0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <linux/capability.h>
0010 #include <linux/mman.h>
0011 #include <linux/mm.h>
0012 #include <linux/sched/user.h>
0013 #include <linux/swap.h>
0014 #include <linux/swapops.h>
0015 #include <linux/pagemap.h>
0016 #include <linux/pagevec.h>
0017 #include <linux/pagewalk.h>
0018 #include <linux/mempolicy.h>
0019 #include <linux/syscalls.h>
0020 #include <linux/sched.h>
0021 #include <linux/export.h>
0022 #include <linux/rmap.h>
0023 #include <linux/mmzone.h>
0024 #include <linux/hugetlb.h>
0025 #include <linux/memcontrol.h>
0026 #include <linux/mm_inline.h>
0027 #include <linux/secretmem.h>
0028
0029 #include "internal.h"
0030
0031 struct mlock_pvec {
0032 local_lock_t lock;
0033 struct pagevec vec;
0034 };
0035
0036 static DEFINE_PER_CPU(struct mlock_pvec, mlock_pvec) = {
0037 .lock = INIT_LOCAL_LOCK(lock),
0038 };
0039
0040 bool can_do_mlock(void)
0041 {
0042 if (rlimit(RLIMIT_MEMLOCK) != 0)
0043 return true;
0044 if (capable(CAP_IPC_LOCK))
0045 return true;
0046 return false;
0047 }
0048 EXPORT_SYMBOL(can_do_mlock);
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061 static struct lruvec *__mlock_page(struct page *page, struct lruvec *lruvec)
0062 {
0063
0064 if (!TestClearPageLRU(page))
0065 return lruvec;
0066
0067 lruvec = folio_lruvec_relock_irq(page_folio(page), lruvec);
0068
0069 if (unlikely(page_evictable(page))) {
0070
0071
0072
0073
0074
0075
0076 if (PageUnevictable(page)) {
0077 del_page_from_lru_list(page, lruvec);
0078 ClearPageUnevictable(page);
0079 add_page_to_lru_list(page, lruvec);
0080 __count_vm_events(UNEVICTABLE_PGRESCUED,
0081 thp_nr_pages(page));
0082 }
0083 goto out;
0084 }
0085
0086 if (PageUnevictable(page)) {
0087 if (PageMlocked(page))
0088 page->mlock_count++;
0089 goto out;
0090 }
0091
0092 del_page_from_lru_list(page, lruvec);
0093 ClearPageActive(page);
0094 SetPageUnevictable(page);
0095 page->mlock_count = !!PageMlocked(page);
0096 add_page_to_lru_list(page, lruvec);
0097 __count_vm_events(UNEVICTABLE_PGCULLED, thp_nr_pages(page));
0098 out:
0099 SetPageLRU(page);
0100 return lruvec;
0101 }
0102
0103 static struct lruvec *__mlock_new_page(struct page *page, struct lruvec *lruvec)
0104 {
0105 VM_BUG_ON_PAGE(PageLRU(page), page);
0106
0107 lruvec = folio_lruvec_relock_irq(page_folio(page), lruvec);
0108
0109
0110 if (unlikely(page_evictable(page)))
0111 goto out;
0112
0113 SetPageUnevictable(page);
0114 page->mlock_count = !!PageMlocked(page);
0115 __count_vm_events(UNEVICTABLE_PGCULLED, thp_nr_pages(page));
0116 out:
0117 add_page_to_lru_list(page, lruvec);
0118 SetPageLRU(page);
0119 return lruvec;
0120 }
0121
0122 static struct lruvec *__munlock_page(struct page *page, struct lruvec *lruvec)
0123 {
0124 int nr_pages = thp_nr_pages(page);
0125 bool isolated = false;
0126
0127 if (!TestClearPageLRU(page))
0128 goto munlock;
0129
0130 isolated = true;
0131 lruvec = folio_lruvec_relock_irq(page_folio(page), lruvec);
0132
0133 if (PageUnevictable(page)) {
0134
0135 if (page->mlock_count)
0136 page->mlock_count--;
0137 if (page->mlock_count)
0138 goto out;
0139 }
0140
0141
0142 munlock:
0143 if (TestClearPageMlocked(page)) {
0144 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
0145 if (isolated || !PageUnevictable(page))
0146 __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
0147 else
0148 __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
0149 }
0150
0151
