Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * mm/page-writeback.c
0004  *
0005  * Copyright (C) 2002, Linus Torvalds.
0006  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
0007  *
0008  * Contains functions related to writing back dirty pages at the
0009  * address_space level.
0010  *
0011  * 10Apr2002    Andrew Morton
0012  *      Initial version
0013  */
0014 
0015 #include <linux/kernel.h>
0016 #include <linux/export.h>
0017 #include <linux/spinlock.h>
0018 #include <linux/fs.h>
0019 #include <linux/mm.h>
0020 #include <linux/swap.h>
0021 #include <linux/slab.h>
0022 #include <linux/pagemap.h>
0023 #include <linux/writeback.h>
0024 #include <linux/init.h>
0025 #include <linux/backing-dev.h>
0026 #include <linux/task_io_accounting_ops.h>
0027 #include <linux/blkdev.h>
0028 #include <linux/mpage.h>
0029 #include <linux/rmap.h>
0030 #include <linux/percpu.h>
0031 #include <linux/smp.h>
0032 #include <linux/sysctl.h>
0033 #include <linux/cpu.h>
0034 #include <linux/syscalls.h>
0035 #include <linux/pagevec.h>
0036 #include <linux/timer.h>
0037 #include <linux/sched/rt.h>
0038 #include <linux/sched/signal.h>
0039 #include <linux/mm_inline.h>
0040 #include <trace/events/writeback.h>
0041 
0042 #include "internal.h"
0043 
0044 /*
0045  * Sleep at most 200ms at a time in balance_dirty_pages().
0046  */
0047 #define MAX_PAUSE       max(HZ/5, 1)
0048 
0049 /*
0050  * Try to keep balance_dirty_pages() call intervals higher than this many pages
0051  * by raising pause time to max_pause when falls below it.
0052  */
0053 #define DIRTY_POLL_THRESH   (128 >> (PAGE_SHIFT - 10))
0054 
0055 /*
0056  * Estimate write bandwidth at 200ms intervals.
0057  */
0058 #define BANDWIDTH_INTERVAL  max(HZ/5, 1)
0059 
0060 #define RATELIMIT_CALC_SHIFT    10
0061 
0062 /*
0063  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
0064  * will look to see if it needs to force writeback or throttling.
0065  */
0066 static long ratelimit_pages = 32;
0067 
0068 /* The following parameters are exported via /proc/sys/vm */
0069 
0070 /*
0071  * Start background writeback (via writeback threads) at this percentage
0072  */
0073 static int dirty_background_ratio = 10;
0074 
0075 /*
0076  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
0077  * dirty_background_ratio * the amount of dirtyable memory
0078  */
0079 static unsigned long dirty_background_bytes;
0080 
0081 /*
0082  * free highmem will not be subtracted from the total free memory
0083  * for calculating free ratios if vm_highmem_is_dirtyable is true
0084  */
0085 static int vm_highmem_is_dirtyable;
0086 
0087 /*
0088  * The generator of dirty data starts writeback at this percentage
0089  */
0090 static int vm_dirty_ratio = 20;
0091 
0092 /*
0093  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
0094  * vm_dirty_ratio * the amount of dirtyable memory
0095  */
0096 static unsigned long vm_dirty_bytes;
0097 
0098 /*
0099  * The interval between `kupdate'-style writebacks
0100  */
0101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
0102 
0103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
0104 
0105 /*
0106  * The longest time for which data is allowed to remain dirty
0107  */
0108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
0109 
0110 /*
0111  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
0112  * a full sync is triggered after this time elapses without any disk activity.
0113  */
0114 int laptop_mode;
0115 
0116 EXPORT_SYMBOL(laptop_mode);
0117 
0118 /* End of sysctl-exported parameters */
0119 
0120 struct wb_domain global_wb_domain;
0121 
0122 /* consolidated parameters for balance_dirty_pages() and its subroutines */
0123 struct dirty_throttle_control {
0124 #ifdef CONFIG_CGROUP_WRITEBACK
0125     struct wb_domain    *dom;
0126     struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
0127 #endif
0128     struct bdi_writeback    *wb;
0129     struct fprop_local_percpu *wb_completions;
0130 
0131     unsigned long       avail;      /* dirtyable */
0132     unsigned long       dirty;      /* file_dirty + write + nfs */
0133     unsigned long       thresh;     /* dirty threshold */
0134     unsigned long       bg_thresh;  /* dirty background threshold */
0135 
0136     unsigned long       wb_dirty;   /* per-wb counterparts */
0137     unsigned long       wb_thresh;
0138     unsigned long       wb_bg_thresh;
0139 
0140     unsigned long       pos_ratio;
0141 };
0142 
0143 /*
0144  * Length of period for aging writeout fractions of bdis. This is an
0145  * arbitrarily chosen number. The longer the period, the slower fractions will
0146  * reflect changes in current writeout rate.
0147  */
0148 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
0149 
0150 #ifdef CONFIG_CGROUP_WRITEBACK
0151 
0152 #define GDTC_INIT(__wb)     .wb = (__wb),               \
0153                 .dom = &global_wb_domain,       \
0154                 .wb_completions = &(__wb)->completions
0155 
0156 #define GDTC_INIT_NO_WB     .dom = &global_wb_domain
0157 
0158 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),               \
0159                 .dom = mem_cgroup_wb_domain(__wb),  \
0160                 .wb_completions = &(__wb)->memcg_completions, \
0161                 .gdtc = __gdtc
0162 
0163 static bool mdtc_valid(struct dirty_throttle_control *dtc)
0164 {
0165     return dtc->dom;
0166 }
0167 
0168 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
0169 {
0170     return dtc->dom;
0171 }
0172 
0173 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
0174 {
0175     return mdtc->gdtc;
0176 }
0177 
0178 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
0179 {
0180     return &wb->memcg_completions;
0181 }
0182 
0183 static void wb_min_max_ratio(struct bdi_writeback *wb,
0184                  unsigned long *minp, unsigned long *maxp)
0185 {
0186     unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
0187     unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
0188     unsigned long long min = wb->bdi->min_ratio;
0189     unsigned long long max = wb->bdi->max_ratio;
0190 
0191     /*
0192      * @wb may already be clean by the time control reaches here and
0193      * the total may not include its bw.
0194      */
0195     if (this_bw < tot_bw) {
0196         if (min) {
0197             min *= this_bw;
0198             min = div64_ul(min, tot_bw);
0199         }
0200         if (max < 100) {
0201             max *= this_bw;
0202             max = div64_ul(max, tot_bw);
0203         }
0204     }
0205 
0206     *minp = min;
0207     *maxp = max;
0208 }
0209 
0210 #else   /* CONFIG_CGROUP_WRITEBACK */
0211 
0212 #define GDTC_INIT(__wb)     .wb = (__wb),                           \
0213                 .wb_completions = &(__wb)->completions
0214 #define GDTC_INIT_NO_WB
0215 #define MDTC_INIT(__wb, __gdtc)
0216 
0217 static bool mdtc_valid(struct dirty_throttle_control *dtc)
0218 {
0219     return false;
0220 }
0221 
0222 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
0223 {
0224     return &global_wb_domain;
0225 }
0226 
0227 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
0228 {
0229     return NULL;
0230 }
0231 
0232 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
0233 {
0234     return NULL;
0235 }
0236 
0237 static void wb_min_max_ratio(struct bdi_writeback *wb,
0238                  unsigned long *minp, unsigned long *maxp)
0239 {
0240     *minp = wb->bdi->min_ratio;
0241     *maxp = wb->bdi->max_ratio;
0242 }
0243 
0244 #endif  /* CONFIG_CGROUP_WRITEBACK */
0245 
0246 /*
0247  * In a memory zone, there is a certain amount of pages we consider
0248  * available for the page cache, which is essentially the number of
0249  * free and reclaimable pages, minus some zone reserves to protect
0250  * lowmem and the ability to uphold the zone's watermarks without
0251  * requiring writeback.
0252  *
0253  * This number of dirtyable pages is the base value of which the
0254  * user-configurable dirty ratio is the effective number of pages that
0255  * are allowed to be actually dirtied.  Per individual zone, or
0256  * globally by using the sum of dirtyable pages over all zones.
0257  *
0258  * Because the user is allowed to specify the dirty limit globally as
0259  * absolute number of bytes, calculating the per-zone dirty limit can
0260  * require translating the configured limit into a percentage of
0261  * global dirtyable memory first.
0262  */
0263 
0264 /**
0265  * node_dirtyable_memory - number of dirtyable pages in a node
0266  * @pgdat: the node
0267  *
0268  * Return: the node's number of pages potentially available for dirty
0269  * page cache.  This is the base value for the per-node dirty limits.
0270  */
0271 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
0272 {
0273     unsigned long nr_pages = 0;
0274     int z;
0275 
0276     for (z = 0; z < MAX_NR_ZONES; z++) {
0277         struct zone *zone = pgdat->node_zones + z;
0278 
0279         if (!populated_zone(zone))
0280             continue;
0281 
0282         nr_pages += zone_page_state(zone, NR_FREE_PAGES);
0283     }
0284 
0285     /*
0286      * Pages reserved for the kernel should not be considered
0287      * dirtyable, to prevent a situation where reclaim has to
0288      * clean pages in order to balance the zones.
0289      */
0290     nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
0291 
0292     nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
0293     nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
0294 
0295     return nr_pages;
0296 }
0297 
0298 static unsigned long highmem_dirtyable_memory(unsigned long total)
0299 {
0300 #ifdef CONFIG_HIGHMEM
0301     int node;
0302     unsigned long x = 0;
0303     int i;
0304 
0305     for_each_node_state(node, N_HIGH_MEMORY) {
0306         for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
0307             struct zone *z;
0308             unsigned long nr_pages;
0309 
0310             if (!is_highmem_idx(i))
0311                 continue;
0312 
0313             z = &NODE_DATA(node)->node_zones[i];
0314             if (!populated_zone(z))
0315                 continue;
0316 
0317             nr_pages = zone_page_state(z, NR_FREE_PAGES);
0318             /* watch for underflows */
0319             nr_pages -= min(nr_pages, high_wmark_pages(z));
0320             nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
0321             nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
0322             x += nr_pages;
0323         }
0324     }
0325 
0326     /*
0327      * Make sure that the number of highmem pages is never larger
0328      * than the number of the total dirtyable memory. This can only
0329      * occur in very strange VM situations but we want to make sure
0330      * that this does not occur.
0331      */
0332     return min(x, total);
0333 #else
0334     return 0;
0335 #endif
0336 }
0337 
0338 /**
0339  * global_dirtyable_memory - number of globally dirtyable pages
0340  *
0341  * Return: the global number of pages potentially available for dirty
0342  * page cache.  This is the base value for the global dirty limits.
0343  */
0344 static unsigned long global_dirtyable_memory(void)
0345 {
0346     unsigned long x;
0347 
0348     x = global_zone_page_state(NR_FREE_PAGES);
0349     /*
0350      * Pages reserved for the kernel should not be considered
0351      * dirtyable, to prevent a situation where reclaim has to
0352      * clean pages in order to balance the zones.
0353      */
0354     x -= min(x, totalreserve_pages);
0355 
0356     x += global_node_page_state(NR_INACTIVE_FILE);
0357     x += global_node_page_state(NR_ACTIVE_FILE);
0358 
0359     if (!vm_highmem_is_dirtyable)
0360         x -= highmem_dirtyable_memory(x);
0361 
0362     return x + 1;   /* Ensure that we never return 0 */
0363 }
0364 
0365 /**
0366  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
0367  * @dtc: dirty_throttle_control of interest
0368  *
0369  * Calculate @dtc->thresh and ->bg_thresh considering
0370  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
0371  * must ensure that @dtc->avail is set before calling this function.  The
0372  * dirty limits will be lifted by 1/4 for real-time tasks.
0373  */
0374 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
0375 {
0376     const unsigned long available_memory = dtc->avail;
0377     struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
0378     unsigned long bytes = vm_dirty_bytes;
0379     unsigned long bg_bytes = dirty_background_bytes;
0380     /* convert ratios to per-PAGE_SIZE for higher precision */
0381     unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
0382     unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
0383     unsigned long thresh;
0384     unsigned long bg_thresh;
0385     struct task_struct *tsk;
0386 
0387     /* gdtc is !NULL iff @dtc is for memcg domain */
0388     if (gdtc) {
0389         unsigned long global_avail = gdtc->avail;
0390 
0391         /*
0392          * The byte settings can't be applied directly to memcg
0393          * domains.  Convert them to ratios by scaling against
0394          * globally available memory.  As the ratios are in
0395          * per-PAGE_SIZE, they can be obtained by dividing bytes by
0396          * number of pages.
