr_online_nodes __read_mostly = 1;
0446 EXPORT_SYMBOL(nr_node_ids);
0447 EXPORT_SYMBOL(nr_online_nodes);
0448 #endif
0449 
0450 int page_group_by_mobility_disabled __read_mostly;
0451 
0452 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0453 /*
0454  * During boot we initialize deferred pages on-demand, as needed, but once
0455  * page_alloc_init_late() has finished, the deferred pages are all initialized,
0456  * and we can permanently disable that path.
0457  */
0458 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
0459 
0460 static inline bool deferred_pages_enabled(void)
0461 {
0462     return static_branch_unlikely(&deferred_pages);
0463 }
0464 
0465 /* Returns true if the struct page for the pfn is uninitialised */
0466 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
0467 {
0468     int nid = early_pfn_to_nid(pfn);
0469 
0470     if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
0471         return true;
0472 
0473     return false;
0474 }
0475 
0476 /*
0477  * Returns true when the remaining initialisation should be deferred until
0478  * later in the boot cycle when it can be parallelised.
0479  */
0480 static bool __meminit
0481 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
0482 {
0483     static unsigned long prev_end_pfn, nr_initialised;
0484 
0485     /*
0486      * prev_end_pfn static that contains the end of previous zone
0487      * No need to protect because called very early in boot before smp_init.
0488      */
0489     if (prev_end_pfn != end_pfn) {
0490         prev_end_pfn = end_pfn;
0491         nr_initialised = 0;
0492     }
0493 
0494     /* Always populate low zones for address-constrained allocations */
0495     if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
0496         return false;
0497 
0498     if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
0499         return true;
0500     /*
0501      * We start only with one section of pages, more pages are added as
0502      * needed until the rest of deferred pages are initialized.
0503      */
0504     nr_initialised++;
0505     if ((nr_initialised > PAGES_PER_SECTION) &&
0506         (pfn & (PAGES_PER_SECTION - 1)) == 0) {
0507         NODE_DATA(nid)->first_deferred_pfn = pfn;
0508         return true;
0509     }
0510     return false;
0511 }
0512 #else
0513 static inline bool deferred_pages_enabled(void)
0514 {
0515     return false;
0516 }
0517 
0518 static inline bool early_page_uninitialised(unsigned long pfn)
0519 {
0520     return false;
0521 }
0522 
0523 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
0524 {
0525     return false;
0526 }
0527 #endif
0528 
0529 /* Return a pointer to the bitmap storing bits affecting a block of pages */
0530 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0531                             unsigned long pfn)
0532 {
0533 #ifdef CONFIG_SPARSEMEM
0534     return section_to_usemap(__pfn_to_section(pfn));
0535 #else
0536     return page_zone(page)->pageblock_flags;
0537 #endif /* CONFIG_SPARSEMEM */
0538 }
0539 
0540 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0541 {
0542 #ifdef CONFIG_SPARSEMEM
0543     pfn &= (PAGES_PER_SECTION-1);
0544 #else
0545     pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0546 #endif /* CONFIG_SPARSEMEM */
0547     return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0548 }
0549 
0550 static __always_inline
0551 unsigned long __get_pfnblock_flags_mask(const struct page *page,
0552                     unsigned long pfn,
0553                     unsigned long mask)
0554 {
0555     unsigned long *bitmap;
0556     unsigned long bitidx, word_bitidx;
0557     unsigned long word;
0558 
0559     bitmap = get_pageblock_bitmap(page, pfn);
0560     bitidx = pfn_to_bitidx(page, pfn);
0561     word_bitidx = bitidx / BITS_PER_LONG;
0562     bitidx &= (BITS_PER_LONG-1);
0563     /*
0564      * This races, without locks, with set_pfnblock_flags_mask(). Ensure
0565      * a consistent read of the memory array, so that results, even though
0566      * racy, are not corrupted.
0567      */
0568     word = READ_ONCE(bitmap[word_bitidx]);
0569     return (word >> bitidx) & mask;
0570 }
0571 
0572 /**
0573  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
0574  * @page: The page within the block of interest
0575  * @pfn: The target page frame number
0576  * @mask: mask of bits that the caller is interested in
0577  *
0578  * Return: pageblock_bits flags
0579  */
0580 unsigned long get_pfnblock_flags_mask(const struct page *page,
0581                     unsigned long pfn, unsigned long mask)
0582 {
0583     return __get_pfnblock_flags_mask(page, pfn, mask);
0584 }
0585 
0586 static __always_inline int get_pfnblock_migratetype(const struct page *page,
0587                     unsigned long pfn)
0588 {
0589     return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0590 }
0591 
0592 /**
0593  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
0594  * @page: The page within the block of interest
0595  * @flags: The flags to set
0596  * @pfn: The target page frame number
0597  * @mask: mask of bits that the caller is interested in
0598  */
0599 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
0600                     unsigned long pfn,
0601                     unsigned long mask)
0602 {
0603     unsigned long *bitmap;
0604     unsigned long bitidx, word_bitidx;
0605     unsigned long word;
0606 
0607     BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
0608     BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0609 
0610     bitmap = get_pageblock_bitmap(page, pfn);
0611     bitidx = pfn_to_bitidx(page, pfn);
0612     word_bitidx = bitidx / BITS_PER_LONG;
0613     bitidx &= (BITS_PER_LONG-1);
0614 
0615     VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
0616 
0617     mask <<= bitidx;
0618     flags <<= bitidx;
0619 
0620     word = READ_ONCE(bitmap[word_bitidx]);
0621     do {
0622     } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
0623 }
0624 
0625 void set_pageblock_migratetype(struct page *page, int migratetype)
0626 {
0627     if (unlikely(page_group_by_mobility_disabled &&
0628              migratetype < MIGRATE_PCPTYPES))
0629         migratetype = MIGRATE_UNMOVABLE;
0630 
0631     set_pfnblock_flags_mask(page, (unsigned long)migratetype,
0632                 page_to_pfn(page), MIGRATETYPE_MASK);
0633 }
0634 
0635 #ifdef CONFIG_DEBUG_VM
0636 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
0637 {
0638     int ret = 0;
0639     unsigned seq;
0640     unsigned long pfn = page_to_pfn(page);
0641     unsigned long sp, start_pfn;
0642 
0643     do {
0644         seq = zone_span_seqbegin(zone);
0645         start_pfn = zone->zone_start_pfn;
0646         sp = zone->spanned_pages;
0647         if (!zone_spans_pfn(zone, pfn))
0648             ret = 1;
0649     } while (zone_span_seqretry(zone, seq));
0650 
0651     if (ret)
0652         pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
0653             pfn, zone_to_nid(zone), zone->name,
0654             start_pfn, start_pfn + sp);
0655 
0656     return ret;
0657 }
0658 
0659 static int page_is_consistent(struct zone *zone, struct page *page)
0660 {
0661     if (zone != page_zone(page))
0662         return 0;
0663 
0664     return 1;
0665 }
0666 /*
0667  * Temporary debugging check for pages not lying within a given zone.
0668  */
0669 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
0670 {
0671     if (page_outside_zone_boundaries(zone, page))
0672         return 1;
0673     if (!page_is_consistent(zone, page))
0674         return 1;
0675 
0676     return 0;
0677 }
0678 #else
0679 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
0680 {
0681     return 0;
0682 }
0683 #endif
0684 
0685 static void bad_page(struct page *page, const char *reason)
0686 {
0687     static unsigned long resume;
0688     static unsigned long nr_shown;
0689     static unsigned long nr_unshown;
0690 
0691     /*
0692      * Allow a burst of 60 reports, then keep quiet for that minute;
0693      * or allow a steady drip of one report per second.
0694      */
0695     if (nr_shown == 60) {
0696         if (time_before(jiffies, resume)) {
0697             nr_unshown++;
0698             goto out;
0699         }
0700         if (nr_unshown) {
0701             pr_alert(
0702                   "BUG: Bad page state: %lu messages suppressed\n",
0703                 nr_unshown);
0704             nr_unshown = 0;
0705         }
0706         nr_shown = 0;
0707     }
0708     if (nr_shown++ == 0)
0709         resume = jiffies + 60 * HZ;
0710 
0711     pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
0712         current->comm, page_to_pfn(page));
0713     dump_page(page, reason);
0714 
0715     print_modules();
0716     dump_stack();
0717 out:
0718     /* Leave bad fields for debug, except PageBuddy could make trouble */
0719     page_mapcount_reset(page); /* remove PageBuddy */
0720     add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
0721 }
0722 
0723 static inline unsigned int order_to_pindex(int migratetype, int order)
0724 {
0725     int base = order;
0726 
0727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0728     if (order > PAGE_ALLOC_COSTLY_ORDER) {
0729         VM_BUG_ON(order != pageblock_order);
0730         return NR_LOWORDER_PCP_LISTS;
0731     }
0732 #else
0733     VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
0734 #endif
0735 
0736     return (MIGRATE_PCPTYPES * base) + migratetype;
0737 }
0738 
0739 static inline int pindex_to_order(unsigned int pindex)
0740 {
0741     int order = pindex / MIGRATE_PCPTYPES;
0742 
0743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0744     if (pindex == NR_LOWORDER_PCP_LISTS)
0745         order = pageblock_order;
0746 #else
0747     VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
0748 #endif
0749 
0750     return order;
0751 }
0752 
0753 static inline bool pcp_allowed_order(unsigned int order)
0754 {
0755     if (order <= PAGE_ALLOC_COSTLY_ORDER)
0756         return true;
0757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0758     if (order == pageblock_order)
0759         return true;
0760 #endif
0761     return false;
0762 }
0763 
0764 static inline void free_the_page(struct page *page, unsigned int order)
0765 {
0766     if (pcp_allowed_order(order))       /* Via pcp? */
0767         free_unref_page(page, order);
0768     else
0769         __free_pages_ok(page, order, FPI_NONE);
0770 }
0771 
0772 /*
0773  * Higher-order pages are called "compound pages".  They are structured thusly:
0774  *
0775  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
0776  *
0777  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
0778  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
0779  *
0780  * The first tail page's ->compound_dtor holds the offset in array of compound
0781  * page destructors. See compound_page_dtors.
0782  *
0783  * The first tail page's ->compound_order holds the order of allocation.
0784  * This usage means that zero-order pages may not be compound.
0785  */
0786 
0787 void free_compound_page(struct page *page)
0788 {
0789     mem_cgroup_uncharge(page_folio(page));
0790     free_the_page(page, compound_order(page));
0791 }
0792 
0793 static void prep_compound_head(struct page *page, unsigned int order)
0794 {
0795     set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
0796     set_compound_order(page, order);
0797     atomic_set(compound_mapcount_ptr(page), -1);
0798     atomic_set(compound_pincount_ptr(page), 0);
0799 }
0800 
0801 static void prep_compound_tail(struct page *head, int tail_idx)
0802 {
0803     struct page *p = head + tail_idx;
0804 
0805     p->mapping = TAIL_MAPPING;
0806     set_compound_head(p, head);
0807 }
0808 
0809 void prep_compound_page(struct page *page, unsigned int order)
0810 {
0811     int i;
0812     int nr_pages = 1 << order;
0813 
0814     __SetPageHead(page);
0815     for (i = 1; i < nr_pages; i++)
0816         prep_compound_tail(page, i);
0817 
0818     prep_compound_head(page, order);
0819 }
0820 
0821 void destroy_large_folio(struct folio *folio)
0822 {
0823     enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
0824 
0825     VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
0826     compound_page_dtors[dtor](&folio->page);
0827 }
0828 
0829 #ifdef CONFIG_DEBUG_PAGEALLOC
0830 unsigned int _debug_guardpage_minorder;
0831 
0832 bool _debug_pagealloc_enabled_early __read_mostly
0833             = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
0834 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
0835 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
0836 EXPORT_SYMBOL(_debug_pagealloc_enabled);
0837 
0838 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
0839 
0840 static int __init early_debug_pagealloc(char *buf)
0841 {
0842     return kstrtobool(buf, &_debug_pagealloc_enabled_early);
0843 }
0844 early_param("debug_pagealloc", early_debug_pagealloc);
0845 
0846 static int __init debug_guardpage_minorder_setup(char *buf)
0847 {
0848     unsigned long res;
0849 
0850     if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
0851         pr_err("Bad debug_guardpage_minorder value\n");
0852         return 0;
0853     }
0854     _debug_guardpage_minorder = res;
0855     pr_info("Setting debug_guardpage_minorder to %lu\n", res);
0856     return 0;
0857 }
0858 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
0859 
0860 static inline bool set_page_guard(struct zone *zone, struct page *page,
0861                 unsigned int order, int migratetype)
0862 {
0863     if (!debug_guardpage_enabled())
0864         return false;
0865 
0866     if (order >= debug_guardpage_minorder())
0867         return false;
0868 
0869     __SetPageGuard(page);
0870     INIT_LIST_HEAD(&page->buddy_list);
0871     set_page_private(page, order);
0872     /* Guard pages are not available for any usage */
0873     __mod_zone_freepage_state(zone, -(1 << order), migratetype);
0874 
0875     return true;
0876 }
0877 
0878 static inline void clear_page_guard(struct zone *zone, struct page *page,
0879                 unsigned int order, int migratetype)
0880 {
0881     if (!debug_guardpage_enabled())
0882         return;
0883 
0884     __ClearPageGuard(page);
0885 
0886     set_page_private(page, 0);
0887     if (!is_migrate_isolate(migratetype))
0888         __mod_zone_freepage_state(zone, (1 << order), migratetype);
0889 }
0890 #else
0891 static inline bool set_page_guard(struct zone *zone, struct page *page,
0892             unsigned int order, int migratetype) { return false; }
0893 static inline void clear_page_guard(struct zone *zone, struct page *page,
0894                 unsigned int order, int migratetype) {}
0895 #endif
0896 
0897 /*
0898  * Enable static keys related to various memory debugging and hardening options.
0899  * Some override others, and depend on early params that are evaluated in the
0900  * order of appearance. So we need to first gather the full picture of what was
0901  * enabled, and then make decisions.
0902  */
0903 void init_mem_debugging_and_hardening(void)
0904 {
0905     bool page_poisoning_requested = false;
0906 
0907 #ifdef CONFIG_PAGE_POISONING
0908     /*
0909      * Page poisoning is debug page alloc for some arches. If
0910      * either of those options are enabled, enable poisoning.
0911      */
0912     if (page_poisoning_enabled() ||
0913          (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
0914           debug_pagealloc_enabled())) {
0915         static_branch_enable(&_page_poisoning_enabled);
0916         page_poisoning_requested = true;
0917     }
0918 #endif
0919 
0920     if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
0921         page_poisoning_requested) {
0922         pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
0923             "will take precedence over init_on_alloc and init_on_free\n");
0924         _init_on_alloc_enabled_early = false;
0925         _init_on_free_enabled_early = false;
0926     }
0927 
0928     if (_init_on_alloc_enabled_early)
0929         static_branch_enable(&init_on_alloc);
0930     else
0931         static_branch_disable(&init_on_alloc);
0932 
0933     if (_init_on_free_enabled_early)
0934         static_branch_enable(&init_on_free);
0935     else
0936         static_branch_disable(&init_on_free);
0937 
0938 #ifdef CONFIG_DEBUG_PAGEALLOC
0939     if (!debug_pagealloc_enabled())
0940         return;
0941 
0942     static_branch_enable(&_debug_pagealloc_enabled);
0943 
0944     if (!debug_guardpage_minorder())
0945         return;
0946 
0947     static_branch_enable(&_debug_guardpage_enabled);
0948 #endif
0949 }
0950 
0951 static inline void set_buddy_order(struct page *page, unsigned int order)
0952 {
0953     set_page_private(page, order);
0954     __SetPageBuddy(page);
0955 }
0956 
0957 #ifdef CONFIG_COMPACTION
0958 static inline struct capture_control *task_capc(struct zone *zone)
0959 {
0960     struct capture_control *capc = current->capture_control;
0961 
0962     return unlikely(capc) &&
0963         !(current->flags & PF_KTHREAD) &&
0964         !capc->page &&
0965         capc->cc->zone == zone ? capc : NULL;
0966 }
0967 
0968 static inline bool
0969 compaction_capture(struct capture_control *capc, struct page *page,
0970            int order, int migratetype)
0971 {
0972     if (!capc || order != capc->cc->order)
0973         return false;
0974 
0975     /* Do not accidentally pollute CMA or isolated regions*/
0976     if (is_migrate_cma(migratetype) ||
0977         is_migrate_isolate(migratetype))
0978         return false;
0979 
0980     /*
0981      * Do not let lower order allocations pollute a movable pageblock.
0982      * This might let an unmovable request use a reclaimable pageblock
0983      * and vice-versa but no more than normal fallback logic which can
0984      * have trouble finding a high-order free page.
0985      */
0986     if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
0987         return false;
0988 
0989     capc->page = page;
0990     return true;
0991 }
0992 
0993 #else
0994 static inline struct capture_control *task_capc(struct zone *zone)
0995 {
0996     return NULL;
0997 }
0998 
0999 static inline bool
1000 compaction_capture(struct capture_control *capc, struct page *page,
1001            int order, int migratetype)
1002 {
1003     return false;
1004 }
1005 #endif /* CONFIG_COMPACTION */
1006 
1007 /* Used for pages not on another list */
1008 static inline void add_to_free_list(struct page *page, struct zone *zone,
1009                     unsigned int order, int migratetype)
1010 {
1011     struct free_area *area = &zone->free_area[order];
1012 
1013     list_add(&page->buddy_list, &area->free_list[migratetype]);
1014     area->nr_free++;
1015 }
1016 
1017 /* Used for pages not on another list */
1018 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1019                      unsigned int order, int migratetype)
1020 {
1021     struct free_area *area = &zone->free_area[order];
1022 
1023     list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1024     area->nr_free++;
1025 }
1026 
1027 /*
1028  * Used for pages which are on another list. Move the pages to the tail
1029  * of the list - so the moved pages won't immediately be considered for
1030  * allocation again (e.g., optimization for memory onlining).
1031  */
1032 static inline void move_to_free_list(struct page *page, struct zone *zone,
1033                      unsigned int order, int migratetype)
1034 {
1035     struct free_area *area = &zone->free_area[order];
1036 
1037     list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1038 }
1039 
1040 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1041                        unsigned int order)
1042 {
1043     /* clear reported state and update reported page count */
1044     if (page_reported(page))
1045         __ClearPageReported(page);
1046 
1047     list_del(&page->buddy_list);
1048     __ClearPageBuddy(page);
1049     set_page_private(page, 0);
1050     zone->free_area[order].nr_free--;
1051 }
1052 
1053 /*
1054  * If this is not the largest possible page, check if the buddy
1055  * of the next-highest order is free. If it is, it's possible
1056  * that pages are being freed that will coalesce soon. In case,
1057  * that is happening, add the free page to the tail of the list
1058  * so it's less likely to be used soon and more likely to be merged
1059  * as a higher order page
1060  */
1061 static inline bool
1062 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1063            struct page *page, unsigned int order)
1064 {
1065     unsigned long higher_page_pfn;
1066     struct page *higher_page;
1067 
1068     if (order >= MAX_ORDER - 2)
1069         return false;
1070 
1071     higher_page_pfn = buddy_pfn & pfn;
1072     higher_page = page + (higher_page_pfn - pfn);
1073 
1074     return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1075             NULL) != NULL;
1076 }
1077 
1078 /*
1079  * Freeing function for a buddy system allocator.
1080  *
1081  * The concept of a buddy system is to maintain direct-mapped table
1082  * (containing bit values) for memory blocks of various "orders".
1083  * The bottom level table contains the map for the smallest allocatable
1084  * units of memory (here, pages), and each level above it describes
1085  * pairs of units from the levels below, hence, "buddies".
1086  * At a high level, all that happens here is marking the table entry
1087  * at the bottom level available, and propagating the changes upward
1088  * as necessary, plus some accounting needed to play nicely with other
1089  * parts of the VM system.
1090  * At each level, we keep a list of pages, which are heads of continuous
1091  * free pages of length of (1 << order) and marked with PageBuddy.
1092  * Page's order is recorded in page_private(page) field.
1093  * So when we are allocating or freeing one, we can derive the state of the
1094  * other.  That is, if we allocate a small block, and both were
1095  * free, the remainder of the region must be split into blocks.
1096  * If a block is freed, and its buddy is also free, then this
1097  * triggers coalescing into a block of larger size.
1098  *
1099  * -- nyc
1100  */
1101 
1102 static inline void __free_one_page(struct page *page,
1103         unsigned long pfn,
1104         struct zone *zone, unsigned int order,
1105         int migratetype, fpi_t fpi_flags)
1106 {
1107     struct capture_control *capc = task_capc(zone);
1108     unsigned long buddy_pfn;
1109     unsigned long combined_pfn;
1110     struct page *buddy;
1111     bool to_tail;
1112 
1113     VM_BUG_ON(!zone_is_initialized(zone));
1114     VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1115 
1116     VM_BUG_ON(migratetype == -1);
1117     if (likely(!is_migrate_isolate(migratetype)))
1118         __mod_zone_freepage_state(zone, 1 << order, migratetype);
1119 
1120     VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1121     VM_BUG_ON_PAGE(bad_range(zone, page), page);
1122 
1123     while (order < MAX_ORDER - 1) {
1124         if (compaction_capture(capc, page, order, migratetype)) {
1125             __mod_zone_freepage_state(zone, -(1 << order),
1126                                 migratetype);
1127             return;
1128         }
1129 
1130         buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1131         if (!buddy)
1132             goto done_merging;
1133 
1134         if (unlikely(order >= pageblock_order)) {
1135             /*
1136              * We want to prevent merge between freepages on pageblock
1137              * without fallbacks and normal pageblock. Without this,
1138              * pageblock isolation could cause incorrect freepage or CMA
1139              * accounting or HIGHATOMIC accounting.
1140              */
1141             int buddy_mt = get_pageblock_migratetype(buddy);
1142 
1143             if (migratetype != buddy_mt
1144                     && (!migratetype_is_mergeable(migratetype) ||
1145                         !migratetype_is_mergeable(buddy_mt)))
1146                 goto done_merging;
1147         }
1148 
1149         /*
1150          * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1151          * merge with it and move up one order.
1152          */
1153         if (page_is_guard(buddy))
1154             clear_page_guard(zone, buddy, order, migratetype);
1155         else
1156             del_page_from_free_list(buddy, zone, order);
1157         combined_pfn = buddy_pfn & pfn;
1158         page = page + (combined_pfn - pfn);
1159         pfn = combined_pfn;
1160         order++;
1161     }
1162 
1163 done_merging:
1164     set_buddy_order(page, order);
1165 
1166     if (fpi_flags & FPI_TO_TAIL)
1167         to_tail = true;
1168     else if (is_shuffle_order(order))
1169         to_tail = shuffle_pick_tail();
1170     else
1171         to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1172 
1173     if (to_tail)
1174         add_to_free_list_tail(page, zone, order, migratetype);
1175     else
1176         add_to_free_list(page, zone, order, migratetype);
1177 
1178     /* Notify page reporting subsystem of freed page */
1179     if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1180         page_reporting_notify_free(order);
1181 }
1182 
1183 /**
1184  * split_free_page() -- split a free page at split_pfn_offset
1185  * @free_page:      the original free page
1186  * @order:      the order of the page
1187  * @split_pfn_offset:   split offset within the page
1188  *
1189  * Return -ENOENT if the free page is changed, otherwise 0
1190  *
1191  * It is used when the free page crosses two pageblocks with different migratetypes
1192  * at split_pfn_offset within the page. The split free page will be put into
1193  * separate migratetype lists afterwards. Otherwise, the function achieves
1194  * nothing.
1195  */
1196 int split_free_page(struct page *free_page,
1197             unsigned int order, unsigned long split_pfn_offset)
1198 {
1199     struct zone *zone = page_zone(free_page);
1200     unsigned long free_page_pfn = page_to_pfn(free_page);
1201     unsigned long pfn;
1202     unsigned long flags;
1203     int free_page_order;
1204     int mt;
1205     int ret = 0;
1206 
1207     if (split_pfn_offset == 0)
1208         return ret;
1209 
1210     spin_lock_irqsave(&zone->lock, flags);
1211 
1212     if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1213         ret = -ENOENT;
1214         goto out;
1215     }
1216 
1217     mt = get_pageblock_migratetype(free_page);
1218     if (likely(!is_migrate_isolate(mt)))
1219         __mod_zone_freepage_state(zone, -(1UL << order), mt);
1220 
1221     del_page_from_free_list(free_page, zone, order);
1222     for (pfn = free_page_pfn;
1223          pfn < free_page_pfn + (1UL << order);) {
1224         int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1225 
1226         free_page_order = min_t(unsigned int,
1227                     pfn ? __ffs(pfn) : order,
1228                     __fls(split_pfn_offset));
1229         __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1230                 mt, FPI_NONE);
1231         pfn += 1UL << free_page_order;
1232         split_pfn_offset -= (1UL << free_page_order);
1233         /* we have done the first part, now switch to second part */
1234         if (split_pfn_offset == 0)
1235             split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1236     }
1237 out:
1238     spin_unlock_irqrestore(&zone->lock, flags);
1239     return ret;
1240 }
1241 /*
1242  * A bad page could be due to a number of fields. Instead of multiple branches,
1243  * try and check multiple fields with one check. The caller must do a detailed
1244  * check if necessary.
1245  */
1246 static inline bool page_expected_state(struct page *page,
1247                     unsigned long check_flags)
1248 {
1249     if (unlikely(atomic_read(&page->_mapcount) != -1))
1250         return false;
1251 
1252     if (unlikely((unsigned long)page->mapping |
1253             page_ref_count(page) |
1254 #ifdef CONFIG_MEMCG
1255             page->memcg_data |
1256 #endif
1257             (page->flags & check_flags)))
1258         return false;
1259 
1260     return true;
1261 }
1262 
1263 static const char *page_bad_reason(struct page *page, unsigned long flags)
1264 {
1265     const char *bad_reason = NULL;
1266 
1267     if (unlikely(atomic_read(&page->_mapcount) != -1))
1268         bad_reason = "nonzero mapcount";
1269     if (unlikely(page->mapping != NULL))
1270         bad_reason = "non-NULL mapping";
1271     if (unlikely(page_ref_count(page) != 0))
1272         bad_reason = "nonzero _refcount";
1273     if (unlikely(page->flags & flags)) {
1274         if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1275             bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1276         else
1277             bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1278     }
1279 #ifdef CONFIG_MEMCG
1280     if (unlikely(page->memcg_data))
1281         bad_reason = "page still charged to cgroup";
1282 #endif
1283     return bad_reason;
1284 }
1285 
1286 static void check_free_page_bad(struct page *page)
1287 {
1288     bad_page(page,
1289          page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1290 }
1291 
1292 static inline int check_free_page(struct page *page)
1293 {
1294     if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1295         return 0;
1296 
1297     /* Something has gone sideways, find it */
1298     check_free_page_bad(page);
1299     return 1;
1300 }
1301 
1302 static int free_tail_pages_check(struct page *head_page, struct page *page)
1303 {
1304     int ret = 1;
1305 
1306     /*
1307      * We rely page->lru.next never has bit 0 set, unless the page
1308      * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1309      */
1310     BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1311 
1312     if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1313         ret = 0;
1314         goto out;
1315     }
1316     switch (page - head_page) {
1317     case 1:
1318         /* the first tail page: ->mapping may be compound_mapcount() */
1319         if (unlikely(compound_mapcount(page))) {
1320             bad_page(page, "nonzero compound_mapcount");
1321             goto out;
1322         }
1323         break;
1324     case 2:
1325         /*
1326          * the second tail page: ->mapping is
1327          * deferred_list.next -- ignore value.
1328          */
1329         break;
1330     default:
1331         if (page->mapping != TAIL_MAPPING) {
1332             bad_page(page, "corrupted mapping in tail page");
1333             goto out;
1334         }
1335         break;
1336     }
1337     if (unlikely(!PageTail(page))) {
1338         bad_page(page, "PageTail not set");
1339         goto out;
1340     }
1341     if (unlikely(compound_head(page) != head_page)) {
1342         bad_page(page, "compound_head not consistent");
1343         goto out;
1344     }
1345     ret = 0;
1346 out:
1347     page->mapping = NULL;
1348     clear_compound_head(page);
1349     return ret;
1350 }
1351 
1352 /*
1353  * Skip KASAN memory poisoning when either:
1354  *
1355  * 1. Deferred memory initialization has not yet completed,
1356  *    see the explanation below.
1357  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1358  *    see the comment next to it.
1359  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1360  *    see the comment next to it.
1361  *
1362  * Poisoning pages during deferred memory init will greatly lengthen the
1363  * process and cause problem in large memory systems as the deferred pages
1364  * initialization is done with interrupt disabled.
1365  *
1366  * Assuming that there will be no reference to those newly initialized
1367  * pages before they are ever allocated, this should have no effect on
1368  * KASAN memory tracking as the poison will be properly inserted at page
1369  * allocation time. The only corner case is when pages are allocated by
1370  * on-demand allocation and then freed again before the deferred pages
1371  * initialization is done, but this is not likely to happen.
1372  */
1373 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1374 {
1375     return deferred_pages_enabled() ||
1376            (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1377         (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1378            PageSkipKASanPoison(page);
1379 }
1380 
1381 static void kernel_init_pages(struct page *page, int numpages)
1382 {
1383     int i;
1384 
1385     /* s390's use of memset() could override KASAN redzones. */
1386     kasan_disable_current();
1387     for (i = 0; i < numpages; i++)
1388         clear_highpage_kasan_tagged(page + i);
1389     kasan_enable_current();
1390 }
1391 
1392 static __always_inline bool free_pages_prepare(struct page *page,
1393             unsigned int order, bool check_free, fpi_t fpi_flags)
1394 {
1395     int bad = 0;
1396     bool init = want_init_on_free();
1397 
1398     VM_BUG_ON_PAGE(PageTail(page), page);
1399 
1400     trace_mm_page_free(page, order);
1401 
1402     if (unlikely(PageHWPoison(page)) && !order) {
1403         /*
1404          * Do not let hwpoison pages hit pcplists/buddy
1405          * Untie memcg state and reset page's owner
1406          */
1407         if (memcg_kmem_enabled() && PageMemcgKmem(page))
1408             __memcg_kmem_uncharge_page(page, order);
1409         reset_page_owner(page, order);
1410         page_table_check_free(page, order);
1411         return false;
1412     }
1413 
1414     /*
1415      * Check tail pages before head page information is cleared to
1416      * avoid checking PageCompound for order-0 pages.
1417      */
1418     if (unlikely(order)) {
1419         bool compound = PageCompound(page);
1420         int i;
1421 
1422         VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1423 
1424         if (compound) {
1425             ClearPageDoubleMap(page);
1426             ClearPageHasHWPoisoned(page);
1427         }
1428         for (i = 1; i < (1 << order); i++) {
1429             if (compound)
1430                 bad += free_tail_pages_check(page, page + i);
1431             if (unlikely(check_free_page(page + i))) {
1432                 bad++;
1433                 continue;
1434             }
1435             (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1436         }
1437     }
1438     if (PageMappingFlags(page))
1439         page->mapping = NULL;
1440     if (memcg_kmem_enabled() && PageMemcgKmem(page))
1441         __memcg_kmem_uncharge_page(page, order);
1442     if (check_free)
1443         bad += check_free_page(page);
1444     if (bad)
1445         return false;
1446 
1447     page_cpupid_reset_last(page);
1448     page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1449     reset_page_owner(page, order);
1450     page_table_check_free(page, order);
1451 
1452     if (!PageHighMem(page)) {
1453         debug_check_no_locks_freed(page_address(page),
1454                        PAGE_SIZE << order);
1455         debug_check_no_obj_freed(page_address(page),
1456                        PAGE_SIZE << order);
1457     }
1458 
1459     kernel_poison_pages(page, 1 << order);
1460 
1461     /*
1462      * As memory initialization might be integrated into KASAN,
1463      * KASAN poisoning and memory initialization code must be
1464      * kept together to avoid discrepancies in behavior.
1465      *
1466      * With hardware tag-based KASAN, memory tags must be set before the
1467      * page becomes unavailable via debug_pagealloc or arch_free_page.
1468      */
1469     if (!should_skip_kasan_poison(page, fpi_flags)) {
1470         kasan_poison_pages(page, order, init);
1471 
1472         /* Memory is already initialized if KASAN did it internally. */
1473         if (kasan_has_integrated_init())
1474             init = false;
1475     }
1476     if (init)
1477         kernel_init_pages(page, 1 << order);
1478 
1479     /*
1480      * arch_free_page() can make the page's contents inaccessible.  s390
1481      * does this.  So nothing which can access the page's contents should
1482      * happen after this.
1483      */
1484     arch_free_page(page, order);
1485 
1486     debug_pagealloc_unmap_pages(page, 1 << order);
1487 
1488     return true;
1489 }
1490 
1491 #ifdef CONFIG_DEBUG_VM
1492 /*
1493  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1494  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1495  * moved from pcp lists to free lists.
1496  */
1497 static bool free_pcp_prepare(struct page *page, unsigned int order)
1498 {
1499     return free_pages_prepare(page, order, true, FPI_NONE);
1500 }
1501 
1502 static bool bulkfree_pcp_prepare(struct page *page)
1503 {
1504     if (debug_pagealloc_enabled_static())
1505         return check_free_page(page);
1506     else
1507         return false;
1508 }
1509 #else
1510 /*
1511  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1512  * moving from pcp lists to free list in order to reduce overhead. With
1513  * debug_pagealloc enabled, they are checked also immediately when being freed
1514  * to the pcp lists.
1515  */
1516 static bool free_pcp_prepare(struct page *page, unsigned int order)
1517 {
1518     if (debug_pagealloc_enabled_static())
1519         return free_pages_prepare(page, order, true, FPI_NONE);
1520     else
1521         return free_pages_prepare(page, order, false, FPI_NONE);
1522 }
1523 
1524 static bool bulkfree_pcp_prepare(struct page *page)
1525 {
1526     return check_free_page(page);
1527 }
1528 #endif /* CONFIG_DEBUG_VM */
1529 
1530 /*
1531  * Frees a number of pages from the PCP lists
1532  * Assumes all pages on list are in same zone.
1533  * count is the number of pages to free.
1534  */
1535 static void free_pcppages_bulk(struct zone *zone, int count,
1536                     struct per_cpu_pages *pcp,
1537                     int pindex)
1538 {
1539     int min_pindex = 0;
1540     int max_pindex = NR_PCP_LISTS - 1;
1541     unsigned int order;
1542     bool isolated_pageblocks;
1543     struct page *page;
1544 
1545     /*
1546      * Ensure proper count is passed which otherwise would stuck in the
1547      * below while (list_empty(list)) loop.