0152 if (isolated && PageUnevictable(page) && page_evictable(page)) {
0153 del_page_from_lru_list(page, lruvec);
0154 ClearPageUnevictable(page);
0155 add_page_to_lru_list(page, lruvec);
0156 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
0157 }
0158 out:
0159 if (isolated)
0160 SetPageLRU(page);
0161 return lruvec;
0162 }
0163
0164
0165
0166
0167 #define LRU_PAGE 0x1
0168 #define NEW_PAGE 0x2
0169 static inline struct page *mlock_lru(struct page *page)
0170 {
0171 return (struct page *)((unsigned long)page + LRU_PAGE);
0172 }
0173
0174 static inline struct page *mlock_new(struct page *page)
0175 {
0176 return (struct page *)((unsigned long)page + NEW_PAGE);
0177 }
0178
0179
0180
0181
0182
0183
0184
0185
0186 static void mlock_pagevec(struct pagevec *pvec)
0187 {
0188 struct lruvec *lruvec = NULL;
0189 unsigned long mlock;
0190 struct page *page;
0191 int i;
0192
0193 for (i = 0; i < pagevec_count(pvec); i++) {
0194 page = pvec->pages[i];
0195 mlock = (unsigned long)page & (LRU_PAGE | NEW_PAGE);
0196 page = (struct page *)((unsigned long)page - mlock);
0197 pvec->pages[i] = page;
0198
0199 if (mlock & LRU_PAGE)
0200 lruvec = __mlock_page(page, lruvec);
0201 else if (mlock & NEW_PAGE)
0202 lruvec = __mlock_new_page(page, lruvec);
0203 else
0204 lruvec = __munlock_page(page, lruvec);
0205 }
0206
0207 if (lruvec)
0208 unlock_page_lruvec_irq(lruvec);
0209 release_pages(pvec->pages, pvec->nr);
0210 pagevec_reinit(pvec);
0211 }
0212
0213 void mlock_page_drain_local(void)
0214 {
0215 struct pagevec *pvec;
0216
0217 local_lock(&mlock_pvec.lock);
0218 pvec = this_cpu_ptr(&mlock_pvec.vec);
0219 if (pagevec_count(pvec))
0220 mlock_pagevec(pvec);
0221 local_unlock(&mlock_pvec.lock);
0222 }
0223
0224 void mlock_page_drain_remote(int cpu)
0225 {
0226 struct pagevec *pvec;
0227
0228 WARN_ON_ONCE(cpu_online(cpu));
0229 pvec = &per_cpu(mlock_pvec.vec, cpu);
0230 if (pagevec_count(pvec))
0231 mlock_pagevec(pvec);
0232 }
0233
0234 bool need_mlock_page_drain(int cpu)
0235 {
0236 return pagevec_count(&per_cpu(mlock_pvec.vec, cpu));
0237 }
0238
0239
0240
0241
0242
0243 void mlock_folio(struct folio *folio)
0244 {
0245 struct pagevec *pvec;
0246
0247 local_lock(&mlock_pvec.lock);
0248 pvec = this_cpu_ptr(&mlock_pvec.vec);
0249
0250 if (!folio_test_set_mlocked(folio)) {
0251 int nr_pages = folio_nr_pages(folio);
0252
0253 zone_stat_mod_folio(folio, NR_MLOCK, nr_pages);
0254 __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
0255 }
0256
0257 folio_get(folio);
0258 if (!pagevec_add(pvec, mlock_lru(&folio->page)) ||
0259 folio_test_large(folio) || lru_cache_disabled())
0260 mlock_pagevec(pvec);
0261 local_unlock(&mlock_pvec.lock);
0262 }
0263
0264
0265
0266
0267
0268 void mlock_new_page(struct page *page)
0269 {
0270 struct pagevec *pvec;
0271 int nr_pages = thp_nr_pages(page);
0272
0273 local_lock(&mlock_pvec.lock);
0274 pvec = this_cpu_ptr(&mlock_pvec.vec);
0275 SetPageMlocked(page);
0276 mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
0277 __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
0278
0279 get_page(page);
0280 if (!pagevec_add(pvec, mlock_new(page)) ||
0281 PageHead(page) || lru_cache_disabled())
0282 mlock_pagevec(pvec);
0283 local_unlock(&mlock_pvec.lock);
0284 }
0285
0286
0287
0288
0289
0290 void munlock_page(struct page *page)
0291 {
0292 struct pagevec *pvec;
0293
0294 local_lock(&mlock_pvec.lock);
0295 pvec = this_cpu_ptr(&mlock_pvec.vec);
0296
0297
0298
0299
0300
0301 get_page(page);