0397          */
0398         if (bytes)
0399             ratio = min(DIV_ROUND_UP(bytes, global_avail),
0400                     PAGE_SIZE);
0401         if (bg_bytes)
0402             bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
0403                        PAGE_SIZE);
0404         bytes = bg_bytes = 0;
0405     }
0406 
0407     if (bytes)
0408         thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
0409     else
0410         thresh = (ratio * available_memory) / PAGE_SIZE;
0411 
0412     if (bg_bytes)
0413         bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
0414     else
0415         bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
0416 
0417     if (bg_thresh >= thresh)
0418         bg_thresh = thresh / 2;
0419     tsk = current;
0420     if (rt_task(tsk)) {
0421         bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
0422         thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
0423     }
0424     dtc->thresh = thresh;
0425     dtc->bg_thresh = bg_thresh;
0426 
0427     /* we should eventually report the domain in the TP */
0428     if (!gdtc)
0429         trace_global_dirty_state(bg_thresh, thresh);
0430 }
0431 
0432 /**
0433  * global_dirty_limits - background-writeback and dirty-throttling thresholds
0434  * @pbackground: out parameter for bg_thresh
0435  * @pdirty: out parameter for thresh
0436  *
0437  * Calculate bg_thresh and thresh for global_wb_domain.  See
0438  * domain_dirty_limits() for details.
0439  */
0440 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
0441 {
0442     struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
0443 
0444     gdtc.avail = global_dirtyable_memory();
0445     domain_dirty_limits(&gdtc);
0446 
0447     *pbackground = gdtc.bg_thresh;
0448     *pdirty = gdtc.thresh;
0449 }
0450 
0451 /**
0452  * node_dirty_limit - maximum number of dirty pages allowed in a node
0453  * @pgdat: the node
0454  *
0455  * Return: the maximum number of dirty pages allowed in a node, based
0456  * on the node's dirtyable memory.
0457  */
0458 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
0459 {
0460     unsigned long node_memory = node_dirtyable_memory(pgdat);
0461     struct task_struct *tsk = current;
0462     unsigned long dirty;
0463 
0464     if (vm_dirty_bytes)
0465         dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
0466             node_memory / global_dirtyable_memory();
0467     else
0468         dirty = vm_dirty_ratio * node_memory / 100;
0469 
0470     if (rt_task(tsk))
0471         dirty += dirty / 4;
0472 
0473     return dirty;
0474 }
0475 
0476 /**
0477  * node_dirty_ok - tells whether a node is within its dirty limits
0478  * @pgdat: the node to check
0479  *
0480  * Return: %true when the dirty pages in @pgdat are within the node's
0481  * dirty limit, %false if the limit is exceeded.
0482  */
0483 bool node_dirty_ok(struct pglist_data *pgdat)
0484 {
0485     unsigned long limit = node_dirty_limit(pgdat);
0486     unsigned long nr_pages = 0;
0487 
0488     nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
0489     nr_pages += node_page_state(pgdat, NR_WRITEBACK);
0490 
0491     return nr_pages <= limit;
0492 }
0493 
0494 #ifdef CONFIG_SYSCTL
0495 static int dirty_background_ratio_handler(struct ctl_table *table, int write,
0496         void *buffer, size_t *lenp, loff_t *ppos)
0497 {
0498     int ret;
0499 
0500     ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
0501     if (ret == 0 && write)
0502         dirty_background_bytes = 0;
0503     return ret;
0504 }
0505 
0506 static int dirty_background_bytes_handler(struct ctl_table *table, int write,
0507         void *buffer, size_t *lenp, loff_t *ppos)
0508 {
0509     int ret;
0510 
0511     ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
0512     if (ret == 0 && write)
0513         dirty_background_ratio = 0;
0514     return ret;
0515 }
0516 
0517 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
0518         size_t *lenp, loff_t *ppos)
0519 {
0520     int old_ratio = vm_dirty_ratio;
0521     int ret;
0522 
0523     ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
0524     if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
0525         writeback_set_ratelimit();
0526         vm_dirty_bytes = 0;
0527     }
0528     return ret;
0529 }
0530 
0531 static int dirty_bytes_handler(struct ctl_table *table, int write,
0532         void *buffer, size_t *lenp, loff_t *ppos)
0533 {
0534     unsigned long old_bytes = vm_dirty_bytes;
0535     int ret;
0536 
0537     ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
0538     if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
0539         writeback_set_ratelimit();
0540         vm_dirty_ratio = 0;
0541     }
0542     return ret;
0543 }
0544 #endif
0545 
0546 static unsigned long wp_next_time(unsigned long cur_time)
0547 {
0548     cur_time += VM_COMPLETIONS_PERIOD_LEN;
0549     /* 0 has a special meaning... */
0550     if (!cur_time)
0551         return 1;
0552     return cur_time;
0553 }
0554 
0555 static void wb_domain_writeout_add(struct wb_domain *dom,
0556                    struct fprop_local_percpu *completions,
0557                    unsigned int max_prop_frac, long nr)
0558 {
0559     __fprop_add_percpu_max(&dom->completions, completions,
0560                    max_prop_frac, nr);
0561     /* First event after period switching was turned off? */
0562     if (unlikely(!dom->period_time)) {
0563         /*
0564          * We can race with other __bdi_writeout_inc calls here but
0565          * it does not cause any harm since the resulting time when
0566          * timer will fire and what is in writeout_period_time will be
0567          * roughly the same.
0568          */
0569         dom->period_time = wp_next_time(jiffies);
0570         mod_timer(&dom->period_timer, dom->period_time);
0571     }
0572 }
0573 
0574 /*
0575  * Increment @wb's writeout completion count and the global writeout
0576  * completion count. Called from __folio_end_writeback().
0577  */
0578 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
0579 {
0580     struct wb_domain *cgdom;
0581 
0582     wb_stat_mod(wb, WB_WRITTEN, nr);
0583     wb_domain_writeout_add(&global_wb_domain, &wb->completions,
0584                    wb->bdi->max_prop_frac, nr);
0585 
0586     cgdom = mem_cgroup_wb_domain(wb);
0587     if (cgdom)
0588         wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
0589                        wb->bdi->max_prop_frac, nr);
0590 }
0591 
0592 void wb_writeout_inc(struct bdi_writeback *wb)
0593 {
0594     unsigned long flags;
0595 
0596     local_irq_save(flags);
0597     __wb_writeout_add(wb, 1);
0598     local_irq_restore(flags);
0599 }
0600 EXPORT_SYMBOL_GPL(wb_writeout_inc);
0601 
0602 /*
0603  * On idle system, we can be called long after we scheduled because we use
0604  * deferred timers so count with missed periods.
0605  */
0606 static void writeout_period(struct timer_list *t)
0607 {
0608     struct wb_domain *dom = from_timer(dom, t, period_timer);
0609     int miss_periods = (jiffies - dom->period_time) /
0610                          VM_COMPLETIONS_PERIOD_LEN;
0611 
0612     if (fprop_new_period(&dom->completions, miss_periods + 1)) {
0613         dom->period_time = wp_next_time(dom->period_time +
0614                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
0615         mod_timer(&dom->period_timer, dom->period_time);
0616     } else {
0617         /*
0618          * Aging has zeroed all fractions. Stop wasting CPU on period
0619          * updates.
0620          */
0621         dom->period_time = 0;
0622     }
0623 }
0624 
0625 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
0626 {
0627     memset(dom, 0, sizeof(*dom));
0628 
0629     spin_lock_init(&dom->lock);
0630 
0631     timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
0632 
0633     dom->dirty_limit_tstamp = jiffies;
0634 
0635     return fprop_global_init(&dom->completions, gfp);
0636 }
0637 
0638 #ifdef CONFIG_CGROUP_WRITEBACK
0639 void wb_domain_exit(struct wb_domain *dom)
0640 {
0641     del_timer_sync(&dom->period_timer);
0642     fprop_global_destroy(&dom->completions);
0643 }
0644 #endif
0645 
0646 /*
0647  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
0648  * registered backing devices, which, for obvious reasons, can not
0649  * exceed 100%.
0650  */
0651 static unsigned int bdi_min_ratio;
0652 
0653 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
0654 {
0655     unsigned int delta;
0656     int ret = 0;
0657 
0658     spin_lock_bh(&bdi_lock);
0659     if (min_ratio > bdi->max_ratio) {
0660         ret = -EINVAL;
0661     } else {
0662         if (min_ratio < bdi->min_ratio) {
0663             delta = bdi->min_ratio - min_ratio;
0664             bdi_min_ratio -= delta;
0665             bdi->min_ratio = min_ratio;
0666         } else {
0667             delta = min_ratio - bdi->min_ratio;
0668             if (bdi_min_ratio + delta < 100) {
0669                 bdi_min_ratio += delta;
0670                 bdi->min_ratio = min_ratio;
0671             } else {
0672                 ret = -EINVAL;
0673             }
0674         }
0675     }
0676     spin_unlock_bh(&bdi_lock);
0677 
0678     return ret;
0679 }
0680 
0681 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
0682 {
0683     int ret = 0;
0684 
0685     if (max_ratio > 100)
0686         return -EINVAL;
0687 
0688     spin_lock_bh(&bdi_lock);
0689     if (bdi->min_ratio > max_ratio) {
0690         ret = -EINVAL;
0691     } else {
0692         bdi->max_ratio = max_ratio;
0693         bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
0694     }
0695     spin_unlock_bh(&bdi_lock);
0696 
0697     return ret;
0698 }
0699 EXPORT_SYMBOL(bdi_set_max_ratio);
0700 
0701 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
0702                        unsigned long bg_thresh)
0703 {
0704     return (thresh + bg_thresh) / 2;
0705 }
0706 
0707 static unsigned long hard_dirty_limit(struct wb_domain *dom,
0708                       unsigned long thresh)
0709 {
0710     return max(thresh, dom->dirty_limit);
0711 }
0712 
0713 /*
0714  * Memory which can be further allocated to a memcg domain is capped by
0715  * system-wide clean memory excluding the amount being used in the domain.
0716  */
0717 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
0718                 unsigned long filepages, unsigned long headroom)
0719 {
0720     struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
0721     unsigned long clean = filepages - min(filepages, mdtc->dirty);
0722     unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
0723     unsigned long other_clean = global_clean - min(global_clean, clean);
0724 
0725     mdtc->avail = filepages + min(headroom, other_clean);
0726 }
0727 
0728 /**
0729  * __wb_calc_thresh - @wb's share of dirty throttling threshold
0730  * @dtc: dirty_throttle_context of interest
0731  *
0732  * Note that balance_dirty_pages() will only seriously take it as a hard limit
0733  * when sleeping max_pause per page is not enough to keep the dirty pages under
0734  * control. For example, when the device is completely stalled due to some error
0735  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
0736  * In the other normal situations, it acts more gently by throttling the tasks
0737  * more (rather than completely block them) when the wb dirty pages go high.
0738  *
0739  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
0740  * - starving fast devices
0741  * - piling up dirty pages (that will take long time to sync) on slow devices
0742  *
0743  * The wb's share of dirty limit will be adapting to its throughput and
0744  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
0745  *
0746  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
0747  * dirty balancing includes all PG_dirty and PG_writeback pages.
0748  */
0749 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
0750 {
0751     struct wb_domain *dom = dtc_dom(dtc);
0752     unsigned long thresh = dtc->thresh;
0753     u64 wb_thresh;
0754     unsigned long numerator, denominator;
0755     unsigned long wb_min_ratio, wb_max_ratio;
0756 
0757     /*
0758      * Calculate this BDI's share of the thresh ratio.
0759      */
0760     fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
0761                   &numerator, &denominator);
0762 
0763     wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
0764     wb_thresh *= numerator;
0765     wb_thresh = div64_ul(wb_thresh, denominator);
0766 
0767     wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
0768 
0769     wb_thresh += (thresh * wb_min_ratio) / 100;
0770     if (wb_thresh > (thresh * wb_max_ratio) / 100)
0771         wb_thresh = thresh * wb_max_ratio / 100;
0772 
0773     return wb_thresh;
0774 }
0775 
0776 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
0777 {
0778     struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
0779                            .thresh = thresh };
0780     return __wb_calc_thresh(&gdtc);
0781 }
0782 
0783 /*
0784  *                           setpoint - dirty 3
0785  *        f(dirty) := 1.0 + (----------------)
0786  *                           limit - setpoint
0787  *
0788  * it's a 3rd order polynomial that subjects to
0789  *
0790  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
0791  * (2) f(setpoint) = 1.0 => the balance point
0792  * (3) f(limit)    = 0   => the hard limit
0793  * (4) df/dx      <= 0   => negative feedback control
0794  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
0795  *     => fast response on large errors; small oscillation near setpoint
0796  */
0797 static long long pos_ratio_polynom(unsigned long setpoint,
0798                       unsigned long dirty,
0799                       unsigned long limit)
0800 {
0801     long long pos_ratio;
0802     long x;
0803 
0804     x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
0805               (limit - setpoint) | 1);
0806     pos_ratio = x;
0807     pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
0808     pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
0809     pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
0810 
0811     return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
0812 }
0813 
0814 /*
0815  * Dirty position control.
0816  *
0817  * (o) global/bdi setpoints
0818  *
0819  * We want the dirty pages be balanced around the global/wb setpoints.