1548      */
1549     count = min(pcp->count, count);
1550 
1551     /* Ensure requested pindex is drained first. */
1552     pindex = pindex - 1;
1553 
1554     /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1555     spin_lock(&zone->lock);
1556     isolated_pageblocks = has_isolate_pageblock(zone);
1557 
1558     while (count > 0) {
1559         struct list_head *list;
1560         int nr_pages;
1561 
1562         /* Remove pages from lists in a round-robin fashion. */
1563         do {
1564             if (++pindex > max_pindex)
1565                 pindex = min_pindex;
1566             list = &pcp->lists[pindex];
1567             if (!list_empty(list))
1568                 break;
1569 
1570             if (pindex == max_pindex)
1571                 max_pindex--;
1572             if (pindex == min_pindex)
1573                 min_pindex++;
1574         } while (1);
1575 
1576         order = pindex_to_order(pindex);
1577         nr_pages = 1 << order;
1578         BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1579         do {
1580             int mt;
1581 
1582             page = list_last_entry(list, struct page, pcp_list);
1583             mt = get_pcppage_migratetype(page);
1584 
1585             /* must delete to avoid corrupting pcp list */
1586             list_del(&page->pcp_list);
1587             count -= nr_pages;
1588             pcp->count -= nr_pages;
1589 
1590             if (bulkfree_pcp_prepare(page))
1591                 continue;
1592 
1593             /* MIGRATE_ISOLATE page should not go to pcplists */
1594             VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1595             /* Pageblock could have been isolated meanwhile */
1596             if (unlikely(isolated_pageblocks))
1597                 mt = get_pageblock_migratetype(page);
1598 
1599             __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1600             trace_mm_page_pcpu_drain(page, order, mt);
1601         } while (count > 0 && !list_empty(list));
1602     }
1603 
1604     spin_unlock(&zone->lock);
1605 }
1606 
1607 static void free_one_page(struct zone *zone,
1608                 struct page *page, unsigned long pfn,
1609                 unsigned int order,
1610                 int migratetype, fpi_t fpi_flags)
1611 {
1612     unsigned long flags;
1613 
1614     spin_lock_irqsave(&zone->lock, flags);
1615     if (unlikely(has_isolate_pageblock(zone) ||
1616         is_migrate_isolate(migratetype))) {
1617         migratetype = get_pfnblock_migratetype(page, pfn);
1618     }
1619     __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1620     spin_unlock_irqrestore(&zone->lock, flags);
1621 }
1622 
1623 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1624                 unsigned long zone, int nid)
1625 {
1626     mm_zero_struct_page(page);
1627     set_page_links(page, zone, nid, pfn);
1628     init_page_count(page);
1629     page_mapcount_reset(page);
1630     page_cpupid_reset_last(page);
1631     page_kasan_tag_reset(page);
1632 
1633     INIT_LIST_HEAD(&page->lru);
1634 #ifdef WANT_PAGE_VIRTUAL
1635     /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1636     if (!is_highmem_idx(zone))
1637         set_page_address(page, __va(pfn << PAGE_SHIFT));
1638 #endif
1639 }
1640 
1641 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1642 static void __meminit init_reserved_page(unsigned long pfn)
1643 {
1644     pg_data_t *pgdat;
1645     int nid, zid;
1646 
1647     if (!early_page_uninitialised(pfn))
1648         return;
1649 
1650     nid = early_pfn_to_nid(pfn);
1651     pgdat = NODE_DATA(nid);
1652 
1653     for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1654         struct zone *zone = &pgdat->node_zones[zid];
1655 
1656         if (zone_spans_pfn(zone, pfn))
1657             break;
1658     }
1659     __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1660 }
1661 #else
1662 static inline void init_reserved_page(unsigned long pfn)
1663 {
1664 }
1665 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1666 
1667 /*
1668  * Initialised pages do not have PageReserved set. This function is
1669  * called for each range allocated by the bootmem allocator and
1670  * marks the pages PageReserved. The remaining valid pages are later
1671  * sent to the buddy page allocator.
1672  */
1673 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1674 {
1675     unsigned long start_pfn = PFN_DOWN(start);
1676     unsigned long end_pfn = PFN_UP(end);
1677 
1678     for (; start_pfn < end_pfn; start_pfn++) {
1679         if (pfn_valid(start_pfn)) {
1680             struct page *page = pfn_to_page(start_pfn);
1681 
1682             init_reserved_page(start_pfn);
1683 
1684             /* Avoid false-positive PageTail() */
1685             INIT_LIST_HEAD(&page->lru);
1686 
1687             /*
1688              * no need for atomic set_bit because the struct
1689              * page is not visible yet so nobody should
1690              * access it yet.
1691              */
1692             __SetPageReserved(page);
1693         }
1694     }
1695 }
1696 
1697 static void __free_pages_ok(struct page *page, unsigned int order,
1698                 fpi_t fpi_flags)
1699 {
1700     unsigned long flags;
1701     int migratetype;
1702     unsigned long pfn = page_to_pfn(page);
1703     struct zone *zone = page_zone(page);
1704 
1705     if (!free_pages_prepare(page, order, true, fpi_flags))
1706         return;
1707 
1708     migratetype = get_pfnblock_migratetype(page, pfn);
1709 
1710     spin_lock_irqsave(&zone->lock, flags);
1711     if (unlikely(has_isolate_pageblock(zone) ||
1712         is_migrate_isolate(migratetype))) {
1713         migratetype = get_pfnblock_migratetype(page, pfn);
1714     }
1715     __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1716     spin_unlock_irqrestore(&zone->lock, flags);
1717 
1718     __count_vm_events(PGFREE, 1 << order);
1719 }
1720 
1721 void __free_pages_core(struct page *page, unsigned int order)
1722 {
1723     unsigned int nr_pages = 1 << order;
1724     struct page *p = page;
1725     unsigned int loop;
1726 
1727     /*
1728      * When initializing the memmap, __init_single_page() sets the refcount
1729      * of all pages to 1 ("allocated"/"not free"). We have to set the
1730      * refcount of all involved pages to 0.
1731      */
1732     prefetchw(p);
1733     for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1734         prefetchw(p + 1);
1735         __ClearPageReserved(p);
1736         set_page_count(p, 0);
1737     }
1738     __ClearPageReserved(p);
1739     set_page_count(p, 0);
1740 
1741     atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1742 
1743     /*
1744      * Bypass PCP and place fresh pages right to the tail, primarily
1745      * relevant for memory onlining.
1746      */
1747     __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1748 }
1749 
1750 #ifdef CONFIG_NUMA
1751 
1752 /*
1753  * During memory init memblocks map pfns to nids. The search is expensive and
1754  * this caches recent lookups. The implementation of __early_pfn_to_nid
1755  * treats start/end as pfns.
1756  */
1757 struct mminit_pfnnid_cache {
1758     unsigned long last_start;
1759     unsigned long last_end;
1760     int last_nid;
1761 };
1762 
1763 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1764 
1765 /*
1766  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1767  */
1768 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1769                     struct mminit_pfnnid_cache *state)
1770 {
1771     unsigned long start_pfn, end_pfn;
1772     int nid;
1773 
1774     if (state->last_start <= pfn && pfn < state->last_end)
1775         return state->last_nid;
1776 
1777     nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1778     if (nid != NUMA_NO_NODE) {
1779         state->last_start = start_pfn;
1780         state->last_end = end_pfn;
1781         state->last_nid = nid;
1782     }
1783 
1784     return nid;
1785 }
1786 
1787 int __meminit early_pfn_to_nid(unsigned long pfn)
1788 {
1789     static DEFINE_SPINLOCK(early_pfn_lock);
1790     int nid;
1791 
1792     spin_lock(&early_pfn_lock);
1793     nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1794     if (nid < 0)
1795         nid = first_online_node;
1796     spin_unlock(&early_pfn_lock);
1797 
1798     return nid;
1799 }
1800 #endif /* CONFIG_NUMA */
1801 
1802 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1803                             unsigned int order)
1804 {
1805     if (early_page_uninitialised(pfn))
1806         return;
1807     __free_pages_core(page, order);
1808 }
1809 
1810 /*
1811  * Check that the whole (or subset of) a pageblock given by the interval of
1812  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1813  * with the migration of free compaction scanner.
1814  *
1815  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1816  *
1817  * It's possible on some configurations to have a setup like node0 node1 node0
1818  * i.e. it's possible that all pages within a zones range of pages do not
1819  * belong to a single zone. We assume that a border between node0 and node1
1820  * can occur within a single pageblock, but not a node0 node1 node0
1821  * interleaving within a single pageblock. It is therefore sufficient to check
1822  * the first and last page of a pageblock and avoid checking each individual
1823  * page in a pageblock.
1824  */
1825 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1826                      unsigned long end_pfn, struct zone *zone)
1827 {
1828     struct page *start_page;
1829     struct page *end_page;
1830 
1831     /* end_pfn is one past the range we are checking */
1832     end_pfn--;
1833 
1834     if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1835         return NULL;
1836 
1837     start_page = pfn_to_online_page(start_pfn);
1838     if (!start_page)
1839         return NULL;
1840 
1841     if (page_zone(start_page) != zone)
1842         return NULL;
1843 
1844     end_page = pfn_to_page(end_pfn);
1845 
1846     /* This gives a shorter code than deriving page_zone(end_page) */
1847     if (page_zone_id(start_page) != page_zone_id(end_page))
1848         return NULL;
1849 
1850     return start_page;
1851 }
1852 
1853 void set_zone_contiguous(struct zone *zone)
1854 {
1855     unsigned long block_start_pfn = zone->zone_start_pfn;
1856     unsigned long block_end_pfn;
1857 
1858     block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1859     for (; block_start_pfn < zone_end_pfn(zone);
1860             block_start_pfn = block_end_pfn,
1861              block_end_pfn += pageblock_nr_pages) {
1862 
1863         block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1864 
1865         if (!__pageblock_pfn_to_page(block_start_pfn,
1866                          block_end_pfn, zone))
1867             return;
1868         cond_resched();
1869     }
1870 
1871     /* We confirm that there is no hole */
1872     zone->contiguous = true;
1873 }
1874 
1875 void clear_zone_contiguous(struct zone *zone)
1876 {
1877     zone->contiguous = false;
1878 }
1879 
1880 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1881 static void __init deferred_free_range(unsigned long pfn,
1882                        unsigned long nr_pages)
1883 {
1884     struct page *page;
1885     unsigned long i;
1886 
1887     if (!nr_pages)
1888         return;
1889 
1890     page = pfn_to_page(pfn);
1891 
1892     /* Free a large naturally-aligned chunk if possible */
1893     if (nr_pages == pageblock_nr_pages &&
1894         (pfn & (pageblock_nr_pages - 1)) == 0) {
1895         set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1896         __free_pages_core(page, pageblock_order);
1897         return;
1898     }
1899 
1900     for (i = 0; i < nr_pages; i++, page++, pfn++) {
1901         if ((pfn & (pageblock_nr_pages - 1)) == 0)
1902             set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1903         __free_pages_core(page, 0);
1904     }
1905 }
1906 
1907 /* Completion tracking for deferred_init_memmap() threads */
1908 static atomic_t pgdat_init_n_undone __initdata;
1909 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1910 
1911 static inline void __init pgdat_init_report_one_done(void)
1912 {
1913     if (atomic_dec_and_test(&pgdat_init_n_undone))
1914         complete(&pgdat_init_all_done_comp);
1915 }
1916 
1917 /*
1918  * Returns true if page needs to be initialized or freed to buddy allocator.
1919  *
1920  * First we check if pfn is valid on architectures where it is possible to have
1921  * holes within pageblock_nr_pages. On systems where it is not possible, this
1922  * function is optimized out.
1923  *
1924  * Then, we check if a current large page is valid by only checking the validity
1925  * of the head pfn.
1926  */
1927 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1928 {
1929     if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1930         return false;
1931     return true;
1932 }
1933 
1934 /*
1935  * Free pages to buddy allocator. Try to free aligned pages in
1936  * pageblock_nr_pages sizes.
1937  */
1938 static void __init deferred_free_pages(unsigned long pfn,
1939                        unsigned long end_pfn)
1940 {
1941     unsigned long nr_pgmask = pageblock_nr_pages - 1;
1942     unsigned long nr_free = 0;
1943 
1944     for (; pfn < end_pfn; pfn++) {
1945         if (!deferred_pfn_valid(pfn)) {
1946             deferred_free_range(pfn - nr_free, nr_free);
1947             nr_free = 0;
1948         } else if (!(pfn & nr_pgmask)) {
1949             deferred_free_range(pfn - nr_free, nr_free);
1950             nr_free = 1;
1951         } else {
1952             nr_free++;
1953         }
1954     }
1955     /* Free the last block of pages to allocator */
1956     deferred_free_range(pfn - nr_free, nr_free);
1957 }
1958 
1959 /*
1960  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1961  * by performing it only once every pageblock_nr_pages.
1962  * Return number of pages initialized.
1963  */
1964 static unsigned long  __init deferred_init_pages(struct zone *zone,
1965                          unsigned long pfn,
1966                          unsigned long end_pfn)
1967 {
1968     unsigned long nr_pgmask = pageblock_nr_pages - 1;
1969     int nid = zone_to_nid(zone);
1970     unsigned long nr_pages = 0;
1971     int zid = zone_idx(zone);
1972     struct page *page = NULL;
1973 
1974     for (; pfn < end_pfn; pfn++) {
1975         if (!deferred_pfn_valid(pfn)) {
1976             page = NULL;
1977             continue;
1978         } else if (!page || !(pfn & nr_pgmask)) {
1979             page = pfn_to_page(pfn);
1980         } else {
1981             page++;
1982         }
1983         __init_single_page(page, pfn, zid, nid);
1984         nr_pages++;
1985     }
1986     return (nr_pages);
1987 }
1988 
1989 /*
1990  * This function is meant to pre-load the iterator for the zone init.
1991  * Specifically it walks through the ranges until we are caught up to the
1992  * first_init_pfn value and exits there. If we never encounter the value we
1993  * return false indicating there are no valid ranges left.
1994  */
1995 static bool __init
1996 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1997                     unsigned long *spfn, unsigned long *epfn,
1998                     unsigned long first_init_pfn)
1999 {
2000     u64 j;
2001 
2002     /*
2003      * Start out by walking through the ranges in this zone that have
2004      * already been initialized. We don't need to do anything with them
2005      * so we just need to flush them out of the system.
2006      */
2007     for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2008         if (*epfn <= first_init_pfn)
2009             continue;
2010         if (*spfn < first_init_pfn)
2011             *spfn = first_init_pfn;
2012         *i = j;
2013         return true;
2014     }
2015 
2016     return false;
2017 }
2018 
2019 /*
2020  * Initialize and free pages. We do it in two loops: first we initialize
2021  * struct page, then free to buddy allocator, because while we are
2022  * freeing pages we can access pages that are ahead (computing buddy
2023  * page in __free_one_page()).
2024  *
2025  * In order to try and keep some memory in the cache we have the loop
2026  * broken along max page order boundaries. This way we will not cause
2027  * any issues with the buddy page computation.
2028  */
2029 static unsigned long __init
2030 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2031                unsigned long *end_pfn)
2032 {
2033     unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2034     unsigned long spfn = *start_pfn, epfn = *end_pfn;
2035     unsigned long nr_pages = 0;
2036     u64 j = *i;
2037 
2038     /* First we loop through and initialize the page values */
2039     for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2040         unsigned long t;
2041 
2042         if (mo_pfn <= *start_pfn)
2043             break;
2044 
2045         t = min(mo_pfn, *end_pfn);
2046         nr_pages += deferred_init_pages(zone, *start_pfn, t);
2047 
2048         if (mo_pfn < *end_pfn) {
2049             *start_pfn = mo_pfn;
2050             break;
2051         }
2052     }
2053 
2054     /* Reset values and now loop through freeing pages as needed */
2055     swap(j, *i);
2056 
2057     for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2058         unsigned long t;
2059 
2060         if (mo_pfn <= spfn)
2061             break;
2062 
2063         t = min(mo_pfn, epfn);
2064         deferred_free_pages(spfn, t);
2065 
2066         if (mo_pfn <= epfn)
2067             break;
2068     }
2069 
2070     return nr_pages;
2071 }
2072 
2073 static void __init
2074 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2075                void *arg)
2076 {
2077     unsigned long spfn, epfn;
2078     struct zone *zone = arg;
2079     u64 i;
2080 
2081     deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2082 
2083     /*
2084      * Initialize and free pages in MAX_ORDER sized increments so that we
2085      * can avoid introducing any issues with the buddy allocator.
2086      */
2087     while (spfn < end_pfn) {
2088         deferred_init_maxorder(&i, zone, &spfn, &epfn);
2089         cond_resched();
2090     }
2091 }
2092 
2093 /* An arch may override for more concurrency. */
2094 __weak int __init
2095 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2096 {
2097     return 1;
2098 }
2099 
2100 /* Initialise remaining memory on a node */
2101 static int __init deferred_init_memmap(void *data)
2102 {
2103     pg_data_t *pgdat = data;
2104     const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2105     unsigned long spfn = 0, epfn = 0;
2106     unsigned long first_init_pfn, flags;
2107     unsigned long start = jiffies;
2108     struct zone *zone;
2109     int zid, max_threads;
2110     u64 i;
2111 
2112     /* Bind memory initialisation thread to a local node if possible */
2113     if (!cpumask_empty(cpumask))
2114         set_cpus_allowed_ptr(current, cpumask);
2115 
2116     pgdat_resize_lock(pgdat, &flags);
2117     first_init_pfn = pgdat->first_deferred_pfn;
2118     if (first_init_pfn == ULONG_MAX) {
2119         pgdat_resize_unlock(pgdat, &flags);
2120         pgdat_init_report_one_done();
2121         return 0;
2122     }
2123 
2124     /* Sanity check boundaries */
2125     BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2126     BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2127     pgdat->first_deferred_pfn = ULONG_MAX;
2128 
2129     /*
2130      * Once we unlock here, the zone cannot be grown anymore, thus if an
2131      * interrupt thread must allocate this early in boot, zone must be
2132      * pre-grown prior to start of deferred page initialization.
2133      */
2134     pgdat_resize_unlock(pgdat, &flags);
2135 
2136     /* Only the highest zone is deferred so find it */
2137     for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2138         zone = pgdat->node_zones + zid;
2139         if (first_init_pfn < zone_end_pfn(zone))
2140             break;
2141     }
2142 
2143     /* If the zone is empty somebody else may have cleared out the zone */
2144     if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2145                          first_init_pfn))
2146         goto zone_empty;
2147 
2148     max_threads = deferred_page_init_max_threads(cpumask);
2149 
2150     while (spfn < epfn) {
2151         unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2152         struct padata_mt_job job = {
2153             .thread_fn   = deferred_init_memmap_chunk,
2154             .fn_arg      = zone,
2155             .start       = spfn,
2156             .size        = epfn_align - spfn,
2157             .align       = PAGES_PER_SECTION,
2158             .min_chunk   = PAGES_PER_SECTION,
2159             .max_threads = max_threads,
2160         };
2161 
2162         padata_do_multithreaded(&job);
2163         deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2164                             epfn_align);
2165     }
2166 zone_empty:
2167     /* Sanity check that the next zone really is unpopulated */
2168     WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2169 
2170     pr_info("node %d deferred pages initialised in %ums\n",
2171         pgdat->node_id, jiffies_to_msecs(jiffies - start));
2172 
2173     pgdat_init_report_one_done();
2174     return 0;
2175 }
2176 
2177 /*
2178  * If this zone has deferred pages, try to grow it by initializing enough
2179  * deferred pages to satisfy the allocation specified by order, rounded up to
2180  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2181  * of SECTION_SIZE bytes by initializing struct pages in increments of
2182  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2183  *
2184  * Return true when zone was grown, otherwise return false. We return true even
2185  * when we grow less than requested, to let the caller decide if there are
2186  * enough pages to satisfy the allocation.
2187  *
2188  * Note: We use noinline because this function is needed only during boot, and
2189  * it is called from a __ref function _deferred_grow_zone. This way we are
2190  * making sure that it is not inlined into permanent text section.
2191  */
2192 static noinline bool __init
2193 deferred_grow_zone(struct zone *zone, unsigned int order)
2194 {
2195     unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2196     pg_data_t *pgdat = zone->zone_pgdat;
2197     unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2198     unsigned long spfn, epfn, flags;
2199     unsigned long nr_pages = 0;
2200     u64 i;
2201 
2202     /* Only the last zone may have deferred pages */
2203     if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2204         return false;
2205 
2206     pgdat_resize_lock(pgdat, &flags);
2207 
2208     /*
2209      * If someone grew this zone while we were waiting for spinlock, return
2210      * true, as there might be enough pages already.
2211      */
2212     if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2213         pgdat_resize_unlock(pgdat, &flags);
2214         return true;
2215     }
2216 
2217     /* If the zone is empty somebody else may have cleared out the zone */
2218     if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2219                          first_deferred_pfn)) {
2220         pgdat->first_deferred_pfn = ULONG_MAX;
2221         pgdat_resize_unlock(pgdat, &flags);
2222         /* Retry only once. */
2223         return first_deferred_pfn != ULONG_MAX;
2224     }
2225 
2226     /*
2227      * Initialize and free pages in MAX_ORDER sized increments so
2228      * that we can avoid introducing any issues with the buddy
2229      * allocator.
2230      */
2231     while (spfn < epfn) {
2232         /* update our first deferred PFN for this section */
2233         first_deferred_pfn = spfn;
2234 
2235         nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2236         touch_nmi_watchdog();
2237 
2238         /* We should only stop along section boundaries */
2239         if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2240             continue;
2241 
2242         /* If our quota has been met we can stop here */
2243         if (nr_pages >= nr_pages_needed)
2244             break;
2245     }
2246 
2247     pgdat->first_deferred_pfn = spfn;
2248     pgdat_resize_unlock(pgdat, &flags);
2249 
2250     return nr_pages > 0;
2251 }
2252 
2253 /*
2254  * deferred_grow_zone() is __init, but it is called from
2255  * get_page_from_freelist() during early boot until deferred_pages permanently
2256  * disables this call. This is why we have refdata wrapper to avoid warning,
2257  * and to ensure that the function body gets unloaded.
2258  */
2259 static bool __ref
2260 _deferred_grow_zone(struct zone *zone, unsigned int order)
2261 {
2262     return deferred_grow_zone(zone, order);
2263 }
2264 
2265 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2266 
2267 void __init page_alloc_init_late(void)
2268 {
2269     struct zone *zone;
2270     int nid;
2271 
2272 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2273 
2274     /* There will be num_node_state(N_MEMORY) threads */
2275     atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2276     for_each_node_state(nid, N_MEMORY) {
2277         kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2278     }
2279 
2280     /* Block until all are initialised */
2281     wait_for_completion(&pgdat_init_all_done_comp);
2282 
2283     /*
2284      * We initialized the rest of the deferred pages.  Permanently disable
2285      * on-demand struct page initialization.
2286      */
2287     static_branch_disable(&deferred_pages);
2288 
2289     /* Reinit limits that are based on free pages after the kernel is up */
2290     files_maxfiles_init();
2291 #endif
2292 
2293     buffer_init();
2294 
2295     /* Discard memblock private memory */
2296     memblock_discard();
2297 
2298     for_each_node_state(nid, N_MEMORY)
2299         shuffle_free_memory(NODE_DATA(nid));
2300 
2301     for_each_populated_zone(zone)
2302         set_zone_contiguous(zone);
2303 }
2304 
2305 #ifdef CONFIG_CMA
2306 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2307 void __init init_cma_reserved_pageblock(struct page *page)
2308 {
2309     unsigned i = pageblock_nr_pages;
2310     struct page *p = page;
2311 
2312     do {
2313         __ClearPageReserved(p);
2314         set_page_count(p, 0);
2315     } while (++p, --i);
2316 
2317     set_pageblock_migratetype(page, MIGRATE_CMA);
2318     set_page_refcounted(page);
2319     __free_pages(page, pageblock_order);
2320 
2321     adjust_managed_page_count(page, pageblock_nr_pages);
2322     page_zone(page)->cma_pages += pageblock_nr_pages;
2323 }
2324 #endif
2325 
2326 /*
2327  * The order of subdivision here is critical for the IO subsystem.
2328  * Please do not alter this order without good reasons and regression
2329  * testing. Specifically, as large blocks of memory are subdivided,
2330  * the order in which smaller blocks are delivered depends on the order
2331  * they're subdivided in this function. This is the primary factor
2332  * influencing the order in which pages are delivered to the IO
2333  * subsystem according to empirical testing, and this is also justified
2334  * by considering the behavior of a buddy system containing a single
2335  * large block of memory acted on by a series of small allocations.
2336  * This behavior is a critical factor in sglist merging's success.
2337  *
2338  * -- nyc
2339  */
2340 static inline void expand(struct zone *zone, struct page *page,
2341     int low, int high, int migratetype)
2342 {
2343     unsigned long size = 1 << high;
2344 
2345     while (high > low) {
2346         high--;
2347         size >>= 1;
2348         VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2349 
2350         /*
2351          * Mark as guard pages (or page), that will allow to
2352          * merge back to allocator when buddy will be freed.
2353          * Corresponding page table entries will not be touched,
2354          * pages will stay not present in virtual address space
2355          */
2356         if (set_page_guard(zone, &page[size], high, migratetype))
2357             continue;
2358 
2359         add_to_free_list(&page[size], zone, high, migratetype);
2360         set_buddy_order(&page[size], high);
2361     }
2362 }
2363 
2364 static void check_new_page_bad(struct page *page)
2365 {
2366     if (unlikely(page->flags & __PG_HWPOISON)) {
2367         /* Don't complain about hwpoisoned pages */
2368         page_mapcount_reset(page); /* remove PageBuddy */
2369         return;
2370     }
2371 
2372     bad_page(page,
2373          page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2374 }
2375 
2376 /*
2377  * This page is about to be returned from the page allocator
2378  */
2379 static inline int check_new_page(struct page *page)
2380 {
2381     if (likely(page_expected_state(page,
2382                 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2383         return 0;
2384 
2385     check_new_page_bad(page);
2386     return 1;
2387 }
2388 
2389 static bool check_new_pages(struct page *page, unsigned int order)
2390 {
2391     int i;
2392     for (i = 0; i < (1 << order); i++) {
2393         struct page *p = page + i;
2394 
2395         if (unlikely(check_new_page(p)))
2396             return true;
2397     }
2398 
2399     return false;
2400 }
2401 
2402 #ifdef CONFIG_DEBUG_VM
2403 /*
2404  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2405  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2406  * also checked when pcp lists are refilled from the free lists.
2407  */
2408 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2409 {
2410     if (debug_pagealloc_enabled_static())
2411         return check_new_pages(page, order);
2412     else
2413         return false;
2414 }
2415 
2416 static inline bool check_new_pcp(struct page *page, unsigned int order)
2417 {
2418     return check_new_pages(page, order);
2419 }
2420 #else
2421 /*
2422  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2423  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2424  * enabled, they are also checked when being allocated from the pcp lists.
2425  */
2426 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2427 {
2428     return check_new_pages(page, order);
2429 }
2430 static inline bool check_new_pcp(struct page *page, unsigned int order)
2431 {
2432     if (debug_pagealloc_enabled_static())
2433         return check_new_pages(page, order);
2434     else
2435         return false;
2436 }
2437 #endif /* CONFIG_DEBUG_VM */
2438 
2439 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2440 {
2441     /* Don't skip if a software KASAN mode is enabled. */
2442     if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2443         IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2444         return false;
2445 
2446     /* Skip, if hardware tag-based KASAN is not enabled. */
2447     if (!kasan_hw_tags_enabled())
2448         return true;
2449 
2450     /*
2451      * With hardware tag-based KASAN enabled, skip if this has been
2452      * requested via __GFP_SKIP_KASAN_UNPOISON.
2453      */
2454     return flags & __GFP_SKIP_KASAN_UNPOISON;
2455 }
2456 
2457 static inline bool should_skip_init(gfp_t flags)
2458 {
2459     /* Don't skip, if hardware tag-based KASAN is not enabled. */
2460     if (!kasan_hw_tags_enabled())
2461         return false;
2462 
2463     /* For hardware tag-based KASAN, skip if requested. */
2464     return (flags & __GFP_SKIP_ZERO);
2465 }
2466 
2467 inline void post_alloc_hook(struct page *page, unsigned int order,
2468                 gfp_t gfp_flags)
2469 {
2470     bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2471             !should_skip_init(gfp_flags);
2472     bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2473     int i;
2474 
2475     set_page_private(page, 0);
2476     set_page_refcounted(page);
2477 
2478     arch_alloc_page(page, order);
2479     debug_pagealloc_map_pages(page, 1 << order);
2480 
2481     /*
2482      * Page unpoisoning must happen before memory initialization.
2483      * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2484      * allocations and the page unpoisoning code will complain.
2485      */
2486     kernel_unpoison_pages(page, 1 << order);
2487 
2488     /*
2489      * As memory initialization might be integrated into KASAN,
2490      * KASAN unpoisoning and memory initializion code must be
2491      * kept together to avoid discrepancies in behavior.
2492      */
2493 
2494     /*
2495      * If memory tags should be zeroed (which happens only when memory
2496      * should be initialized as well).
2497      */
2498     if (init_tags) {
2499         /* Initialize both memory and tags. */
2500         for (i = 0; i != 1 << order; ++i)
2501             tag_clear_highpage(page + i);
2502 
2503         /* Note that memory is already initialized by the loop above. */
2504         init = false;
2505     }
2506     if (!should_skip_kasan_unpoison(gfp_flags)) {
2507         /* Unpoison shadow memory or set memory tags. */
2508         kasan_unpoison_pages(page, order, init);
2509 
2510         /* Note that memory is already initialized by KASAN. */
2511         if (kasan_has_integrated_init())
2512             init = false;
2513     } else {
2514         /* Ensure page_address() dereferencing does not fault. */
2515         for (i = 0; i != 1 << order; ++i)
2516             page_kasan_tag_reset(page + i);
2517     }
2518     /* If memory is still not initialized, do it now. */
2519     if (init)
2520         kernel_init_pages(page, 1 << order);
2521     /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2522     if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2523         SetPageSkipKASanPoison(page);
2524 
2525     set_page_owner(page, order, gfp_flags);
2526     page_table_check_alloc(page, order);
2527 }
2528 
2529 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2530                             unsigned int alloc_flags)
2531 {
2532     post_alloc_hook(page, order, gfp_flags);
2533 
2534     if (order && (gfp_flags & __GFP_COMP))
2535         prep_compound_page(page, order);
2536 
2537     /*
2538      * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2539      * allocate the page. The expectation is that the caller is taking
2540      * steps that will free more memory. The caller should avoid the page
2541      * being used for !PFMEMALLOC purposes.
2542      */
2543     if (alloc_flags & ALLOC_NO_WATERMARKS)
2544         set_page_pfmemalloc(page);
2545     else
2546         clear_page_pfmemalloc(page);
2547 }
2548 
2549 /*
2550  * Go through the free lists for the given migratetype and remove
2551  * the smallest available page from the freelists
2552  */
2553 static __always_inline
2554 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2555                         int migratetype)
2556 {
2557     unsigned int current_order;
2558     struct free_area *area;
2559     struct page *page;
2560 
2561     /* Find a page of the appropriate size in the preferred list */
2562     for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2563         area = &(zone->free_area[current_order]);
2564         page = get_page_from_free_area(area, migratetype);
2565         if (!page)
2566             continue;
2567         del_page_from_free_list(page, zone, current_order);
2568         expand(zone, page, order, current_order, migratetype);
2569         set_pcppage_migratetype(page, migratetype);
2570         trace_mm_page_alloc_zone_locked(page, order, migratetype,
2571                 pcp_allowed_order(order) &&
2572                 migratetype < MIGRATE_PCPTYPES);
2573         return page;
2574     }
2575 
2576     return NULL;
2577 }
2578 
2579 
2580 /*
2581  * This array describes the order lists are fallen back to when
2582  * the free lists for the desirable migrate type are depleted
2583  *
2584  * The other migratetypes do not have fallbacks.
2585  */
2586 static int fallbacks[MIGRATE_TYPES][3] = {
2587     [MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2588     [MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2589     [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2590 };
2591 
2592 #ifdef CONFIG_CMA
2593 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2594                     unsigned int order)
2595 {
2596     return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2597 }
2598 #else
2599 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2600                     unsigned int order) { return NULL; }
2601 #endif
2602 
2603 /*
2604  * Move the free pages in a range to the freelist tail of the requested type.
2605  * Note that start_page and end_pages are not aligned on a pageblock
2606  * boundary. If alignment is required, use move_freepages_block()
2607  */
2608 static int move_freepages(struct zone *zone,
2609               unsigned long start_pfn, unsigned long end_pfn,
2610               int migratetype, int *num_movable)
2611 {
2612     struct page *page;
2613     unsigned long pfn;
2614     unsigned int order;
2615     int pages_moved = 0;
2616 
2617     for (pfn = start_pfn; pfn <= end_pfn;) {
2618         page = pfn_to_page(pfn);
2619         if (!PageBuddy(page)) {
2620             /*
2621              * We assume that pages that could be isolated for
2622              * migration are movable. But we don't actually try
2623              * isolating, as that would be expensive.
2624              */
2625             if (num_movable &&
2626                     (PageLRU(page) || __PageMovable(page)))
2627                 (*num_movable)++;
2628             pfn++;
2629             continue;
2630         }
2631 
2632         /* Make sure we are not inadvertently changing nodes */
2633         VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2634         VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2635 
2636         order = buddy_order(page);
2637         move_to_free_list(page, zone, order, migratetype);
2638         pfn += 1 << order;
2639         pages_moved += 1 << order;
2640     }
2641 
2642     return pages_moved;
2643 }
2644 
2645 int move_freepages_block(struct zone *zone, struct page *page,
2646                 int migratetype, int *num_movable)
2647 {
2648     unsigned long start_pfn, end_pfn, pfn;
2649 
2650     if (num_movable)
2651         *num_movable = 0;
2652 
2653     pfn = page_to_pfn(page);
2654     start_pfn = pfn & ~(pageblock_nr_pages - 1);
2655     end_pfn = start_pfn + pageblock_nr_pages - 1;
2656 
2657     /* Do not cross zone boundaries */
2658     if (!zone_spans_pfn(zone, start_pfn))
2659         start_pfn = pfn;
2660     if (!zone_spans_pfn(zone, end_pfn))
2661         return 0;
2662 
2663     return move_freepages(zone, start_pfn, end_pfn, migratetype,
2664                                 num_movable);
2665 }
2666 
2667 static void change_pageblock_range(struct page *pageblock_page,
2668                     int start_order, int migratetype)
2669 {
2670     int nr_pageblocks = 1 << (start_order - pageblock_order);
2671 
2672     while (nr_pageblocks--) {
2673         set_pageblock_migratetype(pageblock_page, migratetype);
2674         pageblock_page += pageblock_nr_pages;
2675     }
2676 }
2677 
2678 /*
2679  * When we are falling back to another migratetype during allocation, try to
2680  * steal extra free pages from the same pageblocks to satisfy further
2681  * allocations, instead of polluting multiple pageblocks.
2682  *
2683  * If we are stealing a relatively large buddy page, it is likely there will
2684  * be more free pages in the pageblock, so try to steal them all. For
2685  * reclaimable and unmovable allocations, we steal regardless of page size,
2686  * as fragmentation caused by those allocations polluting movable pageblocks
2687  * is worse than movable allocations stealing from unmovable and reclaimable
2688  * pageblocks.
2689  */
2690 static bool can_steal_fallback(unsigned int order, int start_mt)
2691 {
2692     /*
2693      * Leaving this order check is intended, although there is
2694      * relaxed order check in next check. The reason is that
2695      * we can actually steal whole pageblock if this condition met,
2696      * but, below check doesn't guarantee it and that is just heuristic
2697      * so could be changed anytime.
2698      */
2699     if (order >= pageblock_order)
2700         return true;
2701 
2702     if (order >= pageblock_order / 2 ||
2703         start_mt == MIGRATE_RECLAIMABLE ||
2704         start_mt == MIGRATE_UNMOVABLE ||
2705         page_group_by_mobility_disabled)
2706         return true;
2707 
2708     return false;
2709 }
2710 
2711 static inline bool boost_watermark(struct zone *zone)
2712 {
2713     unsigned long max_boost;
2714 
2715     if (!watermark_boost_factor)
2716         return false;
2717     /*
2718      * Don't bother in zones that are unlikely to produce results.
2719      * On small machines, including kdump capture kernels running
2720      * in a small area, boosting the watermark can cause an out of
2721      * memory situation immediately.
2722      */
2723     if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2724         return false;
2725 
2726     max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2727             watermark_boost_factor, 10000);
2728 
2729     /*
2730      * high watermark may be uninitialised if fragmentation occurs
2731      * very early in boot so do not boost. We do not fall
2732      * through and boost by pageblock_nr_pages as failing
2733      * allocations that early means that reclaim is not going
2734      * to help and it may even be impossible to reclaim the
2735      * boosted watermark resulting in a hang.
2736      */
2737     if (!max_boost)
2738         return false;
2739 
2740     max_boost = max(pageblock_nr_pages, max_boost);
2741 
2742     zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2743         max_boost);
2744 
2745     return true;
2746 }
2747 
2748 /*
2749  * This function implements actual steal behaviour. If order is large enough,
2750  * we can steal whole pageblock. If not, we first move freepages in this
2751  * pageblock to our migratetype and determine how many already-allocated pages
2752  * are there in the pageblock with a compatible migratetype. If at least half
2753  * of pages are free or compatible, we can change migratetype of the pageblock
2754  * itself, so pages freed in the future will be put on the correct free list.