0302 if (!pagevec_add(pvec, page) ||
0303 PageHead(page) || lru_cache_disabled())
0304 mlock_pagevec(pvec);
0305 local_unlock(&mlock_pvec.lock);
0306 }
0307
0308 static int mlock_pte_range(pmd_t *pmd, unsigned long addr,
0309 unsigned long end, struct mm_walk *walk)
0310
0311 {
0312 struct vm_area_struct *vma = walk->vma;
0313 spinlock_t *ptl;
0314 pte_t *start_pte, *pte;
0315 struct page *page;
0316
0317 ptl = pmd_trans_huge_lock(pmd, vma);
0318 if (ptl) {
0319 if (!pmd_present(*pmd))
0320 goto out;
0321 if (is_huge_zero_pmd(*pmd))
0322 goto out;
0323 page = pmd_page(*pmd);
0324 if (vma->vm_flags & VM_LOCKED)
0325 mlock_folio(page_folio(page));
0326 else
0327 munlock_page(page);
0328 goto out;
0329 }
0330
0331 start_pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
0332 for (pte = start_pte; addr != end; pte++, addr += PAGE_SIZE) {
0333 if (!pte_present(*pte))
0334 continue;
0335 page = vm_normal_page(vma, addr, *pte);
0336 if (!page || is_zone_device_page(page))
0337 continue;
0338 if (PageTransCompound(page))
0339 continue;
0340 if (vma->vm_flags & VM_LOCKED)
0341 mlock_folio(page_folio(page));
0342 else
0343 munlock_page(page);
0344 }
0345 pte_unmap(start_pte);
0346 out:
0347 spin_unlock(ptl);
0348 cond_resched();
0349 return 0;
0350 }
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363 static void mlock_vma_pages_range(struct vm_area_struct *vma,
0364 unsigned long start, unsigned long end, vm_flags_t newflags)
0365 {
0366 static const struct mm_walk_ops mlock_walk_ops = {
0367 .pmd_entry = mlock_pte_range,
0368 };
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381 if (newflags & VM_LOCKED)
0382 newflags |= VM_IO;
0383 WRITE_ONCE(vma->vm_flags, newflags);
0384
0385 lru_add_drain();
0386 walk_page_range(vma->vm_mm, start, end, &mlock_walk_ops, NULL);
0387 lru_add_drain();
0388
0389 if (newflags & VM_IO) {
0390 newflags &= ~VM_IO;
0391 WRITE_ONCE(vma->vm_flags, newflags);
0392 }
0393 }
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
0405 unsigned long start, unsigned long end, vm_flags_t newflags)
0406 {
0407 struct mm_struct *mm = vma->vm_mm;
0408 pgoff_t pgoff;
0409 int nr_pages;
0410 int ret = 0;
0411 vm_flags_t oldflags = vma->vm_flags;
0412
0413 if (newflags == oldflags || (oldflags & VM_SPECIAL) ||
0414 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
0415 vma_is_dax(vma) || vma_is_secretmem(vma))
0416
0417 goto out;
0418
0419 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
0420 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
0421 vma->vm_file, pgoff, vma_policy(vma),
0422 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
0423 if (*prev) {
0424 vma = *prev;
0425 goto success;
0426 }
0427
0428 if (start != vma->vm_start) {
0429 ret = split_vma(mm, vma, start, 1);
0430 if (ret)
0431 goto out;
0432 }
0433
0434 if (end != vma->vm_end) {
0435 ret = split_vma(mm, vma, end, 0);
0436 if (ret)
0437 goto out;
0438 }
0439
0440 success:
0441
0442
0443
0444 nr_pages = (end - start) >> PAGE_SHIFT;
0445 if (!(newflags & VM_LOCKED))
0446 nr_pages = -nr_pages;
0447 else if (oldflags & VM_LOCKED)
0448 nr_pages = 0;
0449 mm->locked_vm += nr_pages;
0450
0451
0452
0453
0454
0455
0456
0457 if ((newflags & VM_LOCKED) && (oldflags & VM_LOCKED)) {
0458
0459 vma->vm_flags = newflags;
0460 } else {
0461 mlock_vma_pages_range(vma, start, end, newflags);
0462 }
0463 out:
0464 *prev = vma;
0465 return ret;
0466 }
0467
0468 static int apply_vma_lock_flags(unsigned long start, size_t len,
