Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * mm/mmap.c
0004  *
0005  * Written by obz.
0006  *
0007  * Address space accounting code    <alan@lxorguk.ukuu.org.uk>
0008  */
0009 
0010 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0011 
0012 #include <linux/kernel.h>
0013 #include <linux/slab.h>
0014 #include <linux/backing-dev.h>
0015 #include <linux/mm.h>
0016 #include <linux/mm_inline.h>
0017 #include <linux/vmacache.h>
0018 #include <linux/shm.h>
0019 #include <linux/mman.h>
0020 #include <linux/pagemap.h>
0021 #include <linux/swap.h>
0022 #include <linux/syscalls.h>
0023 #include <linux/capability.h>
0024 #include <linux/init.h>
0025 #include <linux/file.h>
0026 #include <linux/fs.h>
0027 #include <linux/personality.h>
0028 #include <linux/security.h>
0029 #include <linux/hugetlb.h>
0030 #include <linux/shmem_fs.h>
0031 #include <linux/profile.h>
0032 #include <linux/export.h>
0033 #include <linux/mount.h>
0034 #include <linux/mempolicy.h>
0035 #include <linux/rmap.h>
0036 #include <linux/mmu_notifier.h>
0037 #include <linux/mmdebug.h>
0038 #include <linux/perf_event.h>
0039 #include <linux/audit.h>
0040 #include <linux/khugepaged.h>
0041 #include <linux/uprobes.h>
0042 #include <linux/rbtree_augmented.h>
0043 #include <linux/notifier.h>
0044 #include <linux/memory.h>
0045 #include <linux/printk.h>
0046 #include <linux/userfaultfd_k.h>
0047 #include <linux/moduleparam.h>
0048 #include <linux/pkeys.h>
0049 #include <linux/oom.h>
0050 #include <linux/sched/mm.h>
0051 
0052 #include <linux/uaccess.h>
0053 #include <asm/cacheflush.h>
0054 #include <asm/tlb.h>
0055 #include <asm/mmu_context.h>
0056 
0057 #define CREATE_TRACE_POINTS
0058 #include <trace/events/mmap.h>
0059 
0060 #include "internal.h"
0061 
0062 #ifndef arch_mmap_check
0063 #define arch_mmap_check(addr, len, flags)   (0)
0064 #endif
0065 
0066 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
0067 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
0068 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
0069 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
0070 #endif
0071 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
0072 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
0073 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
0074 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
0075 #endif
0076 
0077 static bool ignore_rlimit_data;
0078 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
0079 
0080 static void unmap_region(struct mm_struct *mm,
0081         struct vm_area_struct *vma, struct vm_area_struct *prev,
0082         unsigned long start, unsigned long end);
0083 
0084 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
0085 {
0086     return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
0087 }
0088 
0089 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
0090 void vma_set_page_prot(struct vm_area_struct *vma)
0091 {
0092     unsigned long vm_flags = vma->vm_flags;
0093     pgprot_t vm_page_prot;
0094 
0095     vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
0096     if (vma_wants_writenotify(vma, vm_page_prot)) {
0097         vm_flags &= ~VM_SHARED;
0098         vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
0099     }
0100     /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
0101     WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
0102 }
0103 
0104 /*
0105  * Requires inode->i_mapping->i_mmap_rwsem
0106  */
0107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
0108         struct file *file, struct address_space *mapping)
0109 {
0110     if (vma->vm_flags & VM_SHARED)
0111         mapping_unmap_writable(mapping);
0112 
0113     flush_dcache_mmap_lock(mapping);
0114     vma_interval_tree_remove(vma, &mapping->i_mmap);
0115     flush_dcache_mmap_unlock(mapping);
0116 }
0117 
0118 /*
0119  * Unlink a file-based vm structure from its interval tree, to hide
0120  * vma from rmap and vmtruncate before freeing its page tables.
0121  */
0122 void unlink_file_vma(struct vm_area_struct *vma)
0123 {
0124     struct file *file = vma->vm_file;
0125 
0126     if (file) {
0127         struct address_space *mapping = file->f_mapping;
0128         i_mmap_lock_write(mapping);
0129         __remove_shared_vm_struct(vma, file, mapping);
0130         i_mmap_unlock_write(mapping);
0131     }
0132 }
0133 
0134 /*
0135  * Close a vm structure and free it, returning the next.
0136  */
0137 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
0138 {
0139     struct vm_area_struct *next = vma->vm_next;
0140 
0141     might_sleep();
0142     if (vma->vm_ops && vma->vm_ops->close)
0143         vma->vm_ops->close(vma);
0144     if (vma->vm_file)
0145         fput(vma->vm_file);
0146     mpol_put(vma_policy(vma));
0147     vm_area_free(vma);
0148     return next;
0149 }
0150 
0151 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
0152         struct list_head *uf);
0153 SYSCALL_DEFINE1(brk, unsigned long, brk)
0154 {
0155     unsigned long newbrk, oldbrk, origbrk;
0156     struct mm_struct *mm = current->mm;
0157     struct vm_area_struct *next;
0158     unsigned long min_brk;
0159     bool populate;
0160     bool downgraded = false;
0161     LIST_HEAD(uf);
0162 
0163     if (mmap_write_lock_killable(mm))
0164         return -EINTR;
0165 
0166     origbrk = mm->brk;
0167 
0168 #ifdef CONFIG_COMPAT_BRK
0169     /*
0170      * CONFIG_COMPAT_BRK can still be overridden by setting
0171      * randomize_va_space to 2, which will still cause mm->start_brk
0172      * to be arbitrarily shifted
0173      */
0174     if (current->brk_randomized)
0175         min_brk = mm->start_brk;
0176     else
0177         min_brk = mm->end_data;
0178 #else
0179     min_brk = mm->start_brk;
0180 #endif
0181     if (brk < min_brk)
0182         goto out;
0183 
0184     /*
0185      * Check against rlimit here. If this check is done later after the test
0186      * of oldbrk with newbrk then it can escape the test and let the data
0187      * segment grow beyond its set limit the in case where the limit is
0188      * not page aligned -Ram Gupta
0189      */
0190     if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
0191                   mm->end_data, mm->start_data))
0192         goto out;
0193 
0194     newbrk = PAGE_ALIGN(brk);
0195     oldbrk = PAGE_ALIGN(mm->brk);
0196     if (oldbrk == newbrk) {
0197         mm->brk = brk;
0198         goto success;
0199     }
0200 
0201     /*
0202      * Always allow shrinking brk.
0203      * __do_munmap() may downgrade mmap_lock to read.
0204      */
0205     if (brk <= mm->brk) {
0206         int ret;
0207 
0208         /*
0209          * mm->brk must to be protected by write mmap_lock so update it
0210          * before downgrading mmap_lock. When __do_munmap() fails,
0211          * mm->brk will be restored from origbrk.
0212          */
0213         mm->brk = brk;
0214         ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
0215         if (ret < 0) {
0216             mm->brk = origbrk;
0217             goto out;
0218         } else if (ret == 1) {
0219             downgraded = true;
0220         }
0221         goto success;
0222     }
0223 
0224     /* Check against existing mmap mappings. */
0225     next = find_vma(mm, oldbrk);
0226     if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
0227         goto out;
0228 
0229     /* Ok, looks good - let it rip. */
0230     if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
0231         goto out;
0232     mm->brk = brk;
0233 
0234 success:
0235     populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
0236     if (downgraded)
0237         mmap_read_unlock(mm);
0238     else
0239         mmap_write_unlock(mm);
0240     userfaultfd_unmap_complete(mm, &uf);
0241     if (populate)
0242         mm_populate(oldbrk, newbrk - oldbrk);
0243     return brk;
0244 
0245 out:
0246     mmap_write_unlock(mm);
0247     return origbrk;
0248 }
0249 
0250 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
0251 {
0252     unsigned long gap, prev_end;
0253 
0254     /*
0255      * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
0256      * allow two stack_guard_gaps between them here, and when choosing
0257      * an unmapped area; whereas when expanding we only require one.
0258      * That's a little inconsistent, but keeps the code here simpler.
0259      */
0260     gap = vm_start_gap(vma);
0261     if (vma->vm_prev) {
0262         prev_end = vm_end_gap(vma->vm_prev);
0263         if (gap > prev_end)
0264             gap -= prev_end;
0265         else
0266             gap = 0;
0267     }
0268     return gap;
0269 }
0270 
0271 #ifdef CONFIG_DEBUG_VM_RB
0272 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
0273 {
0274     unsigned long max = vma_compute_gap(vma), subtree_gap;
0275     if (vma->vm_rb.rb_left) {
0276         subtree_gap = rb_entry(vma->vm_rb.rb_left,
0277                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
0278         if (subtree_gap > max)
0279             max = subtree_gap;
0280     }
0281     if (vma->vm_rb.rb_right) {
0282         subtree_gap = rb_entry(vma->vm_rb.rb_right,
0283                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
0284         if (subtree_gap > max)
0285             max = subtree_gap;
0286     }
0287     return max;
0288 }
0289 
0290 static int browse_rb(struct mm_struct *mm)
0291 {
0292     struct rb_root *root = &mm->mm_rb;
0293     int i = 0, j, bug = 0;
0294     struct rb_node *nd, *pn = NULL;
0295     unsigned long prev = 0, pend = 0;
0296 
0297     for (nd = rb_first(root); nd; nd = rb_next(nd)) {
0298         struct vm_area_struct *vma;
0299         vma = rb_entry(nd, struct vm_area_struct, vm_rb);
0300         if (vma->vm_start < prev) {
0301             pr_emerg("vm_start %lx < prev %lx\n",
0302                   vma->vm_start, prev);
0303             bug = 1;
0304         }
0305         if (vma->vm_start < pend) {
0306             pr_emerg("vm_start %lx < pend %lx\n",
0307                   vma->vm_start, pend);
0308             bug = 1;
0309         }
0310         if (vma->vm_start > vma->vm_end) {
0311             pr_emerg("vm_start %lx > vm_end %lx\n",
0312                   vma->vm_start, vma->vm_end);
0313             bug = 1;
0314         }
0315         spin_lock(&mm->page_table_lock);
0316         if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
0317             pr_emerg("free gap %lx, correct %lx\n",
0318                    vma->rb_subtree_gap,
0319                    vma_compute_subtree_gap(vma));
0320             bug = 1;
0321         }
0322         spin_unlock(&mm->page_table_lock);
0323         i++;
0324         pn = nd;
0325         prev = vma->vm_start;
0326         pend = vma->vm_end;
0327     }
0328     j = 0;
0329     for (nd = pn; nd; nd = rb_prev(nd))
0330         j++;
0331     if (i != j) {
0332         pr_emerg("backwards %d, forwards %d\n", j, i);
0333         bug = 1;
0334     }
0335     return bug ? -1 : i;
0336 }
0337 
0338 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
0339 {
0340     struct rb_node *nd;
0341 
0342     for (nd = rb_first(root); nd; nd = rb_next(nd)) {
0343         struct vm_area_struct *vma;
0344         vma = rb_entry(nd, struct vm_area_struct, vm_rb);
0345         VM_BUG_ON_VMA(vma != ignore &&
0346             vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
0347             vma);
0348     }
0349 }
0350 
0351 static void validate_mm(struct mm_struct *mm)
0352 {
0353     int bug = 0;
0354     int i = 0;
0355     unsigned long highest_address = 0;
0356     struct vm_area_struct *vma = mm->mmap;
0357 
0358     while (vma) {
0359         struct anon_vma *anon_vma = vma->anon_vma;
0360         struct anon_vma_chain *avc;
0361 
0362         if (anon_vma) {
0363             anon_vma_lock_read(anon_vma);
0364             list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
0365                 anon_vma_interval_tree_verify(avc);
0366             anon_vma_unlock_read(anon_vma);
0367         }
0368 
0369         highest_address = vm_end_gap(vma);
0370         vma = vma->vm_next;
0371         i++;
0372     }
0373     if (i != mm->map_count) {
0374         pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
0375         bug = 1;
0376     }
0377     if (highest_address != mm->highest_vm_end) {
0378         pr_emerg("mm->highest_vm_end %lx, found %lx\n",
0379               mm->highest_vm_end, highest_address);
0380         bug = 1;
0381     }
0382     i = browse_rb(mm);
0383     if (i != mm->map_count) {
0384         if (i != -1)
0385             pr_emerg("map_count %d rb %d\n", mm->map_count, i);
0386         bug = 1;
0387     }
0388     VM_BUG_ON_MM(bug, mm);
0389 }
0390 #else
0391 #define validate_mm_rb(root, ignore) do { } while (0)
0392 #define validate_mm(mm) do { } while (0)
0393 #endif
0394 
0395 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
0396              struct vm_area_struct, vm_rb,
0397              unsigned long, rb_subtree_gap, vma_compute_gap)
0398 
0399 /*
0400  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
0401  * vma->vm_prev->vm_end values changed, without modifying the vma's position
0402  * in the rbtree.
0403  */
0404 static void vma_gap_update(struct vm_area_struct *vma)
0405 {
0406     /*
0407      * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
0408      * a callback function that does exactly what we want.
0409      */
0410     vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
0411 }
0412 
0413 static inline void vma_rb_insert(struct vm_area_struct *vma,
0414                  struct rb_root *root)
0415 {
0416     /* All rb_subtree_gap values must be consistent prior to insertion */
0417     validate_mm_rb(root, NULL);
0418 
0419     rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
0420 }
0421 
0422 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
0423 {
0424     /*
0425      * Note rb_erase_augmented is a fairly large inline function,
0426      * so make sure we instantiate it only once with our desired
0427      * augmented rbtree callbacks.
0428      */
0429     rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
0430 }
0431 
0432 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
0433                         struct rb_root *root,
0434                         struct vm_area_struct *ignore)
0435 {
0436     /*
0437      * All rb_subtree_gap values must be consistent prior to erase,
0438      * with the possible exception of
0439      *
0440      * a. the "next" vma being erased if next->vm_start was reduced in
0441      *    __vma_adjust() -> __vma_unlink()
0442      * b. the vma being erased in detach_vmas_to_be_unmapped() ->
0443      *    vma_rb_erase()
0444      */
0445     validate_mm_rb(root, ignore);
0446 
0447     __vma_rb_erase(vma, root);
0448 }
0449 
0450 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
0451                      struct rb_root *root)
0452 {
0453     vma_rb_erase_ignore(vma, root, vma);
0454 }
0455 
0456 /*
0457  * vma has some anon_vma assigned, and is already inserted on that
0458  * anon_vma's interval trees.
0459  *
0460  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
0461  * vma must be removed from the anon_vma's interval trees using
0462  * anon_vma_interval_tree_pre_update_vma().
0463  *
0464  * After the update, the vma will be reinserted using
0465  * anon_vma_interval_tree_post_update_vma().
0466  *
0467  * The entire update must be protected by exclusive mmap_lock and by
0468  * the root anon_vma's mutex.