0820  * When the number of dirty pages is higher/lower than the setpoint, the
0821  * dirty position control ratio (and hence task dirty ratelimit) will be
0822  * decreased/increased to bring the dirty pages back to the setpoint.
0823  *
0824  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
0825  *
0826  *     if (dirty < setpoint) scale up   pos_ratio
0827  *     if (dirty > setpoint) scale down pos_ratio
0828  *
0829  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
0830  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
0831  *
0832  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
0833  *
0834  * (o) global control line
0835  *
0836  *     ^ pos_ratio
0837  *     |
0838  *     |            |<===== global dirty control scope ======>|
0839  * 2.0  * * * * * * *
0840  *     |            .*
0841  *     |            . *
0842  *     |            .   *
0843  *     |            .     *
0844  *     |            .        *
0845  *     |            .            *
0846  * 1.0 ................................*
0847  *     |            .                  .     *
0848  *     |            .                  .          *
0849  *     |            .                  .              *
0850  *     |            .                  .                 *
0851  *     |            .                  .                    *
0852  *   0 +------------.------------------.----------------------*------------->
0853  *           freerun^          setpoint^                 limit^   dirty pages
0854  *
0855  * (o) wb control line
0856  *
0857  *     ^ pos_ratio
0858  *     |
0859  *     |            *
0860  *     |              *
0861  *     |                *
0862  *     |                  *
0863  *     |                    * |<=========== span ============>|
0864  * 1.0 .......................*
0865  *     |                      . *
0866  *     |                      .   *
0867  *     |                      .     *
0868  *     |                      .       *
0869  *     |                      .         *
0870  *     |                      .           *
0871  *     |                      .             *
0872  *     |                      .               *
0873  *     |                      .                 *
0874  *     |                      .                   *
0875  *     |                      .                     *
0876  * 1/4 ...............................................* * * * * * * * * * * *
0877  *     |                      .                         .
0878  *     |                      .                           .
0879  *     |                      .                             .
0880  *   0 +----------------------.-------------------------------.------------->
0881  *                wb_setpoint^                    x_intercept^
0882  *
0883  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
0884  * be smoothly throttled down to normal if it starts high in situations like
0885  * - start writing to a slow SD card and a fast disk at the same time. The SD
0886  *   card's wb_dirty may rush to many times higher than wb_setpoint.
0887  * - the wb dirty thresh drops quickly due to change of JBOD workload
0888  */
0889 static void wb_position_ratio(struct dirty_throttle_control *dtc)
0890 {
0891     struct bdi_writeback *wb = dtc->wb;
0892     unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
0893     unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
0894     unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
0895     unsigned long wb_thresh = dtc->wb_thresh;
0896     unsigned long x_intercept;
0897     unsigned long setpoint;     /* dirty pages' target balance point */
0898     unsigned long wb_setpoint;
0899     unsigned long span;
0900     long long pos_ratio;        /* for scaling up/down the rate limit */
0901     long x;
0902 
0903     dtc->pos_ratio = 0;
0904 
0905     if (unlikely(dtc->dirty >= limit))
0906         return;
0907 
0908     /*
0909      * global setpoint
0910      *
0911      * See comment for pos_ratio_polynom().
0912      */
0913     setpoint = (freerun + limit) / 2;
0914     pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
0915 
0916     /*
0917      * The strictlimit feature is a tool preventing mistrusted filesystems
0918      * from growing a large number of dirty pages before throttling. For
0919      * such filesystems balance_dirty_pages always checks wb counters
0920      * against wb limits. Even if global "nr_dirty" is under "freerun".
0921      * This is especially important for fuse which sets bdi->max_ratio to
0922      * 1% by default. Without strictlimit feature, fuse writeback may
0923      * consume arbitrary amount of RAM because it is accounted in
0924      * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
0925      *
0926      * Here, in wb_position_ratio(), we calculate pos_ratio based on
0927      * two values: wb_dirty and wb_thresh. Let's consider an example:
0928      * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
0929      * limits are set by default to 10% and 20% (background and throttle).
0930      * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0931      * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
0932      * about ~6K pages (as the average of background and throttle wb
0933      * limits). The 3rd order polynomial will provide positive feedback if
0934      * wb_dirty is under wb_setpoint and vice versa.
0935      *
0936      * Note, that we cannot use global counters in these calculations
0937      * because we want to throttle process writing to a strictlimit wb
0938      * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
0939      * in the example above).
0940      */
0941     if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
0942         long long wb_pos_ratio;
0943 
0944         if (dtc->wb_dirty < 8) {
0945             dtc->pos_ratio = min_t(long long, pos_ratio * 2,
0946                        2 << RATELIMIT_CALC_SHIFT);
0947             return;
0948         }
0949 
0950         if (dtc->wb_dirty >= wb_thresh)
0951             return;
0952 
0953         wb_setpoint = dirty_freerun_ceiling(wb_thresh,
0954                             dtc->wb_bg_thresh);
0955 
0956         if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
0957             return;
0958 
0959         wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
0960                          wb_thresh);
0961 
0962         /*
0963          * Typically, for strictlimit case, wb_setpoint << setpoint
0964          * and pos_ratio >> wb_pos_ratio. In the other words global
0965          * state ("dirty") is not limiting factor and we have to
0966          * make decision based on wb counters. But there is an
0967          * important case when global pos_ratio should get precedence:
0968          * global limits are exceeded (e.g. due to activities on other
0969          * wb's) while given strictlimit wb is below limit.
0970          *
0971          * "pos_ratio * wb_pos_ratio" would work for the case above,
0972          * but it would look too non-natural for the case of all
0973          * activity in the system coming from a single strictlimit wb
0974          * with bdi->max_ratio == 100%.
0975          *
0976          * Note that min() below somewhat changes the dynamics of the
0977          * control system. Normally, pos_ratio value can be well over 3
0978          * (when globally we are at freerun and wb is well below wb
0979          * setpoint). Now the maximum pos_ratio in the same situation
0980          * is 2. We might want to tweak this if we observe the control
0981          * system is too slow to adapt.
0982          */
0983         dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
0984         return;
0985     }
0986 
0987     /*
0988      * We have computed basic pos_ratio above based on global situation. If
0989      * the wb is over/under its share of dirty pages, we want to scale
0990      * pos_ratio further down/up. That is done by the following mechanism.
0991      */
0992 
0993     /*
0994      * wb setpoint
0995      *
0996      *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
0997      *
0998      *                        x_intercept - wb_dirty
0999      *                     := --------------------------
1000      *                        x_intercept - wb_setpoint
1001      *
1002      * The main wb control line is a linear function that subjects to
1003      *
1004      * (1) f(wb_setpoint) = 1.0
1005      * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1006      *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1007      *
1008      * For single wb case, the dirty pages are observed to fluctuate
1009      * regularly within range
1010      *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1011      * for various filesystems, where (2) can yield in a reasonable 12.5%
1012      * fluctuation range for pos_ratio.
1013      *
1014      * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1015      * own size, so move the slope over accordingly and choose a slope that
1016      * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1017      */
1018     if (unlikely(wb_thresh > dtc->thresh))
1019         wb_thresh = dtc->thresh;
1020     /*
1021      * It's very possible that wb_thresh is close to 0 not because the
1022      * device is slow, but that it has remained inactive for long time.
1023      * Honour such devices a reasonable good (hopefully IO efficient)
1024      * threshold, so that the occasional writes won't be blocked and active
1025      * writes can rampup the threshold quickly.
1026      */
1027     wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1028     /*
1029      * scale global setpoint to wb's:
1030      *  wb_setpoint = setpoint * wb_thresh / thresh
1031      */
1032     x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1033     wb_setpoint = setpoint * (u64)x >> 16;
1034     /*
1035      * Use span=(8*write_bw) in single wb case as indicated by
1036      * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1037      *
1038      *        wb_thresh                    thresh - wb_thresh
1039      * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1040      *         thresh                           thresh
1041      */
1042     span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1043     x_intercept = wb_setpoint + span;
1044 
1045     if (dtc->wb_dirty < x_intercept - span / 4) {
1046         pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1047                       (x_intercept - wb_setpoint) | 1);
1048     } else
1049         pos_ratio /= 4;
1050 
1051     /*
1052      * wb reserve area, safeguard against dirty pool underrun and disk idle
1053      * It may push the desired control point of global dirty pages higher
1054      * than setpoint.
1055      */
1056     x_intercept = wb_thresh / 2;
1057     if (dtc->wb_dirty < x_intercept) {
1058         if (dtc->wb_dirty > x_intercept / 8)
1059             pos_ratio = div_u64(pos_ratio * x_intercept,
1060                         dtc->wb_dirty);
1061         else
1062             pos_ratio *= 8;
1063     }
1064 
1065     dtc->pos_ratio = pos_ratio;
1066 }
1067 
1068 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1069                       unsigned long elapsed,
1070                       unsigned long written)
1071 {
1072     const unsigned long period = roundup_pow_of_two(3 * HZ);
1073     unsigned long avg = wb->avg_write_bandwidth;
1074     unsigned long old = wb->write_bandwidth;
1075     u64 bw;
1076 
1077     /*
1078      * bw = written * HZ / elapsed
1079      *
1080      *                   bw * elapsed + write_bandwidth * (period - elapsed)
1081      * write_bandwidth = ---------------------------------------------------
1082      *                                          period
1083      *
1084      * @written may have decreased due to folio_account_redirty().
1085      * Avoid underflowing @bw calculation.
1086      */
1087     bw = written - min(written, wb->written_stamp);
1088     bw *= HZ;
1089     if (unlikely(elapsed > period)) {
1090         bw = div64_ul(bw, elapsed);
1091         avg = bw;
1092         goto out;
1093     }
1094     bw += (u64)wb->write_bandwidth * (period - elapsed);
1095     bw >>= ilog2(period);
1096 
1097     /*
1098      * one more level of smoothing, for filtering out sudden spikes
1099      */
1100     if (avg > old && old >= (unsigned long)bw)
1101         avg -= (avg - old) >> 3;
1102 
1103     if (avg < old && old <= (unsigned long)bw)
1104         avg += (old - avg) >> 3;
1105 
1106 out:
1107     /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1108     avg = max(avg, 1LU);
1109     if (wb_has_dirty_io(wb)) {
1110         long delta = avg - wb->avg_write_bandwidth;
1111         WARN_ON_ONCE(atomic_long_add_return(delta,
1112                     &wb->bdi->tot_write_bandwidth) <= 0);
1113     }
1114     wb->write_bandwidth = bw;
1115     WRITE_ONCE(wb->avg_write_bandwidth, avg);
1116 }
1117 
1118 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1119 {
1120     struct wb_domain *dom = dtc_dom(dtc);
1121     unsigned long thresh = dtc->thresh;
1122     unsigned long limit = dom->dirty_limit;
1123 
1124     /*
1125      * Follow up in one step.
1126      */
1127     if (limit < thresh) {
1128         limit = thresh;
1129         goto update;
1130     }
1131 
1132     /*
1133      * Follow down slowly. Use the higher one as the target, because thresh
1134      * may drop below dirty. This is exactly the reason to introduce
1135      * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1136      */
1137     thresh = max(thresh, dtc->dirty);
1138     if (limit > thresh) {
1139         limit -= (limit - thresh) >> 5;
1140         goto update;
1141     }
1142     return;
1143 update:
1144     dom->dirty_limit = limit;
1145 }
1146 
1147 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1148                       unsigned long now)
1149 {
1150     struct wb_domain *dom = dtc_dom(dtc);
1151 
1152     /*
1153      * check locklessly first to optimize away locking for the most time
1154      */
1155     if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1156         return;
1157 
1158     spin_lock(&dom->lock);
1159     if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1160         update_dirty_limit(dtc);
1161         dom->dirty_limit_tstamp = now;
1162     }
1163     spin_unlock(&dom->lock);
1164 }
1165 
1166 /*
1167  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1168  *
1169  * Normal wb tasks will be curbed at or below it in long term.
1170  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1171  */
1172 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1173                       unsigned long dirtied,
1174                       unsigned long elapsed)
1175 {
1176     struct bdi_writeback *wb = dtc->wb;
1177     unsigned long dirty = dtc->dirty;
1178     unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1179     unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1180     unsigned long setpoint = (freerun + limit) / 2;
1181     unsigned long write_bw = wb->avg_write_bandwidth;
1182     unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1183     unsigned long dirty_rate;
1184     unsigned long task_ratelimit;
1185     unsigned long balanced_dirty_ratelimit;
1186     unsigned long step;
1187     unsigned long x;
1188     unsigned long shift;
1189 
1190     /*
1191      * The dirty rate will match the writeout rate in long term, except
1192      * when dirty pages are truncated by userspace or re-dirtied by FS.