2755  */
2756 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2757         unsigned int alloc_flags, int start_type, bool whole_block)
2758 {
2759     unsigned int current_order = buddy_order(page);
2760     int free_pages, movable_pages, alike_pages;
2761     int old_block_type;
2762 
2763     old_block_type = get_pageblock_migratetype(page);
2764 
2765     /*
2766      * This can happen due to races and we want to prevent broken
2767      * highatomic accounting.
2768      */
2769     if (is_migrate_highatomic(old_block_type))
2770         goto single_page;
2771 
2772     /* Take ownership for orders >= pageblock_order */
2773     if (current_order >= pageblock_order) {
2774         change_pageblock_range(page, current_order, start_type);
2775         goto single_page;
2776     }
2777 
2778     /*
2779      * Boost watermarks to increase reclaim pressure to reduce the
2780      * likelihood of future fallbacks. Wake kswapd now as the node
2781      * may be balanced overall and kswapd will not wake naturally.
2782      */
2783     if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2784         set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2785 
2786     /* We are not allowed to try stealing from the whole block */
2787     if (!whole_block)
2788         goto single_page;
2789 
2790     free_pages = move_freepages_block(zone, page, start_type,
2791                         &movable_pages);
2792     /*
2793      * Determine how many pages are compatible with our allocation.
2794      * For movable allocation, it's the number of movable pages which
2795      * we just obtained. For other types it's a bit more tricky.
2796      */
2797     if (start_type == MIGRATE_MOVABLE) {
2798         alike_pages = movable_pages;
2799     } else {
2800         /*
2801          * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2802          * to MOVABLE pageblock, consider all non-movable pages as
2803          * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2804          * vice versa, be conservative since we can't distinguish the
2805          * exact migratetype of non-movable pages.
2806          */
2807         if (old_block_type == MIGRATE_MOVABLE)
2808             alike_pages = pageblock_nr_pages
2809                         - (free_pages + movable_pages);
2810         else
2811             alike_pages = 0;
2812     }
2813 
2814     /* moving whole block can fail due to zone boundary conditions */
2815     if (!free_pages)
2816         goto single_page;
2817 
2818     /*
2819      * If a sufficient number of pages in the block are either free or of
2820      * comparable migratability as our allocation, claim the whole block.
2821      */
2822     if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2823             page_group_by_mobility_disabled)
2824         set_pageblock_migratetype(page, start_type);
2825 
2826     return;
2827 
2828 single_page:
2829     move_to_free_list(page, zone, current_order, start_type);
2830 }
2831 
2832 /*
2833  * Check whether there is a suitable fallback freepage with requested order.
2834  * If only_stealable is true, this function returns fallback_mt only if
2835  * we can steal other freepages all together. This would help to reduce
2836  * fragmentation due to mixed migratetype pages in one pageblock.
2837  */
2838 int find_suitable_fallback(struct free_area *area, unsigned int order,
2839             int migratetype, bool only_stealable, bool *can_steal)
2840 {
2841     int i;
2842     int fallback_mt;
2843 
2844     if (area->nr_free == 0)
2845         return -1;
2846 
2847     *can_steal = false;
2848     for (i = 0;; i++) {
2849         fallback_mt = fallbacks[migratetype][i];
2850         if (fallback_mt == MIGRATE_TYPES)
2851             break;
2852 
2853         if (free_area_empty(area, fallback_mt))
2854             continue;
2855 
2856         if (can_steal_fallback(order, migratetype))
2857             *can_steal = true;
2858 
2859         if (!only_stealable)
2860             return fallback_mt;
2861 
2862         if (*can_steal)
2863             return fallback_mt;
2864     }
2865 
2866     return -1;
2867 }
2868 
2869 /*
2870  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2871  * there are no empty page blocks that contain a page with a suitable order
2872  */
2873 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2874                 unsigned int alloc_order)
2875 {
2876     int mt;
2877     unsigned long max_managed, flags;
2878 
2879     /*
2880      * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2881      * Check is race-prone but harmless.
2882      */
2883     max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2884     if (zone->nr_reserved_highatomic >= max_managed)
2885         return;
2886 
2887     spin_lock_irqsave(&zone->lock, flags);
2888 
2889     /* Recheck the nr_reserved_highatomic limit under the lock */
2890     if (zone->nr_reserved_highatomic >= max_managed)
2891         goto out_unlock;
2892 
2893     /* Yoink! */
2894     mt = get_pageblock_migratetype(page);
2895     /* Only reserve normal pageblocks (i.e., they can merge with others) */
2896     if (migratetype_is_mergeable(mt)) {
2897         zone->nr_reserved_highatomic += pageblock_nr_pages;
2898         set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2899         move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2900     }
2901 
2902 out_unlock:
2903     spin_unlock_irqrestore(&zone->lock, flags);
2904 }
2905 
2906 /*
2907  * Used when an allocation is about to fail under memory pressure. This
2908  * potentially hurts the reliability of high-order allocations when under
2909  * intense memory pressure but failed atomic allocations should be easier
2910  * to recover from than an OOM.
2911  *
2912  * If @force is true, try to unreserve a pageblock even though highatomic
2913  * pageblock is exhausted.
2914  */
2915 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2916                         bool force)
2917 {
2918     struct zonelist *zonelist = ac->zonelist;
2919     unsigned long flags;
2920     struct zoneref *z;
2921     struct zone *zone;
2922     struct page *page;
2923     int order;
2924     bool ret;
2925 
2926     for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2927                                 ac->nodemask) {
2928         /*
2929          * Preserve at least one pageblock unless memory pressure
2930          * is really high.
2931          */
2932         if (!force && zone->nr_reserved_highatomic <=
2933                     pageblock_nr_pages)
2934             continue;
2935 
2936         spin_lock_irqsave(&zone->lock, flags);
2937         for (order = 0; order < MAX_ORDER; order++) {
2938             struct free_area *area = &(zone->free_area[order]);
2939 
2940             page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2941             if (!page)
2942                 continue;
2943 
2944             /*
2945              * In page freeing path, migratetype change is racy so
2946              * we can counter several free pages in a pageblock
2947              * in this loop although we changed the pageblock type
2948              * from highatomic to ac->migratetype. So we should
2949              * adjust the count once.
2950              */
2951             if (is_migrate_highatomic_page(page)) {
2952                 /*
2953                  * It should never happen but changes to
2954                  * locking could inadvertently allow a per-cpu
2955                  * drain to add pages to MIGRATE_HIGHATOMIC
2956                  * while unreserving so be safe and watch for
2957                  * underflows.
2958                  */
2959                 zone->nr_reserved_highatomic -= min(
2960                         pageblock_nr_pages,
2961                         zone->nr_reserved_highatomic);
2962             }
2963 
2964             /*
2965              * Convert to ac->migratetype and avoid the normal
2966              * pageblock stealing heuristics. Minimally, the caller
2967              * is doing the work and needs the pages. More
2968              * importantly, if the block was always converted to
2969              * MIGRATE_UNMOVABLE or another type then the number
2970              * of pageblocks that cannot be completely freed
2971              * may increase.
2972              */
2973             set_pageblock_migratetype(page, ac->migratetype);
2974             ret = move_freepages_block(zone, page, ac->migratetype,
2975                                     NULL);
2976             if (ret) {
2977                 spin_unlock_irqrestore(&zone->lock, flags);
2978                 return ret;
2979             }
2980         }
2981         spin_unlock_irqrestore(&zone->lock, flags);
2982     }
2983 
2984     return false;
2985 }
2986 
2987 /*
2988  * Try finding a free buddy page on the fallback list and put it on the free
2989  * list of requested migratetype, possibly along with other pages from the same
2990  * block, depending on fragmentation avoidance heuristics. Returns true if
2991  * fallback was found so that __rmqueue_smallest() can grab it.
2992  *
2993  * The use of signed ints for order and current_order is a deliberate
2994  * deviation from the rest of this file, to make the for loop
2995  * condition simpler.
2996  */
2997 static __always_inline bool
2998 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2999                         unsigned int alloc_flags)
3000 {
3001     struct free_area *area;
3002     int current_order;
3003     int min_order = order;
3004     struct page *page;
3005     int fallback_mt;
3006     bool can_steal;
3007 
3008     /*
3009      * Do not steal pages from freelists belonging to other pageblocks
3010      * i.e. orders < pageblock_order. If there are no local zones free,
3011      * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3012      */
3013     if (alloc_flags & ALLOC_NOFRAGMENT)
3014         min_order = pageblock_order;
3015 
3016     /*
3017      * Find the largest available free page in the other list. This roughly
3018      * approximates finding the pageblock with the most free pages, which
3019      * would be too costly to do exactly.
3020      */
3021     for (current_order = MAX_ORDER - 1; current_order >= min_order;
3022                 --current_order) {
3023         area = &(zone->free_area[current_order]);
3024         fallback_mt = find_suitable_fallback(area, current_order,
3025                 start_migratetype, false, &can_steal);
3026         if (fallback_mt == -1)
3027             continue;
3028 
3029         /*
3030          * We cannot steal all free pages from the pageblock and the
3031          * requested migratetype is movable. In that case it's better to
3032          * steal and split the smallest available page instead of the
3033          * largest available page, because even if the next movable
3034          * allocation falls back into a different pageblock than this
3035          * one, it won't cause permanent fragmentation.
3036          */
3037         if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3038                     && current_order > order)
3039             goto find_smallest;
3040 
3041         goto do_steal;
3042     }
3043 
3044     return false;
3045 
3046 find_smallest:
3047     for (current_order = order; current_order < MAX_ORDER;
3048                             current_order++) {
3049         area = &(zone->free_area[current_order]);
3050         fallback_mt = find_suitable_fallback(area, current_order,
3051                 start_migratetype, false, &can_steal);
3052         if (fallback_mt != -1)
3053             break;
3054     }
3055 
3056     /*
3057      * This should not happen - we already found a suitable fallback
3058      * when looking for the largest page.
3059      */
3060     VM_BUG_ON(current_order == MAX_ORDER);
3061 
3062 do_steal:
3063     page = get_page_from_free_area(area, fallback_mt);
3064 
3065     steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3066                                 can_steal);
3067 
3068     trace_mm_page_alloc_extfrag(page, order, current_order,
3069         start_migratetype, fallback_mt);
3070 
3071     return true;
3072 
3073 }
3074 
3075 /*
3076  * Do the hard work of removing an element from the buddy allocator.
3077  * Call me with the zone->lock already held.
3078  */
3079 static __always_inline struct page *
3080 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3081                         unsigned int alloc_flags)
3082 {
3083     struct page *page;
3084 
3085     if (IS_ENABLED(CONFIG_CMA)) {
3086         /*
3087          * Balance movable allocations between regular and CMA areas by
3088          * allocating from CMA when over half of the zone's free memory
3089          * is in the CMA area.
3090          */
3091         if (alloc_flags & ALLOC_CMA &&
3092             zone_page_state(zone, NR_FREE_CMA_PAGES) >
3093             zone_page_state(zone, NR_FREE_PAGES) / 2) {
3094             page = __rmqueue_cma_fallback(zone, order);
3095             if (page)
3096                 return page;
3097         }
3098     }
3099 retry:
3100     page = __rmqueue_smallest(zone, order, migratetype);
3101     if (unlikely(!page)) {
3102         if (alloc_flags & ALLOC_CMA)
3103             page = __rmqueue_cma_fallback(zone, order);
3104 
3105         if (!page && __rmqueue_fallback(zone, order, migratetype,
3106                                 alloc_flags))
3107             goto retry;
3108     }
3109     return page;
3110 }
3111 
3112 /*
3113  * Obtain a specified number of elements from the buddy allocator, all under
3114  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3115  * Returns the number of new pages which were placed at *list.
3116  */
3117 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3118             unsigned long count, struct list_head *list,
3119             int migratetype, unsigned int alloc_flags)
3120 {
3121     int i, allocated = 0;
3122 
3123     /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3124     spin_lock(&zone->lock);
3125     for (i = 0; i < count; ++i) {
3126         struct page *page = __rmqueue(zone, order, migratetype,
3127                                 alloc_flags);
3128         if (unlikely(page == NULL))
3129             break;
3130 
3131         if (unlikely(check_pcp_refill(page, order)))
3132             continue;
3133 
3134         /*
3135          * Split buddy pages returned by expand() are received here in
3136          * physical page order. The page is added to the tail of
3137          * caller's list. From the callers perspective, the linked list
3138          * is ordered by page number under some conditions. This is
3139          * useful for IO devices that can forward direction from the
3140          * head, thus also in the physical page order. This is useful
3141          * for IO devices that can merge IO requests if the physical
3142          * pages are ordered properly.
3143          */
3144         list_add_tail(&page->pcp_list, list);
3145         allocated++;
3146         if (is_migrate_cma(get_pcppage_migratetype(page)))
3147             __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3148                           -(1 << order));
3149     }
3150 
3151     /*
3152      * i pages were removed from the buddy list even if some leak due
3153      * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3154      * on i. Do not confuse with 'allocated' which is the number of
3155      * pages added to the pcp list.
3156      */
3157     __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3158     spin_unlock(&zone->lock);
3159     return allocated;
3160 }
3161 
3162 #ifdef CONFIG_NUMA
3163 /*
3164  * Called from the vmstat counter updater to drain pagesets of this
3165  * currently executing processor on remote nodes after they have
3166  * expired.
3167  */
3168 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3169 {
3170     int to_drain, batch;
3171 
3172     batch = READ_ONCE(pcp->batch);
3173     to_drain = min(pcp->count, batch);
3174     if (to_drain > 0) {
3175         unsigned long flags;
3176 
3177         /*
3178          * free_pcppages_bulk expects IRQs disabled for zone->lock
3179          * so even though pcp->lock is not intended to be IRQ-safe,
3180          * it's needed in this context.
3181          */
3182         spin_lock_irqsave(&pcp->lock, flags);
3183         free_pcppages_bulk(zone, to_drain, pcp, 0);
3184         spin_unlock_irqrestore(&pcp->lock, flags);
3185     }
3186 }
3187 #endif
3188 
3189 /*
3190  * Drain pcplists of the indicated processor and zone.
3191  */
3192 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3193 {
3194     struct per_cpu_pages *pcp;
3195 
3196     pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3197     if (pcp->count) {
3198         unsigned long flags;
3199 
3200         /* See drain_zone_pages on why this is disabling IRQs */
3201         spin_lock_irqsave(&pcp->lock, flags);
3202         free_pcppages_bulk(zone, pcp->count, pcp, 0);
3203         spin_unlock_irqrestore(&pcp->lock, flags);
3204     }
3205 }
3206 
3207 /*
3208  * Drain pcplists of all zones on the indicated processor.
3209  */
3210 static void drain_pages(unsigned int cpu)
3211 {
3212     struct zone *zone;
3213 
3214     for_each_populated_zone(zone) {
3215         drain_pages_zone(cpu, zone);
3216     }
3217 }
3218 
3219 /*
3220  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3221  */
3222 void drain_local_pages(struct zone *zone)
3223 {
3224     int cpu = smp_processor_id();
3225 
3226     if (zone)
3227         drain_pages_zone(cpu, zone);
3228     else
3229         drain_pages(cpu);
3230 }
3231 
3232 /*
3233  * The implementation of drain_all_pages(), exposing an extra parameter to
3234  * drain on all cpus.
3235  *
3236  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3237  * not empty. The check for non-emptiness can however race with a free to
3238  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3239  * that need the guarantee that every CPU has drained can disable the
3240  * optimizing racy check.
3241  */
3242 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3243 {
3244     int cpu;
3245 
3246     /*
3247      * Allocate in the BSS so we won't require allocation in
3248      * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3249      */
3250     static cpumask_t cpus_with_pcps;
3251 
3252     /*
3253      * Do not drain if one is already in progress unless it's specific to
3254      * a zone. Such callers are primarily CMA and memory hotplug and need
3255      * the drain to be complete when the call returns.
3256      */
3257     if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3258         if (!zone)
3259             return;
3260         mutex_lock(&pcpu_drain_mutex);
3261     }
3262 
3263     /*
3264      * We don't care about racing with CPU hotplug event
3265      * as offline notification will cause the notified
3266      * cpu to drain that CPU pcps and on_each_cpu_mask
3267      * disables preemption as part of its processing
3268      */
3269     for_each_online_cpu(cpu) {
3270         struct per_cpu_pages *pcp;
3271         struct zone *z;
3272         bool has_pcps = false;
3273 
3274         if (force_all_cpus) {
3275             /*
3276              * The pcp.count check is racy, some callers need a
3277              * guarantee that no cpu is missed.
3278              */
3279             has_pcps = true;
3280         } else if (zone) {
3281             pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3282             if (pcp->count)
3283                 has_pcps = true;
3284         } else {
3285             for_each_populated_zone(z) {
3286                 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3287                 if (pcp->count) {
3288                     has_pcps = true;
3289                     break;
3290                 }
3291             }
3292         }
3293 
3294         if (has_pcps)
3295             cpumask_set_cpu(cpu, &cpus_with_pcps);
3296         else
3297             cpumask_clear_cpu(cpu, &cpus_with_pcps);
3298     }
3299 
3300     for_each_cpu(cpu, &cpus_with_pcps) {
3301         if (zone)
3302             drain_pages_zone(cpu, zone);
3303         else
3304             drain_pages(cpu);
3305     }
3306 
3307     mutex_unlock(&pcpu_drain_mutex);
3308 }
3309 
3310 /*
3311  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3312  *
3313  * When zone parameter is non-NULL, spill just the single zone's pages.
3314  */
3315 void drain_all_pages(struct zone *zone)
3316 {
3317     __drain_all_pages(zone, false);
3318 }
3319 
3320 #ifdef CONFIG_HIBERNATION
3321 
3322 /*
3323  * Touch the watchdog for every WD_PAGE_COUNT pages.
3324  */
3325 #define WD_PAGE_COUNT   (128*1024)
3326 
3327 void mark_free_pages(struct zone *zone)
3328 {
3329     unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3330     unsigned long flags;
3331     unsigned int order, t;
3332     struct page *page;
3333 
3334     if (zone_is_empty(zone))
3335         return;
3336 
3337     spin_lock_irqsave(&zone->lock, flags);
3338 
3339     max_zone_pfn = zone_end_pfn(zone);
3340     for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3341         if (pfn_valid(pfn)) {
3342             page = pfn_to_page(pfn);
3343 
3344             if (!--page_count) {
3345                 touch_nmi_watchdog();
3346                 page_count = WD_PAGE_COUNT;
3347             }
3348 
3349             if (page_zone(page) != zone)
3350                 continue;
3351 
3352             if (!swsusp_page_is_forbidden(page))
3353                 swsusp_unset_page_free(page);
3354         }
3355 
3356     for_each_migratetype_order(order, t) {
3357         list_for_each_entry(page,
3358                 &zone->free_area[order].free_list[t], buddy_list) {
3359             unsigned long i;
3360 
3361             pfn = page_to_pfn(page);
3362             for (i = 0; i < (1UL << order); i++) {
3363                 if (!--page_count) {
3364                     touch_nmi_watchdog();
3365                     page_count = WD_PAGE_COUNT;
3366                 }
3367                 swsusp_set_page_free(pfn_to_page(pfn + i));
3368             }
3369         }
3370     }
3371     spin_unlock_irqrestore(&zone->lock, flags);
3372 }
3373 #endif /* CONFIG_PM */
3374 
3375 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3376                             unsigned int order)
3377 {
3378     int migratetype;
3379 
3380     if (!free_pcp_prepare(page, order))
3381         return false;
3382 
3383     migratetype = get_pfnblock_migratetype(page, pfn);
3384     set_pcppage_migratetype(page, migratetype);
3385     return true;
3386 }
3387 
3388 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3389                bool free_high)
3390 {
3391     int min_nr_free, max_nr_free;
3392 
3393     /* Free everything if batch freeing high-order pages. */
3394     if (unlikely(free_high))
3395         return pcp->count;
3396 
3397     /* Check for PCP disabled or boot pageset */
3398     if (unlikely(high < batch))
3399         return 1;
3400 
3401     /* Leave at least pcp->batch pages on the list */
3402     min_nr_free = batch;
3403     max_nr_free = high - batch;
3404 
3405     /*
3406      * Double the number of pages freed each time there is subsequent
3407      * freeing of pages without any allocation.
3408      */
3409     batch <<= pcp->free_factor;
3410     if (batch < max_nr_free)
3411         pcp->free_factor++;
3412     batch = clamp(batch, min_nr_free, max_nr_free);
3413 
3414     return batch;
3415 }
3416 
3417 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3418                bool free_high)
3419 {
3420     int high = READ_ONCE(pcp->high);
3421 
3422     if (unlikely(!high || free_high))
3423         return 0;
3424 
3425     if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3426         return high;
3427 
3428     /*
3429      * If reclaim is active, limit the number of pages that can be
3430      * stored on pcp lists
3431      */
3432     return min(READ_ONCE(pcp->batch) << 2, high);
3433 }
3434 
3435 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3436                    struct page *page, int migratetype,
3437                    unsigned int order)
3438 {
3439     int high;
3440     int pindex;
3441     bool free_high;
3442 
3443     __count_vm_event(PGFREE);
3444     pindex = order_to_pindex(migratetype, order);
3445     list_add(&page->pcp_list, &pcp->lists[pindex]);
3446     pcp->count += 1 << order;
3447 
3448     /*
3449      * As high-order pages other than THP's stored on PCP can contribute
3450      * to fragmentation, limit the number stored when PCP is heavily
3451      * freeing without allocation. The remainder after bulk freeing
3452      * stops will be drained from vmstat refresh context.
3453      */
3454     free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3455 
3456     high = nr_pcp_high(pcp, zone, free_high);
3457     if (pcp->count >= high) {
3458         int batch = READ_ONCE(pcp->batch);
3459 
3460         free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3461     }
3462 }
3463 
3464 /*
3465  * Free a pcp page
3466  */
3467 void free_unref_page(struct page *page, unsigned int order)
3468 {
3469     unsigned long flags;
3470     unsigned long __maybe_unused UP_flags;
3471     struct per_cpu_pages *pcp;
3472     struct zone *zone;
3473     unsigned long pfn = page_to_pfn(page);
3474     int migratetype;
3475 
3476     if (!free_unref_page_prepare(page, pfn, order))
3477         return;
3478 
3479     /*
3480      * We only track unmovable, reclaimable and movable on pcp lists.
3481      * Place ISOLATE pages on the isolated list because they are being
3482      * offlined but treat HIGHATOMIC as movable pages so we can get those
3483      * areas back if necessary. Otherwise, we may have to free
3484      * excessively into the page allocator
3485      */
3486     migratetype = get_pcppage_migratetype(page);
3487     if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3488         if (unlikely(is_migrate_isolate(migratetype))) {
3489             free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3490             return;
3491         }
3492         migratetype = MIGRATE_MOVABLE;
3493     }
3494 
3495     zone = page_zone(page);
3496     pcp_trylock_prepare(UP_flags);
3497     pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3498     if (pcp) {
3499         free_unref_page_commit(zone, pcp, page, migratetype, order);
3500         pcp_spin_unlock_irqrestore(pcp, flags);
3501     } else {
3502         free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3503     }
3504     pcp_trylock_finish(UP_flags);
3505 }
3506 
3507 /*
3508  * Free a list of 0-order pages
3509  */
3510 void free_unref_page_list(struct list_head *list)
3511 {
3512     struct page *page, *next;
3513     struct per_cpu_pages *pcp = NULL;
3514     struct zone *locked_zone = NULL;
3515     unsigned long flags;
3516     int batch_count = 0;
3517     int migratetype;
3518 
3519     /* Prepare pages for freeing */
3520     list_for_each_entry_safe(page, next, list, lru) {
3521         unsigned long pfn = page_to_pfn(page);
3522         if (!free_unref_page_prepare(page, pfn, 0)) {
3523             list_del(&page->lru);
3524             continue;
3525         }
3526 
3527         /*
3528          * Free isolated pages directly to the allocator, see
3529          * comment in free_unref_page.
3530          */
3531         migratetype = get_pcppage_migratetype(page);
3532         if (unlikely(is_migrate_isolate(migratetype))) {
3533             list_del(&page->lru);
3534             free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3535             continue;
3536         }
3537     }
3538 
3539     list_for_each_entry_safe(page, next, list, lru) {
3540         struct zone *zone = page_zone(page);
3541 
3542         /* Different zone, different pcp lock. */
3543         if (zone != locked_zone) {
3544             if (pcp)
3545                 pcp_spin_unlock_irqrestore(pcp, flags);
3546 
3547             locked_zone = zone;
3548             pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3549         }
3550 
3551         /*
3552          * Non-isolated types over MIGRATE_PCPTYPES get added
3553          * to the MIGRATE_MOVABLE pcp list.
3554          */
3555         migratetype = get_pcppage_migratetype(page);
3556         if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3557             migratetype = MIGRATE_MOVABLE;
3558 
3559         trace_mm_page_free_batched(page);
3560         free_unref_page_commit(zone, pcp, page, migratetype, 0);
3561 
3562         /*
3563          * Guard against excessive IRQ disabled times when we get
3564          * a large list of pages to free.
3565          */
3566         if (++batch_count == SWAP_CLUSTER_MAX) {
3567             pcp_spin_unlock_irqrestore(pcp, flags);
3568             batch_count = 0;
3569             pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3570         }
3571     }
3572 
3573     if (pcp)
3574         pcp_spin_unlock_irqrestore(pcp, flags);
3575 }
3576 
3577 /*
3578  * split_page takes a non-compound higher-order page, and splits it into
3579  * n (1<<order) sub-pages: page[0..n]
3580  * Each sub-page must be freed individually.
3581  *
3582  * Note: this is probably too low level an operation for use in drivers.
3583  * Please consult with lkml before using this in your driver.
3584  */
3585 void split_page(struct page *page, unsigned int order)
3586 {
3587     int i;
3588 
3589     VM_BUG_ON_PAGE(PageCompound(page), page);
3590     VM_BUG_ON_PAGE(!page_count(page), page);
3591 
3592     for (i = 1; i < (1 << order); i++)
3593         set_page_refcounted(page + i);
3594     split_page_owner(page, 1 << order);
3595     split_page_memcg(page, 1 << order);
3596 }
3597 EXPORT_SYMBOL_GPL(split_page);
3598 
3599 int __isolate_free_page(struct page *page, unsigned int order)
3600 {
3601     unsigned long watermark;
3602     struct zone *zone;
3603     int mt;
3604 
3605     BUG_ON(!PageBuddy(page));
3606 
3607     zone = page_zone(page);
3608     mt = get_pageblock_migratetype(page);
3609 
3610     if (!is_migrate_isolate(mt)) {
3611         /*
3612          * Obey watermarks as if the page was being allocated. We can
3613          * emulate a high-order watermark check with a raised order-0
3614          * watermark, because we already know our high-order page
3615          * exists.
3616          */
3617         watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3618         if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3619             return 0;
3620 
3621         __mod_zone_freepage_state(zone, -(1UL << order), mt);
3622     }
3623 
3624     /* Remove page from free list */
3625 
3626     del_page_from_free_list(page, zone, order);
3627 
3628     /*
3629      * Set the pageblock if the isolated page is at least half of a
3630      * pageblock
3631      */
3632     if (order >= pageblock_order - 1) {
3633         struct page *endpage = page + (1 << order) - 1;
3634         for (; page < endpage; page += pageblock_nr_pages) {
3635             int mt = get_pageblock_migratetype(page);
3636             /*
3637              * Only change normal pageblocks (i.e., they can merge
3638              * with others)
3639              */
3640             if (migratetype_is_mergeable(mt))
3641                 set_pageblock_migratetype(page,
3642                               MIGRATE_MOVABLE);
3643         }
3644     }
3645 
3646 
3647     return 1UL << order;
3648 }
3649 
3650 /**
3651  * __putback_isolated_page - Return a now-isolated page back where we got it
3652  * @page: Page that was isolated
3653  * @order: Order of the isolated page
3654  * @mt: The page's pageblock's migratetype
3655  *
3656  * This function is meant to return a page pulled from the free lists via
3657  * __isolate_free_page back to the free lists they were pulled from.
3658  */
3659 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3660 {
3661     struct zone *zone = page_zone(page);
3662 
3663     /* zone lock should be held when this function is called */
3664     lockdep_assert_held(&zone->lock);
3665 
3666     /* Return isolated page to tail of freelist. */
3667     __free_one_page(page, page_to_pfn(page), zone, order, mt,
3668             FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3669 }
3670 
3671 /*
3672  * Update NUMA hit/miss statistics
3673  *
3674  * Must be called with interrupts disabled.
3675  */
3676 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3677                    long nr_account)
3678 {
3679 #ifdef CONFIG_NUMA
3680     enum numa_stat_item local_stat = NUMA_LOCAL;
3681 
3682     /* skip numa counters update if numa stats is disabled */
3683     if (!static_branch_likely(&vm_numa_stat_key))
3684         return;
3685 
3686     if (zone_to_nid(z) != numa_node_id())
3687         local_stat = NUMA_OTHER;
3688 
3689     if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3690         __count_numa_events(z, NUMA_HIT, nr_account);
3691     else {
3692         __count_numa_events(z, NUMA_MISS, nr_account);
3693         __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3694     }
3695     __count_numa_events(z, local_stat, nr_account);
3696 #endif
3697 }
3698 
3699 static __always_inline
3700 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3701                unsigned int order, unsigned int alloc_flags,
3702                int migratetype)
3703 {
3704     struct page *page;
3705     unsigned long flags;
3706 
3707     do {
3708         page = NULL;
3709         spin_lock_irqsave(&zone->lock, flags);
3710         /*
3711          * order-0 request can reach here when the pcplist is skipped
3712          * due to non-CMA allocation context. HIGHATOMIC area is
3713          * reserved for high-order atomic allocation, so order-0
3714          * request should skip it.
3715          */
3716         if (order > 0 && alloc_flags & ALLOC_HARDER)
3717             page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3718         if (!page) {
3719             page = __rmqueue(zone, order, migratetype, alloc_flags);
3720             if (!page) {
3721                 spin_unlock_irqrestore(&zone->lock, flags);
3722                 return NULL;
3723             }
3724         }
3725         __mod_zone_freepage_state(zone, -(1 << order),
3726                       get_pcppage_migratetype(page));
3727         spin_unlock_irqrestore(&zone->lock, flags);
3728     } while (check_new_pages(page, order));
3729 
3730     __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3731     zone_statistics(preferred_zone, zone, 1);
3732 
3733     return page;
3734 }
3735 
3736 /* Remove page from the per-cpu list, caller must protect the list */
3737 static inline
3738 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3739             int migratetype,
3740             unsigned int alloc_flags,
3741             struct per_cpu_pages *pcp,
3742             struct list_head *list)
3743 {
3744     struct page *page;
3745 
3746     do {
3747         if (list_empty(list)) {
3748             int batch = READ_ONCE(pcp->batch);
3749             int alloced;
3750 
3751             /*
3752              * Scale batch relative to order if batch implies
3753              * free pages can be stored on the PCP. Batch can
3754              * be 1 for small zones or for boot pagesets which
3755              * should never store free pages as the pages may
3756              * belong to arbitrary zones.
3757              */
3758             if (batch > 1)
3759                 batch = max(batch >> order, 2);
3760             alloced = rmqueue_bulk(zone, order,
3761                     batch, list,
3762                     migratetype, alloc_flags);
3763 
3764             pcp->count += alloced << order;
3765             if (unlikely(list_empty(list)))
3766                 return NULL;
3767         }
3768 
3769         page = list_first_entry(list, struct page, pcp_list);
3770         list_del(&page->pcp_list);
3771         pcp->count -= 1 << order;
3772     } while (check_new_pcp(page, order));
3773 
3774     return page;
3775 }
3776 
3777 /* Lock and remove page from the per-cpu list */
3778 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3779             struct zone *zone, unsigned int order,
3780             gfp_t gfp_flags, int migratetype,
3781             unsigned int alloc_flags)
3782 {
3783     struct per_cpu_pages *pcp;
3784     struct list_head *list;
3785     struct page *page;
3786     unsigned long flags;
3787     unsigned long __maybe_unused UP_flags;
3788 
3789     /*
3790      * spin_trylock may fail due to a parallel drain. In the future, the
3791      * trylock will also protect against IRQ reentrancy.
3792      */
3793     pcp_trylock_prepare(UP_flags);
3794     pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3795     if (!pcp) {
3796         pcp_trylock_finish(UP_flags);
3797         return NULL;
3798     }
3799 
3800     /*
3801      * On allocation, reduce the number of pages that are batch freed.
3802      * See nr_pcp_free() where free_factor is increased for subsequent
3803      * frees.
3804      */
3805     pcp->free_factor >>= 1;
3806     list = &pcp->lists[order_to_pindex(migratetype, order)];
3807     page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3808     pcp_spin_unlock_irqrestore(pcp, flags);
3809     pcp_trylock_finish(UP_flags);
3810     if (page) {
3811         __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3812         zone_statistics(preferred_zone, zone, 1);
3813     }
3814     return page;
3815 }
3816 
3817 /*
3818  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3819  */
3820 static inline
3821 struct page *rmqueue(struct zone *preferred_zone,
3822             struct zone *zone, unsigned int order,
3823             gfp_t gfp_flags, unsigned int alloc_flags,
3824             int migratetype)
3825 {
3826     struct page *page;
3827 
3828     /*
3829      * We most definitely don't want callers attempting to
3830      * allocate greater than order-1 page units with __GFP_NOFAIL.
3831      */
3832     WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3833 
3834     if (likely(pcp_allowed_order(order))) {
3835         /*
3836          * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3837          * we need to skip it when CMA area isn't allowed.
3838          */
3839         if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3840                 migratetype != MIGRATE_MOVABLE) {
3841             page = rmqueue_pcplist(preferred_zone, zone, order,
3842                     gfp_flags, migratetype, alloc_flags);
3843             if (likely(page))
3844                 goto out;
3845         }
3846     }
3847 
3848     page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3849                             migratetype);
3850 
3851 out:
3852     /* Separate test+clear to avoid unnecessary atomics */
3853     if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3854         clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3855         wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3856     }
3857 
3858     VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3859     return page;
3860 }
3861 
3862 #ifdef CONFIG_FAIL_PAGE_ALLOC
3863 
3864 static struct {
3865     struct fault_attr attr;
3866 
3867     bool ignore_gfp_highmem;
3868     bool ignore_gfp_reclaim;
3869     u32 min_order;
3870 } fail_page_alloc = {
3871     .attr = FAULT_ATTR_INITIALIZER,
3872     .ignore_gfp_reclaim = true,
3873     .ignore_gfp_highmem = true,
3874     .min_order = 1,
3875 };
3876 
3877 static int __init setup_fail_page_alloc(char *str)
3878 {
3879     return setup_fault_attr(&fail_page_alloc.attr, str);
3880 }
3881 __setup("fail_page_alloc=", setup_fail_page_alloc);
3882 
3883 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3884 {
3885     if (order < fail_page_alloc.min_order)
3886         return false;
3887     if (gfp_mask & __GFP_NOFAIL)
3888         return false;
3889     if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3890         return false;
3891     if (fail_page_alloc.ignore_gfp_reclaim &&
3892             (gfp_mask & __GFP_DIRECT_RECLAIM))
3893         return false;
3894 
3895     if (gfp_mask & __GFP_NOWARN)
3896         fail_page_alloc.attr.no_warn = true;
3897 
3898     return should_fail(&fail_page_alloc.attr, 1 << order);
3899 }
3900 
3901 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3902 
3903 static int __init fail_page_alloc_debugfs(void)
3904 {
3905     umode_t mode = S_IFREG | 0600;
3906     struct dentry *dir;
3907 
3908     dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3909                     &fail_page_alloc.attr);
3910 
3911     debugfs_create_bool("ignore-gfp-wait", mode, dir,
3912                 &fail_page_alloc.ignore_gfp_reclaim);
3913     debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3914                 &fail_page_alloc.ignore_gfp_highmem);
3915     debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3916 
3917     return 0;
3918 }
3919 
3920 late_initcall(fail_page_alloc_debugfs);
3921 
3922 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3923 
3924 #else /* CONFIG_FAIL_PAGE_ALLOC */
3925 
3926 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3927 {
3928     return false;
3929 }
3930 
3931 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3932 
3933 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3934 {
3935     return __should_fail_alloc_page(gfp_mask, order);
3936 }
3937 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3938 
3939 static inline long __zone_watermark_unusable_free(struct zone *z,
3940                 unsigned int order, unsigned int alloc_flags)
3941 {
3942     const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3943     long unusable_free = (1 << order) - 1;
3944 
3945     /*
3946      * If the caller does not have rights to ALLOC_HARDER then subtract
3947      * the high-atomic reserves. This will over-estimate the size of the
3948      * atomic reserve but it avoids a search.