0469 vm_flags_t flags)
0470 {
0471 unsigned long nstart, end, tmp;
0472 struct vm_area_struct *vma, *prev;
0473 int error;
0474
0475 VM_BUG_ON(offset_in_page(start));
0476 VM_BUG_ON(len != PAGE_ALIGN(len));
0477 end = start + len;
0478 if (end < start)
0479 return -EINVAL;
0480 if (end == start)
0481 return 0;
0482 vma = find_vma(current->mm, start);
0483 if (!vma || vma->vm_start > start)
0484 return -ENOMEM;
0485
0486 prev = vma->vm_prev;
0487 if (start > vma->vm_start)
0488 prev = vma;
0489
0490 for (nstart = start ; ; ) {
0491 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
0492
0493 newflags |= flags;
0494
0495
0496 tmp = vma->vm_end;
0497 if (tmp > end)
0498 tmp = end;
0499 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
0500 if (error)
0501 break;
0502 nstart = tmp;
0503 if (nstart < prev->vm_end)
0504 nstart = prev->vm_end;
0505 if (nstart >= end)
0506 break;
0507
0508 vma = prev->vm_next;
0509 if (!vma || vma->vm_start != nstart) {
0510 error = -ENOMEM;
0511 break;
0512 }
0513 }
0514 return error;
0515 }
0516
0517
0518
0519
0520
0521
0522
0523
0524 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
0525 unsigned long start, size_t len)
0526 {
0527 struct vm_area_struct *vma;
0528 unsigned long count = 0;
0529
0530 if (mm == NULL)
0531 mm = current->mm;
0532
0533 vma = find_vma(mm, start);
0534 if (vma == NULL)
0535 return 0;
0536
0537 for (; vma ; vma = vma->vm_next) {
0538 if (start >= vma->vm_end)
0539 continue;
0540 if (start + len <= vma->vm_start)
0541 break;
0542 if (vma->vm_flags & VM_LOCKED) {
0543 if (start > vma->vm_start)
0544 count -= (start - vma->vm_start);
0545 if (start + len < vma->vm_end) {
0546 count += start + len - vma->vm_start;
0547 break;
0548 }
0549 count += vma->vm_end - vma->vm_start;
0550 }
0551 }
0552
0553 return count >> PAGE_SHIFT;
0554 }
0555
0556
0557
0558
0559 static int __mlock_posix_error_return(long retval)
0560 {
0561 if (retval == -EFAULT)
0562 retval = -ENOMEM;
0563 else if (retval == -ENOMEM)
0564 retval = -EAGAIN;
0565 return retval;
0566 }
0567
0568 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
0569 {
0570 unsigned long locked;
0571 unsigned long lock_limit;
0572 int error = -ENOMEM;
0573
0574 start = untagged_addr(start);
0575
0576 if (!can_do_mlock())
0577 return -EPERM;
0578
0579 len = PAGE_ALIGN(len + (offset_in_page(start)));
0580 start &= PAGE_MASK;
0581
0582 lock_limit = rlimit(RLIMIT_MEMLOCK);
0583 lock_limit >>= PAGE_SHIFT;
0584 locked = len >> PAGE_SHIFT;
0585
0586 if (mmap_write_lock_killable(current->mm))
0587 return -EINTR;
0588
0589 locked += current->mm->locked_vm;
0590 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
0591
0592
0593
0594
0595
0596
0597 locked -= count_mm_mlocked_page_nr(current->mm,
0598 start, len);
0599 }
0600
0601
0602 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
0603 error = apply_vma_lock_flags(start, len, flags);
0604
0605 mmap_write_unlock(current->mm);
0606 if (error)
0607 return error;
0608
0609 error = __mm_populate(start, len, 0);
0610 if (error)
0611 return __mlock_posix_error_return(error);
0612 return 0;
0613 }
0614
0615 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
0616 {
0617 return do_mlock(start, len, VM_LOCKED);
0618 }
0619
0620 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
0621 {
0622 vm_flags_t vm_flags = VM_LOCKED;
0623
0624 if (flags & ~MLOCK_ONFAULT)
0625 return -EINVAL;
0626
0627 if (flags & MLOCK_ONFAULT)