1193      */
1194     dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1195 
1196     /*
1197      * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1198      */
1199     task_ratelimit = (u64)dirty_ratelimit *
1200                     dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1201     task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1202 
1203     /*
1204      * A linear estimation of the "balanced" throttle rate. The theory is,
1205      * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1206      * dirty_rate will be measured to be (N * task_ratelimit). So the below
1207      * formula will yield the balanced rate limit (write_bw / N).
1208      *
1209      * Note that the expanded form is not a pure rate feedback:
1210      *  rate_(i+1) = rate_(i) * (write_bw / dirty_rate)          (1)
1211      * but also takes pos_ratio into account:
1212      *  rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1213      *
1214      * (1) is not realistic because pos_ratio also takes part in balancing
1215      * the dirty rate.  Consider the state
1216      *  pos_ratio = 0.5                          (3)
1217      *  rate = 2 * (write_bw / N)                    (4)
1218      * If (1) is used, it will stuck in that state! Because each dd will
1219      * be throttled at
1220      *  task_ratelimit = pos_ratio * rate = (write_bw / N)       (5)
1221      * yielding
1222      *  dirty_rate = N * task_ratelimit = write_bw           (6)
1223      * put (6) into (1) we get
1224      *  rate_(i+1) = rate_(i)                        (7)
1225      *
1226      * So we end up using (2) to always keep
1227      *  rate_(i+1) ~= (write_bw / N)                     (8)
1228      * regardless of the value of pos_ratio. As long as (8) is satisfied,
1229      * pos_ratio is able to drive itself to 1.0, which is not only where
1230      * the dirty count meet the setpoint, but also where the slope of
1231      * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1232      */
1233     balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1234                        dirty_rate | 1);
1235     /*
1236      * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1237      */
1238     if (unlikely(balanced_dirty_ratelimit > write_bw))
1239         balanced_dirty_ratelimit = write_bw;
1240 
1241     /*
1242      * We could safely do this and return immediately:
1243      *
1244      *  wb->dirty_ratelimit = balanced_dirty_ratelimit;
1245      *
1246      * However to get a more stable dirty_ratelimit, the below elaborated
1247      * code makes use of task_ratelimit to filter out singular points and
1248      * limit the step size.
1249      *
1250      * The below code essentially only uses the relative value of
1251      *
1252      *  task_ratelimit - dirty_ratelimit
1253      *  = (pos_ratio - 1) * dirty_ratelimit
1254      *
1255      * which reflects the direction and size of dirty position error.
1256      */
1257 
1258     /*
1259      * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1260      * task_ratelimit is on the same side of dirty_ratelimit, too.
1261      * For example, when
1262      * - dirty_ratelimit > balanced_dirty_ratelimit
1263      * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1264      * lowering dirty_ratelimit will help meet both the position and rate
1265      * control targets. Otherwise, don't update dirty_ratelimit if it will
1266      * only help meet the rate target. After all, what the users ultimately
1267      * feel and care are stable dirty rate and small position error.
1268      *
1269      * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1270      * and filter out the singular points of balanced_dirty_ratelimit. Which
1271      * keeps jumping around randomly and can even leap far away at times
1272      * due to the small 200ms estimation period of dirty_rate (we want to
1273      * keep that period small to reduce time lags).
1274      */
1275     step = 0;
1276 
1277     /*
1278      * For strictlimit case, calculations above were based on wb counters
1279      * and limits (starting from pos_ratio = wb_position_ratio() and up to
1280      * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1281      * Hence, to calculate "step" properly, we have to use wb_dirty as
1282      * "dirty" and wb_setpoint as "setpoint".
1283      *
1284      * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1285      * it's possible that wb_thresh is close to zero due to inactivity
1286      * of backing device.
1287      */
1288     if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1289         dirty = dtc->wb_dirty;
1290         if (dtc->wb_dirty < 8)
1291             setpoint = dtc->wb_dirty + 1;
1292         else
1293             setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1294     }
1295 
1296     if (dirty < setpoint) {
1297         x = min3(wb->balanced_dirty_ratelimit,
1298              balanced_dirty_ratelimit, task_ratelimit);
1299         if (dirty_ratelimit < x)
1300             step = x - dirty_ratelimit;
1301     } else {
1302         x = max3(wb->balanced_dirty_ratelimit,
1303              balanced_dirty_ratelimit, task_ratelimit);
1304         if (dirty_ratelimit > x)
1305             step = dirty_ratelimit - x;
1306     }
1307 
1308     /*
1309      * Don't pursue 100% rate matching. It's impossible since the balanced
1310      * rate itself is constantly fluctuating. So decrease the track speed
1311      * when it gets close to the target. Helps eliminate pointless tremors.
1312      */
1313     shift = dirty_ratelimit / (2 * step + 1);
1314     if (shift < BITS_PER_LONG)
1315         step = DIV_ROUND_UP(step >> shift, 8);
1316     else
1317         step = 0;
1318 
1319     if (dirty_ratelimit < balanced_dirty_ratelimit)
1320         dirty_ratelimit += step;
1321     else
1322         dirty_ratelimit -= step;
1323 
1324     WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1325     wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1326 
1327     trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1328 }
1329 
1330 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1331                   struct dirty_throttle_control *mdtc,
1332                   bool update_ratelimit)
1333 {
1334     struct bdi_writeback *wb = gdtc->wb;
1335     unsigned long now = jiffies;
1336     unsigned long elapsed;
1337     unsigned long dirtied;
1338     unsigned long written;
1339 
1340     spin_lock(&wb->list_lock);
1341 
1342     /*
1343      * Lockless checks for elapsed time are racy and delayed update after
1344      * IO completion doesn't do it at all (to make sure written pages are
1345      * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1346      * division errors.
1347      */
1348     elapsed = max(now - wb->bw_time_stamp, 1UL);
1349     dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1350     written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1351 
1352     if (update_ratelimit) {
1353         domain_update_dirty_limit(gdtc, now);
1354         wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1355 
1356         /*
1357          * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1358          * compiler has no way to figure that out.  Help it.
1359          */
1360         if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1361             domain_update_dirty_limit(mdtc, now);
1362             wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1363         }
1364     }
1365     wb_update_write_bandwidth(wb, elapsed, written);
1366 
1367     wb->dirtied_stamp = dirtied;
1368     wb->written_stamp = written;
1369     WRITE_ONCE(wb->bw_time_stamp, now);
1370     spin_unlock(&wb->list_lock);
1371 }
1372 
1373 void wb_update_bandwidth(struct bdi_writeback *wb)
1374 {
1375     struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1376 
1377     __wb_update_bandwidth(&gdtc, NULL, false);
1378 }
1379 
1380 /* Interval after which we consider wb idle and don't estimate bandwidth */
1381 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1382 
1383 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1384 {
1385     unsigned long now = jiffies;
1386     unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1387 
1388     if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1389         !atomic_read(&wb->writeback_inodes)) {
1390         spin_lock(&wb->list_lock);
1391         wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1392         wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1393         WRITE_ONCE(wb->bw_time_stamp, now);
1394         spin_unlock(&wb->list_lock);
1395     }
1396 }
1397 
1398 /*
1399  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1400  * will look to see if it needs to start dirty throttling.
1401  *
1402  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1403  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1404  * (the number of pages we may dirty without exceeding the dirty limits).
1405  */
1406 static unsigned long dirty_poll_interval(unsigned long dirty,
1407                      unsigned long thresh)
1408 {
1409     if (thresh > dirty)
1410         return 1UL << (ilog2(thresh - dirty) >> 1);
1411 
1412     return 1;
1413 }
1414 
1415 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1416                   unsigned long wb_dirty)
1417 {
1418     unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1419     unsigned long t;
1420 
1421     /*
1422      * Limit pause time for small memory systems. If sleeping for too long
1423      * time, a small pool of dirty/writeback pages may go empty and disk go
1424      * idle.
1425      *
1426      * 8 serves as the safety ratio.
1427      */
1428     t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1429     t++;
1430 
1431     return min_t(unsigned long, t, MAX_PAUSE);
1432 }
1433 
1434 static long wb_min_pause(struct bdi_writeback *wb,
1435              long max_pause,
1436              unsigned long task_ratelimit,
1437              unsigned long dirty_ratelimit,
1438              int *nr_dirtied_pause)
1439 {
1440     long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1441     long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1442     long t;     /* target pause */
1443     long pause; /* estimated next pause */
1444     int pages;  /* target nr_dirtied_pause */
1445 
1446     /* target for 10ms pause on 1-dd case */
1447     t = max(1, HZ / 100);
1448 
1449     /*
1450      * Scale up pause time for concurrent dirtiers in order to reduce CPU
1451      * overheads.
1452      *
1453      * (N * 10ms) on 2^N concurrent tasks.
1454      */
1455     if (hi > lo)
1456         t += (hi - lo) * (10 * HZ) / 1024;
1457 
1458     /*
1459      * This is a bit convoluted. We try to base the next nr_dirtied_pause
1460      * on the much more stable dirty_ratelimit. However the next pause time
1461      * will be computed based on task_ratelimit and the two rate limits may
1462      * depart considerably at some time. Especially if task_ratelimit goes
1463      * below dirty_ratelimit/2 and the target pause is max_pause, the next
1464      * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1465      * result task_ratelimit won't be executed faithfully, which could
1466      * eventually bring down dirty_ratelimit.
1467      *
1468      * We apply two rules to fix it up:
1469      * 1) try to estimate the next pause time and if necessary, use a lower
1470      *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1471      *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1472      * 2) limit the target pause time to max_pause/2, so that the normal
1473      *    small fluctuations of task_ratelimit won't trigger rule (1) and
1474      *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1475      */
1476     t = min(t, 1 + max_pause / 2);
1477     pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1478 
1479     /*
1480      * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1481      * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1482      * When the 16 consecutive reads are often interrupted by some dirty
1483      * throttling pause during the async writes, cfq will go into idles
1484      * (deadline is fine). So push nr_dirtied_pause as high as possible
1485      * until reaches DIRTY_POLL_THRESH=32 pages.
1486      */
1487     if (pages < DIRTY_POLL_THRESH) {
1488         t = max_pause;
1489         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1490         if (pages > DIRTY_POLL_THRESH) {
1491             pages = DIRTY_POLL_THRESH;
1492             t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1493         }
1494     }
1495 
1496     pause = HZ * pages / (task_ratelimit + 1);
1497     if (pause > max_pause) {
1498         t = max_pause;
1499         pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1500     }
1501 
1502     *nr_dirtied_pause = pages;
1503     /*
1504      * The minimal pause time will normally be half the target pause time.
1505      */
1506     return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1507 }
1508 
1509 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1510 {
1511     struct bdi_writeback *wb = dtc->wb;
1512     unsigned long wb_reclaimable;
1513 
1514     /*
1515      * wb_thresh is not treated as some limiting factor as
1516      * dirty_thresh, due to reasons
1517      * - in JBOD setup, wb_thresh can fluctuate a lot
1518      * - in a system with HDD and USB key, the USB key may somehow
1519      *   go into state (wb_dirty >> wb_thresh) either because
1520      *   wb_dirty starts high, or because wb_thresh drops low.
1521      *   In this case we don't want to hard throttle the USB key
1522      *   dirtiers for 100 seconds until wb_dirty drops under
1523      *   wb_thresh. Instead the auxiliary wb control line in
1524      *   wb_position_ratio() will let the dirtier task progress
1525      *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1526      */
1527     dtc->wb_thresh = __wb_calc_thresh(dtc);
1528     dtc->wb_bg_thresh = dtc->thresh ?
1529         div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1530 
1531     /*
1532      * In order to avoid the stacked BDI deadlock we need
1533      * to ensure we accurately count the 'dirty' pages when
1534      * the threshold is low.
1535      *
1536      * Otherwise it would be possible to get thresh+n pages
1537      * reported dirty, even though there are thresh-m pages
1538      * actually dirty; with m+n sitting in the percpu
1539      * deltas.
1540      */
1541     if (dtc->wb_thresh < 2 * wb_stat_error()) {
1542         wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1543         dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1544     } else {
1545         wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1546         dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1547     }
1548 }
1549 
1550 /*
1551  * balance_dirty_pages() must be called by processes which are generating dirty
1552  * data.  It looks at the number of dirty pages in the machine and will force
1553  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1554  * If we're over `background_thresh' then the writeback threads are woken to
1555  * perform some writeout.