0469  */
0470 static inline void
0471 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
0472 {
0473     struct anon_vma_chain *avc;
0474 
0475     list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
0476         anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
0477 }
0478 
0479 static inline void
0480 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
0481 {
0482     struct anon_vma_chain *avc;
0483 
0484     list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
0485         anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
0486 }
0487 
0488 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
0489         unsigned long end, struct vm_area_struct **pprev,
0490         struct rb_node ***rb_link, struct rb_node **rb_parent)
0491 {
0492     struct rb_node **__rb_link, *__rb_parent, *rb_prev;
0493 
0494     mmap_assert_locked(mm);
0495     __rb_link = &mm->mm_rb.rb_node;
0496     rb_prev = __rb_parent = NULL;
0497 
0498     while (*__rb_link) {
0499         struct vm_area_struct *vma_tmp;
0500 
0501         __rb_parent = *__rb_link;
0502         vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
0503 
0504         if (vma_tmp->vm_end > addr) {
0505             /* Fail if an existing vma overlaps the area */
0506             if (vma_tmp->vm_start < end)
0507                 return -ENOMEM;
0508             __rb_link = &__rb_parent->rb_left;
0509         } else {
0510             rb_prev = __rb_parent;
0511             __rb_link = &__rb_parent->rb_right;
0512         }
0513     }
0514 
0515     *pprev = NULL;
0516     if (rb_prev)
0517         *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
0518     *rb_link = __rb_link;
0519     *rb_parent = __rb_parent;
0520     return 0;
0521 }
0522 
0523 /*
0524  * vma_next() - Get the next VMA.
0525  * @mm: The mm_struct.
0526  * @vma: The current vma.
0527  *
0528  * If @vma is NULL, return the first vma in the mm.
0529  *
0530  * Returns: The next VMA after @vma.
0531  */
0532 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
0533                      struct vm_area_struct *vma)
0534 {
0535     if (!vma)
0536         return mm->mmap;
0537 
0538     return vma->vm_next;
0539 }
0540 
0541 /*
0542  * munmap_vma_range() - munmap VMAs that overlap a range.
0543  * @mm: The mm struct
0544  * @start: The start of the range.
0545  * @len: The length of the range.
0546  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
0547  * @rb_link: the rb_node
0548  * @rb_parent: the parent rb_node
0549  *
0550  * Find all the vm_area_struct that overlap from @start to
0551  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
0552  *
0553  * Returns: -ENOMEM on munmap failure or 0 on success.
0554  */
0555 static inline int
0556 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
0557          struct vm_area_struct **pprev, struct rb_node ***link,
0558          struct rb_node **parent, struct list_head *uf)
0559 {
0560 
0561     while (find_vma_links(mm, start, start + len, pprev, link, parent))
0562         if (do_munmap(mm, start, len, uf))
0563             return -ENOMEM;
0564 
0565     return 0;
0566 }
0567 static unsigned long count_vma_pages_range(struct mm_struct *mm,
0568         unsigned long addr, unsigned long end)
0569 {
0570     unsigned long nr_pages = 0;
0571     struct vm_area_struct *vma;
0572 
0573     /* Find first overlapping mapping */
0574     vma = find_vma_intersection(mm, addr, end);
0575     if (!vma)
0576         return 0;
0577 
0578     nr_pages = (min(end, vma->vm_end) -
0579         max(addr, vma->vm_start)) >> PAGE_SHIFT;
0580 
0581     /* Iterate over the rest of the overlaps */
0582     for (vma = vma->vm_next; vma; vma = vma->vm_next) {
0583         unsigned long overlap_len;
0584 
0585         if (vma->vm_start > end)
0586             break;
0587 
0588         overlap_len = min(end, vma->vm_end) - vma->vm_start;
0589         nr_pages += overlap_len >> PAGE_SHIFT;
0590     }
0591 
0592     return nr_pages;
0593 }
0594 
0595 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
0596         struct rb_node **rb_link, struct rb_node *rb_parent)
0597 {
0598     /* Update tracking information for the gap following the new vma. */
0599     if (vma->vm_next)
0600         vma_gap_update(vma->vm_next);
0601     else
0602         mm->highest_vm_end = vm_end_gap(vma);
0603 
0604     /*
0605      * vma->vm_prev wasn't known when we followed the rbtree to find the
0606      * correct insertion point for that vma. As a result, we could not
0607      * update the vma vm_rb parents rb_subtree_gap values on the way down.
0608      * So, we first insert the vma with a zero rb_subtree_gap value
0609      * (to be consistent with what we did on the way down), and then
0610      * immediately update the gap to the correct value. Finally we
0611      * rebalance the rbtree after all augmented values have been set.
0612      */
0613     rb_link_node(&vma->vm_rb, rb_parent, rb_link);
0614     vma->rb_subtree_gap = 0;
0615     vma_gap_update(vma);
0616     vma_rb_insert(vma, &mm->mm_rb);
0617 }
0618 
0619 static void __vma_link_file(struct vm_area_struct *vma)
0620 {
0621     struct file *file;
0622 
0623     file = vma->vm_file;
0624     if (file) {
0625         struct address_space *mapping = file->f_mapping;
0626 
0627         if (vma->vm_flags & VM_SHARED)
0628             mapping_allow_writable(mapping);
0629 
0630         flush_dcache_mmap_lock(mapping);
0631         vma_interval_tree_insert(vma, &mapping->i_mmap);
0632         flush_dcache_mmap_unlock(mapping);
0633     }
0634 }
0635 
0636 static void
0637 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
0638     struct vm_area_struct *prev, struct rb_node **rb_link,
0639     struct rb_node *rb_parent)
0640 {
0641     __vma_link_list(mm, vma, prev);
0642     __vma_link_rb(mm, vma, rb_link, rb_parent);
0643 }
0644 
0645 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
0646             struct vm_area_struct *prev, struct rb_node **rb_link,
0647             struct rb_node *rb_parent)
0648 {
0649     struct address_space *mapping = NULL;
0650 
0651     if (vma->vm_file) {
0652         mapping = vma->vm_file->f_mapping;
0653         i_mmap_lock_write(mapping);
0654     }
0655 
0656     __vma_link(mm, vma, prev, rb_link, rb_parent);
0657     __vma_link_file(vma);
0658 
0659     if (mapping)
0660         i_mmap_unlock_write(mapping);
0661 
0662     mm->map_count++;
0663     validate_mm(mm);
0664 }
0665 
0666 /*
0667  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
0668  * mm's list and rbtree.  It has already been inserted into the interval tree.
0669  */
0670 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
0671 {
0672     struct vm_area_struct *prev;
0673     struct rb_node **rb_link, *rb_parent;
0674 
0675     if (find_vma_links(mm, vma->vm_start, vma->vm_end,
0676                &prev, &rb_link, &rb_parent))
0677         BUG();
0678     __vma_link(mm, vma, prev, rb_link, rb_parent);
0679     mm->map_count++;
0680 }
0681 
0682 static __always_inline void __vma_unlink(struct mm_struct *mm,
0683                         struct vm_area_struct *vma,
0684                         struct vm_area_struct *ignore)
0685 {
0686     vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
0687     __vma_unlink_list(mm, vma);
0688     /* Kill the cache */
0689     vmacache_invalidate(mm);
0690 }
0691 
0692 /*
0693  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
0694  * is already present in an i_mmap tree without adjusting the tree.
0695  * The following helper function should be used when such adjustments
0696  * are necessary.  The "insert" vma (if any) is to be inserted
0697  * before we drop the necessary locks.
0698  */
0699 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
0700     unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
0701     struct vm_area_struct *expand)
0702 {
0703     struct mm_struct *mm = vma->vm_mm;
0704     struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
0705     struct address_space *mapping = NULL;
0706     struct rb_root_cached *root = NULL;
0707     struct anon_vma *anon_vma = NULL;
0708     struct file *file = vma->vm_file;
0709     bool start_changed = false, end_changed = false;
0710     long adjust_next = 0;
0711     int remove_next = 0;
0712 
0713     if (next && !insert) {
0714         struct vm_area_struct *exporter = NULL, *importer = NULL;
0715 
0716         if (end >= next->vm_end) {
0717             /*
0718              * vma expands, overlapping all the next, and
0719              * perhaps the one after too (mprotect case 6).
0720              * The only other cases that gets here are
0721              * case 1, case 7 and case 8.
0722              */
0723             if (next == expand) {
0724                 /*
0725                  * The only case where we don't expand "vma"
0726                  * and we expand "next" instead is case 8.
0727                  */
0728                 VM_WARN_ON(end != next->vm_end);
0729                 /*
0730                  * remove_next == 3 means we're
0731                  * removing "vma" and that to do so we
0732                  * swapped "vma" and "next".
0733                  */
0734                 remove_next = 3;
0735                 VM_WARN_ON(file != next->vm_file);
0736                 swap(vma, next);
0737             } else {
0738                 VM_WARN_ON(expand != vma);
0739                 /*
0740                  * case 1, 6, 7, remove_next == 2 is case 6,
0741                  * remove_next == 1 is case 1 or 7.
0742                  */
0743                 remove_next = 1 + (end > next->vm_end);
0744                 VM_WARN_ON(remove_next == 2 &&
0745                        end != next->vm_next->vm_end);
0746                 /* trim end to next, for case 6 first pass */
0747                 end = next->vm_end;
0748             }
0749 
0750             exporter = next;
0751             importer = vma;
0752 
0753             /*
0754              * If next doesn't have anon_vma, import from vma after
0755              * next, if the vma overlaps with it.
0756              */
0757             if (remove_next == 2 && !next->anon_vma)
0758                 exporter = next->vm_next;
0759 
0760         } else if (end > next->vm_start) {
0761             /*
0762              * vma expands, overlapping part of the next:
0763              * mprotect case 5 shifting the boundary up.
0764              */
0765             adjust_next = (end - next->vm_start);
0766             exporter = next;
0767             importer = vma;
0768             VM_WARN_ON(expand != importer);
0769         } else if (end < vma->vm_end) {
0770             /*
0771              * vma shrinks, and !insert tells it's not
0772              * split_vma inserting another: so it must be
0773              * mprotect case 4 shifting the boundary down.
0774              */
0775             adjust_next = -(vma->vm_end - end);
0776             exporter = vma;
0777             importer = next;
0778             VM_WARN_ON(expand != importer);
0779         }
0780 
0781         /*
0782          * Easily overlooked: when mprotect shifts the boundary,
0783          * make sure the expanding vma has anon_vma set if the
0784          * shrinking vma had, to cover any anon pages imported.
0785          */
0786         if (exporter && exporter->anon_vma && !importer->anon_vma) {
0787             int error;
0788 
0789             importer->anon_vma = exporter->anon_vma;
0790             error = anon_vma_clone(importer, exporter);
0791             if (error)
0792                 return error;
0793         }
0794     }
0795 again:
0796     vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
0797 
0798     if (file) {
0799         mapping = file->f_mapping;
0800         root = &mapping->i_mmap;
0801         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
0802 
0803         if (adjust_next)
0804             uprobe_munmap(next, next->vm_start, next->vm_end);
0805 
0806         i_mmap_lock_write(mapping);
0807         if (insert) {
0808             /*
0809              * Put into interval tree now, so instantiated pages
0810              * are visible to arm/parisc __flush_dcache_page
0811              * throughout; but we cannot insert into address
0812              * space until vma start or end is updated.
0813              */
0814             __vma_link_file(insert);
0815         }
0816     }
0817 
0818     anon_vma = vma->anon_vma;
0819     if (!anon_vma && adjust_next)
0820         anon_vma = next->anon_vma;
0821     if (anon_vma) {
0822         VM_WARN_ON(adjust_next && next->anon_vma &&
0823                anon_vma != next->anon_vma);
0824         anon_vma_lock_write(anon_vma);
0825         anon_vma_interval_tree_pre_update_vma(vma);
0826         if (adjust_next)
0827             anon_vma_interval_tree_pre_update_vma(next);
0828     }
0829 
0830     if (file) {
0831         flush_dcache_mmap_lock(mapping);
0832         vma_interval_tree_remove(vma, root);
0833         if (adjust_next)
0834             vma_interval_tree_remove(next, root);
0835     }
0836 
0837     if (start != vma->vm_start) {
0838         vma->vm_start = start;
0839         start_changed = true;
0840     }
0841     if (end != vma->vm_end) {
0842         vma->vm_end = end;
0843         end_changed = true;
0844     }
0845     vma->vm_pgoff = pgoff;
0846     if (adjust_next) {
0847         next->vm_start += adjust_next;
0848         next->vm_pgoff += adjust_next >> PAGE_SHIFT;
0849     }
0850 
0851     if (file) {
0852         if (adjust_next)
0853             vma_interval_tree_insert(next, root);
0854         vma_interval_tree_insert(vma, root);
0855         flush_dcache_mmap_unlock(mapping);
0856     }
0857 
0858     if (remove_next) {
0859         /*
0860          * vma_merge has merged next into vma, and needs
0861          * us to remove next before dropping the locks.
0862          */
0863         if (remove_next != 3)
0864             __vma_unlink(mm, next, next);
0865         else
0866             /*
0867              * vma is not before next if they've been
0868              * swapped.
0869              *
0870              * pre-swap() next->vm_start was reduced so
0871              * tell validate_mm_rb to ignore pre-swap()
0872              * "next" (which is stored in post-swap()
0873              * "vma").
0874              */
0875             __vma_unlink(mm, next, vma);
0876         if (file)
0877             __remove_shared_vm_struct(next, file, mapping);
0878     } else if (insert) {
0879         /*
0880          * split_vma has split insert from vma, and needs
0881          * us to insert it before dropping the locks
0882          * (it may either follow vma or precede it).
0883          */
0884         __insert_vm_struct(mm, insert);
0885     } else {
0886         if (start_changed)
0887             vma_gap_update(vma);
0888         if (end_changed) {
0889             if (!next)
0890                 mm->highest_vm_end = vm_end_gap(vma);
0891             else if (!adjust_next)
0892                 vma_gap_update(next);
0893         }
0894     }
0895 
0896     if (anon_vma) {
0897         anon_vma_interval_tree_post_update_vma(vma);
0898         if (adjust_next)
0899             anon_vma_interval_tree_post_update_vma(next);
0900         anon_vma_unlock_write(anon_vma);
0901     }
0902 
0903     if (file) {
0904         i_mmap_unlock_write(mapping);
0905         uprobe_mmap(vma);
0906 
0907         if (adjust_next)
0908             uprobe_mmap(next);
0909     }
0910 
0911     if (remove_next) {
0912         if (file) {
0913             uprobe_munmap(next, next->vm_start, next->vm_end);
0914             fput(file);
0915         }
0916         if (next->anon_vma)
0917             anon_vma_merge(vma, next);
0918         mm->map_count--;
0919         mpol_put(vma_policy(next));
0920         vm_area_free(next);
0921         /*
0922          * In mprotect's case 6 (see comments on vma_merge),
0923          * we must remove another next too. It would clutter
0924          * up the code too much to do both in one go.
0925          */
0926         if (remove_next != 3) {
0927             /*
0928              * If "next" was removed and vma->vm_end was
0929              * expanded (up) over it, in turn
0930              * "next->vm_prev->vm_end" changed and the
0931              * "vma->vm_next" gap must be updated.