3949      */
3950     if (likely(!alloc_harder))
3951         unusable_free += z->nr_reserved_highatomic;
3952 
3953 #ifdef CONFIG_CMA
3954     /* If allocation can't use CMA areas don't use free CMA pages */
3955     if (!(alloc_flags & ALLOC_CMA))
3956         unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3957 #endif
3958 
3959     return unusable_free;
3960 }
3961 
3962 /*
3963  * Return true if free base pages are above 'mark'. For high-order checks it
3964  * will return true of the order-0 watermark is reached and there is at least
3965  * one free page of a suitable size. Checking now avoids taking the zone lock
3966  * to check in the allocation paths if no pages are free.
3967  */
3968 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3969              int highest_zoneidx, unsigned int alloc_flags,
3970              long free_pages)
3971 {
3972     long min = mark;
3973     int o;
3974     const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3975 
3976     /* free_pages may go negative - that's OK */
3977     free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3978 
3979     if (alloc_flags & ALLOC_HIGH)
3980         min -= min / 2;
3981 
3982     if (unlikely(alloc_harder)) {
3983         /*
3984          * OOM victims can try even harder than normal ALLOC_HARDER
3985          * users on the grounds that it's definitely going to be in
3986          * the exit path shortly and free memory. Any allocation it
3987          * makes during the free path will be small and short-lived.
3988          */
3989         if (alloc_flags & ALLOC_OOM)
3990             min -= min / 2;
3991         else
3992             min -= min / 4;
3993     }
3994 
3995     /*
3996      * Check watermarks for an order-0 allocation request. If these
3997      * are not met, then a high-order request also cannot go ahead
3998      * even if a suitable page happened to be free.
3999      */
4000     if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4001         return false;
4002 
4003     /* If this is an order-0 request then the watermark is fine */
4004     if (!order)
4005         return true;
4006 
4007     /* For a high-order request, check at least one suitable page is free */
4008     for (o = order; o < MAX_ORDER; o++) {
4009         struct free_area *area = &z->free_area[o];
4010         int mt;
4011 
4012         if (!area->nr_free)
4013             continue;
4014 
4015         for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4016             if (!free_area_empty(area, mt))
4017                 return true;
4018         }
4019 
4020 #ifdef CONFIG_CMA
4021         if ((alloc_flags & ALLOC_CMA) &&
4022             !free_area_empty(area, MIGRATE_CMA)) {
4023             return true;
4024         }
4025 #endif
4026         if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4027             return true;
4028     }
4029     return false;
4030 }
4031 
4032 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4033               int highest_zoneidx, unsigned int alloc_flags)
4034 {
4035     return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4036                     zone_page_state(z, NR_FREE_PAGES));
4037 }
4038 
4039 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4040                 unsigned long mark, int highest_zoneidx,
4041                 unsigned int alloc_flags, gfp_t gfp_mask)
4042 {
4043     long free_pages;
4044 
4045     free_pages = zone_page_state(z, NR_FREE_PAGES);
4046 
4047     /*
4048      * Fast check for order-0 only. If this fails then the reserves
4049      * need to be calculated.
4050      */
4051     if (!order) {
4052         long usable_free;
4053         long reserved;
4054 
4055         usable_free = free_pages;
4056         reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4057 
4058         /* reserved may over estimate high-atomic reserves. */
4059         usable_free -= min(usable_free, reserved);
4060         if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4061             return true;
4062     }
4063 
4064     if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4065                     free_pages))
4066         return true;
4067     /*
4068      * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4069      * when checking the min watermark. The min watermark is the
4070      * point where boosting is ignored so that kswapd is woken up
4071      * when below the low watermark.
4072      */
4073     if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4074         && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4075         mark = z->_watermark[WMARK_MIN];
4076         return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4077                     alloc_flags, free_pages);
4078     }
4079 
4080     return false;
4081 }
4082 
4083 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4084             unsigned long mark, int highest_zoneidx)
4085 {
4086     long free_pages = zone_page_state(z, NR_FREE_PAGES);
4087 
4088     if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4089         free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4090 
4091     return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4092                                 free_pages);
4093 }
4094 
4095 #ifdef CONFIG_NUMA
4096 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4097 
4098 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4099 {
4100     return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4101                 node_reclaim_distance;
4102 }
4103 #else   /* CONFIG_NUMA */
4104 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4105 {
4106     return true;
4107 }
4108 #endif  /* CONFIG_NUMA */
4109 
4110 /*
4111  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4112  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4113  * premature use of a lower zone may cause lowmem pressure problems that
4114  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4115  * probably too small. It only makes sense to spread allocations to avoid
4116  * fragmentation between the Normal and DMA32 zones.
4117  */
4118 static inline unsigned int
4119 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4120 {
4121     unsigned int alloc_flags;
4122 
4123     /*
4124      * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4125      * to save a branch.
4126      */
4127     alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4128 
4129 #ifdef CONFIG_ZONE_DMA32
4130     if (!zone)
4131         return alloc_flags;
4132 
4133     if (zone_idx(zone) != ZONE_NORMAL)
4134         return alloc_flags;
4135 
4136     /*
4137      * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4138      * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4139      * on UMA that if Normal is populated then so is DMA32.
4140      */
4141     BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4142     if (nr_online_nodes > 1 && !populated_zone(--zone))
4143         return alloc_flags;
4144 
4145     alloc_flags |= ALLOC_NOFRAGMENT;
4146 #endif /* CONFIG_ZONE_DMA32 */
4147     return alloc_flags;
4148 }
4149 
4150 /* Must be called after current_gfp_context() which can change gfp_mask */
4151 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4152                           unsigned int alloc_flags)
4153 {
4154 #ifdef CONFIG_CMA
4155     if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4156         alloc_flags |= ALLOC_CMA;
4157 #endif
4158     return alloc_flags;
4159 }
4160 
4161 /*
4162  * get_page_from_freelist goes through the zonelist trying to allocate
4163  * a page.
4164  */
4165 static struct page *
4166 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4167                         const struct alloc_context *ac)
4168 {
4169     struct zoneref *z;
4170     struct zone *zone;
4171     struct pglist_data *last_pgdat = NULL;
4172     bool last_pgdat_dirty_ok = false;
4173     bool no_fallback;
4174 
4175 retry:
4176     /*
4177      * Scan zonelist, looking for a zone with enough free.
4178      * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4179      */
4180     no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4181     z = ac->preferred_zoneref;
4182     for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4183                     ac->nodemask) {
4184         struct page *page;
4185         unsigned long mark;
4186 
4187         if (cpusets_enabled() &&
4188             (alloc_flags & ALLOC_CPUSET) &&
4189             !__cpuset_zone_allowed(zone, gfp_mask))
4190                 continue;
4191         /*
4192          * When allocating a page cache page for writing, we
4193          * want to get it from a node that is within its dirty
4194          * limit, such that no single node holds more than its
4195          * proportional share of globally allowed dirty pages.
4196          * The dirty limits take into account the node's
4197          * lowmem reserves and high watermark so that kswapd
4198          * should be able to balance it without having to
4199          * write pages from its LRU list.
4200          *
4201          * XXX: For now, allow allocations to potentially
4202          * exceed the per-node dirty limit in the slowpath
4203          * (spread_dirty_pages unset) before going into reclaim,
4204          * which is important when on a NUMA setup the allowed
4205          * nodes are together not big enough to reach the
4206          * global limit.  The proper fix for these situations
4207          * will require awareness of nodes in the
4208          * dirty-throttling and the flusher threads.
4209          */
4210         if (ac->spread_dirty_pages) {
4211             if (last_pgdat != zone->zone_pgdat) {
4212                 last_pgdat = zone->zone_pgdat;
4213                 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4214             }
4215 
4216             if (!last_pgdat_dirty_ok)
4217                 continue;
4218         }
4219 
4220         if (no_fallback && nr_online_nodes > 1 &&
4221             zone != ac->preferred_zoneref->zone) {
4222             int local_nid;
4223 
4224             /*
4225              * If moving to a remote node, retry but allow
4226              * fragmenting fallbacks. Locality is more important
4227              * than fragmentation avoidance.
4228              */
4229             local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4230             if (zone_to_nid(zone) != local_nid) {
4231                 alloc_flags &= ~ALLOC_NOFRAGMENT;
4232                 goto retry;
4233             }
4234         }
4235 
4236         mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4237         if (!zone_watermark_fast(zone, order, mark,
4238                        ac->highest_zoneidx, alloc_flags,
4239                        gfp_mask)) {
4240             int ret;
4241 
4242 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4243             /*
4244              * Watermark failed for this zone, but see if we can
4245              * grow this zone if it contains deferred pages.
4246              */
4247             if (static_branch_unlikely(&deferred_pages)) {
4248                 if (_deferred_grow_zone(zone, order))
4249                     goto try_this_zone;
4250             }
4251 #endif
4252             /* Checked here to keep the fast path fast */
4253             BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4254             if (alloc_flags & ALLOC_NO_WATERMARKS)
4255                 goto try_this_zone;
4256 
4257             if (!node_reclaim_enabled() ||
4258                 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4259                 continue;
4260 
4261             ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4262             switch (ret) {
4263             case NODE_RECLAIM_NOSCAN:
4264                 /* did not scan */
4265                 continue;
4266             case NODE_RECLAIM_FULL:
4267                 /* scanned but unreclaimable */
4268                 continue;
4269             default:
4270                 /* did we reclaim enough */
4271                 if (zone_watermark_ok(zone, order, mark,
4272                     ac->highest_zoneidx, alloc_flags))
4273                     goto try_this_zone;
4274 
4275                 continue;
4276             }
4277         }
4278 
4279 try_this_zone:
4280         page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4281                 gfp_mask, alloc_flags, ac->migratetype);
4282         if (page) {
4283             prep_new_page(page, order, gfp_mask, alloc_flags);
4284 
4285             /*
4286              * If this is a high-order atomic allocation then check
4287              * if the pageblock should be reserved for the future
4288              */
4289             if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4290                 reserve_highatomic_pageblock(page, zone, order);
4291 
4292             return page;
4293         } else {
4294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4295             /* Try again if zone has deferred pages */
4296             if (static_branch_unlikely(&deferred_pages)) {
4297                 if (_deferred_grow_zone(zone, order))
4298                     goto try_this_zone;
4299             }
4300 #endif
4301         }
4302     }
4303 
4304     /*
4305      * It's possible on a UMA machine to get through all zones that are
4306      * fragmented. If avoiding fragmentation, reset and try again.
4307      */
4308     if (no_fallback) {
4309         alloc_flags &= ~ALLOC_NOFRAGMENT;
4310         goto retry;
4311     }
4312 
4313     return NULL;
4314 }
4315 
4316 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4317 {
4318     unsigned int filter = SHOW_MEM_FILTER_NODES;
4319 
4320     /*
4321      * This documents exceptions given to allocations in certain
4322      * contexts that are allowed to allocate outside current's set
4323      * of allowed nodes.
4324      */
4325     if (!(gfp_mask & __GFP_NOMEMALLOC))
4326         if (tsk_is_oom_victim(current) ||
4327             (current->flags & (PF_MEMALLOC | PF_EXITING)))
4328             filter &= ~SHOW_MEM_FILTER_NODES;
4329     if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4330         filter &= ~SHOW_MEM_FILTER_NODES;
4331 
4332     show_mem(filter, nodemask);
4333 }
4334 
4335 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4336 {
4337     struct va_format vaf;
4338     va_list args;
4339     static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4340 
4341     if ((gfp_mask & __GFP_NOWARN) ||
4342          !__ratelimit(&nopage_rs) ||
4343          ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4344         return;
4345 
4346     va_start(args, fmt);
4347     vaf.fmt = fmt;
4348     vaf.va = &args;
4349     pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4350             current->comm, &vaf, gfp_mask, &gfp_mask,
4351             nodemask_pr_args(nodemask));
4352     va_end(args);
4353 
4354     cpuset_print_current_mems_allowed();
4355     pr_cont("\n");
4356     dump_stack();
4357     warn_alloc_show_mem(gfp_mask, nodemask);
4358 }
4359 
4360 static inline struct page *
4361 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4362                   unsigned int alloc_flags,
4363                   const struct alloc_context *ac)
4364 {
4365     struct page *page;
4366 
4367     page = get_page_from_freelist(gfp_mask, order,
4368             alloc_flags|ALLOC_CPUSET, ac);
4369     /*
4370      * fallback to ignore cpuset restriction if our nodes
4371      * are depleted
4372      */
4373     if (!page)
4374         page = get_page_from_freelist(gfp_mask, order,
4375                 alloc_flags, ac);
4376 
4377     return page;
4378 }
4379 
4380 static inline struct page *
4381 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4382     const struct alloc_context *ac, unsigned long *did_some_progress)
4383 {
4384     struct oom_control oc = {
4385         .zonelist = ac->zonelist,
4386         .nodemask = ac->nodemask,
4387         .memcg = NULL,
4388         .gfp_mask = gfp_mask,
4389         .order = order,
4390     };
4391     struct page *page;
4392 
4393     *did_some_progress = 0;
4394 
4395     /*
4396      * Acquire the oom lock.  If that fails, somebody else is
4397      * making progress for us.
4398      */
4399     if (!mutex_trylock(&oom_lock)) {
4400         *did_some_progress = 1;
4401         schedule_timeout_uninterruptible(1);
4402         return NULL;
4403     }
4404 
4405     /*
4406      * Go through the zonelist yet one more time, keep very high watermark
4407      * here, this is only to catch a parallel oom killing, we must fail if
4408      * we're still under heavy pressure. But make sure that this reclaim
4409      * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4410      * allocation which will never fail due to oom_lock already held.
4411      */
4412     page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4413                       ~__GFP_DIRECT_RECLAIM, order,
4414                       ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4415     if (page)
4416         goto out;
4417 
4418     /* Coredumps can quickly deplete all memory reserves */
4419     if (current->flags & PF_DUMPCORE)
4420         goto out;
4421     /* The OOM killer will not help higher order allocs */
4422     if (order > PAGE_ALLOC_COSTLY_ORDER)
4423         goto out;
4424     /*
4425      * We have already exhausted all our reclaim opportunities without any
4426      * success so it is time to admit defeat. We will skip the OOM killer
4427      * because it is very likely that the caller has a more reasonable
4428      * fallback than shooting a random task.
4429      *
4430      * The OOM killer may not free memory on a specific node.
4431      */
4432     if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4433         goto out;
4434     /* The OOM killer does not needlessly kill tasks for lowmem */
4435     if (ac->highest_zoneidx < ZONE_NORMAL)
4436         goto out;
4437     if (pm_suspended_storage())
4438         goto out;
4439     /*
4440      * XXX: GFP_NOFS allocations should rather fail than rely on
4441      * other request to make a forward progress.
4442      * We are in an unfortunate situation where out_of_memory cannot
4443      * do much for this context but let's try it to at least get
4444      * access to memory reserved if the current task is killed (see
4445      * out_of_memory). Once filesystems are ready to handle allocation
4446      * failures more gracefully we should just bail out here.
4447      */
4448 
4449     /* Exhausted what can be done so it's blame time */
4450     if (out_of_memory(&oc) ||
4451         WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4452         *did_some_progress = 1;
4453 
4454         /*
4455          * Help non-failing allocations by giving them access to memory
4456          * reserves
4457          */
4458         if (gfp_mask & __GFP_NOFAIL)
4459             page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4460                     ALLOC_NO_WATERMARKS, ac);
4461     }
4462 out:
4463     mutex_unlock(&oom_lock);
4464     return page;
4465 }
4466 
4467 /*
4468  * Maximum number of compaction retries with a progress before OOM
4469  * killer is consider as the only way to move forward.
4470  */
4471 #define MAX_COMPACT_RETRIES 16
4472 
4473 #ifdef CONFIG_COMPACTION
4474 /* Try memory compaction for high-order allocations before reclaim */
4475 static struct page *
4476 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4477         unsigned int alloc_flags, const struct alloc_context *ac,
4478         enum compact_priority prio, enum compact_result *compact_result)
4479 {
4480     struct page *page = NULL;
4481     unsigned long pflags;
4482     unsigned int noreclaim_flag;
4483 
4484     if (!order)
4485         return NULL;
4486 
4487     psi_memstall_enter(&pflags);
4488     delayacct_compact_start();
4489     noreclaim_flag = memalloc_noreclaim_save();
4490 
4491     *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4492                                 prio, &page);
4493 
4494     memalloc_noreclaim_restore(noreclaim_flag);
4495     psi_memstall_leave(&pflags);
4496     delayacct_compact_end();
4497 
4498     if (*compact_result == COMPACT_SKIPPED)
4499         return NULL;
4500     /*
4501      * At least in one zone compaction wasn't deferred or skipped, so let's
4502      * count a compaction stall
4503      */
4504     count_vm_event(COMPACTSTALL);
4505 
4506     /* Prep a captured page if available */
4507     if (page)
4508         prep_new_page(page, order, gfp_mask, alloc_flags);
4509 
4510     /* Try get a page from the freelist if available */
4511     if (!page)
4512         page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4513 
4514     if (page) {
4515         struct zone *zone = page_zone(page);
4516 
4517         zone->compact_blockskip_flush = false;
4518         compaction_defer_reset(zone, order, true);
4519         count_vm_event(COMPACTSUCCESS);
4520         return page;
4521     }
4522 
4523     /*
4524      * It's bad if compaction run occurs and fails. The most likely reason
4525      * is that pages exist, but not enough to satisfy watermarks.
4526      */
4527     count_vm_event(COMPACTFAIL);
4528 
4529     cond_resched();
4530 
4531     return NULL;
4532 }
4533 
4534 static inline bool
4535 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4536              enum compact_result compact_result,
4537              enum compact_priority *compact_priority,
4538              int *compaction_retries)
4539 {
4540     int max_retries = MAX_COMPACT_RETRIES;
4541     int min_priority;
4542     bool ret = false;
4543     int retries = *compaction_retries;
4544     enum compact_priority priority = *compact_priority;
4545 
4546     if (!order)
4547         return false;
4548 
4549     if (fatal_signal_pending(current))
4550         return false;
4551 
4552     if (compaction_made_progress(compact_result))
4553         (*compaction_retries)++;
4554 
4555     /*
4556      * compaction considers all the zone as desperately out of memory
4557      * so it doesn't really make much sense to retry except when the
4558      * failure could be caused by insufficient priority
4559      */
4560     if (compaction_failed(compact_result))
4561         goto check_priority;
4562 
4563     /*
4564      * compaction was skipped because there are not enough order-0 pages
4565      * to work with, so we retry only if it looks like reclaim can help.
4566      */
4567     if (compaction_needs_reclaim(compact_result)) {
4568         ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4569         goto out;
4570     }
4571 
4572     /*
4573      * make sure the compaction wasn't deferred or didn't bail out early
4574      * due to locks contention before we declare that we should give up.
4575      * But the next retry should use a higher priority if allowed, so
4576      * we don't just keep bailing out endlessly.
4577      */
4578     if (compaction_withdrawn(compact_result)) {
4579         goto check_priority;
4580     }
4581 
4582     /*
4583      * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4584      * costly ones because they are de facto nofail and invoke OOM
4585      * killer to move on while costly can fail and users are ready
4586      * to cope with that. 1/4 retries is rather arbitrary but we
4587      * would need much more detailed feedback from compaction to
4588      * make a better decision.
4589      */
4590     if (order > PAGE_ALLOC_COSTLY_ORDER)
4591         max_retries /= 4;
4592     if (*compaction_retries <= max_retries) {
4593         ret = true;
4594         goto out;
4595     }
4596 
4597     /*
4598      * Make sure there are attempts at the highest priority if we exhausted
4599      * all retries or failed at the lower priorities.
4600      */
4601 check_priority:
4602     min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4603             MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4604 
4605     if (*compact_priority > min_priority) {
4606         (*compact_priority)--;
4607         *compaction_retries = 0;
4608         ret = true;
4609     }
4610 out:
4611     trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4612     return ret;
4613 }
4614 #else
4615 static inline struct page *
4616 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4617         unsigned int alloc_flags, const struct alloc_context *ac,
4618         enum compact_priority prio, enum compact_result *compact_result)
4619 {
4620     *compact_result = COMPACT_SKIPPED;
4621     return NULL;
4622 }
4623 
4624 static inline bool
4625 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4626              enum compact_result compact_result,
4627              enum compact_priority *compact_priority,
4628              int *compaction_retries)
4629 {
4630     struct zone *zone;
4631     struct zoneref *z;
4632 
4633     if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4634         return false;
4635 
4636     /*
4637      * There are setups with compaction disabled which would prefer to loop
4638      * inside the allocator rather than hit the oom killer prematurely.
4639      * Let's give them a good hope and keep retrying while the order-0
4640      * watermarks are OK.
4641      */
4642     for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4643                 ac->highest_zoneidx, ac->nodemask) {
4644         if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4645                     ac->highest_zoneidx, alloc_flags))
4646             return true;
4647     }
4648     return false;
4649 }
4650 #endif /* CONFIG_COMPACTION */
4651 
4652 #ifdef CONFIG_LOCKDEP
4653 static struct lockdep_map __fs_reclaim_map =
4654     STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4655 
4656 static bool __need_reclaim(gfp_t gfp_mask)
4657 {
4658     /* no reclaim without waiting on it */
4659     if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4660         return false;
4661 
4662     /* this guy won't enter reclaim */
4663     if (current->flags & PF_MEMALLOC)
4664         return false;
4665 
4666     if (gfp_mask & __GFP_NOLOCKDEP)
4667         return false;
4668 
4669     return true;
4670 }
4671 
4672 void __fs_reclaim_acquire(unsigned long ip)
4673 {
4674     lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4675 }
4676 
4677 void __fs_reclaim_release(unsigned long ip)
4678 {
4679     lock_release(&__fs_reclaim_map, ip);
4680 }
4681 
4682 void fs_reclaim_acquire(gfp_t gfp_mask)
4683 {
4684     gfp_mask = current_gfp_context(gfp_mask);
4685 
4686     if (__need_reclaim(gfp_mask)) {
4687         if (gfp_mask & __GFP_FS)
4688             __fs_reclaim_acquire(_RET_IP_);
4689 
4690 #ifdef CONFIG_MMU_NOTIFIER
4691         lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4692         lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4693 #endif
4694 
4695     }
4696 }
4697 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4698 
4699 void fs_reclaim_release(gfp_t gfp_mask)
4700 {
4701     gfp_mask = current_gfp_context(gfp_mask);
4702 
4703     if (__need_reclaim(gfp_mask)) {
4704         if (gfp_mask & __GFP_FS)
4705             __fs_reclaim_release(_RET_IP_);
4706     }
4707 }
4708 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4709 #endif
4710 
4711 /*
4712  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4713  * have been rebuilt so allocation retries. Reader side does not lock and
4714  * retries the allocation if zonelist changes. Writer side is protected by the
4715  * embedded spin_lock.
4716  */
4717 static DEFINE_SEQLOCK(zonelist_update_seq);
4718 
4719 static unsigned int zonelist_iter_begin(void)
4720 {
4721     if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4722         return read_seqbegin(&zonelist_update_seq);
4723 
4724     return 0;
4725 }
4726 
4727 static unsigned int check_retry_zonelist(unsigned int seq)
4728 {
4729     if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4730         return read_seqretry(&zonelist_update_seq, seq);
4731 
4732     return seq;
4733 }
4734 
4735 /* Perform direct synchronous page reclaim */
4736 static unsigned long
4737 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4738                     const struct alloc_context *ac)
4739 {
4740     unsigned int noreclaim_flag;
4741     unsigned long progress;
4742 
4743     cond_resched();
4744 
4745     /* We now go into synchronous reclaim */
4746     cpuset_memory_pressure_bump();
4747     fs_reclaim_acquire(gfp_mask);
4748     noreclaim_flag = memalloc_noreclaim_save();
4749 
4750     progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4751                                 ac->nodemask);
4752 
4753     memalloc_noreclaim_restore(noreclaim_flag);
4754     fs_reclaim_release(gfp_mask);
4755 
4756     cond_resched();
4757 
4758     return progress;
4759 }
4760 
4761 /* The really slow allocator path where we enter direct reclaim */
4762 static inline struct page *
4763 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4764         unsigned int alloc_flags, const struct alloc_context *ac,
4765         unsigned long *did_some_progress)
4766 {
4767     struct page *page = NULL;
4768     unsigned long pflags;
4769     bool drained = false;
4770 
4771     psi_memstall_enter(&pflags);
4772     *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4773     if (unlikely(!(*did_some_progress)))
4774         goto out;
4775 
4776 retry:
4777     page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4778 
4779     /*
4780      * If an allocation failed after direct reclaim, it could be because
4781      * pages are pinned on the per-cpu lists or in high alloc reserves.
4782      * Shrink them and try again
4783      */
4784     if (!page && !drained) {
4785         unreserve_highatomic_pageblock(ac, false);
4786         drain_all_pages(NULL);
4787         drained = true;
4788         goto retry;
4789     }
4790 out:
4791     psi_memstall_leave(&pflags);
4792 
4793     return page;
4794 }
4795 
4796 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4797                  const struct alloc_context *ac)
4798 {
4799     struct zoneref *z;
4800     struct zone *zone;
4801     pg_data_t *last_pgdat = NULL;
4802     enum zone_type highest_zoneidx = ac->highest_zoneidx;
4803 
4804     for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4805                     ac->nodemask) {
4806         if (!managed_zone(zone))
4807             continue;
4808         if (last_pgdat != zone->zone_pgdat) {
4809             wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4810             last_pgdat = zone->zone_pgdat;
4811         }
4812     }
4813 }
4814 
4815 static inline unsigned int
4816 gfp_to_alloc_flags(gfp_t gfp_mask)
4817 {
4818     unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4819 
4820     /*
4821      * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4822      * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4823      * to save two branches.
4824      */
4825     BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4826     BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4827 
4828     /*
4829      * The caller may dip into page reserves a bit more if the caller
4830      * cannot run direct reclaim, or if the caller has realtime scheduling
4831      * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4832      * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4833      */
4834     alloc_flags |= (__force int)
4835         (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4836 
4837     if (gfp_mask & __GFP_ATOMIC) {
4838         /*
4839          * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4840          * if it can't schedule.
4841          */
4842         if (!(gfp_mask & __GFP_NOMEMALLOC))
4843             alloc_flags |= ALLOC_HARDER;
4844         /*
4845          * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4846          * comment for __cpuset_node_allowed().
4847          */
4848         alloc_flags &= ~ALLOC_CPUSET;
4849     } else if (unlikely(rt_task(current)) && in_task())
4850         alloc_flags |= ALLOC_HARDER;
4851 
4852     alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4853 
4854     return alloc_flags;
4855 }
4856 
4857 static bool oom_reserves_allowed(struct task_struct *tsk)
4858 {
4859     if (!tsk_is_oom_victim(tsk))
4860         return false;
4861 
4862     /*
4863      * !MMU doesn't have oom reaper so give access to memory reserves
4864      * only to the thread with TIF_MEMDIE set
4865      */
4866     if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4867         return false;
4868 
4869     return true;
4870 }
4871 
4872 /*
4873  * Distinguish requests which really need access to full memory
4874  * reserves from oom victims which can live with a portion of it
4875  */
4876 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4877 {
4878     if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4879         return 0;
4880     if (gfp_mask & __GFP_MEMALLOC)
4881         return ALLOC_NO_WATERMARKS;
4882     if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4883         return ALLOC_NO_WATERMARKS;
4884     if (!in_interrupt()) {
4885         if (current->flags & PF_MEMALLOC)
4886             return ALLOC_NO_WATERMARKS;
4887         else if (oom_reserves_allowed(current))
4888             return ALLOC_OOM;
4889     }
4890 
4891     return 0;
4892 }
4893 
4894 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4895 {
4896     return !!__gfp_pfmemalloc_flags(gfp_mask);
4897 }
4898 
4899 /*
4900  * Checks whether it makes sense to retry the reclaim to make a forward progress
4901  * for the given allocation request.
4902  *
4903  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4904  * without success, or when we couldn't even meet the watermark if we
4905  * reclaimed all remaining pages on the LRU lists.
4906  *
4907  * Returns true if a retry is viable or false to enter the oom path.
4908  */
4909 static inline bool
4910 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4911              struct alloc_context *ac, int alloc_flags,
4912              bool did_some_progress, int *no_progress_loops)
4913 {
4914     struct zone *zone;
4915     struct zoneref *z;
4916     bool ret = false;
4917 
4918     /*
4919      * Costly allocations might have made a progress but this doesn't mean
4920      * their order will become available due to high fragmentation so
4921      * always increment the no progress counter for them
4922      */
4923     if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4924         *no_progress_loops = 0;
4925     else
4926         (*no_progress_loops)++;
4927 
4928     /*
4929      * Make sure we converge to OOM if we cannot make any progress
4930      * several times in the row.
4931      */
4932     if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4933         /* Before OOM, exhaust highatomic_reserve */
4934         return unreserve_highatomic_pageblock(ac, true);
4935     }
4936 
4937     /*
4938      * Keep reclaiming pages while there is a chance this will lead
4939      * somewhere.  If none of the target zones can satisfy our allocation
4940      * request even if all reclaimable pages are considered then we are
4941      * screwed and have to go OOM.
4942      */
4943     for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4944                 ac->highest_zoneidx, ac->nodemask) {
4945         unsigned long available;
4946         unsigned long reclaimable;
4947         unsigned long min_wmark = min_wmark_pages(zone);
4948         bool wmark;
4949 
4950         available = reclaimable = zone_reclaimable_pages(zone);
4951         available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4952 
4953         /*
4954          * Would the allocation succeed if we reclaimed all
4955          * reclaimable pages?
4956          */
4957         wmark = __zone_watermark_ok(zone, order, min_wmark,
4958                 ac->highest_zoneidx, alloc_flags, available);
4959         trace_reclaim_retry_zone(z, order, reclaimable,
4960                 available, min_wmark, *no_progress_loops, wmark);
4961         if (wmark) {
4962             ret = true;
4963             break;
4964         }
4965     }
4966 
4967     /*
4968      * Memory allocation/reclaim might be called from a WQ context and the
4969      * current implementation of the WQ concurrency control doesn't
4970      * recognize that a particular WQ is congested if the worker thread is
4971      * looping without ever sleeping. Therefore we have to do a short sleep
4972      * here rather than calling cond_resched().
4973      */
4974     if (current->flags & PF_WQ_WORKER)
4975         schedule_timeout_uninterruptible(1);
4976     else
4977         cond_resched();
4978     return ret;
4979 }
4980 
4981 static inline bool
4982 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4983 {
4984     /*
4985      * It's possible that cpuset's mems_allowed and the nodemask from
4986      * mempolicy don't intersect. This should be normally dealt with by
4987      * policy_nodemask(), but it's possible to race with cpuset update in
4988      * such a way the check therein was true, and then it became false
4989      * before we got our cpuset_mems_cookie here.
4990      * This assumes that for all allocations, ac->nodemask can come only
4991      * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4992      * when it does not intersect with the cpuset restrictions) or the
4993      * caller can deal with a violated nodemask.
4994      */
4995     if (cpusets_enabled() && ac->nodemask &&
4996             !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4997         ac->nodemask = NULL;
4998         return true;
4999     }
5000 
5001     /*
5002      * When updating a task's mems_allowed or mempolicy nodemask, it is
5003      * possible to race with parallel threads in such a way that our
5004      * allocation can fail while the mask is being updated. If we are about
5005      * to fail, check if the cpuset changed during allocation and if so,
5006      * retry.
5007      */
5008     if (read_mems_allowed_retry(cpuset_mems_cookie))
5009         return true;
5010 
5011     return false;
5012 }
5013 
5014 static inline struct page *
5015 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5016                         struct alloc_context *ac)
5017 {
5018     bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5019     const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5020     struct page *page = NULL;
5021     unsigned int alloc_flags;
5022     unsigned long did_some_progress;
5023     enum compact_priority compact_priority;
5024     enum compact_result compact_result;
5025     int compaction_retries;
5026     int no_progress_loops;
5027     unsigned int cpuset_mems_cookie;
5028     unsigned int zonelist_iter_cookie;
5029     int reserve_flags;
5030 
5031     /*
5032      * We also sanity check to catch abuse of atomic reserves being used by
5033      * callers that are not in atomic context.
5034      */
5035     if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5036                 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5037         gfp_mask &= ~__GFP_ATOMIC;
5038 
5039 restart:
5040     compaction_retries = 0;
5041     no_progress_loops = 0;
5042     compact_priority = DEF_COMPACT_PRIORITY;
5043     cpuset_mems_cookie = read_mems_allowed_begin();
5044     zonelist_iter_cookie = zonelist_iter_begin();
5045 
5046     /*
5047      * The fast path uses conservative alloc_flags to succeed only until
5048      * kswapd needs to be woken up, and to avoid the cost of setting up
5049      * alloc_flags precisely. So we do that now.
5050      */
5051     alloc_flags = gfp_to_alloc_flags(gfp_mask);
5052 
5053     /*
5054      * We need to recalculate the starting point for the zonelist iterator
5055      * because we might have used different nodemask in the fast path, or
5056      * there was a cpuset modification and we are retrying - otherwise we
5057      * could end up iterating over non-eligible zones endlessly.
5058      */
5059     ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5060                     ac->highest_zoneidx, ac->nodemask);
5061     if (!ac->preferred_zoneref->zone)
5062         goto nopage;
5063 
5064     /*
5065      * Check for insane configurations where the cpuset doesn't contain
5066      * any suitable zone to satisfy the request - e.g. non-movable
5067      * GFP_HIGHUSER allocations from MOVABLE nodes only.
5068      */
5069     if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5070         struct zoneref *z = first_zones_zonelist(ac->zonelist,
5071                     ac->highest_zoneidx,
5072                     &cpuset_current_mems_allowed);
5073         if (!z->zone)
5074             goto nopage;
5075     }
5076 
5077     if (alloc_flags & ALLOC_KSWAPD)
5078         wake_all_kswapds(order, gfp_mask, ac);
5079 
5080     /*
5081      * The adjusted alloc_flags might result in immediate success, so try
5082      * that first
5083      */
5084     page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5085     if (page)
5086         goto got_pg;
5087 
5088     /*
5089      * For costly allocations, try direct compaction first, as it's likely
5090      * that we have enough base pages and don't need to reclaim. For non-
5091      * movable high-order allocations, do that as well, as compaction will
5092      * try prevent permanent fragmentation by migrating from blocks of the
5093      * same migratetype.
5094      * Don't try this for allocations that are allowed to ignore
5095      * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5096      */
5097     if (can_direct_reclaim &&
5098             (costly_order ||
5099                (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5100             && !gfp_pfmemalloc_allowed(gfp_mask)) {
5101         page = __alloc_pages_direct_compact(gfp_mask, order,
5102                         alloc_flags, ac,
5103                         INIT_COMPACT_PRIORITY,
5104                         &compact_result);
5105         if (page)
5106             goto got_pg;
5107 
5108         /*
5109          * Checks for costly allocations with __GFP_NORETRY, which
5110          * includes some THP page fault allocations
5111          */
5112         if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5113             /*
5114              * If allocating entire pageblock(s) and compaction
5115              * failed because all zones are below low watermarks
5116              * or is prohibited because it recently failed at this
5117              * order, fail immediately unless the allocator has
5118              * requested compaction and reclaim retry.
5119              *
5120              * Reclaim is
5121              *  - potentially very expensive because zones are far
5122              *    below their low watermarks or this is part of very
5123              *    bursty high order allocations,
5124              *  - not guaranteed to help because isolate_freepages()
5125              *    may not iterate over freed pages as part of its
5126              *    linear scan, and
5127              *  - unlikely to make entire pageblocks free on its
5128              *    own.