0628 vm_flags |= VM_LOCKONFAULT;
0629
0630 return do_mlock(start, len, vm_flags);
0631 }
0632
0633 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
0634 {
0635 int ret;
0636
0637 start = untagged_addr(start);
0638
0639 len = PAGE_ALIGN(len + (offset_in_page(start)));
0640 start &= PAGE_MASK;
0641
0642 if (mmap_write_lock_killable(current->mm))
0643 return -EINTR;
0644 ret = apply_vma_lock_flags(start, len, 0);
0645 mmap_write_unlock(current->mm);
0646
0647 return ret;
0648 }
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660 static int apply_mlockall_flags(int flags)
0661 {
0662 struct vm_area_struct *vma, *prev = NULL;
0663 vm_flags_t to_add = 0;
0664
0665 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
0666 if (flags & MCL_FUTURE) {
0667 current->mm->def_flags |= VM_LOCKED;
0668
0669 if (flags & MCL_ONFAULT)
0670 current->mm->def_flags |= VM_LOCKONFAULT;
0671
0672 if (!(flags & MCL_CURRENT))
0673 goto out;
0674 }
0675
0676 if (flags & MCL_CURRENT) {
0677 to_add |= VM_LOCKED;
0678 if (flags & MCL_ONFAULT)
0679 to_add |= VM_LOCKONFAULT;
0680 }
0681
0682 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
0683 vm_flags_t newflags;
0684
0685 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
0686 newflags |= to_add;
0687
0688
0689 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
0690 cond_resched();
0691 }
0692 out:
0693 return 0;
0694 }
0695
0696 SYSCALL_DEFINE1(mlockall, int, flags)
0697 {
0698 unsigned long lock_limit;
0699 int ret;
0700
0701 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
0702 flags == MCL_ONFAULT)
0703 return -EINVAL;
0704
0705 if (!can_do_mlock())
0706 return -EPERM;
0707
0708 lock_limit = rlimit(RLIMIT_MEMLOCK);
0709 lock_limit >>= PAGE_SHIFT;
0710
0711 if (mmap_write_lock_killable(current->mm))
0712 return -EINTR;
0713
0714 ret = -ENOMEM;
0715 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
0716 capable(CAP_IPC_LOCK))
0717 ret = apply_mlockall_flags(flags);
0718 mmap_write_unlock(current->mm);
0719 if (!ret && (flags & MCL_CURRENT))
0720 mm_populate(0, TASK_SIZE);
0721
0722 return ret;
0723 }
0724
0725 SYSCALL_DEFINE0(munlockall)
0726 {
0727 int ret;
0728
0729 if (mmap_write_lock_killable(current->mm))
0730 return -EINTR;
0731 ret = apply_mlockall_flags(0);
0732 mmap_write_unlock(current->mm);
0733 return ret;
0734 }
0735
0736
0737
0738
0739
0740 static DEFINE_SPINLOCK(shmlock_user_lock);
0741
0742 int user_shm_lock(size_t size, struct ucounts *ucounts)
0743 {
0744 unsigned long lock_limit, locked;
0745 long memlock;
0746 int allowed = 0;
0747
0748 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
0749 lock_limit = rlimit(RLIMIT_MEMLOCK);
0750 if (lock_limit != RLIM_INFINITY)
0751 lock_limit >>= PAGE_SHIFT;
0752 spin_lock(&shmlock_user_lock);
0753 memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
0754
0755 if ((memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) {
0756 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
0757 goto out;
0758 }
0759 if (!get_ucounts(ucounts)) {
0760 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
0761 allowed = 0;
0762 goto out;
0763 }
0764 allowed = 1;
0765 out:
0766 spin_unlock(&shmlock_user_lock);
0767 return allowed;
0768 }
0769
0770 void user_shm_unlock(size_t size, struct ucounts *ucounts)
0771 {
0772 spin_lock(&shmlock_user_lock);
0773 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
0774 spin_unlock(&shmlock_user_lock);
0775 put_ucounts(ucounts);
0776 }