0932              */
0933             next = vma->vm_next;
0934         } else {
0935             /*
0936              * For the scope of the comment "next" and
0937              * "vma" considered pre-swap(): if "vma" was
0938              * removed, next->vm_start was expanded (down)
0939              * over it and the "next" gap must be updated.
0940              * Because of the swap() the post-swap() "vma"
0941              * actually points to pre-swap() "next"
0942              * (post-swap() "next" as opposed is now a
0943              * dangling pointer).
0944              */
0945             next = vma;
0946         }
0947         if (remove_next == 2) {
0948             remove_next = 1;
0949             end = next->vm_end;
0950             goto again;
0951         }
0952         else if (next)
0953             vma_gap_update(next);
0954         else {
0955             /*
0956              * If remove_next == 2 we obviously can't
0957              * reach this path.
0958              *
0959              * If remove_next == 3 we can't reach this
0960              * path because pre-swap() next is always not
0961              * NULL. pre-swap() "next" is not being
0962              * removed and its next->vm_end is not altered
0963              * (and furthermore "end" already matches
0964              * next->vm_end in remove_next == 3).
0965              *
0966              * We reach this only in the remove_next == 1
0967              * case if the "next" vma that was removed was
0968              * the highest vma of the mm. However in such
0969              * case next->vm_end == "end" and the extended
0970              * "vma" has vma->vm_end == next->vm_end so
0971              * mm->highest_vm_end doesn't need any update
0972              * in remove_next == 1 case.
0973              */
0974             VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
0975         }
0976     }
0977     if (insert && file)
0978         uprobe_mmap(insert);
0979 
0980     validate_mm(mm);
0981 
0982     return 0;
0983 }
0984 
0985 /*
0986  * If the vma has a ->close operation then the driver probably needs to release
0987  * per-vma resources, so we don't attempt to merge those.
0988  */
0989 static inline int is_mergeable_vma(struct vm_area_struct *vma,
0990                 struct file *file, unsigned long vm_flags,
0991                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
0992                 struct anon_vma_name *anon_name)
0993 {
0994     /*
0995      * VM_SOFTDIRTY should not prevent from VMA merging, if we
0996      * match the flags but dirty bit -- the caller should mark
0997      * merged VMA as dirty. If dirty bit won't be excluded from
0998      * comparison, we increase pressure on the memory system forcing
0999      * the kernel to generate new VMAs when old one could be
1000      * extended instead.
1001      */
1002     if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1003         return 0;
1004     if (vma->vm_file != file)
1005         return 0;
1006     if (vma->vm_ops && vma->vm_ops->close)
1007         return 0;
1008     if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1009         return 0;
1010     if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1011         return 0;
1012     return 1;
1013 }
1014 
1015 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1016                     struct anon_vma *anon_vma2,
1017                     struct vm_area_struct *vma)
1018 {
1019     /*
1020      * The list_is_singular() test is to avoid merging VMA cloned from
1021      * parents. This can improve scalability caused by anon_vma lock.
1022      */
1023     if ((!anon_vma1 || !anon_vma2) && (!vma ||
1024         list_is_singular(&vma->anon_vma_chain)))
1025         return 1;
1026     return anon_vma1 == anon_vma2;
1027 }
1028 
1029 /*
1030  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1031  * in front of (at a lower virtual address and file offset than) the vma.
1032  *
1033  * We cannot merge two vmas if they have differently assigned (non-NULL)
1034  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1035  *
1036  * We don't check here for the merged mmap wrapping around the end of pagecache
1037  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1038  * wrap, nor mmaps which cover the final page at index -1UL.
1039  */
1040 static int
1041 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1042              struct anon_vma *anon_vma, struct file *file,
1043              pgoff_t vm_pgoff,
1044              struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1045              struct anon_vma_name *anon_name)
1046 {
1047     if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1048         is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1049         if (vma->vm_pgoff == vm_pgoff)
1050             return 1;
1051     }
1052     return 0;
1053 }
1054 
1055 /*
1056  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1057  * beyond (at a higher virtual address and file offset than) the vma.
1058  *
1059  * We cannot merge two vmas if they have differently assigned (non-NULL)
1060  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1061  */
1062 static int
1063 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1064             struct anon_vma *anon_vma, struct file *file,
1065             pgoff_t vm_pgoff,
1066             struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1067             struct anon_vma_name *anon_name)
1068 {
1069     if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1070         is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1071         pgoff_t vm_pglen;
1072         vm_pglen = vma_pages(vma);
1073         if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1074             return 1;
1075     }
1076     return 0;
1077 }
1078 
1079 /*
1080  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1081  * figure out whether that can be merged with its predecessor or its
1082  * successor.  Or both (it neatly fills a hole).
1083  *
1084  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1085  * certain not to be mapped by the time vma_merge is called; but when
1086  * called for mprotect, it is certain to be already mapped (either at
1087  * an offset within prev, or at the start of next), and the flags of
1088  * this area are about to be changed to vm_flags - and the no-change
1089  * case has already been eliminated.
1090  *
1091  * The following mprotect cases have to be considered, where AAAA is
1092  * the area passed down from mprotect_fixup, never extending beyond one
1093  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1094  *
1095  *     AAAA             AAAA                   AAAA
1096  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1097  *    cannot merge    might become       might become
1098  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1099  *    mmap, brk or    case 4 below       case 5 below
1100  *    mremap move:
1101  *                        AAAA               AAAA
1102  *                    PPPP    NNNN       PPPPNNNNXXXX
1103  *                    might become       might become
1104  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1105  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1106  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1107  *
1108  * It is important for case 8 that the vma NNNN overlapping the
1109  * region AAAA is never going to extended over XXXX. Instead XXXX must
1110  * be extended in region AAAA and NNNN must be removed. This way in
1111  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1112  * rmap_locks, the properties of the merged vma will be already
1113  * correct for the whole merged range. Some of those properties like
1114  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1115  * be correct for the whole merged range immediately after the
1116  * rmap_locks are released. Otherwise if XXXX would be removed and
1117  * NNNN would be extended over the XXXX range, remove_migration_ptes
1118  * or other rmap walkers (if working on addresses beyond the "end"
1119  * parameter) may establish ptes with the wrong permissions of NNNN
1120  * instead of the right permissions of XXXX.
1121  */
1122 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1123             struct vm_area_struct *prev, unsigned long addr,
1124             unsigned long end, unsigned long vm_flags,
1125             struct anon_vma *anon_vma, struct file *file,
1126             pgoff_t pgoff, struct mempolicy *policy,
1127             struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1128             struct anon_vma_name *anon_name)
1129 {
1130     pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1131     struct vm_area_struct *area, *next;
1132     int err;
1133 
1134     /*
1135      * We later require that vma->vm_flags == vm_flags,
1136      * so this tests vma->vm_flags & VM_SPECIAL, too.
1137      */
1138     if (vm_flags & VM_SPECIAL)
1139         return NULL;
1140 
1141     next = vma_next(mm, prev);
1142     area = next;
1143     if (area && area->vm_end == end)        /* cases 6, 7, 8 */
1144         next = next->vm_next;
1145 
1146     /* verify some invariant that must be enforced by the caller */
1147     VM_WARN_ON(prev && addr <= prev->vm_start);
1148     VM_WARN_ON(area && end > area->vm_end);
1149     VM_WARN_ON(addr >= end);
1150 
1151     /*
1152      * Can it merge with the predecessor?
1153      */
1154     if (prev && prev->vm_end == addr &&
1155             mpol_equal(vma_policy(prev), policy) &&
1156             can_vma_merge_after(prev, vm_flags,
1157                         anon_vma, file, pgoff,
1158                         vm_userfaultfd_ctx, anon_name)) {
1159         /*
1160          * OK, it can.  Can we now merge in the successor as well?
1161          */
1162         if (next && end == next->vm_start &&
1163                 mpol_equal(policy, vma_policy(next)) &&
1164                 can_vma_merge_before(next, vm_flags,
1165                              anon_vma, file,
1166                              pgoff+pglen,
1167                              vm_userfaultfd_ctx, anon_name) &&
1168                 is_mergeable_anon_vma(prev->anon_vma,
1169                               next->anon_vma, NULL)) {
1170                             /* cases 1, 6 */
1171             err = __vma_adjust(prev, prev->vm_start,
1172                      next->vm_end, prev->vm_pgoff, NULL,
1173                      prev);
1174         } else                  /* cases 2, 5, 7 */
1175             err = __vma_adjust(prev, prev->vm_start,
1176                      end, prev->vm_pgoff, NULL, prev);
1177         if (err)
1178             return NULL;
1179         khugepaged_enter_vma(prev, vm_flags);
1180         return prev;
1181     }
1182 
1183     /*
1184      * Can this new request be merged in front of next?
1185      */
1186     if (next && end == next->vm_start &&
1187             mpol_equal(policy, vma_policy(next)) &&
1188             can_vma_merge_before(next, vm_flags,
1189                          anon_vma, file, pgoff+pglen,
1190                          vm_userfaultfd_ctx, anon_name)) {
1191         if (prev && addr < prev->vm_end)    /* case 4 */
1192             err = __vma_adjust(prev, prev->vm_start,
1193                      addr, prev->vm_pgoff, NULL, next);
1194         else {                  /* cases 3, 8 */
1195             err = __vma_adjust(area, addr, next->vm_end,
1196                      next->vm_pgoff - pglen, NULL, next);
1197             /*
1198              * In case 3 area is already equal to next and
1199              * this is a noop, but in case 8 "area" has
1200              * been removed and next was expanded over it.
1201              */
1202             area = next;
1203         }
1204         if (err)
1205             return NULL;
1206         khugepaged_enter_vma(area, vm_flags);
1207         return area;
1208     }
1209 
1210     return NULL;
1211 }
1212 
1213 /*
1214  * Rough compatibility check to quickly see if it's even worth looking
1215  * at sharing an anon_vma.
1216  *
1217  * They need to have the same vm_file, and the flags can only differ
1218  * in things that mprotect may change.
1219  *
1220  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1221  * we can merge the two vma's. For example, we refuse to merge a vma if
1222  * there is a vm_ops->close() function, because that indicates that the
1223  * driver is doing some kind of reference counting. But that doesn't
1224  * really matter for the anon_vma sharing case.
1225  */
1226 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1227 {
1228     return a->vm_end == b->vm_start &&
1229         mpol_equal(vma_policy(a), vma_policy(b)) &&
1230         a->vm_file == b->vm_file &&
1231         !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1232         b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1233 }
1234 
1235 /*
1236  * Do some basic sanity checking to see if we can re-use the anon_vma
1237  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1238  * the same as 'old', the other will be the new one that is trying
1239  * to share the anon_vma.
1240  *
1241  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1242  * the anon_vma of 'old' is concurrently in the process of being set up
1243  * by another page fault trying to merge _that_. But that's ok: if it
1244  * is being set up, that automatically means that it will be a singleton
1245  * acceptable for merging, so we can do all of this optimistically. But
1246  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1247  *
1248  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1249  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1250  * is to return an anon_vma that is "complex" due to having gone through
1251  * a fork).
1252  *
1253  * We also make sure that the two vma's are compatible (adjacent,
1254  * and with the same memory policies). That's all stable, even with just
1255  * a read lock on the mmap_lock.
1256  */
1257 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1258 {
1259     if (anon_vma_compatible(a, b)) {
1260         struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1261 
1262         if (anon_vma && list_is_singular(&old->anon_vma_chain))
1263             return anon_vma;
1264     }
1265     return NULL;
1266 }
1267 
1268 /*
1269  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1270  * neighbouring vmas for a suitable anon_vma, before it goes off
1271  * to allocate a new anon_vma.  It checks because a repetitive
1272  * sequence of mprotects and faults may otherwise lead to distinct
1273  * anon_vmas being allocated, preventing vma merge in subsequent
1274  * mprotect.
1275  */
1276 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1277 {
1278     struct anon_vma *anon_vma = NULL;
1279 
1280     /* Try next first. */
1281     if (vma->vm_next) {
1282         anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1283         if (anon_vma)
1284             return anon_vma;
1285     }
1286 
1287     /* Try prev next. */
1288     if (vma->vm_prev)
1289         anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1290 
1291     /*
1292      * We might reach here with anon_vma == NULL if we can't find
1293      * any reusable anon_vma.
1294      * There's no absolute need to look only at touching neighbours:
1295      * we could search further afield for "compatible" anon_vmas.
1296      * But it would probably just be a waste of time searching,
1297      * or lead to too many vmas hanging off the same anon_vma.
1298      * We're trying to allow mprotect remerging later on,
1299      * not trying to minimize memory used for anon_vmas.
1300      */
1301     return anon_vma;
1302 }
1303 
1304 /*
1305  * If a hint addr is less than mmap_min_addr change hint to be as
1306  * low as possible but still greater than mmap_min_addr
1307  */
1308 static inline unsigned long round_hint_to_min(unsigned long hint)
1309 {
1310     hint &= PAGE_MASK;
1311     if (((void *)hint != NULL) &&
1312         (hint < mmap_min_addr))
1313         return PAGE_ALIGN(mmap_min_addr);
1314     return hint;
1315 }
1316 
1317 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1318                unsigned long len)
1319 {
1320     unsigned long locked, lock_limit;
1321 
1322     /*  mlock MCL_FUTURE? */
1323     if (flags & VM_LOCKED) {
1324         locked = len >> PAGE_SHIFT;
1325         locked += mm->locked_vm;
1326         lock_limit = rlimit(RLIMIT_MEMLOCK);
1327         lock_limit >>= PAGE_SHIFT;
1328         if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1329             return -EAGAIN;
1330     }
1331     return 0;
1332 }
1333 
1334 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1335 {
1336     if (S_ISREG(inode->i_mode))
1337         return MAX_LFS_FILESIZE;
1338 
1339     if (S_ISBLK(inode->i_mode))
1340         return MAX_LFS_FILESIZE;
1341 
1342     if (S_ISSOCK(inode->i_mode))
1343         return MAX_LFS_FILESIZE;
1344 
1345     /* Special "we do even unsigned file positions" case */
1346     if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1347         return 0;
1348 
1349     /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1350     return ULONG_MAX;
1351 }
1352 
1353 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1354                 unsigned long pgoff, unsigned long len)
1355 {
1356     u64 maxsize = file_mmap_size_max(file, inode);
1357 
1358     if (maxsize && len > maxsize)
1359         return false;
1360     maxsize -= len;
1361     if (pgoff > maxsize >> PAGE_SHIFT)
1362         return false;
1363     return true;
1364 }
1365 
1366 /*
1367  * The caller must write-lock current->mm->mmap_lock.
1368  */
1369 unsigned long do_mmap(struct file *file, unsigned long addr,
1370             unsigned long len, unsigned long prot,
1371             unsigned long flags, unsigned long pgoff,
1372             unsigned long *populate, struct list_head *uf)
1373 {
1374     struct mm_struct *mm = current->mm;
1375     vm_flags_t vm_flags;
1376     int pkey = 0;
1377 
1378     *populate = 0;
1379 
1380     if (!len)
1381         return -EINVAL;
1382 
1383     /*
1384      * Does the application expect PROT_READ to imply PROT_EXEC?