5129              */
5130             if (compact_result == COMPACT_SKIPPED ||
5131                 compact_result == COMPACT_DEFERRED)
5132                 goto nopage;
5133 
5134             /*
5135              * Looks like reclaim/compaction is worth trying, but
5136              * sync compaction could be very expensive, so keep
5137              * using async compaction.
5138              */
5139             compact_priority = INIT_COMPACT_PRIORITY;
5140         }
5141     }
5142 
5143 retry:
5144     /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5145     if (alloc_flags & ALLOC_KSWAPD)
5146         wake_all_kswapds(order, gfp_mask, ac);
5147 
5148     reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5149     if (reserve_flags)
5150         alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5151 
5152     /*
5153      * Reset the nodemask and zonelist iterators if memory policies can be
5154      * ignored. These allocations are high priority and system rather than
5155      * user oriented.
5156      */
5157     if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5158         ac->nodemask = NULL;
5159         ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5160                     ac->highest_zoneidx, ac->nodemask);
5161     }
5162 
5163     /* Attempt with potentially adjusted zonelist and alloc_flags */
5164     page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5165     if (page)
5166         goto got_pg;
5167 
5168     /* Caller is not willing to reclaim, we can't balance anything */
5169     if (!can_direct_reclaim)
5170         goto nopage;
5171 
5172     /* Avoid recursion of direct reclaim */
5173     if (current->flags & PF_MEMALLOC)
5174         goto nopage;
5175 
5176     /* Try direct reclaim and then allocating */
5177     page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5178                             &did_some_progress);
5179     if (page)
5180         goto got_pg;
5181 
5182     /* Try direct compaction and then allocating */
5183     page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5184                     compact_priority, &compact_result);
5185     if (page)
5186         goto got_pg;
5187 
5188     /* Do not loop if specifically requested */
5189     if (gfp_mask & __GFP_NORETRY)
5190         goto nopage;
5191 
5192     /*
5193      * Do not retry costly high order allocations unless they are
5194      * __GFP_RETRY_MAYFAIL
5195      */
5196     if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5197         goto nopage;
5198 
5199     if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5200                  did_some_progress > 0, &no_progress_loops))
5201         goto retry;
5202 
5203     /*
5204      * It doesn't make any sense to retry for the compaction if the order-0
5205      * reclaim is not able to make any progress because the current
5206      * implementation of the compaction depends on the sufficient amount
5207      * of free memory (see __compaction_suitable)
5208      */
5209     if (did_some_progress > 0 &&
5210             should_compact_retry(ac, order, alloc_flags,
5211                 compact_result, &compact_priority,
5212                 &compaction_retries))
5213         goto retry;
5214 
5215 
5216     /*
5217      * Deal with possible cpuset update races or zonelist updates to avoid
5218      * a unnecessary OOM kill.
5219      */
5220     if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5221         check_retry_zonelist(zonelist_iter_cookie))
5222         goto restart;
5223 
5224     /* Reclaim has failed us, start killing things */
5225     page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5226     if (page)
5227         goto got_pg;
5228 
5229     /* Avoid allocations with no watermarks from looping endlessly */
5230     if (tsk_is_oom_victim(current) &&
5231         (alloc_flags & ALLOC_OOM ||
5232          (gfp_mask & __GFP_NOMEMALLOC)))
5233         goto nopage;
5234 
5235     /* Retry as long as the OOM killer is making progress */
5236     if (did_some_progress) {
5237         no_progress_loops = 0;
5238         goto retry;
5239     }
5240 
5241 nopage:
5242     /*
5243      * Deal with possible cpuset update races or zonelist updates to avoid
5244      * a unnecessary OOM kill.
5245      */
5246     if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5247         check_retry_zonelist(zonelist_iter_cookie))
5248         goto restart;
5249 
5250     /*
5251      * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5252      * we always retry
5253      */
5254     if (gfp_mask & __GFP_NOFAIL) {
5255         /*
5256          * All existing users of the __GFP_NOFAIL are blockable, so warn
5257          * of any new users that actually require GFP_NOWAIT
5258          */
5259         if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5260             goto fail;
5261 
5262         /*
5263          * PF_MEMALLOC request from this context is rather bizarre
5264          * because we cannot reclaim anything and only can loop waiting
5265          * for somebody to do a work for us
5266          */
5267         WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5268 
5269         /*
5270          * non failing costly orders are a hard requirement which we
5271          * are not prepared for much so let's warn about these users
5272          * so that we can identify them and convert them to something
5273          * else.
5274          */
5275         WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
5276 
5277         /*
5278          * Help non-failing allocations by giving them access to memory
5279          * reserves but do not use ALLOC_NO_WATERMARKS because this
5280          * could deplete whole memory reserves which would just make
5281          * the situation worse
5282          */
5283         page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5284         if (page)
5285             goto got_pg;
5286 
5287         cond_resched();
5288         goto retry;
5289     }
5290 fail:
5291     warn_alloc(gfp_mask, ac->nodemask,
5292             "page allocation failure: order:%u", order);
5293 got_pg:
5294     return page;
5295 }
5296 
5297 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5298         int preferred_nid, nodemask_t *nodemask,
5299         struct alloc_context *ac, gfp_t *alloc_gfp,
5300         unsigned int *alloc_flags)
5301 {
5302     ac->highest_zoneidx = gfp_zone(gfp_mask);
5303     ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5304     ac->nodemask = nodemask;
5305     ac->migratetype = gfp_migratetype(gfp_mask);
5306 
5307     if (cpusets_enabled()) {
5308         *alloc_gfp |= __GFP_HARDWALL;
5309         /*
5310          * When we are in the interrupt context, it is irrelevant
5311          * to the current task context. It means that any node ok.
5312          */
5313         if (in_task() && !ac->nodemask)
5314             ac->nodemask = &cpuset_current_mems_allowed;
5315         else
5316             *alloc_flags |= ALLOC_CPUSET;
5317     }
5318 
5319     might_alloc(gfp_mask);
5320 
5321     if (should_fail_alloc_page(gfp_mask, order))
5322         return false;
5323 
5324     *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5325 
5326     /* Dirty zone balancing only done in the fast path */
5327     ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5328 
5329     /*
5330      * The preferred zone is used for statistics but crucially it is
5331      * also used as the starting point for the zonelist iterator. It
5332      * may get reset for allocations that ignore memory policies.
5333      */
5334     ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5335                     ac->highest_zoneidx, ac->nodemask);
5336 
5337     return true;
5338 }
5339 
5340 /*
5341  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5342  * @gfp: GFP flags for the allocation
5343  * @preferred_nid: The preferred NUMA node ID to allocate from
5344  * @nodemask: Set of nodes to allocate from, may be NULL
5345  * @nr_pages: The number of pages desired on the list or array
5346  * @page_list: Optional list to store the allocated pages
5347  * @page_array: Optional array to store the pages
5348  *
5349  * This is a batched version of the page allocator that attempts to
5350  * allocate nr_pages quickly. Pages are added to page_list if page_list
5351  * is not NULL, otherwise it is assumed that the page_array is valid.
5352  *
5353  * For lists, nr_pages is the number of pages that should be allocated.
5354  *
5355  * For arrays, only NULL elements are populated with pages and nr_pages
5356  * is the maximum number of pages that will be stored in the array.
5357  *
5358  * Returns the number of pages on the list or array.
5359  */
5360 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5361             nodemask_t *nodemask, int nr_pages,
5362             struct list_head *page_list,
5363             struct page **page_array)
5364 {
5365     struct page *page;
5366     unsigned long flags;
5367     unsigned long __maybe_unused UP_flags;
5368     struct zone *zone;
5369     struct zoneref *z;
5370     struct per_cpu_pages *pcp;
5371     struct list_head *pcp_list;
5372     struct alloc_context ac;
5373     gfp_t alloc_gfp;
5374     unsigned int alloc_flags = ALLOC_WMARK_LOW;
5375     int nr_populated = 0, nr_account = 0;
5376 
5377     /*
5378      * Skip populated array elements to determine if any pages need
5379      * to be allocated before disabling IRQs.
5380      */
5381     while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5382         nr_populated++;
5383 
5384     /* No pages requested? */
5385     if (unlikely(nr_pages <= 0))
5386         goto out;
5387 
5388     /* Already populated array? */
5389     if (unlikely(page_array && nr_pages - nr_populated == 0))
5390         goto out;
5391 
5392     /* Bulk allocator does not support memcg accounting. */
5393     if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5394         goto failed;
5395 
5396     /* Use the single page allocator for one page. */
5397     if (nr_pages - nr_populated == 1)
5398         goto failed;
5399 
5400 #ifdef CONFIG_PAGE_OWNER
5401     /*
5402      * PAGE_OWNER may recurse into the allocator to allocate space to
5403      * save the stack with pagesets.lock held. Releasing/reacquiring
5404      * removes much of the performance benefit of bulk allocation so
5405      * force the caller to allocate one page at a time as it'll have
5406      * similar performance to added complexity to the bulk allocator.
5407      */
5408     if (static_branch_unlikely(&page_owner_inited))
5409         goto failed;
5410 #endif
5411 
5412     /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5413     gfp &= gfp_allowed_mask;
5414     alloc_gfp = gfp;
5415     if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5416         goto out;
5417     gfp = alloc_gfp;
5418 
5419     /* Find an allowed local zone that meets the low watermark. */
5420     for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5421         unsigned long mark;
5422 
5423         if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5424             !__cpuset_zone_allowed(zone, gfp)) {
5425             continue;
5426         }
5427 
5428         if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5429             zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5430             goto failed;
5431         }
5432 
5433         mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5434         if (zone_watermark_fast(zone, 0,  mark,
5435                 zonelist_zone_idx(ac.preferred_zoneref),
5436                 alloc_flags, gfp)) {
5437             break;
5438         }
5439     }
5440 
5441     /*
5442      * If there are no allowed local zones that meets the watermarks then
5443      * try to allocate a single page and reclaim if necessary.
5444      */
5445     if (unlikely(!zone))
5446         goto failed;
5447 
5448     /* Is a parallel drain in progress? */
5449     pcp_trylock_prepare(UP_flags);
5450     pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5451     if (!pcp)
5452         goto failed_irq;
5453 
5454     /* Attempt the batch allocation */
5455     pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5456     while (nr_populated < nr_pages) {
5457 
5458         /* Skip existing pages */
5459         if (page_array && page_array[nr_populated]) {
5460             nr_populated++;
5461             continue;
5462         }
5463 
5464         page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5465                                 pcp, pcp_list);
5466         if (unlikely(!page)) {
5467             /* Try and allocate at least one page */
5468             if (!nr_account) {
5469                 pcp_spin_unlock_irqrestore(pcp, flags);
5470                 goto failed_irq;
5471             }
5472             break;
5473         }
5474         nr_account++;
5475 
5476         prep_new_page(page, 0, gfp, 0);
5477         if (page_list)
5478             list_add(&page->lru, page_list);
5479         else
5480             page_array[nr_populated] = page;
5481         nr_populated++;
5482     }
5483 
5484     pcp_spin_unlock_irqrestore(pcp, flags);
5485     pcp_trylock_finish(UP_flags);
5486 
5487     __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5488     zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5489 
5490 out:
5491     return nr_populated;
5492 
5493 failed_irq:
5494     pcp_trylock_finish(UP_flags);
5495 
5496 failed:
5497     page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5498     if (page) {
5499         if (page_list)
5500             list_add(&page->lru, page_list);
5501         else
5502             page_array[nr_populated] = page;
5503         nr_populated++;
5504     }
5505 
5506     goto out;
5507 }
5508 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5509 
5510 /*
5511  * This is the 'heart' of the zoned buddy allocator.
5512  */
5513 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5514                             nodemask_t *nodemask)
5515 {
5516     struct page *page;
5517     unsigned int alloc_flags = ALLOC_WMARK_LOW;
5518     gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5519     struct alloc_context ac = { };
5520 
5521     /*
5522      * There are several places where we assume that the order value is sane
5523      * so bail out early if the request is out of bound.
5524      */
5525     if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5526         return NULL;
5527 
5528     gfp &= gfp_allowed_mask;
5529     /*
5530      * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5531      * resp. GFP_NOIO which has to be inherited for all allocation requests
5532      * from a particular context which has been marked by
5533      * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5534      * movable zones are not used during allocation.
5535      */
5536     gfp = current_gfp_context(gfp);
5537     alloc_gfp = gfp;
5538     if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5539             &alloc_gfp, &alloc_flags))
5540         return NULL;
5541 
5542     /*
5543      * Forbid the first pass from falling back to types that fragment
5544      * memory until all local zones are considered.
5545      */
5546     alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5547 
5548     /* First allocation attempt */
5549     page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5550     if (likely(page))
5551         goto out;
5552 
5553     alloc_gfp = gfp;
5554     ac.spread_dirty_pages = false;
5555 
5556     /*
5557      * Restore the original nodemask if it was potentially replaced with
5558      * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5559      */
5560     ac.nodemask = nodemask;
5561 
5562     page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5563 
5564 out:
5565     if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5566         unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5567         __free_pages(page, order);
5568         page = NULL;
5569     }
5570 
5571     trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5572 
5573     return page;
5574 }
5575 EXPORT_SYMBOL(__alloc_pages);
5576 
5577 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5578         nodemask_t *nodemask)
5579 {
5580     struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5581             preferred_nid, nodemask);
5582 
5583     if (page && order > 1)
5584         prep_transhuge_page(page);
5585     return (struct folio *)page;
5586 }
5587 EXPORT_SYMBOL(__folio_alloc);
5588 
5589 /*
5590  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5591  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5592  * you need to access high mem.
5593  */
5594 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5595 {
5596     struct page *page;
5597 
5598     page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5599     if (!page)
5600         return 0;
5601     return (unsigned long) page_address(page);
5602 }
5603 EXPORT_SYMBOL(__get_free_pages);
5604 
5605 unsigned long get_zeroed_page(gfp_t gfp_mask)
5606 {
5607     return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5608 }
5609 EXPORT_SYMBOL(get_zeroed_page);
5610 
5611 /**
5612  * __free_pages - Free pages allocated with alloc_pages().
5613  * @page: The page pointer returned from alloc_pages().
5614  * @order: The order of the allocation.
5615  *
5616  * This function can free multi-page allocations that are not compound
5617  * pages.  It does not check that the @order passed in matches that of
5618  * the allocation, so it is easy to leak memory.  Freeing more memory
5619  * than was allocated will probably emit a warning.
5620  *
5621  * If the last reference to this page is speculative, it will be released
5622  * by put_page() which only frees the first page of a non-compound
5623  * allocation.  To prevent the remaining pages from being leaked, we free
5624  * the subsequent pages here.  If you want to use the page's reference
5625  * count to decide when to free the allocation, you should allocate a
5626  * compound page, and use put_page() instead of __free_pages().
5627  *
5628  * Context: May be called in interrupt context or while holding a normal
5629  * spinlock, but not in NMI context or while holding a raw spinlock.
5630  */
5631 void __free_pages(struct page *page, unsigned int order)
5632 {
5633     if (put_page_testzero(page))
5634         free_the_page(page, order);
5635     else if (!PageHead(page))
5636         while (order-- > 0)
5637             free_the_page(page + (1 << order), order);
5638 }
5639 EXPORT_SYMBOL(__free_pages);
5640 
5641 void free_pages(unsigned long addr, unsigned int order)
5642 {
5643     if (addr != 0) {
5644         VM_BUG_ON(!virt_addr_valid((void *)addr));
5645         __free_pages(virt_to_page((void *)addr), order);
5646     }
5647 }
5648 
5649 EXPORT_SYMBOL(free_pages);
5650 
5651 /*
5652  * Page Fragment:
5653  *  An arbitrary-length arbitrary-offset area of memory which resides
5654  *  within a 0 or higher order page.  Multiple fragments within that page
5655  *  are individually refcounted, in the page's reference counter.
5656  *
5657  * The page_frag functions below provide a simple allocation framework for
5658  * page fragments.  This is used by the network stack and network device
5659  * drivers to provide a backing region of memory for use as either an
5660  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5661  */
5662 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5663                          gfp_t gfp_mask)
5664 {
5665     struct page *page = NULL;
5666     gfp_t gfp = gfp_mask;
5667 
5668 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5669     gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5670             __GFP_NOMEMALLOC;
5671     page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5672                 PAGE_FRAG_CACHE_MAX_ORDER);
5673     nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5674 #endif
5675     if (unlikely(!page))
5676         page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5677 
5678     nc->va = page ? page_address(page) : NULL;
5679 
5680     return page;
5681 }
5682 
5683 void __page_frag_cache_drain(struct page *page, unsigned int count)
5684 {
5685     VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5686 
5687     if (page_ref_sub_and_test(page, count))
5688         free_the_page(page, compound_order(page));
5689 }
5690 EXPORT_SYMBOL(__page_frag_cache_drain);
5691 
5692 void *page_frag_alloc_align(struct page_frag_cache *nc,
5693               unsigned int fragsz, gfp_t gfp_mask,
5694               unsigned int align_mask)
5695 {
5696     unsigned int size = PAGE_SIZE;
5697     struct page *page;
5698     int offset;
5699 
5700     if (unlikely(!nc->va)) {
5701 refill:
5702         page = __page_frag_cache_refill(nc, gfp_mask);
5703         if (!page)
5704             return NULL;
5705 
5706 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5707         /* if size can vary use size else just use PAGE_SIZE */
5708         size = nc->size;
5709 #endif
5710         /* Even if we own the page, we do not use atomic_set().
5711          * This would break get_page_unless_zero() users.
5712          */
5713         page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5714 
5715         /* reset page count bias and offset to start of new frag */
5716         nc->pfmemalloc = page_is_pfmemalloc(page);
5717         nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5718         nc->offset = size;
5719     }
5720 
5721     offset = nc->offset - fragsz;
5722     if (unlikely(offset < 0)) {
5723         page = virt_to_page(nc->va);
5724 
5725         if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5726             goto refill;
5727 
5728         if (unlikely(nc->pfmemalloc)) {
5729             free_the_page(page, compound_order(page));
5730             goto refill;
5731         }
5732 
5733 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5734         /* if size can vary use size else just use PAGE_SIZE */
5735         size = nc->size;
5736 #endif
5737         /* OK, page count is 0, we can safely set it */
5738         set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5739 
5740         /* reset page count bias and offset to start of new frag */
5741         nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5742         offset = size - fragsz;
5743         if (unlikely(offset < 0)) {
5744             /*
5745              * The caller is trying to allocate a fragment
5746              * with fragsz > PAGE_SIZE but the cache isn't big
5747              * enough to satisfy the request, this may
5748              * happen in low memory conditions.
5749              * We don't release the cache page because
5750              * it could make memory pressure worse
5751              * so we simply return NULL here.
5752              */
5753             return NULL;
5754         }
5755     }
5756 
5757     nc->pagecnt_bias--;
5758     offset &= align_mask;
5759     nc->offset = offset;
5760 
5761     return nc->va + offset;
5762 }
5763 EXPORT_SYMBOL(page_frag_alloc_align);
5764 
5765 /*
5766  * Frees a page fragment allocated out of either a compound or order 0 page.
5767  */
5768 void page_frag_free(void *addr)
5769 {
5770     struct page *page = virt_to_head_page(addr);
5771 
5772     if (unlikely(put_page_testzero(page)))
5773         free_the_page(page, compound_order(page));
5774 }
5775 EXPORT_SYMBOL(page_frag_free);
5776 
5777 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5778         size_t size)
5779 {
5780     if (addr) {
5781         unsigned long alloc_end = addr + (PAGE_SIZE << order);
5782         unsigned long used = addr + PAGE_ALIGN(size);
5783 
5784         split_page(virt_to_page((void *)addr), order);
5785         while (used < alloc_end) {
5786             free_page(used);
5787             used += PAGE_SIZE;
5788         }
5789     }
5790     return (void *)addr;
5791 }
5792 
5793 /**
5794  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5795  * @size: the number of bytes to allocate
5796  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5797  *
5798  * This function is similar to alloc_pages(), except that it allocates the
5799  * minimum number of pages to satisfy the request.  alloc_pages() can only
5800  * allocate memory in power-of-two pages.
5801  *
5802  * This function is also limited by MAX_ORDER.
5803  *
5804  * Memory allocated by this function must be released by free_pages_exact().
5805  *
5806  * Return: pointer to the allocated area or %NULL in case of error.
5807  */
5808 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5809 {
5810     unsigned int order = get_order(size);
5811     unsigned long addr;
5812 
5813     if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5814         gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5815 
5816     addr = __get_free_pages(gfp_mask, order);
5817     return make_alloc_exact(addr, order, size);
5818 }
5819 EXPORT_SYMBOL(alloc_pages_exact);
5820 
5821 /**
5822  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5823  *             pages on a node.
5824  * @nid: the preferred node ID where memory should be allocated
5825  * @size: the number of bytes to allocate
5826  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5827  *
5828  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5829  * back.
5830  *
5831  * Return: pointer to the allocated area or %NULL in case of error.
5832  */
5833 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5834 {
5835     unsigned int order = get_order(size);
5836     struct page *p;
5837 
5838     if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5839         gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5840 
5841     p = alloc_pages_node(nid, gfp_mask, order);
5842     if (!p)
5843         return NULL;
5844     return make_alloc_exact((unsigned long)page_address(p), order, size);
5845 }
5846 
5847 /**
5848  * free_pages_exact - release memory allocated via alloc_pages_exact()
5849  * @virt: the value returned by alloc_pages_exact.
5850  * @size: size of allocation, same value as passed to alloc_pages_exact().
5851  *
5852  * Release the memory allocated by a previous call to alloc_pages_exact.
5853  */
5854 void free_pages_exact(void *virt, size_t size)
5855 {
5856     unsigned long addr = (unsigned long)virt;
5857     unsigned long end = addr + PAGE_ALIGN(size);
5858 
5859     while (addr < end) {
5860         free_page(addr);
5861         addr += PAGE_SIZE;
5862     }
5863 }
5864 EXPORT_SYMBOL(free_pages_exact);
5865 
5866 /**
5867  * nr_free_zone_pages - count number of pages beyond high watermark
5868  * @offset: The zone index of the highest zone
5869  *
5870  * nr_free_zone_pages() counts the number of pages which are beyond the
5871  * high watermark within all zones at or below a given zone index.  For each
5872  * zone, the number of pages is calculated as:
5873  *
5874  *     nr_free_zone_pages = managed_pages - high_pages
5875  *
5876  * Return: number of pages beyond high watermark.
5877  */
5878 static unsigned long nr_free_zone_pages(int offset)
5879 {
5880     struct zoneref *z;
5881     struct zone *zone;
5882 
5883     /* Just pick one node, since fallback list is circular */
5884     unsigned long sum = 0;
5885 
5886     struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5887 
5888     for_each_zone_zonelist(zone, z, zonelist, offset) {
5889         unsigned long size = zone_managed_pages(zone);
5890         unsigned long high = high_wmark_pages(zone);
5891         if (size > high)
5892             sum += size - high;
5893     }
5894 
5895     return sum;
5896 }
5897 
5898 /**
5899  * nr_free_buffer_pages - count number of pages beyond high watermark
5900  *
5901  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5902  * watermark within ZONE_DMA and ZONE_NORMAL.
5903  *
5904  * Return: number of pages beyond high watermark within ZONE_DMA and
5905  * ZONE_NORMAL.
5906  */
5907 unsigned long nr_free_buffer_pages(void)
5908 {
5909     return nr_free_zone_pages(gfp_zone(GFP_USER));
5910 }
5911 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5912 
5913 static inline void show_node(struct zone *zone)
5914 {
5915     if (IS_ENABLED(CONFIG_NUMA))
5916         printk("Node %d ", zone_to_nid(zone));
5917 }
5918 
5919 long si_mem_available(void)
5920 {
5921     long available;
5922     unsigned long pagecache;
5923     unsigned long wmark_low = 0;
5924     unsigned long pages[NR_LRU_LISTS];
5925     unsigned long reclaimable;
5926     struct zone *zone;
5927     int lru;
5928 
5929     for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5930         pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5931 
5932     for_each_zone(zone)
5933         wmark_low += low_wmark_pages(zone);
5934 
5935     /*
5936      * Estimate the amount of memory available for userspace allocations,
5937      * without causing swapping or OOM.
5938      */
5939     available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5940 
5941     /*
5942      * Not all the page cache can be freed, otherwise the system will
5943      * start swapping or thrashing. Assume at least half of the page
5944      * cache, or the low watermark worth of cache, needs to stay.
5945      */
5946     pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5947     pagecache -= min(pagecache / 2, wmark_low);
5948     available += pagecache;
5949 
5950     /*
5951      * Part of the reclaimable slab and other kernel memory consists of
5952      * items that are in use, and cannot be freed. Cap this estimate at the
5953      * low watermark.
5954      */
5955     reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5956         global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5957     available += reclaimable - min(reclaimable / 2, wmark_low);
5958 
5959     if (available < 0)
5960         available = 0;
5961     return available;
5962 }
5963 EXPORT_SYMBOL_GPL(si_mem_available);
5964 
5965 void si_meminfo(struct sysinfo *val)
5966 {
5967     val->totalram = totalram_pages();
5968     val->sharedram = global_node_page_state(NR_SHMEM);
5969     val->freeram = global_zone_page_state(NR_FREE_PAGES);
5970     val->bufferram = nr_blockdev_pages();
5971     val->totalhigh = totalhigh_pages();
5972     val->freehigh = nr_free_highpages();
5973     val->mem_unit = PAGE_SIZE;
5974 }
5975 
5976 EXPORT_SYMBOL(si_meminfo);
5977 
5978 #ifdef CONFIG_NUMA
5979 void si_meminfo_node(struct sysinfo *val, int nid)
5980 {
5981     int zone_type;      /* needs to be signed */
5982     unsigned long managed_pages = 0;
5983     unsigned long managed_highpages = 0;
5984     unsigned long free_highpages = 0;
5985     pg_data_t *pgdat = NODE_DATA(nid);
5986 
5987     for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5988         managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5989     val->totalram = managed_pages;
5990     val->sharedram = node_page_state(pgdat, NR_SHMEM);
5991     val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5992 #ifdef CONFIG_HIGHMEM
5993     for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5994         struct zone *zone = &pgdat->node_zones[zone_type];
5995 
5996         if (is_highmem(zone)) {
5997             managed_highpages += zone_managed_pages(zone);
5998             free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5999         }
6000     }
6001     val->totalhigh = managed_highpages;
6002     val->freehigh = free_highpages;
6003 #else
6004     val->totalhigh = managed_highpages;
6005     val->freehigh = free_highpages;
6006 #endif
6007     val->mem_unit = PAGE_SIZE;
6008 }
6009 #endif
6010 
6011 /*
6012  * Determine whether the node should be displayed or not, depending on whether
6013  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6014  */
6015 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6016 {
6017     if (!(flags & SHOW_MEM_FILTER_NODES))
6018         return false;
6019 
6020     /*
6021      * no node mask - aka implicit memory numa policy. Do not bother with
6022      * the synchronization - read_mems_allowed_begin - because we do not
6023      * have to be precise here.
6024      */
6025     if (!nodemask)
6026         nodemask = &cpuset_current_mems_allowed;
6027 
6028     return !node_isset(nid, *nodemask);
6029 }
6030 
6031 #define K(x) ((x) << (PAGE_SHIFT-10))
6032 
6033 static void show_migration_types(unsigned char type)
6034 {
6035     static const char types[MIGRATE_TYPES] = {
6036         [MIGRATE_UNMOVABLE] = 'U',
6037         [MIGRATE_MOVABLE]   = 'M',
6038         [MIGRATE_RECLAIMABLE]   = 'E',
6039         [MIGRATE_HIGHATOMIC]    = 'H',
6040 #ifdef CONFIG_CMA
6041         [MIGRATE_CMA]       = 'C',
6042 #endif
6043 #ifdef CONFIG_MEMORY_ISOLATION
6044         [MIGRATE_ISOLATE]   = 'I',
6045 #endif
6046     };
6047     char tmp[MIGRATE_TYPES + 1];
6048     char *p = tmp;
6049     int i;
6050 
6051     for (i = 0; i < MIGRATE_TYPES; i++) {
6052         if (type & (1 << i))
6053             *p++ = types[i];
6054     }
6055 
6056     *p = '\0';
6057     printk(KERN_CONT "(%s) ", tmp);
6058 }
6059 
6060 /*
6061  * Show free area list (used inside shift_scroll-lock stuff)
6062  * We also calculate the percentage fragmentation. We do this by counting the
6063  * memory on each free list with the exception of the first item on the list.
6064  *
6065  * Bits in @filter:
6066  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6067  *   cpuset.
6068  */
6069 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
6070 {
6071     unsigned long free_pcp = 0;
6072     int cpu, nid;
6073     struct zone *zone;
6074     pg_data_t *pgdat;
6075 
6076     for_each_populated_zone(zone) {
6077         if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6078             continue;
6079 
6080         for_each_online_cpu(cpu)
6081             free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6082     }
6083 
6084     printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6085         " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6086         " unevictable:%lu dirty:%lu writeback:%lu\n"
6087         " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6088         " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
6089         " kernel_misc_reclaimable:%lu\n"
6090         " free:%lu free_pcp:%lu free_cma:%lu\n",
6091         global_node_page_state(NR_ACTIVE_ANON),
6092         global_node_page_state(NR_INACTIVE_ANON),
6093         global_node_page_state(NR_ISOLATED_ANON),
6094         global_node_page_state(NR_ACTIVE_FILE),
6095         global_node_page_state(NR_INACTIVE_FILE),
6096         global_node_page_state(NR_ISOLATED_FILE),
6097         global_node_page_state(NR_UNEVICTABLE),
6098         global_node_page_state(NR_FILE_DIRTY),
6099         global_node_page_state(NR_WRITEBACK),
6100         global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6101         global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6102         global_node_page_state(NR_FILE_MAPPED),
6103         global_node_page_state(NR_SHMEM),
6104         global_node_page_state(NR_PAGETABLE),
6105         global_zone_page_state(NR_BOUNCE),
6106         global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6107         global_zone_page_state(NR_FREE_PAGES),
6108         free_pcp,
6109         global_zone_page_state(NR_FREE_CMA_PAGES));
6110 
6111     for_each_online_pgdat(pgdat) {
6112         if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6113             continue;
6114 
6115         printk("Node %d"
6116             " active_anon:%lukB"
6117             " inactive_anon:%lukB"
6118             " active_file:%lukB"
6119             " inactive_file:%lukB"
6120             " unevictable:%lukB"
6121             " isolated(anon):%lukB"
6122             " isolated(file):%lukB"
6123             " mapped:%lukB"
6124             " dirty:%lukB"
6125             " writeback:%lukB"
6126             " shmem:%lukB"
6127 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6128             " shmem_thp: %lukB"
6129             " shmem_pmdmapped: %lukB"
6130             " anon_thp: %lukB"
6131 #endif
6132             " writeback_tmp:%lukB"
6133             " kernel_stack:%lukB"
6134 #ifdef CONFIG_SHADOW_CALL_STACK
6135             " shadow_call_stack:%lukB"
6136 #endif
6137             " pagetables:%lukB"
6138             " all_unreclaimable? %s"
6139             "\n",
6140             pgdat->node_id,
6141             K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6142             K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6143             K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6144             K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6145             K(node_page_state(pgdat, NR_UNEVICTABLE)),
6146             K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6147             K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6148             K(node_page_state(pgdat, NR_FILE_MAPPED)),
6149             K(node_page_state(pgdat, NR_FILE_DIRTY)),
6150             K(node_page_state(pgdat, NR_WRITEBACK)),
6151             K(node_page_state(pgdat, NR_SHMEM)),
6152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6153             K(node_page_state(pgdat, NR_SHMEM_THPS)),
6154             K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6155             K(node_page_state(pgdat, NR_ANON_THPS)),
6156 #endif
6157             K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6158             node_page_state(pgdat, NR_KERNEL_STACK_KB),
6159 #ifdef CONFIG_SHADOW_CALL_STACK
6160             node_page_state(pgdat, NR_KERNEL_SCS_KB),
6161 #endif
6162             K(node_page_state(pgdat, NR_PAGETABLE)),
6163             pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6164                 "yes" : "no");
6165     }
6166 
6167     for_each_populated_zone(zone) {
6168         int i;
6169 
6170         if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6171             continue;
6172 
6173         free_pcp = 0;
6174         for_each_online_cpu(cpu)
6175             free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6176 
6177         show_node(zone);
6178         printk(KERN_CONT
6179             "%s"
6180             " free:%lukB"
6181             " boost:%lukB"
6182             " min:%lukB"
6183             " low:%lukB"
6184             " high:%lukB"
6185             " reserved_highatomic:%luKB"
6186             " active_anon:%lukB"
6187             " inactive_anon:%lukB"
6188             " active_file:%lukB"
6189             " inactive_file:%lukB"
6190             " unevictable:%lukB"
6191             " writepending:%lukB"
6192             " present:%lukB"
6193             " managed:%lukB"
6194             " mlocked:%lukB"
6195             " bounce:%lukB"
6196             " free_pcp:%lukB"
6197             " local_pcp:%ukB"
6198             " free_cma:%lukB"
6199             "\n",
6200             zone->name,
6201             K(zone_page_state(zone, NR_FREE_PAGES)),
6202             K(zone->watermark_boost),
6203             K(min_wmark_pages(zone)),
6204             K(low_wmark_pages(zone)),
6205             K(high_wmark_pages(zone)),
6206             K(zone->nr_reserved_highatomic),
6207             K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6208             K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6209             K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6210             K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6211             K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6212             K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6213             K(zone->present_pages),
6214             K(zone_managed_pages(zone)),
6215             K(zone_page_state(zone, NR_MLOCK)),
6216             K(zone_page_state(zone, NR_BOUNCE)),
6217             K(free_pcp),
6218             K(this_cpu_read(zone->per_cpu_pageset->count)),
6219             K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6220         printk("lowmem_reserve[]:");
6221         for (i = 0; i < MAX_NR_ZONES; i++)
6222             printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6223         printk(KERN_CONT "\n");
6224     }
6225 
6226     for_each_populated_zone(zone) {
6227         unsigned int order;
6228         unsigned long nr[MAX_ORDER], flags, total = 0;
6229         unsigned char types[MAX_ORDER];
6230 
6231         if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6232             continue;
6233         show_node(zone);
6234         printk(KERN_CONT "%s: ", zone->name);
6235 
6236         spin_lock_irqsave(&zone->lock, flags);
6237         for (order = 0; order < MAX_ORDER; order++) {
6238             struct free_area *area = &zone->free_area[order];
6239             int type;
6240 
6241             nr[order] = area->nr_free;
6242             total += nr[order] << order;
6243 
6244             types[order] = 0;
6245             for (type = 0; type < MIGRATE_TYPES; type++) {
6246                 if (!free_area_empty(area, type))
6247                     types[order] |= 1 << type;
6248             }
6249         }
6250         spin_unlock_irqrestore(&zone->lock, flags);
6251         for (order = 0; order < MAX_ORDER; order++) {
6252             printk(KERN_CONT "%lu*%lukB ",
6253                    nr[order], K(1UL) << order);
6254             if (nr[order])
6255                 show_migration_types(types[order]);
6256         }
6257         printk(KERN_CONT "= %lukB\n", K(total));
6258     }
6259 
6260     for_each_online_node(nid) {
6261         if (show_mem_node_skip(filter, nid, nodemask))
6262             continue;
6263         hugetlb_show_meminfo_node(nid);
6264     }
6265 
6266     printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6267 
6268     show_swap_cache_info();
6269 }
6270 
6271 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6272 {
6273     zoneref->zone = zone;
6274     zoneref->zone_idx = zone_idx(zone);
6275 }
6276 
6277 /*
6278  * Builds allocation fallback zone lists.
6279  *
6280  * Add all populated zones of a node to the zonelist.