1556  */
1557 static int balance_dirty_pages(struct bdi_writeback *wb,
1558                    unsigned long pages_dirtied, unsigned int flags)
1559 {
1560     struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1561     struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1562     struct dirty_throttle_control * const gdtc = &gdtc_stor;
1563     struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1564                              &mdtc_stor : NULL;
1565     struct dirty_throttle_control *sdtc;
1566     unsigned long nr_reclaimable;   /* = file_dirty */
1567     long period;
1568     long pause;
1569     long max_pause;
1570     long min_pause;
1571     int nr_dirtied_pause;
1572     bool dirty_exceeded = false;
1573     unsigned long task_ratelimit;
1574     unsigned long dirty_ratelimit;
1575     struct backing_dev_info *bdi = wb->bdi;
1576     bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1577     unsigned long start_time = jiffies;
1578     int ret = 0;
1579 
1580     for (;;) {
1581         unsigned long now = jiffies;
1582         unsigned long dirty, thresh, bg_thresh;
1583         unsigned long m_dirty = 0;  /* stop bogus uninit warnings */
1584         unsigned long m_thresh = 0;
1585         unsigned long m_bg_thresh = 0;
1586 
1587         nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1588         gdtc->avail = global_dirtyable_memory();
1589         gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1590 
1591         domain_dirty_limits(gdtc);
1592 
1593         if (unlikely(strictlimit)) {
1594             wb_dirty_limits(gdtc);
1595 
1596             dirty = gdtc->wb_dirty;
1597             thresh = gdtc->wb_thresh;
1598             bg_thresh = gdtc->wb_bg_thresh;
1599         } else {
1600             dirty = gdtc->dirty;
1601             thresh = gdtc->thresh;
1602             bg_thresh = gdtc->bg_thresh;
1603         }
1604 
1605         if (mdtc) {
1606             unsigned long filepages, headroom, writeback;
1607 
1608             /*
1609              * If @wb belongs to !root memcg, repeat the same
1610              * basic calculations for the memcg domain.
1611              */
1612             mem_cgroup_wb_stats(wb, &filepages, &headroom,
1613                         &mdtc->dirty, &writeback);
1614             mdtc->dirty += writeback;
1615             mdtc_calc_avail(mdtc, filepages, headroom);
1616 
1617             domain_dirty_limits(mdtc);
1618 
1619             if (unlikely(strictlimit)) {
1620                 wb_dirty_limits(mdtc);
1621                 m_dirty = mdtc->wb_dirty;
1622                 m_thresh = mdtc->wb_thresh;
1623                 m_bg_thresh = mdtc->wb_bg_thresh;
1624             } else {
1625                 m_dirty = mdtc->dirty;
1626                 m_thresh = mdtc->thresh;
1627                 m_bg_thresh = mdtc->bg_thresh;
1628             }
1629         }
1630 
1631         /*
1632          * In laptop mode, we wait until hitting the higher threshold
1633          * before starting background writeout, and then write out all
1634          * the way down to the lower threshold.  So slow writers cause
1635          * minimal disk activity.
1636          *
1637          * In normal mode, we start background writeout at the lower
1638          * background_thresh, to keep the amount of dirty memory low.
1639          */
1640         if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
1641             !writeback_in_progress(wb))
1642             wb_start_background_writeback(wb);
1643 
1644         /*
1645          * Throttle it only when the background writeback cannot
1646          * catch-up. This avoids (excessively) small writeouts
1647          * when the wb limits are ramping up in case of !strictlimit.
1648          *
1649          * In strictlimit case make decision based on the wb counters
1650          * and limits. Small writeouts when the wb limits are ramping
1651          * up are the price we consciously pay for strictlimit-ing.
1652          *
1653          * If memcg domain is in effect, @dirty should be under
1654          * both global and memcg freerun ceilings.
1655          */
1656         if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1657             (!mdtc ||
1658              m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1659             unsigned long intv;
1660             unsigned long m_intv;
1661 
1662 free_running:
1663             intv = dirty_poll_interval(dirty, thresh);
1664             m_intv = ULONG_MAX;
1665 
1666             current->dirty_paused_when = now;
1667             current->nr_dirtied = 0;
1668             if (mdtc)
1669                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1670             current->nr_dirtied_pause = min(intv, m_intv);
1671             break;
1672         }
1673 
1674         /* Start writeback even when in laptop mode */
1675         if (unlikely(!writeback_in_progress(wb)))
1676             wb_start_background_writeback(wb);
1677 
1678         mem_cgroup_flush_foreign(wb);
1679 
1680         /*
1681          * Calculate global domain's pos_ratio and select the
1682          * global dtc by default.
1683          */
1684         if (!strictlimit) {
1685             wb_dirty_limits(gdtc);
1686 
1687             if ((current->flags & PF_LOCAL_THROTTLE) &&
1688                 gdtc->wb_dirty <
1689                 dirty_freerun_ceiling(gdtc->wb_thresh,
1690                           gdtc->wb_bg_thresh))
1691                 /*
1692                  * LOCAL_THROTTLE tasks must not be throttled
1693                  * when below the per-wb freerun ceiling.
1694                  */
1695                 goto free_running;
1696         }
1697 
1698         dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1699             ((gdtc->dirty > gdtc->thresh) || strictlimit);
1700 
1701         wb_position_ratio(gdtc);
1702         sdtc = gdtc;
1703 
1704         if (mdtc) {
1705             /*
1706              * If memcg domain is in effect, calculate its
1707              * pos_ratio.  @wb should satisfy constraints from
1708              * both global and memcg domains.  Choose the one
1709              * w/ lower pos_ratio.
1710              */
1711             if (!strictlimit) {
1712                 wb_dirty_limits(mdtc);
1713 
1714                 if ((current->flags & PF_LOCAL_THROTTLE) &&
1715                     mdtc->wb_dirty <
1716                     dirty_freerun_ceiling(mdtc->wb_thresh,
1717                               mdtc->wb_bg_thresh))
1718                     /*
1719                      * LOCAL_THROTTLE tasks must not be
1720                      * throttled when below the per-wb
1721                      * freerun ceiling.
1722                      */
1723                     goto free_running;
1724             }
1725             dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1726                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1727 
1728             wb_position_ratio(mdtc);
1729             if (mdtc->pos_ratio < gdtc->pos_ratio)
1730                 sdtc = mdtc;
1731         }
1732 
1733         if (dirty_exceeded != wb->dirty_exceeded)
1734             wb->dirty_exceeded = dirty_exceeded;
1735 
1736         if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1737                        BANDWIDTH_INTERVAL))
1738             __wb_update_bandwidth(gdtc, mdtc, true);
1739 
1740         /* throttle according to the chosen dtc */
1741         dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1742         task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1743                             RATELIMIT_CALC_SHIFT;
1744         max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1745         min_pause = wb_min_pause(wb, max_pause,
1746                      task_ratelimit, dirty_ratelimit,
1747                      &nr_dirtied_pause);
1748 
1749         if (unlikely(task_ratelimit == 0)) {
1750             period = max_pause;
1751             pause = max_pause;
1752             goto pause;
1753         }
1754         period = HZ * pages_dirtied / task_ratelimit;
1755         pause = period;
1756         if (current->dirty_paused_when)
1757             pause -= now - current->dirty_paused_when;
1758         /*
1759          * For less than 1s think time (ext3/4 may block the dirtier
1760          * for up to 800ms from time to time on 1-HDD; so does xfs,
1761          * however at much less frequency), try to compensate it in
1762          * future periods by updating the virtual time; otherwise just
1763          * do a reset, as it may be a light dirtier.
1764          */
1765         if (pause < min_pause) {
1766             trace_balance_dirty_pages(wb,
1767                           sdtc->thresh,
1768                           sdtc->bg_thresh,
1769                           sdtc->dirty,
1770                           sdtc->wb_thresh,
1771                           sdtc->wb_dirty,
1772                           dirty_ratelimit,
1773                           task_ratelimit,
1774                           pages_dirtied,
1775                           period,
1776                           min(pause, 0L),
1777                           start_time);
1778             if (pause < -HZ) {
1779                 current->dirty_paused_when = now;
1780                 current->nr_dirtied = 0;
1781             } else if (period) {
1782                 current->dirty_paused_when += period;
1783                 current->nr_dirtied = 0;
1784             } else if (current->nr_dirtied_pause <= pages_dirtied)
1785                 current->nr_dirtied_pause += pages_dirtied;
1786             break;
1787         }
1788         if (unlikely(pause > max_pause)) {
1789             /* for occasional dropped task_ratelimit */
1790             now += min(pause - max_pause, max_pause);
1791             pause = max_pause;
1792         }
1793 
1794 pause:
1795         trace_balance_dirty_pages(wb,
1796                       sdtc->thresh,
1797                       sdtc->bg_thresh,
1798                       sdtc->dirty,
1799                       sdtc->wb_thresh,
1800                       sdtc->wb_dirty,
1801                       dirty_ratelimit,
1802                       task_ratelimit,
1803                       pages_dirtied,
1804                       period,
1805                       pause,
1806                       start_time);
1807         if (flags & BDP_ASYNC) {
1808             ret = -EAGAIN;
1809             break;
1810         }
1811         __set_current_state(TASK_KILLABLE);
1812         wb->dirty_sleep = now;
1813         io_schedule_timeout(pause);
1814 
1815         current->dirty_paused_when = now + pause;
1816         current->nr_dirtied = 0;
1817         current->nr_dirtied_pause = nr_dirtied_pause;
1818 
1819         /*
1820          * This is typically equal to (dirty < thresh) and can also
1821          * keep "1000+ dd on a slow USB stick" under control.
1822          */
1823         if (task_ratelimit)
1824             break;
1825 
1826         /*
1827          * In the case of an unresponsive NFS server and the NFS dirty
1828          * pages exceeds dirty_thresh, give the other good wb's a pipe
1829          * to go through, so that tasks on them still remain responsive.
1830          *
1831          * In theory 1 page is enough to keep the consumer-producer
1832          * pipe going: the flusher cleans 1 page => the task dirties 1
1833          * more page. However wb_dirty has accounting errors.  So use
1834          * the larger and more IO friendly wb_stat_error.
1835          */
1836         if (sdtc->wb_dirty <= wb_stat_error())
1837             break;
1838 
1839         if (fatal_signal_pending(current))
1840             break;
1841     }
1842     return ret;
1843 }
1844 
1845 static DEFINE_PER_CPU(int, bdp_ratelimits);
1846 
1847 /*
1848  * Normal tasks are throttled by
1849  *  loop {
1850  *      dirty tsk->nr_dirtied_pause pages;
1851  *      take a snap in balance_dirty_pages();
1852  *  }
1853  * However there is a worst case. If every task exit immediately when dirtied
1854  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1855  * called to throttle the page dirties. The solution is to save the not yet
1856  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1857  * randomly into the running tasks. This works well for the above worst case,
1858  * as the new task will pick up and accumulate the old task's leaked dirty
1859  * count and eventually get throttled.
1860  */
1861 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1862 
1863 /**
1864  * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
1865  * @mapping: address_space which was dirtied.
1866  * @flags: BDP flags.
1867  *
1868  * Processes which are dirtying memory should call in here once for each page
1869  * which was newly dirtied.  The function will periodically check the system's
1870  * dirty state and will initiate writeback if needed.
1871  *
1872  * See balance_dirty_pages_ratelimited() for details.
1873  *
1874  * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
1875  * indicate that memory is out of balance and the caller must wait
1876  * for I/O to complete.  Otherwise, it will return 0 to indicate
1877  * that either memory was already in balance, or it was able to sleep
1878  * until the amount of dirty memory returned to balance.
1879  */
1880 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
1881                     unsigned int flags)
1882 {
1883     struct inode *inode = mapping->host;
1884     struct backing_dev_info *bdi = inode_to_bdi(inode);
1885     struct bdi_writeback *wb = NULL;
1886     int ratelimit;
1887     int ret = 0;
1888     int *p;
1889 
1890     if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1891         return ret;
1892 
1893     if (inode_cgwb_enabled(inode))
1894         wb = wb_get_create_current(bdi, GFP_KERNEL);
1895     if (!wb)
1896         wb = &bdi->wb;
1897 
1898     ratelimit = current->nr_dirtied_pause;
1899     if (wb->dirty_exceeded)
1900         ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1901 
1902     preempt_disable();
1903     /*
1904      * This prevents one CPU to accumulate too many dirtied pages without
1905      * calling into balance_dirty_pages(), which can happen when there are
1906      * 1000+ tasks, all of them start dirtying pages at exactly the same
1907      * time, hence all honoured too large initial task->nr_dirtied_pause.
1908      */
1909     p =  this_cpu_ptr(&bdp_ratelimits);
1910     if (unlikely(current->nr_dirtied >= ratelimit))
1911         *p = 0;
1912     else if (unlikely(*p >= ratelimit_pages)) {
1913         *p = 0;
1914         ratelimit = 0;
1915     }
1916     /*
1917      * Pick up the dirtied pages by the exited tasks. This avoids lots of
1918      * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1919      * the dirty throttling and livelock other long-run dirtiers.
1920      */
1921     p = this_cpu_ptr(&dirty_throttle_leaks);
1922     if (*p > 0 && current->nr_dirtied < ratelimit) {
1923         unsigned long nr_pages_dirtied;
1924         nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1925         *p -= nr_pages_dirtied;
1926         current->nr_dirtied += nr_pages_dirtied;
1927     }
1928     preempt_enable();
1929 
1930     if (unlikely(current->nr_dirtied >= ratelimit))
1931         ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
1932 
1933     wb_put(wb);
1934     return ret;
1935 }
1936 
1937 /**
1938  * balance_dirty_pages_ratelimited - balance dirty memory state.