1385      *
1386      * (the exception is when the underlying filesystem is noexec
1387      *  mounted, in which case we dont add PROT_EXEC.)
1388      */
1389     if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1390         if (!(file && path_noexec(&file->f_path)))
1391             prot |= PROT_EXEC;
1392 
1393     /* force arch specific MAP_FIXED handling in get_unmapped_area */
1394     if (flags & MAP_FIXED_NOREPLACE)
1395         flags |= MAP_FIXED;
1396 
1397     if (!(flags & MAP_FIXED))
1398         addr = round_hint_to_min(addr);
1399 
1400     /* Careful about overflows.. */
1401     len = PAGE_ALIGN(len);
1402     if (!len)
1403         return -ENOMEM;
1404 
1405     /* offset overflow? */
1406     if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1407         return -EOVERFLOW;
1408 
1409     /* Too many mappings? */
1410     if (mm->map_count > sysctl_max_map_count)
1411         return -ENOMEM;
1412 
1413     /* Obtain the address to map to. we verify (or select) it and ensure
1414      * that it represents a valid section of the address space.
1415      */
1416     addr = get_unmapped_area(file, addr, len, pgoff, flags);
1417     if (IS_ERR_VALUE(addr))
1418         return addr;
1419 
1420     if (flags & MAP_FIXED_NOREPLACE) {
1421         if (find_vma_intersection(mm, addr, addr + len))
1422             return -EEXIST;
1423     }
1424 
1425     if (prot == PROT_EXEC) {
1426         pkey = execute_only_pkey(mm);
1427         if (pkey < 0)
1428             pkey = 0;
1429     }
1430 
1431     /* Do simple checking here so the lower-level routines won't have
1432      * to. we assume access permissions have been handled by the open
1433      * of the memory object, so we don't do any here.
1434      */
1435     vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1436             mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1437 
1438     if (flags & MAP_LOCKED)
1439         if (!can_do_mlock())
1440             return -EPERM;
1441 
1442     if (mlock_future_check(mm, vm_flags, len))
1443         return -EAGAIN;
1444 
1445     if (file) {
1446         struct inode *inode = file_inode(file);
1447         unsigned long flags_mask;
1448 
1449         if (!file_mmap_ok(file, inode, pgoff, len))
1450             return -EOVERFLOW;
1451 
1452         flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1453 
1454         switch (flags & MAP_TYPE) {
1455         case MAP_SHARED:
1456             /*
1457              * Force use of MAP_SHARED_VALIDATE with non-legacy
1458              * flags. E.g. MAP_SYNC is dangerous to use with
1459              * MAP_SHARED as you don't know which consistency model
1460              * you will get. We silently ignore unsupported flags
1461              * with MAP_SHARED to preserve backward compatibility.
1462              */
1463             flags &= LEGACY_MAP_MASK;
1464             fallthrough;
1465         case MAP_SHARED_VALIDATE:
1466             if (flags & ~flags_mask)
1467                 return -EOPNOTSUPP;
1468             if (prot & PROT_WRITE) {
1469                 if (!(file->f_mode & FMODE_WRITE))
1470                     return -EACCES;
1471                 if (IS_SWAPFILE(file->f_mapping->host))
1472                     return -ETXTBSY;
1473             }
1474 
1475             /*
1476              * Make sure we don't allow writing to an append-only
1477              * file..
1478              */
1479             if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1480                 return -EACCES;
1481 
1482             vm_flags |= VM_SHARED | VM_MAYSHARE;
1483             if (!(file->f_mode & FMODE_WRITE))
1484                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1485             fallthrough;
1486         case MAP_PRIVATE:
1487             if (!(file->f_mode & FMODE_READ))
1488                 return -EACCES;
1489             if (path_noexec(&file->f_path)) {
1490                 if (vm_flags & VM_EXEC)
1491                     return -EPERM;
1492                 vm_flags &= ~VM_MAYEXEC;
1493             }
1494 
1495             if (!file->f_op->mmap)
1496                 return -ENODEV;
1497             if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1498                 return -EINVAL;
1499             break;
1500 
1501         default:
1502             return -EINVAL;
1503         }
1504     } else {
1505         switch (flags & MAP_TYPE) {
1506         case MAP_SHARED:
1507             if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1508                 return -EINVAL;
1509             /*
1510              * Ignore pgoff.
1511              */
1512             pgoff = 0;
1513             vm_flags |= VM_SHARED | VM_MAYSHARE;
1514             break;
1515         case MAP_PRIVATE:
1516             /*
1517              * Set pgoff according to addr for anon_vma.
1518              */
1519             pgoff = addr >> PAGE_SHIFT;
1520             break;
1521         default:
1522             return -EINVAL;
1523         }
1524     }
1525 
1526     /*
1527      * Set 'VM_NORESERVE' if we should not account for the
1528      * memory use of this mapping.
1529      */
1530     if (flags & MAP_NORESERVE) {
1531         /* We honor MAP_NORESERVE if allowed to overcommit */
1532         if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1533             vm_flags |= VM_NORESERVE;
1534 
1535         /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1536         if (file && is_file_hugepages(file))
1537             vm_flags |= VM_NORESERVE;
1538     }
1539 
1540     addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1541     if (!IS_ERR_VALUE(addr) &&
1542         ((vm_flags & VM_LOCKED) ||
1543          (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1544         *populate = len;
1545     return addr;
1546 }
1547 
1548 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1549                   unsigned long prot, unsigned long flags,
1550                   unsigned long fd, unsigned long pgoff)
1551 {
1552     struct file *file = NULL;
1553     unsigned long retval;
1554 
1555     if (!(flags & MAP_ANONYMOUS)) {
1556         audit_mmap_fd(fd, flags);
1557         file = fget(fd);
1558         if (!file)
1559             return -EBADF;
1560         if (is_file_hugepages(file)) {
1561             len = ALIGN(len, huge_page_size(hstate_file(file)));
1562         } else if (unlikely(flags & MAP_HUGETLB)) {
1563             retval = -EINVAL;
1564             goto out_fput;
1565         }
1566     } else if (flags & MAP_HUGETLB) {
1567         struct hstate *hs;
1568 
1569         hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1570         if (!hs)
1571             return -EINVAL;
1572 
1573         len = ALIGN(len, huge_page_size(hs));
1574         /*
1575          * VM_NORESERVE is used because the reservations will be
1576          * taken when vm_ops->mmap() is called
1577          */
1578         file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1579                 VM_NORESERVE,
1580                 HUGETLB_ANONHUGE_INODE,
1581                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1582         if (IS_ERR(file))
1583             return PTR_ERR(file);
1584     }
1585 
1586     retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1587 out_fput:
1588     if (file)
1589         fput(file);
1590     return retval;
1591 }
1592 
1593 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1594         unsigned long, prot, unsigned long, flags,
1595         unsigned long, fd, unsigned long, pgoff)
1596 {
1597     return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1598 }
1599 
1600 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1601 struct mmap_arg_struct {
1602     unsigned long addr;
1603     unsigned long len;
1604     unsigned long prot;
1605     unsigned long flags;
1606     unsigned long fd;
1607     unsigned long offset;
1608 };
1609 
1610 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1611 {
1612     struct mmap_arg_struct a;
1613 
1614     if (copy_from_user(&a, arg, sizeof(a)))
1615         return -EFAULT;
1616     if (offset_in_page(a.offset))
1617         return -EINVAL;
1618 
1619     return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1620                    a.offset >> PAGE_SHIFT);
1621 }
1622 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1623 
1624 /*
1625  * Some shared mappings will want the pages marked read-only
1626  * to track write events. If so, we'll downgrade vm_page_prot
1627  * to the private version (using protection_map[] without the
1628  * VM_SHARED bit).
1629  */
1630 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1631 {
1632     vm_flags_t vm_flags = vma->vm_flags;
1633     const struct vm_operations_struct *vm_ops = vma->vm_ops;
1634 
1635     /* If it was private or non-writable, the write bit is already clear */
1636     if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1637         return 0;
1638 
1639     /* The backer wishes to know when pages are first written to? */
1640     if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1641         return 1;
1642 
1643     /* The open routine did something to the protections that pgprot_modify
1644      * won't preserve? */
1645     if (pgprot_val(vm_page_prot) !=
1646         pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1647         return 0;
1648 
1649     /*
1650      * Do we need to track softdirty? hugetlb does not support softdirty
1651      * tracking yet.
1652      */
1653     if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1654         return 1;
1655 
1656     /* Specialty mapping? */
1657     if (vm_flags & VM_PFNMAP)
1658         return 0;
1659 
1660     /* Can the mapping track the dirty pages? */
1661     return vma->vm_file && vma->vm_file->f_mapping &&
1662         mapping_can_writeback(vma->vm_file->f_mapping);
1663 }
1664 
1665 /*
1666  * We account for memory if it's a private writeable mapping,
1667  * not hugepages and VM_NORESERVE wasn't set.
1668  */
1669 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1670 {
1671     /*
1672      * hugetlb has its own accounting separate from the core VM
1673      * VM_HUGETLB may not be set yet so we cannot check for that flag.
1674      */
1675     if (file && is_file_hugepages(file))
1676         return 0;
1677 
1678     return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1679 }
1680 
1681 unsigned long mmap_region(struct file *file, unsigned long addr,
1682         unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1683         struct list_head *uf)
1684 {
1685     struct mm_struct *mm = current->mm;
1686     struct vm_area_struct *vma, *prev, *merge;
1687     int error;
1688     struct rb_node **rb_link, *rb_parent;
1689     unsigned long charged = 0;
1690 
1691     /* Check against address space limit. */
1692     if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1693         unsigned long nr_pages;
1694 
1695         /*
1696          * MAP_FIXED may remove pages of mappings that intersects with
1697          * requested mapping. Account for the pages it would unmap.
1698          */
1699         nr_pages = count_vma_pages_range(mm, addr, addr + len);
1700 
1701         if (!may_expand_vm(mm, vm_flags,
1702                     (len >> PAGE_SHIFT) - nr_pages))
1703             return -ENOMEM;
1704     }
1705 
1706     /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1707     if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1708         return -ENOMEM;
1709     /*
1710      * Private writable mapping: check memory availability
1711      */
1712     if (accountable_mapping(file, vm_flags)) {
1713         charged = len >> PAGE_SHIFT;
1714         if (security_vm_enough_memory_mm(mm, charged))
1715             return -ENOMEM;
1716         vm_flags |= VM_ACCOUNT;
1717     }
1718 
1719     /*
1720      * Can we just expand an old mapping?
1721      */
1722     vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1723             NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1724     if (vma)
1725         goto out;
1726 
1727     /*
1728      * Determine the object being mapped and call the appropriate
1729      * specific mapper. the address has already been validated, but
1730      * not unmapped, but the maps are removed from the list.
1731      */
1732     vma = vm_area_alloc(mm);
1733     if (!vma) {
1734         error = -ENOMEM;
1735         goto unacct_error;
1736     }
1737 
1738     vma->vm_start = addr;
1739     vma->vm_end = addr + len;
1740     vma->vm_flags = vm_flags;
1741     vma->vm_page_prot = vm_get_page_prot(vm_flags);
1742     vma->vm_pgoff = pgoff;
1743 
1744     if (file) {
1745         if (vm_flags & VM_SHARED) {
1746             error = mapping_map_writable(file->f_mapping);
1747             if (error)
1748                 goto free_vma;
1749         }
1750 
1751         vma->vm_file = get_file(file);
1752         error = call_mmap(file, vma);
1753         if (error)
1754             goto unmap_and_free_vma;
1755 
1756         /* Can addr have changed??
1757          *
1758          * Answer: Yes, several device drivers can do it in their
1759          *         f_op->mmap method. -DaveM
1760          * Bug: If addr is changed, prev, rb_link, rb_parent should
1761          *      be updated for vma_link()
1762          */
1763         WARN_ON_ONCE(addr != vma->vm_start);
1764 
1765         addr = vma->vm_start;
1766 
1767         /* If vm_flags changed after call_mmap(), we should try merge vma again
1768          * as we may succeed this time.
1769          */
1770         if (unlikely(vm_flags != vma->vm_flags && prev)) {
1771             merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1772                 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1773             if (merge) {
1774                 /* ->mmap() can change vma->vm_file and fput the original file. So
1775                  * fput the vma->vm_file here or we would add an extra fput for file
1776                  * and cause general protection fault ultimately.
1777                  */
1778                 fput(vma->vm_file);
1779                 vm_area_free(vma);
1780                 vma = merge;
1781                 /* Update vm_flags to pick up the change. */
1782                 vm_flags = vma->vm_flags;
1783                 goto unmap_writable;
1784             }
1785         }
1786 
1787         vm_flags = vma->vm_flags;
1788     } else if (vm_flags & VM_SHARED) {
1789         error = shmem_zero_setup(vma);
1790         if (error)
1791             goto free_vma;
1792     } else {
1793         vma_set_anonymous(vma);
1794     }
1795 
1796     /* Allow architectures to sanity-check the vm_flags */
1797     if (!arch_validate_flags(vma->vm_flags)) {
1798         error = -EINVAL;
1799         if (file)
1800             goto unmap_and_free_vma;
1801         else
1802             goto free_vma;
1803     }
1804 
1805     vma_link(mm, vma, prev, rb_link, rb_parent);
1806 
1807     /*
1808      * vma_merge() calls khugepaged_enter_vma() either, the below
1809      * call covers the non-merge case.
1810      */
1811     khugepaged_enter_vma(vma, vma->vm_flags);
1812 
1813     /* Once vma denies write, undo our temporary denial count */
1814 unmap_writable:
1815     if (file && vm_flags & VM_SHARED)
1816         mapping_unmap_writable(file->f_mapping);
1817     file = vma->vm_file;
1818 out:
1819     perf_event_mmap(vma);
1820 
1821     vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1822     if (vm_flags & VM_LOCKED) {
1823         if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1824                     is_vm_hugetlb_page(vma) ||
1825                     vma == get_gate_vma(current->mm))
1826             vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1827         else
1828             mm->locked_vm += (len >> PAGE_SHIFT);
1829     }
1830 
1831     if (file)
1832         uprobe_mmap(vma);
1833 
1834     /*
1835      * New (or expanded) vma always get soft dirty status.
1836      * Otherwise user-space soft-dirty page tracker won't
1837      * be able to distinguish situation when vma area unmapped,
1838      * then new mapped in-place (which must be aimed as
1839      * a completely new data area).