6281  */
6282 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6283 {
6284     struct zone *zone;
6285     enum zone_type zone_type = MAX_NR_ZONES;
6286     int nr_zones = 0;
6287 
6288     do {
6289         zone_type--;
6290         zone = pgdat->node_zones + zone_type;
6291         if (populated_zone(zone)) {
6292             zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6293             check_highest_zone(zone_type);
6294         }
6295     } while (zone_type);
6296 
6297     return nr_zones;
6298 }
6299 
6300 #ifdef CONFIG_NUMA
6301 
6302 static int __parse_numa_zonelist_order(char *s)
6303 {
6304     /*
6305      * We used to support different zonelists modes but they turned
6306      * out to be just not useful. Let's keep the warning in place
6307      * if somebody still use the cmd line parameter so that we do
6308      * not fail it silently
6309      */
6310     if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6311         pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6312         return -EINVAL;
6313     }
6314     return 0;
6315 }
6316 
6317 char numa_zonelist_order[] = "Node";
6318 
6319 /*
6320  * sysctl handler for numa_zonelist_order
6321  */
6322 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6323         void *buffer, size_t *length, loff_t *ppos)
6324 {
6325     if (write)
6326         return __parse_numa_zonelist_order(buffer);
6327     return proc_dostring(table, write, buffer, length, ppos);
6328 }
6329 
6330 
6331 static int node_load[MAX_NUMNODES];
6332 
6333 /**
6334  * find_next_best_node - find the next node that should appear in a given node's fallback list
6335  * @node: node whose fallback list we're appending
6336  * @used_node_mask: nodemask_t of already used nodes
6337  *
6338  * We use a number of factors to determine which is the next node that should
6339  * appear on a given node's fallback list.  The node should not have appeared
6340  * already in @node's fallback list, and it should be the next closest node
6341  * according to the distance array (which contains arbitrary distance values
6342  * from each node to each node in the system), and should also prefer nodes
6343  * with no CPUs, since presumably they'll have very little allocation pressure
6344  * on them otherwise.
6345  *
6346  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6347  */
6348 int find_next_best_node(int node, nodemask_t *used_node_mask)
6349 {
6350     int n, val;
6351     int min_val = INT_MAX;
6352     int best_node = NUMA_NO_NODE;
6353 
6354     /* Use the local node if we haven't already */
6355     if (!node_isset(node, *used_node_mask)) {
6356         node_set(node, *used_node_mask);
6357         return node;
6358     }
6359 
6360     for_each_node_state(n, N_MEMORY) {
6361 
6362         /* Don't want a node to appear more than once */
6363         if (node_isset(n, *used_node_mask))
6364             continue;
6365 
6366         /* Use the distance array to find the distance */
6367         val = node_distance(node, n);
6368 
6369         /* Penalize nodes under us ("prefer the next node") */
6370         val += (n < node);
6371 
6372         /* Give preference to headless and unused nodes */
6373         if (!cpumask_empty(cpumask_of_node(n)))
6374             val += PENALTY_FOR_NODE_WITH_CPUS;
6375 
6376         /* Slight preference for less loaded node */
6377         val *= MAX_NUMNODES;
6378         val += node_load[n];
6379 
6380         if (val < min_val) {
6381             min_val = val;
6382             best_node = n;
6383         }
6384     }
6385 
6386     if (best_node >= 0)
6387         node_set(best_node, *used_node_mask);
6388 
6389     return best_node;
6390 }
6391 
6392 
6393 /*
6394  * Build zonelists ordered by node and zones within node.
6395  * This results in maximum locality--normal zone overflows into local
6396  * DMA zone, if any--but risks exhausting DMA zone.
6397  */
6398 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6399         unsigned nr_nodes)
6400 {
6401     struct zoneref *zonerefs;
6402     int i;
6403 
6404     zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6405 
6406     for (i = 0; i < nr_nodes; i++) {
6407         int nr_zones;
6408 
6409         pg_data_t *node = NODE_DATA(node_order[i]);
6410 
6411         nr_zones = build_zonerefs_node(node, zonerefs);
6412         zonerefs += nr_zones;
6413     }
6414     zonerefs->zone = NULL;
6415     zonerefs->zone_idx = 0;
6416 }
6417 
6418 /*
6419  * Build gfp_thisnode zonelists
6420  */
6421 static void build_thisnode_zonelists(pg_data_t *pgdat)
6422 {
6423     struct zoneref *zonerefs;
6424     int nr_zones;
6425 
6426     zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6427     nr_zones = build_zonerefs_node(pgdat, zonerefs);
6428     zonerefs += nr_zones;
6429     zonerefs->zone = NULL;
6430     zonerefs->zone_idx = 0;
6431 }
6432 
6433 /*
6434  * Build zonelists ordered by zone and nodes within zones.
6435  * This results in conserving DMA zone[s] until all Normal memory is
6436  * exhausted, but results in overflowing to remote node while memory
6437  * may still exist in local DMA zone.
6438  */
6439 
6440 static void build_zonelists(pg_data_t *pgdat)
6441 {
6442     static int node_order[MAX_NUMNODES];
6443     int node, nr_nodes = 0;
6444     nodemask_t used_mask = NODE_MASK_NONE;
6445     int local_node, prev_node;
6446 
6447     /* NUMA-aware ordering of nodes */
6448     local_node = pgdat->node_id;
6449     prev_node = local_node;
6450 
6451     memset(node_order, 0, sizeof(node_order));
6452     while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6453         /*
6454          * We don't want to pressure a particular node.
6455          * So adding penalty to the first node in same
6456          * distance group to make it round-robin.
6457          */
6458         if (node_distance(local_node, node) !=
6459             node_distance(local_node, prev_node))
6460             node_load[node] += 1;
6461 
6462         node_order[nr_nodes++] = node;
6463         prev_node = node;
6464     }
6465 
6466     build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6467     build_thisnode_zonelists(pgdat);
6468     pr_info("Fallback order for Node %d: ", local_node);
6469     for (node = 0; node < nr_nodes; node++)
6470         pr_cont("%d ", node_order[node]);
6471     pr_cont("\n");
6472 }
6473 
6474 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6475 /*
6476  * Return node id of node used for "local" allocations.
6477  * I.e., first node id of first zone in arg node's generic zonelist.
6478  * Used for initializing percpu 'numa_mem', which is used primarily
6479  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6480  */
6481 int local_memory_node(int node)
6482 {
6483     struct zoneref *z;
6484 
6485     z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6486                    gfp_zone(GFP_KERNEL),
6487                    NULL);
6488     return zone_to_nid(z->zone);
6489 }
6490 #endif
6491 
6492 static void setup_min_unmapped_ratio(void);
6493 static void setup_min_slab_ratio(void);
6494 #else   /* CONFIG_NUMA */
6495 
6496 static void build_zonelists(pg_data_t *pgdat)
6497 {
6498     int node, local_node;
6499     struct zoneref *zonerefs;
6500     int nr_zones;
6501 
6502     local_node = pgdat->node_id;
6503 
6504     zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6505     nr_zones = build_zonerefs_node(pgdat, zonerefs);
6506     zonerefs += nr_zones;
6507 
6508     /*
6509      * Now we build the zonelist so that it contains the zones
6510      * of all the other nodes.
6511      * We don't want to pressure a particular node, so when
6512      * building the zones for node N, we make sure that the
6513      * zones coming right after the local ones are those from
6514      * node N+1 (modulo N)
6515      */
6516     for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6517         if (!node_online(node))
6518             continue;
6519         nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6520         zonerefs += nr_zones;
6521     }
6522     for (node = 0; node < local_node; node++) {
6523         if (!node_online(node))
6524             continue;
6525         nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6526         zonerefs += nr_zones;
6527     }
6528 
6529     zonerefs->zone = NULL;
6530     zonerefs->zone_idx = 0;
6531 }
6532 
6533 #endif  /* CONFIG_NUMA */
6534 
6535 /*
6536  * Boot pageset table. One per cpu which is going to be used for all
6537  * zones and all nodes. The parameters will be set in such a way
6538  * that an item put on a list will immediately be handed over to
6539  * the buddy list. This is safe since pageset manipulation is done
6540  * with interrupts disabled.
6541  *
6542  * The boot_pagesets must be kept even after bootup is complete for
6543  * unused processors and/or zones. They do play a role for bootstrapping
6544  * hotplugged processors.
6545  *
6546  * zoneinfo_show() and maybe other functions do
6547  * not check if the processor is online before following the pageset pointer.
6548  * Other parts of the kernel may not check if the zone is available.
6549  */
6550 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6551 /* These effectively disable the pcplists in the boot pageset completely */
6552 #define BOOT_PAGESET_HIGH   0
6553 #define BOOT_PAGESET_BATCH  1
6554 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6555 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6556 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6557 
6558 static void __build_all_zonelists(void *data)
6559 {
6560     int nid;
6561     int __maybe_unused cpu;
6562     pg_data_t *self = data;
6563 
6564     write_seqlock(&zonelist_update_seq);
6565 
6566 #ifdef CONFIG_NUMA
6567     memset(node_load, 0, sizeof(node_load));
6568 #endif
6569 
6570     /*
6571      * This node is hotadded and no memory is yet present.   So just
6572      * building zonelists is fine - no need to touch other nodes.
6573      */
6574     if (self && !node_online(self->node_id)) {
6575         build_zonelists(self);
6576     } else {
6577         /*
6578          * All possible nodes have pgdat preallocated
6579          * in free_area_init
6580          */
6581         for_each_node(nid) {
6582             pg_data_t *pgdat = NODE_DATA(nid);
6583 
6584             build_zonelists(pgdat);
6585         }
6586 
6587 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6588         /*
6589          * We now know the "local memory node" for each node--
6590          * i.e., the node of the first zone in the generic zonelist.
6591          * Set up numa_mem percpu variable for on-line cpus.  During
6592          * boot, only the boot cpu should be on-line;  we'll init the
6593          * secondary cpus' numa_mem as they come on-line.  During
6594          * node/memory hotplug, we'll fixup all on-line cpus.
6595          */
6596         for_each_online_cpu(cpu)
6597             set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6598 #endif
6599     }
6600 
6601     write_sequnlock(&zonelist_update_seq);
6602 }
6603 
6604 static noinline void __init
6605 build_all_zonelists_init(void)
6606 {
6607     int cpu;
6608 
6609     __build_all_zonelists(NULL);
6610 
6611     /*
6612      * Initialize the boot_pagesets that are going to be used
6613      * for bootstrapping processors. The real pagesets for
6614      * each zone will be allocated later when the per cpu
6615      * allocator is available.
6616      *
6617      * boot_pagesets are used also for bootstrapping offline
6618      * cpus if the system is already booted because the pagesets
6619      * are needed to initialize allocators on a specific cpu too.
6620      * F.e. the percpu allocator needs the page allocator which
6621      * needs the percpu allocator in order to allocate its pagesets
6622      * (a chicken-egg dilemma).
6623      */
6624     for_each_possible_cpu(cpu)
6625         per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6626 
6627     mminit_verify_zonelist();
6628     cpuset_init_current_mems_allowed();
6629 }
6630 
6631 /*
6632  * unless system_state == SYSTEM_BOOTING.
6633  *
6634  * __ref due to call of __init annotated helper build_all_zonelists_init
6635  * [protected by SYSTEM_BOOTING].
6636  */
6637 void __ref build_all_zonelists(pg_data_t *pgdat)
6638 {
6639     unsigned long vm_total_pages;
6640 
6641     if (system_state == SYSTEM_BOOTING) {
6642         build_all_zonelists_init();
6643     } else {
6644         __build_all_zonelists(pgdat);
6645         /* cpuset refresh routine should be here */
6646     }
6647     /* Get the number of free pages beyond high watermark in all zones. */
6648     vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6649     /*
6650      * Disable grouping by mobility if the number of pages in the
6651      * system is too low to allow the mechanism to work. It would be
6652      * more accurate, but expensive to check per-zone. This check is
6653      * made on memory-hotadd so a system can start with mobility
6654      * disabled and enable it later
6655      */
6656     if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6657         page_group_by_mobility_disabled = 1;
6658     else
6659         page_group_by_mobility_disabled = 0;
6660 
6661     pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6662         nr_online_nodes,
6663         page_group_by_mobility_disabled ? "off" : "on",
6664         vm_total_pages);
6665 #ifdef CONFIG_NUMA
6666     pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6667 #endif
6668 }
6669 
6670 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6671 static bool __meminit
6672 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6673 {
6674     static struct memblock_region *r;
6675 
6676     if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6677         if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6678             for_each_mem_region(r) {
6679                 if (*pfn < memblock_region_memory_end_pfn(r))
6680                     break;
6681             }
6682         }
6683         if (*pfn >= memblock_region_memory_base_pfn(r) &&
6684             memblock_is_mirror(r)) {
6685             *pfn = memblock_region_memory_end_pfn(r);
6686             return true;
6687         }
6688     }
6689     return false;
6690 }
6691 
6692 /*
6693  * Initially all pages are reserved - free ones are freed
6694  * up by memblock_free_all() once the early boot process is
6695  * done. Non-atomic initialization, single-pass.
6696  *
6697  * All aligned pageblocks are initialized to the specified migratetype
6698  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6699  * zone stats (e.g., nr_isolate_pageblock) are touched.
6700  */
6701 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6702         unsigned long start_pfn, unsigned long zone_end_pfn,
6703         enum meminit_context context,
6704         struct vmem_altmap *altmap, int migratetype)
6705 {
6706     unsigned long pfn, end_pfn = start_pfn + size;
6707     struct page *page;
6708 
6709     if (highest_memmap_pfn < end_pfn - 1)
6710         highest_memmap_pfn = end_pfn - 1;
6711 
6712 #ifdef CONFIG_ZONE_DEVICE
6713     /*
6714      * Honor reservation requested by the driver for this ZONE_DEVICE
6715      * memory. We limit the total number of pages to initialize to just
6716      * those that might contain the memory mapping. We will defer the
6717      * ZONE_DEVICE page initialization until after we have released
6718      * the hotplug lock.
6719      */
6720     if (zone == ZONE_DEVICE) {
6721         if (!altmap)
6722             return;
6723 
6724         if (start_pfn == altmap->base_pfn)
6725             start_pfn += altmap->reserve;
6726         end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6727     }
6728 #endif
6729 
6730     for (pfn = start_pfn; pfn < end_pfn; ) {
6731         /*
6732          * There can be holes in boot-time mem_map[]s handed to this
6733          * function.  They do not exist on hotplugged memory.
6734          */
6735         if (context == MEMINIT_EARLY) {
6736             if (overlap_memmap_init(zone, &pfn))
6737                 continue;
6738             if (defer_init(nid, pfn, zone_end_pfn))
6739                 break;
6740         }
6741 
6742         page = pfn_to_page(pfn);
6743         __init_single_page(page, pfn, zone, nid);
6744         if (context == MEMINIT_HOTPLUG)
6745             __SetPageReserved(page);
6746 
6747         /*
6748          * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6749          * such that unmovable allocations won't be scattered all
6750          * over the place during system boot.
6751          */
6752         if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6753             set_pageblock_migratetype(page, migratetype);
6754             cond_resched();
6755         }
6756         pfn++;
6757     }
6758 }
6759 
6760 #ifdef CONFIG_ZONE_DEVICE
6761 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6762                       unsigned long zone_idx, int nid,
6763                       struct dev_pagemap *pgmap)
6764 {
6765 
6766     __init_single_page(page, pfn, zone_idx, nid);
6767 
6768     /*
6769      * Mark page reserved as it will need to wait for onlining
6770      * phase for it to be fully associated with a zone.
6771      *
6772      * We can use the non-atomic __set_bit operation for setting
6773      * the flag as we are still initializing the pages.
6774      */
6775     __SetPageReserved(page);
6776 
6777     /*
6778      * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6779      * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6780      * ever freed or placed on a driver-private list.
6781      */
6782     page->pgmap = pgmap;
6783     page->zone_device_data = NULL;
6784 
6785     /*
6786      * Mark the block movable so that blocks are reserved for
6787      * movable at startup. This will force kernel allocations
6788      * to reserve their blocks rather than leaking throughout
6789      * the address space during boot when many long-lived
6790      * kernel allocations are made.
6791      *
6792      * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6793      * because this is done early in section_activate()
6794      */
6795     if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6796         set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6797         cond_resched();
6798     }
6799 }
6800 
6801 /*
6802  * With compound page geometry and when struct pages are stored in ram most
6803  * tail pages are reused. Consequently, the amount of unique struct pages to
6804  * initialize is a lot smaller that the total amount of struct pages being
6805  * mapped. This is a paired / mild layering violation with explicit knowledge
6806  * of how the sparse_vmemmap internals handle compound pages in the lack
6807  * of an altmap. See vmemmap_populate_compound_pages().
6808  */
6809 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6810                           unsigned long nr_pages)
6811 {
6812     return is_power_of_2(sizeof(struct page)) &&
6813         !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6814 }
6815 
6816 static void __ref memmap_init_compound(struct page *head,
6817                        unsigned long head_pfn,
6818                        unsigned long zone_idx, int nid,
6819                        struct dev_pagemap *pgmap,
6820                        unsigned long nr_pages)
6821 {
6822     unsigned long pfn, end_pfn = head_pfn + nr_pages;
6823     unsigned int order = pgmap->vmemmap_shift;
6824 
6825     __SetPageHead(head);
6826     for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6827         struct page *page = pfn_to_page(pfn);
6828 
6829         __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6830         prep_compound_tail(head, pfn - head_pfn);
6831         set_page_count(page, 0);
6832 
6833         /*
6834          * The first tail page stores compound_mapcount_ptr() and
6835          * compound_order() and the second tail page stores
6836          * compound_pincount_ptr(). Call prep_compound_head() after
6837          * the first and second tail pages have been initialized to
6838          * not have the data overwritten.
6839          */
6840         if (pfn == head_pfn + 2)
6841             prep_compound_head(head, order);
6842     }
6843 }
6844 
6845 void __ref memmap_init_zone_device(struct zone *zone,
6846                    unsigned long start_pfn,
6847                    unsigned long nr_pages,
6848                    struct dev_pagemap *pgmap)
6849 {
6850     unsigned long pfn, end_pfn = start_pfn + nr_pages;
6851     struct pglist_data *pgdat = zone->zone_pgdat;
6852     struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6853     unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6854     unsigned long zone_idx = zone_idx(zone);
6855     unsigned long start = jiffies;
6856     int nid = pgdat->node_id;
6857 
6858     if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6859         return;
6860 
6861     /*
6862      * The call to memmap_init should have already taken care
6863      * of the pages reserved for the memmap, so we can just jump to
6864      * the end of that region and start processing the device pages.
6865      */
6866     if (altmap) {
6867         start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6868         nr_pages = end_pfn - start_pfn;
6869     }
6870 
6871     for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6872         struct page *page = pfn_to_page(pfn);
6873 
6874         __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6875 
6876         if (pfns_per_compound == 1)
6877             continue;
6878 
6879         memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6880                      compound_nr_pages(altmap, pfns_per_compound));
6881     }
6882 
6883     pr_info("%s initialised %lu pages in %ums\n", __func__,
6884         nr_pages, jiffies_to_msecs(jiffies - start));
6885 }
6886 
6887 #endif
6888 static void __meminit zone_init_free_lists(struct zone *zone)
6889 {
6890     unsigned int order, t;
6891     for_each_migratetype_order(order, t) {
6892         INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6893         zone->free_area[order].nr_free = 0;
6894     }
6895 }
6896 
6897 /*
6898  * Only struct pages that correspond to ranges defined by memblock.memory
6899  * are zeroed and initialized by going through __init_single_page() during
6900  * memmap_init_zone_range().
6901  *
6902  * But, there could be struct pages that correspond to holes in
6903  * memblock.memory. This can happen because of the following reasons:
6904  * - physical memory bank size is not necessarily the exact multiple of the
6905  *   arbitrary section size
6906  * - early reserved memory may not be listed in memblock.memory
6907  * - memory layouts defined with memmap= kernel parameter may not align
6908  *   nicely with memmap sections
6909  *
6910  * Explicitly initialize those struct pages so that:
6911  * - PG_Reserved is set
6912  * - zone and node links point to zone and node that span the page if the
6913  *   hole is in the middle of a zone
6914  * - zone and node links point to adjacent zone/node if the hole falls on
6915  *   the zone boundary; the pages in such holes will be prepended to the
6916  *   zone/node above the hole except for the trailing pages in the last
6917  *   section that will be appended to the zone/node below.
6918  */
6919 static void __init init_unavailable_range(unsigned long spfn,
6920                       unsigned long epfn,
6921                       int zone, int node)
6922 {
6923     unsigned long pfn;
6924     u64 pgcnt = 0;
6925 
6926     for (pfn = spfn; pfn < epfn; pfn++) {
6927         if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6928             pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6929                 + pageblock_nr_pages - 1;
6930             continue;
6931         }
6932         __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6933         __SetPageReserved(pfn_to_page(pfn));
6934         pgcnt++;
6935     }
6936 
6937     if (pgcnt)
6938         pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6939             node, zone_names[zone], pgcnt);
6940 }
6941 
6942 static void __init memmap_init_zone_range(struct zone *zone,
6943                       unsigned long start_pfn,
6944                       unsigned long end_pfn,
6945                       unsigned long *hole_pfn)
6946 {
6947     unsigned long zone_start_pfn = zone->zone_start_pfn;
6948     unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6949     int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6950 
6951     start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6952     end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6953 
6954     if (start_pfn >= end_pfn)
6955         return;
6956 
6957     memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6958               zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6959 
6960     if (*hole_pfn < start_pfn)
6961         init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6962 
6963     *hole_pfn = end_pfn;
6964 }
6965 
6966 static void __init memmap_init(void)
6967 {
6968     unsigned long start_pfn, end_pfn;
6969     unsigned long hole_pfn = 0;
6970     int i, j, zone_id = 0, nid;
6971 
6972     for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6973         struct pglist_data *node = NODE_DATA(nid);
6974 
6975         for (j = 0; j < MAX_NR_ZONES; j++) {
6976             struct zone *zone = node->node_zones + j;
6977 
6978             if (!populated_zone(zone))
6979                 continue;
6980 
6981             memmap_init_zone_range(zone, start_pfn, end_pfn,
6982                            &hole_pfn);
6983             zone_id = j;
6984         }
6985     }
6986 
6987 #ifdef CONFIG_SPARSEMEM
6988     /*
6989      * Initialize the memory map for hole in the range [memory_end,
6990      * section_end].
6991      * Append the pages in this hole to the highest zone in the last
6992      * node.
6993      * The call to init_unavailable_range() is outside the ifdef to
6994      * silence the compiler warining about zone_id set but not used;
6995      * for FLATMEM it is a nop anyway
6996      */
6997     end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6998     if (hole_pfn < end_pfn)
6999 #endif
7000         init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7001 }
7002 
7003 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7004               phys_addr_t min_addr, int nid, bool exact_nid)
7005 {
7006     void *ptr;
7007 
7008     if (exact_nid)
7009         ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7010                            MEMBLOCK_ALLOC_ACCESSIBLE,
7011                            nid);
7012     else
7013         ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7014                          MEMBLOCK_ALLOC_ACCESSIBLE,
7015                          nid);
7016 
7017     if (ptr && size > 0)
7018         page_init_poison(ptr, size);
7019 
7020     return ptr;
7021 }
7022 
7023 static int zone_batchsize(struct zone *zone)
7024 {
7025 #ifdef CONFIG_MMU
7026     int batch;
7027 
7028     /*
7029      * The number of pages to batch allocate is either ~0.1%
7030      * of the zone or 1MB, whichever is smaller. The batch
7031      * size is striking a balance between allocation latency
7032      * and zone lock contention.
7033      */
7034     batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
7035     batch /= 4;     /* We effectively *= 4 below */
7036     if (batch < 1)
7037         batch = 1;
7038 
7039     /*
7040      * Clamp the batch to a 2^n - 1 value. Having a power
7041      * of 2 value was found to be more likely to have
7042      * suboptimal cache aliasing properties in some cases.
7043      *
7044      * For example if 2 tasks are alternately allocating
7045      * batches of pages, one task can end up with a lot
7046      * of pages of one half of the possible page colors
7047      * and the other with pages of the other colors.
7048      */
7049     batch = rounddown_pow_of_two(batch + batch/2) - 1;
7050 
7051     return batch;
7052 
7053 #else
7054     /* The deferral and batching of frees should be suppressed under NOMMU
7055      * conditions.
7056      *
7057      * The problem is that NOMMU needs to be able to allocate large chunks
7058      * of contiguous memory as there's no hardware page translation to
7059      * assemble apparent contiguous memory from discontiguous pages.
7060      *
7061      * Queueing large contiguous runs of pages for batching, however,
7062      * causes the pages to actually be freed in smaller chunks.  As there
7063      * can be a significant delay between the individual batches being
7064      * recycled, this leads to the once large chunks of space being
7065      * fragmented and becoming unavailable for high-order allocations.
7066      */
7067     return 0;
7068 #endif
7069 }
7070 
7071 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7072 {
7073 #ifdef CONFIG_MMU
7074     int high;
7075     int nr_split_cpus;
7076     unsigned long total_pages;
7077 
7078     if (!percpu_pagelist_high_fraction) {
7079         /*
7080          * By default, the high value of the pcp is based on the zone
7081          * low watermark so that if they are full then background
7082          * reclaim will not be started prematurely.
7083          */
7084         total_pages = low_wmark_pages(zone);
7085     } else {
7086         /*
7087          * If percpu_pagelist_high_fraction is configured, the high
7088          * value is based on a fraction of the managed pages in the
7089          * zone.
7090          */
7091         total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7092     }
7093 
7094     /*
7095      * Split the high value across all online CPUs local to the zone. Note
7096      * that early in boot that CPUs may not be online yet and that during
7097      * CPU hotplug that the cpumask is not yet updated when a CPU is being
7098      * onlined. For memory nodes that have no CPUs, split pcp->high across
7099      * all online CPUs to mitigate the risk that reclaim is triggered
7100      * prematurely due to pages stored on pcp lists.
7101      */
7102     nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7103     if (!nr_split_cpus)
7104         nr_split_cpus = num_online_cpus();
7105     high = total_pages / nr_split_cpus;
7106 
7107     /*
7108      * Ensure high is at least batch*4. The multiple is based on the
7109      * historical relationship between high and batch.
7110      */
7111     high = max(high, batch << 2);
7112 
7113     return high;
7114 #else
7115     return 0;
7116 #endif
7117 }
7118 
7119 /*
7120  * pcp->high and pcp->batch values are related and generally batch is lower
7121  * than high. They are also related to pcp->count such that count is lower
7122  * than high, and as soon as it reaches high, the pcplist is flushed.
7123  *
7124  * However, guaranteeing these relations at all times would require e.g. write
7125  * barriers here but also careful usage of read barriers at the read side, and
7126  * thus be prone to error and bad for performance. Thus the update only prevents
7127  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7128  * can cope with those fields changing asynchronously, and fully trust only the
7129  * pcp->count field on the local CPU with interrupts disabled.
7130  *
7131  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7132  * outside of boot time (or some other assurance that no concurrent updaters
7133  * exist).
7134  */
7135 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7136         unsigned long batch)
7137 {
7138     WRITE_ONCE(pcp->batch, batch);
7139     WRITE_ONCE(pcp->high, high);
7140 }
7141 
7142 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7143 {
7144     int pindex;
7145 
7146     memset(pcp, 0, sizeof(*pcp));
7147     memset(pzstats, 0, sizeof(*pzstats));
7148 
7149     spin_lock_init(&pcp->lock);
7150     for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7151         INIT_LIST_HEAD(&pcp->lists[pindex]);
7152 
7153     /*
7154      * Set batch and high values safe for a boot pageset. A true percpu
7155      * pageset's initialization will update them subsequently. Here we don't
7156      * need to be as careful as pageset_update() as nobody can access the
7157      * pageset yet.
7158      */
7159     pcp->high = BOOT_PAGESET_HIGH;
7160     pcp->batch = BOOT_PAGESET_BATCH;
7161     pcp->free_factor = 0;
7162 }
7163 
7164 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7165         unsigned long batch)
7166 {
7167     struct per_cpu_pages *pcp;
7168     int cpu;
7169 
7170     for_each_possible_cpu(cpu) {
7171         pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7172         pageset_update(pcp, high, batch);
7173     }
7174 }
7175 
7176 /*
7177  * Calculate and set new high and batch values for all per-cpu pagesets of a
7178  * zone based on the zone's size.
7179  */
7180 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7181 {
7182     int new_high, new_batch;
7183 
7184     new_batch = max(1, zone_batchsize(zone));
7185     new_high = zone_highsize(zone, new_batch, cpu_online);
7186 
7187     if (zone->pageset_high == new_high &&
7188         zone->pageset_batch == new_batch)
7189         return;
7190 
7191     zone->pageset_high = new_high;
7192     zone->pageset_batch = new_batch;
7193 
7194     __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7195 }
7196 
7197 void __meminit setup_zone_pageset(struct zone *zone)
7198 {
7199     int cpu;
7200 
7201     /* Size may be 0 on !SMP && !NUMA */
7202     if (sizeof(struct per_cpu_zonestat) > 0)
7203         zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7204 
7205     zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7206     for_each_possible_cpu(cpu) {
7207         struct per_cpu_pages *pcp;
7208         struct per_cpu_zonestat *pzstats;
7209 
7210         pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7211         pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7212         per_cpu_pages_init(pcp, pzstats);
7213     }
7214 
7215     zone_set_pageset_high_and_batch(zone, 0);
7216 }
7217 
7218 /*
7219  * Allocate per cpu pagesets and initialize them.
7220  * Before this call only boot pagesets were available.
7221  */
7222 void __init setup_per_cpu_pageset(void)
7223 {
7224     struct pglist_data *pgdat;
7225     struct zone *zone;
7226     int __maybe_unused cpu;
7227 
7228     for_each_populated_zone(zone)
7229         setup_zone_pageset(zone);
7230 
7231 #ifdef CONFIG_NUMA
7232     /*
7233      * Unpopulated zones continue using the boot pagesets.
7234      * The numa stats for these pagesets need to be reset.
7235      * Otherwise, they will end up skewing the stats of
7236      * the nodes these zones are associated with.
7237      */
7238     for_each_possible_cpu(cpu) {
7239         struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7240         memset(pzstats->vm_numa_event, 0,
7241                sizeof(pzstats->vm_numa_event));
7242     }
7243 #endif
7244 
7245     for_each_online_pgdat(pgdat)
7246         pgdat->per_cpu_nodestats =
7247             alloc_percpu(struct per_cpu_nodestat);
7248 }
7249 
7250 static __meminit void zone_pcp_init(struct zone *zone)
7251 {
7252     /*
7253      * per cpu subsystem is not up at this point. The following code
7254      * relies on the ability of the linker to provide the
7255      * offset of a (static) per cpu variable into the per cpu area.
7256      */
7257     zone->per_cpu_pageset = &boot_pageset;
7258     zone->per_cpu_zonestats = &boot_zonestats;
7259     zone->pageset_high = BOOT_PAGESET_HIGH;
7260     zone->pageset_batch = BOOT_PAGESET_BATCH;
7261 
7262     if (populated_zone(zone))
7263         pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7264              zone->present_pages, zone_batchsize(zone));
7265 }
7266 
7267 void __meminit init_currently_empty_zone(struct zone *zone,
7268                     unsigned long zone_start_pfn,
7269                     unsigned long size)
7270 {
7271     struct pglist_data *pgdat = zone->zone_pgdat;
7272     int zone_idx = zone_idx(zone) + 1;
7273 
7274     if (zone_idx > pgdat->nr_zones)
7275         pgdat->nr_zones = zone_idx;
7276 
7277     zone->zone_start_pfn = zone_start_pfn;
7278 
7279     mminit_dprintk(MMINIT_TRACE, "memmap_init",
7280             "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7281             pgdat->node_id,
7282             (unsigned long)zone_idx(zone),
7283             zone_start_pfn, (zone_start_pfn + size));
7284 
7285     zone_init_free_lists(zone);
7286     zone->initialized = 1;
7287 }
7288 
7289 /**
7290  * get_pfn_range_for_nid - Return the start and end page frames for a node
7291  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7292  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7293  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7294  *
7295  * It returns the start and end page frame of a node based on information
7296  * provided by memblock_set_node(). If called for a node
7297  * with no available memory, a warning is printed and the start and end
7298  * PFNs will be 0.
7299  */
7300 void __init get_pfn_range_for_nid(unsigned int nid,
7301             unsigned long *start_pfn, unsigned long *end_pfn)
7302 {
7303     unsigned long this_start_pfn, this_end_pfn;
7304     int i;
7305 
7306     *start_pfn = -1UL;
7307     *end_pfn = 0;
7308 
7309     for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7310         *start_pfn = min(*start_pfn, this_start_pfn);
7311         *end_pfn = max(*end_pfn, this_end_pfn);
7312     }
7313 
7314     if (*start_pfn == -1UL)
7315         *start_pfn = 0;
7316 }
7317 
7318 /*
7319  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7320  * assumption is made that zones within a node are ordered in monotonic
7321  * increasing memory addresses so that the "highest" populated zone is used
7322  */
7323 static void __init find_usable_zone_for_movable(void)
7324 {
7325     int zone_index;
7326     for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7327         if (zone_index == ZONE_MOVABLE)
7328             continue;
7329 
7330         if (arch_zone_highest_possible_pfn[zone_index] >
7331                 arch_zone_lowest_possible_pfn[zone_index])
7332             break;
7333     }
7334 
7335     VM_BUG_ON(zone_index == -1);
7336     movable_zone = zone_index;
7337 }
7338 
7339 /*
7340  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7341  * because it is sized independent of architecture. Unlike the other zones,
7342  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7343  * in each node depending on the size of each node and how evenly kernelcore
7344  * is distributed. This helper function adjusts the zone ranges
7345  * provided by the architecture for a given node by using the end of the
7346  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7347  * zones within a node are in order of monotonic increases memory addresses
7348  */
7349 static void __init adjust_zone_range_for_zone_movable(int nid,
7350                     unsigned long zone_type,
7351                     unsigned long node_start_pfn,
7352                     unsigned long node_end_pfn,
7353                     unsigned long *zone_start_pfn,
7354                     unsigned long *zone_end_pfn)
7355 {
7356     /* Only adjust if ZONE_MOVABLE is on this node */
7357     if (zone_movable_pfn[nid]) {
7358         /* Size ZONE_MOVABLE */
7359         if (zone_type == ZONE_MOVABLE) {
7360             *zone_start_pfn = zone_movable_pfn[nid];
7361             *zone_end_pfn = min(node_end_pfn,
7362                 arch_zone_highest_possible_pfn[movable_zone]);
7363 
7364         /* Adjust for ZONE_MOVABLE starting within this range */
7365         } else if (!mirrored_kernelcore &&
7366             *zone_start_pfn < zone_movable_pfn[nid] &&
7367             *zone_end_pfn > zone_movable_pfn[nid]) {
7368             *zone_end_pfn = zone_movable_pfn[nid];
7369 
7370         /* Check if this whole range is within ZONE_MOVABLE */
7371         } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7372             *zone_start_pfn = *zone_end_pfn;
7373     }
7374 }
7375 
7376 /*
7377  * Return the number of pages a zone spans in a node, including holes
7378  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7379  */
7380 static unsigned long __init zone_spanned_pages_in_node(int nid,
7381                     unsigned long zone_type,
7382                     unsigned long node_start_pfn,
7383                     unsigned long node_end_pfn,
7384                     unsigned long *zone_start_pfn,
7385                     unsigned long *zone_end_pfn)
7386 {
7387     unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7388     unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7389     /* When hotadd a new node from cpu_up(), the node should be empty */
7390     if (!node_start_pfn && !node_end_pfn)
7391         return 0;
7392 
7393     /* Get the start and end of the zone */
7394     *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7395     *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7396     adjust_zone_range_for_zone_movable(nid, zone_type,
7397                 node_start_pfn, node_end_pfn,
7398                 zone_start_pfn, zone_end_pfn);
7399 
7400     /* Check that this node has pages within the zone's required range */
7401     if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7402         return 0;
7403 
7404     /* Move the zone boundaries inside the node if necessary */
7405     *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7406     *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7407 
7408     /* Return the spanned pages */
7409     return *zone_end_pfn - *zone_start_pfn;
7410 }
7411 
7412 /*
7413  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7414  * then all holes in the requested range will be accounted for.