1939  * @mapping: address_space which was dirtied.
1940  *
1941  * Processes which are dirtying memory should call in here once for each page
1942  * which was newly dirtied.  The function will periodically check the system's
1943  * dirty state and will initiate writeback if needed.
1944  *
1945  * Once we're over the dirty memory limit we decrease the ratelimiting
1946  * by a lot, to prevent individual processes from overshooting the limit
1947  * by (ratelimit_pages) each.
1948  */
1949 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1950 {
1951     balance_dirty_pages_ratelimited_flags(mapping, 0);
1952 }
1953 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1954 
1955 /**
1956  * wb_over_bg_thresh - does @wb need to be written back?
1957  * @wb: bdi_writeback of interest
1958  *
1959  * Determines whether background writeback should keep writing @wb or it's
1960  * clean enough.
1961  *
1962  * Return: %true if writeback should continue.
1963  */
1964 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1965 {
1966     struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1967     struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1968     struct dirty_throttle_control * const gdtc = &gdtc_stor;
1969     struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1970                              &mdtc_stor : NULL;
1971     unsigned long reclaimable;
1972     unsigned long thresh;
1973 
1974     /*
1975      * Similar to balance_dirty_pages() but ignores pages being written
1976      * as we're trying to decide whether to put more under writeback.
1977      */
1978     gdtc->avail = global_dirtyable_memory();
1979     gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1980     domain_dirty_limits(gdtc);
1981 
1982     if (gdtc->dirty > gdtc->bg_thresh)
1983         return true;
1984 
1985     thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
1986     if (thresh < 2 * wb_stat_error())
1987         reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1988     else
1989         reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1990 
1991     if (reclaimable > thresh)
1992         return true;
1993 
1994     if (mdtc) {
1995         unsigned long filepages, headroom, writeback;
1996 
1997         mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1998                     &writeback);
1999         mdtc_calc_avail(mdtc, filepages, headroom);
2000         domain_dirty_limits(mdtc);  /* ditto, ignore writeback */
2001 
2002         if (mdtc->dirty > mdtc->bg_thresh)
2003             return true;
2004 
2005         thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
2006         if (thresh < 2 * wb_stat_error())
2007             reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2008         else
2009             reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2010 
2011         if (reclaimable > thresh)
2012             return true;
2013     }
2014 
2015     return false;
2016 }
2017 
2018 #ifdef CONFIG_SYSCTL
2019 /*
2020  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2021  */
2022 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2023         void *buffer, size_t *length, loff_t *ppos)
2024 {
2025     unsigned int old_interval = dirty_writeback_interval;
2026     int ret;
2027 
2028     ret = proc_dointvec(table, write, buffer, length, ppos);
2029 
2030     /*
2031      * Writing 0 to dirty_writeback_interval will disable periodic writeback
2032      * and a different non-zero value will wakeup the writeback threads.
2033      * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2034      * iterate over all bdis and wbs.
2035      * The reason we do this is to make the change take effect immediately.
2036      */
2037     if (!ret && write && dirty_writeback_interval &&
2038         dirty_writeback_interval != old_interval)
2039         wakeup_flusher_threads(WB_REASON_PERIODIC);
2040 
2041     return ret;
2042 }
2043 #endif
2044 
2045 void laptop_mode_timer_fn(struct timer_list *t)
2046 {
2047     struct backing_dev_info *backing_dev_info =
2048         from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2049 
2050     wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2051 }
2052 
2053 /*
2054  * We've spun up the disk and we're in laptop mode: schedule writeback
2055  * of all dirty data a few seconds from now.  If the flush is already scheduled
2056  * then push it back - the user is still using the disk.
2057  */
2058 void laptop_io_completion(struct backing_dev_info *info)
2059 {
2060     mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2061 }
2062 
2063 /*
2064  * We're in laptop mode and we've just synced. The sync's writes will have
2065  * caused another writeback to be scheduled by laptop_io_completion.
2066  * Nothing needs to be written back anymore, so we unschedule the writeback.
2067  */
2068 void laptop_sync_completion(void)
2069 {
2070     struct backing_dev_info *bdi;
2071 
2072     rcu_read_lock();
2073 
2074     list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2075         del_timer(&bdi->laptop_mode_wb_timer);
2076 
2077     rcu_read_unlock();
2078 }
2079 
2080 /*
2081  * If ratelimit_pages is too high then we can get into dirty-data overload
2082  * if a large number of processes all perform writes at the same time.
2083  *
2084  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2085  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2086  * thresholds.
2087  */
2088 
2089 void writeback_set_ratelimit(void)
2090 {
2091     struct wb_domain *dom = &global_wb_domain;
2092     unsigned long background_thresh;
2093     unsigned long dirty_thresh;
2094 
2095     global_dirty_limits(&background_thresh, &dirty_thresh);
2096     dom->dirty_limit = dirty_thresh;
2097     ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2098     if (ratelimit_pages < 16)
2099         ratelimit_pages = 16;
2100 }
2101 
2102 static int page_writeback_cpu_online(unsigned int cpu)
2103 {
2104     writeback_set_ratelimit();
2105     return 0;
2106 }
2107 
2108 #ifdef CONFIG_SYSCTL
2109 
2110 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2111 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2112 
2113 static struct ctl_table vm_page_writeback_sysctls[] = {
2114     {
2115         .procname   = "dirty_background_ratio",
2116         .data       = &dirty_background_ratio,
2117         .maxlen     = sizeof(dirty_background_ratio),
2118         .mode       = 0644,
2119         .proc_handler   = dirty_background_ratio_handler,
2120         .extra1     = SYSCTL_ZERO,
2121         .extra2     = SYSCTL_ONE_HUNDRED,
2122     },
2123     {
2124         .procname   = "dirty_background_bytes",
2125         .data       = &dirty_background_bytes,
2126         .maxlen     = sizeof(dirty_background_bytes),
2127         .mode       = 0644,
2128         .proc_handler   = dirty_background_bytes_handler,
2129         .extra1     = SYSCTL_LONG_ONE,
2130     },
2131     {
2132         .procname   = "dirty_ratio",
2133         .data       = &vm_dirty_ratio,
2134         .maxlen     = sizeof(vm_dirty_ratio),
2135         .mode       = 0644,
2136         .proc_handler   = dirty_ratio_handler,
2137         .extra1     = SYSCTL_ZERO,
2138         .extra2     = SYSCTL_ONE_HUNDRED,
2139     },
2140     {
2141         .procname   = "dirty_bytes",
2142         .data       = &vm_dirty_bytes,
2143         .maxlen     = sizeof(vm_dirty_bytes),
2144         .mode       = 0644,
2145         .proc_handler   = dirty_bytes_handler,
2146         .extra1     = (void *)&dirty_bytes_min,
2147     },
2148     {
2149         .procname   = "dirty_writeback_centisecs",
2150         .data       = &dirty_writeback_interval,
2151         .maxlen     = sizeof(dirty_writeback_interval),
2152         .mode       = 0644,
2153         .proc_handler   = dirty_writeback_centisecs_handler,
2154     },
2155     {
2156         .procname   = "dirty_expire_centisecs",
2157         .data       = &dirty_expire_interval,
2158         .maxlen     = sizeof(dirty_expire_interval),
2159         .mode       = 0644,
2160         .proc_handler   = proc_dointvec_minmax,
2161         .extra1     = SYSCTL_ZERO,
2162     },
2163 #ifdef CONFIG_HIGHMEM
2164     {
2165         .procname   = "highmem_is_dirtyable",
2166         .data       = &vm_highmem_is_dirtyable,
2167         .maxlen     = sizeof(vm_highmem_is_dirtyable),
2168         .mode       = 0644,
2169         .proc_handler   = proc_dointvec_minmax,
2170         .extra1     = SYSCTL_ZERO,
2171         .extra2     = SYSCTL_ONE,
2172     },
2173 #endif
2174     {
2175         .procname   = "laptop_mode",
2176         .data       = &laptop_mode,
2177         .maxlen     = sizeof(laptop_mode),
2178         .mode       = 0644,
2179         .proc_handler   = proc_dointvec_jiffies,
2180     },
2181     {}
2182 };
2183 #endif
2184 
2185 /*
2186  * Called early on to tune the page writeback dirty limits.
2187  *
2188  * We used to scale dirty pages according to how total memory
2189  * related to pages that could be allocated for buffers.
2190  *
2191  * However, that was when we used "dirty_ratio" to scale with
2192  * all memory, and we don't do that any more. "dirty_ratio"
2193  * is now applied to total non-HIGHPAGE memory, and as such we can't
2194  * get into the old insane situation any more where we had
2195  * large amounts of dirty pages compared to a small amount of
2196  * non-HIGHMEM memory.
2197  *
2198  * But we might still want to scale the dirty_ratio by how
2199  * much memory the box has..
2200  */
2201 void __init page_writeback_init(void)
2202 {
2203     BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2204 
2205     cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2206               page_writeback_cpu_online, NULL);
2207     cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2208               page_writeback_cpu_online);
2209 #ifdef CONFIG_SYSCTL
2210     register_sysctl_init("vm", vm_page_writeback_sysctls);
2211 #endif
2212 }
2213 
2214 /**
2215  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2216  * @mapping: address space structure to write
2217  * @start: starting page index
2218  * @end: ending page index (inclusive)
2219  *
2220  * This function scans the page range from @start to @end (inclusive) and tags
2221  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2222  * that write_cache_pages (or whoever calls this function) will then use
2223  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2224  * used to avoid livelocking of writeback by a process steadily creating new
2225  * dirty pages in the file (thus it is important for this function to be quick
2226  * so that it can tag pages faster than a dirtying process can create them).
2227  */
2228 void tag_pages_for_writeback(struct address_space *mapping,
2229                  pgoff_t start, pgoff_t end)
2230 {
2231     XA_STATE(xas, &mapping->i_pages, start);
2232     unsigned int tagged = 0;
2233     void *page;
2234 
2235     xas_lock_irq(&xas);
2236     xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2237         xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2238         if (++tagged % XA_CHECK_SCHED)
2239             continue;
2240 
2241         xas_pause(&xas);
2242         xas_unlock_irq(&xas);
2243         cond_resched();
2244         xas_lock_irq(&xas);
2245     }
2246     xas_unlock_irq(&xas);
2247 }
2248 EXPORT_SYMBOL(tag_pages_for_writeback);
2249 
2250 /**
2251  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2252  * @mapping: address space structure to write
2253  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2254  * @writepage: function called for each page
2255  * @data: data passed to writepage function
2256  *
2257  * If a page is already under I/O, write_cache_pages() skips it, even
2258  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2259  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2260  * and msync() need to guarantee that all the data which was dirty at the time
2261  * the call was made get new I/O started against them.  If wbc->sync_mode is
2262  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2263  * existing IO to complete.
2264  *
2265  * To avoid livelocks (when other process dirties new pages), we first tag
2266  * pages which should be written back with TOWRITE tag and only then start
2267  * writing them. For data-integrity sync we have to be careful so that we do
2268  * not miss some pages (e.g., because some other process has cleared TOWRITE
2269  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2270  * by the process clearing the DIRTY tag (and submitting the page for IO).
2271  *
2272  * To avoid deadlocks between range_cyclic writeback and callers that hold
2273  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2274  * we do not loop back to the start of the file. Doing so causes a page
2275  * lock/page writeback access order inversion - we should only ever lock
2276  * multiple pages in ascending page->index order, and looping back to the start
2277  * of the file violates that rule and causes deadlocks.
2278  *
2279  * Return: %0 on success, negative error code otherwise
2280  */
2281 int write_cache_pages(struct address_space *mapping,
2282               struct writeback_control *wbc, writepage_t writepage,
2283               void *data)
2284 {
2285     int ret = 0;
2286     int done = 0;
2287     int error;
2288     struct pagevec pvec;
2289     int nr_pages;
2290     pgoff_t index;
2291     pgoff_t end;        /* Inclusive */
2292     pgoff_t done_index;
2293     int range_whole = 0;
2294     xa_mark_t tag;
2295 
2296     pagevec_init(&pvec);
2297     if (wbc->range_cyclic) {
2298         index = mapping->writeback_index; /* prev offset */
2299         end = -1;
2300     } else {
2301         index = wbc->range_start >> PAGE_SHIFT;
2302         end = wbc->range_end >> PAGE_SHIFT;
2303         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2304             range_whole = 1;
2305     }
2306     if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2307         tag_pages_for_writeback(mapping, index, end);
2308         tag = PAGECACHE_TAG_TOWRITE;
2309     } else {
2310         tag = PAGECACHE_TAG_DIRTY;
2311     }
2312     done_index = index;
2313     while (!done && (index <= end)) {
2314         int i;
2315 
2316         nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2317                 tag);
2318         if (nr_pages == 0)
2319             break;
2320 
2321         for (i = 0; i < nr_pages; i++) {
2322             struct page *page = pvec.pages[i];
2323 
2324             done_index = page->index;
2325 
2326             lock_page(page);
2327 
2328             /*
2329              * Page truncated or invalidated. We can freely skip it
2330              * then, even for data integrity operations: the page
2331              * has disappeared concurrently, so there could be no
2332              * real expectation of this data integrity operation
2333              * even if there is now a new, dirty page at the same
2334              * pagecache address.