1840      */
1841     vma->vm_flags |= VM_SOFTDIRTY;
1842 
1843     vma_set_page_prot(vma);
1844 
1845     return addr;
1846 
1847 unmap_and_free_vma:
1848     fput(vma->vm_file);
1849     vma->vm_file = NULL;
1850 
1851     /* Undo any partial mapping done by a device driver. */
1852     unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1853     if (vm_flags & VM_SHARED)
1854         mapping_unmap_writable(file->f_mapping);
1855 free_vma:
1856     vm_area_free(vma);
1857 unacct_error:
1858     if (charged)
1859         vm_unacct_memory(charged);
1860     return error;
1861 }
1862 
1863 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1864 {
1865     /*
1866      * We implement the search by looking for an rbtree node that
1867      * immediately follows a suitable gap. That is,
1868      * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1869      * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1870      * - gap_end - gap_start >= length
1871      */
1872 
1873     struct mm_struct *mm = current->mm;
1874     struct vm_area_struct *vma;
1875     unsigned long length, low_limit, high_limit, gap_start, gap_end;
1876 
1877     /* Adjust search length to account for worst case alignment overhead */
1878     length = info->length + info->align_mask;
1879     if (length < info->length)
1880         return -ENOMEM;
1881 
1882     /* Adjust search limits by the desired length */
1883     if (info->high_limit < length)
1884         return -ENOMEM;
1885     high_limit = info->high_limit - length;
1886 
1887     if (info->low_limit > high_limit)
1888         return -ENOMEM;
1889     low_limit = info->low_limit + length;
1890 
1891     /* Check if rbtree root looks promising */
1892     if (RB_EMPTY_ROOT(&mm->mm_rb))
1893         goto check_highest;
1894     vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1895     if (vma->rb_subtree_gap < length)
1896         goto check_highest;
1897 
1898     while (true) {
1899         /* Visit left subtree if it looks promising */
1900         gap_end = vm_start_gap(vma);
1901         if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1902             struct vm_area_struct *left =
1903                 rb_entry(vma->vm_rb.rb_left,
1904                      struct vm_area_struct, vm_rb);
1905             if (left->rb_subtree_gap >= length) {
1906                 vma = left;
1907                 continue;
1908             }
1909         }
1910 
1911         gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1912 check_current:
1913         /* Check if current node has a suitable gap */
1914         if (gap_start > high_limit)
1915             return -ENOMEM;
1916         if (gap_end >= low_limit &&
1917             gap_end > gap_start && gap_end - gap_start >= length)
1918             goto found;
1919 
1920         /* Visit right subtree if it looks promising */
1921         if (vma->vm_rb.rb_right) {
1922             struct vm_area_struct *right =
1923                 rb_entry(vma->vm_rb.rb_right,
1924                      struct vm_area_struct, vm_rb);
1925             if (right->rb_subtree_gap >= length) {
1926                 vma = right;
1927                 continue;
1928             }
1929         }
1930 
1931         /* Go back up the rbtree to find next candidate node */
1932         while (true) {
1933             struct rb_node *prev = &vma->vm_rb;
1934             if (!rb_parent(prev))
1935                 goto check_highest;
1936             vma = rb_entry(rb_parent(prev),
1937                        struct vm_area_struct, vm_rb);
1938             if (prev == vma->vm_rb.rb_left) {
1939                 gap_start = vm_end_gap(vma->vm_prev);
1940                 gap_end = vm_start_gap(vma);
1941                 goto check_current;
1942             }
1943         }
1944     }
1945 
1946 check_highest:
1947     /* Check highest gap, which does not precede any rbtree node */
1948     gap_start = mm->highest_vm_end;
1949     gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1950     if (gap_start > high_limit)
1951         return -ENOMEM;
1952 
1953 found:
1954     /* We found a suitable gap. Clip it with the original low_limit. */
1955     if (gap_start < info->low_limit)
1956         gap_start = info->low_limit;
1957 
1958     /* Adjust gap address to the desired alignment */
1959     gap_start += (info->align_offset - gap_start) & info->align_mask;
1960 
1961     VM_BUG_ON(gap_start + info->length > info->high_limit);
1962     VM_BUG_ON(gap_start + info->length > gap_end);
1963     return gap_start;
1964 }
1965 
1966 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1967 {
1968     struct mm_struct *mm = current->mm;
1969     struct vm_area_struct *vma;
1970     unsigned long length, low_limit, high_limit, gap_start, gap_end;
1971 
1972     /* Adjust search length to account for worst case alignment overhead */
1973     length = info->length + info->align_mask;
1974     if (length < info->length)
1975         return -ENOMEM;
1976 
1977     /*
1978      * Adjust search limits by the desired length.
1979      * See implementation comment at top of unmapped_area().
1980      */
1981     gap_end = info->high_limit;
1982     if (gap_end < length)
1983         return -ENOMEM;
1984     high_limit = gap_end - length;
1985 
1986     if (info->low_limit > high_limit)
1987         return -ENOMEM;
1988     low_limit = info->low_limit + length;
1989 
1990     /* Check highest gap, which does not precede any rbtree node */
1991     gap_start = mm->highest_vm_end;
1992     if (gap_start <= high_limit)
1993         goto found_highest;
1994 
1995     /* Check if rbtree root looks promising */
1996     if (RB_EMPTY_ROOT(&mm->mm_rb))
1997         return -ENOMEM;
1998     vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1999     if (vma->rb_subtree_gap < length)
2000         return -ENOMEM;
2001 
2002     while (true) {
2003         /* Visit right subtree if it looks promising */
2004         gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2005         if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2006             struct vm_area_struct *right =
2007                 rb_entry(vma->vm_rb.rb_right,
2008                      struct vm_area_struct, vm_rb);
2009             if (right->rb_subtree_gap >= length) {
2010                 vma = right;
2011                 continue;
2012             }
2013         }
2014 
2015 check_current:
2016         /* Check if current node has a suitable gap */
2017         gap_end = vm_start_gap(vma);
2018         if (gap_end < low_limit)
2019             return -ENOMEM;
2020         if (gap_start <= high_limit &&
2021             gap_end > gap_start && gap_end - gap_start >= length)
2022             goto found;
2023 
2024         /* Visit left subtree if it looks promising */
2025         if (vma->vm_rb.rb_left) {
2026             struct vm_area_struct *left =
2027                 rb_entry(vma->vm_rb.rb_left,
2028                      struct vm_area_struct, vm_rb);
2029             if (left->rb_subtree_gap >= length) {
2030                 vma = left;
2031                 continue;
2032             }
2033         }
2034 
2035         /* Go back up the rbtree to find next candidate node */
2036         while (true) {
2037             struct rb_node *prev = &vma->vm_rb;
2038             if (!rb_parent(prev))
2039                 return -ENOMEM;
2040             vma = rb_entry(rb_parent(prev),
2041                        struct vm_area_struct, vm_rb);
2042             if (prev == vma->vm_rb.rb_right) {
2043                 gap_start = vma->vm_prev ?
2044                     vm_end_gap(vma->vm_prev) : 0;
2045                 goto check_current;
2046             }
2047         }
2048     }
2049 
2050 found:
2051     /* We found a suitable gap. Clip it with the original high_limit. */
2052     if (gap_end > info->high_limit)
2053         gap_end = info->high_limit;
2054 
2055 found_highest:
2056     /* Compute highest gap address at the desired alignment */
2057     gap_end -= info->length;
2058     gap_end -= (gap_end - info->align_offset) & info->align_mask;
2059 
2060     VM_BUG_ON(gap_end < info->low_limit);
2061     VM_BUG_ON(gap_end < gap_start);
2062     return gap_end;
2063 }
2064 
2065 /*
2066  * Search for an unmapped address range.
2067  *
2068  * We are looking for a range that:
2069  * - does not intersect with any VMA;
2070  * - is contained within the [low_limit, high_limit) interval;
2071  * - is at least the desired size.
2072  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2073  */
2074 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2075 {
2076     unsigned long addr;
2077 
2078     if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2079         addr = unmapped_area_topdown(info);
2080     else
2081         addr = unmapped_area(info);
2082 
2083     trace_vm_unmapped_area(addr, info);
2084     return addr;
2085 }
2086 
2087 /* Get an address range which is currently unmapped.
2088  * For shmat() with addr=0.
2089  *
2090  * Ugly calling convention alert:
2091  * Return value with the low bits set means error value,
2092  * ie
2093  *  if (ret & ~PAGE_MASK)
2094  *      error = ret;
2095  *
2096  * This function "knows" that -ENOMEM has the bits set.
2097  */
2098 unsigned long
2099 generic_get_unmapped_area(struct file *filp, unsigned long addr,
2100               unsigned long len, unsigned long pgoff,
2101               unsigned long flags)
2102 {
2103     struct mm_struct *mm = current->mm;
2104     struct vm_area_struct *vma, *prev;
2105     struct vm_unmapped_area_info info;
2106     const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
2107 
2108     if (len > mmap_end - mmap_min_addr)
2109         return -ENOMEM;
2110 
2111     if (flags & MAP_FIXED)
2112         return addr;
2113 
2114     if (addr) {
2115         addr = PAGE_ALIGN(addr);
2116         vma = find_vma_prev(mm, addr, &prev);
2117         if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2118             (!vma || addr + len <= vm_start_gap(vma)) &&
2119             (!prev || addr >= vm_end_gap(prev)))
2120             return addr;
2121     }
2122 
2123     info.flags = 0;
2124     info.length = len;
2125     info.low_limit = mm->mmap_base;
2126     info.high_limit = mmap_end;
2127     info.align_mask = 0;
2128     info.align_offset = 0;
2129     return vm_unmapped_area(&info);
2130 }
2131 
2132 #ifndef HAVE_ARCH_UNMAPPED_AREA
2133 unsigned long
2134 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2135                unsigned long len, unsigned long pgoff,
2136                unsigned long flags)
2137 {
2138     return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
2139 }
2140 #endif
2141 
2142 /*
2143  * This mmap-allocator allocates new areas top-down from below the
2144  * stack's low limit (the base):
2145  */
2146 unsigned long
2147 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2148                   unsigned long len, unsigned long pgoff,
2149                   unsigned long flags)
2150 {
2151     struct vm_area_struct *vma, *prev;
2152     struct mm_struct *mm = current->mm;
2153     struct vm_unmapped_area_info info;
2154     const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
2155 
2156     /* requested length too big for entire address space */
2157     if (len > mmap_end - mmap_min_addr)
2158         return -ENOMEM;
2159 
2160     if (flags & MAP_FIXED)
2161         return addr;
2162 
2163     /* requesting a specific address */
2164     if (addr) {
2165         addr = PAGE_ALIGN(addr);
2166         vma = find_vma_prev(mm, addr, &prev);
2167         if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2168                 (!vma || addr + len <= vm_start_gap(vma)) &&
2169                 (!prev || addr >= vm_end_gap(prev)))
2170             return addr;
2171     }
2172 
2173     info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2174     info.length = len;
2175     info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2176     info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2177     info.align_mask = 0;
2178     info.align_offset = 0;
2179     addr = vm_unmapped_area(&info);
2180 
2181     /*
2182      * A failed mmap() very likely causes application failure,
2183      * so fall back to the bottom-up function here. This scenario
2184      * can happen with large stack limits and large mmap()
2185      * allocations.
2186      */
2187     if (offset_in_page(addr)) {
2188         VM_BUG_ON(addr != -ENOMEM);
2189         info.flags = 0;
2190         info.low_limit = TASK_UNMAPPED_BASE;
2191         info.high_limit = mmap_end;
2192         addr = vm_unmapped_area(&info);
2193     }
2194 
2195     return addr;
2196 }
2197 
2198 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2199 unsigned long
2200 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2201                    unsigned long len, unsigned long pgoff,
2202                    unsigned long flags)
2203 {
2204     return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
2205 }
2206 #endif
2207 
2208 unsigned long
2209 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2210         unsigned long pgoff, unsigned long flags)
2211 {
2212     unsigned long (*get_area)(struct file *, unsigned long,
2213                   unsigned long, unsigned long, unsigned long);
2214 
2215     unsigned long error = arch_mmap_check(addr, len, flags);
2216     if (error)
2217         return error;
2218 
2219     /* Careful about overflows.. */
2220     if (len > TASK_SIZE)
2221         return -ENOMEM;
2222 
2223     get_area = current->mm->get_unmapped_area;
2224     if (file) {
2225         if (file->f_op->get_unmapped_area)
2226             get_area = file->f_op->get_unmapped_area;
2227     } else if (flags & MAP_SHARED) {
2228         /*
2229          * mmap_region() will call shmem_zero_setup() to create a file,
2230          * so use shmem's get_unmapped_area in case it can be huge.
2231          * do_mmap() will clear pgoff, so match alignment.
2232          */
2233         pgoff = 0;
2234         get_area = shmem_get_unmapped_area;
2235     }
2236 
2237     addr = get_area(file, addr, len, pgoff, flags);
2238     if (IS_ERR_VALUE(addr))
2239         return addr;
2240 
2241     if (addr > TASK_SIZE - len)
2242         return -ENOMEM;
2243     if (offset_in_page(addr))
2244         return -EINVAL;
2245 
2246     error = security_mmap_addr(addr);
2247     return error ? error : addr;
2248 }
2249 
2250 EXPORT_SYMBOL(get_unmapped_area);
2251 
2252 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2253 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2254 {
2255     struct rb_node *rb_node;
2256     struct vm_area_struct *vma;
2257 
2258     mmap_assert_locked(mm);
2259     /* Check the cache first. */
2260     vma = vmacache_find(mm, addr);
2261     if (likely(vma))
2262         return vma;
2263 
2264     rb_node = mm->mm_rb.rb_node;
2265 
2266     while (rb_node) {
2267         struct vm_area_struct *tmp;
2268 
2269         tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2270 
2271         if (tmp->vm_end > addr) {
2272             vma = tmp;
2273             if (tmp->vm_start <= addr)
2274                 break;
2275             rb_node = rb_node->rb_left;
2276         } else
2277             rb_node = rb_node->rb_right;
2278     }
2279 
2280     if (vma)
2281         vmacache_update(addr, vma);
2282     return vma;
2283 }
2284 
2285 EXPORT_SYMBOL(find_vma);
2286 
2287 /*
2288  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2289  */
2290 struct vm_area_struct *
2291 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2292             struct vm_area_struct **pprev)
2293 {
2294     struct vm_area_struct *vma;
2295 
2296     vma = find_vma(mm, addr);
2297     if (vma) {
2298         *pprev = vma->vm_prev;
2299     } else {
2300         struct rb_node *rb_node = rb_last(&mm->mm_rb);
2301 
2302         *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2303     }
2304     return vma;
2305 }
2306 
2307 /*
2308  * Verify that the stack growth is acceptable and
2309  * update accounting. This is shared with both the
2310  * grow-up and grow-down cases.
2311  */
2312 static int acct_stack_growth(struct vm_area_struct *vma,
2313                  unsigned long size, unsigned long grow)
2314 {
2315     struct mm_struct *mm = vma->vm_mm;
2316     unsigned long new_start;
2317 
2318     /* address space limit tests */
2319     if (!may_expand_vm(mm, vma->vm_flags, grow))
2320         return -ENOMEM;
2321 
2322     /* Stack limit test */
2323     if (size > rlimit(RLIMIT_STACK))
2324         return -ENOMEM;
2325 
2326     /* mlock limit tests */
2327     if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
2328         return -ENOMEM;
2329 
2330     /* Check to ensure the stack will not grow into a hugetlb-only region */
2331     new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2332             vma->vm_end - size;
2333     if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2334         return -EFAULT;
2335 
2336     /*
2337      * Overcommit..  This must be the final test, as it will
2338      * update security statistics.