7415  */
7416 unsigned long __init __absent_pages_in_range(int nid,
7417                 unsigned long range_start_pfn,
7418                 unsigned long range_end_pfn)
7419 {
7420     unsigned long nr_absent = range_end_pfn - range_start_pfn;
7421     unsigned long start_pfn, end_pfn;
7422     int i;
7423 
7424     for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7425         start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7426         end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7427         nr_absent -= end_pfn - start_pfn;
7428     }
7429     return nr_absent;
7430 }
7431 
7432 /**
7433  * absent_pages_in_range - Return number of page frames in holes within a range
7434  * @start_pfn: The start PFN to start searching for holes
7435  * @end_pfn: The end PFN to stop searching for holes
7436  *
7437  * Return: the number of pages frames in memory holes within a range.
7438  */
7439 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7440                             unsigned long end_pfn)
7441 {
7442     return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7443 }
7444 
7445 /* Return the number of page frames in holes in a zone on a node */
7446 static unsigned long __init zone_absent_pages_in_node(int nid,
7447                     unsigned long zone_type,
7448                     unsigned long node_start_pfn,
7449                     unsigned long node_end_pfn)
7450 {
7451     unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7452     unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7453     unsigned long zone_start_pfn, zone_end_pfn;
7454     unsigned long nr_absent;
7455 
7456     /* When hotadd a new node from cpu_up(), the node should be empty */
7457     if (!node_start_pfn && !node_end_pfn)
7458         return 0;
7459 
7460     zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7461     zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7462 
7463     adjust_zone_range_for_zone_movable(nid, zone_type,
7464             node_start_pfn, node_end_pfn,
7465             &zone_start_pfn, &zone_end_pfn);
7466     nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7467 
7468     /*
7469      * ZONE_MOVABLE handling.
7470      * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7471      * and vice versa.
7472      */
7473     if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7474         unsigned long start_pfn, end_pfn;
7475         struct memblock_region *r;
7476 
7477         for_each_mem_region(r) {
7478             start_pfn = clamp(memblock_region_memory_base_pfn(r),
7479                       zone_start_pfn, zone_end_pfn);
7480             end_pfn = clamp(memblock_region_memory_end_pfn(r),
7481                     zone_start_pfn, zone_end_pfn);
7482 
7483             if (zone_type == ZONE_MOVABLE &&
7484                 memblock_is_mirror(r))
7485                 nr_absent += end_pfn - start_pfn;
7486 
7487             if (zone_type == ZONE_NORMAL &&
7488                 !memblock_is_mirror(r))
7489                 nr_absent += end_pfn - start_pfn;
7490         }
7491     }
7492 
7493     return nr_absent;
7494 }
7495 
7496 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7497                         unsigned long node_start_pfn,
7498                         unsigned long node_end_pfn)
7499 {
7500     unsigned long realtotalpages = 0, totalpages = 0;
7501     enum zone_type i;
7502 
7503     for (i = 0; i < MAX_NR_ZONES; i++) {
7504         struct zone *zone = pgdat->node_zones + i;
7505         unsigned long zone_start_pfn, zone_end_pfn;
7506         unsigned long spanned, absent;
7507         unsigned long size, real_size;
7508 
7509         spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7510                              node_start_pfn,
7511                              node_end_pfn,
7512                              &zone_start_pfn,
7513                              &zone_end_pfn);
7514         absent = zone_absent_pages_in_node(pgdat->node_id, i,
7515                            node_start_pfn,
7516                            node_end_pfn);
7517 
7518         size = spanned;
7519         real_size = size - absent;
7520 
7521         if (size)
7522             zone->zone_start_pfn = zone_start_pfn;
7523         else
7524             zone->zone_start_pfn = 0;
7525         zone->spanned_pages = size;
7526         zone->present_pages = real_size;
7527 #if defined(CONFIG_MEMORY_HOTPLUG)
7528         zone->present_early_pages = real_size;
7529 #endif
7530 
7531         totalpages += size;
7532         realtotalpages += real_size;
7533     }
7534 
7535     pgdat->node_spanned_pages = totalpages;
7536     pgdat->node_present_pages = realtotalpages;
7537     pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7538 }
7539 
7540 #ifndef CONFIG_SPARSEMEM
7541 /*
7542  * Calculate the size of the zone->blockflags rounded to an unsigned long
7543  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7544  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7545  * round what is now in bits to nearest long in bits, then return it in
7546  * bytes.
7547  */
7548 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7549 {
7550     unsigned long usemapsize;
7551 
7552     zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7553     usemapsize = roundup(zonesize, pageblock_nr_pages);
7554     usemapsize = usemapsize >> pageblock_order;
7555     usemapsize *= NR_PAGEBLOCK_BITS;
7556     usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7557 
7558     return usemapsize / 8;
7559 }
7560 
7561 static void __ref setup_usemap(struct zone *zone)
7562 {
7563     unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7564                            zone->spanned_pages);
7565     zone->pageblock_flags = NULL;
7566     if (usemapsize) {
7567         zone->pageblock_flags =
7568             memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7569                         zone_to_nid(zone));
7570         if (!zone->pageblock_flags)
7571             panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7572                   usemapsize, zone->name, zone_to_nid(zone));
7573     }
7574 }
7575 #else
7576 static inline void setup_usemap(struct zone *zone) {}
7577 #endif /* CONFIG_SPARSEMEM */
7578 
7579 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7580 
7581 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7582 void __init set_pageblock_order(void)
7583 {
7584     unsigned int order = MAX_ORDER - 1;
7585 
7586     /* Check that pageblock_nr_pages has not already been setup */
7587     if (pageblock_order)
7588         return;
7589 
7590     /* Don't let pageblocks exceed the maximum allocation granularity. */
7591     if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7592         order = HUGETLB_PAGE_ORDER;
7593 
7594     /*
7595      * Assume the largest contiguous order of interest is a huge page.
7596      * This value may be variable depending on boot parameters on IA64 and
7597      * powerpc.
7598      */
7599     pageblock_order = order;
7600 }
7601 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7602 
7603 /*
7604  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7605  * is unused as pageblock_order is set at compile-time. See
7606  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7607  * the kernel config
7608  */
7609 void __init set_pageblock_order(void)
7610 {
7611 }
7612 
7613 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7614 
7615 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7616                         unsigned long present_pages)
7617 {
7618     unsigned long pages = spanned_pages;
7619 
7620     /*
7621      * Provide a more accurate estimation if there are holes within
7622      * the zone and SPARSEMEM is in use. If there are holes within the
7623      * zone, each populated memory region may cost us one or two extra
7624      * memmap pages due to alignment because memmap pages for each
7625      * populated regions may not be naturally aligned on page boundary.
7626      * So the (present_pages >> 4) heuristic is a tradeoff for that.
7627      */
7628     if (spanned_pages > present_pages + (present_pages >> 4) &&
7629         IS_ENABLED(CONFIG_SPARSEMEM))
7630         pages = present_pages;
7631 
7632     return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7633 }
7634 
7635 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7636 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7637 {
7638     struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7639 
7640     spin_lock_init(&ds_queue->split_queue_lock);
7641     INIT_LIST_HEAD(&ds_queue->split_queue);
7642     ds_queue->split_queue_len = 0;
7643 }
7644 #else
7645 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7646 #endif
7647 
7648 #ifdef CONFIG_COMPACTION
7649 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7650 {
7651     init_waitqueue_head(&pgdat->kcompactd_wait);
7652 }
7653 #else
7654 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7655 #endif
7656 
7657 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7658 {
7659     int i;
7660 
7661     pgdat_resize_init(pgdat);
7662 
7663     pgdat_init_split_queue(pgdat);
7664     pgdat_init_kcompactd(pgdat);
7665 
7666     init_waitqueue_head(&pgdat->kswapd_wait);
7667     init_waitqueue_head(&pgdat->pfmemalloc_wait);
7668 
7669     for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7670         init_waitqueue_head(&pgdat->reclaim_wait[i]);
7671 
7672     pgdat_page_ext_init(pgdat);
7673     lruvec_init(&pgdat->__lruvec);
7674 }
7675 
7676 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7677                             unsigned long remaining_pages)
7678 {
7679     atomic_long_set(&zone->managed_pages, remaining_pages);
7680     zone_set_nid(zone, nid);
7681     zone->name = zone_names[idx];
7682     zone->zone_pgdat = NODE_DATA(nid);
7683     spin_lock_init(&zone->lock);
7684     zone_seqlock_init(zone);
7685     zone_pcp_init(zone);
7686 }
7687 
7688 /*
7689  * Set up the zone data structures
7690  * - init pgdat internals
7691  * - init all zones belonging to this node
7692  *
7693  * NOTE: this function is only called during memory hotplug
7694  */
7695 #ifdef CONFIG_MEMORY_HOTPLUG
7696 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7697 {
7698     int nid = pgdat->node_id;
7699     enum zone_type z;
7700     int cpu;
7701 
7702     pgdat_init_internals(pgdat);
7703 
7704     if (pgdat->per_cpu_nodestats == &boot_nodestats)
7705         pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7706 
7707     /*
7708      * Reset the nr_zones, order and highest_zoneidx before reuse.
7709      * Note that kswapd will init kswapd_highest_zoneidx properly
7710      * when it starts in the near future.
7711      */
7712     pgdat->nr_zones = 0;
7713     pgdat->kswapd_order = 0;
7714     pgdat->kswapd_highest_zoneidx = 0;
7715     pgdat->node_start_pfn = 0;
7716     for_each_online_cpu(cpu) {
7717         struct per_cpu_nodestat *p;
7718 
7719         p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7720         memset(p, 0, sizeof(*p));
7721     }
7722 
7723     for (z = 0; z < MAX_NR_ZONES; z++)
7724         zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7725 }
7726 #endif
7727 
7728 /*
7729  * Set up the zone data structures:
7730  *   - mark all pages reserved
7731  *   - mark all memory queues empty
7732  *   - clear the memory bitmaps
7733  *
7734  * NOTE: pgdat should get zeroed by caller.
7735  * NOTE: this function is only called during early init.
7736  */
7737 static void __init free_area_init_core(struct pglist_data *pgdat)
7738 {
7739     enum zone_type j;
7740     int nid = pgdat->node_id;
7741 
7742     pgdat_init_internals(pgdat);
7743     pgdat->per_cpu_nodestats = &boot_nodestats;
7744 
7745     for (j = 0; j < MAX_NR_ZONES; j++) {
7746         struct zone *zone = pgdat->node_zones + j;
7747         unsigned long size, freesize, memmap_pages;
7748 
7749         size = zone->spanned_pages;
7750         freesize = zone->present_pages;
7751 
7752         /*
7753          * Adjust freesize so that it accounts for how much memory
7754          * is used by this zone for memmap. This affects the watermark
7755          * and per-cpu initialisations
7756          */
7757         memmap_pages = calc_memmap_size(size, freesize);
7758         if (!is_highmem_idx(j)) {
7759             if (freesize >= memmap_pages) {
7760                 freesize -= memmap_pages;
7761                 if (memmap_pages)
7762                     pr_debug("  %s zone: %lu pages used for memmap\n",
7763                          zone_names[j], memmap_pages);
7764             } else
7765                 pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7766                     zone_names[j], memmap_pages, freesize);
7767         }
7768 
7769         /* Account for reserved pages */
7770         if (j == 0 && freesize > dma_reserve) {
7771             freesize -= dma_reserve;
7772             pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7773         }
7774 
7775         if (!is_highmem_idx(j))
7776             nr_kernel_pages += freesize;
7777         /* Charge for highmem memmap if there are enough kernel pages */
7778         else if (nr_kernel_pages > memmap_pages * 2)
7779             nr_kernel_pages -= memmap_pages;
7780         nr_all_pages += freesize;
7781 
7782         /*
7783          * Set an approximate value for lowmem here, it will be adjusted
7784          * when the bootmem allocator frees pages into the buddy system.
7785          * And all highmem pages will be managed by the buddy system.
7786          */
7787         zone_init_internals(zone, j, nid, freesize);
7788 
7789         if (!size)
7790             continue;
7791 
7792         set_pageblock_order();
7793         setup_usemap(zone);
7794         init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7795     }
7796 }
7797 
7798 #ifdef CONFIG_FLATMEM
7799 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7800 {
7801     unsigned long __maybe_unused start = 0;
7802     unsigned long __maybe_unused offset = 0;
7803 
7804     /* Skip empty nodes */
7805     if (!pgdat->node_spanned_pages)
7806         return;
7807 
7808     start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7809     offset = pgdat->node_start_pfn - start;
7810     /* ia64 gets its own node_mem_map, before this, without bootmem */
7811     if (!pgdat->node_mem_map) {
7812         unsigned long size, end;
7813         struct page *map;
7814 
7815         /*
7816          * The zone's endpoints aren't required to be MAX_ORDER
7817          * aligned but the node_mem_map endpoints must be in order
7818          * for the buddy allocator to function correctly.
7819          */
7820         end = pgdat_end_pfn(pgdat);
7821         end = ALIGN(end, MAX_ORDER_NR_PAGES);
7822         size =  (end - start) * sizeof(struct page);
7823         map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7824                    pgdat->node_id, false);
7825         if (!map)
7826             panic("Failed to allocate %ld bytes for node %d memory map\n",
7827                   size, pgdat->node_id);
7828         pgdat->node_mem_map = map + offset;
7829     }
7830     pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7831                 __func__, pgdat->node_id, (unsigned long)pgdat,
7832                 (unsigned long)pgdat->node_mem_map);
7833 #ifndef CONFIG_NUMA
7834     /*
7835      * With no DISCONTIG, the global mem_map is just set as node 0's
7836      */
7837     if (pgdat == NODE_DATA(0)) {
7838         mem_map = NODE_DATA(0)->node_mem_map;
7839         if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7840             mem_map -= offset;
7841     }
7842 #endif
7843 }
7844 #else
7845 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7846 #endif /* CONFIG_FLATMEM */
7847 
7848 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7849 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7850 {
7851     pgdat->first_deferred_pfn = ULONG_MAX;
7852 }
7853 #else
7854 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7855 #endif
7856 
7857 static void __init free_area_init_node(int nid)
7858 {
7859     pg_data_t *pgdat = NODE_DATA(nid);
7860     unsigned long start_pfn = 0;
7861     unsigned long end_pfn = 0;
7862 
7863     /* pg_data_t should be reset to zero when it's allocated */
7864     WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7865 
7866     get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7867 
7868     pgdat->node_id = nid;
7869     pgdat->node_start_pfn = start_pfn;
7870     pgdat->per_cpu_nodestats = NULL;
7871 
7872     if (start_pfn != end_pfn) {
7873         pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7874             (u64)start_pfn << PAGE_SHIFT,
7875             end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7876     } else {
7877         pr_info("Initmem setup node %d as memoryless\n", nid);
7878     }
7879 
7880     calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7881 
7882     alloc_node_mem_map(pgdat);
7883     pgdat_set_deferred_range(pgdat);
7884 
7885     free_area_init_core(pgdat);
7886 }
7887 
7888 static void __init free_area_init_memoryless_node(int nid)
7889 {
7890     free_area_init_node(nid);
7891 }
7892 
7893 #if MAX_NUMNODES > 1
7894 /*
7895  * Figure out the number of possible node ids.
7896  */
7897 void __init setup_nr_node_ids(void)
7898 {
7899     unsigned int highest;
7900 
7901     highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7902     nr_node_ids = highest + 1;
7903 }
7904 #endif
7905 
7906 /**
7907  * node_map_pfn_alignment - determine the maximum internode alignment
7908  *
7909  * This function should be called after node map is populated and sorted.
7910  * It calculates the maximum power of two alignment which can distinguish
7911  * all the nodes.
7912  *
7913  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7914  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7915  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7916  * shifted, 1GiB is enough and this function will indicate so.
7917  *
7918  * This is used to test whether pfn -> nid mapping of the chosen memory
7919  * model has fine enough granularity to avoid incorrect mapping for the
7920  * populated node map.
7921  *
7922  * Return: the determined alignment in pfn's.  0 if there is no alignment
7923  * requirement (single node).
7924  */
7925 unsigned long __init node_map_pfn_alignment(void)
7926 {
7927     unsigned long accl_mask = 0, last_end = 0;
7928     unsigned long start, end, mask;
7929     int last_nid = NUMA_NO_NODE;
7930     int i, nid;
7931 
7932     for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7933         if (!start || last_nid < 0 || last_nid == nid) {
7934             last_nid = nid;
7935             last_end = end;
7936             continue;
7937         }
7938 
7939         /*
7940          * Start with a mask granular enough to pin-point to the
7941          * start pfn and tick off bits one-by-one until it becomes
7942          * too coarse to separate the current node from the last.
7943          */
7944         mask = ~((1 << __ffs(start)) - 1);
7945         while (mask && last_end <= (start & (mask << 1)))
7946             mask <<= 1;
7947 
7948         /* accumulate all internode masks */
7949         accl_mask |= mask;
7950     }
7951 
7952     /* convert mask to number of pages */
7953     return ~accl_mask + 1;
7954 }
7955 
7956 /**
7957  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7958  *
7959  * Return: the minimum PFN based on information provided via
7960  * memblock_set_node().
7961  */
7962 unsigned long __init find_min_pfn_with_active_regions(void)
7963 {
7964     return PHYS_PFN(memblock_start_of_DRAM());
7965 }
7966 
7967 /*
7968  * early_calculate_totalpages()
7969  * Sum pages in active regions for movable zone.
7970  * Populate N_MEMORY for calculating usable_nodes.
7971  */
7972 static unsigned long __init early_calculate_totalpages(void)
7973 {
7974     unsigned long totalpages = 0;
7975     unsigned long start_pfn, end_pfn;
7976     int i, nid;
7977 
7978     for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7979         unsigned long pages = end_pfn - start_pfn;
7980 
7981         totalpages += pages;
7982         if (pages)
7983             node_set_state(nid, N_MEMORY);
7984     }
7985     return totalpages;
7986 }
7987 
7988 /*
7989  * Find the PFN the Movable zone begins in each node. Kernel memory
7990  * is spread evenly between nodes as long as the nodes have enough
7991  * memory. When they don't, some nodes will have more kernelcore than
7992  * others
7993  */
7994 static void __init find_zone_movable_pfns_for_nodes(void)
7995 {
7996     int i, nid;
7997     unsigned long usable_startpfn;
7998     unsigned long kernelcore_node, kernelcore_remaining;
7999     /* save the state before borrow the nodemask */
8000     nodemask_t saved_node_state = node_states[N_MEMORY];
8001     unsigned long totalpages = early_calculate_totalpages();
8002     int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8003     struct memblock_region *r;
8004 
8005     /* Need to find movable_zone earlier when movable_node is specified. */
8006     find_usable_zone_for_movable();
8007 
8008     /*
8009      * If movable_node is specified, ignore kernelcore and movablecore
8010      * options.
8011      */
8012     if (movable_node_is_enabled()) {
8013         for_each_mem_region(r) {
8014             if (!memblock_is_hotpluggable(r))
8015                 continue;
8016 
8017             nid = memblock_get_region_node(r);
8018 
8019             usable_startpfn = PFN_DOWN(r->base);
8020             zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8021                 min(usable_startpfn, zone_movable_pfn[nid]) :
8022                 usable_startpfn;
8023         }
8024 
8025         goto out2;
8026     }
8027 
8028     /*
8029      * If kernelcore=mirror is specified, ignore movablecore option
8030      */
8031     if (mirrored_kernelcore) {
8032         bool mem_below_4gb_not_mirrored = false;
8033 
8034         for_each_mem_region(r) {
8035             if (memblock_is_mirror(r))
8036                 continue;
8037 
8038             nid = memblock_get_region_node(r);
8039 
8040             usable_startpfn = memblock_region_memory_base_pfn(r);
8041 
8042             if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8043                 mem_below_4gb_not_mirrored = true;
8044                 continue;
8045             }
8046 
8047             zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8048                 min(usable_startpfn, zone_movable_pfn[nid]) :
8049                 usable_startpfn;
8050         }
8051 
8052         if (mem_below_4gb_not_mirrored)
8053             pr_warn("This configuration results in unmirrored kernel memory.\n");
8054 
8055         goto out2;
8056     }
8057 
8058     /*
8059      * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8060      * amount of necessary memory.
8061      */
8062     if (required_kernelcore_percent)
8063         required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8064                        10000UL;
8065     if (required_movablecore_percent)
8066         required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8067                     10000UL;
8068 
8069     /*
8070      * If movablecore= was specified, calculate what size of
8071      * kernelcore that corresponds so that memory usable for
8072      * any allocation type is evenly spread. If both kernelcore
8073      * and movablecore are specified, then the value of kernelcore
8074      * will be used for required_kernelcore if it's greater than
8075      * what movablecore would have allowed.
8076      */
8077     if (required_movablecore) {
8078         unsigned long corepages;
8079 
8080         /*
8081          * Round-up so that ZONE_MOVABLE is at least as large as what
8082          * was requested by the user
8083          */
8084         required_movablecore =
8085             roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8086         required_movablecore = min(totalpages, required_movablecore);
8087         corepages = totalpages - required_movablecore;
8088 
8089         required_kernelcore = max(required_kernelcore, corepages);
8090     }
8091 
8092     /*
8093      * If kernelcore was not specified or kernelcore size is larger
8094      * than totalpages, there is no ZONE_MOVABLE.
8095      */
8096     if (!required_kernelcore || required_kernelcore >= totalpages)
8097         goto out;
8098 
8099     /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8100     usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8101 
8102 restart:
8103     /* Spread kernelcore memory as evenly as possible throughout nodes */
8104     kernelcore_node = required_kernelcore / usable_nodes;
8105     for_each_node_state(nid, N_MEMORY) {
8106         unsigned long start_pfn, end_pfn;
8107 
8108         /*
8109          * Recalculate kernelcore_node if the division per node
8110          * now exceeds what is necessary to satisfy the requested
8111          * amount of memory for the kernel
8112          */
8113         if (required_kernelcore < kernelcore_node)
8114             kernelcore_node = required_kernelcore / usable_nodes;
8115 
8116         /*
8117          * As the map is walked, we track how much memory is usable
8118          * by the kernel using kernelcore_remaining. When it is
8119          * 0, the rest of the node is usable by ZONE_MOVABLE
8120          */
8121         kernelcore_remaining = kernelcore_node;
8122 
8123         /* Go through each range of PFNs within this node */
8124         for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8125             unsigned long size_pages;
8126 
8127             start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8128             if (start_pfn >= end_pfn)
8129                 continue;
8130 
8131             /* Account for what is only usable for kernelcore */
8132             if (start_pfn < usable_startpfn) {
8133                 unsigned long kernel_pages;
8134                 kernel_pages = min(end_pfn, usable_startpfn)
8135                                 - start_pfn;
8136 
8137                 kernelcore_remaining -= min(kernel_pages,
8138                             kernelcore_remaining);
8139                 required_kernelcore -= min(kernel_pages,
8140                             required_kernelcore);
8141 
8142                 /* Continue if range is now fully accounted */
8143                 if (end_pfn <= usable_startpfn) {
8144 
8145                     /*
8146                      * Push zone_movable_pfn to the end so
8147                      * that if we have to rebalance
8148                      * kernelcore across nodes, we will
8149                      * not double account here
8150                      */
8151                     zone_movable_pfn[nid] = end_pfn;
8152                     continue;
8153                 }
8154                 start_pfn = usable_startpfn;
8155             }
8156 
8157             /*
8158              * The usable PFN range for ZONE_MOVABLE is from
8159              * start_pfn->end_pfn. Calculate size_pages as the
8160              * number of pages used as kernelcore
8161              */
8162             size_pages = end_pfn - start_pfn;
8163             if (size_pages > kernelcore_remaining)
8164                 size_pages = kernelcore_remaining;
8165             zone_movable_pfn[nid] = start_pfn + size_pages;
8166 
8167             /*
8168              * Some kernelcore has been met, update counts and
8169              * break if the kernelcore for this node has been
8170              * satisfied
8171              */
8172             required_kernelcore -= min(required_kernelcore,
8173                                 size_pages);
8174             kernelcore_remaining -= size_pages;
8175             if (!kernelcore_remaining)
8176                 break;
8177         }
8178     }
8179 
8180     /*
8181      * If there is still required_kernelcore, we do another pass with one
8182      * less node in the count. This will push zone_movable_pfn[nid] further
8183      * along on the nodes that still have memory until kernelcore is
8184      * satisfied
8185      */
8186     usable_nodes--;
8187     if (usable_nodes && required_kernelcore > usable_nodes)
8188         goto restart;
8189 
8190 out2:
8191     /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8192     for (nid = 0; nid < MAX_NUMNODES; nid++) {
8193         unsigned long start_pfn, end_pfn;
8194 
8195         zone_movable_pfn[nid] =
8196             roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8197 
8198         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8199         if (zone_movable_pfn[nid] >= end_pfn)
8200             zone_movable_pfn[nid] = 0;
8201     }
8202 
8203 out:
8204     /* restore the node_state */
8205     node_states[N_MEMORY] = saved_node_state;
8206 }
8207 
8208 /* Any regular or high memory on that node ? */
8209 static void check_for_memory(pg_data_t *pgdat, int nid)
8210 {
8211     enum zone_type zone_type;
8212 
8213     for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8214         struct zone *zone = &pgdat->node_zones[zone_type];
8215         if (populated_zone(zone)) {
8216             if (IS_ENABLED(CONFIG_HIGHMEM))
8217                 node_set_state(nid, N_HIGH_MEMORY);
8218             if (zone_type <= ZONE_NORMAL)
8219                 node_set_state(nid, N_NORMAL_MEMORY);
8220             break;
8221         }
8222     }
8223 }
8224 
8225 /*
8226  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8227  * such cases we allow max_zone_pfn sorted in the descending order
8228  */
8229 bool __weak arch_has_descending_max_zone_pfns(void)
8230 {
8231     return false;
8232 }
8233 
8234 /**
8235  * free_area_init - Initialise all pg_data_t and zone data
8236  * @max_zone_pfn: an array of max PFNs for each zone
8237  *
8238  * This will call free_area_init_node() for each active node in the system.
8239  * Using the page ranges provided by memblock_set_node(), the size of each
8240  * zone in each node and their holes is calculated. If the maximum PFN
8241  * between two adjacent zones match, it is assumed that the zone is empty.
8242  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8243  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8244  * starts where the previous one ended. For example, ZONE_DMA32 starts
8245  * at arch_max_dma_pfn.
8246  */
8247 void __init free_area_init(unsigned long *max_zone_pfn)
8248 {
8249     unsigned long start_pfn, end_pfn;
8250     int i, nid, zone;
8251     bool descending;
8252 
8253     /* Record where the zone boundaries are */
8254     memset(arch_zone_lowest_possible_pfn, 0,
8255                 sizeof(arch_zone_lowest_possible_pfn));
8256     memset(arch_zone_highest_possible_pfn, 0,
8257                 sizeof(arch_zone_highest_possible_pfn));
8258 
8259     start_pfn = find_min_pfn_with_active_regions();
8260     descending = arch_has_descending_max_zone_pfns();
8261 
8262     for (i = 0; i < MAX_NR_ZONES; i++) {
8263         if (descending)
8264             zone = MAX_NR_ZONES - i - 1;
8265         else
8266             zone = i;
8267 
8268         if (zone == ZONE_MOVABLE)
8269             continue;
8270 
8271         end_pfn = max(max_zone_pfn[zone], start_pfn);
8272         arch_zone_lowest_possible_pfn[zone] = start_pfn;
8273         arch_zone_highest_possible_pfn[zone] = end_pfn;
8274 
8275         start_pfn = end_pfn;
8276     }
8277 
8278     /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8279     memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8280     find_zone_movable_pfns_for_nodes();
8281 
8282     /* Print out the zone ranges */
8283     pr_info("Zone ranges:\n");
8284     for (i = 0; i < MAX_NR_ZONES; i++) {
8285         if (i == ZONE_MOVABLE)
8286             continue;
8287         pr_info("  %-8s ", zone_names[i]);
8288         if (arch_zone_lowest_possible_pfn[i] ==
8289                 arch_zone_highest_possible_pfn[i])
8290             pr_cont("empty\n");
8291         else
8292             pr_cont("[mem %#018Lx-%#018Lx]\n",
8293                 (u64)arch_zone_lowest_possible_pfn[i]
8294                     << PAGE_SHIFT,
8295                 ((u64)arch_zone_highest_possible_pfn[i]
8296                     << PAGE_SHIFT) - 1);
8297     }
8298 
8299     /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8300     pr_info("Movable zone start for each node\n");
8301     for (i = 0; i < MAX_NUMNODES; i++) {
8302         if (zone_movable_pfn[i])
8303             pr_info("  Node %d: %#018Lx\n", i,
8304                    (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8305     }
8306 
8307     /*
8308      * Print out the early node map, and initialize the
8309      * subsection-map relative to active online memory ranges to
8310      * enable future "sub-section" extensions of the memory map.
8311      */
8312     pr_info("Early memory node ranges\n");
8313     for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8314         pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8315             (u64)start_pfn << PAGE_SHIFT,
8316             ((u64)end_pfn << PAGE_SHIFT) - 1);
8317         subsection_map_init(start_pfn, end_pfn - start_pfn);
8318     }
8319 
8320     /* Initialise every node */
8321     mminit_verify_pageflags_layout();
8322     setup_nr_node_ids();
8323     for_each_node(nid) {
8324         pg_data_t *pgdat;
8325 
8326         if (!node_online(nid)) {
8327             pr_info("Initializing node %d as memoryless\n", nid);
8328 
8329             /* Allocator not initialized yet */
8330             pgdat = arch_alloc_nodedata(nid);
8331             if (!pgdat) {
8332                 pr_err("Cannot allocate %zuB for node %d.\n",
8333                         sizeof(*pgdat), nid);
8334                 continue;
8335             }
8336             arch_refresh_nodedata(nid, pgdat);
8337             free_area_init_memoryless_node(nid);
8338 
8339             /*
8340              * We do not want to confuse userspace by sysfs
8341              * files/directories for node without any memory
8342              * attached to it, so this node is not marked as
8343              * N_MEMORY and not marked online so that no sysfs
8344              * hierarchy will be created via register_one_node for
8345              * it. The pgdat will get fully initialized by
8346              * hotadd_init_pgdat() when memory is hotplugged into
8347              * this node.
8348              */
8349             continue;
8350         }
8351 
8352         pgdat = NODE_DATA(nid);
8353         free_area_init_node(nid);
8354 
8355         /* Any memory on that node */
8356         if (pgdat->node_present_pages)
8357             node_set_state(nid, N_MEMORY);
8358         check_for_memory(pgdat, nid);
8359     }
8360 
8361     memmap_init();
8362 }
8363 
8364 static int __init cmdline_parse_core(char *p, unsigned long *core,
8365                      unsigned long *percent)
8366 {
8367     unsigned long long coremem;
8368     char *endptr;
8369 
8370     if (!p)
8371         return -EINVAL;
8372 
8373     /* Value may be a percentage of total memory, otherwise bytes */
8374     coremem = simple_strtoull(p, &endptr, 0);
8375     if (*endptr == '%') {
8376         /* Paranoid check for percent values greater than 100 */
8377         WARN_ON(coremem > 100);
8378 
8379         *percent = coremem;
8380     } else {
8381         coremem = memparse(p, &p);
8382         /* Paranoid check that UL is enough for the coremem value */
8383         WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8384 
8385         *core = coremem >> PAGE_SHIFT;
8386         *percent = 0UL;
8387     }
8388     return 0;
8389 }
8390 
8391 /*
8392  * kernelcore=size sets the amount of memory for use for allocations that
8393  * cannot be reclaimed or migrated.
8394  */
8395 static int __init cmdline_parse_kernelcore(char *p)
8396 {
8397     /* parse kernelcore=mirror */
8398     if (parse_option_str(p, "mirror")) {
8399         mirrored_kernelcore = true;
8400         return 0;
8401     }
8402 
8403     return cmdline_parse_core(p, &required_kernelcore,
8404                   &required_kernelcore_percent);
8405 }
8406 
8407 /*
8408  * movablecore=size sets the amount of memory for use for allocations that
8409  * can be reclaimed or migrated.
8410  */
8411 static int __init cmdline_parse_movablecore(char *p)
8412 {
8413     return cmdline_parse_core(p, &required_movablecore,
8414                   &required_movablecore_percent);
8415 }
8416 
8417 early_param("kernelcore", cmdline_parse_kernelcore);
8418 early_param("movablecore", cmdline_parse_movablecore);
8419 
8420 void adjust_managed_page_count(struct page *page, long count)
8421 {
8422     atomic_long_add(count, &page_zone(page)->managed_pages);
8423     totalram_pages_add(count);
8424 #ifdef CONFIG_HIGHMEM
8425     if (PageHighMem(page))
8426         totalhigh_pages_add(count);
8427 #endif
8428 }
8429 EXPORT_SYMBOL(adjust_managed_page_count);
8430 
8431 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8432 {
8433     void *pos;
8434     unsigned long pages = 0;
8435 
8436     start = (void *)PAGE_ALIGN((unsigned long)start);
8437     end = (void *)((unsigned long)end & PAGE_MASK);
8438     for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8439         struct page *page = virt_to_page(pos);
8440         void *direct_map_addr;
8441 
8442         /*
8443          * 'direct_map_addr' might be different from 'pos'
8444          * because some architectures' virt_to_page()
8445          * work with aliases.  Getting the direct map
8446          * address ensures that we get a _writeable_
8447          * alias for the memset().
8448          */
8449         direct_map_addr = page_address(page);
8450         /*
8451          * Perform a kasan-unchecked memset() since this memory
8452          * has not been initialized.
8453          */
8454         direct_map_addr = kasan_reset_tag(direct_map_addr);
8455         if ((unsigned int)poison <= 0xFF)
8456             memset(direct_map_addr, poison, PAGE_SIZE);
8457 
8458         free_reserved_page(page);
8459     }
8460 
8461     if (pages && s)
8462         pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8463 
8464     return pages;
8465 }
8466 
8467 void __init mem_init_print_info(void)
8468 {
8469     unsigned long physpages, codesize, datasize, rosize, bss_size;
8470     unsigned long init_code_size, init_data_size;
8471 
8472     physpages = get_num_physpages();
8473     codesize = _etext - _stext;
8474     datasize = _edata - _sdata;
8475     rosize = __end_rodata - __start_rodata;
8476     bss_size = __bss_stop - __bss_start;
8477     init_data_size = __init_end - __init_begin;
8478     init_code_size = _einittext - _sinittext;
8479 
8480     /*
8481      * Detect special cases and adjust section sizes accordingly:
8482      * 1) .init.* may be embedded into .data sections
8483      * 2) .init.text.* may be out of [__init_begin, __init_end],
8484      *    please refer to arch/tile/kernel/vmlinux.lds.S.
8485      * 3) .rodata.* may be embedded into .text or .data sections.
8486      */
8487 #define adj_init_size(start, end, size, pos, adj) \
8488     do { \
8489         if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8490             size -= adj; \
8491     } while (0)
8492 
8493     adj_init_size(__init_begin, __init_end, init_data_size,
8494              _sinittext, init_code_size);
8495     adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8496     adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8497     adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8498     adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8499 
8500 #undef  adj_init_size
8501 
8502     pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8503 #ifdef  CONFIG_HIGHMEM
8504         ", %luK highmem"
8505 #endif
8506         ")\n",
8507         K(nr_free_pages()), K(physpages),
8508         codesize >> 10, datasize >> 10, rosize >> 10,
8509         (init_data_size + init_code_size) >> 10, bss_size >> 10,
8510         K(physpages - totalram_pages() - totalcma_pages),
8511         K(totalcma_pages)
8512 #ifdef  CONFIG_HIGHMEM
8513         , K(totalhigh_pages())
8514 #endif
8515         );
8516 }
8517 
8518 /**
8519  * set_dma_reserve - set the specified number of pages reserved in the first zone
8520  * @new_dma_reserve: The number of pages to mark reserved
8521  *
8522  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8523  * In the DMA zone, a significant percentage may be consumed by kernel image
8524  * and other unfreeable allocations which can skew the watermarks badly. This
8525  * function may optionally be used to account for unfreeable pages in the
8526  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8527  * smaller per-cpu batchsize.