2335              */
2336             if (unlikely(page->mapping != mapping)) {
2337 continue_unlock:
2338                 unlock_page(page);
2339                 continue;
2340             }
2341 
2342             if (!PageDirty(page)) {
2343                 /* someone wrote it for us */
2344                 goto continue_unlock;
2345             }
2346 
2347             if (PageWriteback(page)) {
2348                 if (wbc->sync_mode != WB_SYNC_NONE)
2349                     wait_on_page_writeback(page);
2350                 else
2351                     goto continue_unlock;
2352             }
2353 
2354             BUG_ON(PageWriteback(page));
2355             if (!clear_page_dirty_for_io(page))
2356                 goto continue_unlock;
2357 
2358             trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2359             error = (*writepage)(page, wbc, data);
2360             if (unlikely(error)) {
2361                 /*
2362                  * Handle errors according to the type of
2363                  * writeback. There's no need to continue for
2364                  * background writeback. Just push done_index
2365                  * past this page so media errors won't choke
2366                  * writeout for the entire file. For integrity
2367                  * writeback, we must process the entire dirty
2368                  * set regardless of errors because the fs may
2369                  * still have state to clear for each page. In
2370                  * that case we continue processing and return
2371                  * the first error.
2372                  */
2373                 if (error == AOP_WRITEPAGE_ACTIVATE) {
2374                     unlock_page(page);
2375                     error = 0;
2376                 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2377                     ret = error;
2378                     done_index = page->index + 1;
2379                     done = 1;
2380                     break;
2381                 }
2382                 if (!ret)
2383                     ret = error;
2384             }
2385 
2386             /*
2387              * We stop writing back only if we are not doing
2388              * integrity sync. In case of integrity sync we have to
2389              * keep going until we have written all the pages
2390              * we tagged for writeback prior to entering this loop.
2391              */
2392             if (--wbc->nr_to_write <= 0 &&
2393                 wbc->sync_mode == WB_SYNC_NONE) {
2394                 done = 1;
2395                 break;
2396             }
2397         }
2398         pagevec_release(&pvec);
2399         cond_resched();
2400     }
2401 
2402     /*
2403      * If we hit the last page and there is more work to be done: wrap
2404      * back the index back to the start of the file for the next
2405      * time we are called.
2406      */
2407     if (wbc->range_cyclic && !done)
2408         done_index = 0;
2409     if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2410         mapping->writeback_index = done_index;
2411 
2412     return ret;
2413 }
2414 EXPORT_SYMBOL(write_cache_pages);
2415 
2416 /*
2417  * Function used by generic_writepages to call the real writepage
2418  * function and set the mapping flags on error
2419  */
2420 static int __writepage(struct page *page, struct writeback_control *wbc,
2421                void *data)
2422 {
2423     struct address_space *mapping = data;
2424     int ret = mapping->a_ops->writepage(page, wbc);
2425     mapping_set_error(mapping, ret);
2426     return ret;
2427 }
2428 
2429 /**
2430  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2431  * @mapping: address space structure to write
2432  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2433  *
2434  * This is a library function, which implements the writepages()
2435  * address_space_operation.
2436  *
2437  * Return: %0 on success, negative error code otherwise
2438  */
2439 int generic_writepages(struct address_space *mapping,
2440                struct writeback_control *wbc)
2441 {
2442     struct blk_plug plug;
2443     int ret;
2444 
2445     /* deal with chardevs and other special file */
2446     if (!mapping->a_ops->writepage)
2447         return 0;
2448 
2449     blk_start_plug(&plug);
2450     ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2451     blk_finish_plug(&plug);
2452     return ret;
2453 }
2454 
2455 EXPORT_SYMBOL(generic_writepages);
2456 
2457 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2458 {
2459     int ret;
2460     struct bdi_writeback *wb;
2461 
2462     if (wbc->nr_to_write <= 0)
2463         return 0;
2464     wb = inode_to_wb_wbc(mapping->host, wbc);
2465     wb_bandwidth_estimate_start(wb);
2466     while (1) {
2467         if (mapping->a_ops->writepages)
2468             ret = mapping->a_ops->writepages(mapping, wbc);
2469         else
2470             ret = generic_writepages(mapping, wbc);
2471         if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2472             break;
2473 
2474         /*
2475          * Lacking an allocation context or the locality or writeback
2476          * state of any of the inode's pages, throttle based on
2477          * writeback activity on the local node. It's as good a
2478          * guess as any.
2479          */
2480         reclaim_throttle(NODE_DATA(numa_node_id()),
2481             VMSCAN_THROTTLE_WRITEBACK);
2482     }
2483     /*
2484      * Usually few pages are written by now from those we've just submitted
2485      * but if there's constant writeback being submitted, this makes sure
2486      * writeback bandwidth is updated once in a while.
2487      */
2488     if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2489                    BANDWIDTH_INTERVAL))
2490         wb_update_bandwidth(wb);
2491     return ret;
2492 }
2493 
2494 /**
2495  * folio_write_one - write out a single folio and wait on I/O.
2496  * @folio: The folio to write.
2497  *
2498  * The folio must be locked by the caller and will be unlocked upon return.
2499  *
2500  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2501  * function returns.
2502  *
2503  * Return: %0 on success, negative error code otherwise
2504  */
2505 int folio_write_one(struct folio *folio)
2506 {
2507     struct address_space *mapping = folio->mapping;
2508     int ret = 0;
2509     struct writeback_control wbc = {
2510         .sync_mode = WB_SYNC_ALL,
2511         .nr_to_write = folio_nr_pages(folio),
2512     };
2513 
2514     BUG_ON(!folio_test_locked(folio));
2515 
2516     folio_wait_writeback(folio);
2517 
2518     if (folio_clear_dirty_for_io(folio)) {
2519         folio_get(folio);
2520         ret = mapping->a_ops->writepage(&folio->page, &wbc);
2521         if (ret == 0)
2522             folio_wait_writeback(folio);
2523         folio_put(folio);
2524     } else {
2525         folio_unlock(folio);
2526     }
2527 
2528     if (!ret)
2529         ret = filemap_check_errors(mapping);
2530     return ret;
2531 }
2532 EXPORT_SYMBOL(folio_write_one);
2533 
2534 /*
2535  * For address_spaces which do not use buffers nor write back.
2536  */
2537 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2538 {
2539     if (!folio_test_dirty(folio))
2540         return !folio_test_set_dirty(folio);
2541     return false;
2542 }
2543 EXPORT_SYMBOL(noop_dirty_folio);
2544 
2545 /*
2546  * Helper function for set_page_dirty family.
2547  *
2548  * Caller must hold lock_page_memcg().
2549  *
2550  * NOTE: This relies on being atomic wrt interrupts.
2551  */
2552 static void folio_account_dirtied(struct folio *folio,
2553         struct address_space *mapping)
2554 {
2555     struct inode *inode = mapping->host;
2556 
2557     trace_writeback_dirty_folio(folio, mapping);
2558 
2559     if (mapping_can_writeback(mapping)) {
2560         struct bdi_writeback *wb;
2561         long nr = folio_nr_pages(folio);
2562 
2563         inode_attach_wb(inode, &folio->page);
2564         wb = inode_to_wb(inode);
2565 
2566         __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2567         __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2568         __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2569         wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2570         wb_stat_mod(wb, WB_DIRTIED, nr);
2571         task_io_account_write(nr * PAGE_SIZE);
2572         current->nr_dirtied += nr;
2573         __this_cpu_add(bdp_ratelimits, nr);
2574 
2575         mem_cgroup_track_foreign_dirty(folio, wb);
2576     }
2577 }
2578 
2579 /*
2580  * Helper function for deaccounting dirty page without writeback.
2581  *
2582  * Caller must hold lock_page_memcg().
2583  */
2584 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2585 {
2586     long nr = folio_nr_pages(folio);
2587 
2588     lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2589     zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2590     wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2591     task_io_account_cancelled_write(nr * PAGE_SIZE);
2592 }
2593 
2594 /*
2595  * Mark the folio dirty, and set it dirty in the page cache, and mark
2596  * the inode dirty.
2597  *
2598  * If warn is true, then emit a warning if the folio is not uptodate and has
2599  * not been truncated.
2600  *
2601  * The caller must hold lock_page_memcg().  Most callers have the folio
2602  * locked.  A few have the folio blocked from truncation through other
2603  * means (eg zap_page_range() has it mapped and is holding the page table
2604  * lock).  This can also be called from mark_buffer_dirty(), which I
2605  * cannot prove is always protected against truncate.
2606  */
2607 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2608                  int warn)
2609 {
2610     unsigned long flags;
2611 
2612     xa_lock_irqsave(&mapping->i_pages, flags);
2613     if (folio->mapping) {   /* Race with truncate? */
2614         WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2615         folio_account_dirtied(folio, mapping);
2616         __xa_set_mark(&mapping->i_pages, folio_index(folio),
2617                 PAGECACHE_TAG_DIRTY);
2618     }
2619     xa_unlock_irqrestore(&mapping->i_pages, flags);
2620 }
2621 
2622 /**
2623  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2624  * @mapping: Address space this folio belongs to.
2625  * @folio: Folio to be marked as dirty.
2626  *
2627  * Filesystems which do not use buffer heads should call this function
2628  * from their set_page_dirty address space operation.  It ignores the
2629  * contents of folio_get_private(), so if the filesystem marks individual
2630  * blocks as dirty, the filesystem should handle that itself.
2631  *
2632  * This is also sometimes used by filesystems which use buffer_heads when
2633  * a single buffer is being dirtied: we want to set the folio dirty in
2634  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2635  * whereas block_dirty_folio() is a "top-down" dirtying.
2636  *
2637  * The caller must ensure this doesn't race with truncation.  Most will
2638  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2639  * folio mapped and the pte lock held, which also locks out truncation.
2640  */
2641 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2642 {
2643     folio_memcg_lock(folio);
2644     if (folio_test_set_dirty(folio)) {
2645         folio_memcg_unlock(folio);
2646         return false;
2647     }
2648 
2649     __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2650     folio_memcg_unlock(folio);
2651 
2652     if (mapping->host) {
2653         /* !PageAnon && !swapper_space */
2654         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2655     }
2656     return true;
2657 }
2658 EXPORT_SYMBOL(filemap_dirty_folio);
2659 
2660 /**
2661  * folio_account_redirty - Manually account for redirtying a page.
2662  * @folio: The folio which is being redirtied.
2663  *
2664  * Most filesystems should call folio_redirty_for_writepage() instead
2665  * of this fuction.  If your filesystem is doing writeback outside the
2666  * context of a writeback_control(), it can call this when redirtying
2667  * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
2668  * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
2669  * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
2670  * in balanced_dirty_ratelimit and the dirty pages position control.
2671  */
2672 void folio_account_redirty(struct folio *folio)
2673 {
2674     struct address_space *mapping = folio->mapping;
2675 
2676     if (mapping && mapping_can_writeback(mapping)) {
2677         struct inode *inode = mapping->host;
2678         struct bdi_writeback *wb;
2679         struct wb_lock_cookie cookie = {};
2680         long nr = folio_nr_pages(folio);
2681 
2682         wb = unlocked_inode_to_wb_begin(inode, &cookie);
2683         current->nr_dirtied -= nr;
2684         node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2685         wb_stat_mod(wb, WB_DIRTIED, -nr);
2686         unlocked_inode_to_wb_end(inode, &cookie);
2687     }
2688 }
2689 EXPORT_SYMBOL(folio_account_redirty);
2690 
2691 /**
2692  * folio_redirty_for_writepage - Decline to write a dirty folio.
2693  * @wbc: The writeback control.
2694  * @folio: The folio.
2695  *
2696  * When a writepage implementation decides that it doesn't want to write
2697  * @folio for some reason, it should call this function, unlock @folio and
2698  * return 0.
2699  *
2700  * Return: True if we redirtied the folio.  False if someone else dirtied
2701  * it first.
2702  */
2703 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2704         struct folio *folio)
2705 {
2706     bool ret;
2707     long nr = folio_nr_pages(folio);
2708 
2709     wbc->pages_skipped += nr;
2710     ret = filemap_dirty_folio(folio->mapping, folio);
2711     folio_account_redirty(folio);
2712 
2713     return ret;
2714 }
2715 EXPORT_SYMBOL(folio_redirty_for_writepage);
2716 
2717 /**
2718  * folio_mark_dirty - Mark a folio as being modified.
2719  * @folio: The folio.
2720  *
2721  * The folio may not be truncated while this function is running.
2722  * Holding the folio lock is sufficient to prevent truncation, but some
2723  * callers cannot acquire a sleeping lock.  These callers instead hold
2724  * the page table lock for a page table which contains at least one page
2725  * in this folio.  Truncation will block on the page table lock as it
2726  * unmaps pages before removing the folio from its mapping.