2339      */
2340     if (security_vm_enough_memory_mm(mm, grow))
2341         return -ENOMEM;
2342 
2343     return 0;
2344 }
2345 
2346 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2347 /*
2348  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2349  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2350  */
2351 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2352 {
2353     struct mm_struct *mm = vma->vm_mm;
2354     struct vm_area_struct *next;
2355     unsigned long gap_addr;
2356     int error = 0;
2357 
2358     if (!(vma->vm_flags & VM_GROWSUP))
2359         return -EFAULT;
2360 
2361     /* Guard against exceeding limits of the address space. */
2362     address &= PAGE_MASK;
2363     if (address >= (TASK_SIZE & PAGE_MASK))
2364         return -ENOMEM;
2365     address += PAGE_SIZE;
2366 
2367     /* Enforce stack_guard_gap */
2368     gap_addr = address + stack_guard_gap;
2369 
2370     /* Guard against overflow */
2371     if (gap_addr < address || gap_addr > TASK_SIZE)
2372         gap_addr = TASK_SIZE;
2373 
2374     next = vma->vm_next;
2375     if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2376         if (!(next->vm_flags & VM_GROWSUP))
2377             return -ENOMEM;
2378         /* Check that both stack segments have the same anon_vma? */
2379     }
2380 
2381     /* We must make sure the anon_vma is allocated. */
2382     if (unlikely(anon_vma_prepare(vma)))
2383         return -ENOMEM;
2384 
2385     /*
2386      * vma->vm_start/vm_end cannot change under us because the caller
2387      * is required to hold the mmap_lock in read mode.  We need the
2388      * anon_vma lock to serialize against concurrent expand_stacks.
2389      */
2390     anon_vma_lock_write(vma->anon_vma);
2391 
2392     /* Somebody else might have raced and expanded it already */
2393     if (address > vma->vm_end) {
2394         unsigned long size, grow;
2395 
2396         size = address - vma->vm_start;
2397         grow = (address - vma->vm_end) >> PAGE_SHIFT;
2398 
2399         error = -ENOMEM;
2400         if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2401             error = acct_stack_growth(vma, size, grow);
2402             if (!error) {
2403                 /*
2404                  * vma_gap_update() doesn't support concurrent
2405                  * updates, but we only hold a shared mmap_lock
2406                  * lock here, so we need to protect against
2407                  * concurrent vma expansions.
2408                  * anon_vma_lock_write() doesn't help here, as
2409                  * we don't guarantee that all growable vmas
2410                  * in a mm share the same root anon vma.
2411                  * So, we reuse mm->page_table_lock to guard
2412                  * against concurrent vma expansions.
2413                  */
2414                 spin_lock(&mm->page_table_lock);
2415                 if (vma->vm_flags & VM_LOCKED)
2416                     mm->locked_vm += grow;
2417                 vm_stat_account(mm, vma->vm_flags, grow);
2418                 anon_vma_interval_tree_pre_update_vma(vma);
2419                 vma->vm_end = address;
2420                 anon_vma_interval_tree_post_update_vma(vma);
2421                 if (vma->vm_next)
2422                     vma_gap_update(vma->vm_next);
2423                 else
2424                     mm->highest_vm_end = vm_end_gap(vma);
2425                 spin_unlock(&mm->page_table_lock);
2426 
2427                 perf_event_mmap(vma);
2428             }
2429         }
2430     }
2431     anon_vma_unlock_write(vma->anon_vma);
2432     khugepaged_enter_vma(vma, vma->vm_flags);
2433     validate_mm(mm);
2434     return error;
2435 }
2436 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2437 
2438 /*
2439  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2440  */
2441 int expand_downwards(struct vm_area_struct *vma,
2442                    unsigned long address)
2443 {
2444     struct mm_struct *mm = vma->vm_mm;
2445     struct vm_area_struct *prev;
2446     int error = 0;
2447 
2448     address &= PAGE_MASK;
2449     if (address < mmap_min_addr)
2450         return -EPERM;
2451 
2452     /* Enforce stack_guard_gap */
2453     prev = vma->vm_prev;
2454     /* Check that both stack segments have the same anon_vma? */
2455     if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2456             vma_is_accessible(prev)) {
2457         if (address - prev->vm_end < stack_guard_gap)
2458             return -ENOMEM;
2459     }
2460 
2461     /* We must make sure the anon_vma is allocated. */
2462     if (unlikely(anon_vma_prepare(vma)))
2463         return -ENOMEM;
2464 
2465     /*
2466      * vma->vm_start/vm_end cannot change under us because the caller
2467      * is required to hold the mmap_lock in read mode.  We need the
2468      * anon_vma lock to serialize against concurrent expand_stacks.
2469      */
2470     anon_vma_lock_write(vma->anon_vma);
2471 
2472     /* Somebody else might have raced and expanded it already */
2473     if (address < vma->vm_start) {
2474         unsigned long size, grow;
2475 
2476         size = vma->vm_end - address;
2477         grow = (vma->vm_start - address) >> PAGE_SHIFT;
2478 
2479         error = -ENOMEM;
2480         if (grow <= vma->vm_pgoff) {
2481             error = acct_stack_growth(vma, size, grow);
2482             if (!error) {
2483                 /*
2484                  * vma_gap_update() doesn't support concurrent
2485                  * updates, but we only hold a shared mmap_lock
2486                  * lock here, so we need to protect against
2487                  * concurrent vma expansions.
2488                  * anon_vma_lock_write() doesn't help here, as
2489                  * we don't guarantee that all growable vmas
2490                  * in a mm share the same root anon vma.
2491                  * So, we reuse mm->page_table_lock to guard
2492                  * against concurrent vma expansions.
2493                  */
2494                 spin_lock(&mm->page_table_lock);
2495                 if (vma->vm_flags & VM_LOCKED)
2496                     mm->locked_vm += grow;
2497                 vm_stat_account(mm, vma->vm_flags, grow);
2498                 anon_vma_interval_tree_pre_update_vma(vma);
2499                 vma->vm_start = address;
2500                 vma->vm_pgoff -= grow;
2501                 anon_vma_interval_tree_post_update_vma(vma);
2502                 vma_gap_update(vma);
2503                 spin_unlock(&mm->page_table_lock);
2504 
2505                 perf_event_mmap(vma);
2506             }
2507         }
2508     }
2509     anon_vma_unlock_write(vma->anon_vma);
2510     khugepaged_enter_vma(vma, vma->vm_flags);
2511     validate_mm(mm);
2512     return error;
2513 }
2514 
2515 /* enforced gap between the expanding stack and other mappings. */
2516 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2517 
2518 static int __init cmdline_parse_stack_guard_gap(char *p)
2519 {
2520     unsigned long val;
2521     char *endptr;
2522 
2523     val = simple_strtoul(p, &endptr, 10);
2524     if (!*endptr)
2525         stack_guard_gap = val << PAGE_SHIFT;
2526 
2527     return 1;
2528 }
2529 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2530 
2531 #ifdef CONFIG_STACK_GROWSUP
2532 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2533 {
2534     return expand_upwards(vma, address);
2535 }
2536 
2537 struct vm_area_struct *
2538 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2539 {
2540     struct vm_area_struct *vma, *prev;
2541 
2542     addr &= PAGE_MASK;
2543     vma = find_vma_prev(mm, addr, &prev);
2544     if (vma && (vma->vm_start <= addr))
2545         return vma;
2546     if (!prev || expand_stack(prev, addr))
2547         return NULL;
2548     if (prev->vm_flags & VM_LOCKED)
2549         populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2550     return prev;
2551 }
2552 #else
2553 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2554 {
2555     return expand_downwards(vma, address);
2556 }
2557 
2558 struct vm_area_struct *
2559 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2560 {
2561     struct vm_area_struct *vma;
2562     unsigned long start;
2563 
2564     addr &= PAGE_MASK;
2565     vma = find_vma(mm, addr);
2566     if (!vma)
2567         return NULL;
2568     if (vma->vm_start <= addr)
2569         return vma;
2570     if (!(vma->vm_flags & VM_GROWSDOWN))
2571         return NULL;
2572     start = vma->vm_start;
2573     if (expand_stack(vma, addr))
2574         return NULL;
2575     if (vma->vm_flags & VM_LOCKED)
2576         populate_vma_page_range(vma, addr, start, NULL);
2577     return vma;
2578 }
2579 #endif
2580 
2581 EXPORT_SYMBOL_GPL(find_extend_vma);
2582 
2583 /*
2584  * Ok - we have the memory areas we should free on the vma list,
2585  * so release them, and do the vma updates.
2586  *
2587  * Called with the mm semaphore held.
2588  */
2589 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2590 {
2591     unsigned long nr_accounted = 0;
2592 
2593     /* Update high watermark before we lower total_vm */
2594     update_hiwater_vm(mm);
2595     do {
2596         long nrpages = vma_pages(vma);
2597 
2598         if (vma->vm_flags & VM_ACCOUNT)
2599             nr_accounted += nrpages;
2600         vm_stat_account(mm, vma->vm_flags, -nrpages);
2601         vma = remove_vma(vma);
2602     } while (vma);
2603     vm_unacct_memory(nr_accounted);
2604     validate_mm(mm);
2605 }
2606 
2607 /*
2608  * Get rid of page table information in the indicated region.
2609  *
2610  * Called with the mm semaphore held.
2611  */
2612 static void unmap_region(struct mm_struct *mm,
2613         struct vm_area_struct *vma, struct vm_area_struct *prev,
2614         unsigned long start, unsigned long end)
2615 {
2616     struct vm_area_struct *next = vma_next(mm, prev);
2617     struct mmu_gather tlb;
2618 
2619     lru_add_drain();
2620     tlb_gather_mmu(&tlb, mm);
2621     update_hiwater_rss(mm);
2622     unmap_vmas(&tlb, vma, start, end);
2623     free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2624                  next ? next->vm_start : USER_PGTABLES_CEILING);
2625     tlb_finish_mmu(&tlb);
2626 }
2627 
2628 /*
2629  * Create a list of vma's touched by the unmap, removing them from the mm's
2630  * vma list as we go..
2631  */
2632 static bool
2633 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2634     struct vm_area_struct *prev, unsigned long end)
2635 {
2636     struct vm_area_struct **insertion_point;
2637     struct vm_area_struct *tail_vma = NULL;
2638 
2639     insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2640     vma->vm_prev = NULL;
2641     do {
2642         vma_rb_erase(vma, &mm->mm_rb);
2643         if (vma->vm_flags & VM_LOCKED)
2644             mm->locked_vm -= vma_pages(vma);
2645         mm->map_count--;
2646         tail_vma = vma;
2647         vma = vma->vm_next;
2648     } while (vma && vma->vm_start < end);
2649     *insertion_point = vma;
2650     if (vma) {
2651         vma->vm_prev = prev;
2652         vma_gap_update(vma);
2653     } else
2654         mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2655     tail_vma->vm_next = NULL;
2656 
2657     /* Kill the cache */
2658     vmacache_invalidate(mm);
2659 
2660     /*
2661      * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2662      * VM_GROWSUP VMA. Such VMAs can change their size under
2663      * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2664      */
2665     if (vma && (vma->vm_flags & VM_GROWSDOWN))
2666         return false;
2667     if (prev && (prev->vm_flags & VM_GROWSUP))
2668         return false;
2669     return true;
2670 }
2671 
2672 /*
2673  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2674  * has already been checked or doesn't make sense to fail.
2675  */
2676 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2677         unsigned long addr, int new_below)
2678 {
2679     struct vm_area_struct *new;
2680     int err;
2681 
2682     if (vma->vm_ops && vma->vm_ops->may_split) {
2683         err = vma->vm_ops->may_split(vma, addr);
2684         if (err)
2685             return err;
2686     }
2687 
2688     new = vm_area_dup(vma);
2689     if (!new)
2690         return -ENOMEM;
2691 
2692     if (new_below)
2693         new->vm_end = addr;
2694     else {
2695         new->vm_start = addr;
2696         new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2697     }
2698 
2699     err = vma_dup_policy(vma, new);
2700     if (err)
2701         goto out_free_vma;
2702 
2703     err = anon_vma_clone(new, vma);
2704     if (err)
2705         goto out_free_mpol;
2706 
2707     if (new->vm_file)
2708         get_file(new->vm_file);
2709 
2710     if (new->vm_ops && new->vm_ops->open)
2711         new->vm_ops->open(new);
2712 
2713     if (new_below)
2714         err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2715             ((addr - new->vm_start) >> PAGE_SHIFT), new);
2716     else
2717         err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2718 
2719     /* Success. */
2720     if (!err)
2721         return 0;
2722 
2723     /* Clean everything up if vma_adjust failed. */
2724     if (new->vm_ops && new->vm_ops->close)
2725         new->vm_ops->close(new);
2726     if (new->vm_file)
2727         fput(new->vm_file);
2728     unlink_anon_vmas(new);
2729  out_free_mpol:
2730     mpol_put(vma_policy(new));
2731  out_free_vma:
2732     vm_area_free(new);
2733     return err;
2734 }
2735 
2736 /*
2737  * Split a vma into two pieces at address 'addr', a new vma is allocated
2738  * either for the first part or the tail.
2739  */
2740 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2741           unsigned long addr, int new_below)
2742 {
2743     if (mm->map_count >= sysctl_max_map_count)
2744         return -ENOMEM;
2745 
2746     return __split_vma(mm, vma, addr, new_below);
2747 }
2748 
2749 /* Munmap is split into 2 main parts -- this part which finds
2750  * what needs doing, and the areas themselves, which do the
2751  * work.  This now handles partial unmappings.
2752  * Jeremy Fitzhardinge <jeremy@goop.org>
2753  */
2754 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2755         struct list_head *uf, bool downgrade)
2756 {
2757     unsigned long end;
2758     struct vm_area_struct *vma, *prev, *last;
2759 
2760     if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2761         return -EINVAL;
2762 
2763     len = PAGE_ALIGN(len);
2764     end = start + len;
2765     if (len == 0)
2766         return -EINVAL;
2767 
2768     /*
2769      * arch_unmap() might do unmaps itself.  It must be called
2770      * and finish any rbtree manipulation before this code
2771      * runs and also starts to manipulate the rbtree.
2772      */
2773     arch_unmap(mm, start, end);
2774 
2775     /* Find the first overlapping VMA where start < vma->vm_end */
2776     vma = find_vma_intersection(mm, start, end);
2777     if (!vma)
2778         return 0;
2779     prev = vma->vm_prev;
2780 
2781     /*
2782      * If we need to split any vma, do it now to save pain later.
2783      *
2784      * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2785      * unmapped vm_area_struct will remain in use: so lower split_vma
2786      * places tmp vma above, and higher split_vma places tmp vma below.
2787      */
2788     if (start > vma->vm_start) {
2789         int error;
2790 
2791         /*
2792          * Make sure that map_count on return from munmap() will
2793          * not exceed its limit; but let map_count go just above
2794          * its limit temporarily, to help free resources as expected.