8528  */
8529 void __init set_dma_reserve(unsigned long new_dma_reserve)
8530 {
8531     dma_reserve = new_dma_reserve;
8532 }
8533 
8534 static int page_alloc_cpu_dead(unsigned int cpu)
8535 {
8536     struct zone *zone;
8537 
8538     lru_add_drain_cpu(cpu);
8539     mlock_page_drain_remote(cpu);
8540     drain_pages(cpu);
8541 
8542     /*
8543      * Spill the event counters of the dead processor
8544      * into the current processors event counters.
8545      * This artificially elevates the count of the current
8546      * processor.
8547      */
8548     vm_events_fold_cpu(cpu);
8549 
8550     /*
8551      * Zero the differential counters of the dead processor
8552      * so that the vm statistics are consistent.
8553      *
8554      * This is only okay since the processor is dead and cannot
8555      * race with what we are doing.
8556      */
8557     cpu_vm_stats_fold(cpu);
8558 
8559     for_each_populated_zone(zone)
8560         zone_pcp_update(zone, 0);
8561 
8562     return 0;
8563 }
8564 
8565 static int page_alloc_cpu_online(unsigned int cpu)
8566 {
8567     struct zone *zone;
8568 
8569     for_each_populated_zone(zone)
8570         zone_pcp_update(zone, 1);
8571     return 0;
8572 }
8573 
8574 #ifdef CONFIG_NUMA
8575 int hashdist = HASHDIST_DEFAULT;
8576 
8577 static int __init set_hashdist(char *str)
8578 {
8579     if (!str)
8580         return 0;
8581     hashdist = simple_strtoul(str, &str, 0);
8582     return 1;
8583 }
8584 __setup("hashdist=", set_hashdist);
8585 #endif
8586 
8587 void __init page_alloc_init(void)
8588 {
8589     int ret;
8590 
8591 #ifdef CONFIG_NUMA
8592     if (num_node_state(N_MEMORY) == 1)
8593         hashdist = 0;
8594 #endif
8595 
8596     ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8597                     "mm/page_alloc:pcp",
8598                     page_alloc_cpu_online,
8599                     page_alloc_cpu_dead);
8600     WARN_ON(ret < 0);
8601 }
8602 
8603 /*
8604  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8605  *  or min_free_kbytes changes.
8606  */
8607 static void calculate_totalreserve_pages(void)
8608 {
8609     struct pglist_data *pgdat;
8610     unsigned long reserve_pages = 0;
8611     enum zone_type i, j;
8612 
8613     for_each_online_pgdat(pgdat) {
8614 
8615         pgdat->totalreserve_pages = 0;
8616 
8617         for (i = 0; i < MAX_NR_ZONES; i++) {
8618             struct zone *zone = pgdat->node_zones + i;
8619             long max = 0;
8620             unsigned long managed_pages = zone_managed_pages(zone);
8621 
8622             /* Find valid and maximum lowmem_reserve in the zone */
8623             for (j = i; j < MAX_NR_ZONES; j++) {
8624                 if (zone->lowmem_reserve[j] > max)
8625                     max = zone->lowmem_reserve[j];
8626             }
8627 
8628             /* we treat the high watermark as reserved pages. */
8629             max += high_wmark_pages(zone);
8630 
8631             if (max > managed_pages)
8632                 max = managed_pages;
8633 
8634             pgdat->totalreserve_pages += max;
8635 
8636             reserve_pages += max;
8637         }
8638     }
8639     totalreserve_pages = reserve_pages;
8640 }
8641 
8642 /*
8643  * setup_per_zone_lowmem_reserve - called whenever
8644  *  sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8645  *  has a correct pages reserved value, so an adequate number of
8646  *  pages are left in the zone after a successful __alloc_pages().
8647  */
8648 static void setup_per_zone_lowmem_reserve(void)
8649 {
8650     struct pglist_data *pgdat;
8651     enum zone_type i, j;
8652 
8653     for_each_online_pgdat(pgdat) {
8654         for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8655             struct zone *zone = &pgdat->node_zones[i];
8656             int ratio = sysctl_lowmem_reserve_ratio[i];
8657             bool clear = !ratio || !zone_managed_pages(zone);
8658             unsigned long managed_pages = 0;
8659 
8660             for (j = i + 1; j < MAX_NR_ZONES; j++) {
8661                 struct zone *upper_zone = &pgdat->node_zones[j];
8662 
8663                 managed_pages += zone_managed_pages(upper_zone);
8664 
8665                 if (clear)
8666                     zone->lowmem_reserve[j] = 0;
8667                 else
8668                     zone->lowmem_reserve[j] = managed_pages / ratio;
8669             }
8670         }
8671     }
8672 
8673     /* update totalreserve_pages */
8674     calculate_totalreserve_pages();
8675 }
8676 
8677 static void __setup_per_zone_wmarks(void)
8678 {
8679     unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8680     unsigned long lowmem_pages = 0;
8681     struct zone *zone;
8682     unsigned long flags;
8683 
8684     /* Calculate total number of !ZONE_HIGHMEM pages */
8685     for_each_zone(zone) {
8686         if (!is_highmem(zone))
8687             lowmem_pages += zone_managed_pages(zone);
8688     }
8689 
8690     for_each_zone(zone) {
8691         u64 tmp;
8692 
8693         spin_lock_irqsave(&zone->lock, flags);
8694         tmp = (u64)pages_min * zone_managed_pages(zone);
8695         do_div(tmp, lowmem_pages);
8696         if (is_highmem(zone)) {
8697             /*
8698              * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8699              * need highmem pages, so cap pages_min to a small
8700              * value here.
8701              *
8702              * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8703              * deltas control async page reclaim, and so should
8704              * not be capped for highmem.
8705              */
8706             unsigned long min_pages;
8707 
8708             min_pages = zone_managed_pages(zone) / 1024;
8709             min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8710             zone->_watermark[WMARK_MIN] = min_pages;
8711         } else {
8712             /*
8713              * If it's a lowmem zone, reserve a number of pages
8714              * proportionate to the zone's size.
8715              */
8716             zone->_watermark[WMARK_MIN] = tmp;
8717         }
8718 
8719         /*
8720          * Set the kswapd watermarks distance according to the
8721          * scale factor in proportion to available memory, but
8722          * ensure a minimum size on small systems.
8723          */
8724         tmp = max_t(u64, tmp >> 2,
8725                 mult_frac(zone_managed_pages(zone),
8726                       watermark_scale_factor, 10000));
8727 
8728         zone->watermark_boost = 0;
8729         zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8730         zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8731         zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8732 
8733         spin_unlock_irqrestore(&zone->lock, flags);
8734     }
8735 
8736     /* update totalreserve_pages */
8737     calculate_totalreserve_pages();
8738 }
8739 
8740 /**
8741  * setup_per_zone_wmarks - called when min_free_kbytes changes
8742  * or when memory is hot-{added|removed}
8743  *
8744  * Ensures that the watermark[min,low,high] values for each zone are set
8745  * correctly with respect to min_free_kbytes.
8746  */
8747 void setup_per_zone_wmarks(void)
8748 {
8749     struct zone *zone;
8750     static DEFINE_SPINLOCK(lock);
8751 
8752     spin_lock(&lock);
8753     __setup_per_zone_wmarks();
8754     spin_unlock(&lock);
8755 
8756     /*
8757      * The watermark size have changed so update the pcpu batch
8758      * and high limits or the limits may be inappropriate.
8759      */
8760     for_each_zone(zone)
8761         zone_pcp_update(zone, 0);
8762 }
8763 
8764 /*
8765  * Initialise min_free_kbytes.
8766  *
8767  * For small machines we want it small (128k min).  For large machines
8768  * we want it large (256MB max).  But it is not linear, because network
8769  * bandwidth does not increase linearly with machine size.  We use
8770  *
8771  *  min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8772  *  min_free_kbytes = sqrt(lowmem_kbytes * 16)
8773  *
8774  * which yields
8775  *
8776  * 16MB:    512k
8777  * 32MB:    724k
8778  * 64MB:    1024k
8779  * 128MB:   1448k
8780  * 256MB:   2048k
8781  * 512MB:   2896k
8782  * 1024MB:  4096k
8783  * 2048MB:  5792k
8784  * 4096MB:  8192k
8785  * 8192MB:  11584k
8786  * 16384MB: 16384k
8787  */
8788 void calculate_min_free_kbytes(void)
8789 {
8790     unsigned long lowmem_kbytes;
8791     int new_min_free_kbytes;
8792 
8793     lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8794     new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8795 
8796     if (new_min_free_kbytes > user_min_free_kbytes)
8797         min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8798     else
8799         pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8800                 new_min_free_kbytes, user_min_free_kbytes);
8801 
8802 }
8803 
8804 int __meminit init_per_zone_wmark_min(void)
8805 {
8806     calculate_min_free_kbytes();
8807     setup_per_zone_wmarks();
8808     refresh_zone_stat_thresholds();
8809     setup_per_zone_lowmem_reserve();
8810 
8811 #ifdef CONFIG_NUMA
8812     setup_min_unmapped_ratio();
8813     setup_min_slab_ratio();
8814 #endif
8815 
8816     khugepaged_min_free_kbytes_update();
8817 
8818     return 0;
8819 }
8820 postcore_initcall(init_per_zone_wmark_min)
8821 
8822 /*
8823  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8824  *  that we can call two helper functions whenever min_free_kbytes
8825  *  changes.
8826  */
8827 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8828         void *buffer, size_t *length, loff_t *ppos)
8829 {
8830     int rc;
8831 
8832     rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8833     if (rc)
8834         return rc;
8835 
8836     if (write) {
8837         user_min_free_kbytes = min_free_kbytes;
8838         setup_per_zone_wmarks();
8839     }
8840     return 0;
8841 }
8842 
8843 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8844         void *buffer, size_t *length, loff_t *ppos)
8845 {
8846     int rc;
8847 
8848     rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8849     if (rc)
8850         return rc;
8851 
8852     if (write)
8853         setup_per_zone_wmarks();
8854 
8855     return 0;
8856 }
8857 
8858 #ifdef CONFIG_NUMA
8859 static void setup_min_unmapped_ratio(void)
8860 {
8861     pg_data_t *pgdat;
8862     struct zone *zone;
8863 
8864     for_each_online_pgdat(pgdat)
8865         pgdat->min_unmapped_pages = 0;
8866 
8867     for_each_zone(zone)
8868         zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8869                                  sysctl_min_unmapped_ratio) / 100;
8870 }
8871 
8872 
8873 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8874         void *buffer, size_t *length, loff_t *ppos)
8875 {
8876     int rc;
8877 
8878     rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8879     if (rc)
8880         return rc;
8881 
8882     setup_min_unmapped_ratio();
8883 
8884     return 0;
8885 }
8886 
8887 static void setup_min_slab_ratio(void)
8888 {
8889     pg_data_t *pgdat;
8890     struct zone *zone;
8891 
8892     for_each_online_pgdat(pgdat)
8893         pgdat->min_slab_pages = 0;
8894 
8895     for_each_zone(zone)
8896         zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8897                              sysctl_min_slab_ratio) / 100;
8898 }
8899 
8900 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8901         void *buffer, size_t *length, loff_t *ppos)
8902 {
8903     int rc;
8904 
8905     rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8906     if (rc)
8907         return rc;
8908 
8909     setup_min_slab_ratio();
8910 
8911     return 0;
8912 }
8913 #endif
8914 
8915 /*
8916  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8917  *  proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8918  *  whenever sysctl_lowmem_reserve_ratio changes.
8919  *
8920  * The reserve ratio obviously has absolutely no relation with the
8921  * minimum watermarks. The lowmem reserve ratio can only make sense
8922  * if in function of the boot time zone sizes.
8923  */
8924 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8925         void *buffer, size_t *length, loff_t *ppos)
8926 {
8927     int i;
8928 
8929     proc_dointvec_minmax(table, write, buffer, length, ppos);
8930 
8931     for (i = 0; i < MAX_NR_ZONES; i++) {
8932         if (sysctl_lowmem_reserve_ratio[i] < 1)
8933             sysctl_lowmem_reserve_ratio[i] = 0;
8934     }
8935 
8936     setup_per_zone_lowmem_reserve();
8937     return 0;
8938 }
8939 
8940 /*
8941  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8942  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8943  * pagelist can have before it gets flushed back to buddy allocator.
8944  */
8945 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8946         int write, void *buffer, size_t *length, loff_t *ppos)
8947 {
8948     struct zone *zone;
8949     int old_percpu_pagelist_high_fraction;
8950     int ret;
8951 
8952     mutex_lock(&pcp_batch_high_lock);
8953     old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8954 
8955     ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8956     if (!write || ret < 0)
8957         goto out;
8958 
8959     /* Sanity checking to avoid pcp imbalance */
8960     if (percpu_pagelist_high_fraction &&
8961         percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8962         percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8963         ret = -EINVAL;
8964         goto out;
8965     }
8966 
8967     /* No change? */
8968     if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8969         goto out;
8970 
8971     for_each_populated_zone(zone)
8972         zone_set_pageset_high_and_batch(zone, 0);
8973 out:
8974     mutex_unlock(&pcp_batch_high_lock);
8975     return ret;
8976 }
8977 
8978 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8979 /*
8980  * Returns the number of pages that arch has reserved but
8981  * is not known to alloc_large_system_hash().
8982  */
8983 static unsigned long __init arch_reserved_kernel_pages(void)
8984 {
8985     return 0;
8986 }
8987 #endif
8988 
8989 /*
8990  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8991  * machines. As memory size is increased the scale is also increased but at
8992  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8993  * quadruples the scale is increased by one, which means the size of hash table
8994  * only doubles, instead of quadrupling as well.
8995  * Because 32-bit systems cannot have large physical memory, where this scaling
8996  * makes sense, it is disabled on such platforms.
8997  */
8998 #if __BITS_PER_LONG > 32
8999 #define ADAPT_SCALE_BASE    (64ul << 30)
9000 #define ADAPT_SCALE_SHIFT   2
9001 #define ADAPT_SCALE_NPAGES  (ADAPT_SCALE_BASE >> PAGE_SHIFT)
9002 #endif
9003 
9004 /*
9005  * allocate a large system hash table from bootmem
9006  * - it is assumed that the hash table must contain an exact power-of-2
9007  *   quantity of entries
9008  * - limit is the number of hash buckets, not the total allocation size
9009  */
9010 void *__init alloc_large_system_hash(const char *tablename,
9011                      unsigned long bucketsize,
9012                      unsigned long numentries,
9013                      int scale,
9014                      int flags,
9015                      unsigned int *_hash_shift,
9016                      unsigned int *_hash_mask,
9017                      unsigned long low_limit,
9018                      unsigned long high_limit)
9019 {
9020     unsigned long long max = high_limit;
9021     unsigned long log2qty, size;
9022     void *table = NULL;
9023     gfp_t gfp_flags;
9024     bool virt;
9025     bool huge;
9026 
9027     /* allow the kernel cmdline to have a say */
9028     if (!numentries) {
9029         /* round applicable memory size up to nearest megabyte */
9030         numentries = nr_kernel_pages;
9031         numentries -= arch_reserved_kernel_pages();
9032 
9033         /* It isn't necessary when PAGE_SIZE >= 1MB */
9034         if (PAGE_SHIFT < 20)
9035             numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
9036 
9037 #if __BITS_PER_LONG > 32
9038         if (!high_limit) {
9039             unsigned long adapt;
9040 
9041             for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9042                  adapt <<= ADAPT_SCALE_SHIFT)
9043                 scale++;
9044         }
9045 #endif
9046 
9047         /* limit to 1 bucket per 2^scale bytes of low memory */
9048         if (scale > PAGE_SHIFT)
9049             numentries >>= (scale - PAGE_SHIFT);
9050         else
9051             numentries <<= (PAGE_SHIFT - scale);
9052 
9053         /* Make sure we've got at least a 0-order allocation.. */
9054         if (unlikely(flags & HASH_SMALL)) {
9055             /* Makes no sense without HASH_EARLY */
9056             WARN_ON(!(flags & HASH_EARLY));
9057             if (!(numentries >> *_hash_shift)) {
9058                 numentries = 1UL << *_hash_shift;
9059                 BUG_ON(!numentries);
9060             }
9061         } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9062             numentries = PAGE_SIZE / bucketsize;
9063     }
9064     numentries = roundup_pow_of_two(numentries);
9065 
9066     /* limit allocation size to 1/16 total memory by default */
9067     if (max == 0) {
9068         max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9069         do_div(max, bucketsize);
9070     }
9071     max = min(max, 0x80000000ULL);
9072 
9073     if (numentries < low_limit)
9074         numentries = low_limit;
9075     if (numentries > max)
9076         numentries = max;
9077 
9078     log2qty = ilog2(numentries);
9079 
9080     gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9081     do {
9082         virt = false;
9083         size = bucketsize << log2qty;
9084         if (flags & HASH_EARLY) {
9085             if (flags & HASH_ZERO)
9086                 table = memblock_alloc(size, SMP_CACHE_BYTES);
9087             else
9088                 table = memblock_alloc_raw(size,
9089                                SMP_CACHE_BYTES);
9090         } else if (get_order(size) >= MAX_ORDER || hashdist) {
9091             table = vmalloc_huge(size, gfp_flags);
9092             virt = true;
9093             if (table)
9094                 huge = is_vm_area_hugepages(table);
9095         } else {
9096             /*
9097              * If bucketsize is not a power-of-two, we may free
9098              * some pages at the end of hash table which
9099              * alloc_pages_exact() automatically does
9100              */
9101             table = alloc_pages_exact(size, gfp_flags);
9102             kmemleak_alloc(table, size, 1, gfp_flags);
9103         }
9104     } while (!table && size > PAGE_SIZE && --log2qty);
9105 
9106     if (!table)
9107         panic("Failed to allocate %s hash table\n", tablename);
9108 
9109     pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9110         tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9111         virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9112 
9113     if (_hash_shift)
9114         *_hash_shift = log2qty;
9115     if (_hash_mask)
9116         *_hash_mask = (1 << log2qty) - 1;
9117 
9118     return table;
9119 }
9120 
9121 #ifdef CONFIG_CONTIG_ALLOC
9122 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9123     (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9124 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9125 static void alloc_contig_dump_pages(struct list_head *page_list)
9126 {
9127     DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9128 
9129     if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9130         struct page *page;
9131 
9132         dump_stack();
9133         list_for_each_entry(page, page_list, lru)
9134             dump_page(page, "migration failure");
9135     }
9136 }
9137 #else
9138 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9139 {
9140 }
9141 #endif
9142 
9143 /* [start, end) must belong to a single zone. */
9144 int __alloc_contig_migrate_range(struct compact_control *cc,
9145                     unsigned long start, unsigned long end)
9146 {
9147     /* This function is based on compact_zone() from compaction.c. */
9148     unsigned int nr_reclaimed;
9149     unsigned long pfn = start;
9150     unsigned int tries = 0;
9151     int ret = 0;
9152     struct migration_target_control mtc = {
9153         .nid = zone_to_nid(cc->zone),
9154         .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9155     };
9156 
9157     lru_cache_disable();
9158 
9159     while (pfn < end || !list_empty(&cc->migratepages)) {
9160         if (fatal_signal_pending(current)) {
9161             ret = -EINTR;
9162             break;
9163         }
9164 
9165         if (list_empty(&cc->migratepages)) {
9166             cc->nr_migratepages = 0;
9167             ret = isolate_migratepages_range(cc, pfn, end);
9168             if (ret && ret != -EAGAIN)
9169                 break;
9170             pfn = cc->migrate_pfn;
9171             tries = 0;
9172         } else if (++tries == 5) {
9173             ret = -EBUSY;
9174             break;
9175         }
9176 
9177         nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9178                             &cc->migratepages);
9179         cc->nr_migratepages -= nr_reclaimed;
9180 
9181         ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9182             NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9183 
9184         /*
9185          * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9186          * to retry again over this error, so do the same here.
9187          */
9188         if (ret == -ENOMEM)
9189             break;
9190     }
9191 
9192     lru_cache_enable();
9193     if (ret < 0) {
9194         if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9195             alloc_contig_dump_pages(&cc->migratepages);
9196         putback_movable_pages(&cc->migratepages);
9197         return ret;
9198     }
9199     return 0;
9200 }
9201 
9202 /**
9203  * alloc_contig_range() -- tries to allocate given range of pages
9204  * @start:  start PFN to allocate
9205  * @end:    one-past-the-last PFN to allocate
9206  * @migratetype:    migratetype of the underlying pageblocks (either
9207  *          #MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9208  *          in range must have the same migratetype and it must
9209  *          be either of the two.
9210  * @gfp_mask:   GFP mask to use during compaction
9211  *
9212  * The PFN range does not have to be pageblock aligned. The PFN range must
9213  * belong to a single zone.
9214  *
9215  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9216  * pageblocks in the range.  Once isolated, the pageblocks should not
9217  * be modified by others.
9218  *
9219  * Return: zero on success or negative error code.  On success all
9220  * pages which PFN is in [start, end) are allocated for the caller and
9221  * need to be freed with free_contig_range().
9222  */
9223 int alloc_contig_range(unsigned long start, unsigned long end,
9224                unsigned migratetype, gfp_t gfp_mask)
9225 {
9226     unsigned long outer_start, outer_end;
9227     int order;
9228     int ret = 0;
9229 
9230     struct compact_control cc = {
9231         .nr_migratepages = 0,
9232         .order = -1,
9233         .zone = page_zone(pfn_to_page(start)),
9234         .mode = MIGRATE_SYNC,
9235         .ignore_skip_hint = true,
9236         .no_set_skip_hint = true,
9237         .gfp_mask = current_gfp_context(gfp_mask),
9238         .alloc_contig = true,
9239     };
9240     INIT_LIST_HEAD(&cc.migratepages);
9241 
9242     /*
9243      * What we do here is we mark all pageblocks in range as
9244      * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9245      * have different sizes, and due to the way page allocator
9246      * work, start_isolate_page_range() has special handlings for this.
9247      *
9248      * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9249      * migrate the pages from an unaligned range (ie. pages that
9250      * we are interested in). This will put all the pages in
9251      * range back to page allocator as MIGRATE_ISOLATE.
9252      *
9253      * When this is done, we take the pages in range from page
9254      * allocator removing them from the buddy system.  This way
9255      * page allocator will never consider using them.
9256      *
9257      * This lets us mark the pageblocks back as
9258      * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9259      * aligned range but not in the unaligned, original range are
9260      * put back to page allocator so that buddy can use them.
9261      */
9262 
9263     ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9264     if (ret)
9265         goto done;
9266 
9267     drain_all_pages(cc.zone);
9268 
9269     /*
9270      * In case of -EBUSY, we'd like to know which page causes problem.
9271      * So, just fall through. test_pages_isolated() has a tracepoint
9272      * which will report the busy page.
9273      *
9274      * It is possible that busy pages could become available before
9275      * the call to test_pages_isolated, and the range will actually be
9276      * allocated.  So, if we fall through be sure to clear ret so that
9277      * -EBUSY is not accidentally used or returned to caller.
9278      */
9279     ret = __alloc_contig_migrate_range(&cc, start, end);
9280     if (ret && ret != -EBUSY)
9281         goto done;
9282     ret = 0;
9283 
9284     /*
9285      * Pages from [start, end) are within a pageblock_nr_pages
9286      * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9287      * more, all pages in [start, end) are free in page allocator.
9288      * What we are going to do is to allocate all pages from
9289      * [start, end) (that is remove them from page allocator).
9290      *
9291      * The only problem is that pages at the beginning and at the
9292      * end of interesting range may be not aligned with pages that
9293      * page allocator holds, ie. they can be part of higher order
9294      * pages.  Because of this, we reserve the bigger range and
9295      * once this is done free the pages we are not interested in.
9296      *
9297      * We don't have to hold zone->lock here because the pages are
9298      * isolated thus they won't get removed from buddy.
9299      */
9300 
9301     order = 0;
9302     outer_start = start;
9303     while (!PageBuddy(pfn_to_page(outer_start))) {
9304         if (++order >= MAX_ORDER) {
9305             outer_start = start;
9306             break;
9307         }
9308         outer_start &= ~0UL << order;
9309     }
9310 
9311     if (outer_start != start) {
9312         order = buddy_order(pfn_to_page(outer_start));
9313 
9314         /*
9315          * outer_start page could be small order buddy page and
9316          * it doesn't include start page. Adjust outer_start
9317          * in this case to report failed page properly
9318          * on tracepoint in test_pages_isolated()
9319          */
9320         if (outer_start + (1UL << order) <= start)
9321             outer_start = start;
9322     }
9323 
9324     /* Make sure the range is really isolated. */
9325     if (test_pages_isolated(outer_start, end, 0)) {
9326         ret = -EBUSY;
9327         goto done;
9328     }
9329 
9330     /* Grab isolated pages from freelists. */
9331     outer_end = isolate_freepages_range(&cc, outer_start, end);
9332     if (!outer_end) {
9333         ret = -EBUSY;
9334         goto done;
9335     }
9336 
9337     /* Free head and tail (if any) */
9338     if (start != outer_start)
9339         free_contig_range(outer_start, start - outer_start);
9340     if (end != outer_end)
9341         free_contig_range(end, outer_end - end);
9342 
9343 done:
9344     undo_isolate_page_range(start, end, migratetype);
9345     return ret;
9346 }
9347 EXPORT_SYMBOL(alloc_contig_range);
9348 
9349 static int __alloc_contig_pages(unsigned long start_pfn,
9350                 unsigned long nr_pages, gfp_t gfp_mask)
9351 {
9352     unsigned long end_pfn = start_pfn + nr_pages;
9353 
9354     return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9355                   gfp_mask);
9356 }
9357 
9358 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9359                    unsigned long nr_pages)
9360 {
9361     unsigned long i, end_pfn = start_pfn + nr_pages;
9362     struct page *page;
9363 
9364     for (i = start_pfn; i < end_pfn; i++) {
9365         page = pfn_to_online_page(i);
9366         if (!page)
9367             return false;
9368 
9369         if (page_zone(page) != z)
9370             return false;
9371 
9372         if (PageReserved(page))
9373             return false;
9374     }
9375     return true;
9376 }
9377 
9378 static bool zone_spans_last_pfn(const struct zone *zone,
9379                 unsigned long start_pfn, unsigned long nr_pages)
9380 {
9381     unsigned long last_pfn = start_pfn + nr_pages - 1;
9382 
9383     return zone_spans_pfn(zone, last_pfn);
9384 }
9385 
9386 /**
9387  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9388  * @nr_pages:   Number of contiguous pages to allocate
9389  * @gfp_mask:   GFP mask to limit search and used during compaction
9390  * @nid:    Target node
9391  * @nodemask:   Mask for other possible nodes
9392  *
9393  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9394  * on an applicable zonelist to find a contiguous pfn range which can then be
9395  * tried for allocation with alloc_contig_range(). This routine is intended
9396  * for allocation requests which can not be fulfilled with the buddy allocator.
9397  *
9398  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9399  * power of two, then allocated range is also guaranteed to be aligned to same
9400  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9401  *
9402  * Allocated pages can be freed with free_contig_range() or by manually calling
9403  * __free_page() on each allocated page.
9404  *
9405  * Return: pointer to contiguous pages on success, or NULL if not successful.
9406  */
9407 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9408                 int nid, nodemask_t *nodemask)
9409 {
9410     unsigned long ret, pfn, flags;
9411     struct zonelist *zonelist;
9412     struct zone *zone;
9413     struct zoneref *z;
9414 
9415     zonelist = node_zonelist(nid, gfp_mask);
9416     for_each_zone_zonelist_nodemask(zone, z, zonelist,
9417                     gfp_zone(gfp_mask), nodemask) {
9418         spin_lock_irqsave(&zone->lock, flags);
9419 
9420         pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9421         while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9422             if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9423                 /*
9424                  * We release the zone lock here because
9425                  * alloc_contig_range() will also lock the zone
9426                  * at some point. If there's an allocation
9427                  * spinning on this lock, it may win the race
9428                  * and cause alloc_contig_range() to fail...
9429                  */
9430                 spin_unlock_irqrestore(&zone->lock, flags);
9431                 ret = __alloc_contig_pages(pfn, nr_pages,
9432                             gfp_mask);
9433                 if (!ret)
9434                     return pfn_to_page(pfn);
9435                 spin_lock_irqsave(&zone->lock, flags);
9436             }
9437             pfn += nr_pages;
9438         }
9439         spin_unlock_irqrestore(&zone->lock, flags);
9440     }
9441     return NULL;
9442 }
9443 #endif /* CONFIG_CONTIG_ALLOC */
9444 
9445 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9446 {
9447     unsigned long count = 0;
9448 
9449     for (; nr_pages--; pfn++) {
9450         struct page *page = pfn_to_page(pfn);
9451 
9452         count += page_count(page) != 1;
9453         __free_page(page);
9454     }
9455     WARN(count != 0, "%lu pages are still in use!\n", count);
9456 }
9457 EXPORT_SYMBOL(free_contig_range);
9458 
9459 /*
9460  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9461  * page high values need to be recalculated.
9462  */
9463 void zone_pcp_update(struct zone *zone, int cpu_online)
9464 {
9465     mutex_lock(&pcp_batch_high_lock);
9466     zone_set_pageset_high_and_batch(zone, cpu_online);
9467     mutex_unlock(&pcp_batch_high_lock);
9468 }
9469 
9470 /*
9471  * Effectively disable pcplists for the zone by setting the high limit to 0
9472  * and draining all cpus. A concurrent page freeing on another CPU that's about
9473  * to put the page on pcplist will either finish before the drain and the page
9474  * will be drained, or observe the new high limit and skip the pcplist.
9475  *
9476  * Must be paired with a call to zone_pcp_enable().
9477  */
9478 void zone_pcp_disable(struct zone *zone)
9479 {
9480     mutex_lock(&pcp_batch_high_lock);
9481     __zone_set_pageset_high_and_batch(zone, 0, 1);
9482     __drain_all_pages(zone, true);
9483 }
9484 
9485 void zone_pcp_enable(struct zone *zone)
9486 {
9487     __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9488     mutex_unlock(&pcp_batch_high_lock);
9489 }
9490 
9491 void zone_pcp_reset(struct zone *zone)
9492 {
9493     int cpu;
9494     struct per_cpu_zonestat *pzstats;
9495 
9496     if (zone->per_cpu_pageset != &boot_pageset) {
9497         for_each_online_cpu(cpu) {
9498             pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9499             drain_zonestat(zone, pzstats);
9500         }
9501         free_percpu(zone->per_cpu_pageset);
9502         free_percpu(zone->per_cpu_zonestats);
9503         zone->per_cpu_pageset = &boot_pageset;
9504         zone->per_cpu_zonestats = &boot_zonestats;
9505     }
9506 }
9507 
9508 #ifdef CONFIG_MEMORY_HOTREMOVE
9509 /*
9510  * All pages in the range must be in a single zone, must not contain holes,
9511  * must span full sections, and must be isolated before calling this function.
9512  */
9513 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9514 {
9515     unsigned long pfn = start_pfn;
9516     struct page *page;
9517     struct zone *zone;
9518     unsigned int order;
9519     unsigned long flags;
9520 
9521     offline_mem_sections(pfn, end_pfn);
9522     zone = page_zone(pfn_to_page(pfn));
9523     spin_lock_irqsave(&zone->lock, flags);
9524     while (pfn < end_pfn) {
9525         page = pfn_to_page(pfn);
9526         /*
9527          * The HWPoisoned page may be not in buddy system, and
9528          * page_count() is not 0.
9529          */
9530         if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9531             pfn++;
9532             continue;
9533         }
9534         /*
9535          * At this point all remaining PageOffline() pages have a
9536          * reference count of 0 and can simply be skipped.
9537          */
9538         if (PageOffline(page)) {
9539             BUG_ON(page_count(page));
9540             BUG_ON(PageBuddy(page));
9541             pfn++;
9542             continue;
9543         }
9544 
9545         BUG_ON(page_count(page));
9546         BUG_ON(!PageBuddy(page));
9547         order = buddy_order(page);
9548         del_page_from_free_list(page, zone, order);
9549         pfn += (1 << order);
9550     }
9551     spin_unlock_irqrestore(&zone->lock, flags);
9552 }
9553 #endif
9554 
9555 /*
9556  * This function returns a stable result only if called under zone lock.
9557  */
9558 bool is_free_buddy_page(struct page *page)
9559 {
9560     unsigned long pfn = page_to_pfn(page);
9561     unsigned int order;
9562 
9563     for (order = 0; order < MAX_ORDER; order++) {
9564         struct page *page_head = page - (pfn & ((1 << order) - 1));
9565 
9566         if (PageBuddy(page_head) &&
9567             buddy_order_unsafe(page_head) >= order)
9568             break;
9569     }
9570 
9571     return order < MAX_ORDER;
9572 }
9573 EXPORT_SYMBOL(is_free_buddy_page);
9574 
9575 #ifdef CONFIG_MEMORY_FAILURE
9576 /*
9577  * Break down a higher-order page in sub-pages, and keep our target out of
9578  * buddy allocator.
9579  */
9580 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9581                    struct page *target, int low, int high,
9582                    int migratetype)
9583 {
9584     unsigned long size = 1 << high;
9585     struct page *current_buddy, *next_page;
9586 
9587     while (high > low) {
9588         high--;
9589         size >>= 1;
9590 
9591         if (target >= &page[size]) {
9592             next_page = page + size;
9593             current_buddy = page;
9594         } else {
9595             next_page = page;
9596             current_buddy = page + size;
9597         }
9598 
9599         if (set_page_guard(zone, current_buddy, high, migratetype))
9600             continue;
9601 
9602         if (current_buddy != target) {
9603             add_to_free_list(current_buddy, zone, high, migratetype);
9604             set_buddy_order(current_buddy, high);
9605             page = next_page;
9606         }
9607     }
9608 }
9609 
9610 /*
9611  * Take a page that will be marked as poisoned off the buddy allocator.
9612  */
9613 bool take_page_off_buddy(struct page *page)
9614 {
9615     struct zone *zone = page_zone(page);
9616     unsigned long pfn = page_to_pfn(page);
9617     unsigned long flags;
9618     unsigned int order;
9619     bool ret = false;
9620 
9621     spin_lock_irqsave(&zone->lock, flags);
9622     for (order = 0; order < MAX_ORDER; order++) {
9623         struct page *page_head = page - (pfn & ((1 << order) - 1));
9624         int page_order = buddy_order(page_head);
9625 
9626         if (PageBuddy(page_head) && page_order >= order) {
9627             unsigned long pfn_head = page_to_pfn(page_head);
9628             int migratetype = get_pfnblock_migratetype(page_head,
9629                                    pfn_head);
9630 
9631             del_page_from_free_list(page_head, zone, page_order);
9632             break_down_buddy_pages(zone, page_head, page, 0,
9633                         page_order, migratetype);
9634             SetPageHWPoisonTakenOff(page);
9635             if (!is_migrate_isolate(migratetype))
9636                 __mod_zone_freepage_state(zone, -1, migratetype);
9637             ret = true;
9638             break;
9639         }
9640         if (page_count(page_head) > 0)
9641             break;
9642     }
9643     spin_unlock_irqrestore(&zone->lock, flags);
9644     return ret;
9645 }
9646 
9647 /*
9648  * Cancel takeoff done by take_page_off_buddy().
9649  */
9650 bool put_page_back_buddy(struct page *page)
9651 {
9652     struct zone *zone = page_zone(page);
9653     unsigned long pfn = page_to_pfn(page);
9654     unsigned long flags;
9655     int migratetype = get_pfnblock_migratetype(page, pfn);
9656     bool ret = false;
9657 
9658     spin_lock_irqsave(&zone->lock, flags);
9659     if (put_page_testzero(page)) {
9660         ClearPageHWPoisonTakenOff(page);
9661         __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9662         if (TestClearPageHWPoison(page)) {
9663             ret = true;
9664         }
9665     }
9666     spin_unlock_irqrestore(&zone->lock, flags);
9667 
9668     return ret;
9669 }
9670 #endif
9671 
9672 #ifdef CONFIG_ZONE_DMA
9673 bool has_managed_dma(void)
9674 {
9675     struct pglist_data *pgdat;
9676 
9677     for_each_online_pgdat(pgdat) {
9678         struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9679 
9680         if (managed_zone(zone))
9681             return true;
9682     }
9683     return false;
9684 }
9685 #endif /* CONFIG_ZONE_DMA */