2727  *
2728  * Return: True if the folio was newly dirtied, false if it was already dirty.
2729  */
2730 bool folio_mark_dirty(struct folio *folio)
2731 {
2732     struct address_space *mapping = folio_mapping(folio);
2733 
2734     if (likely(mapping)) {
2735         /*
2736          * readahead/lru_deactivate_page could remain
2737          * PG_readahead/PG_reclaim due to race with folio_end_writeback
2738          * About readahead, if the folio is written, the flags would be
2739          * reset. So no problem.
2740          * About lru_deactivate_page, if the folio is redirtied,
2741          * the flag will be reset. So no problem. but if the
2742          * folio is used by readahead it will confuse readahead
2743          * and make it restart the size rampup process. But it's
2744          * a trivial problem.
2745          */
2746         if (folio_test_reclaim(folio))
2747             folio_clear_reclaim(folio);
2748         return mapping->a_ops->dirty_folio(mapping, folio);
2749     }
2750 
2751     return noop_dirty_folio(mapping, folio);
2752 }
2753 EXPORT_SYMBOL(folio_mark_dirty);
2754 
2755 /*
2756  * set_page_dirty() is racy if the caller has no reference against
2757  * page->mapping->host, and if the page is unlocked.  This is because another
2758  * CPU could truncate the page off the mapping and then free the mapping.
2759  *
2760  * Usually, the page _is_ locked, or the caller is a user-space process which
2761  * holds a reference on the inode by having an open file.
2762  *
2763  * In other cases, the page should be locked before running set_page_dirty().
2764  */
2765 int set_page_dirty_lock(struct page *page)
2766 {
2767     int ret;
2768 
2769     lock_page(page);
2770     ret = set_page_dirty(page);
2771     unlock_page(page);
2772     return ret;
2773 }
2774 EXPORT_SYMBOL(set_page_dirty_lock);
2775 
2776 /*
2777  * This cancels just the dirty bit on the kernel page itself, it does NOT
2778  * actually remove dirty bits on any mmap's that may be around. It also
2779  * leaves the page tagged dirty, so any sync activity will still find it on
2780  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2781  * look at the dirty bits in the VM.
2782  *
2783  * Doing this should *normally* only ever be done when a page is truncated,
2784  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2785  * this when it notices that somebody has cleaned out all the buffers on a
2786  * page without actually doing it through the VM. Can you say "ext3 is
2787  * horribly ugly"? Thought you could.
2788  */
2789 void __folio_cancel_dirty(struct folio *folio)
2790 {
2791     struct address_space *mapping = folio_mapping(folio);
2792 
2793     if (mapping_can_writeback(mapping)) {
2794         struct inode *inode = mapping->host;
2795         struct bdi_writeback *wb;
2796         struct wb_lock_cookie cookie = {};
2797 
2798         folio_memcg_lock(folio);
2799         wb = unlocked_inode_to_wb_begin(inode, &cookie);
2800 
2801         if (folio_test_clear_dirty(folio))
2802             folio_account_cleaned(folio, wb);
2803 
2804         unlocked_inode_to_wb_end(inode, &cookie);
2805         folio_memcg_unlock(folio);
2806     } else {
2807         folio_clear_dirty(folio);
2808     }
2809 }
2810 EXPORT_SYMBOL(__folio_cancel_dirty);
2811 
2812 /*
2813  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2814  * Returns true if the folio was previously dirty.
2815  *
2816  * This is for preparing to put the folio under writeout.  We leave
2817  * the folio tagged as dirty in the xarray so that a concurrent
2818  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2819  * The ->writepage implementation will run either folio_start_writeback()
2820  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2821  * and xarray dirty tag back into sync.
2822  *
2823  * This incoherency between the folio's dirty flag and xarray tag is
2824  * unfortunate, but it only exists while the folio is locked.
2825  */
2826 bool folio_clear_dirty_for_io(struct folio *folio)
2827 {
2828     struct address_space *mapping = folio_mapping(folio);
2829     bool ret = false;
2830 
2831     VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2832 
2833     if (mapping && mapping_can_writeback(mapping)) {
2834         struct inode *inode = mapping->host;
2835         struct bdi_writeback *wb;
2836         struct wb_lock_cookie cookie = {};
2837 
2838         /*
2839          * Yes, Virginia, this is indeed insane.
2840          *
2841          * We use this sequence to make sure that
2842          *  (a) we account for dirty stats properly
2843          *  (b) we tell the low-level filesystem to
2844          *      mark the whole folio dirty if it was
2845          *      dirty in a pagetable. Only to then
2846          *  (c) clean the folio again and return 1 to
2847          *      cause the writeback.
2848          *
2849          * This way we avoid all nasty races with the
2850          * dirty bit in multiple places and clearing
2851          * them concurrently from different threads.
2852          *
2853          * Note! Normally the "folio_mark_dirty(folio)"
2854          * has no effect on the actual dirty bit - since
2855          * that will already usually be set. But we
2856          * need the side effects, and it can help us
2857          * avoid races.
2858          *
2859          * We basically use the folio "master dirty bit"
2860          * as a serialization point for all the different
2861          * threads doing their things.
2862          */
2863         if (folio_mkclean(folio))
2864             folio_mark_dirty(folio);
2865         /*
2866          * We carefully synchronise fault handlers against
2867          * installing a dirty pte and marking the folio dirty
2868          * at this point.  We do this by having them hold the
2869          * page lock while dirtying the folio, and folios are
2870          * always locked coming in here, so we get the desired
2871          * exclusion.
2872          */
2873         wb = unlocked_inode_to_wb_begin(inode, &cookie);
2874         if (folio_test_clear_dirty(folio)) {
2875             long nr = folio_nr_pages(folio);
2876             lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2877             zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2878             wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2879             ret = true;
2880         }
2881         unlocked_inode_to_wb_end(inode, &cookie);
2882         return ret;
2883     }
2884     return folio_test_clear_dirty(folio);
2885 }
2886 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2887 
2888 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2889 {
2890     atomic_inc(&wb->writeback_inodes);
2891 }
2892 
2893 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2894 {
2895     unsigned long flags;
2896     atomic_dec(&wb->writeback_inodes);
2897     /*
2898      * Make sure estimate of writeback throughput gets updated after
2899      * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2900      * (which is the interval other bandwidth updates use for batching) so
2901      * that if multiple inodes end writeback at a similar time, they get
2902      * batched into one bandwidth update.
2903      */
2904     spin_lock_irqsave(&wb->work_lock, flags);
2905     if (test_bit(WB_registered, &wb->state))
2906         queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2907     spin_unlock_irqrestore(&wb->work_lock, flags);
2908 }
2909 
2910 bool __folio_end_writeback(struct folio *folio)
2911 {
2912     long nr = folio_nr_pages(folio);
2913     struct address_space *mapping = folio_mapping(folio);
2914     bool ret;
2915 
2916     folio_memcg_lock(folio);
2917     if (mapping && mapping_use_writeback_tags(mapping)) {
2918         struct inode *inode = mapping->host;
2919         struct backing_dev_info *bdi = inode_to_bdi(inode);
2920         unsigned long flags;
2921 
2922         xa_lock_irqsave(&mapping->i_pages, flags);
2923         ret = folio_test_clear_writeback(folio);
2924         if (ret) {
2925             __xa_clear_mark(&mapping->i_pages, folio_index(folio),
2926                         PAGECACHE_TAG_WRITEBACK);
2927             if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2928                 struct bdi_writeback *wb = inode_to_wb(inode);
2929 
2930                 wb_stat_mod(wb, WB_WRITEBACK, -nr);
2931                 __wb_writeout_add(wb, nr);
2932                 if (!mapping_tagged(mapping,
2933                             PAGECACHE_TAG_WRITEBACK))
2934                     wb_inode_writeback_end(wb);
2935             }
2936         }
2937 
2938         if (mapping->host && !mapping_tagged(mapping,
2939                              PAGECACHE_TAG_WRITEBACK))
2940             sb_clear_inode_writeback(mapping->host);
2941 
2942         xa_unlock_irqrestore(&mapping->i_pages, flags);
2943     } else {
2944         ret = folio_test_clear_writeback(folio);
2945     }
2946     if (ret) {
2947         lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
2948         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2949         node_stat_mod_folio(folio, NR_WRITTEN, nr);
2950     }
2951     folio_memcg_unlock(folio);
2952     return ret;
2953 }
2954 
2955 bool __folio_start_writeback(struct folio *folio, bool keep_write)
2956 {
2957     long nr = folio_nr_pages(folio);
2958     struct address_space *mapping = folio_mapping(folio);
2959     bool ret;
2960     int access_ret;
2961 
2962     folio_memcg_lock(folio);
2963     if (mapping && mapping_use_writeback_tags(mapping)) {
2964         XA_STATE(xas, &mapping->i_pages, folio_index(folio));
2965         struct inode *inode = mapping->host;
2966         struct backing_dev_info *bdi = inode_to_bdi(inode);
2967         unsigned long flags;
2968 
2969         xas_lock_irqsave(&xas, flags);
2970         xas_load(&xas);
2971         ret = folio_test_set_writeback(folio);
2972         if (!ret) {
2973             bool on_wblist;
2974 
2975             on_wblist = mapping_tagged(mapping,
2976                            PAGECACHE_TAG_WRITEBACK);
2977 
2978             xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2979             if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2980                 struct bdi_writeback *wb = inode_to_wb(inode);
2981 
2982                 wb_stat_mod(wb, WB_WRITEBACK, nr);
2983                 if (!on_wblist)
2984                     wb_inode_writeback_start(wb);
2985             }
2986 
2987             /*
2988              * We can come through here when swapping
2989              * anonymous folios, so we don't necessarily
2990              * have an inode to track for sync.
2991              */
2992             if (mapping->host && !on_wblist)
2993                 sb_mark_inode_writeback(mapping->host);
2994         }
2995         if (!folio_test_dirty(folio))
2996             xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2997         if (!keep_write)
2998             xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2999         xas_unlock_irqrestore(&xas, flags);
3000     } else {
3001         ret = folio_test_set_writeback(folio);
3002     }
3003     if (!ret) {
3004         lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3005         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3006     }
3007     folio_memcg_unlock(folio);
3008     access_ret = arch_make_folio_accessible(folio);
3009     /*
3010      * If writeback has been triggered on a page that cannot be made
3011      * accessible, it is too late to recover here.
3012      */
3013     VM_BUG_ON_FOLIO(access_ret != 0, folio);
3014 
3015     return ret;
3016 }
3017 EXPORT_SYMBOL(__folio_start_writeback);
3018 
3019 /**
3020  * folio_wait_writeback - Wait for a folio to finish writeback.
3021  * @folio: The folio to wait for.
3022  *
3023  * If the folio is currently being written back to storage, wait for the
3024  * I/O to complete.
3025  *
3026  * Context: Sleeps.  Must be called in process context and with
3027  * no spinlocks held.  Caller should hold a reference on the folio.
3028  * If the folio is not locked, writeback may start again after writeback
3029  * has finished.
3030  */
3031 void folio_wait_writeback(struct folio *folio)
3032 {
3033     while (folio_test_writeback(folio)) {
3034         trace_folio_wait_writeback(folio, folio_mapping(folio));
3035         folio_wait_bit(folio, PG_writeback);
3036     }
3037 }
3038 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3039 
3040 /**
3041  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3042  * @folio: The folio to wait for.
3043  *
3044  * If the folio is currently being written back to storage, wait for the
3045  * I/O to complete or a fatal signal to arrive.
3046  *
3047  * Context: Sleeps.  Must be called in process context and with
3048  * no spinlocks held.  Caller should hold a reference on the folio.
3049  * If the folio is not locked, writeback may start again after writeback
3050  * has finished.
3051  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3052  */
3053 int folio_wait_writeback_killable(struct folio *folio)
3054 {
3055     while (folio_test_writeback(folio)) {
3056         trace_folio_wait_writeback(folio, folio_mapping(folio));
3057         if (folio_wait_bit_killable(folio, PG_writeback))
3058             return -EINTR;
3059     }
3060 
3061     return 0;
3062 }
3063 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3064 
3065 /**
3066  * folio_wait_stable() - wait for writeback to finish, if necessary.
3067  * @folio: The folio to wait on.
3068  *
3069  * This function determines if the given folio is related to a backing
3070  * device that requires folio contents to be held stable during writeback.
3071  * If so, then it will wait for any pending writeback to complete.
3072  *
3073  * Context: Sleeps.  Must be called in process context and with
3074  * no spinlocks held.  Caller should hold a reference on the folio.
3075  * If the folio is not locked, writeback may start again after writeback
3076  * has finished.
3077  */
3078 void folio_wait_stable(struct folio *folio)
3079 {
3080     if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
3081         folio_wait_writeback(folio);
3082 }
3083 EXPORT_SYMBOL_GPL(folio_wait_stable);