2795          */
2796         if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2797             return -ENOMEM;
2798 
2799         error = __split_vma(mm, vma, start, 0);
2800         if (error)
2801             return error;
2802         prev = vma;
2803     }
2804 
2805     /* Does it split the last one? */
2806     last = find_vma(mm, end);
2807     if (last && end > last->vm_start) {
2808         int error = __split_vma(mm, last, end, 1);
2809         if (error)
2810             return error;
2811     }
2812     vma = vma_next(mm, prev);
2813 
2814     if (unlikely(uf)) {
2815         /*
2816          * If userfaultfd_unmap_prep returns an error the vmas
2817          * will remain split, but userland will get a
2818          * highly unexpected error anyway. This is no
2819          * different than the case where the first of the two
2820          * __split_vma fails, but we don't undo the first
2821          * split, despite we could. This is unlikely enough
2822          * failure that it's not worth optimizing it for.
2823          */
2824         int error = userfaultfd_unmap_prep(vma, start, end, uf);
2825         if (error)
2826             return error;
2827     }
2828 
2829     /* Detach vmas from rbtree */
2830     if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2831         downgrade = false;
2832 
2833     if (downgrade)
2834         mmap_write_downgrade(mm);
2835 
2836     unmap_region(mm, vma, prev, start, end);
2837 
2838     /* Fix up all other VM information */
2839     remove_vma_list(mm, vma);
2840 
2841     return downgrade ? 1 : 0;
2842 }
2843 
2844 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2845           struct list_head *uf)
2846 {
2847     return __do_munmap(mm, start, len, uf, false);
2848 }
2849 
2850 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2851 {
2852     int ret;
2853     struct mm_struct *mm = current->mm;
2854     LIST_HEAD(uf);
2855 
2856     if (mmap_write_lock_killable(mm))
2857         return -EINTR;
2858 
2859     ret = __do_munmap(mm, start, len, &uf, downgrade);
2860     /*
2861      * Returning 1 indicates mmap_lock is downgraded.
2862      * But 1 is not legal return value of vm_munmap() and munmap(), reset
2863      * it to 0 before return.
2864      */
2865     if (ret == 1) {
2866         mmap_read_unlock(mm);
2867         ret = 0;
2868     } else
2869         mmap_write_unlock(mm);
2870 
2871     userfaultfd_unmap_complete(mm, &uf);
2872     return ret;
2873 }
2874 
2875 int vm_munmap(unsigned long start, size_t len)
2876 {
2877     return __vm_munmap(start, len, false);
2878 }
2879 EXPORT_SYMBOL(vm_munmap);
2880 
2881 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2882 {
2883     addr = untagged_addr(addr);
2884     return __vm_munmap(addr, len, true);
2885 }
2886 
2887 
2888 /*
2889  * Emulation of deprecated remap_file_pages() syscall.
2890  */
2891 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2892         unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2893 {
2894 
2895     struct mm_struct *mm = current->mm;
2896     struct vm_area_struct *vma;
2897     unsigned long populate = 0;
2898     unsigned long ret = -EINVAL;
2899     struct file *file;
2900 
2901     pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2902              current->comm, current->pid);
2903 
2904     if (prot)
2905         return ret;
2906     start = start & PAGE_MASK;
2907     size = size & PAGE_MASK;
2908 
2909     if (start + size <= start)
2910         return ret;
2911 
2912     /* Does pgoff wrap? */
2913     if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2914         return ret;
2915 
2916     if (mmap_write_lock_killable(mm))
2917         return -EINTR;
2918 
2919     vma = vma_lookup(mm, start);
2920 
2921     if (!vma || !(vma->vm_flags & VM_SHARED))
2922         goto out;
2923 
2924     if (start + size > vma->vm_end) {
2925         struct vm_area_struct *next;
2926 
2927         for (next = vma->vm_next; next; next = next->vm_next) {
2928             /* hole between vmas ? */
2929             if (next->vm_start != next->vm_prev->vm_end)
2930                 goto out;
2931 
2932             if (next->vm_file != vma->vm_file)
2933                 goto out;
2934 
2935             if (next->vm_flags != vma->vm_flags)
2936                 goto out;
2937 
2938             if (start + size <= next->vm_end)
2939                 break;
2940         }
2941 
2942         if (!next)
2943             goto out;
2944     }
2945 
2946     prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2947     prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2948     prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2949 
2950     flags &= MAP_NONBLOCK;
2951     flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2952     if (vma->vm_flags & VM_LOCKED)
2953         flags |= MAP_LOCKED;
2954 
2955     file = get_file(vma->vm_file);
2956     ret = do_mmap(vma->vm_file, start, size,
2957             prot, flags, pgoff, &populate, NULL);
2958     fput(file);
2959 out:
2960     mmap_write_unlock(mm);
2961     if (populate)
2962         mm_populate(ret, populate);
2963     if (!IS_ERR_VALUE(ret))
2964         ret = 0;
2965     return ret;
2966 }
2967 
2968 /*
2969  *  this is really a simplified "do_mmap".  it only handles
2970  *  anonymous maps.  eventually we may be able to do some
2971  *  brk-specific accounting here.
2972  */
2973 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2974 {
2975     struct mm_struct *mm = current->mm;
2976     struct vm_area_struct *vma, *prev;
2977     struct rb_node **rb_link, *rb_parent;
2978     pgoff_t pgoff = addr >> PAGE_SHIFT;
2979     int error;
2980     unsigned long mapped_addr;
2981 
2982     /* Until we need other flags, refuse anything except VM_EXEC. */
2983     if ((flags & (~VM_EXEC)) != 0)
2984         return -EINVAL;
2985     flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2986 
2987     mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2988     if (IS_ERR_VALUE(mapped_addr))
2989         return mapped_addr;
2990 
2991     error = mlock_future_check(mm, mm->def_flags, len);
2992     if (error)
2993         return error;
2994 
2995     /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
2996     if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
2997         return -ENOMEM;
2998 
2999     /* Check against address space limits *after* clearing old maps... */
3000     if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3001         return -ENOMEM;
3002 
3003     if (mm->map_count > sysctl_max_map_count)
3004         return -ENOMEM;
3005 
3006     if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3007         return -ENOMEM;
3008 
3009     /* Can we just expand an old private anonymous mapping? */
3010     vma = vma_merge(mm, prev, addr, addr + len, flags,
3011             NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3012     if (vma)
3013         goto out;
3014 
3015     /*
3016      * create a vma struct for an anonymous mapping
3017      */
3018     vma = vm_area_alloc(mm);
3019     if (!vma) {
3020         vm_unacct_memory(len >> PAGE_SHIFT);
3021         return -ENOMEM;
3022     }
3023 
3024     vma_set_anonymous(vma);
3025     vma->vm_start = addr;
3026     vma->vm_end = addr + len;
3027     vma->vm_pgoff = pgoff;
3028     vma->vm_flags = flags;
3029     vma->vm_page_prot = vm_get_page_prot(flags);
3030     vma_link(mm, vma, prev, rb_link, rb_parent);
3031 out:
3032     perf_event_mmap(vma);
3033     mm->total_vm += len >> PAGE_SHIFT;
3034     mm->data_vm += len >> PAGE_SHIFT;
3035     if (flags & VM_LOCKED)
3036         mm->locked_vm += (len >> PAGE_SHIFT);
3037     vma->vm_flags |= VM_SOFTDIRTY;
3038     return 0;
3039 }
3040 
3041 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3042 {
3043     struct mm_struct *mm = current->mm;
3044     unsigned long len;
3045     int ret;
3046     bool populate;
3047     LIST_HEAD(uf);
3048 
3049     len = PAGE_ALIGN(request);
3050     if (len < request)
3051         return -ENOMEM;
3052     if (!len)
3053         return 0;
3054 
3055     if (mmap_write_lock_killable(mm))
3056         return -EINTR;
3057 
3058     ret = do_brk_flags(addr, len, flags, &uf);
3059     populate = ((mm->def_flags & VM_LOCKED) != 0);
3060     mmap_write_unlock(mm);
3061     userfaultfd_unmap_complete(mm, &uf);
3062     if (populate && !ret)
3063         mm_populate(addr, len);
3064     return ret;
3065 }
3066 EXPORT_SYMBOL(vm_brk_flags);
3067 
3068 int vm_brk(unsigned long addr, unsigned long len)
3069 {
3070     return vm_brk_flags(addr, len, 0);
3071 }
3072 EXPORT_SYMBOL(vm_brk);
3073 
3074 /* Release all mmaps. */
3075 void exit_mmap(struct mm_struct *mm)
3076 {
3077     struct mmu_gather tlb;
3078     struct vm_area_struct *vma;
3079     unsigned long nr_accounted = 0;
3080 
3081     /* mm's last user has gone, and its about to be pulled down */
3082     mmu_notifier_release(mm);
3083 
3084     if (unlikely(mm_is_oom_victim(mm))) {
3085         /*
3086          * Manually reap the mm to free as much memory as possible.
3087          * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3088          * this mm from further consideration.  Taking mm->mmap_lock for
3089          * write after setting MMF_OOM_SKIP will guarantee that the oom
3090          * reaper will not run on this mm again after mmap_lock is
3091          * dropped.
3092          *
3093          * Nothing can be holding mm->mmap_lock here and the above call
3094          * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3095          * __oom_reap_task_mm() will not block.
3096          */
3097         (void)__oom_reap_task_mm(mm);
3098         set_bit(MMF_OOM_SKIP, &mm->flags);
3099     }
3100 
3101     mmap_write_lock(mm);
3102     arch_exit_mmap(mm);
3103 
3104     vma = mm->mmap;
3105     if (!vma) {
3106         /* Can happen if dup_mmap() received an OOM */
3107         mmap_write_unlock(mm);
3108         return;
3109     }
3110 
3111     lru_add_drain();
3112     flush_cache_mm(mm);
3113     tlb_gather_mmu_fullmm(&tlb, mm);
3114     /* update_hiwater_rss(mm) here? but nobody should be looking */
3115     /* Use -1 here to ensure all VMAs in the mm are unmapped */
3116     unmap_vmas(&tlb, vma, 0, -1);
3117     free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3118     tlb_finish_mmu(&tlb);
3119 
3120     /* Walk the list again, actually closing and freeing it. */
3121     while (vma) {
3122         if (vma->vm_flags & VM_ACCOUNT)
3123             nr_accounted += vma_pages(vma);
3124         vma = remove_vma(vma);
3125         cond_resched();
3126     }
3127     mm->mmap = NULL;
3128     mmap_write_unlock(mm);
3129     vm_unacct_memory(nr_accounted);
3130 }
3131 
3132 /* Insert vm structure into process list sorted by address
3133  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3134  * then i_mmap_rwsem is taken here.
3135  */
3136 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3137 {
3138     struct vm_area_struct *prev;
3139     struct rb_node **rb_link, *rb_parent;
3140 
3141     if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3142                &prev, &rb_link, &rb_parent))
3143         return -ENOMEM;
3144     if ((vma->vm_flags & VM_ACCOUNT) &&
3145          security_vm_enough_memory_mm(mm, vma_pages(vma)))
3146         return -ENOMEM;
3147 
3148     /*
3149      * The vm_pgoff of a purely anonymous vma should be irrelevant
3150      * until its first write fault, when page's anon_vma and index
3151      * are set.  But now set the vm_pgoff it will almost certainly
3152      * end up with (unless mremap moves it elsewhere before that
3153      * first wfault), so /proc/pid/maps tells a consistent story.
3154      *
3155      * By setting it to reflect the virtual start address of the
3156      * vma, merges and splits can happen in a seamless way, just
3157      * using the existing file pgoff checks and manipulations.
3158      * Similarly in do_mmap and in do_brk_flags.
3159      */
3160     if (vma_is_anonymous(vma)) {
3161         BUG_ON(vma->anon_vma);
3162         vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3163     }
3164 
3165     vma_link(mm, vma, prev, rb_link, rb_parent);
3166     return 0;
3167 }
3168 
3169 /*
3170  * Copy the vma structure to a new location in the same mm,
3171  * prior to moving page table entries, to effect an mremap move.
3172  */
3173 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3174     unsigned long addr, unsigned long len, pgoff_t pgoff,
3175     bool *need_rmap_locks)
3176 {
3177     struct vm_area_struct *vma = *vmap;
3178     unsigned long vma_start = vma->vm_start;
3179     struct mm_struct *mm = vma->vm_mm;
3180     struct vm_area_struct *new_vma, *prev;
3181     struct rb_node **rb_link, *rb_parent;
3182     bool faulted_in_anon_vma = true;
3183 
3184     /*
3185      * If anonymous vma has not yet been faulted, update new pgoff
3186      * to match new location, to increase its chance of merging.
3187      */
3188     if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3189         pgoff = addr >> PAGE_SHIFT;
3190         faulted_in_anon_vma = false;
3191     }
3192 
3193     if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3194         return NULL;    /* should never get here */
3195     new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3196                 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3197                 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3198     if (new_vma) {
3199         /*
3200          * Source vma may have been merged into new_vma
3201          */
3202         if (unlikely(vma_start >= new_vma->vm_start &&
3203                  vma_start < new_vma->vm_end)) {
3204             /*
3205              * The only way we can get a vma_merge with
3206              * self during an mremap is if the vma hasn't
3207              * been faulted in yet and we were allowed to
3208              * reset the dst vma->vm_pgoff to the
3209              * destination address of the mremap to allow
3210              * the merge to happen. mremap must change the
3211              * vm_pgoff linearity between src and dst vmas
3212              * (in turn preventing a vma_merge) to be
3213              * safe. It is only safe to keep the vm_pgoff
3214              * linear if there are no pages mapped yet.
3215              */
3216             VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3217             *vmap = vma = new_vma;
3218         }
3219         *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3220     } else {
3221         new_vma = vm_area_dup(vma);
3222         if (!new_vma)
3223             goto out;
3224         new_vma->vm_start = addr;
3225         new_vma->vm_end = addr + len;
3226         new_vma->vm_pgoff = pgoff;
3227         if (vma_dup_policy(vma, new_vma))
3228             goto out_free_vma;
3229         if (anon_vma_clone(new_vma, vma))
3230             goto out_free_mempol;
3231         if (new_vma->vm_file)
3232             get_file(new_vma->vm_file);
3233         if (new_vma->vm_ops && new_vma->vm_ops->open)
3234             new_vma->vm_ops->open(new_vma);
3235         vma_link(mm, new_vma, prev, rb_link, rb_parent);
3236         *need_rmap_locks = false;
3237     }
3238     return new_vma;
3239 
3240 out_free_mempol:
3241     mpol_put(vma_policy(new_vma));
3242 out_free_vma:
3243     vm_area_free(new_vma);
3244 out:
3245     return NULL;
3246 }
3247 
3248 /*
3249  * Return true if the calling process may expand its vm space by the passed
3250  * number of pages
3251  */
3252 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3253 {
3254     if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3255         return false;
3256 
3257     if (is_data_mapping(flags) &&
3258         mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3259         /* Workaround for Valgrind */
3260         if (rlimit(RLIMIT_DATA) == 0 &&
3261             mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3262             return true;
3263 
3264         pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3265                  current->comm, current->pid,
3266                  (mm->data_vm + npages) << PAGE_SHIFT,
3267                  rlimit(RLIMIT_DATA),
3268                  ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3269 
3270         if (!ignore_rlimit_data)
3271             return false;
3272     }
3273 
3274     return true;
3275 }
3276 
3277 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3278 {
3279     WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3280 
3281     if (is_exec_mapping(flags))
3282         mm->exec_vm += npages;
3283     else if (is_stack_mapping(flags))
3284         mm->stack_vm += npages;
3285     else if (is_data_mapping(flags))
3286         mm->data_vm += npages;
3287 }
3288 
3289 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3290 
3291 /*
3292  * Having a close hook prevents vma merging regardless of flags.
3293  */
3294 static void special_mapping_close(struct vm_area_struct *vma)
3295 {
3296 }
3297 
3298 static const char *special_mapping_name(struct vm_area_struct *vma)
3299 {
3300     return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3301 }
3302 
3303 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3304 {
3305     struct vm_special_mapping *sm = new_vma->vm_private_data;
3306 
3307     if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3308         return -EFAULT;
3309 
3310     if (sm->mremap)
3311         return sm->mremap(sm, new_vma);
3312 
3313     return 0;
3314 }
3315 
3316 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3317 {
3318     /*
3319      * Forbid splitting special mappings - kernel has expectations over
3320      * the number of pages in mapping. Together with VM_DONTEXPAND
3321      * the size of vma should stay the same over the special mapping's
3322      * lifetime.
3323      */
3324     return -EINVAL;
3325 }
3326 
3327 static const struct vm_operations_struct special_mapping_vmops = {
3328     .close = special_mapping_close,
3329     .fault = special_mapping_fault,
3330     .mremap = special_mapping_mremap,
3331     .name = special_mapping_name,
3332     /* vDSO code relies that VVAR can't be accessed remotely */
3333     .access = NULL,
3334     .may_split = special_mapping_split,
3335 };
3336 
3337 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3338     .close = special_mapping_close,
3339     .fault = special_mapping_fault,
3340 };
3341 
3342 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3343 {
3344     struct vm_area_struct *vma = vmf->vma;
3345     pgoff_t pgoff;
3346     struct page **pages;
3347 
3348     if (vma->vm_ops == &legacy_special_mapping_vmops) {
3349         pages = vma->vm_private_data;
3350     } else {
3351         struct vm_special_mapping *sm = vma->vm_private_data;
3352 
3353         if (sm->fault)
3354             return sm->fault(sm, vmf->vma, vmf);
3355 
3356         pages = sm->pages;
3357     }
3358 
3359     for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3360         pgoff--;
3361 
3362     if (*pages) {
3363         struct page *page = *pages;
3364         get_page(page);
3365         vmf->page = page;
3366         return 0;
3367     }
3368 
3369     return VM_FAULT_SIGBUS;
3370 }
3371 
3372 static struct vm_area_struct *__install_special_mapping(
3373     struct mm_struct *mm,
3374     unsigned long addr, unsigned long len,
3375     unsigned long vm_flags, void *priv,
3376     const struct vm_operations_struct *ops)
3377 {
3378     int ret;
3379     struct vm_area_struct *vma;
3380 
3381     vma = vm_area_alloc(mm);
3382     if (unlikely(vma == NULL))
3383         return ERR_PTR(-ENOMEM);
3384 
3385     vma->vm_start = addr;
3386     vma->vm_end = addr + len;
3387 
3388     vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3389     vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3390     vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3391 
3392     vma->vm_ops = ops;
3393     vma->vm_private_data = priv;
3394 
3395     ret = insert_vm_struct(mm, vma);
3396     if (ret)
3397         goto out;
3398 
3399     vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3400 
3401     perf_event_mmap(vma);
3402 
3403     return vma;
3404 
3405 out:
3406     vm_area_free(vma);
3407     return ERR_PTR(ret);
3408 }
3409 
3410 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3411     const struct vm_special_mapping *sm)
3412 {
3413     return vma->vm_private_data == sm &&
3414         (vma->vm_ops == &special_mapping_vmops ||
3415          vma->vm_ops == &legacy_special_mapping_vmops);
3416 }
3417 
3418 /*
3419  * Called with mm->mmap_lock held for writing.
3420  * Insert a new vma covering the given region, with the given flags.
3421  * Its pages are supplied by the given array of struct page *.
3422  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3423  * The region past the last page supplied will always produce SIGBUS.
3424  * The array pointer and the pages it points to are assumed to stay alive
3425  * for as long as this mapping might exist.
3426  */
3427 struct vm_area_struct *_install_special_mapping(
3428     struct mm_struct *mm,
3429     unsigned long addr, unsigned long len,
3430     unsigned long vm_flags, const struct vm_special_mapping *spec)
3431 {
3432     return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3433                     &special_mapping_vmops);
3434 }
3435 
3436 int install_special_mapping(struct mm_struct *mm,
3437                 unsigned long addr, unsigned long len,
3438                 unsigned long vm_flags, struct page **pages)
3439 {
3440     struct vm_area_struct *vma = __install_special_mapping(
3441         mm, addr, len, vm_flags, (void *)pages,
3442         &legacy_special_mapping_vmops);
3443 
3444     return PTR_ERR_OR_ZERO(vma);
3445 }
3446 
3447 static DEFINE_MUTEX(mm_all_locks_mutex);
3448 
3449 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3450 {
3451     if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3452         /*
3453          * The LSB of head.next can't change from under us
3454          * because we hold the mm_all_locks_mutex.
3455          */
3456         down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3457         /*
3458          * We can safely modify head.next after taking the
3459          * anon_vma->root->rwsem. If some other vma in this mm shares
3460          * the same anon_vma we won't take it again.
3461          *
3462          * No need of atomic instructions here, head.next
3463          * can't change from under us thanks to the
3464          * anon_vma->root->rwsem.
3465          */
3466         if (__test_and_set_bit(0, (unsigned long *)
3467                        &anon_vma->root->rb_root.rb_root.rb_node))
3468             BUG();
3469     }
3470 }
3471 
3472 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3473 {
3474     if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3475         /*
3476          * AS_MM_ALL_LOCKS can't change from under us because
3477          * we hold the mm_all_locks_mutex.
3478          *
3479          * Operations on ->flags have to be atomic because
3480          * even if AS_MM_ALL_LOCKS is stable thanks to the
3481          * mm_all_locks_mutex, there may be other cpus
3482          * changing other bitflags in parallel to us.
3483          */
3484         if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3485             BUG();
3486         down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3487     }
3488 }
3489 
3490 /*
3491  * This operation locks against the VM for all pte/vma/mm related
3492  * operations that could ever happen on a certain mm. This includes
3493  * vmtruncate, try_to_unmap, and all page faults.
3494  *
3495  * The caller must take the mmap_lock in write mode before calling
3496  * mm_take_all_locks(). The caller isn't allowed to release the
3497  * mmap_lock until mm_drop_all_locks() returns.
3498  *
3499  * mmap_lock in write mode is required in order to block all operations
3500  * that could modify pagetables and free pages without need of
3501  * altering the vma layout. It's also needed in write mode to avoid new
3502  * anon_vmas to be associated with existing vmas.
3503  *
3504  * A single task can't take more than one mm_take_all_locks() in a row
3505  * or it would deadlock.
3506  *
3507  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3508  * mapping->flags avoid to take the same lock twice, if more than one
3509  * vma in this mm is backed by the same anon_vma or address_space.
3510  *
3511  * We take locks in following order, accordingly to comment at beginning
3512  * of mm/rmap.c:
3513  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3514  *     hugetlb mapping);
3515  *   - all i_mmap_rwsem locks;
3516  *   - all anon_vma->rwseml
3517  *
3518  * We can take all locks within these types randomly because the VM code
3519  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3520  * mm_all_locks_mutex.
3521  *
3522  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3523  * that may have to take thousand of locks.
3524  *
3525  * mm_take_all_locks() can fail if it's interrupted by signals.
3526  */
3527 int mm_take_all_locks(struct mm_struct *mm)
3528 {
3529     struct vm_area_struct *vma;
3530     struct anon_vma_chain *avc;
3531 
3532     mmap_assert_write_locked(mm);
3533 
3534     mutex_lock(&mm_all_locks_mutex);
3535 
3536     for (vma = mm->mmap; vma; vma = vma->vm_next) {
3537         if (signal_pending(current))
3538             goto out_unlock;
3539         if (vma->vm_file && vma->vm_file->f_mapping &&
3540                 is_vm_hugetlb_page(vma))
3541             vm_lock_mapping(mm, vma->vm_file->f_mapping);
3542     }
3543 
3544     for (vma = mm->mmap; vma; vma = vma->vm_next) {
3545         if (signal_pending(current))
3546             goto out_unlock;
3547         if (vma->vm_file && vma->vm_file->f_mapping &&
3548                 !is_vm_hugetlb_page(vma))
3549             vm_lock_mapping(mm, vma->vm_file->f_mapping);
3550     }
3551 
3552     for (vma = mm->mmap; vma; vma = vma->vm_next) {
3553         if (signal_pending(current))
3554             goto out_unlock;
3555         if (vma->anon_vma)
3556             list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3557                 vm_lock_anon_vma(mm, avc->anon_vma);
3558     }
3559 
3560     return 0;
3561 
3562 out_unlock:
3563     mm_drop_all_locks(mm);
3564     return -EINTR;
3565 }
3566 
3567 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3568 {
3569     if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3570         /*
3571          * The LSB of head.next can't change to 0 from under
3572          * us because we hold the mm_all_locks_mutex.
3573          *
3574          * We must however clear the bitflag before unlocking
3575          * the vma so the users using the anon_vma->rb_root will
3576          * never see our bitflag.
3577          *
3578          * No need of atomic instructions here, head.next
3579          * can't change from under us until we release the
3580          * anon_vma->root->rwsem.
3581          */
3582         if (!__test_and_clear_bit(0, (unsigned long *)
3583                       &anon_vma->root->rb_root.rb_root.rb_node))
3584             BUG();
3585         anon_vma_unlock_write(anon_vma);
3586     }
3587 }
3588 
3589 static void vm_unlock_mapping(struct address_space *mapping)
3590 {
3591     if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3592         /*
3593          * AS_MM_ALL_LOCKS can't change to 0 from under us
3594          * because we hold the mm_all_locks_mutex.
3595          */
3596         i_mmap_unlock_write(mapping);
3597         if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3598                     &mapping->flags))
3599             BUG();
3600     }
3601 }
3602 
3603 /*
3604  * The mmap_lock cannot be released by the caller until
3605  * mm_drop_all_locks() returns.
3606  */
3607 void mm_drop_all_locks(struct mm_struct *mm)
3608 {
3609     struct vm_area_struct *vma;
3610     struct anon_vma_chain *avc;
3611 
3612     mmap_assert_write_locked(mm);
3613     BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3614 
3615     for (vma = mm->mmap; vma; vma = vma->vm_next) {
3616         if (vma->anon_vma)
3617             list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3618                 vm_unlock_anon_vma(avc->anon_vma);
3619         if (vma->vm_file && vma->vm_file->f_mapping)
3620             vm_unlock_mapping(vma->vm_file->f_mapping);
3621     }
3622 
3623     mutex_unlock(&mm_all_locks_mutex);
3624 }
3625 
3626 /*
3627  * initialise the percpu counter for VM
3628  */
3629 void __init mmap_init(void)
3630 {
3631     int ret;
3632 
3633     ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3634     VM_BUG_ON(ret);
3635 }
3636 
3637 /*
3638  * Initialise sysctl_user_reserve_kbytes.
3639  *
3640  * This is intended to prevent a user from starting a single memory hogging
3641  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3642  * mode.
3643  *
3644  * The default value is min(3% of free memory, 128MB)
3645  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3646  */
3647 static int init_user_reserve(void)
3648 {
3649     unsigned long free_kbytes;
3650 
3651     free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3652 
3653     sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3654     return 0;
3655 }
3656 subsys_initcall(init_user_reserve);
3657 
3658 /*
3659  * Initialise sysctl_admin_reserve_kbytes.
3660  *
3661  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3662  * to log in and kill a memory hogging process.
3663  *
3664  * Systems with more than 256MB will reserve 8MB, enough to recover
3665  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3666  * only reserve 3% of free pages by default.
3667  */
3668 static int init_admin_reserve(void)
3669 {
3670     unsigned long free_kbytes;
3671 
3672     free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3673 
3674     sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3675     return 0;
3676 }
3677 subsys_initcall(init_admin_reserve);
3678 
3679 /*
3680  * Reinititalise user and admin reserves if memory is added or removed.
3681  *
3682  * The default user reserve max is 128MB, and the default max for the
3683  * admin reserve is 8MB. These are usually, but not always, enough to
3684  * enable recovery from a memory hogging process using login/sshd, a shell,
3685  * and tools like top. It may make sense to increase or even disable the
3686  * reserve depending on the existence of swap or variations in the recovery
3687  * tools. So, the admin may have changed them.
3688  *
3689  * If memory is added and the reserves have been eliminated or increased above
3690  * the default max, then we'll trust the admin.
3691  *
3692  * If memory is removed and there isn't enough free memory, then we
3693  * need to reset the reserves.
3694  *
3695  * Otherwise keep the reserve set by the admin.
3696  */
3697 static int reserve_mem_notifier(struct notifier_block *nb,
3698                  unsigned long action, void *data)
3699 {
3700     unsigned long tmp, free_kbytes;
3701 
3702     switch (action) {
3703     case MEM_ONLINE:
3704         /* Default max is 128MB. Leave alone if modified by operator. */
3705         tmp = sysctl_user_reserve_kbytes;
3706         if (0 < tmp && tmp < (1UL << 17))
3707             init_user_reserve();
3708 
3709         /* Default max is 8MB.  Leave alone if modified by operator. */
3710         tmp = sysctl_admin_reserve_kbytes;
3711         if (0 < tmp && tmp < (1UL << 13))
3712             init_admin_reserve();
3713 
3714         break;
3715     case MEM_OFFLINE:
3716         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3717 
3718         if (sysctl_user_reserve_kbytes > free_kbytes) {
3719             init_user_reserve();
3720             pr_info("vm.user_reserve_kbytes reset to %lu\n",
3721                 sysctl_user_reserve_kbytes);
3722         }
3723 
3724         if (sysctl_admin_reserve_kbytes > free_kbytes) {
3725             init_admin_reserve();
3726             pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3727                 sysctl_admin_reserve_kbytes);
3728         }
3729         break;
3730     default:
3731         break;
3732     }
3733     return NOTIFY_OK;
3734 }
3735 
3736 static struct notifier_block reserve_mem_nb = {
3737     .notifier_call = reserve_mem_notifier,
3738 };
3739 
3740 static int __meminit init_reserve_notifier(void)
3741 {
3742     if (register_hotmemory_notifier(&reserve_mem_nb))
3743         pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3744 
3745     return 0;
3746 }
3747 subsys_initcall(init_reserve_notifier);